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An experimental and theoretical investigation of low Reynolds number, high subsonic 
Mach number, compressible gas flow in channels is presented. Nitrogen, helium, and 
argon gases were used. The channels were microfabricated on silicon wafers and were 
typically 100 pm wide, lo4 pm long, and ranged in depth from 0.5 to 20 pm. The 
Knudsen number ranged from to 0.4. The measured friction factor was in good 
agreement with theoretical predictions assuming isothermal, locally fully developed, 
first-order, slip flow. 

1. Introduction 
Micromechanics is a rapidly emerging technology in which micron-scaled devices are 

constructed using photolithographic methods similar to those employed to fabricate 
integrated circuits. Microfabricated channels may be used for integrated cooling of 
electronic circuits (Tuckerman 1984); Joule-Thomson cryo-coolers for infra-red 
detectors and diode lasers (Wu & Little 1983); miniature gas chromatographs built on 
single silicon wafers (Terry, Jerman & Angel1 1979) ; and small, high-frequency fluidic 
control systems (Joyce 1983). 

In order to design such devices effectively, it is necessary to establish the physical 
laws governing gas flow in small conduits. Among other things, such flow may differ 
from its macroscopic counterpart in that relatively high, subsonic Mach ( M )  numbers 
may be maintained concurrently with low Reynolds (Re) numbers, the surface area to 
volume ratio is huge, 0(106 m2/m3), the fabrication process may lead to a relatively 
large degree of surface roughness, and non-continuum effects may occur at pressures 
above one atmosphere. 

The prior studies which are most closely related to our work are those of Keenan & 
Neuman (1946), Shapiro (1953), Ebert & Sparrow (1965), Sreekanth (1968), Wu & 
Little (1983), Prud’homme, Chapman & Bowen (1986), van den Berg, ten Seldam & van 
der Gulik (19930, b), and Choi, Barron & Warrington (1991). Keenan & Neumann 
(1946) and Shapiro (1953) reported on experimental work in which the friction factor 
for fully developed, continuum, adiabatic compressible gas flow (M = 0.27 to 3.87) in 
tubes ranging in diameter from 1 to 2 cm was approximately the same as the friction 
factor for incompressible flow with a comparable Reynolds number. 

Sreekanth (1968) examined the flow of rarefied gases in 2 in. diameter tubes under 
large pressure gradients and Knudsen (Kn) numbers up to 0.265. For Kn < 0.13, his 
experimental results agreed well with theoretical predictions assuming a single 
coefficient wall slip model, and isothermal, locally fully developed flow. In contrast, 
Choi et al. (1991) measured a friction factor 17% below theoretical predictions for 
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nitrogen flow in circular channels with diameters smaller than 10 pm. Our estimate of 
the Kn number in their experiments suggest that such a deviation cannot be explained 
by non-continuum effects. 

Wu & Little (1983) measured friction factors experimentally for both laminar and 
turbulent gas flow in miniature conduits etched in silicon and in glass. They observed 
friction factors larger than predicted by established correlations and a transition to 
turbulence at Reynolds numbers as low as 400. They attributed their anomalous results 
to the very high degree of surface roughness of some of their channels and to 
uncertainty in the determination of the dimensions of their channels. Part of the 
discrepancy may also be due to their comparison of experimental data for trapezoidal 
conduits with correlations established for pipes with a circular cross-section. 

Surprisingly, there are only a few theoretical studies addressing compressible, 
laminar flow in uniform conduits. Prud’homme et al. (1986) and van den Berg et al. 
(1993 a, b) neglected the transverse velocity and used a perturbation expansion to solve 
the isothermal, compressible Navier-Stokes equations for laminar flow in a circular 
tube. For low Reynolds and Mach number flows, they obtained a ‘locally self-similar’ 
velocity profile. 

In this paper, we present experimental data, analytical predictions, and numerical 
simulations of compressible channel flow. We measured the pressure drop for the flow 
of nitrogen, helium, and argon in minute channels microfabricated on silicon wafers 
using photolithographic techniques borrowed from the electronics industry. In order 
to obtain the friction factor from the pressure measurements, knowledge of the velocity 
profile was required. To obtain the velocity profile, we used the ‘locally fully 
developed ’ approximation, which we verified by comparing theoretical predictions 
with results of direct numerical simulations. The numerical simulations also provided 
information on the transverse velocity and the temperature field. The objective of this 
paper is to determine the range of validity of established theory for microchannel flow. 
A partial account of the experimental results described here was presented by Pfahler 
et al. at the 1991 ASME Winter Annual Meeting. 

2. Experimental apparatus and procedure 
The experimental apparatus is described in figure 1. The apparatus consists of two 

parts: the test section (figure 2), and an adapter, associated plumbing, and 
instrumentation which facilitates flow supply into the test section and the measurement 
of pressures, temperatures, and flow rates. 

The text section (figure 2) consists of a flow conduit micromachined in (100) silicon 
using standard planar photolithographic techniques (Jaeger 1988). The conduits were 
capped with Pyrex glass anodically bonded (Wallis 1970) to the silicon. The shallowest 
channels (< 1 pm depth), were plasma-etched and had a rectangular cross-section. 
The deeper channels were etched with an anisotropic etchant, KOH, resulting in a 
trapezoidal cross-section in which the (1 11) planes intersect the wafer surface at an 
angle of 54.74’ (figure 2c) .  Typically, the channels were lo4 pm long, 100 pm wide, and 
ranged from 0.5 pm to 20 pm in depth. The various channels used in our experiments 
and their dimensions are listed in table 1. At both ends of the conduit, holes were 
etched in the silicon to allow the fluid to enter and exit the conduit. 

Precise knowledge of the dimensions of a channel is extremely important for the 
accurate evaluation of the frictional resistance to motion within the channel ; therefore 
great care was exercised in measuring channel dimensions. Before we bonded the Pyrex 
cap, the depth of the channel was measured with an accuracy of k 1 YO using a surface 
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FIGURE 2. Views of a test channel microfabricated on a silicon wafer. (a) Top view. 
(b) Cross-section A-A. (c) Cross-section B-B. 

Channel 

JH6 
v 3  
JP9 
JHlO 
JH21 
JH3 
VJ27 
JH5 

TOP 
width 
(Pm) 
96.6 

105.7 
95.4 

102.5 
100.5 
94.4 
99.3 

246.8 

Bottom Hydraulic Length 
width Depth diameter x lo3 

96.9 0.51 1.01 10.9 
99.2 2.73 5.24 11.03 
85.8 4.66 8.68 10.9 
93.8 4.78 8.97 10.9 
85.2 8.33 14.85 11.05 
80.0 11.04 19.18 10.18 
75.5 15.98 26.03 11.08 

220.3 19.79 35.91 10.18 

TABLE 1. Microchannel specifications 

(Pm) (Pm) (Pm) (Pm) 

Theoretical 
c, 

(Shah & 
London Gases 

1978) tested 

95.13 N,, He 
90.90 N, 
88.51 N,, He 
89.24 N, 
82.91 N,, He, Ar 
79.95 N,, He, Ar 
74.10 N,, He, Ar 
84.94 N,, He, Ar 
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FIGURE 3. Laser interferometric microscope (WYKO) plot of the surface profile along a 0.5 pm 
deep channel. Peak-Valley = 4.88 nm; channel depth = 500 nm. 

profilometer (Alpha-Step). These measurements were verified at the conclusion of the 
tests by cross-sectioning the wafers and examining them under a calibrated, scanning 
electron microscope. This ‘postmortem’ examination also assured that no change in 
dimensions occurred during the glass-cap bonding process and the high-pressure 
experiments. The width of the channels was measured optically, with a calibrated 
microscope reticle at 400 x , allowing an accuracy of & 2 %. The roughness of the 
channel was measured along its centre with both the surface profilometer and a laser 
interferometric microscope. Figure 3 depicts typical results of a surface interferometric 
measurement for a 0.5 pm deep channel with a roughness of about 1 YO. 

The test section was pressure mounted in an adapter block (figure 1). 0 rings were 
used to prevent leakage at the contact points. The instrumentation necessary to 
monitor the inlet and exit pressures and temperatures as well as the flow rate was 
mounted outside the test section. 

In the experiments, gas flowed from a regulated high-pressure cylinder, through 
a 0.5 pm filter, past a pressure transducer and a thermistor, into the adapter block, 
through the test section, back out to the adapter block, and through a flow-rate 
monitor. Downstream pressure and temperature were measured with another 
thermistor and pressure sensor (see figure 1). The volumetric flow rate was determined 
with a precision better than f2.2Y0 by timing the motion of an injected liquid 
meniscus through a tube which, depending on the flow rate, was either a precision bore 
capillary tube or a burette. 

Owing to the unavailability of appropriate sensors which would allow in situ 
measurements, both temperatures and pressures were measured outside the test 
section. The difference between the upstream and downstream pressure measurements 
provided an estimate for the pressure drop inside the test section. The pressure losses 
outside the test section were estimated, in most cases, to be far less than 1 YO of the total 
pressure drop. In any event, data were excluded from consideration whenever the 
pressure drop in the supply lines was estimated to be more than 2.5% of the total 
pressure loss. The supply lines were in all cases at least an order of magnitude larger 
in diameter than the effective diameter of the test conduits. As a result, flow velocities 
in the supply lines were at least two orders of magnitude slower than those in the test 
conduits. 

The temperatures were measured with minute thermistors. The gases entering the 
test section were at thermal equilibrium with the surroundings, and their temperature 
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was determined with an accuracy of k 0.1 "C. Larger uncertainty was associated with 
the temperature measurement of the exiting gases. Because of the low specific heat and 
extremely low flow rate of the gas, conduction through the thermistor's leads could 
have caused a significant measurement error. Fortunately, even relatively large changes 
in exit temperature were estimated to have only a small effect on the determination of 
the friction factor. 

Thermophysical properties of the gases used in the experiments were obtained from 
Touloukian, Saxena & Hestermans (1975). 

3. A one-dimensional model for the evaluation of the friction factor 
As the gas flows along the channel's length (x), its pressure decreases and its specific 

volume increases. To accommodate this increase in volume, the speed of the gas 
increases. The measured pressure drop, AP, along the channel's length, is caused by 
both shear and acceleration. In this section, we outline the procedure we used in order 
to subtract the contribution of acceleration from AP and obtain the average friction 
factor cf). 

The time-independent, one-dimensional, compressible, dimensionless, conservation 
equations for ideal gas flow in a uniform cross-section conduit are: 

pU = const, (1) 

4Nu 
Pr Re 

(1 - 6,) dx = d(6, +fa(? - 1) (U)'), (3) 

P = PO. (4) 
In the above, u = ( l /A)sA u dA is the cross-sectionally averaged, axial velocity. u is the 
non-dimensional, local velocity normalized with the sound speed, a, = (YRT,)~",  
evaluated at the channel's entrance temperature, T,. A is the cross-sectional area of the 
channel. p is the non-dimensional gas density normalized with pl. Subscripts 1 and 2 
denote, respectively, conditions at the inlet and exit of the channel. P is the ressure 
normalized with the inlet pressure Pl. p = (1 / A $ )  [ A  u2 dA and a = (1 / A d )  PA u3 dA. 
D ,  is the hydraulic diameter which we use as the lengthscale. Re = pUDH/,u and 
G = a, D ,  pl./pl are the Reynolds and the acoustic Reynolds numbers, respectively. 
f= 8yW/pi2 IS the Darcy friction factor. is the average wall shear stress at location 
x along the length of the channel. ,u is the shear viscosity. $ is the ratio between the bulk 
and shear viscosities. y is the ratio of specific heats. 6 is the temperature normalized 
with the inlet temperature, Tl.  Nu = hD,/k is the Nusselt number. h is the convective 
heat transfer coefficient. k is the thermal conductivity of the gas. Pr is the Prandtl 
number. 6, = (1/A@))SA u6dA is the bulk temperature of the gas. &? is the cross- 
sectionally averaged Mach number. 

The pressure and density are assumed uniform within any given cross-section of the 
channel. The validity of these and other approximations will be tested in $ 5 .  We assume 
that the wall temperature of the conduit is uniform and equal to the temperature of the 
gas at the entrance. Owing to the small dimensions of our flow conduits and the high 
thermal conductivity of the silicon substrate, we also assumed that the flow is 
isothermal, 6 = 1. For the type of flows considered here, this is a very good 
approximation except, perhaps, when flow approaches choking conditions at the 
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FIGURE 4. Pressure normalized by inlet pressure and Mach number versus axial position for 
isothermal nitrogen flow in channel JP9, M ,  = 0.0337. -, Mach number; ---, normalized 
pressure. 

channel’s exit. We verified this approximation in two ways. Using a Nusselt number 
and the Darcy friction factor for fully developed, incompressible flow, we integrated 
equation (1)-(4). For example, for flow in a 4.66 pm deep channel, at Re = 305 and 
M < 0.28, the difference between the gas and wall temperatures was smaller than 1 “C 
(Harley 1993). Similar results were obtained by direct numerical simulations of the full 
Navier-Stokes equations (9 5). 

When choking occurs, however, an infinite amount of heat is required to maintain 
isothermal conditions. Since this is not realistic, it would be more appropriate to 
assume adiabatic flow in the vicinity of the choking point. For laminar, adiabatic, 
continuum flow, the chocking Mach number, = a-1’2. For example, for continuum 
flow between parallel plates, a = 54/35 and M, - 0.8. Values of a for rectangular 
cross-sections of various aspect ratios are given in Harley (1993). 

In most of our experiments, M(x) 4 g. Even when choking occurs, the isothermal 
approximation ~ should -- not produce a significant error since along most of the channel’s 
length, M(x)  < M,. M(x)  approaches only over a very short channel length as 
illustrated in figure 4, where the calculated, local M(x)  is depicted as a function of x 
for isothermal flow in a 4.66 pm deep channel. Note that the flow accelerates from a 
modest = 0.2 to M, within a distance of less than 0.25 mm. Given the smallness of 
the channel and the presence of axial conduction (neglected in (3)), a substantial 
deviation of 0 from unity is unlikely. 

In the experiments, we measured Pl, P2, and U. In order to estimate the friction 
factor,x averaged over the length of the conduit, we employ equation (2). To use this 
equation, we need to integrate the third term and to obtain ~ an estimate for /3. The 
integration of the third term requires knowledge of u(x), which we do not have. 
Fortunately, as we demonstrate later, this term is usually very small and can be 
neglected. To estimate /3, knowledge of the axial velocity profile is required. To obtain 
such a profile, one frequently invokes the ‘locally fully developed’ approximation. In 
the next section, we derive an expression for such a ‘fully developed’ profile in 
continuum flow. Then, in 95, we verify the validity of the ‘locally fully developed’ 
approximation through comparison with numerical simulations. 
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4. The 'locally fully developed' velocity profile in continuum flow 
Recently, van den Berg et al. (1993) derived a simple, 'locally fully developed' theory 

for low Mach number, compressible, isothermal flow in circular capillaries. In contrast, 
our experimental channels had a rectangular cross-section with, in most cases, a large 
ratio between the width and height. Because of this large ratio, we approximate our 
flow as a flow between two parallel plates spaced distance D apart. 

For two-dimensional, constant viscosity, isothermal, compressible channel flow, the 
non-dimensional continuum and momentum equations are, respectively, 

and pu- au = ---+-(%++-+-- 1 d P  1 a2u 1 a Z u  

ax ydx  G ax2 Gay2'  

The boundary conditions are no-slip at solid walls and prescribed inlet and exit 
pressures, 

In the above, we used the half-distance ($0) as the lengthscale. S is the ratio between 
the exit and inlet pressures. Following Prud'homme et al. (1986) and van den Berg 
et al. (1993a, b), we assumed that the density and pressure are functions of x but not of 
y ,  and we neglected the transverse velocity component u(x,y). The latter is a bald 
approximation which leads to an inconsistent mathematical model. Nevertheless, 
numerical calculations ($6) revealed that, for the type of flows considered here, even for 
relatively high subsonic Mach numbers, Max,, ,(u(x, y)/u(x, 0)) < lo-'. 

u(x, - 1) = u(x, 1) = 0, P(0) = 1, P(L) = 6. (8) 

The axial velocity can be factored, 

u(x, v> = u,(x) XY), (9) 
where u,(x) is the centreline velocity and u,(O) = 1. Upon substituting (9) into (6) and 
using (4) to eliminate the pressure, we obtain: 

(10) 
dln(p) ( : + K )  d 1 dp 1 dp2 1 

2ydx G Y ) ,  p- ~- E ( y )  = - - -+-E"( - E2( Y )  7 +- G d x d  dx) 

with E(+1) = 0, p(0) = 1, p(L) = 6, (1 1) 
where the primes denote differentiation with respect to y .  

Equation (10) will only be used to generate average relationships. In fact, this 
equation is mathematically inconsistent. Specification of different y values in (10) lead 
to different solutions for p(x). For example, when y = 1, p(x) = (1 - (1 -6,) (x/L))l'', 
which represents a balance between the pressure gradient and the wall shear stress. 

Integration of equation (10) along the channel's length leads to a second-order 
differential equation for E, 

C, E'(y)-  C3E(y )  = 1 + C, E"( y), E'(0) = E(1) = 0 (0 < y < l), (12) 
where the constants, C, = - 2yLn(S)/( 1 - S2) and C, = 2yL/( 1 - 6,) G, depend only 
on boundary conditions. In contrast, the evaluation of the third constant, 
C, = 2 y($ + 4) Z/G( 1 - P), where Z = si p (dldx) (( 1 /p ' )  (dpldx)) dx, requires knowl- 
edge ofp(x), which can be obtained only by solving (10). Fortunately, as we show later, 
for the flows considered here, C, is extremely small and can be safely neglected. Below, 
we set C, = 0. 
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analytically. The closed form solution is : 
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We solved equation (12) both numerically, using a shooting technique, and 

d4 
1 

A ,  = -+ ,E(0)~(~) (4C;1-E2(0) )1~2 and J"uIm] = 1, (1 + m sinhz($))'/2 

is an elliptic integral of the first kind with an imaginary argument. The elliptic function 
was evaluated with the aid of MATHEMATICA (Wolfram 1992). 

For illustration purposes, we computed E( y )  as a function of y for nitrogen flow in 
a 4 pm deep and 400 pm long channel. For low (M,  = 0.07, M ,  = 0.15,s = 0.523) and 
moderate ( M I  = 0.22, M ,  = 0.84, 6 = 0.225) Mach number flows, the difference 
between E( y)/E(O) and the parabolic profile, (1 - y'), was less than 0.3 YO and 3 YO, and 
{C,, C,, C,} = (2.49, 6.3, 1.7 x and {4.39,6.14, 1.2 x lo-'}, respectively. Note also 
that the nonlinear term's contribution in (12) is quite small (< 3 YO). In the next section, 
we compare E( y )  with numerical results. 

Once E( y )  is known, neglecting the second term in (lo), which is consistent with 
setting C, = 0, we integrate (10) over the cross-section to obtain a momentum balance 
similar to (2), 

(14) 
1 
- (pz - 1) -FLn(p) = G-lE'( 1) x (0 < x < L). 
2Y 

We calculated p(x)  using this equation. The results are presented in the next section. 

5. Numerical solution 
We solve numerically, with the aid of the finite element program FIDAP, the two 

dimensional Navier-Stokes and energy equations for compressible flow of a gas 
between two isothermal, parallel plates. The boundary conditions used in the 
simulation consist of uniform inlet and exit pressures and a uniform inlet temperature 
equal to the walls' temperature. In all the simulations, 4 = 0.6, Pr = 0.69, y = 1.4, and 
L = 100. The simulations correspond, for example, to nitrogen flow in a 4 pm deep 
channel with T, = 373 K and P, = 0.1 MPa. The results of the simulations were tested 
for self-consistency by grid refinement. Simulations with 300 x 27 and 500 x 33 grid 
points gave indistinguishable results. 

For brevity, we report here only the results of two numerical simulations, a relatively 
low Mach number flow ( M ,  = 0.07, M ,  = 0.15,s = 0.523, Re, = 1.54) and a moderate 
Mach number flow ( M I  = 0.22, M ,  = 0.84, 6 = 0.225, Re, = 10.75). The reported 
Mach numbers were evaluated at the channel's centreline. 

5.1. Low Mach numberflow ( M I  = 0.07, M ,  = 0.15, S = 0.523) 
Figure 5 depicts the numerical (dots) and the theoretical predictions (solid lines) 
obtained in 94 for the centreline speed u(x, 0), the centreline density p(x,  0), and the wall 
shear stress as functions of the axial location x .  All these quantities were normalized 
with the corresponding inlet conditions at x = 0. The difference between theoretical 
(94) and numerical results was always smaller than 1 %. 

Figure 5 also depicts the numerically computed centreline temperature as a function 
of x. The temperature drop along the channel's length is smaller than 0.5%. This 
temperature drop results from expansion cooling. The relatively sharp temperature 
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FIGURE 5. The centreline velocity, u(x, 0), centreline density p(x, 0), centreline temperature T(x, 0) ,  and 
wall shear stress are depicted as functions of the axial coordinate x. -, Analytical and 0,  numerical 
results for MI = 0.07, M2 = 0.15 and S = 0.523. 
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FIGURE 6. The centreline velocity, u(x, 0), the centreline density p(x, 0), the centreline temperature 
T(x, 0), the centreline Mach number, M(x) ,  the maximum value of the transverse velocity, and the 
wall shear stress are depicted as functions of the axial coordinate x. -, analytical and -, 
numerical results for M I  = 0.21, M2 = 0.85 and 8 = 0.225. 

drop next to the entrance is necessary to provide a conductive path for transporting 
energy from the wall into the gas. This sharp drop in temperature was also predicted 
theoretically (van den Berg 1993 b). 

The analytical, numerical, and parabolic axial velocity profiles (not depicted here) 
agreed with each other within 0.3 %. 

5.2. Moderate Mach numberpow ( M ,  = 0.22, M ,  = 0.84, 6 = 0.225) 
Figure 6 depicts the numerical (thin lines) and theoretical (heavy lines) values of the 
centreline velocity, centreline Mach number, centreline density, and wall shear stress as 
functions of x. Additionally, the figure also depicts the numerical results for the 
centreline temperature and Max, (v(x,  y)/u(x, 0)) as functions of x. Even for the 
relatively high subsonic Mach numbers, the numerical results were in reasonable 
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FIGURE 7. The axial velocity, normalized with the cross-sectionally averaged velocity, is depicted as 
a function of y for centreline Mach numbers, M = 0.22, 0.44, 0.59 and 0.84. The various symbols 
denote numerical results. The solid line represents the analytical prediction, E( y ) .  

agreement with theoretical predictions. The discrepancy between the theoretical wall 
shear stress and the numerical one was smaller than 3 % when M < 0.3 and increased 
to about 10 YO next to the channel’s exit. The centreline temperature decreased by as 
much as 12 % along the channel’s length with most of the drop occurring next to the 
channel’s exit. The transverse velocity was always smaller than 0.7 YO of the centreline 
axial velocity. - 

Figure 7 depicts the normalized velocity profile u(x ,y) /u(x)  as a function of y for 
M = 0.22, 0.44, 0.59 and 0.84. The solid line represents E ( y ) / E  which is independent 
of x and depends only on the inlet and exit conditions. As the Mach number increases, 
the numerically computed profile flattens a bit, and its peak velocity is smaller than the 
approximate, analytical prediction. 

Figure 8 depicts the transverse velocity profile u(x, y)/u,,,(x) as a function of y for 
M = 0.44, 0.50, 0.59 and 0.75. The transverse velocity facilitates mass transport from 
the wall’s region towards the channel’s centre. Owing to symmetry, u(x, 0) = 0. At the 
impermeable wall, the velocity is again zero. According to the continuity equation, 
(a@u)/ay),,, = 0. Since p - p(x),  we also have (au/3y),=, - 0, which is evident in 
figure 8. 
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FIGURE 8. The transverse velocity, normalized with the centreline axial velocity, is depicted as a 
function of y for 0,  M = 0.44; A, 0.50; x ,  0.59; ., 0.74. 
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FIGURE 9. The temperature is depicted as a function of y for M = 0.22, 0.44, 0.59 and 0.84. 

Figures 9 and 10 depict the temperature and pressure profiles as functions of y for 
A4 = 0.22, 0.44, 0.59 and 0.84. The temperature assumes its minimum value at the 
channel's centre. The difference between the centreline and wall temperatures increases 
as the Mach number increases. 

Figure 10 illustrates that the pressure is almost uniform at each cross-section. Thus, 
the approximation of p(x ,  y )  - p(x)  is a very good one. 

We also calculated at y = 0.5, the relative magnitude of the term we neglected in 
equation (6), u(au/ay)/u(au/ax), as a function of x; and we found it to be always 
smaller than 3 %. 

In summary, the numerical work supports the assumptions that the transverse 
velocity can be neglected and that the pressure and density may be assumed uniform 
in any cross-section. For the type of flows considered here, one can reasonably employ 
the ' locally fully developed ' approximation when one interprets the experimental data. 
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FIGURE 10. The pressure is depicted as a function of y for M = 0.22, 0.44, 0.59 and 0.84. 

6. Working equations for the interpretation of the experimental data 
In this section, we use the ‘locally fully developed’ approximation to obtain the 

working equations we will use in the processing of our experimental data. We simplify 
matters a bit by taking advantage of the fact that for the flows investigated here, the 
nonlinear term in (12) is small. Hence, the fully developed assumption implies that the 
velocity profile can be determined by solving, 

with the wall boundary condition, 

u, = 

For continuum flow, Kn + 0, equation 

-xKn&) W . 

(16) reduces to the familiar no-sliu condition. 
For rarefied flow, K i  is a function of x. In the above, V2 is a two-dimensidnal Laplace 
operator in the conduit’s cross-section, Kn = h / D  is the Knudsen number, D is the 
channel depth, h = p 7 ~ ’ / ~ / p ( 2 R T ) ~ / ~  is the mean free path, R is the ideal gas constant, 
n is a non-dimensional coordinate perpendicular to the solid surface which has been 
normalized by the channel depth, and subscript w indicates that the variable is 
evaluated at the conduit’s wall. 

Maxwell showed that K = ~ ~ ( 2  - o/[, where K~ is a constant of O( 1 )  and 0 < [ < 1 
is the fraction of the molecule’s tangential momentum lost through collisions with the 
solid surface. In general, K may depend on the surface’s roughness and temperature and 
the gas type. Albertoni, Cercignani & Gotusso (1963) calculated K = 1.1466 by solving 
the linearized Boltzmann equation. For Kn < 0.05, Sreekanth (1968) obtained a better 
agreement between his experimental data and theory using K = 1 rather than the 
calculated value of 1.1466. Kennard (1938) reports empirical values for K ranging from 
1 to 1.5 for various gas and surface combinations. 

Solutions of equations ( 1  5t( 16) for rectangular and circular cross-sections are 
available in Ebert & Sparrow (1965) and Sreekanth (1968). For example, for flow 
between parallel plates (Harley 1991), 
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For rarefied flow, p, like Kn, is a function of x. For continuum flow (Kn --f 0) between 
parallel plates, p = 1.2. 

We present our experimental results in terms of the Poiseuille number, Po(Kn) = 

f R e .  For locally fully developed, rarefied flow, at any x location, the ratio between 
the rarefied and the continuum Poiseuille numbers is: 

1 - - Po(Kn) 
Po(0) 1 + 7lcKn ’ 

where Po(0) and 7 are constants which depend on channel geometry only and are 
independent of Kn. For example, for flow between parallel plates, Po(0) = 96 and 
7 = 6. Ebert & Sparrow (1965) and Shah & London (1978) document, respectively, 
values of 7 and Po(0) for various cross-sectional geometries. 

In our experimental work, we measured the inlet and outlet pressures and 
temperatures as well as the flow rate. The average Poiseuille number along the 
channel’s length (Ebert & Sparrow 1965), 
- 
Po(Kn,) = -- D~ { [ (21 - 11 + 2 7 l c ~ n ,  (2 - 1) 

s R e L  

+ 2sp Re2 [ TKKn, (2 - 1) - Ln g)]} , (20) 

was obtained by integrating equations (1) and (2) with /3 = constant and Kn varying as 
a function of pressure. Sreekanth (1968) showed that the approximation p = constant 
had little effect on the magnitude of % since p is a weak function of Kn. In equation 
(20), s = ,uzRT/P; DL. 

We used (20) to process our experimental data. The Reynolds number was evaluated 
at the inlet temperature. When no choking occurred, Pz was the pressure measured at 
the channel’s exit. When choking occurred, we computed Pz from the equation, 

where x(M,) = 0 for isothermal flow. 

in the choked channel, we also calculated P2 assuming adiabatic flow. In this case, 
In order to estimate the magnitude of the error caused by assuming isothermal flow 

Ln(( 1 + f (y  - 1) aMc2)/( 1 + f ( y  - 1) a@)) 
Ln(Mc2/@) X(MJ = 

For small entrance Mach numbers (M,  < 0.1, which was the case in most of our 
experiments), the differences between the isothermal and adiabatic calculations of Pa 
and Po(0) were less than 9 YO and 0.1 YO, respectively. The weak dependence of Po(0) 
on Pz is due to the fact that PI % Pz for all the experiments in which choked flow 
occurred. 

7. Results and discussion 
Experimental investigations were conducted using the eight different flow channels 

documented in table 1 and three different gases : nitrogen, helium, and argon. Most of 
the experimental data (figures 11, 12 and 14) are presented in terms of the reduced 
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Poiseuille number, C* = ( P o ) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ / ( P o ) ~ ~ ~ ~ ~ ~ .  C* = 1 when the measured friction 
factor is equal to theoretical predictions. Each point in figures 11, 12 and 14 represents 
the average of twenty measurements, and the vertical bars denote two standard 
deviations. 

Figure 1 1 depicts C* as a function of Re for a 11.04 pm deep channel (JP3). C * was 
calculated using equation (20) with Kn, = 0. The inlet pressure ranged from 0.2 MPa 
to 2.1 MPa. The exit pressure was atmospheric. The exit Mach number ranged from 
M ,  = 0.02 to choked flow. The Knudsen number ranged from 0.017 to 2.75 x 
which corresponds to continuum flow. The magnitude of C* decreases slightly from 
1.03 to 0.98 as Re decreases from 1200 to 5 .  This decrease in C* can be attributed to 
the diminishing effect of the development length. For Re = 1200, the estimated 
developing length may extend up to 10 % of the channel's length. Overall, the average 
friction constant was within 3% of the theoretical value for fully developed, 
incompressible flow. 

Figure 12 depicts C* as functions of Re for a 0.51 pm deep channel (JH6). The 
dashed and solid lines correspond, respectively, to C* values calculated using equation 
(20) with Kn, = 0 and with Kn, > 0. The inlet pressure ranged from 1.1 MPa to 3.4 MPa. 
The exit pressure was atmospheric. The exit Mach number ranged from 0.0014 
to 0.0189. C*, calculated using the non-slip boundary condition (Kn, = 0, dashed line), 
decreased from 0.98 to 0.82 as Re decreased from 0.43 to 0.012. Owing to the small 
dimensions of this channel and the low Re numbers encountered, the effects of the 
development length were negligibly small and cannot account for this decrease. In 
contrast, Kn ranged from 0.004 to 0.373 which suggests transitional flow. Thus, we 
attribute the reduction in C* to wall slip. This effect is most pronounced at low Re since 
low Re corresponds to a relatively low average pressure in the channel, which in turn 
implies a relatively high Knudsen number and significant wall slip. For example, for 
Re = 0.012, the inlet and outlet Knudsen numbers were, respectively, 0.025 and 0.373. 

Next, we examine whether wall slip can, in fact, explain the experimental 
observations. Using equation (20) with Kn, > 0 and K = 1, we calculate C* (solid line 
in figure 12) as a function of Re. The flat behaviour of the solid curve in figure 12 
indicates that the data is successfully predicted by an isothermal, locally fully 



Gas Bow in micro-channels 

1.1 I 

1 .o 

C' . 
0.9 - 

+ - - * * -  
0.8 - 

27 1 

2 3 4 5 6 1  2 3 4 5  
10-2 lo-' 

Re 

FIGURE 12. C* values calculated with ---, a non-slip and -, a slip boundary condition are 
depicted as functions of Re for A, nitrogen and 0, helium flow in a 0.51 pm deep channel (JH6). 
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FIGURE 13. C* is depicted as a function of K for -, helium (Re = 0.012) and ---, nitrogen 
(Re = 0.051) flow in a 0.51 pm deep channel (JH6). 

developed, single coefficient wall-slip model. Like Sreekanth (1968), we obtained a 
better agreement between experiments and theory when we used K = 1 rather than the 
K = 1.1466 calculated by Albertoni et al. (1963). The sensitivity of our results to the 
particular choice of K is illustrated in figure 13, where we depict C* (Kn, > 0) as a 
function of K for nitrogen (Re = 0.051) and helium (Re = 0.012) flows in the 0.51 pm 
deep channel. 

In figure 14, we depict C* (Kn, > 0 and K = 1) for nitrogen, helium, and argon gas 
flow as a function of the channel's hydraulic diameter for all the channels used in our 
experiments. In order to obtain figure 14, we generated plots (not shown here) similar 
to those of figures 11 and 12 for each of the channels. In the deeper channels, in which 
rarefaction effects were deemed unimportant and the development length exceeded 1 YO 
of the channel length, we extrapolated the C* data to zero Re in order to eliminate the 
effects of the development length. In the shallower channels, in which no development 
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C* is depicted as a function of the hydraulic diameter, D,, for 0, 
0, helium; and x , argon gas flow. 

nitrogen ; 

Knudsen number, Kn 

Nitrogen Helium 

Channel At the inlet At the At the inlet At the 
outlet outlet 

JHlO 0.003 0.014 - 

JP9 0.002 0.014 0.004 0.041 
v 3  0.002 0.023 
JH6 0.012 0.129 0.025 0.363 

TABLE 2. Maximum exit Knudsen numbers for nitrogen and helium flow in channels JH10, JP9, 
V3 and JH6 

- 

__ - 

length effects were detected but rarefaction effects were important, C* represents an 
average of the experimental data for all Re numbers encountered. The inlet and outlet 
Kn numbers encountered for the lowest Re number flow in the shallow channels are 
documented in table 2. All the experimental data is within 8% of theoretical 
predictions based on the isothermal, locally fully developed, single coefficient slip 
model. 

8. Conclusions 
Experimental and theoretical investigations of subsonic, compressible flow in 

microsize, long conduits were conducted. The numerical simulations indicated that the 
pressure may be assumed to be uniform in the conduit cross-sections perpendicular to 
the direction of the flow and that the transverse velocity can be neglected. 
Consequently, the 'locally fully developed ' approximation leads to predictions which 
are in reasonable agreement with those resulting from numerical simulations of the full 
Navier-Stokes equations and with experimental observations. 

In all our experiments, the Knudsen number was less than 0.38 and the data were 
within 8 %  of theoretical predictions of the friction constant based on isothermal, 
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locally, fully developed flow and incorporating a single coefficient wall-slip model. 
This is well within our experimental uncertainty of 12 %. This observation is consistent 
with results obtained by other experimenters (i.e. Sreekanth 1968) who have examined 
compressible flow in much larger channels. 
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