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We use one-dimensional numerical simulations to study spherical collapse in the fðRÞ gravity models.

We include the nonlinear self-coupling of the scalar field in the theory and use a relaxation scheme to

follow the collapse. We find an unusual enhancement in density near the virial radius which may provide

observable tests of gravity. We also use the estimated collapse time to calculate the critical overdensity �c

used in calculating the mass function and bias of halos. We find that analytical approximations previously

used in the literature do not capture the complexity of nonlinear spherical collapse.
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I. INTRODUCTION

The energy contents of the Universe pose an interesting
puzzle, in that general relativity (GR) plus the Standard
Model of particle physics can only account for about 4% of
the energy density inferred from observations. By intro-
ducing dark matter and dark energy, which account for the
remaining 96% of the total energy budget of the Universe,
cosmologists have been able to account for a wide range of
observations, from the overall expansion of the Universe to
the large-scale structure of the early and late Universe [1].
The dark matter/dark energy scenario assumes the validity
of GR at galactic and cosmological scales and introduces
exotic components of matter and energy to account for
observations. Since GR has not been tested independently
on these scales, a natural alternative is that GR itself needs
to be modified on large scales. Two classes of modified
gravity (MG) models are higher-dimensional scenarios
such as the DGP model, and modifications to the
Einstein-Hilbert action known as fðRÞ models [2–4]. By
design, successful MG models are difficult to distinguish
from viable DE models against observations of the expan-
sion history of the Universe. However, in general they
predict a different growth of perturbations which can
be tested using observations of large-scale structure
(LSS) [5–21].

Recently the nonlinear regime of structure formation in
MG theories has been explored through simulations and
analytical studies. Both the DGP and fðRÞ models have a
mechanism that restores the theory to GR on small scales.
Recent studies of fðRÞ theories have focused on the effects
of the chameleon field which alters the dynamics of mass
clustering in high density environments such as galaxy
halos. A series of papers [22–26] have explored the
consequences of this evolution through simulations and
comparison to analytical predictions. Similar efforts

have been made to study large-scale structure formation
in DGP [27–30].
The evolution of isolated spherical overdensities in an

expanding Universe provides a useful approximation for
structure formation in the Universe. Although spherical
collapse is just one idealized model for the formation of
structure, it captures many crucial features of realistic mass
distributions. This has been demonstrated by its successful
applications in predicting the halo mass function, halo bias
and merger history in the �CDM cosmology. Spherical
collapse is sensitive to the nature of gravity, matter, and
energy.
Spherical collapse in GR with cold dark matter and

smooth dark energy is unique in several aspects. For a
spherical shell enclosing a fixed mass M, its collapse rate
does not rely on the environment nor the internal density
profile. Furthermore, an initial top-hat spherical region
remains a top-hat during the collapse. Finally, after virial-
ization, we have the simple relation 2K þW ¼ 0 between
the total kinetic energy K and the potential energy W. All
these interesting properties rely on the r�2 behavior of the
gravitational force. Modifications to GR often destroy the
characteristic properties described above: spherical col-
lapse can become dependent on environment and internal
structure, rendering an initial top-hat density profile
non-top-hat and changing the conversion efficiency from
potential energy to kinetic energy. If gravity indeed deviates
from GR, we expect that at least some of these modifica-
tions would survive in realistic galaxies and galaxy clusters
and serve as tests of modified gravity.
Because of the complicated behavior of gravity in fðRÞ

models spherical collapse no longer has analytical solu-
tions. The purpose of this paper is to study spherical
collapse through one-dimensional numerical simulations.
Schmidt et al. [23] have used large-scale simulations,
coupled with analytical approximations for spherical col-
lapse, to predict the halo mass functions, linear bias,
and density profiles for the fðRÞ model of Hu and
Sawicki [22] and compared them to the standard model*borisov@alumni.upenn.edu

PHYSICAL REVIEW D 85, 063518 (2012)

1550-7998=2012=85(6)=063518(10) 063518-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.063518


of cosmology—the �CDM model. In addition analytical
calculations have been done in the two limiting cases of the
fðRÞ model:

(1) The strong field regime, where fðRÞ behaves like
�CDM, but with a larger Newton’s constant (by a
factor of 4=3).

(2) The weak field regime, where there is no observable
difference from the Standard Model.

The results from these bounding situations have been
compared to simulations by [23] and the observed differ-
ences have been discussed. Since the strength of gravity in
fðRÞ gravity lies inside these two limiting cases, a reason-
able expectation is that the evolved observable quantities
should also lie within the limiting cases. We will explore
the validity of such an assumption by performing a direct
simulation of a spherical collapse of an isotropic object. As
chameleon fðRÞ theories exhibit highly nonlinear behavior
and there exist coupled fields, it is worth checking through
explicit calculation the naive expectation based on limiting
cases.

As described in [24] for simulations of fðRÞ gravity, the
solution for the potential driving the dynamics of the
evolution is coupled with the solution for the scalar field
fR [22]. In our case we deal with isotropic objects and thus
have a one-dimensional system. In Sec. II we present the
radial equation for the fR field. In Sec. III we describe the
simulation scheme for numerically solving the aforemen-
tioned equation. Sec. IV describes the results, focusing on
the distinct features of spherical collapse in fðRÞ gravity,
while Sec. V connects our results to the mass function. We
conclude in Sec. VI.

II. RADIAL EQUATIONS FOR
SPHERICAL COLLAPSE

In general fðRÞ models are a modification of the
Einstein-Hilbert action of the form

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
Rþ fðRÞ

2�2

�
; (1)

where R is the curvature and �2 ¼ 8�G. The particular
form chosen by [22] is

fðRÞ ¼ �m2 c1ðR=m2Þn
c2ðR=m2Þn þ 1

(2)

with

m2 � �2 ��0

3
¼ ð8315 MpcÞ�2

�
�mh

2

0:13

�
: (3)

The properties of the model are well described by the

auxiliary field fR � dfðRÞ
dR . �CDM expansion history with

a cosmological constant �� is obtained if we set

c1
c2

� 6
��

�m

: (4)

We choose to work with n ¼ 1, which leaves one free
parameter fR0 � �n c1

c2
2

ð 12�m
� 9Þ�n�1 to parametrize the

model. Following [24], which set up the 3D simulation
framework for the fðRÞ chameleon model, we start with the
trace of the Einstein equations in the quasistatic limit, and
the Poisson equation

r2fR ¼ 1

3c2
½�RðfRÞ � 8�G��� (5)

r2� ¼ 16�G�0

3
��� 1

6
�RðfRÞ: (6)

For the purposes of numerical calculations we need to
define relevant dimensionless quantities, and we switch
to comoving coordinates. Thus we adopt the definition of
code units [24,31,32]

~r ¼ x

r0a
; ~t ¼ tH0; ~� ¼ a3

�

�0

; ~R ¼ a3
R

R0

;

~c ¼ c

r0H0

; ~� ¼ �

�0

; ~p ¼ a
v

v0

; (7)

where

�0 ¼ �c;0�M;0; R0 ¼ 8�G�0

3
;

�0 ¼ ðr0H0Þ2; v0 ¼ r0H0

(8)

and r0 is an appropriate length scale (used, for example, to
define the size of the overdensity). Bare symbols X are
physical coordinates/quantities while symbols with tilde ~X
are code quantities, symbols with bars ~X are average

physical, and symbols with both bar and tilde �~X are average
code quantities.
Equations (5) and (6) then become the following in code

units (Eqs. 25, 27 in [24]):

~r 2�fR ¼ �M;0

a~c2

�
� ~R

3
� �

�
(9)

~r 2 ~� ¼ �M;0

a

�
�� ~R

6
þ 2�

�
; (10)

where

� ¼ �� ��

��
¼ ~�: (11)

The next step is to express � ~R in terms of fR in code
coordinates. We start with (Eq 9 in [24]):

�R ¼ 8�G ��M

�
1

a3
þ 4

��;0

�M;0

�
: (12)
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This is the average curvature in the fðRÞ model. Thus,

�R

R0

¼ 3
��M

�0

�
1

a3
þ 4

��;0

�M;0

�
: (13)

We arrive at

�R

R0

¼ 3

�
1

a3
þ 4

��;0

�M;0

�
: (14)

From that we also have

�Rða ¼ 1Þ
R0

¼ 3

�
1þ 4

��;0

�M;0

�
: (15)

We also need the relation between fR and R. Using (Eq. 12
in [24]), defining �fRða ¼ 1Þ ¼ fR0, and working in the
case n ¼ 1 we see that

fR
fR0

¼
� �Rða ¼ 1Þ

R

�
2
: (16)

This leads to

R

R0
¼ R

�Rða ¼ 1Þ
�Rða ¼ 1Þ

R0

¼ 3

�
1þ 4

��;0

�M;0

� ffiffiffiffiffiffiffiffi
fR0
fR

s
:

(17)

For further use we will also need

ffiffiffiffiffiffiffiffi
fR0
�fR

s
¼ �R

�Rða ¼ 1Þ ¼

�
1
a3
þ 4

��;0

�M;0

�
�
1þ 4

��;0

�M;0

� : (18)

We can now obtain for the perturbation in the Ricci scalar

� ~R ¼ ~R� �~R ¼ a3

R0

ðR� �RÞ ¼ a3

R0

�R

¼ 3a3
�
1þ 4

��;0

�M;0

�26664
ffiffiffiffiffiffiffiffi
fR0
fR

s
�

�
1
a3
þ 4

��;0

�M;0

�
�
1þ 4

��;0

�M;0

�
3
7775: (19)

From now on we will use only code quantities and drop the
tilde notation. Noting that

1

r2
@

@r

�
r2

@X

@r

�
¼ 1

r

@2ðrXÞ
@r2

(20)

let us consider the following substitution used to avoid the
possibility of the solution for fðRÞ becoming positive (as
this is nonphysical) and the iterative scheme failing.
Controlling the numerical errors for very small values of
the fðRÞ field is very difficult and the solution can easily
jump into the forbidden region and stop the simulation.
The substitution allows for extending the domain of valid-
ity and avoiding this numerical instability:

fR ¼
�fRe

u

r
: (21)

Expanding the Laplacian (in code units) we arrive at the
following equation for fR:

�fR
1

r

@2

@r2
eu ¼�M;0

a~c2

�
a3
�
1

a3
þ 4

��;0

�M;0

�
ð ffiffiffi

r
p

e�u=2 � 1Þ ��

�
:

(22)

Additionally we will convert it to a system of two first-
order ODEs using an auxiliary function

y ¼ @

@r
eu ¼ eu

@

@r
u ¼ euu0: (23)

So the system with explicit r dependence looks like

u0ðrÞ ¼ e�uðrÞyðrÞ (24)

y0ðrÞ¼ r
�fR

�M;0

a~c2

�
a3
�
1

a3
þ4

��;0

�M;0

�
ð ffiffiffi

r
p

e�uðrÞ=2�1Þ��ðrÞ
�
:

(25)

A detailed description of the relaxation method used to
solve this system is presented in Appendix A.
Considering that we can approximate rfi � r1, where

rfi is the upper boundary of integration in code coordi-

nates, we can impose the boundary condition that

fRðrfiÞ ¼ ~fR which translates to uðrfiÞ ¼ lnðrfiÞ. As the

relaxation scheme requires two boundary points we will
impose a condition on the inner boundary. We do not know
the solution in the center of a collapsing isotropic mass
distribution. What we know is that it has to be symmetrical.
We also expect the solution in the center to be screened
from the solution outside of the sphere by the thin screen
(that is we expect to have a chameleon effect). This means
that very close to the center we expect to have behavior
very similar to that of a homogeneous universe with that
average density—but that would be a constant solution and
thus zero derivative f0Rð0Þ ¼ 0.

III. SIMULATION SCHEME

To obtain the time evolution in the simulation, at each
time step we proceed as follows:
(1) Given an initial density profile (from the previous

time step) we compute the corresponding solution
for the fR field. Under the quasistatic approximation
that we adopt, the gravity field is completely deter-
mined by the density distribution at the same epoch.

(2) This allows us to compute the solution for the
Newtonian potential that drives the dynamics.

(3) The mass shells are then moved according to the
dynamics equations [24]

d~r

da
¼ ~p

_aa2
(26)

and
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d~p

da
¼ �r ~�

_a
; (27)

where _a ¼ a�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M;0 þ��;0a

3
q

, as we tune the

expansion of the universe to be the same as in
�CDM.

(4) After the particles (shells) have been moved we can
compute the new density distribution and proceed to
a new time step thus closing the cycle.

Code tests

An important issue in the case of numerical simulations
is testing the code (we utilized Mathematica 7) for stability
and accuracy. The following have been checked:

(1) Self-consistency: as per [24] we can start with an
analytical function for fRðrÞ. This can be analyti-
cally solved to obtain a corresponding density dis-
tribution. Now we can plug that density distribution
in the numerical code and check how well the
obtained solution reproduces the original analytical
function. We observe deviations of the order less
than 10�7.

(2) During the relaxation scheme a measure of our
accuracy is the residual relative size of the elements
in the vector b [Eq. (A13)] as compared to the size

of the corresponding elements of the solution �yk
yk

.

This tells us how much we need to correct the
solution obtained by the previous step in the relaxa-
tion. A sample plot of these as a function of time
iteration step is provided at Fig. 1.

(3) We have also checked the simulation for analyti-
cally solvable dynamics. In particular we observe
that for simulations of 20 000 time iterations we
recover the analytical results (turn-around radius,
virial radius, collapse time) for the Einstein-De
Sitter (matter dominated �m ¼ 1) model within
0.3%. This is the dominant numerical error.

IV. VIRIALIZATION IN fðRÞ GRAVITY

An important question we need to address is how to
identify the epoch at which a collapsing object reaches its
virial radius. In the cases of Einstein-De Sitter (�M;0 ¼ 1)
and �CDM universes we have analytic solutions [23]
(Appendix A), but that is not so in the case of fðRÞ gravity.
What we do employ is a step by step calculation of the
Virial condition. Let us look at energy conservation. The
total velocity vt ¼ dx=dt ¼ dðarÞ=dt ¼ _arþ v, where
x ¼ ar is the physical distance, r is the comoving distance,
and v ¼ a _r is the proper peculiar velocity. The accelera-
tion equation is

dðavÞ
dt

¼ �d�

dr
: (28)

On the other hand, vt satisfies another equation

_v t ¼ �d�t

dx
; �t ¼ �� 1

2
a €ar2: (29)

It is the case that vt and�t are the relevant quantities for
the virial theorem. To see it, let us consider a simple case
that phit does not vary with time. Multiplying vt to both
sides and integrating over t, we obtain the familiar energy
conservation

1
2 ðvtÞ2 þ�t ¼ constant: (30)

Multiply Eq. (29) by x, we obtain

d

dt
ðxvtÞ � ðvtÞ2 ¼ �x

d�t

dx
: (31)

This equation is satisfied at all times. After virialization,
we then take the average of the above equation for all
particles. Now the velocity of particles is random (no
correlation with x), so we have hxvti ¼ 0. Then

hðvtÞ2i ¼
�
x
d�t

dx

�
: (32)

An equivalent expression, which can be applied straight-
forwardly, is

2K �
Z
ðvtÞ2dM ¼

Z
x
d�t

dx
dM: (33)

Here, K is the total kinetic energy. The integral is over the
region of mass M. This is the general expression of the
virial theorem. One can check in the case of Newtonian
gravity, �t / M=x and

R
xd�t=dxdM ¼ �R

�tdM �
�W, this reduces to familiar form of the virial theorem,
2K þW ¼ 0. See discussion in [30] for the pitfalls of
using the Newtonian potential energy rather than the
RHS of Eq. (29) for modified gravity or general quintes-
sence models. For the purposes of the simulation we need
to express the above formulas in terms of comoving code
coordinates given by Eqs. (7) and (8). It is straightforward
to obtain
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FIG. 1 (color online). Fractional residuals in the solution for
fR at the final step of the relaxation process as a function of the
time step.
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K ¼ r20

Z
dM

�
~r _aþH0 ~p

a

�
2

(34)

for the kinetic term, and

W ¼ r20

Z
dM~r

�
H2

0

d ~�

d~r
� ~ra €a

�
(35)

for the potential term. These are subsequently discretized
and the sum is over the region with relevant mass.

As expected in the case of GR (EDS and �CDM) the
epoch at which the sum of these two terms is zero coincides
with the analytically predicted epoch of reaching the virial
radius [23,33]:

� ¼ �eff

ð1þ FÞ�m

¼ 2��

ð1þ FÞ�ma
�3ð1þ �Þ

� ¼ 2s� 1

2s3 � 1
;

(36)

where s ¼ rv=rTA is the ratio of the virial radius and the
maximal radius at turnaround. All relevant quantities are
defined at turnaround.

In our simulations we observe that the difference be-
tween the analytical result and our evaluation is of order
10�5 for 20 000 time steps. We expect a similar level of
accuracy to hold in the case of fðRÞmodifications. Thus we
define the epoch of achieving virial radius in fðRÞ by the
moment when this sum becomes zero during simulations.
As per Fig. 2 observe that there are two moments when this
condition is satisfied. We are obviously interested in the
second one, which occurs after passing the turnaround
point.

Density enhancement at the virial radius

For the study of spherical collapse in ordinary GR an
initial top-hat density distribution is very convenient as it
remains a top-hat during collapse. (In other words a top-hat
is a Green’s function for the spherical collapse evolution
operator in GR). This allows for a straightforward defini-
tion of the key variables for spherical collapse—in particu-
lar �c and �vir. This is not the case for modified gravity

theories. Unfortunately we do not know what profile would
be the analogous Green’s function. We can still compute
the evolution of an initial top-hat distribution and try to
compute �c and �vir in a similar way.
We find that at the outer edge of the initial distribution

the density becomes very large. This can lead to observable
signatures for cluster halos, e.g. in weak lensing mass
profiles. This effect appears qualitatively consistent with
arising from chameleon screening. As the Universe ex-
pands the size of the background fR field increases and
we approach the high-field limit of the fðRÞ theory—where
it behaves as GR with enhanced Newton’s constant. This
means that the outer edge collapses faster than it would in
regular GR. The inside of the collapsing object, though, is
under the effect of the chameleon and the solution for the
fR field becomes much smaller and thus the collapse slows
down to approach the one in GR with Newton’s constant.
This makes the edge more and more dense as compared to
the inside of the object, and this creates a positive feed-
back. The higher the edge density the stronger its screening
effect and the inside slows down even further thus enhanc-
ing the accumulation of matter at the edge.
There is an interesting possibility (Justin Khoury, private

communication): this density enhancement at the edge can
separate the inside and the outside with an underdensity.
We actually observe that the solution for fR starts exhib-
iting that kind of behavior in the very late stages of the
collapse, but it is very close to the epoch of reaching virial
radius so the effect is not observable in the density profiles.
Clearly there are several issues in the late stages of spheri-
cal collapse that merit further study.
The edge effect leads to difficulties in the numerical

integration for the initial top-hat. We therefore smooth
out the edge with a Gaussian, which reduces the strength
of the positive feedback and allows for stable evolution of
the collapse. This smoothing is applied only to the original
profile (step 1 of the simulation). The complicated part of
that approach is that, as Birkhoff’s theorem is not satisfied
in fðRÞ models of gravity, the end result significantly
depends on the environment, and, in particular, what
smoothing is used.
The smoothed profile has one parameter, the dispersion

of the Gaussian, which allows for controlling how close we
are to a pure top-hat density distribution. The profile is

�ðrÞ ¼ �inðHeðrÞ � Heðr� rTHÞÞ
þ �in Heðr� rTHÞe�ðr�rTHÞ2=ð2�Þ2 ; (37)

where He is the Heavyside step function.
Even with smoothing, though, the code becomes un-

stable beyond reaching the epoch of the virial radius,
preventing us from achieving collapse to singularity—the
epoch of collapse. We utilize a sequence of initial profiles,
each of which has a pure top-hat part and then is smoothed
with a Gaussian with varying dispersions (Fig. 3) that bring
us closer and closer to a pure top-hat distribution. In Fig. 4
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FIG. 2 (color online). Evolution of the virial term. Observe
that there are two points where it crosses zero. We are interested
in the one that happens after turnaround.
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we show a comparison of the density profiles at virializa-
tion between fðRÞ and �CDM. In each case the starting
profile and mass (1:5� 1014M�) are the same. They
achieve virialization at different epochs.

V. IMPLICATIONS FOR THE MASS FUNCTION:
THE COLLAPSE THRESHOLD �c

Reference [23] dealt with spherical collapse in an ana-
lytical way (Appendix A) by solving the two limiting cases
for the strength of the effective Newton’s constant in the
fðRÞ model of gravity. The prediction in the end is that the
fundamental quantities should lie inside of the region
bound by the values of the two limiting cases. In particular
they are identified by the value of the parameter F which
governs the strength of the effective Newton’s constant.
Regular GR corresponds to F ¼ 0 and the strong field limit
to F ¼ 1=3. For �M;0 ¼ 0:24 these imply �c ¼ 1:673 for

F ¼ 0, and �c ¼ 1:692 for F ¼ 1=3.
Computing �c is straightforward in �CDM with GR.

For a given starting epoch ain we need to find an initial
overdensity �in;GR, which would collapse to a singularity at

the present time. Then we just need to evolve that initial
overdensity to present time via the linear growth factor. In
the case of�CDM this can be performed analytically ([34]
Appendix A). In the case of fðRÞmodified gravity there are
two complications:

(1) The linear growth factor is scale dependent.
(2) Our simulation allows us to only reach the epoch of

reaching the virial radius and not the epoch of
collapse.

Resolving the first issue is not a complicated task. The
solution is to go to Fourier space and convolve the linear
growth factor at the epoch of collapse (normalized with the
growth factor at the initial epoch) with the Fourier image of
a top-hat function. After that, we need to Fourier transform
back to physical space, which is greatly simplified, as we
are interested only at the value at r ¼ 0, and sums up to the
evaluation of an integral.

Next we deal with the problem of estimating the collapse
epoch. The numerical issues we have with the development
of a density spike at the edge require the use of approx-
imations. First we study the effect of the environment due
to the invalidity of Birkhoff’s theorem. Recall that if
Birkhoff’s theorem is valid in a gravitational theory then
the behavior of a shell depends only on the mass inside the
ball enclosed by that shell. In our case that is not correct
and shells are influenced by what is outside—the environ-
ment. This way we can study the trend of changes in the
top-hat part of the initial profile when approaching a pure
top-hat overdensity.

In order to estimate the collapse epoch, we first note that
the time/scale factor between the epoch of reaching the
virial radius and the epoch of collapse to singularity is a
small fraction of the total time/scale factor in the evolution
of the spherical object. Thus we will assume that if an

object in fðRÞ gravity achieves its virial radius at the same
epoch as a corresponding object in�CDM does, then these
two objects should reach collapse to a singularity at ap-
proximately the same epoch as well. Then we can make an
estimate of how wrong we are in this prediction. The task
of finding �c then is moved to finding the initial over-
density in fðRÞ, which would reach its virial radius at the
same epoch at which a corresponding object in GR does. In
addition we require that the GR object collapses to a
singularity at the present epoch.
What is left is estimating the error of this calculation.

One way to approach the problem is to look at the radial
velocity field of the evolving shells in our simulation and
compare them between the corresponding objects in fðRÞ
and�CDM. In Fig. 5 we show the velocity ratio computed
shell by shell and normalized by the physical position of
the shells (the corresponding fðRÞ and �CDM have differ-
ent size at the epoch of achieving the virial radius). The
different colors correspond to the different smoothing fac-
tors we have introduced as a way to approach a pure top-hat
distribution. In our simulation we have chosen shell num-
ber 100 to represent the edge of the top-hat part of the
initial overdensity. As we can see the normalized velocity
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FIG. 4 (color online). Comparison of the density profiles at the
epoch of virialization for fðRÞ gravity (blue) and GR (red). In
each case the starting profile (Gaussian smoothed top-hat) and
mass (1:5� 1014M�) are the same. Virialization is reached at
different epochs.
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FIG. 3 (color online). Smoothed density profiles with
Gaussians with different dispersion.
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ratio remains within 5% of unity at the edge of the top-hat,
which suggests that a good estimate of our error would be
of the same order.

Another way to approach the issue is to vary the initial
overdensity and look at how much it changes the epoch of
achieving the virial radius and compare with the expected
epoch of collapse. In particular, values for the initial over-
density, that have epoch of virial radius close or beyond the
expected epoch of collapse, set a bound on our error. We
found that this also puts a hard error bar of 5%, which is
what we finally used in our calculation.

VI. RESULTS AND DISCUSSION

The main results of this work is presented in Figs. 4
and 6. The development of an excess overdensity at the
edge of spherical halos in fðRÞ gravity is shown in Fig. 4.
While we have not carried out detailed studies of realistic
mass profiles, the results suggest that the region around the
virial radii of cluster halos may contain signatures of fðRÞ–
type theories of gravity.

For the collapse threshold �c, our results are shown in
Fig. 6. We tested the following conjectures:

(1) In the weak field regime our calculations should
approach the result for regular strength �CDM
(F ¼ 0).

(2) In the strong field regime the result must approach
the values predicted in [23] for F ¼ 1=3. This be-
havior is not guaranteed. We know, for example, that
in this limit Eq. (12) is not valid.

We find a significant dependence of the values of �c on
the field strength, and particularly in the physically inter-
esting region around fR0 ¼ �10�6—currently close to the
upper bound permissible by observations or theoretical
considerations. We observe a strong environmental depen-
dence with a significant trend: when reducing the disper-
sion of the smoothing Gaussian (and thus approaching pure
top-hat distribution) we deviate further away from the
analytical prediction in [23]. This result shows that the
nonlinear chameleon properties of the fðRÞ models

strongly affect its behavior; thus analytical approximations
based on linear predictions should be viewed as simple
guidelines. However our error bars are still large, a more
careful study is needed to make any definitive statements
about �c.
Studying smoothed top-hat initial profiles and obtaining

estimates for �c is the first step in studying spherical halos
in fðRÞ gravity. Further work is needed in understanding
realistic halos with differing masses and environment. It
would also be interesting in future work to study the
abundance and clustering properties of halos: mass func-
tion and halo bias.
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APPENDIX A: RELAXATION SCHEME FOR
SOLVING THE SYSTEM OF NONLINEAR ODES

As discussed in [22] (p. 8) the primary equation we need
to solve [Eq. (5) and subsequently Eq. (24) and (25)] is
nonlinear and cannot be solved as an initial-value problem
as the homogeneous equation has exponentially growing

and decaying Yukawa solutions eð��rÞ=r. Initial-value in-
tegrators have numerical errors that would stimulate the
positive exponential, whereas relaxation methods avoid
this problem by enforcing the outer boundary at every
step. So we also employ a relaxation method for solving
two-point boundary problems in ODE. We employ a
Newton’s method [35] with dynamical allocation of the
mesh grid. The mesh allocation function is taken to be
logarithmic with its higher density at the origin, which is
the primary region of interest and where we expect the
solution to be more rapidly changing. As a guess solution
for each step we utilize the relaxed solution of the previous
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FIG. 6 (color online). �c as a function of field strength fR0 for
mass (1:5� 1014M�). The results are color coded to represent
the dispersion of the smoothing Gaussian.
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step, while for the initial guess at the beginning of the
simulation we use a linear solution. Generally if we have a
system of discretized first-order ordinary differential equa-
tions in the form:

0 ¼ Ek � yk � yk�1 � ðxk � xk�1Þgkðxk; xk�1; yk; yk�1Þ
k ¼ 2 . . .M; (A1)

where the index k spans the number of grid points 2 . . .M,
the vector E consists of the system of N discretized first-
order ODEs at each point (and has a total of N 	M
components—N 	 ðM� 1Þ from differential equations
and N from boundary conditions). E1 and EMþ1 describe
the boundary conditions. So a Taylor expansion with re-
spect to small changes �yk looks like

E kðyk þ�yk; yk�1 þ�yk�1Þ

� Ekðyk; yk�1Þ þ
XN
n¼1

@Ek

@yn;k�1

�yn;k�1 þ
XN
n¼1

@Ek

@yn;k
�yn;k:

(A2)

For a solution we want the updated value Ekðyk þ
�yk; yk�1 þ �yk�1Þ to be zero, which sets up a matrix
equation

XN
n¼1

Sj;n�yn;k�1 þ
X2N

n¼Nþ1

Sj;n�yn;k ¼ �Ej;k; (A3)

where

Sj;n ¼
@Ej;k

@yn;k�1

; Sj;nþN ¼ @Ej;k

@yn;k
; (A4)

and the quantity Sj;n is a N � 2N matrix at each point.

Analogously we obtain similar algebraic equations on the
boundaries. Considering our problem we look at Eqs. (24)
and (25) to obtain (after discretization and using the ap-
propriate variables)

E1;k¼ðyk�yk�1Þ�ðrk�rk�1Þ
�
rkþrk�1

2

�

� 1
�fR

�M;0

a~c2

2
4a3

�
1

a3
þ4

��;0

�M;0

�

�
0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rkþrk�1

2

s
e�ðrkþrk�1=4Þ�1

1
A��

�
rkþrk�1

2

�35
(A5)

E2;k ¼ ðuk � uk�1Þ � ðrk � rk�1Þ
�
yk þ yk�1

2

�
e�ðrkþrk�1=2Þ

(A6)

S1;1;k ¼ �1; S1;3;k ¼ 1 (A7)

S1;2;k ¼ S1;4;k

¼
�
rk � rk�1

4

��
rk þ rk�1

2

�

	
2
4a3

�
1

a3
þ 4

��;0

�M;0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rk þ rk�1

2

s
e�ðrkþrk�1=4Þ

3
5
(A8)

S2;1;k ¼ S2;3;k ¼ �
�
rk � rk�1

2

�
e�ðrkþrk�1=2Þ (A9)

S2;2;k¼
�
rk�rk�1

2

��
ykþyk�1

2

�
e�ðrk�rk�1=2Þ�1 (A10)

S2;4;k¼
�
rk�rk�1

2

��
ykþyk�1

2

�
e�ðrk�rk�1=2Þþ1: (A11)

The boundary conditions are also easily translated in terms
of the relaxation scheme

E2;0 ¼ eu1 � r1y1; E1;Mþ1 ¼ euM � rM: (A12)

The notation here is probably a bit confusing. The quantity
E is a vector which consists consecutively of two elements
per M� 1 grid points. In addition there is one element
each at the beginning and the end that correspond to the
boundary conditions. Thus the total length of E is NM,
while the matrix S has NM� NM elements. The task of
relaxing the solution at each step of the scheme requires
solving the matrix equation

S 
 b ¼ E: (A13)

The vector b contains the updates �yk. For a grid of 1000
points our equation requires a matrix of derivatives of size
2000� 2000 elements. Fortunately it is sparsely populated
and as such can be represented by a sparse array structure.
This allows for the use of methods particularly designed
for solving such systems, like Krylov’s method, which we
employ.

APPENDIX B: SPHERICAL COLLAPSE IN �CDM

The evolution and collapse of spherical overdensities
have been useful for modeling the formation of galaxy
and cluster halos. In GR the problem can be approached
analytically and we will outline the derivation presented
e.g. in [23]. We start with the nonlinear and Euler equation
for a nonrelativistic pressureless fluid in comoving coor-
dinates

@�

@t
þ 1

a
r 
 ð1þ �Þv ¼ 0

@v

@t
þ 1

a
ðv 
 rÞvþHv ¼ � 1

a
r�;

(B1)

where aðtÞ is the expansion scale factor, HðtÞ ¼ _a=a, and
� is the ‘‘Newtonian’’ potential. These equations continue
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to be valid for modifications of gravity that remain a metric
theory [36]. These can now be joined together to form a
second-order equation for �.

@2�

@t2
þ 2H

@�

@t
� 1

a2
@2ð1þ �Þvivj

@xi@xj
¼ r 
 ð1þ �Þr�

a2

(B2)

Solving this equation requires information about the ve-
locity and potential fields. In the case of a spherical top-hat
distribution, to preserve the top-hat distribution, the veloc-
ity field must take the form v ¼ AðtÞr to have a spatially
constant divergence. Its amplitude is related to the top-hat
density perturbation through the continuity equation

_�þ 3
að1þ �ÞA ¼ 0: (B3)

This leads to

@2vivj

@xi@xj
¼ 12A2 ¼ 4

3
a2

_�2

ð1þ �Þ2 : (B4)

Substituting the above relation, the equation for the evolu-
tion of � becomes

@2�

@t2
þ 2H

@�

@t
� 4

3

_�2

ð1þ �Þ ¼
ð1þ �Þ

a2
r2�; (B5)

which is completed by the Poisson’s equation for the
potential

r2� ¼ 4�Ga2��m: (B6)

It is common to express spherical collapse through the
evolution of the radius of the top-hat. For that we use
mass conservation

M ¼ 4�

3
r3 ��mð1þ �Þ ¼ constant (B7)

to obtain the following relation:

€r

r
¼ H2 þ _H �r2�

3a2
: (B8)

Expressing derivatives in terms of scale factor 0 ¼ d=d lna,
with the useful substitution

w ¼ r

ri
� a

ai
; (B9)

and using Poisson’s equation we obtain:

w00 þH0

H
w0 ¼ � 1

2

�ma
�3 � 2��

�ma
�3 þ��

w

� 1

2

�ma
�3

�ma
�3 þ��

�
a

ai
þ w

�
�; (B10)

where

� ¼
�

1

1þ wai=a

�
3ð1þ �iÞ � 1: (B11)

In these coordinates collapse occurs when w ¼ � a
ai
. The

task of computing �c now reduces to the following: for a
given ai find an initial overdensity �i such that the collapse
occurs at a ¼ 1. Then using the linear growth factor in
�CDM (see for example [36]) we extrapolate �i to the
present epoch to obtain �c as

�cðr ¼ 0Þ ¼ A
Z D̂ðk; a ¼ 1Þ

D̂ðk; ainÞ
�̂ðk; ainÞeikrjr¼0dk: (B12)
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