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The libron wRve spectruIIl at zelo wRve vector fox' solid h/drogen in the Pa3 Rnd C~~
structures is calculated at zexo temperature. Interactions other than the electrostatic
interactions between moleculax' quadrupole moments are treated perturbatively. Com-
pRx'lson of our numerlcR1 and anal/tie results for libron flequencles Rnd BamRn intensities
with the obsexved Baman spectxum gives strong evidence for the Pa3 structuxe. The
scaling x'61Rtlon between the fx'equencies of the clR88lcR1 Rnd quRntuIQ-librRtlonRl 8+stems
is found to hold for the Pa3 but not for the C~~ structure. The effects of zero-point
librations and libron-libron interactions are studied to lowest order in 1/g, where z is the
number of nearest neighbors. Although the static effects are quite small, the shifts in the
libron frequencies due to these interactions are of order 15%.

I. INTRODUCTION

The pxoblem of understanding the cooperative
nature of the orientational state of solid hydrogen«
has been the object of a number of studies„both
experimental Rnd theol eticRl. In spite of this
work, although many aspects of the ordering of the
molecular axes are now well understood, others
remain unexplained. &'or instance, it is quite clear
thRt the elementaryexcitations are libron wRves, '
and yet the details of the crystal structure of the
ordered state, e. g. , the size of the "magnetic"
unit cell, remain unclear. In this regard, thermo-
dynarnic measurements are not very infox mative
because the bulk properties of solid hydx'ogen do
not depend sensitively on the precise way in which
the ordering of molecular axes takes place. To
resolve this structural ambiguity, resonant mea-
surements such Rs optical experiments or neutron
or x-ray spectroscopy are more helpful.

For instance, Hardy et aE. have shown that the
undistorted Pa3 structure is not entirely consistent
with the RRmRQ spectx'um of solid H3 Rnd 03 Bt
nearly 100% concentration of (J'= 1) molecules.
Nor were they able to find R distortion which would
explain all their data. More recently, James has
suggested that th616 may be R temperature rRnge
just below the ordering temperature where a dif-
ferent structure is thermodynamically stable, Ac-
cording to Hardy, «0 the symmetxy of space group
C (see tlote Rdded 111 pl'oof ill Ref. 27) pl'oposed
by James is consistent with the optically observed
(J = 0) —(8= 2) rotational excitations. Accordingly,
it seemed impox tant to calculated the libron spec-
trum Rnd associated Haman intensities for this
structure. If, as is usual, one assumes that the
electrostatic quadrupole-quadrupole (EQQ) inter-
actions dominate the orientational. inter actions,
then the resulting l.ibron modes do not at Rll agree
with the observed Baman spectrum. Allowing for
the possibility of more general interactions does

enable one to fit the frequencies of the Baman
spectrum, although even then, the intensities do
not reproduce the observed spectxum very well.
Thus, in order to exyl, ain the Haman spectrum it
is necessary to postulate (i) very-large non-EQQ
illteI Rctlolls Rnd (ll) stluctlll Rl distol tiolls sllffl-
ciently large as to alter considerably the intensity
x'atlos. 81nce these poss1bllltles when taken to-
gethex', seem improbable, and since the neutron-
diffraction data' are consistent with the Pa3 struc-
ture, we conclude that the C structure is not
actually realized.

%'6 should also point out that lately other indica-
tions have become apparent which disfavor the
C~~~ stlucture. For 1nstRnce, JRIDes 8 original
proposal was based on considering nearest-neigh-
bor interactions only. More recently, however,
he finds' that inclusion of further-neighbor intex'-
actions renders the C „structure thermodynami-
cally unstable relative to the I'a3 structure. This

ency 18 Rlso RppR16nt from oux' libx'on-wave
cRlculRt1ons. Second, more detailed calculations
of Hardy et cl. «3 show that although the symmetry
of the C „structure is consistent with the ob-
sex'ved four-11ne spectx'um col x'espondlng to the
(J = 0)-(8 =2) transitions, the actual absorption
spectrum does not agree qualitatively with theox'y,
On the basis of these two calculations, together
with those presented here, it is quite clear that the
structuxe of solid hydrogen is not of the type C

A secondary objective of this paper was to fox-
mulate the problem of libron-libron interactions in
a systematic way. This can be done in close anal-
ogy with the px'oblern of interactions between spin
waves in an ant1ferrornagnet. "" Although the re-
sults of the various calculations ' '4' of zero-
point effects on the thex"modynamic properties do
not agree with one another exactly, they do indicate
that these effects Rre small. One might expect,
similaxly, the effect of zero-point motion on the
excitation spectrum to be small. %6 have studied
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these effects using the 1/z expansion and find sur-
prisingly large, e. g. , of order 15%, dynamical
corrections to the average libron energy due to
zero-point motion. In view of these results, we
are pursuing more detailed calculations to obtain
the energy shifts of the individual libron energies
due to zero-point effects. Furthermore, the pres-
ence of strong libron-libron interactions undoubted-

ly plays a crucial role in the broadening observed
in the highest-energy libron mode. 7

Briefly, this paper is organized as follows. In
Sec. II, we study the equations of motion for non-
iQtex'RctlDg llbrons. %6 show thRt the dynRIQlcR1

matrix cRQ be x'educed to dimensionality 28 uDdex'

rather general assumptions about the lattice struc-
ture, where s is the number of sublathces. Our
results for the Pa3 structure agx'ee with those of
previous authors. ' In Sec. III, we derive for-
mulas for the intensities of the Raman scattering
spectrum, based on the polarizability approxima-
tion. ' In See. IV, we investigate the effect of
zero-point motion on both the thermodynamic prop-
erties and the libron energy gap. The effect on the
thermodynamic properties i - small. In contrast,
the effect on the libron energy spectrum is quite
significant. In Sec. V, we discuss our numerical
and analytic results for the libron frequencies and

Raman intensities for both the C and Pa3 struc-
tures. As mentioned above, our results strongly
favor the PQ3 structure In Appendix A we clarify
the relationship between the libron spectrum of
quantum and classical systems. Although the
frequencies are proportional for structures of high
symmentry such as the Pa3, the relationship is
not the usual equivalence bet@seen the problem of
small osciQations in the classical Rnd quantum
limits. Finally, the interaction coefficients y~&

defined in Eq. (9), below, are tabulated in Appen-
dix B assuming nearest-neighbor EQQ interactions
only.

II. HAMILTONIAN AND EQUATION OF MOTION FOR
LIBRONS

A. Discussion of Model

In this section, we shall give a rather general
discussion or the equation of motion for libron
waves in solid hydrogen. Although it is usually
supposed thRt the doIQlnRnt 1QterRctions between
molecules in the solid are those between the elee-
trie quadrupole moments of the molecules, ~o we
shall consider the most general pairwise interac-
tions consistent with the symmetry of the diatomic
molecules and the lattice structure of the solid.
Since the energy gap between successive rotational
kinetic- ener gy levels dominates the orientational
interactions in the solid, the rotational angular
momentum J'; of the molecule at the lattice site

8; is a good quantum number, and at low temper-
atures J = 0 or J& = 1 depending on the nuclear spin
of the molecule. Accordingly, in the expansion of
the static intermolecular potential in spherical
harmonics 1'I",(tAAA), where FI, is the spherical har-
monic in the phase convention of Rose, 3' and ~,
dello'tes 'tile pR11' ( e'tA, t/t I/) of spllel'icRl coordinates
of the orientation of the ith molecule relative to a
quantization axis parallel to R;;, where we write
R;, -=R; —R, , and it is only necessary to consider
terms involving Fa or Fo. The latter appear in
"single-molecule" terms which have been shown

by Nakamul R to VRDlsh 1D R 1igid cubic ox' hcp 1Rt-
tice. Thus, without loss of generality, we may
consider the interaction between moleeules to be
effectively of the form

Xtt = 47t«(If t/) ~PA/AAAt y2 (A3A) F2 (47/)

where the a& are constants obeying the relation
AAAt

= AI*AA Rnd «(If A/) is a function of the intermolec-
ulRx' sepRrRtlon, It is convenleDt to rewrite Eq
(1) in the form suggested by Van Kranendonkl2:

x,, = Z L' «,(Jt, ,)n, c(mr; I, ~)
Z =O, as4

y 1/At (+~ ) y-At(~ ) (2)

where C(jljlj3; m„mI) is a Clebsch-Gordan coef-
ficient, "

«~(RA/) measures the strength of the
coupling into a resultant total angular momentum

J, and the constants II+ are tI4=(VO)I/, tta
(7 ) I/2 Rnd + (5)l/3

Aeeurate theoretical predictions of the constants
cz and co have not been perfox'med up to now, al--

though a rough idea of theix' magnitude can be ob-
tained from the work of Margneau~a and deBoer. 24

Since there have been no experimental determina-
tions of either &0 or ea to confirm these estimates,
we shall consider these parameters as being ad-
justable. As pointed out by Nakamura, however,
they are probably dominated by the EQQ interac-
tions which contribute exclusively to «4(R). Ne-

glecting other contributions to «4(A), we may write

«,(ft) = (j(,rg(~, /ft)',

where Ro is the nearest-neighbor distance and I"0

is the EQQ coupling constant

r, = (6e'q'/25m, '),
where eQ is the molecular quadrupole moment.
The values of I"0 given in Table I agree fairly well
with the experimental determinations of I'0 as is
discussed in Refs. 6 and 25. Of coux'se, there are
several many-body effects which modify the EQQ
interactions when an isolated pair of molecules is
placed 111 tile solid. Tile pl'lllc1ple effec'ts Rl'e (1)

static phonon renormalization, (ii) dynamic phonon

renormalization, and (iii) screening effects.
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TABLE I. Values of the interaction coefficients.

Equation Parameter D2

(4) p R

(4) I'o
(5)
(5) 4ph

(5) 4o
(68d)
(71)

Deduced
(71)

Calculated
0. 698 cm
1.005'K
0. 96
0.75-0.80
P. 72-0.77
0. 814

~ 0
from the Raman spectrum.

0.69

0. 839 cm
l. 206 'K
0. 95

-0.80
-0.76

0. 814
0.63

For a detailed discussion of the values of I'o, see
Ref. 25

"See Ref. 25.
'This estimate is obtained by combining the dynamic

phonon renormalization of 1" in Ref. 25 with the static
renormalization in Ref. 26. The latter is itself the
result of bvo types of effects, viz. , short- and long-
range correlations. For D2 it is clear that long-range
col 1elatlons al e le ss important than fox' H2.

These are taken into aeeount by the renormaliza-
tion factor $o in Eq. (2), and we may write

where D'~ '(lt;) is a rotation matrix, where

X,. =—(n, , p„y,) is the triad of Euler angles spec-
ifying the orientation of the local equilibrium axes
with respect to the arbitrarily fixed quantization
axes introduced in Eq. (6), and (u,. —= (8;, q; ) de-
scribes the orientation of the ith molecule relative
to its local equilibrium axes. With these substitu-
tions the Hamiltonian can now be written in terms
of spherical harmonics referred to the local axes
as

K=+~ &~ y;; 0;0;
f'j mm'

y;, =4IIA A, g e, (A, ,)o, [11/(2g+I)]«'
J'

&&K C(22 J;n, n ') D„' '
(y, )+

nn'

&&D&I& ( )g y n+n' (n )g

and following the notation of Raich and Etters4:

(1Oa)

(lot )

(loc)

where (» pertains to the phonon effects and („,
to the screening corrections. The best theoretical
values of ' these constants are listed in Table I.
Since the effects of libron-phonon interactions are
perturbative and can be handled in a separate cal-
culation, we shall neglect them and treat solid hy-
drogen as a rigid lattice.

B. Libron Hamiltonian

Le't us wl'1'te Eq. (2) i11 'teI'Ills of a quantization
axis arbitrarily fixed with respect to the crystal
axes:

X, , =411 ~&
&" e,(a,, ) o., [4v/(2@+ 1)]"'
mm'

&&c(22m; m, m') r, (n, )
x r,"(n,}I ","'

(n, ,)*.
Hel e Q& and 0&& specify~ 1 espectivelyi the orlenta
tion of the axis of the ith molecule and that of the
intermolecular axis R;,-, both relative to the ar-
bitrarily fixed quantization axis.

Following Raich and Etters, we transform to a
coordinate system in which the z axis for each
molecule lies along its equilibrium orientation.
This direction coincides with the direction of low-
est energy for the ith molecule in the classical
ground state. Thus, the state when all the mole-
cules have J,= 0 is analogous to the Neel state of

. antiferromagnets. Vfe have

0,. =-z(3cos 8; —1),

0';~ =- 5 cos6); sin6}; e"~i,

Of'=- ($) sm'8, .e"'"

(1la)

(I lb)

(1lc)

The present discussion can be applied to any sys-
tem of diatomic molecules governed by a Ha, mil-
tonian of the form Eq. (2). In particular, for
molecules other than hydrogen one has 8 «A~o,
where 6+0 is a typical libron energy and 8 is the
rotational constant [rotational kinetic energy
=BJ (J+1)], so that J, is no longer a good quantum
number. For such a system in the quantum low-
temperature regime (411 T «hvo) the libron fre-
quencies coincide with the classical frequencies of
small oscillation. Accordingly, in Appendix A we
derive the equations of motion for librons in a
classlca1. system' and clarify the relation between
the quantum-mechanical systems where J; is a
good quantum number and classical systems (i. e. ,
those where 7; is not a good quantum number).
Contrary to the general problem of small oscilla-
tions, these two systems are only equivalent for
lattice structures of sufficiently high symmetry.
In particular, we find that the scahng relation be-
tween the frequencies of the two systems hold for
the Pa3 structure but not for the C structure.

%le now return to the case when J; is a good
quantum number, as applies to solid hydrogen. At
first we shall treat the case when all molecules
have J = 1. Within the (8 = 1) mamfold it is con-



4 = 0 LIBRON SPECTRUM OF SOLID HYDROGEN

venient to use the operator equivalents introduced
by Nakamura, ~0

0, =3(Zg, ) —2,

0,' =J„.J„+J„J„,
o", = (~„)',

(12a)

(12b)

(12c)

where J„=J„+iJ„. %e wish to describe libron
excitations assuming there are few such excitations
present. Experimentally, ' it is known that even
at the tr3nsition temperature this assumption is a
good one. Consequently, we expand about J„=0.
Previous authors ' have generated such an expan-
sion in various ways. For instance, Raich and

Etters introduce operators to simplify the Hamil-
tonian, but these operators are not exactly boson
operators, so there are kinematic complications.
In this connection it is interesting to note that for
magnetic systems the correct behavior at low den-

sity of excitations out of the ground state is most
readily recovered using diagrammatic methods.
For such calculations the simplest formalism uti-
lizing pure bosons is not the Holstein-Primakoff'
transformation, but rather the Dyson-Maleev
transformation. Although the latter leads to a for-
mally non-Hermitian Hamiltonian, this circum-
stance creates no difficulties. Accordingly, in or-
der to treat libron-libron interactions, we shall
use this type of formalism. Thus, we take

Oq = 3a; a) + 3bq 5] —2,

O,'= /~ [a,'- (1-a,'a, —b,'b, )b, ],
0&'= &2[(l —a&~a, —b~~b;)a, —b; ],
0] =2a] b],2=

0, =2a;5;.

(13a)

(13b)

(13c)

(13d)

(13e)

In terms of these operators the Hamiltonian be-
comes

6

SC=EO+Xo+ ~
3

(14)

Note that the linear term in the boson operators
vanishes as a result of the assumed stability of the

Hartree ground state. The terms V, and V4 are

where Eo is the Hartree ground-state energy, V„ is
the perturbative term involving n boson operators,
and Xo is the unperturbed Hamiltonian quadratic
in the boson operators:

Ko= —12~7 yo~&(a&~a&+b~ b&) +2K [y~q(a&~-b, )
ij fj

(a,"- b, )+(y,",)*(a,—b,')(a, bJ)-
+y~& '(a&' —b~)(a& —b J )+ (y~& ')*(a, —b])

x(a& b~)] —8+~ [y,&a; b, + (y~&)*a, b, ]. (15)

given in Sec. IV where we consider the effects of
libron-libron interactions. Since V, and Ve lead
to higher-order effects, we shall not consider them
explicitly. The analysis of the excitation spectrum
and thermodynamic properties can now be carried
out in the usual way for a low-density Bose gas.
In so doing, however, one tacitly assumes that the
replacement of angular momentum operators by
boson operators does not lead to significant errors
due to the introduction of unphysical boson states.
It is generally agreed that this assumption is a
good one for the Heisenberg model of magnetic
systems, ' and we would expect it to be even better
here, because of the presence of a large energy
gap in the excitation spectrum.

The system we are considering is quite analogous
to an antiferromagnet in that the zero-point devia-
tions from the Hartree (Neel) state are small. Ac-
cordingly, the logical expansion parameter is the
density of such excitations p(T), and we expect to
express quantities as series in the two parameters"
p(0) and o(T) —p(0). Here, the thermal density of
deviations p(T) —p(0) is of order exp(- 6/kz T),
where ~ is the average libron-energy gap and the
zero-point density of deviations p(0) is of order
1/z, where z is the number of nearest neighbors,
or better, the cube of the range of the interaction.
The appearance of 1/z as an expansion parameter
is an indication of the fact that the molecular field
becomes exact in the limit z -~. The 1/z expan-
sion for an antiferromagnet is described in Ref.
15 and is considered in more detail for the present
problem in Sec. IV. In the remainder of this sec-
tion we shall confine the discussion to the treat-
ment of the quadratic Hamiltonian Ko.

C. Equation of Motion for Librons

The first step in the calculation is to determine
the approximate normal modes from the quadratic
Hamiltonian Xo. In this connection we note that
exact diagonalization of Ko is virtually equivalent
to the linearized equations of motion and, as is
discussed in Appendix A, the resulting frequencies
correspond (at least for the Pa3 structure) to the
classical frequencies of small oscillations. Note
that the additional approximation of keeping only
those terms which conserve the total number of ex-
citations [this "truncated" linear approximation
is obtained by neglecting the terms in I' in Eq.
(18), below] does not correspond to the classical
problem of small oscillation (unless one eliminates
displacements in certain "hard" directions). Thus
it is not the "linear" approximation in the usual
sense, e. g. , in the sense of the linear theory of
antiferromagnetic spin waves. There, keeping
only the number conserving terms in the boson
Hamiltonian leads to the dispersionless molecular-
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field spectxum. %'e shall carry out the linear
treatment here and shall evaluate approximately
the lowest- ordex pertux'bation- theory corrections
to the excitation spectruxn in Sec. IV. A complete
lowest-ox dex calculation should be quite accurate,
since corrections are of higher order in I/z.

In Eq. (15), it is convenient to introduce the foi-
low1ng FouI'1ex' tl Rnsfol ms:

(lea)

y.",' "(f}=y, (k) .
In tezms ot these Fourier transforms Eq. (15) be-

a(((k) =X ~~ a1((I I exp[—$k ' RI((I I ] q

j(8 )

(k) =E" Z by((I I exp[ I k ' RI(((1 ] » (1eb)
j&8 )

y.-,(f}=Z y-„., „„~p(- f [R„., -R„„]3,
j(8)

(lec)
where a and p label the suMattices ((I = 1, . . . , s,
where s is the number of sublattices) and N is the
numbex" of unit cells, so tha, t there Rre sN mole-
cules in all. The sums in Eq. (16) are taken over
all molecules i on a particular sublattice P, It
follows that

f„(I(k)=4y'8 '(k),

g., (k)=4y' (k) .

(ala)

(aib}

In the linear approximation, i.e. , treating Xo
exactly, the normal xnodes are obtained from the
equation of motion~

[c„(k),X,]= ac„(k)+5Z„o,„c„(k)

+ Z.[~..(k)c„{k}.~.'.(k) c&(-k)],

[c.'(-k), xo]=-«'„(-k) —&Z„o„„ct(-k)

(22a)

—Z. [&,.(k)*c„'(-k)+z„'„(k)'c,(k)], (aab)

where we have used the fact that the matrix Il is
Hermitian and E' is symmetric. In order to sim-
plify the equations of motion we make use of the
following relations between the matrices I' and
yI ~

x, = Z [ae„„c'„(f)c„(f)+ho„„c'„(f)c„(f)

,'(f) .(f)+-,'E„',(f) ',(f) „'(-k)
-.'~.'.(k)".(f) c.(- f}],

where a=-12 Z(( yahoo~(0) 5= 6 Z y» (0)

(16)

For the Pa3 structure with only nearest-neighbox
EQQ interactions, a = 19I'o. We shall assume that
the different sites within the unit cell can be ob-
tained fI'om one Rnother by x'otRtlons, 1n wMch cRse
a and 5 are the same for all sublattices. Also we
have introduced the operators c~(f) which are de-
fined by

c,(f}= a,(f), I ~ n ~ s

c,. (f) =h, (f), 1~(I~a
and the (as x as) dimensional matrices o, E, and L'"

The equations of motion now become

[c„(f),x,] =Z„[ae„„+ho„„+s'„„{f)]c, (f)
—F„S.„(f)c„'(-f), {24a)

[c',(- f), Xa] = —~&„[ae„„+t(cr„„+E„„(f)] c„'(-f)
+Z„z„„(f)c„(f), (24b)

where cJ(f) = ~&„c„„cI(f). (25)

Taking linear combinations of Eqs. (24a) and (24b)
we find that

[(c„{f)+cJ(-f)J, x,]
= & „[ae.„+ha„„+ar, „(f)J(c„(f)—c„'(-k) j,(aea)

[fc„(f)—c,'{-f)j, X,]
=Z„[ae„„bo„+.] lc„(f)+ c,'(- f)j, (26b)

( i' f'}'- (20a)

[[/c„(f)—c„'(-f)j, X,],Xo]=Z fae„„+ho„„]
&& [ae„p + bc„p + 2E„p (f )] fcp (k) —c,I (-k )j . (2'/}

»om Eq. (27) we conclude that the square of the
eigenfxequencies u can be found by diagonalizing
tile matrix~ [aI + bg ] [aI + 5g+ 2+];

g'(d2 =[(aI+bo)(aI+ho+2L)]„
(20c)

here I is the (s xs) unit matrix and f and g are
..iso (axe) matrices defined by

where the subscript p, denotes any eigenvalue of
the matrix,

For the cases we consider in this paper, we have
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TABLE D. Libron. energies at k= 0 in the Pea structure.

Experimental Th601 etlc Rl

6. 1+0.5 cm
7, 9+0.5

14.8+ 1.0

Nearest-
neighbor EQQ All-neighbor EQQ inter actlonss
interactions nearest-neighbor non-EQQ

only inter actionsd

8. a+0. 5 cm 10.4r, (2) la. 71 p-2. Oe2+11.4e p (2)
11.4+0. 5 14.ar, (a) 17.7rp-6. 9~, + 4. 9~p (a)
21.2+1.0 26. 2rp (a) 29. 0rp+0. 01~2+a. l~p (a)

aData are taken from Ref. 7, As discussed there, the two middle-frequency lines are combined for comparison with
theory.

"Theoretical degeneracies Rre shown in parentheses.
'Results agree with those of Refs. 3-5.
Results are perturbative and are valid when ep/rp and c2/rp are much less than unity. The results for EQQ intex

actions only were given in Ref. 6.

d„(f) =L„u*„„(f)c„(f),
d„'(-f) =Z„u„*,(f) c„'(-f),

then Eqs. (24a) and (24b) become

[d„(f),X,] = ~„d„(f)+q„d„'{-f),
[dt(-f), X,] =-~,dt(-f) —q, d. (f).

(32a)

(32b)

(33a)

(33b)

i.e. , for the I'a3 structure b=0, and for the C
structure E(k=0) is real. Since all the matrices
commute, we can treat them as c numbers, i.e. ,
they are simultaneously di.agonalizable. Thus,
we may rewrite Eq. (28) as

(I(u„)'= [{aI+b(x+E)'-E']„.
If we denote by I the unitrary matrix which diag-
onalizes the commuting matrices c I+ be+I", and
S, then we may write

u*„,[a5„„+bo„„+E„„ju„,= g p 5p, , (3la

(3ib

and if we define operators d„(k) and d t (- k) by

Finally, we perform the Bogoliubov transforma-
tion" to the elementary excitation operators of the
system f„(f) and f t, (-k ):

d„(f) =n„(f)y„{f)+p.(f)j.'( f),
d„t(-f) = p„(f)f„(f)+o.'„(f)f~(-f),

(34a)

(Mb)

~„(f)=[(t„+h~„)/m~„j"',
p„(f) =- [(~„-n-~, )/2n-~„]"',

ri~, = (t'„-q', )'".

(S5a)

(35b)

(S5c)

We have carried out numerical and analytic cal-
culations of the libron spectrum at zero wave vec-
tor for both the Pa3 and C „structures. As
previously noted, it is very important to include
the effects of next-nearest-neighbor interactions.
In Tables II and III we give our results including
all-neighbor interactions as well as those for
nearest-neighbor interactions only, for compari-
son, Since the EQQ interactions are dominant, we
have included the other interactionsperturbatively,

TABLE IG. Libron energies at k = 0 in the C~ structure.

6. a+0. 5 cm
10.8 +0. 5
14.8+1.0

Experimental

D2

8. 8+0.5 cm 1

14.4+0, 5
21.2+1.0

Ne Rx'est-
neighbor EQQ
interactions

only

12.6rp (2)
24. 8rp (1)
3a. 6r, (1)

Theoretical"

All-neighbor EQQ interactions,
nearest-neighbor non-EQQ

interactions'

7.9rp-a. 6~, + 1.4~p (2)
20. 2r() -4.8~2+11.2ep (1)
28. 5rp -a. 8&2+ a. 8pp 0.)

Data are taken from Ref, 7. As discussed in the text, the two lowest-frequency lines are combined for comparison
with theory.

Theol etlcRl degenerRcies Rx'6 showQ ln pRrentheses.
Result8 are pelturbatlve Rnd are valid when Ep/rp Rnd 6 2jrp are much less thaQ unity.
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obtaining the results given in the last column of
Tables II and III. Finally, it should be emphasized
that the relatively large effects of zero-point
motion, performed in Sec. IV, are not included in
these tables. We shall discuss the significance of
these results in Sec. V, where we compare the
calculations of both the libron frequencies and t'he
Raman intensities with the observed Raman spec-
tra.

In this section, we shall calculate the Raman
scattering amplitudes using the polarizability ap-
proximation. ~7 That is, we shall assume that the
polarizability of the solid can be expressed as the
sum of molecular polarizabilities if (i):

n =E;n(i), (s8)

where n(i) is the polarizability tensor of the mole-
cule situated at lattice site i. The interaction of
the electromagnetic field with the system can then
be written in the form

X„,=-,'&~,. E n(i) E,

where E is the externally applied oscillating elec-
tx'1c fleM,

It is convenient to rewrite Eq. (37) in terms of

spher1cal components as

X„,=-,'E'& C(112; p, ))

principal exes relative to the crystal axes. Now
n~~2) (i)„- is nonvanishing only for 1 = 0:

n(R)(i) 8 (n n ) (2)1/8

-=t)„(8}"'If+,
whe1e K 1s the an1sotx'opy of the polax'1zab111ty
Thus Eq. (41) becomes

n(2)(i) (8)l/2 Jfn I){2)(n P y )g

= (8v/18)'"Wan y,'{P,, n,. ). (43)

In order to find the change in the polarizability
as the molecule rotates due to libron excitations, it
1s convenient to expx'ess Q 1Il terms of coordinates
referred to the orientations in the Hartree ground
state. Using the rotation matrices D,', ' we may
rewrite Eq. (43) as

(44)

where ~& specifies the orientation of molecule j
relative to its equilibrium value, and X; are the
Euler angles specifying the equilibrium orientation
for the ith molecule relative to the crystal axes.
This result enables us to write the interaction
Hamiltonian of Eq. (38) as

X,„,= 3Ifn (~)/)"'
&& ~~ 5 C(112;t), )/) D,".'„, (X,.& ))

f ( n ), fM tt v }t

x 'n)„(i)*E,E„+—,
' nE,

xya((u, .(,))*E„(i(n))E„(i( )n), (48)
where n,' '(i) is a second-rank tensor with com-
ponents

nt2) (8}-)/2(sn n n )

and Q is defined as

n = -,
' (n„„+n„+ n. ,).

(39a)'

(sob),

(39c)

{4o),

The second term of Eq. (38) will not contribute to
the phenomenon of interest and will henceforth be
neglected. In Eq. (38) the spherical components
of the tensors are referred to an arbitrary set of
axes, which we take as the crystal axes and which
we refer to as c. Since the expression for the
polarizability tensor assumes its simplest form
when referred to an axis fixed in the molecule,
viz. , the principal axis A, we write

where n,'2'(i) is the polarizability tensor for mole-
cule i, the outermost unit-vector subscript in-
dicates the quantization axis, and (n;, P;, y; ) are
the Euler angles specifying the orientation of the

&&in;, exp[i(k. r- ~.„,t)j
—nf, exp[- i(k. r- (u"„„t}]), (4

where i (k, ~) is the unit polarization vector de-
scribing the photon mode of wave vector k and
polarization 7' with

k. c(k, ~ }= o. (4V)

The calculation of the Raman intensities at es-

where E~(i(n)) is the pth component (referred to
the crystal axes) of the externally applied electric
field at the position of the molecule in the ith unit
cell and on the Ah sublattic.

The process we are considering is the followingv:
A photon of wave vector k and polarization 7 im-
pinges on the system and an emitted photon of wave
vector k and polarization t is observed. As a
result, a libron of wave vector q=k-k and in the
branch v of the libron spectrum is created in the
system. The electric field can be written in terms
of photon creation and annihilation operators e„,
and c1f & as

E(r, t) = i L (4~a ~-„,/3V)'/2 & (f, ~)
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sentially zero temperature requires the determina-
tion of the matrix element l(f tK„, li&I where the
initial state l i& is that state with one photon in the
mode (k, v) and no librons; the final state I f) is
that state with one photon of mode (k, 7') and one
libron with wave vector q and of branch 0. De-
noting the relative intensity of an excitation of a
(q, o} libron by I„we find that

I, =Z Z ~) L 5 C(112 p v)
NO t (&) j(8 ) pv p' v'

x C(112; p', v') s„(k, v) s„(k, v')

x s„.(f, r)*s„.(k', v')*D&2&„,(X«))
xD'.. ., , ; (X,&»))* xp[i (f —k ') (R, &„)—R,.&, ) )]

'&ol ya'("&&a)}
I q, o& &q, ol 1"2(~;&.&)*

I 0&,
(4s)

where I 0) is the state with no librons and
~ q, o& is

a state with one libron of wave vector q in the 0

branch. The sum over ~ and 7' arises from aver-
aging over initial photon polarizations and summing
over final photon polarizations. Here s,(k, ~) is
the «th component (referred to the crystal axes}
of the polarization vector e (k, v}. Using Eq. (47),
we may write

sg(k, T) s ~i(E, T) e„(k', 7' ) E„i(k, T )

= [&,„.—k, k„*.] [&&„„.—k'„k„'"], (49)

where A, and 4 are unit vectors in the direction
of the incident and scattered photons, respective-
ly.

The expression for the intensity is greatly
simplified if the sample used is a powder, as we

shall now assume. To facilitate the calculation
we use the fact that the spherical components of a
unit-vector transform under rotations a,s a first-
rank tensor. ' Hence, we can write

i„' =L'„D&„'„& (q)* ~„', (5o}

where $„ is the vth component of 0 with respect
to an axis fixed in the laboratory frame and X de-
notes the Euler angles of the laboratory frame
with respect to the crystal axes. For convenience
we take the laboratory frame to have its z axis
along the direction of the incident photon. Denoting
powder averages by ( &«, we write

(k„'k„'*&.„=2 &'„D", ( )l*&„"D,', ( ) l&.„&,t,"t(sl).
PP

We have"

x(D'„".(X)"D'„l,'(&) D„"„'()&)*D„",,'(X) &.„
(54)

where k and ( refer to the scattered photon.
Using the Clebsch-Gordan series and Eq. (52) we
find that

(k, k*,, k„'k„'*.)„=&&, + „, „+„. L, (2Z + 1) '

xC(ill; p. , v) c(ill; p, , v )

xZ, C(11J;0,p)'I $,
'

I
.

Co Q + D~(2) (~ )g
V.' o0 t (n) i(.8)

x &q o
I
v2 (a,.&, &

)
*

I
0 & &0

I

1's' (m, &)» ) q, &T

xexp[iq ~ (R
& &

—R&&z&}] (5s)

where ~ z are the Euler angles specifying the
equilibrium axes of molecules on sublattice P rel-
ative to the equilibrium axes of molecules on sub-
lattice n, and C is a weak function of the angle
between k and O''. The matrix elements
(01 Y~2 (&d;&)») Iq, o) are found by expressing Y'~(~, &8&)

in terms of the excitation operators f, and f,' of

the system. Thus we arrive, finally, at the ex-
pression for the Raman intensities in terms of the
eigenvectors of the dynamical matrix:

I, =(o..—P, )'

XF F D, (&d„„) U
fI, v m, m' "- y1

(57)

Here the subscripts p, and v are summed over the
range (1, s) and cr is the mode index 1- o~ 2s.
Also II& ' is the (s x2s) rectangular a.rray defined
by setting

(5s)

IV. ZERO-POINT MOTION AND LIBRON-LIBRON
INTERACTIONS

In this section, we shall discuss the effects of
zero-point motion and libron-libron interactions.
The diagrammatic formulation of perturbation
theory which we shall use is that due to Bloch and
deDominicis. From their formulation, it is
quite apparent that for each hole line in any dia-
gram there corresponds a Bose factor which is
approximately

These results enable us to write the relative inten-
sities in the form

&I)'„(X)*D.'; ()&)&., =(2~. 1) '~..&,. &.. .
which yields the obvious result

(k„k„),„=—,
' 5„„.

Similarly, we may write

(i„i*., i.'i„'.*&.„=- h. &,*5„'h,'*
eBrP

(52) p(T) —p(O} = [exp(n, /ks T) —1]-',

where ~ is the average libron energy gap. This
factor is quite small and hence, except perhaps
very near the transition temperature, these tem-
perature-dependent terms will be dominated by the
zero-temperature effects.
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where &cop-=19I"p-=Ep, and is considered to be of
order z, because z nearest neighbors contribute to
this field. (In a more refined calculation h~p
should include the effect of further-neighbor inter-
actions and of anharmonic shifts. As we shall dis-
cuss in a separate paper, these effects tend to can-
cel, and h~p remains close to the unperturbed
value used here. ) The perturbation then consists
of the quadratic "transfer" terms, the quadratic
"pair-creation" terms, and the higher-order an-
harmonic terms. Terms in perturbation theory
are classified according to their order in 1/z as
follows: As mentioned above, Ep is considered to
be of order z; sums over n independent lattice
sites are considered to be of order z". Ordinarily,
one can infer the concentration dependence of per-
turbative contributions by similar reasoning. In

fact, it is easyto see that z and& always appear in
the combination (zx). This point of view is closely
related to that of Nakamura, ' and hence, our cal-
culation of the thermodynamic properties will be
abbreviated.

To calculate (0';), or equivalently, (a~a;+ b,'b;)
at zero temperature, we use Feynman's theorem
to write

(60)
8 @Q)p)

where I' is the free energy. Hence, a calculation
of F to lowest order in 1/z will lead directly to an
evaluation of (Oo). To lowest order in 1/z, only
the quadratic terms describing pair creation con-
tribute to the free energy at zero temperature.
Thus to lowest order in 1/z, the energy is that of
the linear theory, but our formulation is rather
simple in that summations over the Brillouin zone
are avoided. Using second-order perturbation
theory we find the free energy correct to second
order to be

I' = ——,
' NEpsx —8Nsx

(61)

at zero temperature Then Eq.. (60) yields

&a)a, +b,'b, &=e.x-'E'Q, .(~yP ('+ ~o'.-'~') (62)

To study these effects we need consider only di-
agrams with no hole lines. %'e shall further sim-
plify the calculations through the use of the 1/z
expansion, "where z is the number of nearest
neighbors. Formally, this expansion is generated
by taking the unperturbed Hamiltonian to consist of
the molecular field terms in +, i. e. , those terms
diagonal in the number of excitations. We write
these terms as

3Cpp=h&dp F~& (a]a, +b( b~),

in agreement with Nakamura's result" for x = I.
The values of the coefficients y „.are discussed
and tabulated in Appendix B. Using the values of
Table VII, we obtain the numerical results, ne-
glecting the very small effects of further-neighbor
interactions,

F/( ~ NEosx ) = 1+ 0. 049x (63)

(1 —,
'

Z,',.)=I - 0. 026 x '. (64)

Next ]et us evaluate the lowest order (in 1/z) cor-
rections to the libron spectrum. Strictly speaking,
the perturbations to the libron spectrum are de-
scribed by the self-energy, Z(f, 0, u&), where 0

is the mode index and ~ the frequency, or, equiv-
alently, since we take the unperturbed Hamiltonian to
be diagonal in real space, Z(R, R; 0, 0; &u). The
off-diagonal terms in Z due to the quadratic per-
turbations give rise to the dispersion in the libron
spectrum found within the linear theory used in the
main body of this paper. Here we wish to estimate
the effect of libron-libron interactions on the ex-
citation spectrum. For this purpose it is conve-
nient to neglect the dispersion of the linear libron
spectrum. In other words, we shall calculate only
the average over all modes and momentum space
of the energy shift due to libron-libron interactions.
Thus, we shall calculate Z(R, R; 0, 0; &u). Bg sym-
metry, this function is independent of both R and

cr. The shift in the libron frequency b, (d is then
obtained by evaluating Z for &= &p.

An&d =5~ (R, R; 0', 0'; &p) ~ (ee)

Since we are only interested in the effect of the
anharmonic terms, we wish to evaluate the lowest-
order terms in perturbation theory involving the cu-
bic and quartic anharmonic terms. Terms involv-
ing more than four operators can be shown to be of
higher order in 1/z. Had we not chosen the Dyson-
Maleev representation, we would have had to eval-
uate many more terms. The sum of all such extra
terms must vanish, of course. Such a cancellation
has been shown to occur in the antiferromagnet.
The restriction to diagrams with no hole lines
drastically reduces the number of terms one must
examine. For instance, only terms of the type
shown in Figs. 1(a) and 1(b) contribute to first or-
der in 1/z. Diagrams of the type shown in Fig.
1(c), where the quartic vertex conserves the num-
ber of particles, do not contribute at zero temper-
ature, because they require the presence of a hole
line.

For an explicit calculation we need to write down
the cubic and quartic perturbations. For the Pa3
structure, we have
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&, = 612~ [y;, (a; a; + b; b, ) (a&- b&) (o) (b) (c)

+ (y;', ) ~ (a; a; + bt b; )(a, —b ~)]

+ 4K2Z [y~~ (a; —b;)a&b, +y~) 2(a," —b,. )a,. bt

+(y&&) (a; —b&)ap&+(y,') ')*(a, —b, )a&~b~]

and
(66a)

&4=94 y~~(a& a;+b& b;)(a; a;+ b, b&)
tj

+ 12 Z [y&, (a& a& + b& b &)a; b; + (y &2&) (aJ a,.
ij

+ b, b, )a&b~]+4 ~& [y,', (a; —b;)(a, a, +b, b&)b,
f j

—(y,'&) (a, —b,")(a&~a& + blab&)a, ]

+4K[(y', ; ')*(a, —b,')(a,'a, +b,'b, )b,
fj

—y I& (a; — b) (ay ,a+ b, b) a& ]

+4 ~& [y„a,b, a& b, +(y;&) a, b, a&b,
ij

(66b)

Using these forms we find that

h&(u= —16E 5
q ([Qlyt~l 2 y;,'

] [ ly I
+ ly~'

I ]) (67)

where the terms in the first square bracket are
the contributions from the cubic terms of the type
shown in Fig. 1 (a), which we denote as hh&o, „
and the terms in the second square bracket are
those from the quartic perturbations shown in
Fig. 1 (b), which we denote as Kn, &o4 z. Using
Table VII, we find

5+(03+ 4 46 l 0 ~

8~A@4 2= 0. 94I'0,

A&(0 = 3 52I o= 0 186EO ~

(68a)

(68b)

(68c)

For the pure (J = 1) solid we can summarize our
calculation by saying that on the average, the ef-
fect of anharmonicity is to modify the linear spec-
trum by effectively replacing I'0 by $„tI'0, where

$„,= (1-0.186)= 0. 814 . (68d)

Let us make two comments about this result.
First of all, note that the expression in Eq. (67)
involves a lattice sum over one independent site
(-zx) and one energy denominator (E„) '-(zx) ',
s«hat @~co is independent of zg. Second, note
that the correction to the average libron excitation
energy is very large, viz, , of order 15%, which

might be surprising in view of the smallness of the
static zero-point effects. This energy shift in-
volves anharmonicity which is essentially unrelated

FIG. 1. Diagrams representing lowest-order (in 1/z)
corrections to the unperturbed libron spectrum. Here
upward-going lines represent particles and downward-

going lines represent holes. Only (a) and (b) contri-.

bute at zero temperature. Diagrams such as (c) do

not contribute at zero temperature.

to the other zero-point effects and which therefore
need not be small. Since this energy shift is quite

large, we are presently performing detailed calcu-
lations of the energy shifts of the individual libron
modes. Also, we expect that this strong anhar-
monicity is probably responsible for the anomalous

width of the highest-energy libron excitation ob-
served by Hardy et al. ' Calculation of this effect
is also in progress.

V. DISCUSSION AND SUMMARY

A. Discussion

Let us now interpret the results of our calcula-
tions. It is clear from the Raman studies that
solid hydrogen is not described accurately by the
model which has been used. Either the crystal
structure is somewhat different from those we

have considered, or the model of rotational exci-
tations in a rigid lattice is not valid.

In order to compare our calculations with the
experimental data, we therefore assume that two

of the observed lines in the Raman spectrum arise
from a single line in the rigid undis'torted lattice.
Presumably, then, when distortions or libron-
phonon coupling is taken into account the observed
spectrum may be reproduced. [Note added in

Proof The discu.ssion in this section has become
obsolete. Since submission of th~s manuscript
further experimental data has been reported by
Nakamura. He has proposed that the lowest three
lines in the Raman spectrum should be associated
with the single libron modes. The remaining two

lines were attributed to two-libron processes,
although no reasonable mechanism was advanced.
We have used the anharmonicity to obtain such a
mechanism. Including anharmonic shifts as in
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TABLE IV. Raman intensities for the Pa3 structure.

Frequency
(cm-')

H2

Relative
intensity

Frequency
(cm )

Experimental~

D2

Relative
intensity

Nearest-
neighbor
truncated

linear
theory'

Theoretical
Nearest-
neighbor

full
linear
theory

All-
neighbor

full
linear
theory

6. 1+0.5 l. 00 8.3+0.5 1.00 1.00 1.00 1.00
7. 1+0.5

7. 9 +0.5
10.8 + 0. 5

0. 18
0. 23"

10.3+0.5
11.4+0 5

14.4+0. 5

0 . 34
0.46' 0.413

0. 12
0. 300 0.317

14.8 +1.0 0. 13 21.2+1.0 0. 20 0. 087 0. 034 0. 041

See Ref. 7.
Theoretical intensities are calculated from Eq. (57) assuming only EQQ interactions.
Here truncated means that the terms in E' in Eq. (18) are dropped. These results were given in Ref. 7.
As discussed in Ref. 7, we combine the two middle-frequency lines for comparison with theory.

Eq. (68} we have obtained an excellent fit to the
entire five-line spectrum. The details of this
calculation will be published shortly. ] In Tables
IV and V, we compare the calculated and observed
intensities in this way. Note that for the C „
structure, the excitation at the lowest energy is
doubly degenerate. Accordingly it is necessary
to associate the two observed absorptions at lowest
energy with this excitation. As can be seen, the
correlation between the observed and calculated
intensities is rather poor for the C structure.
In particular, we find that creation of the highest-
energy libron mode in a Raman process is forbid-
den by symmetry for this structure. For the Pas
structure, the situation is much better. Following
the symmetry argument of Hardy et al. , we have
associated the two absorptions at intermediate
snergy with the single excitation calculated on the
basis of the rigid-lattice model. As can be seen

from Figs. 2-5, the intensities calculated for the
Pa3 structure are indeed in much better agree-
ment with experiment than those calculated for the
C structure. Although this discussion is based
on calculations for which co= ~~=0, it is clear that
for small values of these parameters our results
should remain qualitatively valid.

Let us next discuss the frequencies of the libron
excitations. In fitting the observed Raman spec-
trum it is not reasonable to vary the parameters
&0 and &, arbitrarily. Although we do not regard
the theoretical estimates as being conclusive, we do
not wish to invoke values of co and E2 which would
disturb the rather good agreement between theory
and experiment which is obtained for such quanti-
ties as the specific heat, ' ' 0 (sp/sT)», '" or the
NMR spectrum. To make this discussion quanti-
tive note that the aforementioned experiments de-
pend most sensitively on (l) the rms value of the

TABLE V, Raman intensities for the C~~ structure.

Frequency
(cm-')

H2

Experimental

Relative
intensity

Frequency
(cm-')

D2

Relative
intensity

Nearest-
neighbor
truncated

linear
theory'

Theoretical~
Nearest-
neighbor

full
linear

theory

All-
neighbor

full
linear
theory

6 .1+0.5
6. 3+0.5"

7. 1+0.5
10.8 +0. 5
14. 8 +1.0

0. 85
~1.00

0. 15
0. 042
0. 110

8. 3 +0.
. 8 +0 5"

10.3 +0. 5
14.4 +0. 5
21. 2+ 1.0

0 . 75
1.00 l. 00

0. 25
1.00

0. 09
0. 15

1.00 0. 680
Not allowed

1.00

0. 542

'See Ref. 7.
"Theoretical intensities are calculated from Eq. (57) assuming only EQQ interactions.
'Here truncated means that the terms in I"' in Eq. (18) are dropped.
As discussed in the text, we combine the two low-frequency lines for comparison with theory.
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Expt.

I I I I
I

I I I I
I

I

H~ RAMAN SPECTRUM C~rnrn

Reduced

EQQ Only

"Best"

Exact

I I I I I I I I I I I I I I I

5 lo l5 20
Frequency (cm ')

energy

(E, )'=- Tr(HO)'/Tr1

FIG. 2. Fit to the Raman data of Ref. 7 for solid
H2 assuming the C~~~ structure. The intensity is plot-
ted in the vertical direction. The reduced experimen-
tal data is the result of combining the experimental
lines (denoted expt) as in Tables IV and V, and the
arrows indicate the error range. The "best" fit is
the best fit which can be obtained subject to the restric-
tion that I &p I ~ 0.20 cm-' and I e2 I & 0.20 cm- . The
exact fit is that which exactly reproduces the reduced
experimental data. The values (in cm- ) of the para-
meters used for the various fits are EQQ only: I',~t
= 0. 734; "best" fit: I',~t =0.79, c& ——0. 20, ep ———0.20;
and exact fit: I,~t = 0.439, &2 = 0, 742 ~'p = 0, 14o We
have indicated the forbidden transition in the C~~~
structure at high frequency (see Table V) by a vertical '

bar of - zero height.

fected by the inclusion of non-EQQ interactions
(since the experimental results mentioned above
are adequately explained without employing such
interactions) does not allow us to make a very
definite prediction of the magnitude of (&0/ro) and

(t 2/ rp) except to state that (eo/ro) and (& 2/ro) are
less than, say, 0. 25.

One might imagine, then, that these parameters
would have no significant effect on the libron spec-
trum. This however, is not the case, as can be
seen from Tables II and III. Taking &0= e&= 0 for
the C structure we obtain a very poor fit to the
data, as is apparent from Figs. 2 and 3. If one
admits nonzero values of these parameters, then
it is possible to obtain an exact fit to the frequen-
cies. The resulting values of &o and && are un-
reasonably large, however. If &0 and e2 are re-
stricted to be at most 0. 20 cm ' in magnitude,
then even the "best" fit (see Figs. 2 and 8) is un-
acceptable. Since assuming the C structure
involves not only taking anomalously large values
of Eo and c„but also fails to give an adequate fit
to the observed Raman intensities, we feel that
this structure is quite unlikely. This conclusion
is in agreement with the neutron-diffraction data
of Mucker et al. '

Let us therefore confine our attention to the
Pa3 structure. As can be seen from Figs. 4 and

5, a qualitative fit to the experimental data can be
obtained even in the absence of non-EQQ interac-
tions. It is seen, however, that the calculated
frequencies in this case do not agree perfectly
with experiment, the discrepancy being particu-

&E=4ro- T'o (~a+ 2~2) (88)

and we calculate that

E,' = ~ ro[1+(9e,/125ro)+ (18eo/175ro)] . (70)

These two quantities are quite insensitive to values

of &0 and cp of less than, say, 0. 25. For example,
with

or (2) the energy nE of the first excited state of

the isolated pair of (J= 1) molecules. It is there-
fore of interest to examine how strongly these
quantities depend on &0 and E, . For b,E, we have,

from Ref. 25,

Expt

Reduced

EQQ Only

Best"

Exact

I I I I

I
I I I I

I
I I I I

I
I I I I

D~ RAMAN SPECTRUM Crnrnrn

A.

I I I I I I I I I

IO l5 2O
Frequency {crn '

)

(e,/r, ) = (eJr, ) = O. 2O,

the values of E, , and hE are changed by less than
2% from the values they would have in the presence
of EQQ interactions only. Thus, using the crite-
rion that E,~ and 4E should not be noticeably af-

FIG. 3. Fit to the Raman data of Ref. 7 for solid
D2 assuming the C~~~ structure. For an explanation
see the caption of Fig. 2. Here the parameters are
EQQ only: I',~t =0.78; "best" fit: I',~t ——0.85, e2 =
—0.20, cp= —0.20; exact fit: I',~t=0.66, e2 ——0.87,
cp = —0.28.
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I I I I I I I 1 I

H~ RAMAN SPECTRUM Pa~

E xpt.

~ Reduced

EQQ Only

"Best"I

IO l5
Frequency (cm')

FIG. 4. Fit to the Raman data of Ref. 7 for solid
H& assuming the I'a3 structure. For an explanation
see the caption of Fig. 2. Here the parameters are
EQQ only: I',~t ——0.475; exact fit: I',~t ——0.516, E'2

= 0. 14, eo = 0. 06.

larly noticeable for Dz. By permitting small non-
zero values of Eo and e~, we can reproduce the
"reduced" experimental spectrum exactly, as is
seen from Figs. 4 and 5.

Note that we have treated 1 o as an adjustable
parameter, which we denote 1,„„,since there
may be some uncertainties in the calculation of the
renormalization coefficient go introduced in Eq.
(3). According to the renormalization calculations
cited in Table I, we expect that

However, since the libron-libron interactions are
so strong, it is very important to consider their
effect on each mode separately, rather than in the
average way implied by the introduction of $„,in
Eg. (68b). In view of this uncertainty, we do not
feel that a meaningful determination of &o or E, is
possible at present. Since these parameters do
influence the libron spectrum, it would be of in-
terest to plot out the libron spectrum via inelastic
scattering of neutrons. In this way it should be
possible todetermine allthe interactions accurate-
ly. As for the magnitude of $, from Figs. 4 and
5 we see that I",~,=0. 48cm for H2 and 1",„„
=0.64 cm ' for D2, so that experimentally, we
have

$ =0.69 for Hz

( =0. 76 for D~

(72a)

(72b)

Considering the discrepancy between the theoreti-
cal estimates for $ in Table I and these experimen-
tal values, further investigation of these effects is
indicated.

B.Summary

D~ RAMAN SPECTRUM Pa ~

Expt.

Reduced

EQQ Only

t ) ( ) ) l I I I I ( I I I

IO l5 20
Frequency ( cm ')

Best '

FIG. 5. Fit to the Raman data of Ref. 7 for solid
02 assuming the Pa3 structure. For an explanation see
the caption of Fig. 2. Here the parameters are EQQ
only: I' ~t = 0.640; exact fit: I',~t = 0. 744, E2= 0.16,
co ——0. 13.

We may summarize our work as follows: (i)
The Pas structure is a reasonable first approxi-
mation and an adequate fit to the Raman spectrum
can be obtained assuming only EQQ interactions.
(ii) The C„structure is quite unlikely, as nei-
ther the intensities nor the frequencies of the
Raman spectrum agree very well with experiment.
(iii) The determination of the magnitudes of the
non-EQQ interactions is not possible through the
thermodynamic measurements mentioned, and
hence such measurements do not establish the
smallness of these interactions. On the other
hand, the libron spectrum is much more sensitive
to these interactions. (iv) The effect of libron-
libron interactions on the frequencies of the ele-
mentary excitations has been calculated in an ap-
proximate way and energy shifts of order 15%have
been found. (v) When the above-mentioned libron-
libron interactions are taken into account, it is
found that current theoretical estimates of the re-
normalized EQQ interaction coefficient )I' differs
by about 10%from the experimental values.

Based on our work, we may mdicate several
fruitful lines of investigation. First, since the
determination of the structure of solid hydrogen
is not yet complete, we suggest that further
study of the libron spectrum using inelastic
scattering of neutrons would be desirable. This
type of experiment would also enable a reason-
able determination of all the interactions be-
tween hydrogen molecules. Second, a better
calculation of the many-body effects on the EQQ
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interactions is needed, in order to make the
interpretation of the experiments more secure.
Along this line, it is important to study dynam-
ical libron-phonon interactions. Finally, we
are presently undertaking a detailed calculation
of libron-libron interactions so as to be able to
predict the energy shift and energy width of all
the zero-wave-vector modes due to these inter-
actions.
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APPENDIX A: LIBRATIONAL EXCITATIONS IN CLASSICAL
SYSTEMS

In this Appendix, we shall consider the libra-
tional excitations of a classical system with EQQ
interactions between molecules. From Eq. (5),
we obtain the potential energy of such a system in
the form

of small oscillations we obtain a much simpler
formulation than that of Ref. 18.

On expanding the potential energy in powers of
the direction cosines x& and y& and making use of
Eq. (A4), the quadratic terms, denoted V, are
found to be

k V=s +(x(+y()+4 +[r(&(x(+iy()(x&+iy, )

+ (y",~)*( x—( iy;)(x, iy~—)+y';) '(x, + iy()(xj —iy, )

+ (y'() ')*(x, —iy, )(x, +iy, )

+ y', (x, + iy, )'+ (y(0)*(x; —iy, )'j,
in close analogy to Eq. (18) for the quantum sys-
tem. The expression for the kinetic energy may
be written

T = ~I+((x, +y() (As)

where I is the moment of inertia of the molecules,
and we have used Eq. (A4) to drop the terms ini (.

From these expressions for the kinetic and po-
tential energies, the equations of motion for the
direction cosines are found to be

mm' om one'

fj mm'
(A1)

QI(x(+iy'() = —a(x(+iy, )+b(x( —iy;)

where the y() are defined in Eq. (S). We wish to
consider the small oscillations of the molecules
about their equilibrium orientations. For this pur-
pose it is convenient to introduce the direction
cosines (x;, y;, z;) of the molecular axis of the ith
molecule and expand the potential energy to second
order in the direction cosines x& and y&. In terms
of the direction cosines the spherical harmonics in

Eq. (Al) may be written

—8&&[(r'(g)*(xg iyg)+-(y(~ ')*(x)+iy~)l, (A»)

~I (x; —iy', ) = —a(x( —iy()+b(x;+iy()

8+ [Jy' (( ~x+ iqy)+y, )'(x) —iy;)], (AVb)

where a and f) are as defined in Eq. (1&). As in
the quantum treatment it is convenient to introduce
spatial Fourier transforms by defining

0,' = ——,(x, + sy(),

Of'=- 5s((x, +iy, )

O', = ——,(Sz( —1)

(A2a)

(A2b)

(A2c)

x, (k) =(s/N)'~' Q x,(,&exp[ ik R,(,)]-,
)(fM )

y (k)=(s/N)'~' Q qy(, &ex[p-ik. R~( )] .
g(e)

(ASa)

(A&b)

xg+y f +Zf L ~
2 2 2 (AS)

Note that the direction cosines are not all indepen-
dent, but must satisfy

Assuming harmonic time dependence, we may re-

write the equations of motion as

-,'r I (0~[x,(k) +iy, (k)]

1 2 1 2zf —1 Qxf Qy f ~ (A4)

By taking advantage in this way of the assumption

We may use this relation to eliminate z& in favor of

x& andy&. In particular, when x& and y; are small,
we have

= a[x (k)+iy„(k)]-b[x (k)-iy, (k)]

+ &ZBy'() (k)*[x,(k) —iya(k)]

+

&+san

'() (k)*[x()(k)+ iy()(k)]

~ I(o [x„(k)—iy (k)]

(AOa)
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=a[x, (k) —fy (k)] —b[x (k) +fy (R)]

+ 8Z3y'„', (k) [x3(k) +3y3(k)]

+ 8+,y'. ,-'(k) [x,(k) fy, (k)] . (A9b)

In terms of vector notation, these equations are

= [al+kv+ 2S'(k)]P (k)
q-(k)

(Alo)

where the matrices I, v, and E(k) are defined in
Eg. (20), and the subvectors P(k) and g-(k) are s-
dimensional vectors with components

g,'(%) = [ + x (k) —iy, (k)], n = 1, 2, ~ ~ ~, s .

APPENDIX B: TABULATION OF ~ FOR Pa3 STRUCTURE

For the Pa3 structure we have b=0, and it is
easily seen that the eigenfrequencies ~~ for the
quantum system, given by Eq. (28) in the main
body of this paper, are proportional to those of
the classical system, e„, given in Eq. (A10).
This scaling relation holds throughout the Brillouin
zone. For the C structure no such simple re-
lation obtains, because for this structure b is non-
zero. Even for the Pa3 structure note that the
correspondence is not the usual one between the
classical and quantum treatments of the harmonic
oscillator. In the usual correspondence, the fre-
quencies are identical, only the amplitudes differ,
since they are quantized in the quantum limit. As
mentioned in the text, the correct exact corres-
pondence is between the classical system and the
quantum systems for which 8 is much less than a
typical libron energy.

y„"=-y.",(R, R') -=y.,"(R'- R), (B2)

P
with R&=R+w~ and R&=R +t8. The notation is
taken to indicate that the interaction coefficients
y&&" are calculated between the jth molecule which
is on sublattice P in the R th unit cell and the ith
molecule which is on sublattice n in the Rth unit

~P
cell and R —R is the translation vector between
the unit cells.

Working in the "crystal" coordinate system of
Eg. (Blb) one can show that

(- 1) y33'"(viR) = (- 1) y34 (- v-„R)

=y» (- R) =y;3"(R), (Baa)

(-1) y3"3™(v;R+ak)*=(-1) y33 "( ak- v)R)*

=y47(- R) =y14 (R),

(- 1)"y33' "(v)R)*=(-1)"y43 (-viR)*

=y3i (- R) =yPg" (R),

(Bsb)

(B3c)

tors of the Bravais lattice and l, m, n are inte-
gers. The choice of az, a2, a3 is not unique and

they will be taken here as aq=az, as=aj, and az

=ak, where a is the length of the cube edge and

i, j, 5 are the. unit vectors along the crystal axes.
From the discussion above we see that to spec-

ify the position of each molecule requires two la-
bels: one labeling the unit cell R and one labeling
the sublattice within that unit cell v . In order to
display the relationship among the coefficients
yP~" we define (within this Appendix only)

In this Appendix, we shall discuss the evaluation
and tabulation of the interaction coefficients y&z"

for the Pa3 structure. For this purpose, we shall
enumerate several properties of these coefficients,
omitting proofs for economy of presentation.

The Pa3 structure is formed from a simple-cu-
bic Bravais lattice with a basis specified by the
four sublattice vectors r given in Table VI, so
that each unit cell contains four molecules. The
position of the ith molecule 8& is given by

v„-R =R- 2n(8 ~ R) . (B4)

Taking the quantization axis along the local sym-
metry axis, one obtains directly the evaluation

TABLE VI. Position and equilibrium orientation of
sites.

where the operator a„- is defined as a reflection in
a plane perpendicular to 8:

R;=R+w (Bla) p Sublattice Direction of z axis Direction of x axis

with R being a translation vector of the Bravais
lattice,

&a(O, O, 0)

~a(1, 1, 0)
—,'a(0, 1, 1)
-'a(1, 0, 1)

t-1, 1, 1]
t1, -1,1]
I1, 1, -1]

[1,1, -2]
t-1, 1, -2]
t1, -1, -2]
t-1, -1, -2]

R=l ate+map+ nas, (Bl )

where a&, a&, a3 are the primitive translation vec-

Here P labels the sublattice
'Here a= v 2 Rp, where Rp is the nearest-neighbor

separation.
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yP)(R) =4'„A„Z~e~(R) o~ [v/(28+I)]'i'

&&C(22m; m, n) Z",'"(Z), , (B5)

Eg. (BS). We have verified that the tabulated val-
uses satisfy the sum rule

where the subscript I indicates that the coordinate
system coincides with the symmetry axes of site
l. Similar relations hold when the script 1 is re-
placed by 2, 2, or 4, and the y "(R) can be re-
lated to yP,"(R}. It is clear from these relations
that it suffices to tabulate yP~ (R).

By using the symmetry associated with the
threefold axis along the [ill] directions, the num-

ber of independent coefficients can be reduced still
further. %'e find that

(-1)"y,".,"([6t']'R)exp [&v~{m n)'-j

= y„"(6i'R) exp[-,'vi(m- n) j = y„"(R),

8 (Ai +Bj+Ck) —=C&+4& +B~

m~(0}/& &
~

svso

which can be derived using the orthogonality re-
lations of the spherical harmonics and rotation
matrices.

The values of y&&" can also be used to calculate
the moments of the frequency distribution I„which
are defined as

I„=(SX)-' E' [a~,(k)/a]" . (Bio)
fe&

From Eg. (28), we see that for the I'a3 structure
(wheri. h =0}

2 [h~„(k)/a]" =Tr[I+ 2c 'E(k)]"~'
f, g

= Tr[I+na E(k) + ~ ~ ~ ] (Blib}

is a rotation about the crystal [111]direction.
Thus it is only necessary to tabulate yap(R) and

yP~"(R), In fact, in this tabulation R can be limited
to the first quadrant, R„~O, 8, & 0, in view of the
relations

so that I„can be evaluated in terms of traces of
powers oI F(k), or eguivalent1y, as sums over
y&&". Since these sums are again series in the pa-
rameter I/z, we truncate them at the lowest non-
trival order:

yp,"(R)*=y,", (ot R- ai) . (Beb)

We shall tabulate the y"6(R) for EQQ interactions
only between nearest neighbors. Then yP,"(R)=0
and yPg(R) is given in Table VII. From this tabu-
lation, all nonvanishing y&&" can be determined by
the following procedure: '(a) Complete the tabula-
tion of yam"(0) by using y~~' "(0)= [yP,"(0)]*. (b)
Evaluate the other nonvanishing ygg(R) for near-
est-neighbor interactions, i.e. , for R=a(-1,0,0),
R=a(0, —1, 0), and R=a(-l, —1, 0) from Egs.
(BSa) and (Bsb). (c) Compute 'gg bp using Eg.
(B6). (d) Complete the tabulation of yg by using

(gy)-& g tru (I)k„8
n(m —2) + F(k) '

16K (Bi2)

I, p
= l. 0000 (l. 0000)

I„=0. Qa35 (0. OSSA),

I, =1.OOOO(1. OOOO),

(BISa)

(Bish)

(Bise)

For nearest-neighbor EQQ interactions only,
a=19K'0, and we may use the values of Table VII
for y&&". Then we find the numerical results

TABLE VII. Values of p&&~"(0) for the Pa3 structure vrith nearest-neighbor EQQ interactions.

(-0.6737, -0.4811)"
(-1.551V, -O. 2040)
(-0.7360, 0.7697)
(-o.eoss, -o:34o1)
(-0.0070, -0.2886)

(-0.6678,
(-o.5556,
(-o.ovse,
( o. vvvv,
( o. 2v5o,

0.2041)"
o. 24o5)

—o. 5443)
0. 1443)
O. 34O2)

(-O. 3194, O. 1925)"
(-o.eevs, -o.1361)
(-o.52vv, -o.oooo)
(-o. eevs, o. 1361)
(-O. 3194, -O. 1925)

%'e tabulate values of 4y&~"(0) /1'0. For g &0, it is necessary to use the relation y&&"(0)*=y&2' "(0).
"Here (g, y) denotes x+sy.
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I,=1.0494 (1.0543)

I ~ =1.1316 (1.1541)

(B13d)

(B13e)

For comparison we have also included in paren-
thesis Raich and Etter's corrected values. Note
that our results, correct to lowest nontrivial or-

der in 1/z are in excellent agreement with their
values which were obtained by performing sums
over the Brillouin zone. It is also quite clear that
the effects of further neighbors are negligible in
low-order perturbation theory. This is because
the summands in Eqs. (61), (62), (67), and (B12)
vary with separation as (ROI'R). '0
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