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Certain nonlinear sigma models with fermions are ill-defined due to an anomaly which

exhibits characteristics of both the nonabelian gauge theory anomaly and the SU(2) anom-

aly. The simplest way to diagnose the anomaly involves consideration of the global topology

of the theory. We review the mathematical methods needed for this analysis and apply

them to several supersymmetric sigma models. Some of these are found to be anomalous.
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1. Introduction

Quantum field theories of fermions interacting with nonabelian gauge fields sometimes

exhibit an anomaly in the gauge current. This anomaly has recently attracted much

attention [[1]-[2]] , since it has become clear that it is usually a manifestation of a global

obstruction to defining the theory properly (i.e. gauge invariantly).

A slight rephrasing of this result clarifies the main issue. Instead of formulating gauge

theories in terms of the space A(4) of connections on a principal bundle over Euclidean

spacetime X, we can instead formulate them in terms of the space C(4) ≡ A(4)/G(4) of gauge

orbits in A(4) 1. Now there is no question of gauge-dependence of the effective action.

Instead the anomaly shows up as a topological obstruction to defining the dynamics of the

fermion fields throughout C in a smooth, consistent way.

Unlike perturbation theory, which simply gives the gauge variation of the fermion

effective action Γf [A], the topological approach gives a direct geometrical interpretation

of this variation. The situation is analogous to what to what we would have in general

relativity were we to treat a tensor quantity, like energy density, as a scalar. Things might

look acceptable as long as we worked in one coordinate frame. But if our manipulations

required us to integrate this density over spacetime, we would be disappointed to find

that the resulting number had no coordinate-invariant meaning. Similarly, in gauge theory

G0[A] ≡ e−Γf [A] does not reduce to any “scalar” function G0[Ā] on C, and so the functional

integral makes no sense. Like energy density, however, G0 does have a perfectly good

geometrical meaning. It is a section of a bundle over C. The anomaly is the statement

that this bundle is twisted, so that
∫
C G0 has no invariant meaning. If we stubbornly insist

on viewing G0 as an ordinary function on C, for instance by choosing specific coordinates

on C, we find, as in general relativity, that this function generally becomes singular when

the coordinate system does. This is not the sort of singularity familiar in quantum field

theory, since it persists even when we regularize the theory.2 Furthermore, its location is

ambiguous, depending on the choices made. It is, in short, an unacceptable, unphysical

pathology of the gauge theory.

The key fact allowing the obstruction we have described is the topological nontriviality

of the configuration space C. Since the above reformulation of the anomaly question does

not involve gauge symmetry one can ask whether there are other theories with nontrivial

1 We will henceforth drop the superscript ‘4’ when no confusion can arise.
2 See sect. 2.

2



configuration spaces (perhaps with no internal symmetries at all) which are anomalous

in this generalized sense. We have already answered this question in the affirmative for

certain nonlinear sigma models. Models of this sort are of interest because they arise as

low-energy approximations to strongly-interacting theories (such as preon models). In the

present paper we will explain our results in detail, strengthen them slightly, and apply

them to some sigma models which have been proposed as the low energy descriptions of

supersymmetric preon physics. The anomaly is relevant to a nonrenormalizable theory such

as a sigma model for the same reason that it is relevant in gravity: it can be interpreted

as a low-energy phenomenon.[[3]]

We begin with a geometric formulation of the action for nonlinear sigma models. A

nonlinear sigma model is a field theory in which the (bosonic) dynamical variables ϕ take

their values in a Riemannian manifold M. We call M the target space. The dynamics of ϕ

are determined by the action functional

Sb =

∫

X

< dϕ, dϕ >=

∫

X

gab(ϕ(x))∂µϕ
a∂µϕ

bd(vol) (1)

Here X is d-dimensional spacetime, gab(ϕ) is the metric on M and the second integral gives

the form of the Lagrangian in local coordinates (which must be specified patchwise).

How shall we couple matter fields, say left-handed fermions, to ϕ while maintaining

an intrinsic geometrical meaning? One possible approach is motivated by supersymmetry.

If the fermion field ψ is to be a superpartner of ϕ, there must be a transformation law of

the form δϕ = ǫψ, where ǫ is a spinor on spacetime. For this to make invariant sense, ψ(x)

must live both in the space of spinors at x ∈ X, S+|x, and the space of tangent vectors to

M at ϕ(x), TM |ϕ(x). As x varies the S+|x fit together into a bundle over X, the (positive

chirality) spinor bundle S+, and the TM |ϕ(x) fit together into a bundle over X called the

“pullback” ϕ∗(TM) by ϕ of TM. Thus, a complete classical field configuration is specified

by ϕ ∈ C and ψ,ψ ∈ H±, where 3

C ≡ {Maps:X →M} (2)

and

H± ≡ {sections of S± ⊗ ϕ∗(TM)} (3)

We will call E±
ϕ ≡ S± ⊗ϕ∗(TM) and denote the vector space of sections either by Γ(E±

ϕ )

or by H±.

3 Recall that in Euclidean space ψ and ψ are independent.

3



This suggests a generalization. If supersymmetry is not important we can replace

TM and its Riemannian metric by an arbitrary vector bundle B over M with an arbitrary

fixed fiber metric <,>. Since the results of sections 2, 3, and 4 are not dependent on

supersymmetry, we will state our anomaly criterion at this level of generality and only

later specialize to B = TM . Similarly, we need not impose the requirement that M

be Kähler, or even complex, until we apply our results to supersymmetry. For technical

reasons we must, however, require that B be a complex vector bundle, as is the case in

four- dimensional supersymmetry.

The above geometrical setting motivates a natural choice of an invariant Lagrangian

for ψ. Given a fixed connection Θ on B (e.g. the canonical Hermitian connection ) define

a connection ω ⊗ 1 + 1 ⊗ ϕ∗Θ on E±
ϕ , where ω is the usual spin connection on X. The

Dirac operator /Dϕ = γµDµϕ, which maps Γ(E+
ϕ ) to Γ(E−

ϕ ), allows one to write down the

invariant action

Sf ≡
∫

X

hi∗j(ϕ)ψ
i∗

(δjk/∂ +Θjka(ϕ)/∂ϕ
a)ψk

≡
∫

X

< ψ, /Dϕψ > .

(4)

For brevity we have dropped the spin connection and will continue to do so. ‘h’ is the

pulled back fiber metric of B and i,j are fiber coordinates.4

Thus there is no difficulty in defining a classical nonlinear sigma model with fermions

in an invariant geometrical way. Quantization, however, requires a specific choice of frames

for the Hilbert spacesH±
ϕ . In favorable circumstances all dependence on these choices drops

out in the end and we are left with an invariant theory. Just as in gauge theory, though,

the condition for this to happen is nontrivial and does eliminate some models.

The rest of this paper is organized as follows. Sect. 2 contains the heart of our

argument. It is very short. In it we reexamine the well-known problem of defining the

functional integral for chiral fermions in the context of the nonlinear sigma model. We

give an heuristic treatment, characterizing the anomaly as an obstruction to a continuous

definition of the functional integral on C.[[1],[4]] The condition we arrive at is that an

integer ν (eq. (17)) should vanish.5

4 In some cases, (e.g. in supersymmetry) one also adds quartic fermion interaction terms to

Sf . These terms can be rewritten as quadratic terms by the introduction of scalar auxiliary fields.

They do not change the index, and hence do not remove the anomaly. We will ignore such terms

for simplicity.
5 Atiyah and Singer [[4]] obtain this condition by more rigorous methods.
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In sect. 3 we give a physical interpretation to this obstruction. We show that for ν 6= 0

it is impossible to find well-behaved local counterterms which render different perturbative

expansions of the same Green function physically equivalent.

In sect. 4 we compute ν, arriving at our final anomaly criterion. (In appendix A we

review the corresponding derivation in gauge theory.) To state the result briefly we recall

from eq. ((4)) that given ϕ the connection Θ on B can be pulled back to ϕ∗Θ on ϕ∗B. As

ϕ varies on C, the various bundles {ϕ∗B} can be regarded as constituting a single large

bundle ϕ̂∗B over C×X.6 The large bundle has a pulled-back connection ϕ̂∗Θ, which is like

((4)) but differentiates ϕ̂ along C as well as along X. The curvature, or “field strength”

F of ϕ̂∗Θ is a 2-form on C × X. Our criterion eq. (62) essentially says that (F)3 should

be an exact 6-form on C × X. The derivation of (62)requires mathematical tools which

are perhaps unfamiliar to many physicists, and so we describe some of the foundations of

the subject in some detail, since we know of no accessible discussion as yet in the physics

literature.7 Thus we briefly describe K-theory and the family index theorem. Further

technical definitions appear in appendix B.

We apply our results to models with Grassmannian target spaces in sect. 5, showing

that a large class of such models are anomalous. Grassmannian spaces, or spaces closely

related to them, arise frequently in the literature as coset manifolds in theories of spon-

taneously broken symmetries. Fortunately such spaces also make our criterion especially

easy to apply, since mathematically they are “universal” in a sense we will explain.

Sects. 6 and 7 are perhaps the most accessible parts of the paper. In sect. 6 we

investigate further the anomaly for Grassmannian spaces and find that the analogy to the

nonabelian gauge anomaly can be strengthened since there is an analog of the space A of

gauge theory. In sect. 7 we analyze some models which have arisen in the context of preon

physics. One model, recently considered by Büchmuller et. al., involves the symmetry

breakdown U(6) → SU(2)×U(4). Since a closely related model with U(6) → U(2)×U(4)

is anomalous, one might suspect that the other is too. In fact it is not, as we demonstrate.

In appendix C we give some explicit examples of families of configurations which

exhibit the obstruction we will describe. Aside from being amusing, they are necessary to

the arguments of sect. 6. Finally, a technical lemma on the homotopy type of homogeneous

spaces, which we need in sect. 7, is relegated to appendix D.

6 The notation is suggested by the “evaluation” function ϕ̂ : C ×X → M which maps (ϕ, x)

to ϕ(x) ∈M.
7 See, however, Alvarez, Singer, and Zumino, in preparation.
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Note added:

In this paper we consider only global obstructions to the existence of any sort of

consistent fermion quantization. In general the vanishing of this obstruction is all one can

require of a sigma model with arbitrary target space M. For the case of sigma models which

actually arise as low-energy reductions of linear theories, we can demand more. In this case

M is a homogeneous space G/H and we ask of a quantization scheme that it reproduce

the (possibly anomalous) behavior of the underlying theory under the isometries of M.

This leads to a local criterion for theories which is simply the ’t Hooft anomaly matching

criterion: a linear model with fermions in the representation ρG of a global symmetry

group G can reduce to a G/H sigma model with fermions in the representation ρH of H

if and only if the usual H-anomalies of ρH match those of ρG|H . In light of this result,

the theories studied in section seven should be viewed only as illustrations of the global

obstruction, since they can now be more conveniently treated by the local criterion. We

thank L. Alvarez- Gaumé, P. Ginsparg, A. Manohar, and E. Witten for discussions on this

point.

After this work was completed we also received some papers on related topics.

2. The Chiral Functional Integral

Chiral anomalies for gauge symmetries are already well known. We can analyze them

algebraically by considering all possible gauge-noninvariant terms in the theory’s effective

action, finding essentially one possibility up to local redefinitions of the bare action. This

is the approach taken in [[5]] [[6]] [[7]] , for example. This approach would be inconvenient

for us, however, since a priori we have no gauge symmetries in sigma models8. Moreover,

it does not tell us whether the anomalous terms do in fact arise in a given theory. To

determine that we must have recourse either to perturbation theory or to the topology of

the Dirac operator /D for the theory in question. We will take the latter approach in most

of this paper. In the next section we will sketch the former as well.

The relation between chiral anomalies and the topological, or index, properties of

/D was first discussed in. These papers analyzed the axial U(1) anomaly and showed

that it is given by the index density for /D. The relation between anomalies in gauged

nonabelian currents and index theory was given by Singer[[1]] . (See also [[4]-[8],[2]] .) It is

this derivation which we will generalize to sigma models. (In appendix A we also reproduce

the gauge derivation from this point of view.)

8 See, however, sect. 6.
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Let us try to quantize the theory given in sect. 1 using the path integral formalism.

We need only consider the fermionic path integrals for various fixed boson configurations

ϕ:

Gp[ϕ;x1, x1, . . . xp, xp] ≡
∫
dψdψe−Sf [ψ,ψ,ϕ]ψ(x1)ψ(x1) . . . ψ(xp)ψ(xp) (5)

It turns out that the main issue is the definition of the fermionic effective action

G0[ϕ] ≡ exp(−Γfϕ) (6)

We will focus on this Green function and return to the others later.

G0[ϕ] is the functional Grassmann integral of an action quadratic in the Fermi fields.

Thus we expect

G0[ϕ]
?
= det /Dϕ (7)

Our goal is to find a reasonable interpretation of eq. ((7)). Our answer is eq. (9). We will

relate it to more familiar expressions for the path integral in the next section.

The expression det /Dϕ suffers from two problems. First, it must be regularized. Sec-

ond, /Dϕ maps spinors of positive chirality to spinors of negative chirality; that is, it is

an operator between different Hilbert spaces. It follows that the eigenvalue problem, and

hence the determinant, is not well-defined[[3]] . Failure to appreciate either of these diffi-

culties would lead one to conclude that there is no anomaly. Furthermore, the lack of an

intrinsic definition of the determinant indicates that choices must inevitably be made in

giving meaning to G0[ϕ]. This should alert us to the possibility of a global obstruction to

a consistent set of choices.

One might try to rectify the chirality-flip of /Dϕ by considering instead D̂ϕ = /∂−1 /Dϕ,

where /∂ is the free Dirac operator, and so should contribute a factor independent of ϕ to

G0[ϕ] [[3]] . But detD̂, or more generally det /D−1
ϕ0

/Dϕ, makes no more sense than det /Dϕ itself

since /Dϕ : H+
ϕ → H−

ϕ , while /D−1
ϕ0

: H−
ϕ0

→ H+
ϕ0
. We must therefore choose isomorphisms

T (±)(ϕ,ϕ0) : H±
ϕ0

→ H±
ϕ and take9

G0[ϕ] ≡ Det[T (+)(ϕ,ϕ0) /D
−1
ϕ0
T (−)(ϕ0, ϕ) /Dϕ] (8)

9 We assume, for the moment, that we can always choose ϕ0 so that /Dϕ0 is invertible.
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We can now regularize this expression by choosing a smooth function f such that f(0) = 1

and f(∞) = 0. We can finally define the regularized determinant by

G0[ϕ;M ] ≡ exp Tr

{
f

(
/D†
ϕ /Dϕ

M2

)
Log

[
T (+)(ϕ,ϕ0) /D

−1
ϕ0
T (−)(ϕ0, ϕ) /Dϕ

]}

≡ expTrf

{
Log

[
T (+)(ϕ,ϕ0) /D

−1
ϕ0
T (−)(ϕ0, ϕ) /Dϕ

]}

≡ Detf

[
T (+)(ϕ,ϕ0) /D

−1
ϕ0
T (−)(ϕ0, ϕ) /Dϕ

]

(9)

The regularization cuts off the contributions of the “high frequency” modes. The choice

of the function f should not affect physical quantities10 [[9]].

Unfortunately the definition ((9)) ignores an important fact. The Hilbert spaces H±
ϕ

for different ϕ are not naturally isomorphic.11 This means that appropriate T (±)(ϕ0, ϕ)

can only be defined in a neighborhood of ϕ0. That is, we must cover C by patches {Pα},
choose a reference configuration ϕα ∈ Pα in each patch, and define the effective action

patchwise: Gα0 [ϕ]. If ϕ ∈ Pα ∩ Pβ we have

Gα0 [ϕ] = gαβ [ϕ]G
β
0 [ϕ], (10)

where

gαβ [ϕ] = Detf

[
/D−1
ϕα
T (−)
α (ϕα, ϕ)T

(−)
β (ϕ,ϕβ) /Dϕβ

T
(+)
β (ϕβ , ϕ)T

(+)
α (ϕ,ϕα)

]
. (11)

We are thus forced to conclude that ((7)) does make geometrical sense, but only if we give

up thinking of it as a function. Instead we must think of it as a section of the complex line

bundle L over configuration space C whose transition functions gαβ we have just written

down.12 Only if L is trivial can we regard G0 as an ordinary function. We must therefore

determine the twist of L.

10 The nontrivial field dependence of the regulator modifies the Schwinger-Dyson equations.

We do not know if any modifications survive the removal of the cutoff.
11 While all Hilbert bundles are trivial under the structure group GL(H±), a cutoff amounts

to passing to a smaller group with the help of the operator /D. The next paragraphs explain this

at our somewhat heuristic level.
12 It follows from ((10)) that the gαβ satisfy the “cocycle conditions” gαβgβγ = gαγ on Pα ∩

Pβ ∩ Pγ necessary for a consistent definition of a bundle.[[10]] [[11]]
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First we note that complex line bundles over C are characterized completely by their

restrictions to nontrivial two-cells in C[[11]] , so we lose no generality if we restrict attention

to L|Y , where Y ⊆ C is a noncontractible two-sphere parametrized by y ∈ S2. 13

Next, let us recall some concepts of magnetic monopole theory. Bundles over S2 can

always be trivialized by choosing as patches the northern and southern hemispheres PN ,S
and a transition function gNS on the equator E = PN ∩ PS .

Thus a section σ of a line bundle L over S2 is given by two complex functions σN,S :

PN,S → C related by σN (y) = gNS(y)σ
S(y), where we can choose |gNS | = 1. The twist,

or “monopole number,” of the line bundle is then given by the integer winding number of

gNS :

ν =
i

2π

∫

E
g−1
NSd(gNS) =

i

2π

∫

E
d(log gNS). (12)

Continuing the analogy to monopoles (although Y has nothing to do with ordinary

space), we can introduce 1-forms aN,S on PN ,S which differ by the “gauge transformation”

gNS on E and reexpress ν in terms of the “field strength” F = daN,S by

ν =
i

2π

∫

E
(aN − aS) =

i

2π

∫

Y

F. (13)

Thus ν depends only on the cohomology class of F in H2(Y ). This class is called ch1(L),

the first Chern character of L [[11]]14. That is, ch1(·) sends bundles over Y to classes in

H2(Y ). From its definition as a winding number ch1 is topologically invariant; from its

definition in terms of F will come its important algebraic properties.

Note that the connection aN,S defines parallel transport on L and hence sets up

families of isomorphisms tN (y; yN ) and tS(y; yS) between the fibers at yN, S, which are

copies of C, and the one at y ∈ PN,S (another copy of C). Conversely, choices of tN, S

determine a connection by aN,S = d(tN, S)(tN, S)−1.

We can also extend the definition of ch1(·) to bundles V of many dimensions, over

complicated spaces. Since these can have more interesting structure than line bundles on

S2, we get a whole sequence of classes chp(V ) ∈ H2p(Y ). We will discuss p > 1 in sect. 3.

To generalize ch1(·) in a useful way we will demand that ch1(V1+V2) = ch1(V1)+ ch1(V2),

13 For the rest of this paper we consider the bundles L and H± restricted to Y .
14 We will always speak of the Chern characters chp(L) instead of the Chern classes cp(L).

The two contain the same information[[12]] , and indeed c1 = ch1, but ch will be more useful in

sect. 3 due to its ring property.
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where on the left we have the direct sum of two vector bundles. Thus ch1(·) is a homo-

morphism under direct sum. If V is a direct sum of many line (ie one-dimensional) bundles,

its curvature FN,S can be taken diagonal in its internal indices. Then

ch1V =
∑

i

ch1(V
(i)) =

i

2π

∑
F (i) =

i

2π
trF (14)

The Chern character is then defined so that this is true even for arbitrary V.

Just as in the one-dimensional case we can trivialize V over patches with transition

functions in the unitary group of the fiber and introduce connection forms which (like F )

take values in the algebra of that group. On Y = S2 the winding number is thus

ν =

∫

Y

ch1(V ) =
i

2π

∫

Y

trF =
i

2π

∫

E
trg−1

NSdgNS (15)

where F = daN,S + (aN,S) ∧ (aN,S). tN, S again satisfy aN,S = d(tN, S)(tN, S)−1.

Returning to G0, we can now compute the twist of L using eqs. ((11)) and ((12)):

ν =
i

2π

∫

E
d
{
TrfLog

[
/D−1
yN
T

(−)
N (yN , y)T

(−)
S (y, yS) /DyS

T
(+)
S (yS , y)T

(+)
N (y, yN )

]}

=
i

2π

∫

E
Trf

{[
dT

(+)
N (T

(+)
N )−1 − dT

(+)
S (T

(+)
S )−1

]

−
[
dT

(−)
N (T

(−)
N )−1 − dT

(−)
S (T

(−)
S )−1)

]}
(16)

Note the similarity of eqs. ((16)) and ((15)). In fact we can invoke the irrelevance of the

choice of regulator f to give eq. ((16)) an important interpretation as follows. Since Y is

compact, we can find an integer N so large that for any n ≥ N, the nth eigenmode of /D†
y /Dy

hardly feels the presence of the background boson field for any y ∈ Y , and in particular,

never vanishes. We can then replace the eigenvalue cutoff f( /D†
y /Dy/M

2) by a mode cutoff

approximating 1− θ(N −n) as in fig. 2.1. Removing the cutoff means taking N to infinity.

With this choice of cutoff the trace in eq. ((16)) becomes a finite-dimensional trace,

and the forms dT±N,S (T±N,S)−1 become the connections for the finite-dimensional

subbundles H±low of H± spanned by the first N eigenfunctions of /D† /D and /D /D†.15

Thus we can write

ν =

∫

Y

[ch1(H+
low)− ch1(H−

low)] (17)

15 Note that this choice of regulator justifies our not differentiating f in deriving eq. ((16)).

10



or simply ch1(L) = ch1(H+
low)−ch1(H−

low). The homomorphism property of ch1 now sug-

gests that we express the anomaly in terms of the “defect” bundle

D ≡ H+
low −H−

low.

But what is the difference of two bundles? We leave this question for sect. 4. For now

we simply remark that already in ((17)) we can see that ch1(L) is cutoff-independent.

For, if we increase N then H±
low acquire additional summands ∆H±

low. But /Dy sets up an

isomorphism between these, since given a normalized eigenmode um ∈ H+ we can let

vm =
1√
λm

/Dum (18)

which is also normalized, has the same eigenvalue, and lives in H−. Hence raising N

cannot change ch1(L) . Moreover, given a homotopy between Y and some other Y ′ we can

again choose N so large that our procedure is everywhere continuously well-defined on the

compact parameter space S2 × [0, 1]. Since ν is a priori an integer, it cannot change under

such a deformation.

All this abstract nonsense must leave the reader feeling uneasy. How can ((17)) be

nonzero? H± involve E± = S± ⊗ ϕ∗B; S± have no parameter dependence, while ϕ∗B is

common to both terms. How then can H± have a relative twist? This objection is very

similar to one we could raise concerning the axial anomaly, where the object in question

is in a sense the difference k between the number of eigenmodes of /D and its adjoint[[13]]

[[14]] [[9]] . How can these differ? The answer is that both have infinitely many eigenmodes,

so that k = ∞−∞ is not defined without some cutoff. When we regulate we find a mode

imbalance at λ = 0. Roughly speaking, this happens because relative to the free /∂ the

modes of one handedness have been shifted one step; this gives an imbalance at λ = 0

countered by one “at λ = ∞” which we throw away by pairing all modes with λ 6= 0.

Thus we must define k = dim ker /D − dim ker /D†. This integer is called the index of the

gauged Dirac operator in one given background field; it is a topological invariant of the

field configuration. Since it depends only on the low-eigenvalue (long-distance) behavior

of the theory, it is the same for any value of the cutoff M .

The same thing happens in our case. We argued that the obstruction is the difference

of invariants of H± , but we still needed to regularize by passing to H±
low defined by a

cutoff. This again makes sense by the isomorphism argument for large eigenvalues, and

shows that the obstruction involves the relative twists of only the low eigenspaces of /D†
y /Dy
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and /Dy /D
†
y. These need not vanish. They are measured by a generalization of the index, the

so-called “index of the family of Dirac operators /Dϕ.” Again this index and the obstruction

it measures are present even for finite M , as mentioned in sect. 1.

To get a feel for the family index, let us study the framing of H± defined by diagon-

alizing the operators /D†
y /Dy and /Dy /D

†
y , y ∈ Y. Thus we choose the orthonormal eigen-

modes
/D†
y /Dyun(y) = λn(y)un(y)

/Dy /D
†
yvn(y) = λn(y)vn(y)

(19)

Note that /Dy differentiates with respect to the (suppressed) spacetime coordinates x, while

y ∈ Y is a parameter. We have already mentioned that the nonzero λn are the same in

each of the above equations.

If the ordinary index of /Dy vanishes for all y, then there is no imbalance in the number

of zero-modes and generically /Dy will only have a zero-mode for isolated points on Y . Let

us suppose that all eigenfunctions but the lowest, λ0(y), are nonvanishing on Y . Then we

may take H±
low as one-dimensional. In general H+

low will be a nontrivial line bundle, and

we must choose separate bases uN,S0 (y) on PN ,S related by a transition function g+NS on

E . If λ0(y) is always nonzero on Y , we can define bases for H−
low using eq. ((18)). Then

H+
low and H−

low have the same transition function and there is no relative twist: ν of eq.

((17)) is zero.

On the other hand, suppose the spectrum {λn(y)} looks like fig. 2.2. We can take

y0 as the north pole. Then eq. ((18)) can be used to define vS0 (y) on PS , but no longer

on PN . In fact, defining some smooth basis vector vN0 (y) on PN we might find that the

phase Ψ =
〈
vN0 (y), 1√

λ0
(y) /Dyu

N
0 (y)

〉
, has a nontrivial winding number around E . (This

is possible since Ψ is only defined on the punctured hemisphere PN − {y0}.) The winding

number is the discrepancy between the winding numbers of the transition functions g±NS
of H±

low and is thus the family index twist ν.

As another example we suppose that /Dy has nonzero ordinary index k. In this case, if

/D†
y has no zero-modes for all y, then H+

low will be the k-dimensional bundle of zero-modes

of /Dy and H−
low will be empty. Thus the family index measures the twist of H+

low alone.16

To summarize, we have seen that while the fermion effective action G0[ϕ] makes no

invariant sense as it stands for sigma models (or gauge theories) with chiral fermions, it

16 In general when k 6= 0 other eigenvalues λn(y) will vanish at isolated points. In this case

the “bundle of zero-modes” need not be well-defined, although Hlow is.
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can be interpreted as a section of a bundle L over C. We have written an expression ((16))

for the winding number ν of L over a compact subspace Y of C, and while we have as yet

no idea how to compute it, we know it is a well-defined topological invariant of the theory.

If ν vanishes, we can choose a representation of G0 as a complex function on C and proceed

to integrate it, obtaining a full quantum theory. This does not work if ν 6= 0 since there is

no invariant way to integrate a twisted section. Any attempt to interpret G0 as a function

will then require that we make choices, leading to the unphysical singularities mentioned

in sect. 1.

We should also mention the other Green functions. For this it is convenient to make

the eigenmode expansions

ψ(x) =
∑

an(ϕ)un(ϕ;x)

ψ(x) =
∑

bn(ϕ)v
†
n(ϕ;x)

(20)

These diagonalize Sf [ψ̄, ψ;ϕ], allowing us to write (in the zero-instanton sector)

G0[ϕ] = J [ϕ]

∫
Πn(dandbn)exp

(
−
∑

n

anbn < vn, /Dϕun >

)
(21)

Here J is the Jacobian of the change of variables from ψ,ψ to an, bn. Symbolically we

have

J [ϕ] =
[
detun(ϕ;x)detv

†
n(ϕ;x)

]−1
(22)

where the “rows” of the determinants are labeled by n and the “columns” by x, spin, and

internal indices. This expression is meaningless for the same reasons that ((7)) is. We can

only define it patchwise, as

J α[ϕ] =
{
Detf < un(ϕα), T

(+)
α (ϕα, ϕ)um(ϕ) > Detf < vn(ϕ), T

(−)
α (ϕ,ϕα)vm(ϕα) >

}−1

(23)

where we have chosen fixed frames at one point ϕα in each Pα . The determinants are

now over m,n and are regularized as before.

One perfectly good choice for T±
α , however, is simply17

T (+)
α (ϕ,ϕα) =

∑

n

|un(ϕ) >< un(ϕα)| (24)

17 We made this choice in [[15]] .

13



and similarly for T
(−)
α . With this choice each J α = 1. Other choices will still give J as

an ordinary untwisted function. Thus since

Gα0 [ϕ] = J αΠn < vαn , /Dϕu
α
n >≡ J α[ϕ]Iα0 [ϕ] (25)

we see that the twist of G0 equals that of I0. Similarly we define Ip by

Gαp [ϕ] ≡ J α[ϕ]Iαp [ϕ] (26)

where

Iαp [ϕ] =

∫
Πn(dandbn)e

−
∑

n
anbn<v

α
n ,/Dϕu

α
n>(
∑

m

amu
α
m) ∧ · · · ∧ (

∑

m

bmv
α
m) (27)

Note that by Fermi statistics, for each ϕ, Ip[ϕ] is a vector in the antisymmetric subspace

∧p(H+
ϕ )⊗∧p(H−

ϕ ) of (H+
ϕ )

⊗p ⊗(H−
ϕ )

⊗p. To see whether it has any extra, anomalous, twist

we compare across patch boundaries.

If the transition functions for H± are

uαn(ϕ) = (g+αβ [ϕ])nmu
β
m(ϕ), etc. (28)

then the integrands in the expression ((27)) for Iαp and Iβp can be made indentical by the

change of variables

a′n = am(g+αβ [ϕ])mn, etc.

Taking into account the Jacobian for this transformation, together with Fermi statistics,

we have

Iαp = (Detg−αβ)
−1(Detg+αβ)I

β
p . (29)

We regularize the determinants with a mode cutoff as usual. But the twist of the factor

in ((29)) is just that of H+
low minus that of H−

low, i.e. it is the twist of L. Hence all Green

functions Gp, not just G0, are twisted: they are sections of ∧p(H+
ϕ )⊗ ∧p(H−

ϕ )⊗ L.

We can even extend this result to the instanton sectors, k > 0. If the ordinary index

of /Dϕ is k, there will always be k unpaired zero modes u01, ..., u0k, so that nonzero Green

functions have more ψ’s than ψ’s. We call these Gαp+k,p[ϕ; ...]. The same reasoning that

led to ((29)) applies here, so that the Green functions furnish sections of ∧p+k(H+
ϕ ) ⊗

∧p(H−
ϕ )⊗ L, where again L has the family index twist.
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In other words, none of the Green functions have the appropriate geometrical meaning

in a chiral theory with a twisted family index. This is the sigma-model analog of the fact

that in anomalous gauge theories the higher point functions are not gauge covariant, just

as G0[A] is not gauge invariant. In particular we must search every connected component

of C for anomalies, even though G0 ≡ 0 whenever k 6= 0 and hence is no problem.

Since all Green functions have the same twist, one might ask whether the phase sin-

gularity on Y can be removed by a simple phase redefinition of the twisted Fermi measure.

Such a redefinition must correspond to modifying the bosonic action by a counterterm.

According to the philosophy adopted in this paper such a counterterm must have an in-

trinsic geometrical significance as a well defined function on C, since counterterms simply

redefine the bare action Sb + Sf , which is a function on C. Removing the twist of L in

some kind of singular way might define some kind of theory, but it will not be the original

sigma model we set out to define. We will return to the counterterm issue at the end of

the next section.

3.Symptoms of Sigma Model Anomalies

A natural question one might ask is whether the twist of the line bundle L introduced

in the previous section has a conventional field-theoretic interpretation. Indeed there is

such an interpretation, which we now describe.

We begin by relating the definition ((9)) of the Fermi effective action to the more

familiar diagrammatic definition. Perturbation theory involves local expansions and ordi-

nary functions (as opposed to sections), so to define it we must trivialize the N-dimensional

bundle B → M by choosing a cover of M by contractible sets {Uρ} together with homeo-

morphisms

hρ : Uρ × CN → B|Uρ
.

The connection must be specified patchwise by Lie-algebra-valued differential forms Θρ.

Transition functions gρσ(p) for p ∈ Uρ ∪ Uσ are defined by

h−1
ρ (p, hσ(p, v)) = (p, gρσ(p) · v) (30)

where v is a vector in CN and gρσ(p) is a matrix in U(N). On the overlap Uρ ∩ Uσ the

connections are related by a gauge transformation by the transition function:

Θρ = (Θσ)
gρσ . (31)
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Let ϕ0(x) ≡ p0 ∈ M be a constant field configuration. We will refer to ϕ0 as a

vacuum field configuration and will set up a perturbation expansion about it. (If M is

a homogeneous space each ϕ0 corresponds to one of the equivalent vacua in a theory of

spontaneous symmetry breaking.) We expect that when ϕ : X → M lies near ϕ0 in C
there will be a perturbative definition of Γf . We will say that ϕ is “near” ϕ0 if there is

some patch Uρ containing p0 such that ϕ maps all of spacetime into Uρ. Thus the patches

{Uρ} determine corresponding patches in C:

Pρ = Pρ[ϕ0,Uρ] ≡ {ϕ : ϕ(X) ⊂ Uρ}. (32)

(These need not cover all of C.) Note that if Uρ is contractible then so is Pρ.
To set up the perturbative expansion we will for simplicity take spacetime to be a

d-dimensional torus, T d, of finite volume V. 18 Then ϕ∗
0B is trivial so the eigenmodes of

((19)) are simply the ordinary functions

u(o)n (x) ≡ un(ϕ0;x) =
1√
V
χe−ikn·x

v(o)n (x) ≡ vn(ϕ0;x) =
1√
V
σ · k̂nχe−ikn·x

where ~kn is a 4-vector restricted by (anti-)periodic boundary conditions and χ carries

spinor and internal indices, i.e., it is a vector in

C2(d/2−1) ⊗ CN

We take σµ = (i, σk) while σ
µ = (−i, σk). Furthermore, λn(ϕ0) =

~k2n and H±
ϕ0

= Γ±(S±⊗
ϕ∗
0B) is an ordinary function space.

If ϕ ∈ Pρ then B|ϕ(X) is trivialized by hρ. Since all the fibers of a trivial bundle are

naturally isomorphic, hρ induces a choice of the isomorphism T (±)(ϕ,ϕ0) of the previous

section which we can use in ((8)). More precisely, if we ignore spin indices then for each

x ∈ X, a section u ∈ H±
ϕ0

defines a vector u(x) in B|ϕ0(x)
= B|p0 . Then h−1

ρ (u(x)) = (p0, v)

for some vector v ∈ CN . We define T by

[T (±)(ϕ,ϕ0)u](x) = hρ(ϕ(x), v) ∈ B|ϕ(x) (33)

18 This choice is convenient since the torus has trivial spinor bundles, while the finite volume

eliminates irrelevant infrared divergences.
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that is, T (±)(ϕ,ϕ0)u ∈ H±
ϕ . This choice of T is very different from the eigenfunction frame

that was convenient in section two.

Using these isomorphisms T (±)(ϕ,ϕ0) we can now group the operators in ((9)) to

obtain coordinate expressions for the relevant matrix elements. Thus, using 19

〈
v(o)m |T (−)(ϕ0,ϕ) /DϕT

(+)(ϕ,ϕ0)|u(o)n
〉
=

∫
χ†
mσ·k̂meikm·xiσ·

(
∂x +Θρa(ϕ(x))(∂xϕ

a)
)
χne

−ikn·x

one can show that the infinite volume limit of ((9)) is the infinite volume limit of

exp(−Γf [ϕ]) = expTrfLog

[
δnm− < u(o)n |σ · kn

k2n
σ ·A|u(o)m >

]

which is just the usual perturbative definition of the effective action:

Γρf [ϕ] =
∑

n

1

n

∫
dx1 · · · dxntr

{[
f( /D†

x1
/Dx1

/M2)S(x1, x2)
]
σ ·A(x2) · · ·S(xn, x1)σ ·A(x1)

}
.

(34)

(with a somewhat unconventional regulator). Here we have introduced the “gauge field”

Aik µ(x) = (Θρ)
i
k a(ϕ(x)) ∂µϕ

a(x) , (35)

and, as usual, the Euclidean propagator is

S(x1, x2) =

∫
e−ik·(x1−x2)

σ · k
k2

ddk

(2π)d

The perturbation series ((34)) has an anomalous change under gauge transformations

of the vector field A. However, the interpretation of A is different from that of gauge theory

and we must re-investigate the consequences of the anomaly in the context of the nonlinear

sigma model.

As we have emphasized, to arrive at the expansion ((34)) we had to make many

choices: we chose the cover {Uρ}, the trivializations hρ and the vacuum ϕ0. Let us now

study the consequences of different choices for the trivialization and vacuum.

First, consider a unitary reparametrization of the fiber coordinates of B in one patch

Uρ. Thus we choose a set of local rotations λρ : Uρ → U(N) which induce a change in

trivialization by

h′ρ(p, v) = hρ(p, λρ(p) · v) (36)

19 We have locally set the fiber metric hij = 1.
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The collections {Uρ, hρ} and {Uρ, h′ρ} are merely two different schemes for coordinatizing

the same bundle B. 20 Therefore, such a change should have no physical effect.

It is useful to reformulate this condition, which is based on a passive transformation,

to one based on an active transformation. The change ((36)) induces a change of bases for

the Fermi fields which is equivalent to the replacement Θρ → Θ
λρ
ρ , which in turn amounts

to changing

A→ A(ϕ∗λρ) (37)

We thus might naively demand that Γf be invariant under ((37)). Due to the nonabelian

anomaly, however, the replacement ((37)) changes Γρf by the integrated anomaly [[17]]

Id[ϕ∗Θρ, ϕ
∗λρ] =

∫ 1

0

ds

∫

X

ω1
d

[
∂s(ϕ

∗λρ(s))(ϕ
∗λρ(s))

−1, (ϕ∗Θλρ(s)
ρ )

]
(38)

Here λρ(s) is a one-parameter family of maps from Uρ to U(N) such that λρ(0) = 1 and

λρ(1) = λρ, while ω
1
d is the (appropriately normalized) differential form for the nonabelian

anomaly [[17]] [[5]] , and the expression I is independent of the choice of path. We will refer

to ((38)) as a Wess-Zumino or WZ term for bundle reparametrizations. It measures the

failure of naive bundle reparametrization invariance.

The WZ term contains only a finite number of derivatives of ϕ. In this sense it is

a local functional of the scalar fields. Furthermore, adding the term ((38)) to a bosonic

action has nontrivial physical consequences [[18]] ,[[19]] : it modifies the S-matrix of the

theory, just as the WZ term in pion dynamics modifies the low-energy theorems for the

reactions π0 → 2γ and K+K− → π+π−π0. Thus we learn that different trivializations of

B lead to inequivalent perturbative expansions, but that these expansions can be made

equivalent by the addition of a compensating local counterterm in ϕ defined on Pρ[[20]] .
Quantum theories are defined by their classical Lagrangians only up to the addition

of such local counterterms. In this sense perturbation theory thus does have the invariance

under local reparametrizations of B which we expect from the corresponding situation in

classical sigma models. 21

This is not the end of the story, however. While it might be that an anomalous

theory makes sense and is coordinate-invariant locally, the fact remains that the full theory

20 In the terminology of Steenrod [[16]] they define isomorphic “coordinate bundles.”
21 In fact we must work at this level of generality, since otherwise even free (chiral) fermions

are not reparametrization invariant.
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is defined not by one patch (Uρ, hρ) but by many, all differing by recoordinatizations

similar to the ones considered above, and in general we must perturb about many different

vacua ϕα(x) ≡ pα where pα lie in different patches Uα. Our experience with bundle

reparametrizations might lead us to expect that with an appropriate choice of WZ terms

in each Uα, all the Γαf could be made physically equivalent on all the overlaps, but this is by

no means assured. Instead the various discrepancies could fit together into an “obstruction

cocycle” [[16]] which cannot be removed.

Consider the sets Pα(Uα) ⊆ C defined as above for the various ϕα and define Γαf [ϕ]

on each according to ((34)). Focusing our attention on two patches Pρ, Pσ, note that if

Pρ ∩ Pσ is not empty then there exist ϕ such that ϕ(X) ⊂ Uρ ∩ Uσ. We can use ((38)) to

find

Γρ[ϕ] = Γσ[ϕ] + Id[ϕ∗Θσ, ϕ
∗gρσ]. (39)

Now, in contrast to the local reparametrizations which are defined on a single patch,

((39)) holds only on Pρ∩Pσ, and this overlap might be noncontractible. 22 This raises the

possibility that the phase expI[ϕ∗Θ, ϕ∗gρσ] might wrap as ϕ traverses a noncontractible

loop in Pρ ∩ Pσ.23

This is bad. It means that any WZ term we could add to Γρf , say, to fix the above

discrepancy must be singular somewhere inside Pρ, and hence not an acceptable WZ term

at all. Thus when we go beyond one-patch perturbation theory and try to define our theory

globally by fitting together perturbative expansions around several different vacua we find

that the various prescriptions give physically conflicting predictions which might not be

reconcilable by the addition of bosonic counterterms.

We can make this scenario more concrete by considering a family of maps X → M

parametrized by a two-sphere Y. Let yN,S be the north and south poles of Y. The family

of maps defines a single map ϕ̂ : Y × X → M . For convenience let us take each ϕ̂(y, ·)
to be homotopically trivial. (In particular this means that we consider a family of maps

which lies in the zero instanton-number sector.) Then the restriction of B to the images

ϕ̂[(Y −{yN,S})×X] is trivial. Therefore we choose a cover on M which includes the patches

Uρ = ϕ̂[(Y − {yN})×X]

Uσ = ϕ̂[(Y − {yS})×X]

22 Strictly speaking we should use patches small enough that all their intersections are con-

tractible. The obstruction below would be unchanged, but its form would be more complicated.
23 The anomaly I is always imaginary [[3]] .
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Also we choose a trivialization of B using these patches, with transition function gρσ. The

corresponding Pρ,σ contain at least Y − {yN,S}, and if ϕ̂ is homotopically nontrivial then

Pρ,σ cannot be extended to all of Y, so Pρ ∩ Pσ = S2 − {yN} − {yS}, which deforms to a

circle. 24 The map

gρσ ◦ φ̂ : (Pρ ∩ Pσ)×X → U(N) (40)

can then be homotopically nontrivial. If it is, then the map Pρ ∩ Pσ → U(1) given by

ϕ 7→ expI[ϕ∗Θσ, ϕ
∗gρσ] (41)

is homotopically nontrivial. 25

All this is not idle speculation. If M = S6 and B = B3 (The Bott bundle on S6), that

is, the bundle with transition function the generator of π5[U(N)] for N ≥ 3, then the family

given by a degree one map ϕ̂ : S2 × S4 → S6 is of the type just discussed: perturbative

expansions about the north and south poles on S6 lead to inequivalent theories. In general,

perturbative expansions around different points on a topologically interesting target space

M can lead to inequivalent theories which cannot be made equivalent by the addition of a

WZ term which is well-defined on the domain of validity of either expansion.

The obstruction we have described here is identical to the one found in section two

using an eigenmode framing of H±. The inequivalence of Γρ and Γσ means that G0[ϕ] is a

section of a twisted line bundle L whose twist equals the winding number of the WZ term.

Nevertheless, the characterization of the anomaly given in this section is awkward. In the

following section we therefore return to the formulation ((17)) of the anomaly. We will be

able to apply index theory to give a characterization of the obstruction ν which involves

only the topology of the spaces C, B,X, andM . The condition (62)which we derive is then

tractable in many cases of interest and facilitates the study of the epidemiology of sigma

model anomalies.

We conclude this section with three remarks. First, we have seen that a choice of

trivialization {hρ} corresponds to a choice of frames for H±. A bundle reparametrization

corresponds to a particular change of such special frames. We have argued in this section

24 Actually, it is Y ∩ Pρ ∩ Pσ which deforms to a circle. This distinction is not important to

our argument.
25 In section six we will need the stronger assertion that the winding number of ((41)) is the

same as the homotopy class of ((40)) for fermions in the fundamental representation. A proof of

this statement can be found in many places, including [[17]] [[19]] [[21]] [[20]] [[22]] .
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that such changes cannot remove the anomaly. From this point of view the result of section

two is far more powerful than perturbation theory suggests, for the conclusions of section

two imply that there is no smooth set of local frame choices for H± which can remove the

anomaly.

Second, we can see that there is no smooth counterterm which can cancel the anomaly.

Such a counterterm must have a perturbative formulation which is therefore uniquely

determined by ((39)). The anomaly is precisely the obstruction to a smooth extension of

this WZ term to Pρ,σ.
Finally, note that the nonlinear sigma model anomaly has features similar to both the

nonabelian gauge anomaly and Witten’s SU(2) anomaly. The necessity of cancelling the

nonabelian gauge (and gravitational) anomalies can be seen purely within the framework of

perturbation theory [[23]] [[3]] . On the other hand, the SU(2) anomaly can only be detected

by considering the global topology of configuration space. In the case of the nonlinear sigma

model, one can deduce the possibility of the anomaly within the framework of perturbation

theory, but it is only the global topology of C which determines whether the anomaly is

fatal to the theory in question.

4. The Family Index

Wemust now define precisely the index of a family of Dirac operators, and in particular

its first Chern character. We can then evaluate the latter using the Atiyah-Singer index

theorem [[24]] .The only result of this section which will be used in the sequel is the final

answer (62).The reader willing to accept this result can skip the present section.

To get started we must sketch a framework in which the “defect” bundle

D = H+
low −H−

low (42)

mentioned in sect. 2 makes sense. This framework is called K-theory.26

To describe topologically the possible complex bundles over a space Y, we can think

in terms of the space Vect(Y) of isomorphism classes of bundles. This space has naturally

defined on it an addition operation, the direct sum: V1 + V2 has for its fiber over y

the vector space sum V1|y ⊕ V2|y. Furthermore there is a multiplication operation, the

pointwise tensor product, which is distributive with respect to addition. Finally, there is

a map dim : V ect(Y ) → Z with the homomorphism property dim(V1 + V2) = dimV1 +

26 Readable introductions include [[25]] [[12]] .
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dimV2. dim extracts from a given bundle its most obvious topological invariant, the

(complex) dimension. In fact, if we regard the integers Z as the zeroth cohomology group

Z = H0(Y ), we see that both ch0 ≡ dim and ch1 are homomorphisms from Vect(Y)

to the cohomology of Y. When Y is more complicated than S2 there are indeed a series

chp(V ) of 2p-dimensional cohomology classes associated to a given V ∈ V ect(Y ). All are

topologically invariant and all can be written in terms of traces of various powers of a

curvature of V [[12]] , just like ch1 and (trivially) ch0. Explicitly,

ch(V ) ≡
∑

p

chp(V ) ≡ tr exp

(
i

2π
F

)
. (43)

Moreover we have the multiplication property ch(V1 ⊗V2) = ch(V1)∧ ch(V2). Finally, if V
is trivial the chp(V ) = 0 for all p > 0.

While Vect(Y) has an addition, we cannot give it any subtraction operation. As a

simple example, suppose for a moment that we repeat the above with real, not complex,

bundles, and consider the tangent bundle V = TS2. When we embed S2 ⊆ R3 we can

define the one-dimensional line bundle N normal to TS2. N is trivial, that is, isomorphic

to the trivial bundle S2×R1 over S2. Now TR3|S2 = TS2+N . But while TR3 and N are

trivial in Vect(Y), we cannot cancel them to conclude that TS2 is trivial too. It isn’t.

We would like to assign to Y an abelian group K(Y) (much like the cohomology

H∗(Y )) which is like Vect(Y) but ignores the difference between TS2 and S2 × R2. Such

a group, it turns out, retains just the right amount of information to be of use in index

theory. To construct it, we mimic the construction of the integers Z from the natural

numbers N = {1, 2, . . .}. N, like Vect, has only a semigroup structure. But if we consider

pairs N × N/ ∼, where we identify (n,m) ∼ (n + k,m + k) then we can construct the

inverse operation −(n,m) ≡ (m,n) and thus subtraction. For convenience we can then

write n−m for (n,m), n for (n+ k, k), and −n for (k, n+ k).

In exactly the same way we can defineK(Y ) = V ect(Y )×V ect(Y )/ ∼ where (V1, V2) ∼
(V1 + V3, V2 + V3). We will refer to the elements of K(Y ) as “virtual bundles over Y ,” or

more often simply as bundles. K(Y) can be defined in terms of real or complex bundles.

In the real case we do indeed have

TS2 = (TS2 +N,N) = (TR3|S2 , N)

= (S2 ×R3, S2 ×R)

= S2 ×R2.

(44)
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Here we split TR3 into three trivial bundles. Therefore all that remains of TS2 in real K-

theory is its dimension, dim(TS2) = 2. (Real K-theory, which classifies real vector bundles

is quite different from complex K-theory, which classifies complex vector bundles. Indeed,

TS2 can be given a complex structure, and, in complex K-theory (TS2, 0) is not trivial.

It is again true that in the complex case Vect(Y) is not a group; for that we must pass to

K(Y) with the above construction. Henceforth we consider only complex K-theory.)

In complex K-theory, the homomorphism properties of ch guarantee that the Chern

characters make sense on K(Y) if we define ch((V1, V2)) = ch(V1)− ch(V2). Finally, if we

define the product of differences in the obvious way then K(Y) becomes a ring, and ch :

K(Y ) → H∗(Y ) becomes a ring homomorphism. With these definitions, eqs. ((17)) and

((42)) just say that the anomaly is measured by ch1(D). Far from being merely streamlined

notation, however, K-theory will be crucial for the steps which follow.

We can now define the family index 27 Ind /D and show that it equals D [[24]] Following

[[26]] we use capital “I” to distinguish the family index, which is a (virtual) bundle, from

the ordinary index, which is an integer. Consider the ordinary index ind /D = dim ker /D −
dim ker /D†. If /Dy actually belongs to a parametrized family, then as y moves we get a

family of kernels moving around inside H±. Thus we are tempted to drop the dim’s above,

which discard all information about how the kernels move, and define instead

Ind /D
?
=ker /D − ker /D† (45)

Then we recover ind /D as ch0(Ind /D).

This is not quite right. There will be, in general, points on Y where the dimension

of ker /Dy jumps. Thus ker /D does not define a bundle on Y . Since the index ind /Dy is

defined (and constant) on Y it is plausible that there is a way to interpret the difference

ker /D−ker /D† as an element of K(Y ). This can be done as follows. Suppose we modify H+

by the addition of a trivial bundle Y × CN , and let /D = ( /D, 0) : H+ + (Y × CN ) → H−.

Then ind /D = (ind /D) + N . Suppose we could now change /D smoothly to a new /̃D with

no cokernel, i.e. such that the image of /̃Dϕ is H−
ϕ for all ϕ. Then the kernel could not

jump either, since ind /̃D is constant, and hence ker /̃D would be a bundle over Y as desired.

Subtracting Y × CN to correct the imbalance in dimension, we could thus define [[24]]

Ind /D ≡ ker /̃D − (Y × CN ) ; (46)

27 For introductions to index theory see [[12]]. The constructions used in this section are

actually applicable to a much wider class of differential operators than considered here.
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again ind /D = ch0(Ind /D). In fact, in the degenerate case Y = {point} the two indices

coincide, so Ind is a natural generalization of ind.

It turns out that we can indeed kill ker /D† simply by choosing /̃Dy = ( /Dy, ~σ(y)), where

σα, α = 1, . . . N are a fixed set of sections which always at least span ker /D†. That is,

/̃D(u(y), ~ξ) = /Dyu(y) +
∑

ξασα(y) , (47)

and the second term fills out all of H−
y missed by the first. Ind /D does not depend on which

sections we choose [[24]] . Furthermore, it equals the bundle D ≡ H+
low−H−

low, which makes

it interesting to us. To see this, note that H+
low −H−

low = (H+
low + (Y × CN )) − (H−

low +

(Y × CN )) and consider

/̂D =

(
/̃D
0

)
=

(
/D ~σ
0 0

)
(48)

on Hlow+(Y ×CN ). Since /̃D is onto, it furnishes, for each y, an isomorphism (ker /̃Dy)
⊥ ∼=

H−
low|y . So in K-theory

D = [ker /̃D + (ker /̃D)⊥]− [H−
low + (Y × CN )]

= ker /̃D − (Y × CN )

= Ind /D

(49)

Thus a sigma model is anomalous iff Ind /D is twisted over some two-sphere Y in C. We

must now compute this twist.

At first sight the evaluation of ch1(Ind /D) for arbitrary Y seems a hopeless task:

We must solve an equation in arbitrary field configurations, search for zero modes, and

establish their twists as we move around Y, a program which at best works only for very

simple cases. The startling result of Atiyah and Singer is that none of this is necessary!

Just as for the ordinary index, the family index of /D is completely determined by the

topology of the spaces in question, and not at all by the particular metrics, connections,

etc. we have chosen. More precisely, we say that the index of an elliptic operator depends

only on its symbol, and all Dirac operators have essentially the same symbol.

To define the symbol of an elliptic operator we first expand it in coordinates and drop

all but the leading derivative terms. For /∂ this yields γµ∂µ. Now replace the derivatives

by symbolic “momentum” variables pµ to get σ(/∂) ≡ γµpµ. For each point x in X and
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each value of momentum, σ(/∂) is a map from S+
x to S−

x .
28 We can state this concisely by

defining the pullback π∗(S+) where π is the projection from the cotangent bundle T ∗X to

X. Just like ϕ∗· of section one, π∗ fits together many vector spaces into a bundle over the

total space of T ∗X as follows: over the point (x,p) we place the vector space S+
x . Then

the previous statement becomes simply that σ(/∂) : π∗(S+) → π∗(S−).

The index theorem relates Ind /D, which loosely speaking is the difference of two bun-

dles, H+-H−, to a new bundle Σ(/∂) which loosely speaking is the difference π∗S+−π∗S− .

Σ(/∂) is a bundle over the total space of T ∗X, and it depends only on the symbol σ(/∂). The

details of the construction of Σ(D) for an arbitrary elliptic operator D are given in ap-

pendix B. For our purposes, though, all that matters is that Σ(/∂) is known, and a formula

for the family index can be computed from it.

We begin with the ordinary index theorem for a single Dirac operator /D (not necessar-

ily of the form ((4))) [[27], theorem 2.12] , which states that in even spacetime dimensions

ind /D =

∫

T∗X

chΣ( /D) T (T ∗X) . (50)

Here T (T ∗X) is a cohomology class of T ∗X depending only on the topology of X. Its

definition will not be important for us. chΣ( /D) is also in H∗(T ∗X), since Σ( /D) is a bundle

on T ∗X. We can rewrite ((50)) in a way which is susceptible to generalization as follows. If

P is any bundle projection, it sets up a local product structure which lets us define P∗, the

operation of integrating forms along the fibers of P .[[11]] For example, if P : R3 → R1 with

P (~x) = x1 then P ∗(f(~x) dx2∧dx3) = g(x1) and P ∗(f(~x)dx1∧dx2∧dx3) = g(x1)dx1, where

g(x1) =
∫
dx2dx3 f(~x) . By convention we also define P ∗(dx2) = P ∗(dx1 ∧ dx2) = 0, etc.

Defining projection maps as in Fig. 3.1 and taking, for the moment, the case Y = {point},
the above integral can be written (p1 ◦ π)∗, since p1 ◦ π projects T ∗X all the way down to

a point. Moreover we can perform integrals in succession, to get

(p1 ◦ π)∗ = (p1)
∗ ◦ (π)∗ . (51)

Here π∗ : H∗(T ∗X) → H∗(X) and (p1)∗ : H∗(X) → H∗(point). Also we have that

π∗((π∗ω) ∧ η) = ω ∧ π∗η (52)

28 In fact for every nonzero momentum σ(/∂) is an isomorphism. An operator with this property

is called “elliptic.” Index theory only works for elliptic operators, for reasons given in appendix

B.
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for any class ω on the base and η on the total space, where π∗ is the pullback of forms [[11]]

. (We apologize for using the same symbol to denote both this and bundle pullback– this

is standard usage.) This just means that ω can be pulled outside an integral if it doesn’t

depend on the integration variable. These simple “covariance” ((51)) and “module” ((52))

properties of (·)∗ are the key to our computation. They enable us to get the desired index

formula from ((50)).

Thus for the free Dirac operator ((50)) becomes

ind/∂ = (p1)
∗ [π∗(chΣ(/∂) ∧ T (T ∗X))

]
. (53)

The class in square brackets is called Â(X). For X = S4 it is known to be 1 ∈ H0(S4)

[[12]] , and so the index vanishes.29

In the nonlinear sigma model we are interested in the Dirac operator /Dϕ coupled to

ϕ∗B. Then its symbol σ( /Dϕ) is again γµpµ, or rather γµpµ ⊗ 1, where the unit matrix

acts on internal indices. The symbol still “knows” that it is coupled to ϕ, but only via

its domain and range π∗E±, which contain ϕ∗B. Since Σ( /Dϕ) is in a sense the difference

between the domain and range, we can factor out the common ϕ∗B to get (see appendix

B)

Σ( /Dϕ) = Σ(/∂)⊗ ϕ∗B , (54)

or more explicitly

Σ( /Dϕ) = Σ(/∂)⊗ π∗ϕ∗B . (55)

(We need the pullback π∗ since ϕ∗B is a bundle on X and must be trivially extended along

the fibers of T ∗X before we can take the indicated tensor product.) This factorization

simplifies our problem immensely, since at the level of K-theory the index is essentially

known from the properties of the free Dirac operator. For, we now have that

ind /Dϕ = (p1 ◦ π)∗
[
chΣ( /D) ∧ T (T ∗X)

]
. (56)

Using ((55)) and the remark following ((43)) we get

ind /Dϕ = (p1 ◦ π)∗
[
π∗(chϕ∗B) ∧ (chΣ(/∂)) ∧ T (T ∗X)

]
. (57)

29 In fact, the free Dirac operator on S4 has no zero modes of either chirality, by Lichnerowicz’s

theorem.
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But by ((51), (52)) this is

= (p1)
∗ [(chϕ∗B) ∧ π∗(chΣ(/∂) ∧ T (T ∗X))

]

=

∫

X

(chϕ∗B) ∧ Â(X) ,
(58)

and we have recovered the usual index theorem. When spacetime is S4, Â = 1 and the

expression ((58)) is the familiar formula for the instanton number of the “gauge field” ϕ∗Θ.

The point of the above approach is that the family case is quite similar. A family

of Dirac operators /Dy gives a symbol σ( /Dy) for each y. These combine to define a single

virtual bundle Σ( /D) ∈ K(Y ×T ∗X). But again σ( /D) is completely independent of y, so all

information about the family twist of /D is again encoded in the domain and range bundles

π∗(E±
y ). The left hand side of eq.((56)) should now be thought of as ch0Ind /D, and for

arbitrary Y we finally have the family index theorem [[24]]

ch Ind /D = (p1)
∗π∗[ch(Σ( /D)) ∧ T (p∗2(T

∗X))] (59)

Now (p1 ◦ π) projects not to a point but to Y , so that both sides are differential forms on

Y .

In the case of the nonlinear sigma model we consider a family of maps ϕy : X → M

which combine into a single map ϕ̂ : Y ×X →M. We can use eq. ((59)) to find the index

of the family /Dϕy
, which we will just call /D. Since T knows nothing of the twisting bundle

ϕ̂∗B, it turns out that T (p∗2(T
∗X)) is trivial along Y , i.e. it is just p∗2T (T ∗X). Since we

can integrate along the fibers of T ∗X either before or after applying p∗2, we again use eq.

((55)) to get

ch Ind /D = (p1)
∗[ch(ϕ̂∗B) ∧ p∗2Â(X)]

=

∫

X

chϕ̂∗BÂ(X) .
(60)

Finally, the operation of taking the Chern character can be done either before or after

taking a pullback, since the curvature of ϕ̂∗B is just the pullback of the curvature form of

B itself. Taking X = S4 the above expression becomes

∫

X

ϕ̂∗chB , (61)

which is a differential form on Y .
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We can at last evaluate the anomaly ((17)) of an arbitrary sigma model. Given a

two-sphere Y ∈ C, we can extract ch1 from all of chInd /D by simply integrating over Y.

The result is then the anomaly ch1(D), since we have already shown that Ind /D = D. Thus

anomaly = ν =

∫

Y×X
ϕ̂∗ch3B. (62)

Note that only ch3 appears in ((62)) because Y ×X has six real dimensions. If we consider

two-dimensional spacetime, then the anomaly involves ch2. If ν is nonzero for any Y then

the theory is inconsistent. This completes the derivation promised in [[15]] .

We will refer to a family φ̂ such that ν 6= 0 as an anomalous family, with family

index equal to ν. For example, in the model introduced in the previous section with

M = S6, B = B3 the family ϕ̂ is anomalous since ch3(B3) can be taken to be the solid

angle ω(6) on S6 and

anomaly =

∫

Y×X
ϕ̂∗ω(6) = (degφ̂)

∫

S6

ω(6) = 1. (63)

We will discuss more interesting models in the next few sections.

We cannot resist closing this section with a remark on the meaning of eq. ((62)) [[28]]

[[15]] . The reader has probably noticed a similarity between eq. ((62)) and eq. ((58)):

the twist of the family index equals the ordinary index of a six-dimensional Dirac operator

/DY×X on Y ×X. This is no accident. We can measure the twist of a bundle L on S2 by

writing down a Dirac operator /DY
L on S2 coupled to L, a fact well known from magnetic

monopole theory. The notation means that this operator differentiates y and is coupled to

L by some connection. Our above observation then amounts to saying,

ind /DY

[Ind/DX ]
= ind /DY×X

ϕ̂∗B . (64)

This formula is essentially the one proved in [[29]]using an adiabatic argument. In fact it

expresses a deep algebraic property of the family index.30

Consider the operation which takes a bundle β on Z × Y ×X to the family index of

/DX coupled to β. Call this map (p1)!, where p1 is the projection from Z×Y ×X to Z×Y .

(In our case Z = {point}.) So
(p1)!(β) ≡ Ind /DX

β (65)

30 We thank R. Bott and D. Quillen for enlightening us on this point.
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with

(p1)! : K(Z × Y ×X) → K(Z × Y ). (66)

Consider also ρ : Z × Y → Z and ρ! which takes the index of /DY . Then eq. ((64)) simply

says

ρ! ◦ (p1)! = (ρ ◦ p1)! (67)

The analogy to eq. ((51)) is evident. In fact, K-theory can itself be regarded as a form of

cohomology [[25]] , in which (·)! plays the same algebraic role as (·)∗. (We also have the

analogy of eq. ((52)) .) Thus the mysterious formal connection between gauge (or sigma

model) anomalies in d dimensions and chiral U(1) anomalies in d + 2 dimensions simply

reflects the composition properties of (·)!, i.e. that K, like H is “covariant.” The special

role of 2 comes about since we are interested only in ch1, a two-form on Y.

5. Applications to Supersymmetry

In this section 31 we will show that the four-dimensional supersymmetric Gp,q model

exhibits the topological anomaly for p,q both ≥ 3. We recall that this model is of the form

discussed in the introduction, with the specific choice of M = Gp,q , B = Tc(Gp,q), where

Gp,q is the Grassmannian manifold defined below, and Tc(Gp,q) is its holomorphic tangent

space.32 We can also consider such chiral Gp,q models in two spacetime dimensions. These

models are not supersymmetric, since in 2d, superpartner fermions are not Weyl but Dirac.

Nevertheless, we shall include them for completeness.

By our criterion ((62)) we need only find a map φ̂ : S2 × Sd → Gp,q such that

∫

S2×Sd

[ch(φ̂∗TcGp,q)] 6= 0 (68)

The goal of this section is merely to establish the existence of such φ̂ by using the theory

of classifying spaces [[11]]. Here is a brief exposition of the relevant facts.

The manifold

Gp,q = U(p+ q)/U(p)× U(q) (69)

can be defined as the space of all p-dimensional subspaces W of Cp+q. We will alternate

between viewing W as a point in Gp,q and as a vector space, or “p-plane,” in Cp+q. For

31 We thank V. Della Pietra and T. Parker for helpful discussions on classifying spaces.
32 A good introduction to Gpq is.
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example, over Gp,q there is a canonical p-plane bundle γp whose fiber over W ∈ Gp,q

consists of the vectors contained in the space W. That is,

γp = {(W, v) : v ∈W} ⊂ Gp,q × Cp+q (70)

The vector bundle γp is associated via the fundamental representation to the principal

U(p)-bundle Vpq → Gp,q. Here Vpq ≡ U(p+ q)/U(q) is called a Stiefel manifold. It can be

shown [[16]] that

πi(Vpq) = 0, (71)

for i ≤ 2q and thus Vpq is (2q + 1)-universal, in the sense of Steenrod. The bundle

classification theorem [[16]] then states that any p-plane bundle over a compact manifold

Q (more technically, a finite CW-complex) of real dimension ≤ 2q is isomorphic to the

pullback of γp under some map f : Q→ Gp,q. Furthermore, it can be shown that the map

f is determined up to homotopy.

We will use this theorem by expressing Tc(Gp,q) in terms of the canonical bundle γp

and then expressing bundles over S2×Sd with nonvanishing Chern character as pullbacks

of γp. This will establish the existence of families φ̂ satisfying ((68) ).

Consider the tangent space to Gp,q at a point given by a p-plane W. A neighborhood

of W is given by the set of p-dimensional subspaces of Cp+q, V such that

V ∩W⊥ = {0}. (72)

This neighborhood can be coordinatized as follows. Choose an orthonormal basis

w1, ..., wp+q for Cp+q such that w1, ..., wp span W. The decomposition Cp+q = W ⊕W⊥

defines a projection p : V →W which, by condition ((72)), is an isomorphism and defines

a basis vi for V by the equation p(vi) = wi. Then

vi = wi +

q∑

j=1

aij(V )wp+j (73)

defines a pxq matrix aij which is the desired coordinate system. A path of vector spaces

Vt such that V0 =W therefore determines a tangent vector

d

dt
aij(Vt)|0 ∈ Homc(W,W

⊥) (74)
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Here Homc(V1, V2) denotes the complex vector space of linear transformations (homomor-

phisms) from V1 to V2. But Homc(W,W
⊥) is the fiber over W of the bundle

Homc(γp, γ
⊥
p ) (75)

and so the tangent to Gp,q is just

TcGp,q = Homc(γp, γ
⊥
p ). (76)

We are actually interested in relating the Chern classes of TcGp,q to those of γp. This can

be done using the following trick. Note that

TcGp,q ⊕Hom(γp, γp)
∼= Hom(γp, Gp,q × Cp+q)

∼= ⊕p+q1 Hom(γp, Gp,q × C)

Each summand is the dual to γp. Using the metric we then get

TcGp,q ⊕Hom(γp, γp)
∼= ⊕p+q1 γp (77)

where γp denotes the conjugate bundle. Now we apply ch to ((77)), use the homomorphism

properties discussed in sec. 3, and apply the identity

Hom(γp, γp)
∼= γp ⊗ γp (78)

to obtain the desired relation: 33

chTcGp,q = (p+ q)chγp − chγpchγp. (79)

For example, we can expand out ((79) ) to obtain

ch3TcGp,q = (p+ q)ch3γp − (ch0γpch3γp + ch1γpch2γp + ch2γpch1γp + ch3γpch0γp)

= −(p+ q)ch3γp

33 We will henceforth drop the wedge product symbol. The expression ((74)) chooses one

of two possible complex structures for TcGp,q. We would have obtained the other had we used

the canonical q-plane bundle γq. Taking this into account one can show that eq. (79) is actually

symmetric under the interchange p↔ q, as expected from eq. ((69)).
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where we have used the fact that chp(V ) = (−1)pchp(V ). Therefore, the condition ((68) )

becomes ∫

S2×S4

ch(φ̂∗TcGp,q) = −(p+ q)

∫

S2×S4

ch3φ̂
∗γp 6= 0 (80)

in four spacetime dimensions. Similarly expanding ((79) ) we find an anomaly in two

dimensions if there exists a family ϕ̂ with
∫

S2×S2

ch(φ̂∗TcGp,q) =
∫

S2×S2

(q − p)ch2φ̂
∗γp + (ch1φ̂

∗γp)
2 6= 0. (81)

The next step is to construct bundles over S2 × Sd with nontrivial Chern characters

using the “external product” construction which is described as follows. Given two vector

bundles Ei → Xi, i = 1, 2, define

E1×E2 = π∗
1E1 ⊗ π∗

2E2 (82)

where πi : X1×X2 → Xi is the projection. Thus, E1×E2 is a (dimE1dimE2)-plane bundle

over X1 ×X2 with Chern character

ch(E1×E2) = π∗
1chE1 ∧ π∗

2chE2. (83)

In particular, one can choose B1 → S2 to be the line bundle associated to the Hopf

bundle, and B2 → S4 to be the 2-plane bundle associated to the instanton bundle. One

can show that these bundles have Chern characters 34

chB1 = 1 + ω(2)

chB2 = 2 + ω(4)
(84)

where ω(2),ω(4) denote the volume forms on the spheres S2,S4.

By the classification theorem quoted above with Q = S2 × S4 or S2 × S2 , we know

that there exist maps
f : S2 × S4 −→ G2q q ≥ 3

g : S2 × S2 −→ G1q q ≥ 2
(85)

such that
f∗γ2 = B1×B2

g∗γ1 = B1×B1

(86)

34 In general Bn → S2n is the “Bott bundle” with transition function the generator of

π2n−1(U(N)), where N is large, and chBn = n+ ω(2n).
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We may then take φ̂ = f for d=4, p=2 and φ̂ = g for d=2, p=1 to obtain nonzero

integrals in ((80) ) and ((81) ). For larger values of p, one can add trivial bundles to the

above external products to obtain p-plane bundles. The classifying maps for these bundles

then furnish anomalous families. By the arguments of sections 2 and 4 we can conclude

that the only four- dimensional supersymmetric Grassmannian sigma models which do not

have a topological obstruction are those with target space CPn or G22. Similarly, the only

two-dimensional chiral Grassmannian sigma model free of obstructions has target space

CP 1 = S2. These results are slightly stronger than those of [[15]] .

Using eqs. ((79)) and ((83)-(86)) one can show that each member of the anomalous

families we have constructed is an instanton, i.e. the families lie in nontrivial elements

of π0(C). A simple modification of the above procedure allows us to construct anomalous

families of maps which are not instantons for a slightly restricted class of models.35

For example, consider once more the Bott bundle B3 → S6 with chB3 = 3 + ω(6).

If p, q ≥ 3, the classification theorem guarantees the existence of a map f : S6 → Gp,q

such that f∗γp = B3 ⊕ Ip−3, where Ip−3 is the trivial (p-3)-plane bundle. Composing f

with a degree one map r : S2 × S4 → S6 gives an anomalous family of the required type.

Similarly, in two dimensions Gp,q, p, q ≥ 2 admit anomalous families of maps in the zero

instanton sector.

In the following two sections we will continue to explore the nature of the anomaly

for Grassmannian target spaces.

6. An Analogy to Gauge Theory

In sections two and four we gave a global characterization of the anomaly which

is mathematically similar to the global formulation of the anomaly of gauge theory. (See

appendix A.) A peculiarity of the topological interpretation of non-abelian anomalies is that

it is not entirely equivalent to the perturbative characterization of the anomaly. Indeed, in

the case of a chiral U(1) gauge theory the global obstruction vanishes, although the theory

is anomalous, and hence nonsensical. We will show in this section that supersymmetric

Grassmannian sigma models have a formulation which displays an anomaly similar to the

perturbative gauge anomaly. Just as for gauge theory, we will find that in some models

there is a perturbative anomaly although the global obstruction we have discussed thus

far vanishes.

35 These will be useful in sect. 7 and appendix C.
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The perturbative gauge anomaly shows up when the theory is formulated in terms

of the affine space A(4) of connections on a principal bundle. The anomaly is then the

nontrivial variation of Γf [A] along the gauge group fibers of the bundle A(4) → C(4). We

will see how a very similar situation occurs in the case of Grassmannian sigma models.

We begin with the four-dimensional supersymmetric Grassmannian sigma models con-

sidered in the previous section. Following Ong we formulate the theory in terms of the

linear space of scalar and spinor p× (p+ q) matrix fields A and χ, and the nondynamical

scalar, vector, and spinor p× p matrix fields D,Vµ, and λ. Using the covariant derivative

Dµ = ∂µ +
i

2
Vµ, (87)

we form the Lagrangian

LI = Tr{−1

2
D +

1

2
A†DA+ (DµA)

†(DµA) +
i

2
χTσµ

↔
Dµχ+

i√
2
(A†λχ− χTλA)} (88)

Classically, the equations of motion serve to eliminate D,Vµ, and λ, thereby inducing

constraints on the fields A and χ appropriate to the Gp,q supersymmetric sigma model.

For example, the equation of motion for D imposes AA† = 1p, which forces the scalar

fields to lie on the Stiefel manifold

Vpq = U(p+ q)/U(q). (89)

Next, the equations of motion for λ, λ imply that the fermions take values such that

χA† = Aχ = 0 (90)

Finally, elimination of Vµ yields the Lagrangian

LII = Lb + tr

{
iχTσµ

[
∂µ + (A

↔
∂µA

†)

]
χ+

1

4
(χσµχT )2

}
(91)

where

Lb = tr

[
∂µA

†∂µA+
1

4
(A

↔
∂µA

†)2
]

(92)

The Lagrangian of eq. ((91)) has a gauge invariance: left multiplication of A and

χ by a unitary matrix U leaves the Lagrangian and the constraints unchanged. Thus,

certain degrees of freedom of the maps of spacetime into the Stiefel manifold are spurious,

and the true configuration space consists of gauge-equivalence classes of maps. Since the
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equivalence class of matrices A, A ∼ UA, which satisfy AA† = 1 defines a point in Gp,q,

the Lagrangian of eq. ((91)) describes the dynamics of a nonlinear sigma model with target

space Gp,q.

The analogy with gauge theories can now be clarified. The constraint AA† = 1p is

not a gauge constraint, so that the proper analog of the space A(4) of gauge theory is not

the linear space of p× (p+ q) matrix fields A, but the space

A(d)
pq = {Maps:Sd → Vpq}

The principal U(p) fibration r : Vpq → Gpq induces a Gp-fibration R : Apq → Cpq, where

G(d)
p = {Maps:Sd → U(p)}.

The introduction of fermions is slightly different from the gauge analog. It can be

shown that eq. ((90)) implies that the fermions take their values in the tangent bundle

TcGp,q, and that the covariant derivative in eq. ((91)) corresponds to the pullback of a

connection on TcGp,q, as required. The anomaly we will find results from quantum effects

which prevent the “gauge modes” Gp from decoupling from the fermions.

In quantum mechanics the necessary constraints on A and χ are obtained by functional

integration over D,Vµ, and λ in the partition function. That is, one proceeds from

Z =

∫
[dAdA†dχdχdλdλdVµdD]e−

∫
LI

(93)

to

Z =

∫
[dAdA†][dχdχ]δ(AA† − 1p)δ(χA

†)δ(Aχ)e−
∫

LII

=

∫
[dAdA†]δ(AA† − 1p)e

−
∫

Lbe−ΓfA

(94)

Note that the delta function constraint in eq. ((94)) does not eliminate the gauge degrees

of freedom from the measure. We must therefore study the (possible) dependence of the

integrand on these degrees of freedom.

In perturbation theory, one can parametrize A by A = UC where U ∈ U(p) and C is

p× (p+ q) with the first p columns forming a diagonal positive-definite matrix. The field

U does not enter into Lb, but does couple to the fermions through the vector field

1

2
A

↔
∂µA

† = U(
1

2
C

↔
∂µC

†)U † + U∂µU
† = (

1

2
C

↔
∂µC

†)U (95)
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which is a gauge transform of the vector potential 1
2C

↔
∂ µC

† by U . We can consider the

matrix χ to be (p+ q) Fermi fields in the fundamental representation of the gauge group

U(p). Since the fermions are chiral, the anomaly implies that ΓfA depends on U :

exp(−ΓfA) = exp
(
i(p+ q)I4[C,U ])

)
exp(−ΓfC) (96)

where I4 again denotes the integrated four-dimensional anomaly for a fermion in the

fundamental representation of U(p). Having isolated the dependence of the integrand in

eq. ((94)) on the gauge modes U we can now perform the functional integral over these

degrees of freedom. This integration imposes constraints inappropriate to the Gp,q model.

Some of these constraints can be exhibited more explicitly by noting that in pertur-

bation theory one can factor the measure [dU ] into [dθ][dµ], where θ(x) denotes the U(1)

degree of freedom in Gp and [dµ] is everything else. The result of integrating out the θ(x)

degree of freedom can be shown to be

Πxδ[ǫ
µναβtr(∂µC∂νC

†∂αC∂βC
† +

1

2
∂µC∂νC

†C∂αC
†C∂βC

†)] (97)

This is an extra, unwanted constraint if p ≥ 2. Clearly the theory defined by eq. ((94))

is not the Gp,q sigma model. Note, in particular, that there is an anomaly for the CPn

models, n ≥ 2, although the global obstruction vanishes in that case.36

One can also consider analogous models in two dimensions. These can be defined by

the Lagrangian of eq. ((88)) where σµ are the 1× 1 matrices 1 and i. (Again these models

are not supersymmetric.) The elimination of the nondynamical fields proceeds as before,

except that the quartic fermion interactions vanish. Again, the chiral anomaly implies

e−ΓfA = exp(i(p+ q)I2[C,U ]) exp(−ΓfC) (98)

with

I2 =
1

2π

∫ 1

0

ds

∫

S2

ω1
2

[
∂sgg

−1(s), (
1

2
C

↔
∂µC

†)g(s)
]

(99)

for fermions in the fundamental representation of U(p) and the U(1) degree of freedom

imposes the constraint

Πxδ(ǫ
µνtr∂µC∂νC

†) (100)

36 In the special case of CP 1 = S2 the above anomaly also vanishes. We thank H. Schnitzer

for pointing this out.
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which again is inappropriate for all Grassmannian manifolds.

We can continue the analogy with gauge theory by relating the global obstruction to

defining e−Γf as a smooth function on Cpq to the variation of e−Γf along the fibers of Apq.

First, recall an example from magnetic monopole theory which is mathematically similar

to our case. On S2 we can consider an abelian gauge theory defined with respect to some

principal U(1) bundle R : P → S2. If P has one twist we say that there is a monopole

inside the sphere; then P = S3 and R is the Hopf map. Sections of a line bundle associated

to P (e.g. the monopole harmonics) correspond exactly to ordinary functions on P itself

which satisfy the “equivariance condition”

f(α+ δ, x) = eitδf(α, x) (101)

where α, x are coordinates for the fiber and base and t is an integer called the equivariance

of f.

In gauge theory one can form a Hopf bundle P̃ ⊂ A(4) which projects to a nontrivial

two-sphere Y in C(4) if there is a nontrivial loop gθ in G4
p . One way to construct P̃ [[29]] is

by forming the disk in A(4) given by

At,θ = tAgθ + (1− t)A 0 ≤ θ ≤ 2π; 0 ≤ t ≤ 1.

This disk projects to a two-sphere Y in C, and can be viewed as a (singular) section of a

Hopf bundle R : P̃ → Y with P̃ ⊂ A(4). The “group-loop” gθ is actually a U(1) subgroup

of G(4)
p (see appendix C) and the fibration R is thus a principal U(1) fibration. It can

be shown that the twist ν of the family index Ind /D|Y is the same as the equivariance

t of exp[−Γf (A)] along the fibers of P̃ [[4]] [[29]] . Thus the intrinsically defined fermion

determinant has a singularity on Y which can only be smoothed out by viewing it as an

equivariant function on P̃ (and, more generally, on A(4)) with equivariance ν = t.

In the case of Grassmannian sigma models we have constructed the analog of P̃ for

most of the cases which have a global anomaly. The details of the constructions are

given in appendix C. There we give explicit examples of maps φ̂ : S2 × Sd → Gp,q and

Φ̂ : S3 × Sd → Vpq and π : S3 → S2 such that the diagram

S3 × Sd
Φ̂−→ Vpqy(π,1)

yr

S2 × Sd
φ̂−→ Gp,q

(102)
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commutes. Thus we have a family in C(d)
pq parametrized by Y = S2 and a family in A(d)

pq

parametrized by S3. The map π is the restriction of the projection R to S3 ⊂ A(d)
pq . From

the construction of appendix C one can see that this three-sphere can be regarded as the

total space P̃ of a Hopf bundle R : P̃ → Y with the principal U(1)-fibration given by a

homotopically nontrivial U(1) subgroup of G(d)
p , which is, in fact, the generator of π1(G

(d)
p ).

From ((96)) and ((98)) we can now find the equivariance of exp(−Γf [A]) along the

fibers of P̃ . For fermions in the fundamental representation of U(p) the restriction of expId

to a circle in a gauge orbit is (homotopic to) an equivariant function with equivariance t

equal to the homotopy class of that circle (see footnote 23). Therefore the equivariance

of exp(−Γf [A]) along the fibers of P̃ is t = (p + q). For the explicit families given in

appendix C we show that the twist of Ind /D|Y is ν = (p + q). Therefore, as in gauge

theory, the intrinsically defined fermion determinant has a singularity on Y which can only

be smoothed out by viewing it as an equivariant function on P̃ (and, more generally, on

A(d)
pq ) with equivariance t = ν.

Thus far we have emphasized the similarities of the sigma model anomaly to the

gauge theory anomaly. Indeed, as far as index theory is concerned they are almost identical.

What we have just shown is that the physical interpretation is different. We have illustrated

the failure of the attempt to define the path integral for the Grassmannian sigma models

by imposing constraints on the linear fields. In contrast to gauge theory, for which the

phase variation along A (not necessarily homotopically nontrivial) renders the theory ill-

defined [(2)] , the logical possibility remains that there exists some other way to define

the quantum sigma model. In some cases the global analysis of the previous sections

precludes this possibility. In other cases, e.g. the four-dimensional CPn models, the global

obstruction vanishes, and our results are not powerful enough to exclude the existence of

an intrinsically defined theory. A more refined version of this obstruction might eliminate

that possibility as well.

7. Applications to Preon Physics

While four-dimensional nonlinear sigma models are of interest in their own right[[30]]

[[31]] , they also arise as the low-energy approximations to strongly interacting gauge the-

ories. In a vectorlike nonsupersymmetric theory such as QCD, the relevant sigma model

contains only bosonic degrees of freedom (the Goldstone modes corresponding to dynami-

cally broken symmetries) and the considerations of this paper are irrelevant. In a theory

38



with unbroken supersymmetry, however, some fermions must remain massless.37 Some au-

thors have attempted to identify these massless fermions with quarks and leptons in the

context of supersymmetric preon models[[32]] .

A preon model consists of chiral and gauge superfields together with the dynamical as-

sumption that a gauge singlet order parameter superfield Φ takes on a symmetry-breaking

vacuum expectation value. Unbroken supersymmetry then requires that only the scalar

component ϕ of Φ develops a vev. One further assumes that at energies lower than the

confinement scale ΛHC the full theory is well approximated by a linear sigma model with

superfields Φ and an effective superpotential respecting those symmetries (and only those

symmetries) of the underlying theory. Finally, at low energies one eliminates all degrees of

freedom other than those which describe M, the space of absolute minima of the potential.

There is an important qualitative difference between the nature of the space M in

supersymmetric and in ordinary sigma models. In the latter the potential V is required

to be invariant under the group G of all symmetry transformations of the full theory, so

that M contains (at least) the homogeneous space G/H, where H = stabG

〈
ϕ
〉
is the little

group. In supersymmetry G is still the symmetry group of V, but M possesses a larger

symmetry. The reason is that a supersymmetric potential has the special form

V (ϕ,ϕ∗) =

(
∂F

∂ϕ

)†
J

(
∂F

∂ϕ

)
(103)

where

(J−1)ij =
∂2D(ϕ,ϕ∗)
∂ϕi∂ϕj∗

, (104)

and F,D are the functions appearing in the supersymmetric linear sigma-model. In prin-

ciple, they are computable from the dynamics of the original preon theory. Thus, if J is

nonsingular,

M = {ϕ : ∂ϕF = 0} (105)

for some analytic function F. This implies that M is invariant under the larger Lie group

G whose Lie algebra is the complexification of the Lie algebra of G

£(G) = £(G)⊗ C

37 There are other ways to get massless fermions coupled to nonlinear fields, but we will not

consider them here.
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Roughly speaking, if G consists locally of elements exp(i~π · ~T ), then we get G by letting ~π

become complex. For example, U(1) = C∗, the nonzero complex numbers, while U(n) =

GL(n,C). These examples illustrate the important fact that the complexifications of

compact groups are noncompact.

Thus in supersymmetry M always contains at least G/H ′, where H ′ = stabG

〈
ϕ
〉
.

Clearly H ′ contains H, although as we will see it can be much larger, depending on the

nature of Φ. In any case, just as in QCD we must add the assumption that the effective

potential V (ϕ,ϕ∗) has no flat directions other than those required by symmetry, since

presumably nonperturbative quantum effects will give masses to every unprotected mode.

Thus M in fact equals G/H ′ and the Hessian ∂2F/∂ϕi∂ϕj on M is nondegenerate in all

directions other than those generated by G (i.e. F is a “holomorphic equivariant Morse

function.”)

There is an additional subtlety here. To conclude that M = G/H ′ we must assume

(as do most authors [[33]] [[34]] [[32]] [[35]] [[36]] [[37]]) that G acts transitively on M. This

can happen if the strong dynamics chooses either F or D so as to eliminate fixed points of

G in ϕ-space. (The origin is such a point if G acts linearly.) It should be borne in mind

that this is a dynamical question which can radically affect the topology we will discuss.

Thus, two important features about effective supersymmetric models stand out. First,

it is not enough to specify the unbroken symmetry group H ⊆ G of the theory since H ′

need not be the complexification of H. One must instead assume a particular vev
〈
ϕ
〉

and find the stability group explicitly. Second, some homogeneous spaces G/H ′ cannot be

realized for any choice of
〈
ϕ
〉
. In particular, if G/H is a symmetric space then Lerche [[36]]

has shown that H ′ = H, so that G/H ′ has real dimension twice that of G/H, a situation

he refers to as “full doubling.”

In the remainder of this section we will examine in detail three sigma models which

have appeared in the literature and a fourth of our own. Two of these will prove to be

anomalous, and hence untenable (as they stand) as the low-energy limit of any well-defined

theory. The other two turn out to be anomaly free. We conjecture that all nonlinear models

which arise by setting to zero the nondegenerate potential of a well-defined, renormalizable

supersymmetric model are anomaly-free. We have not proved this statement. Indeed our

fourth example is designed as a counterexample to the stronger assertion that whenever

M is analytically imbedded in a linear space (not necessarily as a critical surface) then M

is anomaly-free.
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As a first example, [[38]] consider the symmetry breakdown

U(p+ q) → U(p)× U(q). (106)

Since Gp,q is itself a Kähler manifold it is possible that the low-energy theory exhibits no

doubling at all. Then the considerations of sect. 4 show that this leads to an ill-defined

theory. Thus the no-doubling theory cannot be realized as the low-energy effective theory

of some preon model. Actually, since Gp,q is a symmetric space, the result of Lerche gives

an independent reason for believing that the no-doubling scenario is impossible.

The second example is the fully doubled G24 model, which has been proposed in

the literature as being phenomenologically interesting [[34]] . We will now show that this

model has no anomaly. More generally, we will show that whenever the sigma-model is

fully doubled there is no anomaly. Heuristically, the fermions tangent to G/H are nonchiral

when restricted to G/H.

In appendix D we show that if G is compact then the inclusion of G/H into G/H has

a homotopy inverse. That is, there is a map R : G/H → G/H such that i◦R and R ◦ i are
homotopic to the identity, where i : gH 7→ gH is the inclusion. This result is reasonable,

since we can think of deforming G/H along its noncompact directions until it fits onto

G/H, just as we can shrink C∗ onto S1. Now define the pullbacks of bundles R∗ and i∗.

In particular i∗ just takes bundles on the larger space and restricts them to the subspace.

Hence i∗R∗ = 1 and R∗i∗ = 1, and the topology of TcG/H is determined by its restriction

to G/H:

R∗
(
TcG/H|G/H

)
= R∗i∗(TcG/H) ∼= TcG/H. (107)

So, if φ̂ : S2 × S4 → G/H is a family of configurations, then

ϕ̂∗chTcG/H = (R ◦ φ̂)∗ch(TcG/H)|G/H . (108)

Along G/H the fermions are nonchiral,

TcG/H|G/H = TRG/H ⊗ C (109)

where TRG/H denotes the real tangent bundle to G/H considered as a real manifold. If E

is a real vector bundle then E⊗C is a complex vector bundle with real transition functions

so [[11]] , [[12]]

chi(E ⊗ C) = chi(E ⊗ C) = (−1)ichi(E ⊗ C) (110)
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(See the remark following eq. ((79)).) Therefore ch3(TRG/H ⊗ C) = 0 and four-

dimensional supersymmetric sigma models with full doubling have no topological anomaly.

For our third example we consider a model which is neither fully doubled nor fully

undoubled. This model has been proposed by Büchmuller et. al. as a preon theory

reproducing the weak interactions of quarks and leptons [[32]] .

Büchmuller et. al. consider a supersymmetric SU(2) hypercolor model with six dou-

blet chiral superfields χαp α = 1, . . . 6; p = 1, 2. The global symmetry is U(6). 38 These

authors further assume that the gauge-invariant superfield operator

Φαβ = ǫpqχ
α
pχ

β
q (111)

develops a vacuum expectation value, e.g.
〈
ϕ56
〉
6= 0 while the other

〈
ϕαβ

〉
= 0, so the

pattern of symmetry breaking is U(6) → SU(2)× U(4).

An effective theory for Φαβ will have a superpotential which is U(6) = GL(6, C)

invariant. The stability group H ′ of
〈
ϕ
〉
has a Lie algebra which can be represented by

complex 6x6 matrices of the form (
A 0
B C

)
(112)

where A is 4x4 while C is 2x2 and traceless. The low-energy theory has target space

D = GL(6, C)/H ′. (113)

To decide if this model has an anomaly we need to consider the geometry of D.

First, note that one can enlarge the above Lie algebra by dropping the condition

that C be traceless. This new Lie algebra generates a group K and GL(6, C)/K = G24

follows from considering the transitive action of GL(6, C) on G24. Since the Lie algebras

of H ′ and K differ by a single generator we learn that D can also be regarded as the total

space of a C∗-bundle over G24. We will use this interpretation of D below. Furthermore,

given a principal C∗-bundle like Π : D → G24, we can introduce yet another space D′ by

contracting each C∗ fiber of D to a circle. Then D′ → G24 is a principal U(1)-bundle.

38 The U(1) subgroup of U(6) does not generate a symmetry in the quantum theory since it is

anomalous. However, the theory also has an unbroken U(1)R symmetry and a linear combination

of U(1) and U(1)R is nonanomalous. Taking proper account of these U(1) factors gives a low

energy manifold which is the same as the one we consider.
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The geometry of D is most easily understood by considering the exterior algebra on

C6.[[39]] In particular, in ∧2(C6) ∼= C15 consider the space of nonzero “decomposable”

two-forms, i.e. those which can be written as products of single vectors

~v ∧ ~w ~v, ~w ∈ C6 (114)

GL(6,C) acts transitively on this space and the stability group of a point is H ′. Hence the

space is precisely D. In fact the map

Π : C15 − {0} → CP 14, (115)

which projects a vector to its equivalence class under identification by a complex factor,

projects D to G24. Since D is holomorphically imbedded in the Kähler manifold C15−{0},
it is Kähler. [[39]] [[40]]

Considering Π : D → G24 as a C∗-bundle, tangent vectors to the total space D can

lie along the fiber direction or along the base direction, that is

TD = Π∗S ⊕Π∗TG24 (116)

Here S refers to the restriction to G24 of the canonical line bundle γ1 → CP 14. The bundles

S and D are both associated to the circle bundle D′ mentioned above; explicitly

D′ = U(6)/SU(2)× U(4) (117)

One can show [[39]] that ch1(D′) is the same as ch1(γ2).

We are now in a position to demonstrate that the D-sigma-model has no anomaly.

Suppose these exists an anomalous family

φ̂ : S2 × S4 → D (118)

Consider the projected map ϕ̃ = Π ◦ φ̂ : S2 × S4 → G24. Then φ̂ is a lift of ϕ̃. See fig. 7.1.

Since

φ̂∗ch3TD = φ̂∗(Π∗S ⊕Π∗TG24) = ϕ̃∗ch3TG24, (119)

we have that φ̂ is anomalous iff ϕ̃ is. On the other hand, the cohomology of G24 is generated

by the Chern classes ch1(γ2) and ch2(γ2).[[11]]That is, if φ̂ is anomalous then

ϕ̃∗ch1(D′) = ch1(ϕ̃
∗D′) 6= 0 (120)
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so the circle bundle ϕ̃∗(D′) is twisted and does not admit a section. This is incompatible

with fig.7.1, for if ϕ̃ has a lift φ̂, then ϕ̃∗(D′) must have a section. (Recall that D retracts

to D′.) Thus, there is no anomalous map φ̂.

This example suggests a generalization which leads to an interesting family of anoma-

lous target spaces. Consider Dpq, the space of nonvanishing decomposable p-forms of

vectors in Cp+q. Then Dpq lies in Cζ − {0}, ζ =
(
p+q
p

)
and the map

Π : Cζ − {0} → CP ζ−1 (121)

projects Dpq to Gp,q. Thus Dpq is a C∗-bundle over Gp,q.

We will construct anomalous maps to Dpq using a classifying map ϕ̃ : S6 → Gp,q,

p, q ≥ 3, for the bundle B3 ⊕ Ip−3 considered at the end of section 4. Now ϕ̃∗(D′
pq) is

a U(1)-bundle over S6, but all such bundles are trivial, so ϕ̃ has a lift φ̂ : S6 → Dpq.
Composing φ̂ with a degree-one map from S2 × S4 to S6 gives an anomalous family39.

This last example raises the question of the existence of theories which predict a Dpq-
sigma-model at low energies. If such models exist then either naive decoupling, or the

assumed pattern of chiral symmetry breakdown, or the assumption of unbroken super-

symmetry must fail. Indeed, there exist explicit superpotentials for which the manifold

of supersymmetric vacua is an anomalous target space (a vector bundle over Dpq). These
potentials are degenerate: they have quadratically (but not quartically) flat directions not

associated with the vacuum manifold. Thus naive decoupling breaks down. We conjecture

that this is a general rule.

8. Conclusion

The topological interpretation of the anomaly is simple, even though the analysis

needed to back it up has been difficult. An anomalous theory is one in which we cannot

regard the fermionic effective action as an ordinary complex function on boson configu-

ration space because the Green functions have a true geometrical meaning different from

their naive one. We think this is the most illuminating way to think about the global

sigma model anomalies; the alternate approach of sect. 6, when available, is somewhat

artificial. On the other hand, the latter approach may be needed to resolve the issue of

local obstructions (see below).

39 This trick did not work for G24 because the latter is too simple: every 6-cycle in G24 is

cohomologous to a product of lower-dimensional ones.
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While the interpretation we have emphasized is similar to the topological interpreta-

tion of the gauge anomaly, the physical meaning is somewhat different. When the fermionic

bundle B over the target manifold is twisted, perturbative expansions around different

points of C (in particular, around different choices of vacua) lead to discrepancies which

have nontrivial physical consequences for the low-energy behavior of the theory. The addi-

tion of compensating WZ counterterms which are well-defined in the domain of validity of

perturbation expansions will alter these discrepancies but cannot eliminate them if the ob-

struction ν 6= 0. In other words, the local bosonic counterterm needed to untwist exp−Γf

cannot be smoothly extended even over the regions on which the fermion effective action

is smoothly defined. It is in this respect that our situation differs from analogous cases in-

volving the parity anomaly in odd-dimensional spacetimes [[41]]and the SU(2) anomaly in

four dimensions for a theory with an odd number of both quarks and leptons[[19]] In both

of these cases the bosonic counterterm is ill-defined only in those regions where exp(−ΓfA)

is ill-defined.

We have shown that the topological approach leads naturally to index theory, where

powerful results already exist. Part of the reason for their power lies in the “universal”

property of the Dirac operator: since its symbol always looks the same in any coordinate

system and for any connection and metric, the index depends solely on the topology of the

spaces involved. This is evident in eq. ((61)), which makes no reference to connections or

metrics. Thus it is possible and desirable to compute the anomaly without writing down

specific field configurations. We did this in sections 5 and 7, and for gauge theory in

appendix A.

The index is also easy to work with due to its simple algebraic properties. These arise

because Ind is a natural construction in K-theory, as we described.

We have seen that the anomaly for Grassmannian sigma models is almost identical

to that of nonabelian gauge theory. This analysis raised a problem: Is there a consistent

theory for the four-dimensional supersymmetric CPn model? We have noted that the

global obstruction measured by ν vanished for this model, but we have suggested, based

on the analogy to chiral U(1) gauge theories, that a more refined obstruction might show

that the CPn model is inconsistent.

Sigma models are of interest primarily as the low-energy approximations to strongly-

interacting gauge theories with certain assumed patterns of symmetry breakdown. By

ruling out some sigma models, then, we can rule out some symmetry-breaking patterns.

We did this for some preon models in sect. 7.
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The physical considerations of section seven suggested the mathematical conjecture

that all nonlinear models which arise by setting to zero the nondegenerate potential of a

well-defined, renormalizable, supersymmetric model are anomaly-free. The validity of this

conjecture is still an open question. Finally we note that we have by no means analyzed all

interesting supersymmetric sigma models. For example, some recently considered models

involve M = E6/Spin(10)×SO(2), E7/SU(5)×SU(3)×U(1), and E8/SO(10)×SU(3)×
U(1). We do not know whether these models are anomalous.
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T. Parker, J. Polchinski, D. Quillen, I. Singer, and C. Walter for many long and informative

discussions, and especially A. Manohar for a careful reading of the manuscript, in all its

many drafts. This work was partially supported by the NSF under contract PHY-82-15249,

by the Harvard Society of Fellows, and by an NSF graduate fellowship.

Appendix A: Anomalies in Gauge Theory

With the machinery developed in the text we can easily describe gauge anomalies [[4]]

. The gravitational case is only slightly more subtle [[26]] . What we must do is to find the

analogs of E±. A general reference for this section is [[10]] .

Consider the principal G-bundle P : A → C = A/G, where A = {connections on P},
and P is a principal bundle with gauge group G. Suppose for concreteness that G=SU(n)

n ≥ 3, X = S4, and that P is untwisted; that is, we work in the zero-instanton sector.

Then G = {Maps:X → G} and we can obtain a generator of π1(G) as follows (see also

appendix B): take a generator ĝ of π5(G). Compose this with the “pinch” map r(θ, x)

from S1 ×X to S5, which has degree one. Let gθ(x) = (ĝ ◦ r)(θ, x).
Now /DA in gauge theory is defined on A, not C. It takes sections of E+

A to those of

E−
A , where E

±
A = S± ⊗ B are completely independent of A. Here B is a bundle associated

to P by the matter representation ρ. Since we are assuming P is trivial, B is also trivial

and the action of G on B is g · (x, v) = (x, ρ(g(x))v).
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Before anything interesting can happen, then, we must pass to C. This is the

mathematical way of enforcing gauge-invariance. 40 Define a bundle B over C × X by

B = (A×B)/ ∼, where

(A, x, v) ∼ (Ag, x, ρ(g(x))v). (122)

Here v ∈ B|x, g ∈ G. In other words, B = A×G B. Just like ϕ̂∗B in the sigma model case,

we can define H±
A
= Γ(S± ⊗ BA) to obtain bundles H± over C. Unlike B, B need not be

trivial over C, since ((122)) mixes up the vector-bundle structure of B with the parameter

space.

The form of ((122)) is fixed by the requirement that /D descend to an operator /DA :

H+

A
→ H−

A
. Since /D is gauge covariant, ((122)) correctly eliminates the gauge redundancy

of B, and so we get an elliptic family on H±. We can now repeat the arguments of sections

2 and 4 to conclude that the gauge theory will be anomalous if this family has an index

which twists over any two-sphere Y ⊂ C.
We proceed as usual to construct a noncontractible Y as in section six [[29]] . Consider

the loop A
(gθ)
0 of gauge transforms of some initial A0. Extend this smoothly to a disk Ar,θ,

with Ar=1,θ = A
(gθ)
0 and project to get Y ⊂ C. The principal bundle P : P−1(Y ) → Y then

has transition function (homotopic to) gθ on the equator of S2, and H± have transition

functions ρ(gθ). The anomaly ((17)) is then just
∫
Y×X ch3(B).

For example, let ρ contain an n of left-handed fermions, i.e. ρ(g) is the SU(n) matrix

g. Then B has transition functions gθ(x), so it is the pullback r∗B3 of the Bott bundle B3

over S6 with transition function ĝ, and

anomaly =

∫

Y×X
ch3(r

∗B3) =

∫

Y×X
r∗ch3(B3) =

∫

S6

ch3(B3). (123)

In fact, B3 generates K(S6), so this expression equals one and the theory is anomalous.

Appendix B: The Symbol Bundle

In this appendix we define precisely the symbol bundle Σ( /D) used in sect. 3. This will

give the factorization ((55)).

We consider an elliptic differential operator D : E1 → E2 between two vector bundles

E1, E2 over a compact spacetime X. The symbol bundle is to be defined as an element

of K(T ∗X). Unfortunately, the definition of K-theory given in the text is not quite the

40 The appropriate construction has already been given in a somewhat more general form in

[[42]] .
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one appropriate for noncompact spaces like T ∗X. Consider for example the space RN , on

which all bundles are trivial. In order to get any interesting K-theory on this space (and

similarly to get a K-theory on T ∗X containing more information than that on X itself)

we must modify our definitions slightly to get “K-theory with compact supports.” This

modified definition turns out to be the one relevant to index theory.

If N is any locally compact space one might try to define

K(N)
?≡K(N+), (124)

where N+ denotes the one-point compactification of N , obtained by identifying all points

at infinity. This is almost right, but if N is in fact compact then N+ is the disjoint union

of N with the point at infinity and K(N+) = K(N) ⊕ Z, so ((124)) does not agree with

the definition of K(N) given in the text. This difficulty can be overcome by eliminating

the trivial information contained in K concerning the dimensions of the bundles involved.

That is, for compact Q we can define K̃(Q) as the kernel of dim : K(Q) → Z. Then

K(Q) = K̃(Q)⊕ Z, (125)

and for arbitrary N we can consistently define K(N) ≡ K̃(N+). 41

We are interested in the case N = T ∗X for compact spacetime X. In this case there is

a particularly convenient description of the one-point compactification. If X has a Rieman-

nian metric then cotangent vectors, i.e. elements of T ∗X, can be assigned a length. Let

B(T ∗X), the “unit ball bundle,” be the set of elements of length ≤ 1, and let S(T ∗X),

the unit sphere bundle, consist of elements of length exactly 1. If we identify the subset

S(T ∗X) of B(T ∗X) to a point we obtain (T ∗X)+, that is,

(T ∗X)+ = B(T ∗X)/S(T ∗X). (126)

For example, if X = S1, then T ∗X = S1 ×R and (T ∗X)+ is the pinched torus illustrated

in fig. B.1. Note that we do not compactify each fiber separately: (T ∗S1)+ = S1 6= T 2, the

torus.

The characterization of (T ∗X)+ given in ((126)) suggests an extension of K-theory we

will need called “relative K-theory.” If A is a closed subset of N such that N/A is compact

41 Note that now K(R2n) = K̃(S2n) = Z, by the Bott periodicity theorem.
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define the relative K group by K(N,A) ≡ K̃(N/A), the equivalence classes of bundle pairs

which have zero net dimension and are trivial on A. In particular,

K(T ∗X) = K(B(T ∗X), S(T ∗X)). (127)

We want to define Σ(D) as an element of K(T ∗X). The definition is slightly awkward

if we use ((127)) directly, and so we will use an equivalent description of K(N,A) which

takes as its basic objects the triples J · = [α : J1 → J2] , where J1, J2 are vector bundles

on N and α is a homomorphism between them. The “support” of a triple is the set of

points x where αx : J1|x → J2|x fails to be an isomorphism. We will consider triples which

have support in a compact subset of N − A. Two triples J · and (J ′)· are considered the

same if there exist isomorphisms ξ1, ξ2 such that the diagram

E1
α−→ E2yξ1

yξ2

E′
1

α′

−→ E′
2

commutes on A.

The set of isomorphism classes of such triples, L(N,A), is a semigroup under the

addition

J ·+ (J ′)· = (α : E1 → E2)⊕ (α′ : E′
1 → E′

2) ≡ (α⊕ α′ : E1 ⊕ E′
1 → E2 ⊕ E′

2),

but there is no obvious subtraction. Thus L(N,A) is much like Vect×Vect in sect. 3,

and as in that case we can pass to a group by dividing out an equivalence relation. In

this case the relation can be defined in terms of “elementary triples.” These are triples

R· with empty support, i.e. whose map is everywhere an isomorphism. Two triples J ·

and (J ′)· are then considered equivalent if they become isomorphic upon the addition of

elementary triples. That is, J · ∼ (J ′)· if there exist elementary triples R· and S· such
that J · ⊕ R· ∼= (J ′)· ⊕ S· . It turns out that L(N,A)/ ∼ has a subtraction and is in

fact isomorphic to K(N,A). [[25]] The correspondence between triples and elements of K

involves the “clutching construction,” which we must now describe.

Given a triple J · we will define an element of K̃(N/A). We begin by glueing together

two copies of N (call them N1, N2) along A to produce a space N1 ∪A N2. Note that

(N1 ∪A N2)/N2 = N/A. (128)
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Next we construct a bundle J̃ on N1 ∪A N2 from the triple J · by taking J1 over N1, J2

over N2 and identifying fibers over A using α, which is an isomorphism there since the

triple has compact support in N −A. See fig. B.2. Now in light of ((128)) we would like J̃

to be trivial and of dimension zero on N2. Since this is not necessarily the case, we finally

consider not J̃ but J̃ −J2 ∈ K̃(N1∪A N2). Since this is trivial on N2 it defines an element

of K̃(N/A) = K(N,A). This element corresponds to the original triple J ·.
We can now return to index theory by letting N = B(T ∗X), A = S(T ∗X). A general

elliptic operatorD : Γ(E1) → Γ(E2) has a symbol σ(D) as described in sect. 3. This symbol

together with its domain and range constitutes a triple Σ· ≡ [σ(D) : π∗(E1) → π∗(E2)] over

T ∗X as described above, since by definition an elliptic operator is one whose symbol has

support the zero section of T ∗X, a compact set not touching the sphere of unit radius. The

element of L(B(T ∗X), S(T ∗X))/ ∼ ∼= K(B(T ∗X), S(T ∗X)) = K(T ∗X) is the symbol

bundle Σ(D). 42

We are finally ready to demonstrate ((55)). The free Dirac operator has symbol

represented by the triple σ(/∂) : π∗S+ → π∗S− . The coupled Dirac operator /D : S+ ⊗
ϕ∗B → S− ⊗ ϕ∗B has symbol σ( /D) = σ(/∂)⊗ 1 and so defines the triple

σ(/∂)⊗ 1 : π∗(S+ ⊗ ϕ∗B) → π∗(S− ⊗ ϕ∗B).

Working through the clutching construction given above now shows that π∗ϕ∗B factors

out of Σ( /D), as stated in the text.

Appendix C: Anomalous Grassmannian Families

In this appendix we give the construction of the maps φ̂ and Φ̂ which we used in

section six for various target spaces Gp,q. We give two basic examples. The first example

is a family for the two-dimensional chiral CPn model with B = T (CPn), and n ≥ 2. Each

member of the family is an instanton, that is, the family lies in a nontrivial component

of C. The second example is an anomalous family for the four-dimensional Gp,q models

with p, q ≥ 4. The family lies in the zero instanton sector. The method used in the second

example can be used to construct two-dimensional Gp,q families when p, q ≥ 2. We have

not constructed φ̂ and Φ̂ for the four-dimensional G2n and G3n models with n ≥ 3, 2,

although these have a global obstruction.

42 Using the above clutching construction this definition of Σ(D) is equivalent to that given in

[[12]] [[43]] .
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(a) The Double Instanton

By representing CPn as equivalence classes of nonzero (n + 1)-tuples of complex

numbers: [(z1, . . . zn+1)] one can define the “double instanton” family ∆ : S2×S2 → CPn

by

∆(s, t) = [(1, s+ t, st, 0, . . . 0)]. (129)

Here s,t are complex numbers obtained from y, x by stereographic projection S2 → C

on each of the two S2 factors. Thus we have only given ∆ on the product of northern

hemisphere patches PN × PN , but eq. ((129)) can be extended consistently to the other

patches.

One can compute the twist of the family index

ν =

∫

S2×S2

∆∗ch2TCP
n = n+ 1 (130)

and the instanton number

k =

∫

S2

∆∗
sch1TCP

n = n+ 1 (131)

for fixed s, where ∆s ≡ ∆(s, ·), using the following observations. The canonical line

bundle γ1 → CPn is associated to the principal U(1) fibration r : S2n+1 → CPn by

the fundamental representation. This allows one to compute ∆∗c1(γ1) since the natural

connection on S2n+1,

Θ =
1

2π

i

2
(~z · d~z∗ − ~z∗ · d~z) (132)

gives r∗c1 = dΘ. Here S2n+1 is considered as the set of complex (n+1)-tuples constrained

to satisfy ~z∗ · ~z = 1. It is sufficient to compute c1(γ1) because [[11]]

ch1(TCP
n) = −(n+ 1)c1

ch2(TCP
n) =

n+ 1

2
c21

After some computation one then finds ν = (n+ 1), while the generalization

∆ℓ1ℓ2(s, t) = [(1, sℓ1 + tℓ2 , sℓ1tℓ2 , 0, . . . 0)] (133)

has ν = (n+ 1)ℓ1ℓ2 and instanton number

k =

∫

S2

(
∆ℓ1ℓ2
s

)∗
ch1TCP

n = (n+ 1)ℓ2. (134)
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(These “ring homomorphism” properties are a consequence of the external product con-

struction of section four.)

If we consider the first factor of S2 in the domain of ∆ as the parameter two-sphere

Y, then one can show that fixing Landau gauge

∂µ

(
i

2
~z ∗ ·

↔
∂ µ~z

)
= 0,

which eliminates all but constant gauge transformations, defines a Hopf bundle P̃ ⊂
R−1(Y ) ⊂ A2

1n. This is the bundle described in section six since the U(1) subgroup

of G2
1 which generates π1(G2

1) is the group of constant gauge transformations.

If one replaces B = TCPn by B = γ1, the zero-modes of /Dy : E+
y → E−

y can be readily

found for each y ∈ Y = S2. One finds that /Dy always has exactly one zero-mode, and that

the line in the Hilbert space H+
y spanned by this zero-mode fits into a one-dimensional

subbundle of the Hilbert bundle H+. In this case the family index just measures the

twist of this line bundle. For B = γ1 the twist is one and the “zero-mode-bundle” H+
0 is

isomorphic to the associated Hopf bundle B1 → S2.

(b)The Group-loop Family

We will construct a family L : S2 ×S4 → Gp,q, p, q ≥ 4, by first constructing a family

Φ̂ : S3 × S4 → Vpq. Recall that the principal U(p) fibration r : Vpq → Gp,q induces a Gp-
fibration R : Apq → Cpq where Apq = {Maps : S4 → Vpq} and Gp = {Maps : S4 → U(p)}.
We will use this fibration to construct L from Φ̂ realizing the diagram ((102)) with φ̂ = L.

We begin with a representative of the generator of π1(Gp) for p ≥ 4. The nontrivial

generator of π5((U(4)) can be represented in terms of five antihermitian γ-matrices γi,

i = 1, . . . 5 as

~ξ 7→ ξ0 +
5∑

i=1

ξiγi (135)

where ~ξ is a unit vector in R6. [[44]] We may compose eq.((135)) with a degree two map

S1 × S4 → S5 given by (eiψ, ~ρ) 7→ (cosψ, sinψ~ρ) (here ~ρ is a unit vector in R5) to get

(eiψ, ~ρ) 7→ e−iψP+ + eiψP− (136)

where P± = 1
2 (1± iρ · γ) are projection operators: P 2

± = P±, P±P∓ = 0. However, we can

write

(e−iψP+ + eiψP−) = (e−iψP+ + P−)(P+ + eiψP−). (137)
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Each of the two factors on the rhs of ((137)) must wind the same way since they are

mapped into one another by the orientation-preserving involution (eiψ, ~ρ) → (e−iψ,−~ρ).
We conclude that the generator of π1(Gp) is represented by (eiψ, ~ρ) → P+ + eiψP−.

43 In

fact, the group-loop is a U(1) subgroup of Gp since

(P+ + eiψP−)(P+ + eiψ
′

P−) = P+ + ei(ψ+ψ
′)P−.

This will be useful below.

We are now in a position to write an interesting family Φ̂ : S3×S4 → Vpq for p = q = 4.

One can trivially embed this into spaces with larger p and q. Let A0 = (14×4, 04×4) and

B0 = (04×4, 14×4) be 4x8 matrices representing two standard elements in V44. (Recall that

Vpq can be regarded as the set of complex p × (p + q) matrices A satisfying AA† = 1p.)

Represent S3 as 2-dimensional SU(2) matrices q. These act on the “2-vector”

(
A0

B0

)
(138)

Then each component of

(P+ ⊗ 12×2 + P− ⊗ q)

(
A0

B0

)
(139)

defines an element in V44 for every ~ρ, q. That is, either component describes an interesting

map (with the two components wrapping oppositely). Let Φ̂ be the upper component

obtained by taking the “inner product” of the above 2-vector with the vector (1 0). If

we project Φ̂ with R defined above the parametrization of the resulting family by S3 is

partially redundant.

43 More precisely, a representative α of the fundamental generator of [S1 × S4, SU(N)]

can be deformed into a map from S5 to SU(N). Therefore [[44]] the integral w(α) =
1

240π2

∫
S1×S4 tr(α

−1dα)5, which is a homotopy invariant, is an integer. If we compose the map

((135)) with a degree one map r : S1 × S4 → S5 we obtain a map β : S1 × S4 → SU(N) with

w(β) = 1. For maps into Lie groups the composition of maps is homotopic to the pointwise

product of maps. For the pointwise product of two maps γ1,2 : S1 × S4 → SU(N), w is a homo-

morphism: w(γ1 · γ2) = w(γ1) + w(γ2). Therefore w(α) = 1 and if w(ζ) = 1 for some ζ then ζ

represents the fundamental generator. The map ((136)) has w = 2 so each of the factors in ((137))

must have w = 1. The fact that each factor maps into U(4) rather than SU(4) is irrelevant, again

by the homomorphism property.
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Indeed, we can consider S3 as the total space of a principal Hopf bundle P̃ ⊆ Apq.

The U(1) action on SU(2), eiψ · q ≡ eiσ3ψq,44 is represented by the principal U(1) action

of the group-loop on Φ̂. That is, if q → eiσ3ψq, then Φ̂ is rotated to

(1 0)(P+ ⊗ 12×2 + P− ⊗ eiσ3ψq)

(
A0

B0

)
= (P+ + eiψP−)(1 0)(P+ ⊗ 1 + P− ⊗ q)

(
A0

B0

)

= (P+ + eiψP−)Φ̂
(140)

Thus L = R ◦ Φ̂ is unambiguously parametrized not only by P̃ in Apq but also by its

projection Y ⊂ Cpq, where Y is a copy of S2. The fibration R : P̃ → Y is the Hopf

fibration with a principal U(1) action given be the nontrivial loop in Gp.
We claim that L : S2 × S4 → G44 and its embeddings into higher Gp,q are anomalous

families in the zero instanton sector. Thus we need to compute,

ν =

∫

S2×S4

ch3L∗TGp,q = −(p+ q)

∫

S2×S4

ch3L∗γp (141)

and 45

k =

∫

S4

ch2L∗TGp,q = (q − p)

∫

S4

ch2L∗γp. (142)

As in the case of the double instanton we note that γp is associated to the principal

U(p) bundle r : Vpq → Gp,q by the defining representation and Vpq has a natural connection

Θ =
1

2
(dAA† −AdA†) (143)

which allows one to compute Ω = dΘ−Θ2 46 and hence r∗chkγp =
(
i
2π

)k 1
k! trΩ

k.

A little computation shows that Φ̂∗trΩ2 = 0 so that L is in the zero instanton sector

and,

Φ̂∗trΩ3 = − 9

64
sin4

θ

2
(sinθdθdφ)tr(γ · dρ)4γ · ρ (144)

so that for L, and B = T (CPn), the family index is ν = (p+ q).

An explicit solution of the zero modes of the Dirac operator would show that for at

least one point y on Y = S2 the lowest eigenvalue λ1(y) of /D†
y /Dy drops to zero (fig. 2.2),

44 Note this is a left action. We do this since for our representation of the Stiefel manifold

r : Vpq → Gp,q projects by a left U(p) action.
45 For G44 eqn. (142) is trivially zero. However this is not true for arbitrary Gp,q, or for bundles

other than TcGp,q.
46 The minus sign is a consequence of the left U(p) action.
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and that around this point the eigenmodes u1 and v1 have a relative twist, as described in

section two.

Appendix C:The Homotopy Type of G/H

In this appendix we prove that G/H has the same homotopy type as G/H, where G

is a compact Lie group and H is a subgroup.

We need the Cartan decomposition [[45]] which in this case is

£(G) = £(G)⊕ i£(G) (145)

If G is a compact Lie group there is a diffeomorphism

£(G)×G −→ G (146)

with Exp(i£(G)) ·G = G.

Lemma 1: G/H deformation retracts to G/H.

Proof: Define maps

G/H
r⇀↽
i1
G/H (147)

by

i1(gH) = gH,

r(gH) = gH
(148)

where in ((148)) g has the unique decomposition g = Exp(p)g. We also see that r ◦ i1 = 1.

and i1 ◦ r ∼= 1 because we can define the homotopy

F (gH, t) = Exp(tp) · gH (149)

as was to be shown.

Now we have a fiber bundle

π : G/H → G/H (150)

where π(gH) = gH with fiber H/H and structure group H. Note that the fiber is con-

tractible by the Cartan decomposition

H/H
diff≈Exp(i£(H)). (151)
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Since G/H is triangulable, and hence a CW complex, and H/H is contractible, there

is a section

G/H
π⇀↽s G/H. (152)

Lemma 2: s ◦ π ∼= 1.

Proof: We use induction on the dimension of the cell complex.

On the zero cells {v} we have a diffeomorphism

G/H|{v}
ϕ−→{v} ×H/H. (153)

Since H/H is contractible we can choose F : H/H × I → H/H with

F (hH, 0) = hH,

F (hH, 1) = π2(ϕ(s(v)))
(154)

where π2 is the projection π2 : {v} ×H/H → H/H. Define

F (gH, t) = ϕ−1(v, F (π2 ◦ ϕ(gH), t)) (155)

This defines the homotopy on the 0-cells.

Assume we have a continuous map

F : G/H|Kn−1 × I → G/H (156)

with
F (gH, 0) = gH,

F (gH, 1) = s(gH) = sπ(gH)
(157)

where Kn−1 is the (n− 1)-skeleton, which satisfies the further property that if π(gH) lies

in some cell E, then the curve π(F (gH, t)) remains in E. (We will use this condition.)

Let E be a closed n-cell, then

E ∩Kn−1 = ∂E = S ≈ Sn−1 (158)

is a union of closed (n− 1)-cells. Choose a diffeomorphism

G/H|E
ϕ−→E ×H/H (159)
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and define

F : (S ×H/H × I) ∪ (E ×H/H × {0}) ∪ E ×H/H × {1}) → E ×H/H (160)

as follows. For 0 < t < 1, x ∈ S,

F (x, hH, t) = ϕF (ϕ−1(x, hH), t) (161)

Since π(ϕ−1(x, hH)) is in some (n − 1)-cell, F (ϕ−1(x, hH), t) remains in that cell so the

composition with ϕ is defined. Also define for e ∈ E

F (e, hH, 0) = (e, hH),

F (e, hH, 1) = (e, π2 ◦ ϕ ◦ s ◦ π ◦ ϕ−1(e, hH))
(162)

This gives a map

F : ∂Dn+1 ×H/H → E ×H/H (163)

for some (n+ 1)-cell D. Since E ×H/H is contractible there is an extension

F̂ : Dn+1 ×H/H → E ×H/H (164)

and defining (take Dn+1 = E × I)

F̂ = ϕ−1F̂ ϕ (165)

on G/H|E × I we can extend F in this way on all the n-cells satisfying the appropriate

conditions. Thus there is a homotopy of s ◦ π with 1.

Consider the maps in fig.D.1. We have i(gH) = gH and R = r◦s. Note that i = π◦i1.
Thus R ◦ i : G/H → G/H satisfies R ◦ i = r ◦ s◦π ◦ i1 ∼= r ◦ i1 = 1 and i◦R : G/H → G/H

satisfies i ◦R = π ◦ i1 ◦ r ◦ s ∼= π ◦ s = 1. Note that R is not a deformation retract, but it

is a homotopy equivalence, which is sufficient for our purposes.

Figure Captions

Fig. 2.1: A convenient choice of regulator. λi refer to the eigenvalues of /D†
y /Dy.

Fig. 2.2: Eigenvalue behavior which can lead to ν 6= 0.

Fig. 4.1: Projections used in the text.

Fig. 7.1: Some maps used in the text.

Fig. B.1: If X is a circle T ∗X is an infinite cylinder, B(T ∗X) is a finite cylinder, and

S(T ∗X) is the rim of this cylinder. Thus B(T ∗X)/S(T ∗X) is the pinched torus shown.

Fig. B.2: The clutching construction.
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