
Declarative Network Verification

Anduo Wang1 Prithwish Basu2 Boon Thau Loo1 Oleg Sokolsky1

1 Computer and Information Sciences Department, University of Pennsylvania,
3330 Walnut Street, Philadelphia, PA 19104-6389
2 Network Research Group, BBN Technologies,

10 Moulton Street, Cambridge, MA 02138
{anduo,boonloo,sokolsky}@seas.upenn.edu pbasu@bbn.com

Abstract. In this paper, we present our initial design and implementa-
tion of a declarative network verifier (DNV). DNV utilizes theorem prov-
ing, a well established verification technique where logic-based axioms
that automatically capture network semantics are generated, and a user-
driven proof process is used to establish network correctness properties.
DNV takes as input declarative networking specifications written in the
Network Datalog (NDlog) query language, and maps that automatically
into logical axioms that can be directly used in existing theorem provers
to validate protocol correctness. DNV is a significant improvement com-
pared to existing use case of theorem proving which typically require
several man-months to construct the system specifications. Moreover,
NDlog, a high-level specification, whose semantics are precisely compiled
into DNV without loss, can be directly executed as implementations,
hence bridging specifications, verification, and implementation. To vali-
date the use of DNV, we present case studies using DNV in conjunction
with the PVS theorem prover to verify routing protocols, including even-
tual properties of protocols in dynamic settings.

Keywords: declarative networking, network protocol verification, domain-
specific languages, theorem proving

1 Introduction

In recent years, we have witnessed a proliferation of new overlay networks [24]
that use the existing Internet to enable deployable network evolution and intro-
duce new services. Concurrently, as sophisticated, bandwidth-intensive, and even
mission-critical services are being deployed over heterogeneous network infras-
tructure, there is increased demand for new network routing protocols that can
flexibly adapt to a wide range of variability in network connectivity and data
traffic patterns. This has cummulated into recent efforts at clean-slate efforts
aimed at redesigning the Internet.

Given the proliferation of new architectures and protocols, there is a growing
consensus on the need for formal software tools and programming frameworks
that can facilitate the design, implementation, and verification of new protocols.



This has lead to several recent proposals broadly classified as: (1) algebraic and
logic frameworks [11, 9] that enable protocol correctness in the design phase;
(2) testing platforms [16, 27] that provide mechanisms for runtime verification
and distributed replay, and (3) programming toolkits [8, 14] that enable network
protocols to be specified, implemented, and model-checked.

In this paper, we present our initial design and implementation of a declara-
tive network verifier (DNV). Our work is a significant step towards bridging net-
work specifications, protocol verification, and implementation within a common
language and system. DNV achieves this unified capability via the use of declara-
tive networking [20, 19, 18], a declarative domain-specific approach for specifying
and implementing network protocols, and theorem proving, a well established
verification technique based on logical reasoning.

In declarative networking, network protocols are specified using a declara-
tive logic-based query language called Network Datalog (NDlog). In prior work,
it has been shown that traditional routing protocols can be specified in a few
lines of declarative code [20], and complex protocols such as Chord DHT [31]
in orders of magnitude less code [19] compared to traditional imperative imple-
mentations. This compact and high-level specifications enables rapid prototype
development, ease of customization, optimizability, and the potentiality for pro-
tocol verification. When executed, these declarative networks result in efficient
implementations, as demonstrated by the P2 declarative networking system [1].

Recent significant advances in model checking of network protocol imple-
mentations include MaceMC [13] and CMC [7]. Compared to these proposals,
DNV has the advantage that it achieves complete verification for networks of
arbitrary size, a long-standing challenge in any practical network verification
system. Incomplete verification is a common limitation in MaceMC and CMC
due to the the state-explosion problem, particularly when used to verify large
networks with complex protocol behavior. In addition, since DNV directly ver-
ifies declarative networking specifications, an explicit model extraction step via
execution exploration is not required.

This paper makes the following two contributions. First, we propose DNV,
a declarative network verifier that leverages declarative networking’s connection
to logic programming to automatically compile high-level NDlog program into
formal specifications as axioms without semantics loss, which can be further used
in a theorem prover to validate protocols. A semi-automated proof guided by
the user is then carried out and mechanically checked in a general-purpose the-
orem prover to establish the protocol correctness properties. High-level NDlog
programs that have been verified in DNV can be directly executed as imple-
mentations, hence bridging specifications and implementations within a unified
declarative framework.

Second, we demonstrate that DNV enables the verification of network pro-
tocols in dynamic settings, where protocols continuously update network state
based on incoming network events. DNV achieves this via its use of declarative
networking which incorporates the notion of periodic soft-state [26] maintenance
of network state into its query language and semantics. Soft state is central
and critical in networking implementations because in a very simple manner it



provides eventually correct semantics in the face of reordered messages, node
disconnection, and other unpredictable occurrences.

DNV aims to provide a practical solution towards network protocol veri-
fication, one that achieves a unifying framework that combines specifications,
verification, and implementation. Our work is a significant improvement over
existing usage of theorem proving [12, 10] which typically require several man-
months to develop the system specifications, a step that DNV reduces to a few
hours through the use of declarative networking. To our best knowledge, DNV
is also one of the first attempts at using theorem proving to verify eventual
semantics of protocols in dynamic settings.

2 Background: Declarative Networking

In this section, we will provide a brief overview of declarative networking. Inter-
ested readers are referred to references [20, 19, 18, 17] for more details.

2.1 Datalog Language

Declarative networks are specified using Network Datalog (NDlog), a distributed
logic-based recursive query language first introduced in the database community
for querying network graphs. NDlog is primarily a distributed variant of Dat-
alog. We first provide a short review of Datalog, following the conventions in
Ramakrishnan and Ullman’s survey [25]. A Datalog program consists of a set of
declarative rules. Each rule has the form p :- q1, q2, ..., qn., which can be
read informally as “q1 and q2 and ... and qn implies p”. Here, p is the head of
the rule, and q1, q2,...,qn is a list of literals that constitutes the body of the rule.
Literals are either predicates with attributes (which are bound to variables or
constants by the query), or boolean expressions that involve function symbols
(including arithmetic) applied to attributes. In Datalog, rule predicates can be
defined with other predicates in a cyclic fashion to express recursion. The or-
der in which the rules are presented in a program is semantically immaterial;
likewise, the order predicates appear in a rule is not semantically meaningful.
Commas are interpreted as logical conjunctions (AND). The names of predicates,
function symbols, and variable names begin with an upper letter, while constants
names begin with an lowercase letter. An optional Query rule specifies the output
of interest (i.e. result tuples).

2.2 Path-vector Protocol

We present an example NDlog program that implements the path-vector proto-
col [23], a standard textbook route protocol used for computing paths between
any two nodes in the network.
p1 path(@S,D,P,C):- link(@S,D,C),P=f_init(S,D).

p2 path(@S,D,P,C):- link(@S,Z,C1), path(@Z,D,P2,C2),C=C1+C2,

P=f_concatPath(Z,P2), f_inPath(P2,S)=false.

p3 bestPathCost(@S,D,min<C>):-path(@S,D,P,C).

p4 bestPath(@S,D,P,C):- bestPathCost(@S,D,C), path(@S,D,P,C).

Query bestPath(@S,D,P,C).



The program takes as input link(@S,D,C) tuples, where each tuple corre-
sponds to a copy of an entry in the neighbor table, and represents an edge from
the node itself (S) to one of its neighbors (D) of cost c. NDlog supports a location
specifier in each predicate, expressed with @ symbol followed by an attribute.
This attribute is used to denote the source location of each corresponding tuple.
For example, link tuples are stored based on the value of the S field.

Rules p1-p2 recursively derive path(@S,D,P,C) tuples, where each tuple rep-
resents the fact that the path from S to D is via the path P with a cost of C. Rule
p1 computes one-hop reachability trivially given the neighbor set of S stored in
link(@S,D,C). Rule P2 computes transitive reachability as follows: if there exists
a link from S to Z with cost C1, and Z knows about a shortest path P2 to D

with cost C2, then transitively, S can reach D via the path f concatPath(Z,P2)

with cost C1+C2. Note that p1-p2 also utilizes two list manipulation functions to
maintain path vector p: f init(S,D) initializes a path vector with two elements
S and D, while f concatPath(Z,P2) prepends Z to path vector P2.

Rules p3-p4 take as input hop tuples generated by rules p1-p2, and then derive
the hop along the path with the minimal cost for each source/destination pair.
The output of the program is the set of bestPathHop(@S,D,Z,C) tuples, where
each tuple stores the next hop Z along the shortest path from S to D. To prevent
computing paths with cycles, an extra predicate f inPath(P, S) = false is used
in rule p2, where the function f inPath(P, S) returns true if node S is in the
path vector P.

The execution model of declarative networks is based on a distributed variant
of the standard evaluation technique for Datalog programs that is commonly
known as semi-näıve (SN) evaluation [18], with modifications to enable pipelined
asynchronous evaluation suited to a distributed setting. Reference [18] provides
details on the implementation and execution model of declarative networking.

For the purposes of formal verification, we do not consider the location spec-
ifiers within the proof. This does not affect the program in terms of the set of
eventual facts being generated but does affect the notion of data distribution.
Our extended technical report [32] elaborate this issue in greater detail.

3 Overview of DNV

Figure 1 provides an overview of DNV’s basic approach towards unifying speci-
fications, verification, and implementation within a common declarative frame-
work. DNV takes as input NDlog program specifications of the declarative pro-
tocol (see Section 2 for an example). Since most theorem provers leverage type
information, DNV further includes a Type Schema with the NDlog program spec-
ifications. This is not unlike a database-like schema storing the attribute types
of all network state being used.

In order to carry out the formal verification process, the NDlog programs
and schema information are automatically compiled into formal specifications
recognizable by a standard theorem prover (e.g. PVS [21], Coq [3]) using the
axiom generator. As depicted in the left-part of Figure 1, At the same time, the
protocol designer specifies high-level invariant properties of the protocol to be



Fig. 1. DNV overview block diagram. Arrows denote flow of information.

checked via two mechanisms: invariants can be written directly as theorems into
the theorem prover, or expressed as NDlog rules which are then automatically
translated into theorems using the axiom generator. The first approach increases
the expressiveness of invariant properties, where one can reason with invariants
that can be only expressible in higher order logic. The second approach has
restricted expressiveness based on NDlog’s use of Datalog, but has the added
advantage that the same properties expressed in NDlog can be verified by both
theorem prover and at runtime.

From the perspective of network designers, as depicted in the left part of
Figure 1, they reason about their protocols using the high-level protocol specifi-
cations and invariant properties. The NDlog high-level specifications are directly
executed and also proved within the theorem prover. Any errors detected in the
theorem prover can be corrected by changing the NDlog specifications. Our ini-
tial DNV prototype uses the PVS theorem prover, due to its substantial support
for proof strategies which significantly reduce the time required in the actual
proof process. However, the techniques describe in this paper are agnostic to
other theorem provers. We have also validated some of the verification presented
in this paper using the Coq [3] prover.

To illustrate the verification process, we step through the path-vector proto-
col example, shown in Section 2. For ease of exposition, we defer the treatment
of soft-state derivations and events to Section 4, focusing instead on traditional
hard-state data (with infinite lifetimes) that are valid until explicitly deleted.

3.1 Axiom Generation: From NDlog rules to PVS Axioms

The first step in DNV involves the automatic generation of PVS formalization
(or axioms) directly from NDlog rules. Based on the proof-theoretic semantics of
Datalog [30], there is a natural and automatic mapping from NDlog rules to PVS
axioms.3 Before showing the actual PVS encoding for the path-vector protocol,
it is informative to understand the proof-theoretic semantics of p1 and p2 as
inference rules used in proof system:

3 The equivalence of NDlog’s proof-theoretic semantics and operational semantics
guarantees that DNV is sound in the sense that, the correctness property established
by DNV corresponds precisely to the operational semantics of NDlog execution.



The inference rule p1 expresses the logical statement ∀(S, D, P, C).link(S, D,C)∧
P = finit(S, D) =⇒ path(S, D, P, C)

Rule p2 is slightly more complex as some attribute variables do not appear in
the resulting head. The general technique to express these variables is in terms
of existential quantification. Accordingly, rule p2 expresses the logical statement
that ∀(S, D, P, C).∃(C1, C2, Z, P2).link(S, Z,C1)∧ bestPath(Z, D, P2, C2)∧C =
C1 + C2 ∧ P = fconcatPath(Z, P2) =⇒ path(S, D, P, C)

From the above logical statements, DNV generates the following axioms:
path_generate: AXIOM

FORALL (S,D,Z:Node)(C:Metric)(P:Path):(link(S,D,C) AND P=f_init(S,D)) OR

((EXISTS (P2:Path)(C1,C2:Metric):(link(S,Z,C1) AND bestPath(Z,D,P2,C2)

AND C=C1+C2 AND P=f_concatPath(Z,P2))) =>path(S,D,P,C)

path_close: AXIOM

FORALL (S,D,Z:Node)(C:Metric)(P):path(S,D,P,C)=>

((link(S,D,C) AND P=f_init(S,D)) OR (EXISTS (Z:Node)(P,P2:Path)

(C1,C2:Metric): (link(S,Z,C1) AND bestPath(Z,D,P2,C2) AND C=C1+C2

AND P=f_concatPath(Z,P2))))

The first path generate axiom is generated in a straightforward manner from
rules p1 and p2, where the logical OR indicates that path facts can be gener-
ated from either rule. The path close axiom indicates that the path tuple is the
smallest set derived by the two rules, ensuring that these axioms automatically
generated in DNV correctly reflected the minimal model of NDlog semantics.
The list manipulation functions f concatPath and f init are predefined from
PVS primitive types. We omit this discussion due to space constraints.

PVS provides inductive definitions that allows the two axioms above to be
written in a more concise and logically equivalent form:
path(S,D,(P: Path),C): INDUCTIVE bool =

(link(S,D,C) AND P=f_init(S,D) AND Z=D) OR (EXISTS (C1,C2:Metric)

(Z2:Node) (P2:Path): link(S,Z,C1) AND path(Z,D,P2,C2) AND

C=C1+C2 AND P=f_concatPath(S,P2) AND f_inPath(S,P2)=FALSE)

The universal quantifiers over the attributes to path (i.e. S,D,Z...) are im-
plicitly embedding and existential quantifiers such as C1 and C2 are explicitly
stated. DNV axiom generator always produces this inductive definition, and em-
ploys the axiom form only in the presence of mutual dependencies among the
head predicates which makes PVS inductive definition impossible. Also note that
the use of f inPath(S,P2)=FALSE constraint prevents loops in path.

Accordingly, NDlog rules p3-p4 are automatically compiled into PVS formal-
ization in a similar way:
bestPathCost(S,D,min_C): INDUCTIVE bool =

(EXISTS (P:Path): path(S,D,P,min_C)) AND (FORALL (C2:Metric):

(EXISTS (P2:Path): path(S,D,P2,C2)) => min_C<=C2)

bestPath(S,D,P,C):INDUCTIVE bool =

bestPathCost(S,D,C) AND path(S,D,P,C)

In addition to the above PVS encoding for NDlog rules, type definitions are
produced automatically from the database schema information. For instance,
given a database schema definition for link(src:string, dst:string, metric:integer)

the corresponding PVS type declaration is link:[Node,Node,Metric -> bool]

where Node is declared as a string type and Metric as an integer type.



3.2 Proving Route Optimality in the Path-Vector Protocol

The next step involves proving actual properties in PVS. Properties are expressed
as PVS theorems and serve as starting points (or goals) in the proof construction
process. We illustrate this process by verifying the route optimality property in
the path-vector protocol expressed in the following PVS bestPathStrong theorem:
bestPathStrong: THEOREM

FORALL (S,D:Node) (C:Metric) (P:Path): bestPath(S,D,P,C) =>

NOT (EXISTS (C2:Metric) (P2:Path): path(S,D,P2,C2) AND C2<C)

The above theorem specifies that for a given bestPath(S,D,P,C) from S to D,
P is the optimal path, i.e. there does not exist another path P2 from S to D with
lower cost C2.

Given the above theorem, one can then utilize PVS to carry out the proof
process. PVS performs the proof in a goal-directed fashion, in this case, start-
ing from the bestPathStrong goal, and then recursively reducing it to subgoals
until all subgoals are trivially true. PVS has approximately 100 built-in proof
strategies, of which 20 are usually sufficient to automate a majority of the proof
effort. We display the strawman proof process that does not utilize any user-
defined proof strategies specific to declarative network beyond PVS’s built-in
proof commands:
("" (skosimp*) (expand bestPath) (prop) (expand bestPathCost)

(prop) (skosimp*) (inst -2 C2!1) (grind))

The proof script reflects the interactive proof process in PVS directed by
the user, where PVS takes care of all low level proof details and allows the user
to concentrate on high-level proof strategies. Without going into details of each
PVS command, we provide a high-level intuition of each step. The first com-
mand skosimp* performs repeated skolemization that removes universal quanti-
fiers S,D,C and P in the theorem. Skolemization is generally the first proof step
to try in proving any universal quantified theorems. The subsequent two expand

commands are used to unfold the earlier inductive definition shown in 3.1, each
followed by prop that performs proportional simplification. Then skosimp* is
employed to remove universal quantifiers and inst to instantiate the existential
quantified variable with proper instance (C2!1). The rest of the proof is complete
by using PVS’s grind command which performs skolemization, heuristic instan-
tiation, propositional simplification and decision procedures for linear arithmetic
and equality.

Once the above proof script is supplied, PVS requires only fraction of a second
to carry out the actual proof. When the proof is completed, it covers all instances
of the network. This is in contrast to model checking, which explores only specific
network instances. In addition to proving the route optimality property of the
declarative path-vector protocol, we have proven properties such as the potential
cycles in the protocol if the cycle check (enforced using the f inPath function)
is removed.

The strawman proof process here is restricted to PVS’s built-in proof com-
mands, and does not utilize any user-defined proof strategies that exploits domain-
specific information. As a result, the proof requires an expert in declarative net-
work and theorem proving. Given that our target users are network designers, the



proof process should ideally be automated. In reference [32], we discuss the po-
tential of using domain-specific PVS strategies tailored to declarative networking
to support the proof construction.

4 Soft-state, Events and Network Dynamics

Up to this point, we have limited our verification to a subset of the complete ND-
log language by omitting the treatment of soft-state tuples (i.e. predicates). This
simplification enables us to generate axioms recognizable by a theorem prover
directly from NDlog programs without having to worry about the semantics of
time and data expiration. In practice, soft-state data and events are central in
network protocols, and adopted in many declarative network implementations.
In the rest of this section, we will introduce the soft-state model in declarative
networking, describe how rules with soft-state predicates (referred as soft-state
rules) can be verified in a similar fashion as shown in Section 3, by first rewrit-
ing soft-state rules into logically equivalent rules with only hard-state predicates
(i.e.hard-state rules).

4.1 Soft-state Model in Declarative Networking

Declarative networking incorporates support for soft-state [26] derivations com-
monly used in networks. In the soft state storage model, all data (input and
derivations) has an explicit “time to live” (TTL) or lifetime, and all expired
tuples must be explicitly reinserted with their latest values and a new TTL or
they are deleted.

To support soft-state, an additional language feature is added to the NDlog
language, in the form of a materialize [19] declaration at the beginning of each
NDlog program that specifies the TTL of predicates. For example, the expression
materialized(link,10,keys(1,2)) specifies that the link tuple is stored at a table
with primary key set to the first and second attributes (denoted by keys(1,2)

and that each link tuple has a lifetime of 10 seconds4. If the TTL is set to
infinity, the predicate will be treated as hard-state.

The soft-state storage semantics are as follows. When a tuple is derived,
if there exists another tuple with the same primary key but differs on other
attributes, an update occurs, in which the new tuple replaces the previous one.
On the other hand, if the two tuples are identical, a refresh occurs, in which the
existing tuple is extended by its TTL.

For a given predicate, in the absence of any materialize declaration, it is
treated as an event predicate with lifetime set to zero. Since events are not
stored, they are primarily used to trigger other rules or in response to network
events. Reference [17] provides more details on how soft-state storage model and
events are implemented within a declarative networking engine.

4 Following the conventions of the P2 declarative networking system, attribute 0 is
reserved for the predicate name.



4.2 Soft-state to Hard-state Rewrite in DNV

The rule rewrite consists of two steps. First, all soft-state predicates of the
form p(...) where “...” refer to predicate arguments, are translated into an
equivalent hard-state predicate of the form p(...,Tc,Tl), where the additional
attributes Tc and Tl denote the creation time and lifetime of each tuple p re-
spectively. This initial rewrite step makes explicit the creation time and lifetime
by adopting Tc, Tl in each soft-state predicate. Event predicates are rewritten
in a similar fashion. However, Tl is omitted since events have zero lifetime by
definition.

After the first step, additional constraints reflecting soft-state semantics are
added to ensure that all soft-state facts only process with other facts valid within
the same window period of time, as expressed in terms of constraints over Tc and
Tl. Consider soft-state rules of the form, e : −e1, s1, s2, ..., sn. This rule triggered
by input event e1 with creation time Tce1, takes as input both the triggering
event and several soft-state predicates s1, s2, ..., sn, and generates a event. The
rewritten equivalent hard-state rules is of the form:
e(..., T ce1) : −e1(..., T ce1), s1(..., T cs1, T ls1), s2(..., T cs2, T ls2), ..., sn(..., T csn, T lsn),

. T cs1 < Tce1 ≤ Tcs1 + tls1, ..., T csn < Tce1 ≤ Tcsn + T lsn.
Since the event e1 directly triggers the derivation of e, the creation time of

the derived event e is set to be the same as that of the input e1 (i.e. Tce1). An
additional n constraints Tcsi < Tce1 ≤ Tcsi +T lsi are added to ensure that only
soft-states si with valid time interval [Tcsi, T csi +T lsi] that always overlaps with
Tce1 are used to generate e.

Another possible class of soft-state rules are of the form, e : −s1, s2, ..., sn,
where an event e is generated by sets of soft-states. The main difference compared
to the previous soft-state rule is the lack of a triggering event. The rewritten
hard-state rule is of the form:
e(..., T c) : −s1(..., T cs1, T ls1), s2(..., T cs2, T ls2), ..., sn(..., T csn, T lsn), T c = max < Tcs1,

. T cs2, ..., T csn >, Tcs1 < Tc ≤ Tcs1 + tls1, ..., T csn < Tc ≤ Tcsn + T lsn.
Note that Tc is set to the max of all possible creation times of the input

soft-state predicates (since the derived fact is true only when all the input facts
are present).

The same rewrite process applies to rules that derive soft-state predicates
s instead of events e. The main difference is an additional Tl attribute to s in
the rewritten rule. This Tl attribute is set to the to the declared lifetime in
corresponding table for s (indicated in the materialize statement). We omit the
presentation due to space constraints.

5 Case Study: Distance-vector in a Dynamic Network

In this section, we illustrate the capability of DNV in reasoning about eventual
semantics of protocols in dynamic networks. We base our illustration on the ver-
ification of the distance-vector protocol, commonly used for computing shortest
routes in a network. Due to space constraints, we are not able to show exhaus-
tively all the PVS specifications and proofs. The interested reader is referred to
reference [6] for the complete PVS axioms, theorems, and proofs.



5.1 Distance Vector Protocol Specification in NDlog

The following soft-state NDlog program implements the distance-vector protocol,
computing best paths with least cost:

materialize(hop,10,keys(1,2,3)).

materialize(bestHop,10,keys(1,2)).

materialize(bestHopCost,10,keys(1,2)).

dv1 hop(@S,D,D,C) :- link(@S,D,C).

dv2 hop(@S,D,Z,C) :- hopMsg(@S,D,Z,C).

dv3 bestHopCost(@S,D,min<C>) :- hop(@S,D,Z,C).

dv4 bestHop(@S,D,Z,C) :- bestHopCost(@S,D,C), hop(@S,D,Z,C).

dv5 hopMsg(@N,D,S,C1+C2):-periodic(@S,5),bestHop(@S,D,Z,C1),link(@S,N,C2).

Query bestHop(@S,D,Z,C)

This program derives soft-state predicates hop, bestHop, and bestHopCost with
TTL of 10 seconds, and an event predicate hopMsg, and takes as input link tuples
which represents dynamic network topology and is implemented by some periodic
neighbor maintenance mechanism [6].

First, rules dv1-dv2 derive hop(@S,D,Z,C) tuples, where Z denotes the next
hop (instead of the entire path) along the path from S to D. Second, the protocol
is driven by the periodic generation of hopMsg(@S,D,Z,C) in rule dv5, where each
node S advertises its knowledge of all possible best hops table (bestHop) to all
its neighbors. Note that bidirectional connectivity and cost is assumed. Each
node receives the advertisements as hopMsg events (rule dv2) which it then stores
locally in its hop table. Finally, Rules dv3-dv4 compute the best hop for each
source/destination pair in a similar fashion as the earlier path-vector protocol.

Unlike the path-vector protocol presented in Section 2.2, the distance-vector
protocol computes only the next hop along the best path, and hence does not
store the entire path between any two nodes.

5.2 Soft-state Rewrite and Automated Axiom Generation

The following NDlog rules dv1-dv6 shows the equivalent hard-state rules after
applying the soft-state rewrite process described in Section 4.2.

dv1 hop(@S,D,D,C,Tc,10) :- link(@S,D,C,Tc,10).

dv2 hop(@S,D,Z,C,Tc,10) :- hopMsg(@Z,D,W,C2,Tc2), Tc=Tc2+5, C=C2+1.

dv3 bestHopCost(@S,D,min<C>,Tc,10) :- hop(@S,D,D,C,Tc,10).

dv4 bestHop(@S,D,Z,C,Tc,10) :- bestHopCost(@S,D,C,Tc,10),

hop(@S,D,Z,C,Tc1,10), Tc1<Tc<=Tc1+10.

dv5 hopMsg(@N,D,Z,C,Tc) :- periodic_dv(@S,5,Tc), bestHop(@S,D,Z,C,Tc1,10),

link(@S,N,C,Tc2,10), Tc2<Tc<=Tc2+10, Tc1<Tc<=Tc1+10.

dv6 periodic_dv(@S,5,Tc) :- periodic_dv(@S,5,Tc2), Tc=Tc2+5

Query bestHop(@S,D,Z,C,Tc,Tl)

Rules dv1-dv5 are the corresponding hard-state rewrites, and dv6 emulates
the behavior of periodic streams employed in dv5, as described in Section 4.2. We
introduce an extra constraint Tc=Tc2+5 in rule dv2. This condition is required so
that causality of rule execution is preserved within one interval: resulting hopMsg

events generated within one periodic interval derives hop facts used in the next



period internal and not vice versa. We note that this addition constraint is
automatically added: required only in cases when rules depend on each other in
a cyclical fashion (e.g. hop derived in dv1-dv2, hopMsg in dv5, and bestHop in dv4),
a dependency that can be detected via static check.

Based on this rewritten program, the automatically generated PVS axioms
are as follows:

hopMsg(S,D,Z,C,Tc): INDUCTIVE bool =

(EXISTS (Tc2,T3:Time): bestHop (S,D,Z,C,Tc2,10) AND periodic(S,5,Tc)

AND link(S,D,Tc3,10) AND Tc2<Tc<=Tc2+10 AND Tc3<Tc<=Tc3+10 AND C=1)

hop(S,D,Z,C,Tc,Tl): INDUCTIVE bool =

(link(S,D,Tc,10) AND Z=D AND Tl=10 AND C=1) OR (EXISTS (C2:Metric)

hopMsg(S,D,Z,C2,Tc2) AND C=C2+1 AND Tl=10 AND Tc=Tc2+5)

bestHopCost(S,D,MIN_C,Tc,Tl): INDUCTIVE bool =

(EXISTS (Z:Node): hop(S,D,Z,MIN_C,Tc) AND Tl=10) AND

(FORALL (C:Metric): (EXISTS (Z:Node): hop(S,D,Z,C,Tc,10))=>MIN_C<=C)

bestHop_refresh: AXIOM

FORALL (S,D,Z:Node) (C:Metric) (Tc:Time): bestHopCost(S,D,C,Tc,10)

AND hop(S,D,Z,C,Tc,10)=>bestHop(S,D,Z,C,Tc,10)

bestHop_close: AXIOM

FORALL (S,D,Z:Node) (C:Metric) (Tc:Time): bestHop(S,D,Z,C,Tc,10)

=> (bestHopCost(S,D,C,Tc,10) AND hop(S,D,Z,C,Tc,10))

periodic_dv(S,I,Tc): INDUCTIVE bool =

EXISTS (Tc2:Time): periodic_dv(S,I,Tc2) AND Tc=Tc2+5 AND I=5

Recall automatic axiom generation process in Section 3.1, PVS axioms would
be explicitly used in face of mutual dependencies between rules (that derive
bestHop, hop, and hopMsg). To break the dependency, we therefore specify dv4

with two axioms bestHop refresh and bestHop close.

5.3 Eventual Convergence Proof in a Stable Network

The lack of knowledge of the entire path in the distance-vector protocol comes
at the expense of potential update loops in the presence of link updates. This
is a well-known limitation of the distance-vector protocol, commonly known as
the count-to-infinity problem.

Our verification is performed on a 4-node network instance as shown in Fig-
ure 2. Note that this instance represents a loop consisting of three nodes (a, b,
and c) that can reach the rest part of the network via a fourth node d, and the
results of this verification apply to any arbitrary network that contains such a
loop. For ease of exposition we do not consider computation of link tuple here
and supply this network instance using the following PVS inductive definition,
where each clause connected by logical operator OR represents a link between two
nodes:

link(S,D,C,Tc,Tl): INDUCTIVE bool =

((S=a AND D=b AND C=1 AND Tl=10 AND (EXISTS (i:posnat): Tc=5*i)) OR

((S=b AND D=c AND C=1 AND Tl=10 AND (EXISTS (i:posnat): Tc=5*i)) OR

...

((S=a AND D=d AND C=1 AND Tl=10 AND (EXISTS (i:posnat): Tc=5*i))



Network convergence is expressed using the following theorem:

bestHopCost_converge: THEOREM

EXISTS (j:posnat): FORALL (S,D:Node)(C:Metric)(i:posnat): (i>j)

=> bestHopCost(S,D,C,5*i,10) = bestHopCost(S,D,C,5*j,10)

Given an input network, the distance-vector protocol requires a number of
rounds of communication among all nodes, for route advertisements (in the form
of hopMsg) to be propagated in the network. In the above theorem, the existential
quantified variable j denotes the initial number of periodic intervals (set to be at
least the network diameter) required to propagate all route advertisements. The
theorem states that for any arbitrary time i after j, the value of bestHopCost

always converges (i.e. no longer changes).

5.4 Count-to-Infinity Analysis in a Dynamic Network

In the final DNV example, we demonstrate the capability of DNV to prove the
presence of the count-to-infinity problem in the distance-vector protocol. This is
a well-studied limitation where the protocol potentially diverges (i.e. not reach
steady state) in the presence of link failures.

Before showing the actual proofs, we provide a textbook exam-

Fig. 2.
Network
Dynamics

ple [23] that clearly demonstrates the problem intuitively. Revisiting
the network in Figure 2, when link(a,d) fails, node a would adver-
tises this information to its immediate neighbors b and c. However,
despite the fact that d is no longer reachable from either a b or
c, based on information that c can reach d in two hops, b would
conclude that it can reach d in three hops. Node c makes a similar
conclusion. In the next round of updates, node a learns that b and
c can reach d in three hops, and updates its distance to d as four
accordingly. This cycle continues indefinitely, resulting in the count-to-infinity
problem.

The proof requires a network scenario that results in a count-to-infinity prob-
lem. Using the example described above, we supply this network dynamics using
the following PVS inductive definition:

link (S,D,C,Tc): INDUCTIVE bool =

((S=a AND D=b AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR

((S=b AND D=a AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR

...

((S=a AND D=d AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR

((S=d AND D=a AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR

((S=a AND D=b AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100)) OR

((S=b AND D=a AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100)) OR

...

((S=c AND D=b AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100)) OR

((S=b AND D=c AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100))

The definition indicates that the link(a,d) and link(d,a) facts are only
present before time 100, denoting that a link failure between nodes a and d

happens at time 100. The count-to-infinity theorem is expressed as follows:



bestHop_increase_to_infinity: THEOREM

FORALL (a,b,d:Node)(t:Time)(c:Metric):(t>100 AND bestHop(a,d,b,c,t,10))=>

(EXISTS (t’:Time)(c’:Metric):(t’>t AND c’>c AND bestHop(a,d,b,c’,t’,10)))

The theorem above states that if the distance vector protocol diverges, the
best hop from a to d will increase indefinitely over time, a symptom of the
count-to-infinity problem. In reference [6], we have the complete proof of this
theorem, as well as addition theorems that further verify the presence of the
count-to-infinity problem. Interestingly, we have been able to prove a stronger
PVS theorem specific to a three-node network cycle: ∀b, d, a, c, t.(∃i.t = i×5∧t >
100) =⇒ (bestHop(b, d, a, c, t, 10) =⇒ bestHop(b, d, a, c + 2, t + 10, 10)), which
expresses the precise pattern that the value of cost argument increases by 2 at
every two update intervals of 10 seconds.

We further verify that a well-known solution to this problem, known as the
split-horizon solution can avoid any two-node cycle, and show that this solution
is insufficient for fixing the count-to-infinity problem in a three-node cycle. Refer
to our extended technical report [32] for more details.

6 Related Work

We briefly survey existing work on network protocol verification.
Classical theorem proving has been used in the past few decades for verifi-

cation of network protocols [29, 5, 10, 4]. Despite extensive work, this approach
is generally restricted to protocol design and standards, and cannot be directly
applied to protocol implementation. A high initial investment based on domain
expert knowledge is often required to develop the system specifications accept-
able by some theorem prover (up to several man-months). Therefore, even after
successful proofs in the theorem prover, the actual implementation is not guar-
anteed to be error-free. DNV avoids this problem by using a common executable
declarative networking language that can be directly verified in a theorem prover.

Runtime verification techniques (e.g. [15, 16, 27]) is a mechanism for checking
at runtime that a system does not violate expected properties. Since declarative
networks utilize a distributed query engine to execute its protocols, these checks
can be expressed as monitoring queries in NDlog. However, any runtime veri-
fication scheme will incur additional runtime overheads, and subtle bugs may
require a long time to be encountered. Moreover, the properties can be checked
in this case are restricted to those can be expressed in NDlog. In particular,
any universal quantified properties, such as bestPathStrong we demonstrated in
Section 3.2 is not checkable in runtime verification based on NDlog query engine.

Model checking is a collection of algorithmic techniques for checking temporal
properties of system instances based on exhaustive state space exploration. Re-
cent significant advances in model checking network protocol implementations
include MaceMC [13] and CMC [7]. Compared to DNV, these approaches are
sound as well, but not complete in the sense that the large state space persistent
in network protocols often prevents complete exploration of the huge system
states. While the heuristics used in exploration maximize the chances of detect-
ing property violations, they are typically inconclusive and restricted to small
network instances and temporal properties.



By adopting a theorem-proving based approach in this paper, DNV is more
expressive and flexible compared to MaceMC and CMC, since higher-order log-
ics can be used to specify network properties. In addition, since DNV directly
verifies declarative networking specifications, an explicit model extraction step
via execution exploration is not required.

7 Future Work

We are in the process of applying DNV to more complex overlay networks,
and reasoning about routing protocols, particularly when integrated with poli-
cies [11, 9]. Our initial experiences suggest that DNV is a promising approach
towards a unified framework that integrates specification, implementation, and
verification. Moving forward, we have identified a few areas of future work, in
the areas of domain specific proof strategies [22, 2], proof automation [33, 34,
28]. We further plan to leverage PVS’s support for CTL (variant of temporal
logic) model-checking [21] to integrate model checking into DNV. Our extended
report [32] details our ongoing and future work.

8 Acknowledgments

This work was partially sponsored by NSF CNS-0721845 and DARPA through
Air Force Research Laboratory (AFRL) Contract FA8750-07-C-0169. The views
and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government.

References

1. P2: Declarative Networking. http://p2.cs.berkeley.edu.
2. M. Archer, B. D. Vito, and C. Muñoz. Developing user strategies in PVS: A

tutorial. In STRATA’03, NASA/CP-2003-212448, 2003.
3. Y. Bertot and P. Castéran. Interactive theorem proving and program development.

coq’art: The calculus of inductive constructions, 2004.
4. K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal verification of standards

for distance vector routing protocols. J. ACM, 49(4):538–576, 2002.
5. R. Cardell-Oliver. On the use of the hol system for protocol verification. In

TPHOLs, pages 59–62, 1991.
6. DNV use cases for protocol verification. http://www.seas.upenn.edu/∼anduo/dnv.html.
7. D. Engler and M. Musuvathi. Model-checking large network protocol implemen-

tations. In NSDI, 2004.
8. A. R. et. al. MACEDON: Methodology for Automatically Creating, Evaluating,

and Designing Overlay Networks”,. In NSDI, 2004.
9. N. Feamster and H. Balakrishnan. Correctness Properties for Internet Routing. In

Allerton Conference on Communication, Control, and Computing, 2005.
10. A. P. Felty, D. J. Howe, and F. A. Stomp. Protocol verification in nuprl. In CAV.

Springer-Verlag, 1998.
11. T. G. Griffin and J. L. Sobrinho. Metarouting. In ACM SIGCOMM, 2005.



12. K. Havelund and N. Shankar. Experiments in theorem proving and model checking
for protocol verification. In FME, 1996.

13. C. Killian, J. Anderson, R. Jhala, and A. Vahdat. Life, death, and the critical
transition: Finding liveness bugs in systems code. In NSDI, 2007.

14. C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat. Mace:
language support for building distributed systems. In PLDI, 2007.

15. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime assurance
based on formal specifications. In PDPTA, 1999.

16. X. Liu, Z. Guo, X. Wang, F. Chen, X. L. J. Tang, M. Wu, M. F. Kaashoek, and
Z. Zhang. D3S: Debugging Deployed Distributed Systems. In NSDI, 2008.

17. B. T. Loo. The Design and Implementation of Declarative Networks (Ph.D. Dis-
sertation). Technical Report UCB/EECS-2006-177, UC Berkeley, 2006.

18. B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking: Language,
Execution and Optimization. In ACM SIGMOD, 2006.

19. B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.
Implementing Declarative Overlays. In ACM SOSP, 2005.

20. B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative Routing:
Extensible Routing with Declarative Queries. In ACM SIGCOMM, 2005.

21. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining
Specification, Proof Checking, and Model Checking. In CAV, 1996.

22. S. Owre and N. Shankar. Writing PVS proof strategies. In STRATA’03, 2003.
23. L. Peterson and B. Davie. Computer Networks: A Systems Approach, Fourth Edi-

tion. Morgan-KaufMann, 2007.
24. L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet Impasse Through

Virtualization. In HotNets-III, 2004.
25. R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive Database

Systems. Journal of Logic Programming, 23(2):125–149, 1993.
26. S. Raman and S. McCanne. A model, analysis, and protocol framework for soft

state-based communication. In SIGCOMM, pages 15–25, 1999.
27. P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat.

Pip: Detecting the Unexpected in Distributed Systems. In NSDI, 2006.
28. A. Riazanov and A. Voronkov. The design and implementation of vampire. AI

Commun., 15(2):91–110, 2002.
29. J. Rushby. Specification, proof checking, and model checking for protocols and

distributed systems with PVS. Tutorial FORTE X/PSTV XVII ’97, 1997.
30. Serge Abiteboul, et.al. Foundations of Databases. Addison-Wesley, 1995.
31. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A

Scalable P2P Lookup Service for Internet Applications. In SIGCOMM, 2001.
32. A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Declarative Network Verifica-

tion. University of Pennsylvania Department of Computer and Information Science
Technical Report No. MS-CIS-08-34, 2008.

33. Yices. yices.csl.sri.com/.
34. Z3. http://research.microsoft.com/projects/Z3/.


