An Examination of SOFC Anode Functional Layers Based on Ceria in YSZ
Penn collection
Degree type
Discipline
Subject
cerium compounds
yttrium compounds
zirconium compounds
catalysis
porous materials
ionic conductivity
sintering
palladium
nickel
copper
electric impedance
anodes
cermets
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
The properties of solid oxide fuel cell (SOFC) anode functional layers prepared by impregnation of ceria and catalytic metals into porous yttria-stabilized zirconia (YSZ) have been examined for operation at 973 K. By varying the thickness of the functional layer, the conductivity of the ceria-YSZ composite was determined to be only 0.015–0.02 S/cm. The initial performance of anodes made with ceria loadings of 40 or 60 wt % were similar but the anodes with lower loadings lost conductivity above 1073 K due to sintering of the ceria. The addition of dopant levels of catalytic metals was found to be critical. The addition of 1 wt % Pd or Ni decreased the anode impedances in humidified H2 dramatically, while the improvement with 5 wt % Cu was significant but more modest. Pd doping also decreased the anode impedance in dry CH4 much more than did Cu doping; however, addition of either Pd or Cu led to similar improvements for operation in n-butane. Based on these results, suggestions are made for ways to improve SOFC anode functional layers.