An Investigation of LSF-YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes

Loading...
Thumbnail Image
Penn collection
Departmental Papers (CBE)
Degree type
Discipline
Subject
composite scaffold
fuel cell
infiltration
ionic conductivity
LSCF
LSF
membrane
SOFC
YSZ
Biochemical and Biomolecular Engineering
Chemical Engineering
Energy Systems
Engineering
Membrane Science
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Cheng, Yuan
Oh, Tae-Sik
Wilson, Rachel
Contributor
Abstract

Porous compostites of Sr-doped LaFeO3 (LSF and yttria-stabilized zirconia (YSZ) were investigated as conductive scaffolds for infiltrated SOFC cathodes with the goal of producing scaffolds for which only a few perovskite infiltration steps are required to achieve sufficient conductivity. While no new phases form when LSF-YSZ composites are calcined to 1623 K, shifts in the lattice parameters indicate Zr can enter the perovskite phase. Measurements on dense, LSF-YSZ composites show that the level of Zr doping depends on the Sr:La ration. Because conductivity of undoped LSF increases with Sr content while both the iconic and electronic conductivities of Zr-doped LSF decrease with the level of Zr in the perovskite phase, there is an optimum initial Sr content corresponding to La0.9Sr0.1FeO3 (LSF91). Although schaffolds made with 100% LSF had a higher conductivity then scaffolds made with 50:50 LSF-YSZ mixtures, the 50:50 mixture provides the optimal interfacial structure with the electrolyte and sufficient conductivity, providing the best cathode performance upon infiltration of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF).

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2017-01-01
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection