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ABSTRACT 

ROLE OF THE EBOLAVIRUS GLYCOPROTEIN IN COUNTERING TETHERIN 

DURING VIRAL BUDDING 

Nathan H. Vande Burgt 

Paul F. Bates 

 Ebola virus (EBOV) is the causative agent of Ebola virus hemorrhagic fever and initiates 

sporadic outbreaks with very high mortality rates of up to 90%.  The only viral surface protein on 

EBOV virions, the EBOV Glycoprotein (GP1,2), is a known antagonist of the intrinsic innate 

immune effector Tetherin, which prevents release of budded virions by “tethering” them to the 

cell.  Unlike other Tetherin antagonists, GP1,2 does not degrade Tetherin, remove Tetherin from 

the cell surface, or sequester Tetherin in intracellular compartments.  Thus, the mechanism of 

how GP1,2 counters Tetherin is not well understood.  This study utilizes methods in molecular 

biology and microbiology to focus on the different domains of GP1,2 and understand their role in 

countering Tetherin.  Using VP40 or HIV-1 Gag to produce virus-like particles (VLP), we show 

that the GP1,2 glycan cap and transmembrane domain are necessary for GP1,2 anti-Tetherin 

activity.  Chimeric proteins containing alternative transmembrane domains in place of the GP1,2 

transmembrane domain fail to counteract Tetherin and release VLP.  Additionally, using widefield 

microscopy, alternative transmembrane domains do not change the surface localization of 

Tetherin and GP1,2, suggesting that surface interactions may not be important for understanding 

how GP1,2 counters Tetherin.  Other observations and experiments suggest an active role for 

GP1,2 in the formation of viral particles.  In conclusion, we propose a model where the GP1,2 

transmembrane domain assists in a budding process that does not allow for incorporation of 

Tetherin into the budding virions.  The model suggests that the GP1,2 transmembrane domain 

functions to avoid Tetherin mediated restriction and to form viral particles independent of VP40 

budding. 
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CHAPTER 1 – INTRODUCTION AND BACKGROUND 

Section 1.1 – Ebola Virus Epidemiology 

 Ebola virus is a filamentous negative-sense, single stranded RNA virus of the family 

Filoviridae (5, 123, 139).  There are two major genera within Filoviridae, Ebolavirus and 

Marburgvirus, both of which have viral species capable of producing severe hemorrhagic fever in 

people.  A third genus, Cuevavirus, has not been implicated in causing human disease (182).  

Within the Ebolavirus genus, there are currently five viral species with varying propensities to 

infect human populations and cause disease.  The founding member of the genus, Zaire 

ebolavirus (EBOV), was originally described in 1976 as the causative agent of an outbreak 

responsible for 280 deaths in the Democratic Republic of the Congo (DRC), formerly Zaire (2).  

Additional viral species, such as Sudan ebolavirus, have caused outbreaks of similar size and 

severity (1).  A third species Bundibugyo ebolavirus, is a relatively new species and has caused 

outbreaks with less mortality than seen with Zaire or Sudan ebolavirus (165).  Two other species 

of Ebolavirus, Taï forest ebolavirus and Reston ebolavirus, have only been implicated in causing 

a few cases of infection in people (118, 142). 

 Outbreaks associated with these species occur sporadically, localizing primarily within 

central sub-Saharan Africa.  Most recently, EBOV has caused a large outbreak in the West 

African countries of Guinea, Liberia and Sierra Leone (13).  As of May 17, 2015, a total of 26,933 

cases have been reported resulting in 11,120 deaths (3).  Unlike previous isolated EBOV 

outbreaks, this epidemic spread to large urban communities with no previous history or 

experience with EBOV disease (75).  Urbanization has likely assisted the increase of EBOV 

cases within West Africa and facilitated spread to other countries, such as the United States. 

 EBOV outbreaks are primarily sporadic and humans cannot sustain viral transmission 

from one outbreak to the next.  Therefore, an animal reservoir has been implicated as the source 

of EBOV (30).  Initially, primates were considered as a possible reservoir, since contact with 
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primates was often associated with the index case of EBOV outbreaks (70).  However, infection 

of primates and other wildlife species with EBOV produces fatality rates similar to those seen in 

people (150).  For example, EBOV has caused outbreaks that have severely depleted the 

Western gorilla (Gorilla gorilla) and chimpanzee (Pan troglodytes) population (22).  Thus, 

primates are likely an intermediate host and the not the ultimate source of EBOV.  Several 

species of fruit bats have been found to contain EBOV genomes (149).  Furthermore, contact with 

fruit bats has been connected to the 1995 outbreak of EBOV in the DRC (148).  However, 

infectious EBOV has yet to be isolated from fruit bats, and there is currently no working animal 

model to study EBOV infection in fruit bats. 

Section 1.2 – Ebola Virus Pathogenesis 

 The incubation period of EBOV can last anywhere from 2-21 days.  In the majority of 

infected persons, early signs of EBOV disease progress as a typical viral infection with fever, 

chills, and malaise (32, 181).  More severe symptoms present as the disease progresses 

including abdominal pain, diarrhea, vomiting, shortness of breath, internal hemorrhaging, or 

unexplained bleeding (4, 32, 181).  In some earlier cases of EBOV, a large macropapular rash 

was noted on patients, however this was not observed in the recent West Africa outbreak (11, 

32).  Patients who succumb to the disease usually die within 6 to 16 days of hypovolemic shock 

and multi-organ failure.  Survivors usually show signs of improvement within 6 to 11 days and 

often develop a humoral antibody response to EBOV.  Overall mortality rates for patients with 

EBOV are unusually high, with an average mortality of 79% for all outbreaks from 1976 – 2012. 

 EBOV initiates infection by direct contact of exposed mucosal surfaces or skin breaks 

with contaminated surfaces or material (51).  From the initial contact site, EBOV infects 

macrophages (MΦ) and dendritic cells (DC) (69).  Once infected, these cells secrete cytokines 

and chemokines, such as MIP-1α, MIP-1β and TNFα, which results in attracting additional MΦ 

and DC to the site of infection, providing more infection targets for EBOV (86).  From the initial 
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infection, MΦ and DC travel to the lymph nodes and spleen where EBOV is able to spread to 

other cell types, including fibroblasts, endothelial and epithelial cells (116, 215).  One significant 

cell type predominately not infected by EBOV are lymphocytes (12).  Despite this resistance to 

EBOV infection, lymphocyte populations crash a few days after EBOV infection (264).  The 

mechanisms causing lymphocyte depletion are not well understood, but may involve production of 

nitric oxide or dysregulation of the innate immune system following EBOV infection (12, 102, 264).  

High levels of cytokines, such as IL-2, IFN-γ and TNFα, are detected in patients that succumb to 

EBOV, suggesting that an over-active immune response may contribute to mortality (256). 

Section 1.3 – Antibody Therapy and Vaccines for Ebola Virus 

 Currently there are no licensed vaccines, anti-viral drugs, or antibody therapies available.  

The sporadic nature, high fatality rate, and isolated location typical of EBOV infections have 

hindered the development of treatments for EBOV.  Most EBOV outbreaks occur in isolated 

locations lacking basic health care infrastructure, transportation networks, and electricity grids.  

Thus, treatment of patients consists primarily of supportive care such as providing drugs for pain 

and nausea (83).  Typically, EBOV occurs in locations with malaria and other infectious diseases, 

so treatment often includes antibiotics or anti-malaria drugs (83).  Where possible, a limited 

number of patients receive blood transfusions from recovering EBOV patients, which provides 

protective antibodies before newly infected patients can develop their own immune response 

(178).  However, the small number of patients receiving these transfusions has made it difficult to 

determine the effectiveness of this treatment.  Until the recent outbreak in West Africa, treatment 

of most EBOV patients was limited to supportive care and containment of infected individuals to 

prevent spread. 

 Several vaccines are in the process of being developed for EBOV.  Two of the most 

successful, which have moved into phase 3 clinical trials, are recombinant viruses expressing the 

EBOV glycoprotein with either vesicular stomatitis virus (VSV-EBOV) or a defective chimpanzee 
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adenovirus type 3 (cAd3-EBO) as the backbone.  The cAd3-EBO vaccine, when boosted with 

modified vaccinia Ankara (MVA), was able to protect 4/4 macaques from lethal EBOV challenge 

(238).  In several phase 1 clinical trials, the vaccine demonstrated safety and immunogenicity 

after a single vaccination (133, 144, 206).  In macaque challenge models, the VSV-EBOV vaccine 

proved protective and interestingly, could be administered post-challenge and still result in 

survival of some animals (58, 127).  The VSV-EBOV vaccine was moved into phase 1 clinical 

trials and showed immunogenicity at all titers tested and production of neutralizing antibodies at 

higher doses (7, 209).  Both of these vaccines are currently being tested in ongoing phase 2/3 

clinical trials in Liberia.  An interim report of one trial shows the VSV-EBOV vaccine to be highly 

efficacious, with an estimated vaccine efficacy of 100% (101). 

 In addition to vaccines, antibodies are currently being developed for treatment of infected 

individuals.  One potential antibody drug, ZMapp, was tested in guinea pigs and non-human 

primates and showed good protection with 18/18 rhesus monkeys surviving after given lethal 

doses of EBOV (204).  Zmapp is a drug formulation consisting of three monoclonal antibodies 

directed against the EBOV glycoprotein (204).  Some patients who were treated in the United 

States for EBOV infection in 2014 received ZMapp (164).  ZMapp is currently slated to begin 

clinical trials and possibly become one of the first licensed therapeutics for treatment of EBOV. 

Section 1.4 – Genomic Structure of Ebola Virus and Viral Proteins 

 Filoviruses are single stranded, non-segmented, negative sense RNA viruses containing 

a genome approximately 18-19 kilobases long (59, 220).  The EBOV genome, like other 

filoviruses, has seven genes organized in the following order: NP, VP35, VP40, GP, VP30, VP24, 

and L (59).  From these seven genes, EBOV expresses nine proteins; a brief summary of each is 

given below (220, 258).  

 The NP gene expresses the Nucleoprotein that forms the core of the nucleocapsid 

structure and interacts with VP35 and VP24 to bind the viral RNA genome (109, 221).  



 

 

5 

Furthermore, Nucleoprotein also associates with VP40 to assist in incorporation of the genome 

into EBOV virions (189). 

 The VP35 gene produces the Polymerase cofactor VP35, which is thought to function as 

a phosphoprotein, analogous to the product of the P gene in rhabodoviruses (31).  VP35 is known 

to associate with Nucleoprotein and VP40 and may have a role in bringing the EBOV polymerase 

to the nucleocapsid (109, 124).  Importantly, VP35 is a potent antagonist of the interferon 

response (18).  Several mechanisms by which VP35 counters interferon include binding double 

stranded RNA and preventing activation of PKR, inhibiting activation of interferon regulatory factor 

3, and impairing the function of IKKε and TBK-1 (17, 34, 60, 203). 

 The VP40 gene produces the matrix protein, VP40, which is primarily responsible for 

assembly and formation of filamentous virions (31).  In fact, VP40 is capable of forming virus-like 

particles (VLP) independent of other viral proteins (20).  VP40 forms multimers which can interact 

with the nucleocapsid, members of the ESCRT complex, and the plasma membrane (96, 227, 

247). 

 The GP gene expresses three proteins by an unusual RNA editing event.  The majority of 

the protein expressed from GP is the pre-secreted Glycoprotein (pre-sGP), which is post-

translationally processed by cellular furin to generate the secreted Glycoprotiein (sGP) and a 

small 40 amino acid peptide called delta-peptide (261).  While the function of delta-peptide 

remains unclear, recent studies suggest that sGP acts as an immunogenic decoy to redirect 

immune responses to parts of sGP that are not present or inaccessible in the full-length Envelope 

Glycoprotein (GP1,2) (176).  Production of GP1,2 occurs when the RNA polymerase encounters a 

series of seven adenines and erroneously incorporates an eighth adenine, switching the open 

reading frame to generate GP1,2 (222, 258).  GP1,2 is also processed by host furin into two 

subunits, GP1 and GP2; however, these subunits remain linked by a di-sulfide bond (120, 259).  

Three of these heterodimers interact to form the trimeric GP1,2 which is the only viral protein 
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expressed on the surface of EBOV (223).  GP1,2 has many functions important for EBOV 

including mediating entry into target cells, shielding of viral and cellular epitopes, and countering 

Tetherin (35, 64, 129).  The GP gene can also produce a third gene product, the Super small 

secreted Glycoprotein (ssGP), which is formed when the polymerase adds two additional 

adenines during transcription (258).  Besides possibly functioning similar to sGP, this protein has 

no known function. 

 The VP30 gene expresses the Minor nucleoprotein VP30, which functions to associate 

with the nucleocapsid (95).  VP30 also functions to allow transcription of viral RNA in the 

presence of an otherwise inhibitory RNA transcription secondary structure within the viral genome 

(266). 

 The VP24 gene produces the Membrane-associated protein VP24, which is required for 

nucleocapsid formation by associating with Nucleoprotein and VP35 (109).  VP24 also functions 

to block cellular interferon production by preventing nuclear accumulation of STAT1 (210). 

 Finally, the L gene produces the large RNA-directed RNA polymerase L, which interacts 

with the nucleocapsid to drive virus replication and transcription (260). 

Section 1.5 – Ebola Virus Entry & Replication 

 EBOV utilizes a number of cellular factors to bind cells and initiate uptake of virions into 

endocytic compartments where EBOV mediates fusion with the host cell.  The surface 

glycoprotein of EBOV, GP1,2, is heavily glycosylated with N and O-linked glycans (120).  These 

glycans enable various C-type lectins including DC-SIGN and DC-SIGNR to bind GP1,2 and 

enhance infectivity of EBOV, but do not directly lead to cellular entry of virions (8, 234).  EBOV 

virions are large filamentous particles with diameters up to 100 nm and lengths of up to 1500 nm.  

Uptake is mediated primarily by virion-induced macropinocytosis, although clatherin- or caveolar- 

mediated endocytosis pathways can be used as alternatives (23, 123, 179, 216).  A member of 

the Tyro3 receptor kinase family, AXL, has been shown to stimulate macropinocytosis and lead to 
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enhanced viral entry; however, a direct interaction between AXL and GP1,2 has not been 

described and AXL does not stimulate macropinocytosis in all cell types (111, 232).  Thus, it 

remains unclear exactly how EBOV induces macropinocytosis to stimulate uptake into host cells. 

 EBOV virions are transported through endocytic compartments to the late endosome 

where GP1,2 is processed by cellular cathepsins B and L (130, 225).  Cathepsin cleavage 

removes the glycan cap and mucin domains of GP1,2 exposing the receptor binding domain, 

which interacts with the EBOV receptor, a cholesterol transporter called Niemann-Pick C1 (NPC1) 

(35, 44, 104).  Interaction with NPC1, via a process that remains elusive, leads to insertion of the 

GP2 internal fusion loops into the host lipid bilayer.  Subsequently, the supporting triple helix 

collapses into a six-helix bundle, driving fusion and bringing the viral and cell membranes 

together (81, 268). 

 Inside the cell, EBOV proceeds to generate monocistronic mRNA which is translated and 

produces more viral proteins (219).  Transcription of mRNA switches to genome replication once 

enough viral protein has accumulated, minimally Nucleoprotein, VP30, VP35, and L (177).  As 

fully replicated negative sense genomes accumulate and associate with the nucleocapsid, 

Nucleoprotein levels drop and drive transcription to produce more mRNAs for protein production.  

Eventually, an equilibrium is reached and results in production of nucleocapsid coated viral 

genomic RNA. 

Section 1.6 – Ebola Virus Assembly & Budding 

 Once viral RNA has replicated and produced enough viral protein, the nucleocapsid 

forms and covers the viral genome (177).  Next, the matrix protein, VP40, interacts with 

Nucleoprotein and VP35 to drive incorporation of the nucleocapsid coated RNA and promote 

budding of EBOV particles (124, 154).  VP40 adopts various conformational states corresponding 

to specific functions of VP40.  At high concentrations, VP40 monomers initially oligomerize into 

hexamers; however, octamers form when bound to RNA, which readily incorporate into VP40 
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containing particles (76, 103, 246).  Interestingly, VP40 octamer formation is essential for viral 

replication, yet VP40 is capable of producing particles with and without octamers (103).  Thus, the 

role of VP40 oligomerization is not fully understood and remains to be clarified. 

 VP40 contains late-budding domains (L-domains), which allow VP40 to interact with 

cellular proteins that drive formation of viral particles during the late stages of virus replication 

(270).  VP40 is able to recruit both Tsg101 and Nedd4 via an N-terminal peptide motif 7-

PTAPPEY-13 (96, 170).  Tsg101 is a component of the ESCRT-I complex, and is recruited to 

budded EBOV particles by recognizing and interacting with the PTAP motif in VP40 (10, 131, 

155, 170).  The proximal VP40 sequence PPEY also interacts with Nedd4, an ubiquitin ligase 

responsible for ubiquitinylating VP40 oligomers and redirecting VP40 to sites of EBOV budding 

(247).  Interestingly, VP40 L-domains, while enhancing virion production, are not essential for 

production of infectious EBOV virions (185).  Thus, other viral proteins may allow EBOV to 

produce particles and bud independent of VP40 L-domains. 

 Other EBOV proteins are also known to be important for budding EBOV virions.  

Nucleoprotein associates with VP40 to enhance production of virions (154).  EBOV GP1,2 can 

also enhance virion production in the presence of VP40 (154).  GP1,2 mediated enhancement is 

likely due to the anti-Tetherin activity of GP1,2 (129).  However, expression of EBOV Glycoprotein 

alone allows cells to produce unstructured, pleomorphic particles (136, 188).  Whether or not this 

ability of GP1,2 to produce particles is important for infectious EBOV remains open for further 

investigation. 

Section 1.7 – Structure and Functions of the Ebola Virus Glycoprotein 

 The EBOV Glycoprotein (GP1,2) is the only viral protein expressed on the surface of 

EBOV particles (223).  Functional GP1,2 predominately forms trimers on EBOV particles and when 

expressed in tissue culture cells (223).  The full-length GP1,2 gene encodes 676 amino acids.  The 

first 501 residues comprise the GP1 subunit.  The remaining 175 amino acids consist of the GP2 
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subunit, as shown in Figure 1-1.  Within GP1, residues 1-32 are the signal peptide, which allows 

GP1,2 to be expressed on the cell and viral surface (220).  The next 167 residues form the core of 

GP1,2 and also function as the receptor-binding region.  Adjacent to the receptor-binding region is 

the glycan cap.  The glycan cap spans residues 200-304 and contains six N-linked and unknown 

numbers of O-linked glycosylation sites (120, 220).  In the native structure, this domain sits atop 

the core of GP1,2 and occludes the receptor-binding region (145).  The mucin domain comprises 

residues 305-501 and, similar to the glycan cap, is heavily glycosylated, containing 14 N-linked 

glycosylation sites besides additional O-linked glycans (120, 220).  Unlike the rest of GP1, which 

forms a rigid structure, the mucin domain is disordered and unstructured (145).  The mucin 

domain appears to form a propeller-like structure extending above and beyond the rest of GP1,2 

(97).  This extended structure may explain the ability of the mucin domain to occlude epitopes on 

GP1,2 and other cellular surface proteins (64, 235).  The other subunit, GP2, wraps around the 

GP1 core and primarily consists of coiled-coil domains that function to drive fusion of the virus 

with the cell membranes (268, 269).  The GP2 subunit contains a transmembrane domain, which 

anchors GP1,2 to the plasma membrane and may have a role in GP1,2 mediated cytopathic effects 

(90).  The cytoplasmic tail of GP1,2 is only four amino acids long and contains acylated cysteine 

residues similar to other viral type I fusion proteins (114).  However, preventing acylation of these 

residues does not decrease the infectivity of EBOV pseudotypes, and thus, the importance of 

acylation remains to be discovered (114). 

 GP1,2 undergoes several processing events within the host cell.  First, as a single pass 

type I transmembrane protein, the initial 32 amino acids, which function as a signal peptide for 

insertion into the ER membrane, are removed from mature GP1,2 by host cell machinery (220).  In 

addition to promoting GP1,2 plasma membrane expression, this sequence also modulates GP1,2 

glycosylation, which in turn, affects GP1,2 binding to DC-SIGN and DC-SIGNR (171).  Second, the 

immature glycoprotein GP0 contains a consensus furin site at residues 498-501, which results in 
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Figure 1-1: Linear models of EBOV GP gene products.  The majority of polypeptides
produced are sGP, the secreted glycoprotein, that lacks a transmembrane domain.  Full-
length GP1,2 is produced about 20% of the time and is processed by furin to produce two
subunits, GP1 and GP2, which are held together by a disulfde bond.  A small amount of ssGP
is also produced.
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formation of two subunits, GP1 and GP2 when cleaved by furin (223, 259).  Post-processing, 

these subunits remain associated with each other by a di-sulfide bond to form mature GP1,2 (259).  

Interestingly, preventing the cleavage of GP1,2 into GP1 and GP2 by mutation of the cleavage site 

or producing pseudotypes in furin-deficient cell lines does not reduce the infectivity of GP1,2 

pseudotypes (271).  Finally, after EBOV entry into cells, GP1,2 requires processing by cellular 

cathepsins in the acidic late endosomes, notably Cathepsins B and L (36, 130, 225).  Cathepsins 

recognize and cleave a disordered loop within GP1, as shown in Figure 1-2, resulting in removal 

of the glycan cap and mucin domains of GP1,2 (35, 44, 104, 145).  There is also an additional 

requirement for cathepsins, independent of proteolytic cleavage, which is not fully understood 

(14). 

 The primary function of EBOV GP1,2 is to mediate entry of viral particles into host cells. 

GP1,2 can bind to several cellular factors that improve infectivity by enhancing attachment of 

virions to the host cell, including dendritic cell-specific intercellular adhesion molecule-3-grabbing 

non-integrin (DC-SIGN and DC-SIGNR) (8, 234).  GP1,2 likely stimulates AXL to enhance 

macropinocytosis of virions and allow for uptake into late endosomes; however, a direct 

interaction between AXL and GP1,2 has not been shown (111, 232).  None of these interactions 

are sufficient to allow GP1,2 to mediate fusion with host cells.  To fuse in the late endosomes, 

cathepsin-cleaved GP1,2 must interact with Niemann-Pick C1 (NPC1) (35, 44). 

 The EBOV GP1,2 also has a role in subverting the host immune system.  The GP1,2 mucin 

domain has been shown to mask its own epitopes as well as other surface proteins from antibody 

and immune cell recognition.  Initially, it was thought that the GP1,2 mucin domain down-regulated 

proteins from the cell surface (63, 235).  However, the apparent down-regulation of GP1,2 could be 

reversed by probing with antibody epitopes that were not affected by the mucin domain (64).  

Thus, a shielding model has been proposed that explains how GP1,2 can block immune 

recognition of its own epitopes and prevent recognition of other surface markers on infected cells 
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(64).  One additional consequence of shielding is the induction of cell rounding, which is not an 

indicator of toxicity as originally thought (243, 273).  Instead, this phenotype is simply a loss of 

adherence, likely due to shielding of β1 integrins and other surface adhesion proteins (63).  Also, 

although the mechanism is poorly understood, GP1,2 has an important function in countering the 

anti-viral factor Tetherin to allow for release of particles from the cell surface (129). 

 An additional interesting and underappreciated function of GP1,2 is its ability to produce 

membrane blebs similar in size to VP40 virions, but not in shape (136, 188).  Unlike VP40-derived 

virions, which have a uniform diameter, GP1,2 particles are much more pleomorphic (188).  The 

mechanism that GP1,2 uses to bud independent of VP40 remains unknown, although, budding 

may be dependent on the ability of GP2 to form filaments (90).  GP1,2 does not have any late 

domains or direct interactions with members of the ESCRT pathway, in contrast to VP40, which 

utilizes its late domains to recruits TSG101 and Nedd4 (96, 170, 247). 

 As mentioned in section 1.4, the full-length GP1,2 protein is not the major product of the 

GP gene.  Instead, the majority of the glycoprotein made from the GP gene is the secreted 

glycoprotein (sGP); full-length GP1,2 is only produced as a result of an mRNA editing event (222, 

258).  The editing event occurs just before the mucin domain, and thus, sGP encodes most 

features of GP1, including the glycan cap.  However, unlike the full-length version, sGP 

predominately forms dimers, instead of trimers (223).  The apparent function of sGP during EBOV 

infection is primarily as an immunological decoy to redirect the immune response away from 

targeting full-length GP1,2 (176). 

Section 1.8 – Cellular Anti-viral Intrinsic Innate Immune Effectors 

 Mammalian cells express many cellular anti-viral factors, which can be activated and 

expressed, even if the host cell does not function primarily as a component of the immune 

system.  While some of these proteins are constitutively active in the absence of virus, many are 

upregulated in the context of viral infection.  Thus, these factors have been termed Intrinsic Innate 
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Immune Effectors (IIIE).  IIIE do not function primarily as signaling molecules that suppress viral 

replication by upregulating other anti-viral factors.  Instead, they act directly on viral components 

or processes to inhibit virus infection and spread within the host.  IIIE can affect many steps of the 

virus life cycle and often form a critical part of the barrier preventing cross-species transmission of 

viruses. 

 There are a number of factors that inhibit the entry process of viruses.  One of the first 

described IIIE is the murine restriction factor Friend virus susceptibility gene (Fv1), which restricts 

replication of Friend Murine Leukemia Virus (MLV) (156).  Functionally similar genes have been 

identified in humans such as Tripartite Motif 5α (TRIM5α), which is active against lentiviruses, 

including HIV-1 (98, 132, 250).  TRIM5α is able to recognize incoming viral capsid and, via a 

mechanism not fully understood, inhibit virions by accelerating the uncoating process or initiating 

proteasomal degradation of the virus (38, 228, 241).  TRIM5α is just one of a large family of TRIM 

proteins, consisting of more than 70 members.  Although mechanistic insight is lacking in most 

cases, at least 20 other TRIMs, including TRIM11, TRIM19, TRIM26, and TRIM31, also have anti-

viral functions targeting Arenaviridae, Herpesviridae, Orthomyxoviridae, and Rhabdoviridae 

families (187, 208, 252).  The Interferon-Induced Transmembrane Proteins (IFITM) are another 

family of proteins that affect the early events in viral infection by inhibiting entry and trafficking of 

viruses (117).  IFITM are also broadly acting and restrict many virus families including 

Coronaviridae, Filoviridae, Flaviviridae, and Orthomyxoviridae (29, 108).  Although the exact 

mechanism is unclear, IFITM may inhibit viruses by interfering with trafficking of early or late 

endosomal compartments needed by virions to enter the host cell (57, 108). 

 Two more examples of IIIE that inhibit HIV-1 replication through very distinct mechanisms 

are APOBEC3G and SAMHD1.  APOBEC3G, a member of the Apolipoprotein B mRNA Editing 

Enzyme, Catalytic Polypeptide-like (APOBEC) protein family, can prevent HIV-1 replication by 

inducing viral genome hypermutation via cytosine deamination or by directly blocking reverse 
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transcription of HIV-1 genomic RNA (85, 94, 153, 186, 230, 278).  While APOBEC3G was 

originally shown to target HIV-1, APOBEC3G and other APOBECs can inhibit other Retroviridae 

members and HBV of Hepadnaviridae (47, 84, 167, 251).  Another protein, SAM domain and HD 

domain-containing protein 1 (SAMHD1), was also discovered to block HIV-1 replication by limiting 

the pool of dNTPs needed for HIV-1 to complete reverse transcription of its genome (74, 212).   

While most studies have focused on the role of SAMHD1 in countering HIV-1, SAMHD1 has also 

been demonstrated to block infection of HBV and HTLV-1 (39, 242). 

 Other steps of the virus life cycle can be affected by IIIE including transcription and 

translation.  One class of proteins, the Interferon-induced proteins with Tetratricopeptide Repeats 

(IFIT), inhibit viruses by reducing the efficiency of cap-dependent translation, binding uncapped or 

incompletely capped viral RNA, and directly binding and sequestering viral proteins (46, 110, 199, 

245).  Another way cells inhibit RNA translation is through the RNaseL/Oas system (40, 105).  

RNaseL recognizes and cleaves single stranded RNAs, thus shutting down all protein synthesis, 

including those producing viral proteins (62, 272).  Protein Kinase R (PKR) is another virally 

induced protein that impairs cellular translation by phosphorylation of EIF2α (56, 233).  This 

prevents the EIF2 complex from returning to an active state and shuts down global translation of 

mRNAs.  In mice, another interferon-induced protein, Myxovirus Resistance protein, Mx1, inhibits 

primary transcription of Influenza virus, while the human homologue MxA blocks Influenza at an 

undefined later step of replication (6, 157, 196).  The anti-viral activity of MxA has been extended 

to many other virus families including Bunyaviridae, Hepadnaviridae, and Rhabdoviridae (65, 77, 

197).  Recently, another Mx protein, MxB, has been shown to specifically inhibit a late post-entry 

step of HIV-1 infection (80).  MxB prevents HIV-1 integration by blocking HIV-1 import into the 

nuclease or by destabilizing the HIV-1 DNA (80, 159). 

 Finally, there are also a limited number of factors that have been implicated in blocking 

viral assembly and budding processes.  There are several TRIM family member proteins that 
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block the later stages of virus infection (252).  Another factor, Interferon-Stimulated Gene 15 

(ISG15), blocks EBOV VLP budding by interfering with Nedd4 ligase activity (190).  Other viruses 

including Influenza virus, JEV, and HIV-1 are also affected by ISG15 (106, 107, 200).  Viperin 

(Virus Inhibitory Protein, Endoplasmic Reticulum-associated, Interferon-Inducible) has an unusual 

anti-viral function in preventing virus assembly by disrupting lipid-raft formation or preventing lipid 

droplet formation (100, 122, 262).  However, the exact mechanism used by Viperin to inhibit 

viruses remains uncertain.  Tetherin also inhibits budding of HIV-1 virions by preventing release 

of budded virions from the cell surface (184). 

Section 1.9 – Antiviral Functions of Tetherin 

 Tetherin is a type II transmembrane glycoprotein consisting of 180 amino acids with a 

molecular weight of 29 to 33 kD that was originally described as a marker on B-cells without any 

associated function and is known by several names: HM1.24, Bone marrow stromal antigen 2 

(BST-2), and Cluster of Differentiation 317 (CD317) (78, 113, 279).  Tetherin is an unusual type II 

transmembrane protein in that it contains both an N-terminal cytoplasmic tail and a C-terminal 

glycophosphatidylinositol (GPI) anchor (113, 140).  There are two N-linked glycosylation sites in 

the extracellular domain of Tetherin, which consists primarily of a long coiled-coil domain (113, 

152, 184).  Both the GPI anchor and the coiled-coil domain participate in localizing Tetherin to 

lipid rafts, while the N-terminal transmembrane domain is excluded from lipid rafts (24, 92, 140).  

There are three cysteines within the extracellular domain, which, along with the structural motif of 

the coiled-coil domain, assist in formation of Tetherin dimers, and potentially higher order 

tetramer structures (9, 226). 

 Before being identified as an anti-viral factor, Tetherin had few well-defined functions.  

Early work suggested that Tetherin, as a marker on B-cells, had a role in B-cell development 

(113).  Initially, Tetherin was of interest to the cancer field because multiple myeloma cells 

upregulated expression of Tetherin and thus, Tetherin could be used as a marker to locate and 
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destroy these tumors (191, 192).  Tetherin has also been shown to associate with RhoGAP 

interacting with CIP4 homologs protein 2 (RICH-2), a protein that can provide a physical link 

between membrane proteins and the actin cytoskeleton (213).  Due to the unique topology, 

interaction with RICH-2 and association with lipid rafts, Tetherin may also have a role in 

organizing the micro-domains of lipid rafts on the cell surface (25, 213). 

 In 2008, Tetherin was shown to have anti-viral activity by inhibiting budding of HIV-1 

particles (183, 184).  Shortly thereafter, our lab demonstrated that EBOV particles are also 

retained in a Tetherin-dependent manner (129).  Unlike other IIIE that inhibit cellular pathways 

leading to budding of virions, Tetherin acts directly at the step of viral-host membrane scission 

and does not require other proteins for its anti-viral activity (254).  When virions are budding from 

the cell, as shown in Figure 1-3, the GPI anchor of Tetherin preferentially incorporates into the 

viral particles, while the Tetherin N-terminal transmembrane domain remains associated with the 

cell membrane (9, 61, 254).  This results in the virion, while having a membrane discontinuous 

with the cellular membrane, remaining in close proximity to the cell because of the Tetherin 

proteins (93, 198).  Some studies suggest that virions are subsequently endocytosed into the cell 

and degraded in the lysosome; however this step of Tetherin’s anti-viral activity has yet to be 

demonstrated clearly (67, 184).  Thus, Tetherin primarily inhibits cell-free virus spread, while cell-

cell spread is generally not affected by Tetherin (112, 125). 

 The range of viruses that Tetherin can inhibit is very diverse; theoretically, Tetherin could 

inhibit any enveloped virus that buds from a membrane containing Tetherin.  Also, many viruses 

have ways to counter Tetherin, as will be described in section 1.11.  Thus, determining whether or 

not a virus is affected by Tetherin is not always simple.  Enveloped virus restriction by Tetherin 

has been best studied using HIV-1 (184).  Additional viruses from the Retroviridae family, such as 

SIV, RSV, HERV-K, and HTLV are also inhibited by Tetherin (128).  Notably, Tetherin blocks 

release of Filoviridae virus particles, including both EBOV and Marburg virus (128, 129).  Viruses 
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Figure 1-3:  Model depicting Tetherin mediated restriction of viral particles.  As the
virions bud from the cell surface, Tetherin oligomers incorporate into the budding particle,
preferentially the end with the C-terminal GPI anchor.  The virus completes budding while the
transmembrane domain of Tetherin remains associated with the cellular membrane.  Thus, the
virion, although having a membrane discontinuous with the cell, remains “tethered” to the cell
surface.

= Tetherin

= viral matrix protein
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from other families are also restricted by Tetherin including Lassa from Arenaviridae, HCV and 

Dengue from Flaviviridae, HSV-1, HSV-2, and KSHV from Herpesviridae, VSV from 

Rhabdoviridae, Nipah virus and Sendai virus from Paramyxoviridae, Influenza from 

Orthomyxoviridae, and Chikungunya from Togaviridae (27, 45, 126, 137, 158, 193, 205, 217, 263, 

265).  Interestingly, entry of CMV seems to be enhanced by Tetherin via an undetermined 

mechanism, while budding remains unaffected (257). 

 Besides functioning to target viruses directly, Tetherin has also been implicated in 

regulation of innate immune responses, including type-I interferon (IFN-1) and nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFκB).  Upon activation by TLR 7 or 9, 

plasmacytoid dendritic cells (pDC) can become stimulated to produce large amounts of IFN-1 in 

humans (201).  When Immunoglobulin-like transcript 7 (ILT7) on pDC interacts with Tetherin, ILT7 

can signal to inhibit production of IFN-1 in pDC (33).  However, this inhibition may be dependent 

on how pDC are stimulated, as Tetherin-ILT7 interactions cannot inhibit all IFN-1 produced by 

pDC (21, 244). 

 Tetherin also has the ability to regulate production of NFκB.  One unique feature of 

Tetherin is the presence of two methionine residues at position 1 and 13.  Interestingly, the first 

methionine has a weak Kozak translation initiation motif, which allows the translating ribosome to 

periodically initiate the polypeptide chain at the second methionine instead of the first one.  These 

two isoforms of Tetherin both have the ability to restrict viral budding, however, the product 

produced from the first methionine, long-Tetherin (l-Tetherin), can initiate signaling via the NFκB 

pathway, while the other isoform, short-Tetherin (s-Tetherin) cannot (42).  Tetherin signaling is 

TAK1 and TRAF6 dependent indicating that L-Tetherin signals through the canonical NFκB 

pathway (67, 248). 

 The mechanism detailing how l-Tetherin can initiate NFκB signaling is still unclear.  One 

possibility is that the cytoplasmic tail of l-Tetherin could function as a hemi-immunoreceptor 
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tyrosine-based activation motif (hemi-ITAM) (68).  ITAMs are a pair of the amino acid sequences 

YxxL/I spaced six to eight amino acids apart that are important for initiating signaling events by 

phosphorylation of the tyrosine residues (211, 218).  l-Tetherin contains two tyrosines at amino 

acid residues 6 and 8, and while neither residue fits the YxxL/I motif exactly, mutation of the 

tyrosine at position 6 completely prevents the ability of l-Tetherin to signal through NFκB, and 

mutation of the other tyrosine partially inhibits signaling (68, 248).  Thus, the ability of Tetherin to 

form dimers and tetramers could allow several hemi-ITAM motifs on the N-terminal tails to group 

together and form a functional ITAM (68).  Experiments have also shown that Tetherin 

immunoprecipiates with spleen tyrosine kinase (Syk), which could be phosphorylating the hemi-

ITAM motif on l-Tetherin and initiating signaling (68). 

 The current model provides a good start to understanding how l-Tetherin is able to initiate 

NFκB signaling.  However, the model needs clarification in a few areas.  For example, a direct 

interaction with Syk has not yet been demonstrated; it is possible that l-Tetherin could be 

recruiting additional factors that Syk acts upon, instead of binding Syk directly.  Furthermore, 

experiments in our lab suggest that additional mutations in the N-terminal tail can allow l-Tetherin, 

without tyrosine residues at position 6 and 8, to signal better than l-Tetherin containing the 

tyrosine residues (41).  These experiments and others show that l-Tetherin does not act as a 

hemi-ITAM and suggest that l-Tetherin interacts with another protein to recruit Syk and initiate 

NFκB signaling. 

Section 1.10 – Viral Antagonists of Intrinsic Innate Immune Effectors 

 While the cellular IIIE are able to restrict many viruses, most viruses that establish 

successful infections have evolved ways to overcome these barriers.  These viruses typically 

express one or more proteins that specifically counteract the various IIIE expressed in the host 

cell.  Alternatively, viruses may inhibit the signaling pathways that induce expression of IIIE; these 
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factors will not be discussed here.  As there are many pathogenic viruses and many IIIE, the 

following section highlights only a few of the viral antagonists that have been identified to date. 

 HIV-1 encodes several accessory genes that are not necessary for replication in most 

tissue culture cell lines (54).  Two of these accessory genes are Viral Infectivity Factor (Vif) and 

Viral Protein Unique (Vpu) (43, 207, 240).  Vif recognizes and binds the cellular IIIE APOBEC3G, 

which prevents APOBEC3G from incorporating into virions, and subsequently recruits a host 

ubiquitin ligase complex (239, 275).  APOBEC3G is ubiquitinylated by the complex and degraded 

efficiently by host proteasomes (169, 231).  The other gene, Vpu, has a function in recognizing 

and degrading Tetherin and will be examined in more detail in section 1.11 (184). 

 Another virus with well-characterized IIIE antagonists is Influenza A, from the 

Orthomyxovirdae family.  Influenza A expresses Non-structural protein 1 (NS1), which has many 

anti-viral functions (141).  NS1 binds double-stranded RNA (dsRNA) produced during Influenza 

replication and prevents OAS recognition of dsRNA and thus, blocks subsequent digestion by 

RNaseL (162, 174).  To allow translation, NS1 binds PKR and prevents PKR from 

phosphorylating EIF2α (162).  Together, these NS1 activities and others allow for Influenza A to 

replicate in cells that express IIIE. 

 Vaccinia, a double-stranded DNA virus of the Poxviridae family, has a large genome that 

encodes many IIIE antagonists.  One such protein, Protein E3 (E3L) has activity against both 

PKR and ISG15 (37, 73).  E3L binds dsRNA and prevents PKR from recognizing and degrading 

Vaccinia dsRNA (48).  E3L also sequesters ISG15 and prevents ISG15 from blocking budding of 

Vaccinia (82).  Another Vaccinia protein, Protein K3 (K3L) mimics the structure of EIF2α and acts 

as a decoy for PKR to allow translation to occur in the presence of PKR (48, 49). 

 Finally, EBOV also encodes proteins that counter IIIE.  As mentioned before, VP35 binds 

dsRNA and also prevents activation of PKR (34, 60).  The EBOV full-length GP1,2 also counters 

Tetherin, which will be discussed in more detail in section 1.12 (129). 
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 Overall, the diversity of proteins and mechanisms used by these viral agents to establish 

infection in host cells highlights the importance of these IIIE in regulating and controlling viral 

replication.  Understanding viral infections requires an investigation into the functions and 

interactions between IIIE and their viral antagonists. 

Section 1.11 – Viral Antagonists of Tetherin 

 Similar to the other IIIE, viruses also encode proteins that target Tetherin and allow viral 

budding in the context of cellular Tetherin expression.  To date, several viral antagonists of 

Tetherin have been discovered, however the underlying mechanisms are only known for a few 

Tetherin antagonists.  Three of these antagonists, Vpu, Nef, and Env, representing the variety of 

mechanisms used to counter Tetherin, are described below. 

 HIV-1 Group M Vpu was the first described Tetherin antagonist and is the best 

characterized.  Vup was known to enhance virus release for both HIV-1 and other retroviral 

capsids many years before the being discovered as a counter of Tetherin (79, 184).  The 

mechanism describing how Vpu counters Tetherin has been well described.  Numerous residues 

within Vpu are required to recognize three Tetherin transmembrane domain residues, I34, L37, 

and L41, within a very specific orientation (87, 135, 163, 237, 255).  Once bound to Tetherin, Vpu 

recruits Beta-Transducin repeat Containing E3 Ubiquitin Protein Ligase (β-TrCP, also known as 

F-box/WD repeat-containing protein 1A) which ubiqutinylates amino acids 3-5 (STS) of Tetherin 

(50, 166, 249).  Vpu recruits HRS, a member of the ESCRT-0 complex, and Tetherin is 

subsequently downregulated from the cell surface, trafficked through the lysosomal pathway and 

degraded (115, 119, 175).  Importantly, since Vpu requires the STS sequence of Tetherin, Vpu 

can only counter Tetherin multimers containing the l-Tetherin isoform; s-Tetherin is resistant to 

Vpu mediated degredation (42).  While this mechanism shows how Vpu utilizes β-TrCP to 

degrade Tetherin and release virions, Vpu may also sequester Tetherin in peri-nuclear 
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compartments, away from sites of viral budding; this pathway is independent of β-TrCP mediated 

degradation (53, 99). 

 Not all viruses within Retroviridae encode the Vpu gene, yet they bud from cells using 

mechanisms similar to HIV-1 Group M and thus, utilize other proteins to counter Tetherin (28).  

Most other SIV and HIV-1 Group O utilize Protein Nef (Nef) to counter Tetherin (134, 277).  SIV 

Nef binds sequences in the Tetherin cytoplasmic tail, DDIWK (224, 229, 276).  The sequence 

DDIWK is not present in human Tetherin, so HIV-1 Group O Nef evolved to recognize sequences 

adjacent to the missing motif (134).  After binding Tetherin, Nef initiates a clathrin-dependent 

downregulation of Tetherin from the cell surface, resulting in accumulation of Tetherin in 

lysosomal compartments (121, 229). 

 Both HIV-2, and Chlorocebus tantalus SIV (SIVtan) use their Envelope protein (Env) to 

antagonize Tetherin through a degradation-independent mechanism (88).  Unlike Vpu and Nef, 

Env does not recognize or require the Tetherin transmembrane domain and cytoplasmic tail; 

instead Env likely binds and recognizes the Tetherin ecotodomain (99).  An endocytosis motif in 

the Env cytoplasmic tail, GYxxθ, subsequently downregulates Tetherin from the cell surface and 

relocalizes Tetherin to intracellular compartments without causing Tetherin degradation (87, 143).  

Since Env recognizes the Tetherin ectodomain, Env counteracts both l-Tetherin and s-Tetherin 

isoforms (267).  Also, because Tetherin is only relocalized and not degraded, Tetherin could 

continue to mediate signaling and activate NFκB; however, this function in the presence of Env 

remains to be shown by experimental data. 

 Other viruses, besides members of Retroviridae, also encode Tetherin antagonists 

including K5 from Kaposi's sarcoma-associated herpesvirus, Glycoprotein M from Herpes simplex 

virus, HA and NA from Influenza virus, proteins F and HN from Sendai virus, and nsP1 from 

Chikungunya virus, (15, 27, 72, 126, 168, 274).  Some of these antagonists use similar 



 

 

24 

mechanisms as described for Vpu, Nef, or Env, specifically, degradation of Tetherin or removal of 

Tetherin from the cell surface, away from sites of viral budding. 

Section 1.12 – Interactions between Ebola Virus Glycoprotein and Tetherin 

 In 2009, our lab published data showing that EBOV GP1,2 also functioned as a Tetherin 

antagonist (129).  Since then, research by us and others has focused on understanding the GP1,2 

Tetherin interaction and asking these questions.  What are the domains of Tetherin needed for 

GP1,2 to recognize Tetherin?  Conversely, what are the domains of GP1,2 needed to counter 

Tetherin?  Finally, what is the mechanism by which GP1,2 can allow budding in the presence of 

Tetherin? 

 GP1,2 does not recognize or require the Tetherin transmembrane domain or cytoplasmic 

tail to counter Tetherin; instead GP1,2 is thought to recognize residues of the ectodomain, which 

have yet to be determined (161).  GP1,2 binds and forms complexes with Tetherin as shown by 

immunoprecipitation assays; however, this interaction is primarily with the immature form of the 

glycoprotein species (129).  Also unlike Vpu, GP1,2 can counter human Tetherin, and other 

Tetherin proteins from divergent species, such as murine, African green monkey, Rhesus 

macaque, and gorilla Tetherin (129, 138).  This ability to counter multiple Tetherin species may 

contribute to the wide pathogenic range of EBOV. 

 Mutational analysis of various domains within GP1,2 have been used to determine which 

regions are required for anti-Tetherin activity.  Similar to many other glycoproteins, much of GP1,2 

is folded in a rigid, complex structure and thus, making large deletions within GP1,2 remains 

difficult (145).  The mucin domain of GP1,2, which is required for the GP1,2 epitope shielding 

function and is largely unstructured, is not necessary for allowing GP1,2 to counter Tetherin (89, 

129).  The transmembrane domain of GP1,2 is required for function; mutants without 

transmembrane domains, or transmembrane domains from other viral glycoproteins fail to 

counter Tetherin (71, 129).  One study attempted to determine whether or not the transmembrane 
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domain is sufficient to counter Tetherin.  They found that the transmembrane domain was not 

sufficient by placing the EBOV transmembrane domain onto Lassa virus Glycoprotein (71).  

Furthermore, one study also found that binding seems to be mediated by the GP2 rather than the 

GP1 subunit (138).  However, these chimeras could not produce infectious pseudotypes, so this 

question remains unanswered.  The short cytoplasmic tail of GP1,2, which is only 4 amino acids 

long, contains two cysteine residues that are acetylated, but to date, no definitive function has 

been attributed to acetylation (114).  These residues, as well as the entire cytoplasmic tail, are 

dispensable for anti-Tetherin function (71, 160).  In summary, the specific domains of GP1,2 that 

are needed to counter Tetherin need to be better understood and this thesis attempts to clarify 

the role of the GP1,2 domains. 

 The mechanisms used by most anti-Tetherin viral proteins are readily observable and 

easily understood.  However, unlike antagonists such as Vpu or Nef, GP1,2 does not degrade 

Tetherin, as Tetherin protein expression does not decrease in the presence of GP1,2 (129, 138).  

Also, unlike other antagonists, GP1,2 does not remove Tetherin from the cell surface or relocalize 

Tetherin out of lipid rafts (138, 160, 161).  GP1,2 does not remove Tetherin from budding particles; 

in fact, levels of Tetherin in VLPs seem to increase in the presence of GP1,2 (89).  GP1,2 does 

need to localize properly to exert anti-Tetherin activity, as ER-retained GP1,2 does not release 

Tetherin held VLPs (129).  Furthermore, immunofluorescence images of Tetherin staining 

patterns, which normally localize to the cell surface and Golgi network, do not seem to change in 

the presence of GP1,2 (129, 140).  Recent data shows that GP1,2 can change the localization of 

Tetherin and VP40 (71).  Thus, GP1,2 may be able to relocalize Tetherin away from VP40 and 

allow VP40 to function and produce VLPs.  To date many studies have illuminated the things that 

GP1,2 does not do, however, overall, the mechanism used by GP1,2 to counter Tetherin remains 

unclear.  The experiments and questions asked in this thesis do not fully explain this mechanism, 

but do provide a much more detailed understanding of the required domains in EBOV GP1,2 and 
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some insight in the mechanism whereby GP1,2 functions to produce VLPs in the presence of 

Tetherin. 
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CHAPTER 2 – REQUIREMENTS WITHIN THE EBOLA VIRAL 
GLYCOPROTEIN FOR TETHERIN ANTAGONISM 

Reprinted with minor changes from the manuscript in submission: 

Vande Burgt NH, Kaletsky RL, and Bates P., (2015) Requirements within the Ebola viral 

glycoprotein for Tetherin antagonism. Virology. 

Section 2.1 – Abstract 

 Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of 

numerous viruses, including Ebola virus, from infected cells.  As with many viruses targeted by 

host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP), to 

counteract restriction and promote virus release.  Unlike other tetherin antagonists such as HIV-1 

Vpu or KSHV K5, the features within EboGP needed to overcome tetherin are not well 

characterized.  Here we describe sequences within the EboGP ectodomain and membrane 

spanning domain (msd) as necessary to relieve tetherin restriction of viral particle budding.  

Fusing the EboGP msd to a normally secreted form of the glycoprotein effectively promotes Ebola 

virus particle release.  Cellular protein or lipid anchors could not substitute for the EboGP msd.  

The requirement for the EboGP msd was not specific for filovirus budding, as similar results were 

seen with HIV particles.  Furthermore trafficking of chimeric proteins to budding sites did not 

correlate with an ability to counter tetherin.  Additionally, we find that a glycoprotein construct, 

which mimics the cathepsin-activated species by proteolytic removal of the EboGP glycan cap 

and mucin domains, is unable to counteract tetherin.  Combining these results suggests an 

important role for the EboGP glycan cap and msd in tetherin antagonism. 

Section 2.2 – Introduction 

 The innate immune system is the first line of defense against viral pathogens.  

Consequently, mammalian cells employ numerous innate cellular mechanisms to inhibit viral 
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replication and spread.  Intrinsic antiviral factors comprise a form of innate immunity that directly 

limit viral entry, replication or assembly.  These factors are often ubiquitously expressed, but can 

be further induced during viral infection, generally by interferon.  Tetherin (also referred to as 

BST-2, CD317, or HM1.24) is an interferon-inducible host intrinsic antiviral protein that acts at 

least in part by retaining budded enveloped virions on the cell surface and preventing virion 

release into the extracellular media (184).  

 Although discovered as an intrinsic immune factor because of its effect upon HIV-1 

replication, the ability of tetherin to disrupt virion budding is not specific for HIV-1.  Ebola virus 

viral particle release is effectively blocked by tetherin (129, 184).  Indeed egress of a range of 

enveloped viruses including simian lentiviruses, Lassa virus, Kaposi sarcoma-associated 

herpesvirus, influenza A virus, vesicular stomatitis Indiana virus, Chikungunya virus, and hepatitis 

C virus are impacted by tetherin expression (126, 184, 195, 217, 274).  Tetherin’s ability to inhibit 

viral particle release from infected cells is dependent upon the protein’s unusual cellular topology 

which consists of an extracellular coiled coil domain anchored on both ends by a N-terminal 

transmembrane domain and a C-terminal GPI anchor (140).  During HIV assembly, tetherin is 

seen to localize to sites of viral budding (93) and block viral egress by forming a physical linkage 

between the virion and the host cell (254). 

 For many of the viruses affected by tetherin, antagonists have been identified that impede 

the anti-viral activity of tetherin.  Some of these antagonists, such as HIV-1 Vpu, recognize the 

transmembrane region of tetherin and modify residues in the cytoplasmic tail of tetherin, resulting 

in the down-regulation and degradation of tetherin (253).  K5 from KSHV targets residues in the 

cytoplasmic tail of tetherin for ubiquitination and subsequent proteasomal degradation (168), 

whereas the envelope proteins of HIV-2 and a subset of SIVs require sequences in the tetherin 

ectodomain for recognition and surface downregulation (88, 99). 
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 Ebola virus is a member of the species Zaire ebolavirus within the Filoviridae family and a 

causative agent of outbreaks of hemorrhagic fever in sub-Saharan Africa primarily due to zoonotic 

transmission of virus from a presumptive natural reservoir in fruit bats (149, 202).  Prior to the 

2014 epidemic in Western Africa, these outbreaks were infrequent and of limited scope (146).  

Ebola virus infection fatality rates are unusually high, ranging from 59-88%, while disease 

progression occurs rapidly; on average, patients succumb to infection 10 days after showing 

symptoms (32, 70, 123).  

 Ebola virus infection produces several proteins from the viral glycoprotein (GP) gene.  

The primary product from the viral GP gene is a 323 residue nonstructural, soluble glycoprotein 

(sGP) that exists as a homodimer.  Polymerase stuttering incorporates an additional nucleotide in 

a small percentage of the GP transcripts causing a frameshift and production of the full-length, 

virion associated glycoprotein (EboGP) (223, 259).  Due to this method of production, sGP and 

EboGP share 295 N-terminal residues, including regions within EboGP needed for receptor 

recognition and cell binding as well as a domain called the glycan cap.  EboGP forms trimers and 

is cleaved in into two subunits, GP1 and GP2, such that GP2 is membrane anchored by a 

hydrophobic membrane spanning domain (msd) (259). 

 Structural analysis of EboGP shows that the GP2 subunit contains the fusion machinery 

and forms a stalk that holds GP1, the globular receptor-binding region (145).  Within GP1 is the 

glycan cap, a moderately glycosylated region that, together with a heavily glycosylated mucin 

domain, sits atop the trimeric glycoprotein spike and covers the receptor binding domain of 

EboGP (52, 145).  While EboGP shares the N-terminal 295 residues with sGP, the proteins are 

markedly different in their structure; EboGP forms trimers, while sGP exists as homodimers (16, 

55, 259). 

 EboGP has been identified as an inhibitor of intrinsic immunity based upon its ability to 

act as an antagonist of tetherin (129).  While the mechanism of action for tetherin antagonism by 
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EboGP is poorly understood, tetherin degradation or relocalization from the cell surface is likely 

not involved (160, 161).  Recent reports suggest that EboGP may prevent tetherin from localizing 

with VP40 (89).  Specific EboGP domains have been implicated in interacting with or 

counteracting tetherin.  Within GP1, the mucin domain can be removed without affecting EboGP 

anti-tetherin activity (129).  Furthermore, FRET analysis of the interaction between EboGP and 

tetherin has suggested that the GP2 subunit appears to interact with tetherin (138).  Similarly 

recent chimeric protein analysis demonstrated a role for the EboGP msd within GP2 in tetherin 

antagonism (71).  sGP is unable to affect tetherin antiviral function (129). 

 Here the domains within the Ebolaviral glycoproteins required to antagonize tetherin 

antiviral activity are further characterized.  We define a minimal 320 residue portion of the Ebola 

glycoprotein ectodomain, containing the receptor binding domain and glycan cap regions of 

EboGP, that when anchored to the cell surface is sufficient to antagonize tetherin activity.  

Moreover, there is a specific requirement for the EboGP msd, as anchoring sGP by other cellular 

msd sequences or by a GPI anchor does not antagonize tetherin activity.  Finally, deletion of the 

glycan cap region by proteolytic processing renders EboGP unable to promote viral budding 

suggesting that the glycan cap is important for tetherin antagonism. 

Section 2.3 – Materials and Methods 

Cell Lines, Plasmid Vectors, and Antibodies 

 293T cells were grown in DMEM (Invitrogen) supplemented with 5% fetal bovine serum 

(Invitrogen) and 2 mM L-Glutamine (Invitrogen).  Vectors used to transfect cells were constructed 

as described below.  The vector pcDNA3.1 furin expressing human furin was previously 

described (26).  To express HIV Gag, psPAX2 was obtained from Addgene.  Human tetherin, in 

the vector pCMV Sport6 Tetherin was obtained from Open Biosystems.  An AU1 tagged 

cytoplasmic tail and transmembrane domain of mouse transferrin receptor one (mtfr1) and the 

human tetherin ectodomain were combined to generate mtfr1-tetherin in a pCB6 backbone 
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(Figure 2-7B).  To express and detect viral protein products, we cloned sequences into the 

pCAGGS vector and, where specified, appended a C-terminal FLAG, V5, or polyhistidine tag to 

generate these constructs: pCAGGS VP40 (FLAG tagged), pCAGGS EboGP (V5-His tagged), 

pCAGGS GP-primed (V5-His tagged), and pCAGGS sGP.  EboGP lacking a glycan cap (GP-

primed) was generated by replacing EboGP residues 203-206 (VNAT) with a consensus furin 

cleavage site (RRKR) as previously described (91).  EboGP constructs with amino acid point 

mutations C670A and C672A were generated both individually and in combination.  To generate 

sGP chimeras, an XbaI restriction site (or XhoI for sGP-TM(TVA)) was introduced at the C-terminus 

of sGP after residue 320, immediately before the furin RVRR cleavage site.  Sequences encoding 

the transmembrane domain from EboGP, human ACE2, the chicken TVA receptor, or a GPI 

anchored form of the TVA receptor were appended to sGP after the XbaI site.  Sequence details 

of all constructs produced are shown in Figure 2-1.  Antibodies used include the mouse IgG2a 

anti-V5 antibody (Invitrogen 46-0705), rabbit anti-FLAG antibody (Sigma F7425), rabbit polyclonal 

sera (R12) produced against EboGP, and mouse anti-tetherin antibody (Biolegend RS38E).  

HRP-conjugated, Alexa Fluor 488, or Alexa Fluor 647 secondary antibodies against mouse or 

rabbit Fc were used where indicated. 

Virus-like Particle (VLP) Budding Assay 

 293T cells were seeded in a 24-well plate at a density of 1.0x105 cells per well.  Using 

Lipofectamine 2000 (Invitrogen) or polyethylenimine (PEI) (PolySciences Inc.), 293T cells were 

transfected with plasmids encoding VP40 or psPAX2, tetherin, and filovirus GP or an empty 

vector.  When GP-primed was used, pcDNA3.1 furin was added to all transfected wells.  VLPs in 

the supernatants were harvested at 48 hours post-transfection and, after a clarifying spin at 1700 

rcf, were purified through a 20% sucrose cushion by centrifugation in a TLA120.1 rotor at 40,000 

rpm for 30 minutes.  Concurrently, the cells were lysed in 1% Triton lysis buffer and cleared by 
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Figure 2-1:  C-terminal and N-terminal nucleotide sequence list.  A nucleotide sequence 
list comparing the unique C-terminal or N-terminal domains for each construct used in this 
study.  The amino acid translation is given above each sequence and annotations are 
indicated below each sequence. !

MSD and N-terminal Sequences 
!
!
EboGP      Q  G  D  N  D  N  W   W  T  G  W  R  Q  W   I  P  A  G  I  G   V  T  G  V  V  I  A   V  I  A  L  F  C  I   C  K  F  V  F  P!
      1912 CAGGGGGACAATGACAATTG GTGGACAGGATGGAGACAAT GGATACCGGCAGGTATTGGA GTTACAGGCGTTGTAATTGC AGTTATCGCTTTATTCTGTA TATGCAAATTTGTCTTTCCG!
                    Ectodomain                                             EboGP Transmembrane Domain                 Cytoplasmic Tail!
           R  F  E  G  K  P  I   P  N  P  L  L  G  L   D  S  T  R  T  G   H  H  H  H  H  H  *!
      2032 CGGTTCGAAGGTAAGCCTAT CCCTAACCCTCTCCTCGGTC TCGATTCTACGCGTACCGGT CATCATCACCATCACCATTG A!
                                           V5-His tag!
sGP        K  T  S  V  V  R  V   R  R  E  L  L  P  T   Q  G  P  T  Q  Q   L  K  T  T  K  S  W   L  Q  K  I  P  L  Q   W  F  K  C  T  V!
       946 AAAACATCAGTGGTCAGAGT CCGGCGCGAACTTCTTCCGA CCCAGGGACCAACACAACAA CTGAAGACCACAAAATCATG GCTTCAGAAAATTCCTCTGC AATGGTTCAAGTGCACAGTC!
                  sGP     Furin Cut Site                                                  Delta Peptide!
           K  E  G  K  L  Q  C   R  I  *!
      1066 AAGGAAGGGAAGCTGCAGTG TCGCATCTAA!
!
sGP-TM     K  T  S  V  V  S  R   Q  G  D  N  D  N  W   W  T  G  W  R  Q   W  I  P  A  G  I  G   V  T  G  V  V  I  A   V  I  A  L  F  C!
(GP)   946 AAAACATCAGTGGTCTCTAG ACAGGGGGACAATGACAATT GGTGGACAGGATGGAGACAA TGGATACCGGCAGGTATTGG AGTTACAGGCGTTGTAATTG CAGTTATCGCTTTATTCTGT!
                sGP         XbaI            EboGP Ectodomain                                     EboGP Transmembrane Domain  !
           I  C  K  F  V  F  *!
      1066 ATATGCAAATTTGTCTTTTA G!
              EboGP Cytoplasmic Tail!
sGP-TM     K  T  S  V  V  S  R   Q  P  T  L  G  P  P   N  Q  P  P  V  S   I  W  L  I  V  F  G   V  V  M  G  V  I  V   V  G  I  V  I  L!
(ACE2) 946 AAAACATCAGTGGTCTCTAG ACAGCCAACACTTGGACCTC CTAACCAGCCCCCTGTTTCC ATATGGCTGATTGTTTTTGG AGTTGTGATGGGAGTGATAG TGGTTGGCATTGTCATCCTG!
                  sGP       XbaI              ACE2 Ectodomain                                    ACE2 Transmembrane Domain!
           I  F  T  G  I  R  D   R  K  K  K  N  K  A   R  S  G  E  N  P   Y  A  S  I  D  I  S   K  G  E  N  N  P  G   F  Q  N  T  D  D!
      1066 ATCTTCACTGGGATCAGAGA TCGGAAGAAGAAAAATAAAG CAAGAAGTGGAGAAAATCCT TATGCCTCCATCGATATTAG CAAAGGAGAAAATAATCCAG GATTCCAAAACACTGATGAT!
                                                                  ACE2 Cytoplasmic Tail!
           V  Q  T  S  F  *!
      1186 GTTCAGACCTCCTTTTAG!
!
sGP-TM     K  T  S  V  V  L  E   P  T  D  N  G  T  E   A  P  T  V  P  A   P  G  R  A  L  P  A   R  N  H  G  R  M  W   M  L  I  T  A  V!
(TVA)  946 AAAACATCAGTGGTCCTCGA GCCCACGGACAACGGCACAG AGGCTCCCACTGTCCCTGC TCCTGGACGTGCTCTGCCAGC CAGGAATCACGGCCGCATGT GGATGCTGATCACTGCAGTG!
                 sGP        XhoI                               TVA Ectodomain!
           L  L  C  C  L  V  A   V  G  G  I  A  A  W   G  K  S  K  A  K   S  R  S  D  I  F  S   L  E  S  A  S  K  E   L  L  V  P  D  K!
      1066 CTCCTGTGCTGCCTGGTAGC TGTGGGTGGTATCGCTGCAT GGGGGAAGTCCAAAGCAAA AAGCAGGTCTGACATCTTCAG TCTTGAAAGCGCATCCAAGG AGCTGCTGGTGCCTGACAAG!
                  TVA Transmembrane Domain                                                           TVA Cytoplasmic Tail!
           S  Q  A  D  L  F  S   *!
      1186 AGCCAGGCAGACTTGTTCTC CTGA!
!
sGP-GPI    K  T  S  V  V  S  R   P  T  D  N  G  T  E   A  P  T  V  P  A   P  G  R  A  L  P  A   R  N  H  G  R  M  W   M  L  I  T  A  G!
(TVA)  946 AAAACATCAGTGGTCTCTAG ACCCACGGACAACGGCACAG AGGCTCCCACTGTCCCTGC TCCTGGACGTGCTCTGCCAGC CAGGAATCACGGCCGCATGT GGATGCTGATCACTGCAGGG!
                 sGP        XbaI                                         TVA Ectodomain and GPI anchor signal sequence!
           I  F  C  C  E  L  V   R  W  D  *!
      1186 ATCTTTTGCTGTGAGCTGGT GAGATGGGACTGA!
!
Tetherin   M  A  S  T  S  Y  D   Y  C  R  V  P  M  E   D  G  D  K  R  C   K  L  L  L  G  I  G   I  L  V  L  L  I  I   V  I  L  G  V  P!
         1 ATGGCATCTACTTCGTATGA CTATTGCAGAGTGCCCATGG AAGACGGGGATAAGCGCTGT AAGCTTCTGCTGGGGATAGG AATTCTGGTGCTCCTGATCA TCGTGATTCTGGGGGTGCCC!
                       Tetherin Cytoplasmic Tail                                             Tetherin Transmembrane Domain!
           L  I  I  F  T  I  K   A  N  S!
       121 TTGATTATCTTCACCATCAA GGCCAACAGC!
!
mtfr1-     M  D  T  Y  R  Y  I   M  D  Q  A  R  S  A   F  S  N  L  F  G   G  E  P  L  S  Y  T   R  F  S  L  A  R  Q   V  D  G  D  N  S!
Tetherin 1 ATGGATACATATCGATACAT TATGGATCAAGCCAGATCAG CATTCTCTAACTTGTTTGGT GGGGAACCATTGTCATACAC CCGGTTTAGCCTTGCTCGGC AAGTAGATGGAGATAACAGT!
                   AU1 tag                                                     mtfr1 Cytoplasmic Tail!
           H  V  E  M  K  L  A   A  D  E  E  E  N  A   D  N  N  M  K  A   S  V  R  K  P  K  R   F  N  G  R  L  C  F   A  A  I  A  L  V!
       121 CATGTGGAGATGAAACTGGC TGCAGATGAAGAAGAAAATG CCGACAATAACATGAAGGCT AGTGTCAGAAAACCCAAGAG GTTTAATGGAAGACTCTGCT TTGCAGCTATTGCACTAGTC!
 !
           I  F  F  L  I  G  F   M  S  G  Y  L  G  T   I  K  A  N  S!
       241 ATTTTCTTCTTGATTGGATT CATGAGTGGCTACCTGGGCA CCATCAAGGCCAACAGC!
                       mtfr1 Transmembrane Domain!
!
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centrifugation at 18,000 rcf for 3 minutes.  Cell lysates and purified VLPs were then analyzed by 

immunoblot. 

Immunoprecipitation Assay 

 293T cells were seeded in a 6-well plate at a density of 2.2x105 cells per well.  Using 

Lipofectamine 2000, 293T cells were transfected with plasmids encoding tetherin, GP, or empty 

vector.  48 hours post-transfection, cells were lysed in a 1% Triton buffer and, after clearing the 

lysate at 18,000 rcf for 3 minutes, rocked with Protein A conjugated agarose beads overnight at 

4°C.  Concurrently, Protein A conjugated agarose beads were also rocked overnight at 4°C with 

antibodies to tetherin (RS38E) or GP (R12).  After incubation, the antibody bound agarose beads 

were washed twice in 1% Triton buffer.  The naked agarose beads were cleared from the rocking 

cell lysates, replaced with antibody bound agarose beads, and rocked overnight at 4°C.  Protein 

adhering to the antibody bound agarose beads were washed four times in 0.1% Triton buffer and 

subsequently analyzed by immunoblot. 

Immunoblot Analysis 

 Samples were loaded and run on a 4-15% Tris-HCl polyacrylamide gel (Bio-Rad) and 

subsequently transferred to a PVDF membrane by electroblotting.  Membranes were blocked in 

5% non-fat dry milk with Tris-buffered saline (Blotto) and then rocked overnight at 4°C with a 

1:10,000 dilution of antibody.  After washing with Blotto, appropriate HRP conjugated secondary 

antibodies were added to the membranes and rocked for one hour.  Membranes were washed in 

Blotto and Tris-buffered saline with 0.1% Tween-20 and subsequently imaged on a 

chemiluminescent imager (Fujifilm LAS-1000).  Where indicated in experiments, membranes 

were stripped with Restore Western blot stripping buffer (Thermo Scientific) and re-probed with 

antibodies.  All experiments shown are representative of immunoblots repeated at least three 

times. 

Flow Cytometry Analysis 
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 293T cells were seeded at a density of 1.05x105 cells per well into a 24-well plate.  Cells 

were transfected using Lipfectamine 2000 with 600ng of plasmids encoding GP, a chimeric GP or 

pCAGGS empty vector.  48 hours post-transfection, cells were lifted off the plate with 5 mM EDTA 

in PBS-/- and kept at 4°C throughout the analysis.  Cells were spun at 150xg for 5 min and 

resuspended in Flow Wash (PBS-/- with 1% FBS and 0.05% NaAz) and probed with an 

appropriate primary and secondary antibody for 1 hour.  Cells were washed 2X with Flow Wash, 

fixed and permeabilized with BD Fix/Perm (BD Biosciences) for 20 minutes, washed 2X with BD 

Perm/Wash (BD Biosciences), and probed again with appropriate primary and secondary 

antibody for 1 hour.  Cells were washed 2X with BD Perm/Wash, resuspended in PBS-/- and 

analyzed by on a FACS Calibur (BD Biosciences).  Post acquisition analysis was performed on 

FlowJo software (FlowJo LLC). 

Section 2.4 – Results 

Requirements within EboGP for Tetherin Antagonism 

 To define the minimal requirements within the Ebola virus glycoprotein needed to 

antagonize tetherin function, we employed an Ebola virus-like particle (VLP) budding assay, with 

a panel of plasmids including full-length EboGP, sGP, an sGP chimera (Figure 2-2A and 2-2B).  

Previously we found that neither sGP nor secGP, a soluble version of EboGP cleaved at the 

extracellular base by tumor necrosis factor-converting enzyme (TACE) protease [31], could 

effectively counteract tetherin (129).  The membrane spanning domain (msd) represents a 

significant difference between full-length EboGP and secGP; we therefore sought to determine 

whether the msd was a determinant of anti-tetherin activity.  A chimeric glycoprotein was 

produced by appending the msd from EboGP onto the C-terminus of sGP creating sGP–TM(GP) 

(Figure 2-2A and 2-2B).  Flow cytometry and immunoblot analysis confirmed the expression of 

the chimeric protein (Figures 2-2E and 2-3).  Analysis of budded Ebola VP40 particles 

demonstrated that sGP–TM(GP) was able to effectively antagonize tetherin activity by promoting 
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MSD$Sequences$
!
!
EboGP   638 QGDNDNWWTG WRQWIPAGIG VTGVVIAVIA LFCICKFVFP RFEGKPIPNP!
                             EboGP TM Domain!
        688 LLGLDSTRTG HHHHHH*!
               V5-His Tag!
sGP     316 KTSVVRVRRE LLPTQGPTQQ LKTTKSWLQK IPLQWFKCTV KEGKLQCRI*!
             sGP Furin Site            Delta Peptide!
sGP-TM  316 KTSVVSRQGD NDNWWTGWRQ WIPAGIGVTG VVIAVIALFC ICKFVF*!
(GP)         sGP                     EboGP TM Domain!
sGP-TM  316 KTSVVSRQPT LGPPNQPPVS IWLIVFGVVM GVIVVGIVIL IFTGIRDRK!
(ACE2)       sGP                      ACE2 TM Domain!
        366 KKNKARSGEN PYASIDISKG ENNPGFQNTD DVQTSF*!
!
sGP-TM  316 KTSVVLEPTD NGTEAPTVPA PGRALPARNH GRMWMLITAV LLCCLVAVG!
(TVA)        sGP                                  TVA TM Domain!
        366 GIAAWGKSKA KSRSDIFSLE SASKELLVPD KSQADLFS*!
!
sGP-GPI 316 KTSVVSRPTD NGTEAPTVPA PGRALPARNH GRMWMLITAG IFCCELVRW!
(TVA)        sGP!
        366 D*!
!
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Figure 2-2:  Comparing the ability of 
alternative msd to release VLP from 
Tetherin.  (a) A schematic diagram of the 
constructs used in this study showing the 
domains of EboGP, sGP, and a chimeric 
sGP with an appended membrane 
spanning domain (msd), either a protein 
transmembrane (TM) domain or a GPI 
anchor, to the C-terminus.  (b) Amino 
acid sequences of the constructs 
employed, highlighting the C-terminal 
regions appended to the chimeric sGPs.  
Where known, the msd sequence is 
annotated.  (c) An Ebolavirus-like particle 
(VLP) budding assay comparing the anti-
Tetherin activity of EboGP, sGP and 
chimeric sGPs.  293T cells were 
transfected with plasmids encoding 
VP40-FLAG, human Tetherin and varying 
amounts of the GP constructs as 
indicated.  Top Panel: Purified VLPs were 
analyzed by SDS-PAGE and immunoblot 
using a FLAG–tag antibody to detect 
VLPs released into the media.  Bottom 
Panel: Cell lysates were analyzed by 
SDS-PAGE and immunoblot probed with 
an antibody to FLAG to evaluate VP40 
expression in the transfected cells.  (d) A 
VLP budding assay comparing the anti-
Tetherin activity of EboGP, sGP, and sGP 
with either a GPI anchor or a 
proteinaceous msd from TVA.  Top 
Panel: Purified VLPs were detected by 
immunoblot and probed with an antibody 
to the FLAG tag of VP40.  Bottom Panel: 
VP40 expression in the 293T cell lysates 
was confirmed by using an antibody to 
FLAG in the immunoblot.  Results are!
representative of at least 3 independent experiments.  (e) A bar chart depicting the relative 
expression of the GP constructs in 293T cells, as measured by flow cytometry, after staining with a 
polyclonal antibody (R12) to GP.  Surface GP was detected on fixed cells without permeabilization, 
while for total GP, staining was performed after permeabilization.!
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Figure 2-3:  Expression of glycoprotein in the cell lysates of Figure 2-2C.  Immunoblot of 
293T cell lysates depicting the expression of the glycoproteins used in the budding assay from 
Figure 2-2C. The immunoblot of the cell lysates from Figure 2-2C was stripped and reprobed 
with the R12 antibody to detect verify expression of the constructs in the budding assay.!
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VLP release across a range of sGP–TM(GP) expression levels (Figure 2-2C).  As controls, we 

confirmed that sGP could not promote virion release, even at the highest levels of sGP 

expression utilized, while EboGP effectively antagonized tetherin and prompted virion release 

(Figure 2-2C).  sGP and EboGP expression in transfected 293T cells were verified by flow 

cytometry (Figure 2-2E) and by immunoblot of cell lysates and supernatants (Figure 2-3).  Cellular 

lysate expression of sGP appears lower than EboGP because sGP does not contain an msd and 

thus, is secreted from cells and not retained on the cell surface (Figure 2-2E).  Overall these 

experiments define a minimal 320 residue portion of the Ebola glycoprotein ectodomain, 

containing the receptor binding domain and glycan cap regions of EboGP, that when anchored to 

the cell surface is sufficient to antagonize tetherin activity.  Conversely, these data indicate that 

the mucin domain and the extracellular region of the GP2 subunit of EboGP are dispensable for 

anti-tetherin activity. 

Chimeras Reveal a Specific Requirement for the EboGP Membrane Spanning Domain (msd) 

 To differentiate whether the activity of sGP–TM(GP) was due to the physical anchoring of 

EboGP N-terminal region to the membrane or if there was a specific requirement for the Ebola 

virus msd, chimeras were constructed with heterologous membrane anchoring domains from 

other type I membrane proteins appended to the C-terminus of sGP (Figure 2-2A and 2-2B).  The 

msd from the avian glycoprotein TVA and from human ACE2 were appended to sGP creating 

sGP–TM(TVA) and sGP–TM(ACE2) respectively.  The expression of these chimeras was analyzed by 

flow cytometry (Figure 2-2E) and immunoblot analysis (Figures 2-3 and 2-4) and all of the 

chimeras were expressed, albeit at varying levels.  One construct, sGP-TM(TVA), seemed to 

express poorly in the cell lysates when assessed by immunoblot (Figure 2-4).  However, flow 

cytometry analysis shows that sGP-TM(TVA) is well expressed on the cell surface (Figure 2-2E).  

The ability of the chimeras to promote virion release was assessed using an Ebola VLP budding 

assay as described above.  In contrast to the results with the Ebola msd, sGP–TM(ACE2) and sGP–



 

 

38 

- - - - - - - - - - - - 

Tetherin 

VP40 

Tetherin 

VP40 

Tetherin 

VP40 

Tetherin 

VP40 

EboGP sGP 
sGP-GPI(TVA) 

sGP-TM(TVA) M
oc

k 

M
oc

k 

M
oc

k 

M
oc

k 

Lysates 
(GP) 

GP 

Figure 2-4:  Expression of glycoprotein in the cell lysates of Figure 2-2D.  Immunoblot 
showing glycoprotein expression in the 293T cell lysates from the budding assay in Figure 
2-2D.  Immunoblot from the budding assay in Figure 2-2D was stripped and re-probed with the 
R12 antibody to confirm expression of the new constructs.!
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TM(TVA) were unable to antagonize tetherin activity as judged by their inability to significantly 

promote particle release even at the highest level of expression (Figures 2-2C and 2-2D). 

 Both full-length Ebola glycoprotein and tetherin have been reported to localize to 

glycolipid-enriched or lipid raft regions of the membrane (20, 140, 172).  We hypothesized that 

the msd and short cytosolic domain of EboGP might provide lipid raft localization to the sGP–

TM(GP) chimera thus facilitating tetherin antagonism.  To address this theory, sequences for an 

alternatively spliced form of avian TVA that encodes a glycosylphosphatidylinositol (GPI)-linked 

anchor (19, 180) were appended onto sGP to produce sGP–GPI(TVA) (Figure 2-2A and 2-2B).  

Western blot and flow cytometry analysis demonstrated that this chimera was expressed and 

routed to the cell surface (Figure 2-2E and 2-4).  Expression of this chimera with Ebola VP40 and 

tetherin demonstrated that it is unable to promote virion release in the presence of tetherin 

(Figure 2-2D).  In sum, these results demonstrate that fusion of 39 residues containing the msd 

from the GP2 subunit of EboGP onto 320 residues of the ectodomain is sufficient to effectively 

antagonize human tetherin.  Moreover, they reveal a specific requirement for the 39 residues of 

the EboGP msd. 

 A notable feature of the Ebola msd is the presence of cysteine residues near the inner 

membrane surface.  In EboGP these two cysteine residues are reported to be acylated, however 

the functional consequences of acylation remain unknown (114).  To determine if these residues 

contributed to the observed anti-tetherin function of GP, we replaced amino acids C670 and C672 

with alanine residues both individually and in tandem.  Similar to other reports, we found that 

replacing either or both cysteines with alanine residues did not alter the ability of EboGP to 

release tethered VLPs in a budding assay (Figure 2-5) (71, 160). 

The Ebola msd Requirement is not Specific for Filoviral Budding 

 To address whether the requirement for the EboGP msd is specific for budding of Ebola 

VP40 or if the EboGP msd is able to promote release of other viral particles that are restricted by 
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Figure 2-5:  Testing the role of GP1,2 cytoplasmic cysteine resides in antagonizing 
Tetherin.  A VP40 VLP budding assay assessing the ability of EboGP to antagonize tetherin 
with either one or both membrane proximal cysteines modified to an alanine. Top Panel: An 
immunoblot depicting purified VLPs released by each of the glycoproteins, suggesting that 
modification of the cysteine residues at 670 and 672 do not affect VLP release.  Middle Panel: 
Cellular lysates were also analyzed by immunoblot to verify the expression of VP40. Bottom 
Panel: The middle panel immunoblot was stripped and reprobed with the R12 antibody to 
detect glycoprotein expression in the cellular lysates.!
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Tetherin, we tested several of the EboGP chimeras for their effect upon HIV-1 VLP budding in the 

presence of human tetherin.  Similar to the results with VP40, the sGP-TM(GP) chimera allowed 

budding of HIV particles from tetherin expressing cells (Figure 2-6, top panel).  As was the case 

for filamentous Ebola VP40 particles, neither the ACE2 or TVA heterologous membrane spanning 

regions, nor the TVA GPI anchor could substitute for the msd of EboGP to promote efficient HIV-1 

budding (Figure 2-6, top panel).  Although the sGP-TM(TVA) chimera was poorly expressed in 

these experiments, which might account for its inability to counteract tetherin, both sGP-TM(ACE2) 

and sGP-GPI(TVA) were well expressed (Figure 2-6 fourth panel) yet unable to promote HIV-1 

particle budding. 

 One possible reason for the failure of these chimeras to relieve tetherin restriction could 

be that they are unable to localize to the particle budding sites.  To address this hypothesis the 

incorporation of EboGP msd chimeras into HIV-1 particles in the absence of tetherin was 

analyzed.  As can be seen in Figure 2-6 (third panel, left hand lanes), sGP-TM(GP), sGP-TM(ACE2) 

and sGP-GPI(TVA) were effectively incorporated into HIV-1 particles while sGP-TM(TVA) was poorly 

expressed and incorporated.  This finding demonstrates that these chimeric glycoproteins, which 

are unable to relieve tetherin restriction, are not excluded from sites where HIV-1 viral particles 

bud and suggests that an ability to move the EboGP ectodomain into the site of budding is not 

sufficient to relieve tetherin restriction.  While the exact nature of the features critical for release of 

tetherin restricted virions within the Ebola virus msd remain to be elucidated, overall, these 

chimera studies point to a critical role of the EboGP msd for function as a tetherin antagonist.  

Moreover, they identify the amino terminal 295 residues of sGP, when appended to the EboGP 

msd, as sufficient for tetherin antagonism. 

The Tetherin Amino-terminal Region is not Required for EboGP Recognition 

 A specific requirement for the EboGP msd might suggest direct recognition of the tetherin 

msd by EboGP.  To test this hypothesis, the tetherin msd and N-terminal cytoplasmic domains 
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Figure 2-6:  Comparison of chimeric sGP glycoproteins in an HIV-1 Gag budding assay.  
Top Panel:  Released HIV-1 VLPs were analyzed by SDS-PAGE and detected by immunoblot 
for HIV-1 Gag (p24) in supernatant of 293T cells transfected with an HIV-1 Gag encoding 
vector plus chimeric sGPs with or without Tetherin.  Second Panel:  Expression of HIV Gag. 
Cell lysates of the transfected cells were analyzed by immunoblot for expression of HIV Gag 
(p55).  Third Panel:  Incorporation of GPs into VLPs. The immunoblot in the top panel was 
stripped and probed with a polyclonal antibody against EboGP.  Fourth Panel:  Expression of 
sGP and chimeric sGPs.  The immunoblot from the second panel was stripped and expression 
of GP was analyzed in the cell lysates.  These results are representative of two independent 
experiments.!
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Figure 2-7:  Testing the ability of GP1,2 to counter Tetherin containing an alternative 
transmembrane domain.  (a) Schematic diagram of human tetherin and the chimeric mtfr1-
tetherin containing a cytoplasmic tail and transmembrane domain from mouse transferrin 
receptor 1 (mtfr1).  (b) A comparison of the N-terminal amino acid sequence of tetherin and 
mtfr1-tetherin.  (c) A budding assay comparing the ability of the Ebolavirus glycoprotein to 
release VLPs retained by tetherin or mtfr1-tetherin.  293T cells were transfected with VP40-
FLAG and increasing amounts of EboGP with either human tetherin or chimeric mtfr-tetherin as 
indicated.  Top Panel: Purified VLPs were analyzed by SDS-PAGE/immunoblot using an anti-
FLAG antibody for detection.  Bottom Panel: 293T cell lysates were analyzed by SDS_PAGE/
immunoblot, and probed with the anti-FLAG antibody to confirm VP40 expression.  (d) Co-
immunoprecipitation analysis comparing the ability of tetherin and mtfr1-tetherin to interact with 
EboGP.  Lysates from 293T cells expressing tetherin and/or EboGP were analyzed by SDS-
PAGE/immunoblot either directly (Inputs) or after immunoprecipitation with antibody specific for 
GP (top panel) or tetherin (bottom panel). Molecular mass is shown to the left in kD.  The left 
middle panel is a lower exposure of the right middle panel to visualize the overexposed lanes.!
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were replaced with the domains from mouse transferrin receptor protein 1 to generate a chimeric 

protein, mtfr1-tetherin (Figure 2-7A and 2-7B).  Previous studies with similar chimeras have 

shown that the specific msd of tetherin is dispensable for tetherin function (161, 198). To confirm 

that mtfr1-tetherin retained the ability restrict virion release, a VLP budding assay was employed 

(Figure 2-8).  The chimera was able to block VLP release, although the activity was slightly 

reduced based on expression level compared to wild-type (wt) tetherin.  Having demonstrated 

that this chimeric tetherin is active, the ability of EboGP to counteract the activity of mtfr1-tetherin 

was assessed using a VLP budding assay.  As seen in Figure 2-7C, EboGP was able to promote 

VLP release similarly from cells expressing wt tetherin or mtfr1-tetherin.  This result suggests that 

EboGP does not require the tetherin msd in order to recognize tetherin and impair its activity. 

 Previously, EboGP and tetherin have been shown to interact by co-immunoprecipitation 

(IP) (129).  To determine whether EboGP physically interacts with the chimeric mtfr1-tetherin, wt 

tetherin or the mtfr1-chimera were co-expressed with EboGP in 293T cells.  Cell lysates were 

immunoprecipitated with a polyclonal anti-EboGP antibody followed by western blot analysis for 

tetherin.  As seen in Figure 2-7D, EboGP effectively immunoprecipitates both wt and the chimeric 

tetherin proteins.  To verify the interaction, the reciprocal IP was performed using an antibody that 

reacts with the ectodomain of tetherin to precipitate, followed by western analysis for EboGP 

(Figure 2-7D).  As was previously noted (129), it appears that the immature forms of EboGP 

preferentially interact with tetherin – and here this finding is seen for both wild type and the 

chimeric mtfr1-tetherin.  These experiments demonstrate that while the msd domain of EboGP is 

required for tetherin antagonism, recognition does not require specific intra-membrane sequences 

in tetherin. 

The Glycan Cap of EboGP is Required to Antagonize Tetherin 

 Among filoviruses, the glycan cap is a moderately conserved (~55% identity) glycosylated 

domain within the viral glycoprotein GP1 subunit.  This region is proteolytically cleaved by cellular 



 

 

45 

Released  
VLPs 

Lysates 
(VP40) 

Tetherin -
Tetherin 

- - -

M
oc

k 

M
oc

k 

mtfr1-Tetherin 

VP40 VP40 

Lysates 
(Tetherin) 

Figure 2-8:  Testing the ability of Tetherin containing an alternative transmembrane in 
restricting VLP release.  A VP40 VLP budding assay comparing the ability of tetherin and 
mtfr1-tetherin to prevent release of VLPs into the supernatant.  Top Panel: VLPs analyzed by 
immunoblot showing the effectiveness of both tetherin and mtfr1-tetherin in retaining budded 
particles.  Middle Panel: An immunoblot showing the expression of VP40 in the corresponding 
cellular lysates.  Bottom Panel: The immunoblot from the middle panel was reprobed for 
glycoprotein expression using the R12 antibody. !
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cathepsins during filoviral entry to reveal a binding site for NPC1, the conserved receptor (35, 44, 

145).  Aside from occluding the receptor-binding site, no other function has been ascribed to the 

glycan cap.  Indeed, virus produced in which the cap domain is removed by in vitro proteolysis is 

more infectious than wt virions, demonstrating that this domain is dispensable for the cell entry 

function of EboGP (36, 130, 225).  To examine the role of this domain in antagonizing tetherin, an 

EboGP mutant was constructed such that sequences encoding the glycan cap could be readily 

removed (130).  This was accomplished by inserting a consensus furin cleavage site at the point 

in a disordered loop where cathepsin cleavage usually occurs generating GP-primed (Figure 2-

9A).  The added furin site allows GP-primed to be cleaved by host proteases during production of 

the glycoprotein, thus mimicking the cleavage produced by cathepsins during entry (130).  To 

determine the role of the glycan cap in promoting virion release, a VLP budding assay was used 

to compare EboGP and GP-primed.  As seen in Figure 2-9B, GP-primed did not promote release 

VLPs even at the highest levels of expression tested. 

 To ascertain whether the glycan cap domain participates in the EboGP–tetherin 

interaction, we compared the ability of EboGP and GP-primed to immunoprecipitate tetherin.  

EboGP and tetherin were co-expressed in 293T cells and the interaction was assessed by co-IP 

with antibodies to EboGP.  The interaction was also verified by performing the reciprocal IP.  Both 

the inputs and immunoprecipitated protein were analyzed by Western blot (Figure 2-9C).  We 

were able to confirm the EboGP–tetherin interaction, as shown in previous work (129).  

Surprisingly, in contrast to the VLP release data, IP of cells expressing GP-primed effectively co-

precipitated tetherin.  However, an IP with a tetherin antibody precipitated only pre-processed 

immature GP and not the cleaved form lacking the glycan cap or the mature full-length 

glycoprotein.  Thus, while the glycan cap seems to be important for the anti-tetherin activity of 

EboGP, it remains unclear whether or not the glycan cap has a role in mediating the tetherin 

interaction. 
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from 293T cells transfected with tetherin and EboGP or GP-primed as indicated. Top Panel: 
Precipitation using polyclonal α-EboGP sera flowed by SDS-PAGE and detection with an α-
tetherin monoclonal antibody.  Bottom Panel: A reciprocal analysis, using an α-tetherin 
antibody for immunoprecipitation and detection with α-EboGP sera. Molecular mass is shown 
in kD.  Indicated on the right are the immature form of the Ebolavirus glycoprotein, GP0 and 
the mature forms of GP-primed and EboGP."
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Figure 2-9:  Determining the 
role of the glycan cap in 
countering Tetherin.  (a) 
Schematic diagram depicting 
the domains of EboGP and GP-
primed, a construct that mimics 
the glycoprotein produced 
during Ebolavirus entry by 
introduction of a furin cleavage 
site at the position where 
cathepsin processing normally 
occurs.  (b) Ebola VLP budding 
assay comparing GP-primed to 
EboGP.  Top Panel: Purified 
supernatants of 293T cells 
transfected with the indicated 
expression plasmids were 
analyzed by SDS-PAGE and 
probed with anti-FLAG antibody 
to detect FLAG tagged VP40.  
Middle Panel: 293T cells 
producing the VLPs were lysed 
in TritonX-100 buffer, analyzed 
by SDS-PAGE and 
immunobloted using α-FLAG 
antibody.  Bottom Panel: The 
blot from the middle panel was 
stripped and re-probed with 
polyclonal antibody against GP 
to detect the differential forms 
of the filovirus glycoproteins.  
(c) EboGP and GP-primed 
interactions with tetherin. 
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Section 2.5 – Discussion 

 Tetherin represents an important barrier to replication of a number of enveloped viruses; 

consequently viruses have evolved a variety of specific tetherin antagonists.  The Ebola virus 

envelope glycoproteins are effective tetherin antagonists (99, 129, 184) and have been shown to 

promote viral spread in tetherin expressing cells (138).  Here we dissect the requirements within 

the Ebola glycoproteins that are important to counteract tetherin activity.  Overall, we find that 

regions in both the ectodomain and membrane spanning domain of the Ebola virus glycoprotein 

are necessary and, when expressed as a chimeric protein, sufficient to antagonize tetherin 

activity. 

 Analysis of chimeric GP envelope proteins in which the membrane-spanning region of 

EboGP is replaced by heterologous sequences indicates that this region of the GP2 subunit is 

required for tetherin antagonism.  Our findings are similar to recent studies (71) where it was 

found that the membrane-spanning domain from an arenavirus glycoprotein was unable to 

replace the EboGP msd.  In other studies, it was suggested from co-IP analysis that the GP2 

subunit is sufficient for an interaction with tetherin (138).  In contrast, our analysis demonstrates 

that the ability of EboGP to counteract tetherin also requires sequences from the GP1 subunit.  

This discrepancy likely reflects the different assays used in the analysis or may suggest that the 

interaction measured by IP is not a surrogate for anti-tetherin activity.  

 HIV-1 Vpu utilizes sequences within the membrane spanning domain to directly interact 

with human tetherin (87, 135, 214).  Indeed this sequence specificity determines the restricted 

host range of Vpu (173, 224).  Given that EboGP also requires the membrane-spanning region of 

GP2 it is tempting to speculate that the Ebola virus glycoprotein also directly recognizes tetherin 

via the membrane spanning sequences.  However, data presented here and elsewhere argue 

against this hypothesis.  First, EboGP recognizes divergent tetherin species where there is low 

conservation of the tetherin membrane spanning sequence.  For example, mouse tetherin has 
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only 38% identity with human, yet it is still effectively antagonized by EboGP (129).  Similarly, 

data presented here shows that replacing the tetherin membrane spanning region and 

cytoplasmic tail with mouse transferrin receptor sequences still allows tetherin antagonism.  

These results are similar to data from Lopez et al. analyzing chimeric tetherin proteins (161).  

Overall these data suggest that if the EboGP membrane-spanning region recognizes tetherin, it 

likely does so in a sequence independent manner.  

 The ability of sGP-TM(GP) to promote virus release suggests that recognition of tetherin 

requires the amino terminal 320 residues of the Ebola envelope surface glycoprotein but not the 

extracellular sequences from the GP2 subunit.  Although the structure of sGP is not determined, 

by comparison with the crystal structure of full length Ebola GP, sGP-TM(GP) includes the receptor 

binding and glycan cap domains of GP1 (145).  Removal of the glycan cap region of EboGP in the 

GP-primed mutant by incorporation of a furin protease cleavage site at position 206, abrogates 

EboGP tetherin antagonist activity.  This mutant glycoprotein is analogous to the cathepsin-

processed form of EboGP that is fully functional for entry into host cells (52, 130).  The inability of 

GP-primed to affect tetherin activity might suggest that the glycan cap region may have another 

role in addition to occluding the receptor binding domain – namely tetherin antagonism.  Exactly 

how this region recognizes tetherin, or if it can directly promote Ebola GP interaction with tetherin, 

remains to be determined.  Finally, the differential anti-tetherin activities of the sGP-TM(GP) 

chimera and GP-primed mutant demonstrate that the tetherin antagonist function can be 

separated from a role in viral entry. 

 Ebola viral particles are believed to bud from cholesterol-rich lipid rafts where both the 

viral matrix and glycoproteins localize (194).  The GPI anchor of tetherin is required for antiviral 

function (184) and likely acts at least in part by directing the protein to sites of budding (140).  

However, anchoring sGP via a GPI tail did not confer anti-tetherin function.  Thus localizing sGP 

at the site of viral budding and tetherin activity does not appear to be sufficient to antagonize 
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tetherin reinforcing our finding that the membrane spanning region of EboGP plays a critical role.  

Interestingly, although HIV-1 Vpu also localizes to lipid rafts, raft-association is not required to 

antagonize tetherin activity and promote HIV-1 release (66, 160).  This supports the notion that 

features within the EboGP msd other than lipid raft association are important for antagonism; 

however the nature of these features or the mechanism by which they act remain obscure. 

For the HIV-2 and SIV envelope proteins, extracellular determinants have also been shown to 

govern tetherin specificity, however with EboGP, the exact nature of the extracellular region 

needed remains unclear.  Additionally, for SIV and HIV-2 envelope proteins, antagonism requires 

recognition of tetherin through the ectodomain and a highly conserved endocytosis motif in the 

cytoplasmic tail (143).  In contrast, the short four residue cytoplasmic tail of EboGP has no similar 

motif, thus GP directed endocytosis is not a likely role for the Ebola msd in the sGP-TM(GP) 

chimera.  Moreover, SIV and HIV-2 envelope proteins appear to restrict tetherin to the trans Golgi 

network (99, 143) whereas no such relocalization has been seen for EboGP (138, 161).  Overall 

the precise mechanism by which these various viral glycoproteins act upon tetherin is obscure.  

However our studies localize anti-tetherin activity to 320 ectodomain residues plus 39 amino 

acids of the EboGP msd.  The Ebola viral glycoprotein and the chimeras and mutants we 

describe provide a platform for addressing these mechanistic questions. 
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CHAPTER 3 –EBOLA VIRUS GLYCOPROTEIN CONSTRUCTS AND 
TETHERIN LOCALIZE INDEPENDENTLY AT THE CELL SURFACE 

Section 3.1 – Abstract 

 The Zaire ebolavirus (EBOV) glycoprotein (GP1,2) counters the anti-viral factor Tetherin 

by an obscure mechanism.  Since EBOV buds from the cell surface, how GP1,2 and Tetherin 

localize on the cell surface may be important.  However, the mucin domain of GP1,2 can mask 

epitopes and impede microscopy analysis.  The EBOV secreted glycoprotein (sGP), which lacks 

a mucin domain, can gain anti-Tetherin activity when given a transmembrane domain from GP1,2, 

sGP-TM(GP), but not ACE2, sGP-TM(ACE2).  Here we analyze transient expression of these 

proteins in HT1080 cells using widefield fluorescence microscopy with fluorophore-conjugated 

antibodies to determine how Tetherin localization is affected by these proteins.  As expected 

based on prior analysis, we found that both Tetherin and the sGP chimeric proteins express on 

the cell surface.  However, Tetherin and sGP-TM(GP) staining did not co-localize; instead 

correlation analysis suggests that they localize to the surface independent of each other.  When 

we expressed Tetherin with sGP-TM(ACE2), which lacks anti-Tetherin activity, both proteins 

continued to localize independently.  Furthermore, expression of sGP-TM(ACE2) reduced 

glycoprotein-mediated filamentous particle production.  Overall, our findings suggest that the 

EBOV glycoprotein counters Tetherin without localizing with Tetherin at the cell surface and that 

the transmembrane domain of GP1,2 may function to promote production of filamentous particles. 

Section 3.2 – Introduction and Background 

 The Zaire ebolavirus (EBOV) full-length glycoprotein (GP1,2) is the only viral protein on 

the surface of EBOV virions and has many important roles in viral infections (220, 258).  GP1,2 

functions as a receptor-binding protein by interacting with the cellular receptor NPC-1 and 

triggering fusion of the viral and cellular membranes (35, 44).  When GP1,2 is expressed on the 

cell surface, the large disordered region within GP1,2, the mucin domain, shields GP1,2, MHC, and 
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other epitopes from recognition by the immune system (64, 145).  During virus assembly, GP1,2 

counters the anti-viral factor, Tetherin, and allows for release of virions from cells expressing 

Tetherin (129). 

 Tetherin is an interferon-induced intrinsic innate immune effector that prevents budded 

virions from leaving the cell surface (184).  In addition to GP1,2, a number of other viral proteins 

have been identified that also counteract Tetherin.  For some of these antagonists, a mechanism 

has been described detailing how Tetherin is countered.  For example, HIV-1 Vpu antagonizes 

Tetherin by recognizing the transmembrane domain of Tetherin and recruiting an E3 ligase, β-

TrCP to ubiquitinylate Tetherin (135, 175, 184).  This results in removal of Tetherin from the cell 

surface, sequestration into an intracellular compartment, and proteosomal degradation (50, 99). 

 However, for EBOV GP1,2, a detailed mechanism has not been described.  GP1,2 does not 

change levels of Tetherin within the cell, nor does GP1,2 downregulate Tetherin from the cell 

surface (129, 138, 161).  Tetherin and GP1,2 co-immunoprecipitate with each other, however, 

Tetherin interacts predominately with an immature ER form of GP1,2 (129).  Both GP1,2 and 

Tetherin have been shown to localize to the surface, and tagged GP1,2 seems to co-localize with 

Tetherin (138, 140, 160, 161).  However, recent microscopy data describes GP1,2 as not co-

localizing with Tetherin, but preventing Tetherin from localizing with VP40, the matrix protein of 

EBOV (89).  Two significant difficulties in using microscopy to assess GP1,2 localization with other 

proteins on the cell surface are the ability of the GP1,2 mucin domain to shield epitopes from 

antibody recognition and to cause cell rounding by high level GP1,2 expression (64, 243). 

 Here, we utilized two unique constructs derived from the EBOV secreted glycoprotein 

(sGP) to assess localization of Tetherin and the EBOV glycoprotein.  The sGP protein is the 

primary product of the EBOLV glycoprotein gene, which produces full-length GP1,2 after an mRNA 

transcriptional editing event that occurs for ~20% of transcripts (223).  Unlike GP1,2, sGP cannot 

counteract Tetherin (129).  However, these sGP constructs have an appended C-terminal 
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transmembrane domain from either GP1,2, sGP-TM(GP), or Angiotensin-Converting Enzyme 2, 

sGP-TM(ACE2).  sGP lacks a mucin domain; likewise, these sGP constructs do not cause 

rounding of cells and cannot shield epitopes from antibody recognition (243).  Previous 

experiments in section 2.4 (Figure 2-2 C) showed that sGP-TM(GP) acquired the ability to 

antagonize Tetherin, while sGP-TM(ACE2) does not affect Tetherin activity.  Thus, we were able 

to assess Tetherin and GP localization in the presence of a functional and non-functional EBOV 

glycoprotein. 

 Using widefield fluorscence microscopy in the context of VP40 and Tetherin expression, 

we found that both sGP-TM(GP) and sGP-TM(ACE2) could localize to the surface of HT1080 

cells.  HT1080 cells are an adherant human epitheilial cell line that remain relatively flat on glass 

surfaces and do not endogenously express Tetherin.  Interestingly, however, neither glycoprotein 

seemed to co-localize with Tetherin.  Instead, both of the sGP constructs and Tetherin localized 

randomly and independent of each other, suggesting that the mechanism used by the EBOV 

glycoprotein to counter Tetherin does not involve direct interactions with Tetherin on the cell 

surface. 

Section 3.3 – Methods 

Cells Lines, Plasmids, and Antibodies 

 HT1080 cells were maintained at 37°C in 5% CO2 in DMEM with 10% FBS and 2 mM L-

glutamine.  The plasmids pCAGGS, pCAGGS VP40-GFP, pCMV-Sport6 Bst2, pCAGGS sGP-

TM(GP), and pCAGGS sGP-TM(ACE2) were described in section 2.3 and previous work (42, 96).  

Primary antibodies used include mouse monoclonal anti-Tetherin (Biolegend RS38E) and rabbit 

polyclonal anti-GP (R12 rabbit sera).  Secondary antibodies used include goat anti-mouse-PE 

(Invitrogen) and goat anti-rabbit-Alexa 647 (Invitrogen). 

Transfection and Preparation of Cells for Microscopy 



 

 

54 

 Glass coverslips were incubated for one hour with 100 μg/mL poly-D-lysine (Sigma 

P6407), washed 5 times with dH2O, dried, and stored at 4°C.  24 hours before transfection, 

7.5x104 HT1080 cells were plated in a 24-well plate containing poly-D-lysine coated coverslips 

and then transfected with 750 ng of total plasmid DNA and 1.875 μL of Lipofectamine 2000 

(Invitrogen) per well.  No more than 100 ng of pCAGGS VP40-GFP, 50 ng of pCMV Sport6 Bst2, 

or 300 ng of vectors containing a glycoprotein were used.  Empty vector pCAGGS was used 

where needed.  36 hours post-transfection, cells were fixed in 4% PFA at 37°C for 10 minutes.  

Post-fixation, cells were kept at 4°C and washed 3-5X with PBS+/+ between all subsequent steps.  

Coverslips were blocked in PBS+/+ with 5% goat serum (Sigma G9023) and 2% BSA (EquiTech-

Bio Inc).  Cells were stained with primary antibody in blocking solution overnight and stained with 

secondary antibody in blocking solution for 2 hours.  The coverslips were mounted on glass slides 

with Vectashield Mounting Media with DAPI (Vector Laboratories). 

Microscopy and Software Analysis 

 Within 24-48 hours after the slides were prepared, images were collected on a Leica 

DM6000 upright widefield microscope (Leica Microsystems) with the following filter sets installed: 

Chroma 49000 for DAPI (Chroma Techonology Corp), L5 for Alexa 488 (Leica Microsystems), 

Chroma 49008 for Alexa 594 (Chroma Technology Corp), and Y5 for Alexa 647 (Leica 

Microsystems).  Post-acquisition image stacks were analyzed using FIJI (Fiji Is Just ImageJ) 

software.  All stacks were bleach corrected using a simple ratio.  Next, using a theoretical PSF 

(Point Spread Function) generated from the Diffraction PSF 3D plugin, stacks were deconvolved 

with the Iterative Deconvolve 3D plugin.  Compensation for detection of sGP in the Tetherin 

channel was also performed.  Representative slices from each deconvolved stack were chosen, 

and within each slice, regions of biological interest were selected for further analysis.  Slices were 

log (base10) transformed and the mean intensity compared to background was calculated.  C-
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localization analysis, plot generation, and calculation of Pearson’s Correlation Coefficient (PCC) 

and Li’s Intensity Correlation Quotient (ICQ) were done using the Coloc2 plugin (151). 

Section 3.4 – Results 

Addition of a Transmembrane Domain causes sGP and Tetherin to Express on the Cell Surface 

Immunofluorescence microscopy was used to determine the surface localization of sGP-

TM(GP) and sGP-TM(ACE2) in the context of a virus-like particle budding system using VP40 

and Tetherin.  As shown in the representative histograms in Figure 3-1, VP40, Tetherin, and each 

of the sGP constructs were detected in transfected non-permeabilized HT1080 cells.  Expression 

of VP40 (row 1 column 2 of Figure 3-1) resulted in formation of filamentous structures, as 

expected.  However, co-expression with sGP-TM(ACE2) (row 6 column 2 of Figure 3-1) generally 

reduced the number of cell-free filaments, while co-expression with sGP-TM(GP) (row 5 column 2 

of Figure 3-1)resulted in filaments produced with VP40, sGP-TM(GP), or both proteins.  Both sGP 

constructs and Tetherin were detected on the cell surface (column 3 and 4 Figure 3-1).  

Identification of Tetherin postive cells co-expressed with the sGP constructs was difficult, not only 

because Tetherin expression was lower, but because the flurophore-conjugated (Alexa 647) 

secondary antibodies for sGP were also detected with the filter set used to detect Tetherin.  

Therefore, after deconvolution and other post-acquistion corrections, compensation was 

performed on all of the Tetherin images to minimize cross-channel bleedthrough and a subset of 

the resulting images are displayed in Figure 3-1. 

 To compare the level of expression between the different proteins, which utilize different 

fluorophores, the ratio of the fluorescence positive signal was compared to the background signal 

for each image stack.  The resulting ratios were plotted and averaged across all images in a 

histogram as shown in Figure 3-2, confirming the results seen visually with the subset of images 

shown in Figure 3-1.  VP40 levels were consistent across all samples, while Tetherin and the 

sGP constructs were generally expressed well, when included in the transfection, although 
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Figure 3-2:  Geometric means of the fuorescence signal within image slices chosen for
analysis.  A histogram depicting the average ratios of the geometric mean (log transformed)
fuorescence signal over background.  HT1080 cells transfected with plasmids encoding the
proteins are indicated on the x-axis.   After image processing, areas of positive fuorescence
signal in each image were manually selected and compared to the unselected areas within
each image.  This ratio is displayed in the y-axis as a general comparison of fuorescence
intensity across all images.  The error bars represent 2 S.E. (~95% confdence interval) and
n=3, except for VP40+Tetherin+sGP-TM(GP) n=6, and VP40+Tetherin+sGP-TM(ACE2) n=5.
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Tetherin levels were lower than either VP40 or the sGP constructs.  A few of the images 

transfected with VP40+Tetherin had non-specific background staining in the GP channel that did 

not overlap with Tetherin staining.  For the VP40+Tetherin images, this non-specific staining 

causes the mean fluorescence in the GP channel to be higher, but is not an indication of channel 

bleed-over from the Tetherin channel.  This staining does not appear in the other images and 

does not impact downstream analysis. 

Transmembane Domain Containing sGP Constructs Localize Randomly with Tetherin 

 Two methods were used to measure the level of correlation between Tetherin and the 

two GP constructs.  First, the pixel intensities of the two channels were compared directly.  The 

intensity of pixels from the Tetherin and GP channels at each location were plotted against each 

other to generate the 2D intensity histograms as shown in Figure 3-3A.  Then, using the formula 

shown in Figure 3-3B, Pearsons’s Correlation Coefficient (PCC) was calculated for the 

fluorescence positive area within each image.  PCC values can range from 1 (correlation) to -1 

(anti-correlation).  The average of the calculated PCC values was plotted on a histogram in Figure 

3-3C.  Interestingly, Tetherin localization did not correlate or anti-correlate with either of the sGP 

constructs.  This suggests that while the sGP constructs and Tetherin staining may have some 

overlap in the images, this apparent co-localization is not different than expected from a random 

distribution. 

 A second method used to assess co-localization is a method developed by Li et al., which 

works on the following principle (151).  For a given set of values, the sum of the differences from 

the mean will be zero: Σi(Xi − X) = 0.  For two such sets that are not correlated or anti-correlated, 

the sum of the product of the differences from the mean will also tend to be zero: Σi(Xi − X)(Yi − Y) 

≈ 0.  For sets that are correlated, this sum will be greater than zero Σi(Xi − X)(Yi − Y) > 0, and for 

anti-correlated sets, less than zero Σi(Xi − X)(Yi − Y) < 0.  Thus, for each image, the product of the 

differences from the means was calculated for the pixel intensities of the Tetherin and GP 
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Figure 3-3:  Comparison of Tetherin and GP channels by PCC.   A)  Representative
images showing the pixel intensities from the Tetherin channel and the GP channel at each
location plotted against each other.  B)  The equation used to calculate the PCC for each
image fle.  C)  Histogram of the average PCC for all image fles when comparing the Tetherin
and GP channels.  The average PCC value is plotted on the y-axis, while the x-axis indicates
which plasmids the HT1080 cells received during transfection.  The error bars represent 2
S.E. (~95% confdence intervals) while n=3 for all samples except n=6 for
VP40+Tetherin+sGP-TM(GP) and n=5 for VP40+Tetherin+sGP-TM(ACE2).
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channels, to give an Intensity Correlation Analysis (ICA) value, as shown in Figure 3-4A.  Next, 

plots were generated by comparing the intensity of the pixels in the Tetherin channel with the 

calculated ICA value, as shown in Figure 3-4B.  Similar plots were generated in Figure 3-4C using 

the GP channel instead.  These hourglass shaped plots can be visually interpreted; plots that tilt 

to the right indicate dependent staining, while plots that tilt to the left indicate segregated staining.  

In general, all of these plots show neither dependent nor independent staining. 

 A more quantitative analysis was performed by using the formula shown in Figure 3-5A to 

generate an Intensity Correlation Quotient (ICQ).  ICA plots that tilt to the right exhibiting 

correlation will have a positive ICQ value of up to 0.5, while plots that tilt to the left showing anti-

correlation will have a negative ICQ value.  As seen in Figure 3-5B, the ICQ data matches closely 

with the data from Figure 3-3B.  All of the ICQ values are close to zero, again suggesting that 

Tetherin and both sGP constructs display staining independent of each other and any observed 

overlap in the images is likely random and not correlative. 

Section 3.5 – Discussion 

 Our results show that, Tetherin and the EBOV glycoprotein do not have a significant 

interaction, based on localization measured at the cell surface.  Additionally, the localization of 

Tetherin and an EBOV glycoprotein does not change when the glycoprotein is unable to prevent 

Tetherin-mediated restriction of viral particles. 

 Some of these data contrast with earlier microscopy results published by others that 

suggested EBOV GP1,2 and Tetherin localize closely with each other on the cell surface (138, 

160).  Our analysis evaluated the localization of all glycoprotein and Tetherin on the cell surface, 

rather than simply looking for staining overlap of glycoprotein and Tetherin.  Additionally, our 

results were not dependent on using tagged forms of GP1,2 or Tetherin, which could alter the 

localization as seen with tagged proteins used in other studies.  Furthermore, the location of 

these tags necessitates permeabilization of the cells, which complicates colocalization analysis 
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Figure 3-5:  Comparing the intensities of the Tetherin and GP channels by ICQ.  A)  
Formula to calculate the Intensity Correlation Quotients (ICQ) using the ICA values calculated
in the previous fgure.  B)  Histogram of the average ICQ values for all image fles when
comparing the Tetherin and GP channels.  The average ICQ value is plotted on the y-axis,
while the x-axis indicates which plasmids the HT1080 cells received during transfection.  The
error bars represent 2 S.E. (~95% confdence intervals) while n=3 for all samples except n=6
for VP40+Tetherin+sGP-TM(GP) and n=5 for VP40+Tetherin+sGP-TM(ACE2).
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by obfuscating surface and internal proteins.  One study by Gustin et al., attempted microscopy 

with non-permeabilized cells, but found that GP1,2 shielded Tetherin epitopes from antibody 

detection; a known function of the GP1,2 mucin domain (64, 89).  Use of sGP derived constructs 

lacking a mucin domain allowed us to avoid the shielding effect seen with GP1,2.  Thus, the 

different microscopy methods and glycoprotein constructs used by earlier groups could account 

for the discrepancies seen when compared to our results. 

 Within the microscopy images, we detected filamentous structures containing VP40 as 

expected.  We also found filamentous structures containing only sGP-TM(GP), similar to previous 

reports with full-length Ebola glycoprotein (188).  Interestingly, we observed fewer structures 

containing sGP-TM(ACE2), which differs from sGP-TM(GP) only in the transmembrane domain 

and cytoplasmic tail portions.  Studies by Hacke et al. have identified a GXXXA motif within the 

GP1,2 transmembrane domain that, along with cholesterol, allows GP1,2 to produce filamentous 

structures (90).  The GXXXA motif is present in sGP-TM(GP), but is lacking the sGP-TM(ACE2) 

construct, which is consistent with our finding that sGP-TM(ACE2) produces fewer filamentous 

structures in our images.  Overall, our observations support a role for the GP1,2 transmembrane 

domain in producing filamentous particles.  Further experimentation is required to determine if the 

filament production ability of the EBOV glycoproteins is causally related to Tetherin antagonism. 
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CHAPTER 4 – CONCLUSIONS AND FUTURE DIRECTIONS 

Section 4.1 – Formation of Ebola Virus Glycoprotein Induced Particles 

 Several EBOV proteins, including VP40, Nucleoprotein, VP35, and GP1,2 interact to form 

viral particles capable of assembling and budding from the cell membrane (124, 154).  The 

primary driver of EBOV budding, the matrix protein VP40, oligomerizes and, independent of other 

viral proteins, forms filamentous particles similar in size and shape to infectious EBOV virions (31, 

194, 227).  These VP40 induced particles have been termed virus-like particles (VLP) and are 

used by the field to study many aspects of EBOV budding including interactions with host factors 

in the ESCRT pathway and Tetherin (20, 96, 129).  VLP budding is dependent on VP40 late 

domains that interact with ESCRT pathway members such as TSG101 and NEDD4 (170, 247). 

 VP40-driven budding, however, is not always sufficient or even necessary to produce 

VLP.  For example, VLP are sensitive to the anti-viral factor Tetherin and require a Tetherin 

antagonist, such as GP1,2, to release VLP held by Tetherin on the cell surface (129, 184).  GP1,2 is 

capable of enhancing VLP production even when VP40 contains mutations in the late-domain that 

prevent interaction with ESCRT pathway components, which suggests that these particles can 

utilize alternative host budding pathways (154, 185).  Together, these observations suggest an 

important role for GP1,2 in budding and formation of viral particles. 

 The ability of GP1,2 to promote budding and formation of filamentous particles is a less 

appreciated function of the glycoprotein.  As mentioned above, GP1,2 can enhance budding of 

VP40 particles and allow for ESCRT independent budding of VLP (154).  Interestingly, GP1,2 can 

also induce the formation of filamentous particles similar in size, although not necessarily in 

shape, to VP40 derived particles (188).  Unlike VP40 produced VLP, which form flexible rod-like 

particles with varying lengths and uniform diameters, the GP1,2 particles are of a similar size, but 

with less structure and lack a uniform shape (188). 
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 Recently, experiments by Hacke et al., have suggested that the ability of GP1,2 to produce 

filamentous particles is dependent upon features within the GP2 subunit of GP1,2 (90).  A specific 

motif, GXXXA, within the transmembrane domain allows production of particles via interactions 

with elevated levels of cholesterol at the plasma membrane.  Their model hypothesizes that the 

association of cholesterol and the GP2 subunit drives formation of a lattice-like network that 

contains GP1,2 and excludes other proteins. 

 As described earlier in section 2.4, we produced a panel of sGP constructs with 

transmembrane domains from other proteins including ACE2 and TVA.  As shown previously in 

section 2.4 (Figure 2-2 C and D), none of the glycoproteins containing alternative transmembrane 

domains were able to counter Tetherin, even though they were able to incorporate onto HIV Gag 

particles in the absence of Tetherin (Figure 2-6).  Complicating this analysis is the observation 

that some of these chimeric glycoproteins do not allow for VP40 budding in the absence of 

Tetherin.  As shown in Figure 4-1, VP40 particles do not bud when sGP contains the 

transmembrane domain from ACE2.  The immunoblots in Figure 4-1 demonstrate results similar 

to the observations in section 3.4 (Figure 3-1 row 6 column 2); in presence of the sGP-TM(ACE2) 

production of VP40 containing particles is reduced.  Interestingly, as shown earlier in section 2.4 

(Figure 2-1), the ACE2 transmembrane domain sequence lacks a GXXXA motif, while both TVA 

and GP1,2 contain the motif.  Thus, even though VP40 can form VLP in the absence of a 

glycoprotein, these data support the hypothesis that in the presence of both VP40 and GP1,2, the 

GXXXA motif is required on the glycoprotein transmembrane domain to produce particles. 

 To address this hypothesis, additional experiments will be needed to determine whether 

the GXXXA motif within GP1,2 is important for producing GP particles or allowing for VP40 

budding.  Similar to the experiments by Hacke et al., the GXXXA transmembrane motif in sGP-

TM(GP) or full-length GP1,2 can be mutated to IXXXI and tested in a VP40 VLP budding assay 

(90).  I would hypothesize that glycoproteins containing the GXXXA motif would incorporate onto 
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Figure 4-1:  Budding of VP40 VLP with sGP chimeras containing alternative
transmembrane domains.  A VP40 based VLP budding assay, comparing the ability of
various glycoproteins to incorporate and allow for VP40 budding in the absence of Tetherin.
Using PEI, 293T cells were transfected with VP40-FLAG and each of the glycoproteins shown
in the immunoblot.  The immunoblots were probed with antibodies to FLAG, to detect VP40,
and after stripping the blots, with R12, to detect the sGP glycoprotein.
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VP40 particles while glycoproteins containing the IXXXI motif would not.  Additionally, I would 

look for glycoprotein particle formation in the absence of VP40; again anticipating a loss of 

glycoprotein particle formation when the GXXXA motif is lost.  These experiments would highlight 

the importance of the glycoprotein and the GXXXA motif in production of an understudied viral 

particle.  However, it is likely that additional features within the GP1,2 membrane spanning domain 

are also required as sGP-TM(TVA) does not antagonize Tetherin. 

Section 4.2 – Role of the Sialic Acid Residues in the Glycan Cap 

 A critical function of the EBOV glycoprotein is mediating entry of the EBOV virion into the 

host cell (220).  GP1,2 contains a large number of glycosylation sites, most of which are located 

within the mucin domain and glycan cap domains of the protein (120, 259).  These glycans 

interact with cellular lectins such as dendritic cell-specific intercellular adhesion molecule-3-

grabbing non-integrin (DC-SIGN) and DC-SIGNR (8, 234).  Lectin interactions and GP1,2 induced 

macropinocytosis allow for uptake and trafficking of the filamentous virion to endosomes 

containing cathepsins and the receptor NPC-1 (111).  Cathepsin B, and possibly Cathepsin L, 

cleave GP1,2 within a disordered loop resulting in release of the glycan cap and mucin domain 

(36, 225).  Removal of these domains exposes the receptor binding portion of GP1,2 allowing for 

an interaction with NPC-1 and subsequent fusion with the cellular membrane (35, 44). 

 In addition to functioning in entry, the glycan cap, but not the mucin domain, has a role in 

countering Tetherin during assembly and budding.  As described earlier in section 2.4 (Figure 2-9 

B), removal of the glycan cap prevents GP1,2 from promoting viral particle release in the presence 

of Tetherin.  Although the constructs used lack both a glycan cap and mucin domain, the mucin 

domain does not influence Tetherin restricted budding (129).  Thus, while the glycan cap is 

needed to counter Tetherin, a mechanism explaining the role GP1,2 glycan cap in countering 

Tetherin has not been described. 
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Figure 4-2:  The effect of neuraminidase on sGP-TM(GP) mediated release of particles
from Tetherin.  A)  A VP40 VLP budding assay in 293T cells showing the effect of
neuraminidase on the ability of sGP-TM(GP) to release VLP held by Tetherin.  Neuraminidase
was added exogenously to all of the lanes except for the one lane as indicated.  The
immunoblots were probed with antibodies to FLAG to detect VP40, and after stripping, with
R12 to detect sGP. B)  Another VLP budding assay in 293T cells comparing the ability of VLP
to bud with or without exogenous neuraminidase added to the media.  The immunoblots were
probed with antibodies to FLAG to detect VP40.  The red line in the immunoblot indicates
overexposure of the blot for that lane.
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 Interestingly, recent experiments have suggested that neuraminidase activity can prevent 

EBOV glycoprotein countering of Tetherin during budding.  As shown in the budding assays in 

Figure 4-2, treatment of 293T cells with neuraminidase prevents the antagonist, sGP-TM(GP) 

from countering Tetherin and allowing for VLP release.  It is possible that neuraminidase is 

cleaving the sialic acid residues on the many N-linked or O-linked glycosylations on the glycan 

cap of sGP-TM(GP).  In turn, this could affect the ability of sGP-TM(GP) to counter Tetherin.   

 In order to clarify the role of sialic acid residues, I would propose to utilize a series of 

GP1,2 mutants in which the N-linked glycosylation sites are mutated singly and in combinations 

(147).  These constructs could be used in a VP40 budding assay to determine if the glycan cap 

carbohydrates have a role in countering Tetherin.  Additional experiments may be needed as well, 

since neuraminidase could be cleaving sialic acid residues on other proteins, such as Tetherin, to 

prevent sGP-TM(GP) from countering Tetherin. 

Section 4.3 – How the Ebola Virus Glycoprotein Could Counter Tetherin 

 Currently, the mechanism by which GP1,2 counters Tetherin is not clear.  Unlike the 

mechanisms used by other antagonists, GP1,2 does not degrade Tetherin, remove Tetherin from 

the surface of cells, or relocalize Tetherin away from lipid rafts (129, 160, 161).  Our mutational 

analysis has revealed two domains within GP1,2 that influence anti-Tetherin activity: the glycan 

cap and the transmembrane domain (section 2.4, Figure 2-2 and Figure 2-9) (71, 138).  While 

removal of the glycan cap is important during entry of EBOV, no other roles have been attributed 

to the glycan cap during assembly or budding of EBOV (36, 130, 145).  However, the GP1,2 

transmembrane domain actively functions to produce filamentous membranes that may be 

important for budding of EBOV virions (90, 188).  Shown in Figure 4-3 are three models to 

summarize and compare the role of both VP40 and GP1,2 in budding. 

 In the first model, which is the most studied, VP40 oligomers interact, via late-domains, 

with components of the ESCRT pathway to drive formation of VLP (20, 96, 194).  The VLP 
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Figure 4-3:  Comparison of EBOV budding in three different models.  Three models of
EBOV budding with VP40 alone, GP1,2 alone, and VP40 with GP1,2.  The frst model depicts
VP40 VLP budding, which is dependent on interactions with NEDD4 and TSG101, members
of the ESCRT pathway and is inhibited by Tetherin.  The second model depicts GP1,2 
mediated budding, which is not inhibited by Tetherin and utilizes a GXXXA motif in the GP1,2 
transmembrane domain to recruit cholesterol and produce less structured flaments.  The third
model depicts budding in the presence of both VP40 and GP1,2, which is is not inhibited by
Tetherin and may not require ESCRT components.
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formed by VP40 are filamentous particles of varying lengths with uniform diameters and are 

similar to infectious EBOV particles seen by electron microscopy (123, 188).  Interactions 

between VP40 and VP35, the polymerase co-factor, are sufficient to package EBOV 

minigenomes (124).  While these VLP serve as a good model for studying EBOV, this model is 

incomplete.  Budding of VP40 VLP can be inhibited by Tetherin, requiring a Tetherin antagonist 

such as GP1,2 or HIV-1 Vpu to release particles (129, 184).  Furthermore, the late domains within 

VP40 are not required for replication of infectious EBOV (185).  Thus, another model is needed to 

understand EBOV budding. 

 The second model in Figure 4-3 depicts GP1,2 mediated production of pleomorphic 

particles; a process that has been observed, but is understudied compared to the first model 

(188). While similar in overall size to VP40 VLP, these particles appear less structured and lack a 

uniform diameter.  Formation of GP1,2 particles is dependent on cholesterol and a GXXXA motif 

within the GP1,2 transmembrane domain (90).  Also unlike VP40 VLP, GP1,2 particles can form in 

the presence of Tetherin.  This model is supported by observations that mature GP1,2 does not 

interact or localize with Tetherin at the cell surface, as described in section 2.4 (Figure 2-7 D), 

section 3.4(Figure 3-5 B), and elsewhere (161).  However, the filament forming ability of GP1,2 

has not yet been linked experimentally to its anti-Tetherin activity.  Since the GP1,2 filament 

formation is dependent on the GXXXA motif within the GP1,2 transmembrane domain, I 

hypothesize that mutation of the GXXXA motif to IXXXI would also prevent GP1,2 from countering 

Tetherin in a budding assay.  Showing that the GXXXA motif is required to counter Tetherin would 

strongly support the model described here.  Additionally, I have already generated constructs with 

alternative transmembrane domains on sGP, some of which lack a GXXXA motif and have varied 

abilities to counter Tetherin.  Testing the ability of these constructs to produce GP1,2 particles in a 

budding assay would further clarify the role of the GP1,2 transmembrane domain in particle 

production.  However, VLP lacking VP40 are not likely to be sufficient for forming viral particles in 
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the context of an EBOV infection.  Incorporation of other viral components, such as the 

nucleocapsid and RNA genome, depends on interactions with VP40 (124). 

 The final model in Figure 4-3 shows VP40 and GP1,2 interacting to form VLP.  These 

particles can incorporate both VP40 and GP1,2, and appear similar in morphology to infectious 

EBOV particles (188).  Since budding of these particles is mediated by GP1,2, and GP1,2 is a 

known Tetherin antagonist, Tetherin does not prevent budding of these particles (129).  However, 

while Tetherin can inhibit and incorporated into VP40 VLP, it is not clear whether or not Tetherin 

is excluded from particles containing GP1,2.  Additional experiments utilizing sGP constructs with 

alternative transmembrane domains will be useful in determining the amounts of incorporated 

Tetherin within viral particles.  Interestingly, Tetherin localizes to lipid rafts on the surface, while 

GP1,2 does not (160).  Yet, both GP1,2 filament formation in HeLa cells and lipid rafts are 

dependent on cholesterol (90, 236).  If Tetherin can incorporate into particles without inhibiting 

them, then perhaps production of VP40 and GP1,2 containing particles alters local cholesterol 

levels, causing disruptions in lipid raft formation.  This could allow Tetherin to localize to EBOV 

particles without inhibiting them.  Additional experiments will be needed to test this hypothesis.  

Also, while VP40 late domains can interact with ESCRT pathway components, such interactions 

are not necessary for budding of these particles (185).  The active role of GP1,2 in budding may 

explain the observation that GP1,2 enhances EBOV particle production in the presence of VP40 

containing late-domain mutations (154).   

 In conclusion, the mechanism by which GP1,2 counters Tetherin is unusual and distinct 

from other antagonists.  GP1,2 seems to promote virion release without targeting Tetherin for 

degradation or relocalization.  Experiments in this thesis suggest a role for the GP1,2 glycan cap 

and transmembrane domain.  Furthermore, the GP1,2 transmembrane domain may have a more 

active role in production of filaments than previously thought.  Together, these results suggest a 

model whereby GP1,2 directly promotes formation of viral particles in a manner that prevents 
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Tetherin from inhibiting viral release.  Additional experiments will be needed to verify this model 

and further clarify the function of GP1,2 as a Tetherin antagonist. 
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