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ABSTRACT

STATISTICAL METHODS FOR OUTCOME-DEPENDENT SAMPLING DESIGNS

Le Wang

Jinbo Chen

My dissertation work focuses on the development of novel outcome-dependent sampling designs

and statistical methods of analysis. In a biomedical cohort study for assessing association between

a binary outcome variable and a set of covariates, it is common that some covariates can only be

measured on a subgroup of study subjects. An important design question is which subjects to select

into the subgroup towards increased statistical efficiency. Existing designs can achieve improved

efficiency for estimating odds ratio parameters for the completely observed covariates. Our goal is

to improve efficiency for the incomplete covariates, which is of great importance in studies where

the covariates of interest cannot be fully collected. In the first two projects, we proposed a novel

sampling design in a common scenario where an external model is available relating the outcome

and complete covariates. Our design oversampled cases and controls whose probabilities of hav-

ing their own outcome were low as predicted by the external model and at the same time matched

cases and controls on complete covariates. We developed a pseudo-likelihood method for estimat-

ing odds ratio parameters. Through simulation studies and a real cohort study, we showed that our

design led to reduced asymptotic variances of the odds ratio parameter estimates for both incom-

plete and complete covariates. In the third project, we developed a family-supplemented inverse-

probability-weighted empirical likelihood approach to correcting for a type of outcome-dependent

selection bias in case-control genetic association studies, where genotype data were incomplete

for reasons that were related to the genotype itself. Genetic association analysis would be biased

if such non-ignorable missingness were naively ignored. Our method exploited genetic data from

family members to help infer missing genotype data. It jointly estimated odds ratio parameters for

genetic association and missingness, where a logistic regression model was used to relate miss-

ingness with genotype and other covariates. In the estimating equation for genetic association

parameters, we weighted the empirical likelihood score function based on subjects who had geno-

type data by the inversed probabilities that their genotype data were available. We studied large

and finite sample performance of our method and applied it to a case-control study of breast cancer.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER 1 : INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 : A NOVEL GOODNESS-OF-FIT BASED SAMPLING DESIGN FOR STUDYING BI-

NARY OUTCOMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Goodness-of-Fit Based Design for Two-Phase Sampling . . . . . . . . . . . . . . . . 6

2.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Insight into the Efficiency of GOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Illustration of GOF in a Real Study Setting . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

CHAPTER 3 : THE BALANCED GOODNESS-OF-FIT BASE SAMPLING DESIGN . . . . . . . . . 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Balanced Goodness-of-Fit Based Design . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Application of BGOF in a Biomarker Study of Genstational Diabetes . . . . . . . . . 27

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CHAPTER 4 : ADJUSTING FOR PARTICIPATION BIAS IN CASE-CONTROL GENETIC ASSOCI-

ATION STUDIES WITH GENOTYPE DATA SUPPLEMENTED FROM FAMILY MEM-

BERS: AN EMPIRICAL LIKELIHOOD BASED ESTIMATING EQUATION APPROACH 32

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



4.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Real Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

CHAPTER 5 : CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vi



LIST OF TABLES

TABLE 2.1 : The estimated log OR of phase II covariate (β̂4) under the goodness-of-
fit based design (GOF), the case-control design (CC), and the balanced
design (BD). The phase I cohort size was 3000, the prevalence was 0.05 and
0.10, the correlation parameter ρ for phase I variables was 0 and 0.3, and
the true value of β4 was 0.5, 0.7, and 0.9. The mean asymptotic standard
error (“asym”), empirical standard error (“emp”), and coverage probability
(“coverage”) of β̂4 were calculated based on 1000 simulations. . . . . . . . . 12

TABLE 2.2 : The point estimate of the log OR for phase II covariate and its mean asymp-
totic standard error (SE) under the goodness-of-fit based design (GOF), the
case-control design (CC) and the balanced design (BD). The point estimate
from the full cohort for family history was 0.57, for BMI was 0.10, and for
race was: Black -0.54, Hispanic 0.47, Asian 0.71. Relative efficiency was
calculated as the asymptotic variance under CC or BD over that of GOF. . . 17

TABLE 3.1 : The estimated log OR of phase II covariate (β̂4) under balanced goodness-
of-fit based design (BGOF). The phase I cohort size was 3000, the preva-
lence was 0.05 and 0.10, the correlation parameter ρ for phase I variables
was 0 and 0.3, and the true value of β4 was 0.5, 0.7, and 0.9. The mean
asymptotic standard error (“asym”), empirical standard error (“emp”), and
coverage probability (“coverage”) of β̂4 were calculated based on 1000 sim-
ulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

TABLE 3.2 : Asymptotic variance of β̂ under the balanced goodness-of-fit based design
(BGOF) and its efficiency relative to the goodness-of-fit based design (GOF),
the balanced design (BD), and the case-control design (CC). The phase I
cohort size was 3000. The prevalence was 0.05 and 0.10, the correlation
parameter ρ for phase I variables was 0 and 0.3, and the true value of β4
was 0.5, 0.7, and 0.9. The correlation between phase II variable X4 and
phase I variables X1, X2, and X3 was 0.6, 0.5, and 0.3, respectively. . . . . 26

TABLE 3.3 : The point estimate of the log OR for phase II covariate and its mean asymp-
totic standard error (SE) under the balanced goodness-of-fit based design
(BGOF), the case-control design (CC) and the balanced design (BD). The
point estimate from the full cohort for family history was 0.57, for BMI was
0.10 and for race was: Black -0.54, Hispanic 0.47, Asian 0.71. Relative effi-
ciency was calculated as the asymptotic variance under CC or BD over that
of BGOF or GOF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

TABLE 4.1 : Distribution of children’s genotypes (Gc) conditional on parents’ genotypes
(G and Gs) under the assumption of Hardy-Weinberg equilibrium, random
mating and the Mendelian inheritance. . . . . . . . . . . . . . . . . . . . . . 42

vii



TABLE 4.2 : The estimated log OR of covariate X (β1) and genotype G (β2) in the as-
sociation model and the estimated MAF (θ) using the family-supplemented
weighted empirical likelihood method. The prevalence is 0.03, genotype
availability is 0.8 and 0.6, the true value of β1 is 0.182, of β2 is 0.182 and
0.405, and MAF is 0.2. The true values of (α3, α4, α5) in the three missing-
ness models are: weak = (0.182, 0.405, 0.405), strong = (0.405, 0.405, 0.405),
and No interaction (NI) = (0.405, 0, 0). The mean asymptotic standard error
(“asym”), empirical standard error (“emp”), and coverage probability (“cover-
age”) of β̂1, β̂2, and θ̂ were calculated based on 1000 simulations. . . . . . . 49

TABLE 4.3 : The mean bias in and the mean square error (MSE) of estimated log OR of
covariate X (β1) and genotype G (β2) in the association model and the esti-
mated MAF (θ) using the family-supplemented weighted empirical likelihood
method (FS-WEL) and the naive method based on1000 simulations. The
prevalence is 0.03, genotype availability is 0.8 and 0.6, the true value of β1 is
0.182, of β2 is 0.182 and 0.405, and MAF is 0.2. The true values of (α3, α4, α5)
in the three missingness models are: weak = (0.182, 0.405, 0.405), strong
= (0.405, 0.405, 0.405), and No interaction (NI) = (0.405, 0, 0). In each of
the 12 settings, true values and estimates of coefficients β1, β2 and θ are
presented in this order in the magnitude of 10−3. . . . . . . . . . . . . . . . 50

TABLE 4.4 : Estimated log OR parameters in the association model of the Two Sister
Study using the family-supplemented weighted empirical likelihood method
(FS-WEL) and the naive method. Mean asymptotic (“asy”) and bootstrap
(“bts”) standard errors are calculated on 1000 bootstrap iterations. p-value
is resulted from a Wald test in use of the bootstrap standard error in both
association and missingness models. . . . . . . . . . . . . . . . . . . . . . . 51

TABLE C.1 : The estimated log OR of phase I covariate (β̂1) under balanced goodness-
of-fit based design (BGOF), the goodness-of-fit based design (GOF), the
case-control design (CC), and the balanced design (BD). The phase I cohort
size was 3000, the prevalence was 0.05 and 0.10, the correlation parameter
ρ for phase I variables was 0 and 0.3, and the true value of β4 was 0.5, 0.7,
and 0.9. The correlation between phase II variable X4 and phase I variable
X1, X2, and X3 are 0.6, 0.5, and 0.3, respectively. X1 was the stratifying
variable in BGOF. The true value of β1 is 0.5. The mean asymptotic standard
error (“asym”), empirical standard error (“emp”), and coverage probability
(“coverage”) of β̂4 were calculated based on 1000 simulations. . . . . . . . . 64

TABLE C.2 : The estimated log OR of phase I covariate (β̂2) under balanced goodness-
of-fit based design (BGOF), the goodness-of-fit based design (GOF), the
case-control design (CC), and the balanced design (BD). The phase I cohort
size was 3000, the prevalence was 0.05 and 0.10, the correlation parameter
ρ for phase I variables was 0 and 0.3, and the true value of β4 was 0.5, 0.7,
and 0.9. The correlation between phase II variable X4 and phase I variable
X1, X2, and X3 are 0.6, 0.5, and 0.3, respectively. X1 was the stratifying
variable in BGOF. The true value of β2 is 0.6. The mean asymptotic standard
error (“asym”), empirical standard error (“emp”), and coverage probability
(“coverage”) of β̂4 were calculated based on 1000 simulations. . . . . . . . . 65

viii



TABLE C.3 : The estimated log OR of phase I covariate (β̂3) under balanced goodness-
of-fit based design (BGOF), the goodness-of-fit based design (GOF), the
case-control design (CC), and the balanced design (BD). The phase I co-
hort size was 3000, the prevalence was 0.05 and 0.10, the correlation pa-
rameter ρ for phase I variables was 0 and 0.3, and the true value of β4 was
0.5, 0.7, and 0.9. The correlation between phase II variable X4 and phase
I variable X1, X2, and X3 are 0.6, 0.5, and 0.3, respectively. X1 was the
stratifying variable in BGOF. The true value of β3 is -0.7. The mean asymp-
totic standard error (“asym”), empirical standard error (“emp”), and coverage
probability (“coverage”) of β̂4 were calculated based on 1000 simulations. . 66

TABLE C.4 : Asymptotic variance of β̂ under the balanced goodness-of-fit design (BGOF)
and its efficiency relative to the goodness-of-fit based design (GOF), the
balanced design (BD) and the case-control design (CC). The phase I cohort
size was 3000. The prevalence was 0.05 and 0.10, the correlation parameter
ρ for phase I variables was 0 and 0.3, and the true value of β4 was 0.5, 0.7,
and 0.9. The correlation between phase II variable X4 and phase I variable
X1, X2, and X3 are 0.6, 0.5, and 0.3, respectively. X3 was the stratifying
variable in BGOF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

TABLE C.5 : Asymptotic variance of β̂ in the balanced goodness-of-fit design (BGOF)
and its efficiency relative to the goodness-of-fit based design (GOF), the
balanced design (BD) and the case-control design (CC). The phase I cohort
size was 3000. The prevalence was 0.05 and 0.10, the correlation parameter
ρ for phase I variables was 0 and 0.3, and the true value of β4 was 0.5, 0.7,
and 0.9. The correlation between phase II and phase I variables was 0. X1

was the stratifying variable in BGOF. . . . . . . . . . . . . . . . . . . . . . . 68
TABLE C.6 : Asymptotic variance of β̂ in balanced goodness-of-fit design (BGOF) and its

efficiency relative to the goodness-of-fit based design (GOF), the balanced
design (BD) and the case-control design (CC). The phase I cohort size was
3000. The prevalence was 0.05 and 0.10, the correlation parameter ρ for
phase I variables was 0 and 0.3, and the true value of β4 was 0.5, 0.7, and
0.9. The correlation between phase II and phase I variables was 0. X3 was
the stratifying variable in BGOF. . . . . . . . . . . . . . . . . . . . . . . . . . 69

TABLE C.7 : The estimated log OR of phase I covariate (β̂1) under balanced goodness-of-
fit based design (BGOF), the goodness-of-fit based design (GOF), the case-
control design (CC), and the balanced design (BD). The phase I cohort size
was 2× 104, the prevalence was 0.05 and 0.10, the correlation parameter ρ
for phase I variables was 0 and 0.3, and the true value of β4 was 0.5, 0.7,
and 0.9. The correlation between phase II variable X4 and phase I variable
X1, X2, and X3 are 0.6, 0.5, and 0.3, respectively. X1 was the stratifying
variable in BGOF. The true value of β1 is 0.5. The mean asymptotic standard
error (“asym”), empirical standard error (“emp”), and coverage probability
(“coverage”) of β̂4 were calculated based on 1000 simulations. . . . . . . . . 70

ix



TABLE C.8 : The estimated log OR of phase I covariate (β̂2) under balanced goodness-of-
fit based design (BGOF), the goodness-of-fit based design (GOF), the case-
control design (CC), and the balanced design (BD). The phase I cohort size
was 2× 104, the prevalence was 0.05 and 0.10, the correlation parameter ρ
for phase I variables was 0 and 0.3, and the true value of β4 was 0.5, 0.7,
and 0.9. The correlation between phase II variable X4 and phase I variable
X1, X2, and X3 are 0.6, 0.5, and 0.3, respectively. X1 was the stratifying
variable in BGOF. The true value of β2 is 0.6. The mean asymptotic standard
error (“asym”), empirical standard error (“emp”), and coverage probability
(“coverage”) of β̂4 were calculated based on 1000 simulations. . . . . . . . . 71

TABLE C.9 : The estimated log OR of phase I covariate (β̂3) under balanced goodness-
of-fit based design (BGOF), the goodness-of-fit based design (GOF), the
case-control design (CC), and the balanced design (BD). The phase I co-
hort size was 2× 104, the prevalence was 0.05 and 0.10, the correlation pa-
rameter ρ for phase I variables was 0 and 0.3, and the true value of β4 was
0.5, 0.7, and 0.9. The correlation between phase II variable X4 and phase
I variable X1, X2, and X3 are 0.6, 0.5, and 0.3, respectively. X1 was the
stratifying variable in BGOF. The true value of β3 is -0.7. The mean asymp-
totic standard error (“asym”), empirical standard error (“emp”), and coverage
probability (“coverage”) of β̂4 were calculated based on 1000 simulations. . 72

TABLE C.10 :The estimated log OR of phase I covariate (β̂4) under balanced goodness-
of-fit based design (BGOF), the goodness-of-fit based design (GOF), the
case-control design (CC), and the balanced design (BD). The phase I co-
hort size was 2 × 104, the prevalence was 0.05 and 0.10, the correlation
parameter ρ for phase I variables was 0 and 0.3, and the true value of β4
was 0.5, 0.7, and 0.9. The correlation between phase II variable X4 and
phase I variable X1, X2, and X3 are 0.6, 0.5, and 0.3, respectively. The
mean asymptotic standard error (“asym”), empirical standard error (“emp”),
and coverage probability (“coverage”) of β̂4 were calculated based on 1000
simulations. X1 was the stratifying variable in BGOF. . . . . . . . . . . . . . 73

TABLE C.11 :Asymptotic variance of β̂ under the balanced goodness-of-fit design (BGOF)
and its efficiency relative to the goodness-of-fit based design (GOF), the bal-
anced design (BD) and the case-control design (CC). The phase I cohort
size was 2 × 104. The prevalence was 0.05 and 0.10, the correlation pa-
rameter ρ for phase I variables was 0 and 0.3, and the true value of β4 was
0.5, 0.7, and 0.9. The correlation between phase II variable X4 and phase
I variable X1, X2, and X3 are 0.6, 0.5, and 0.3, respectively. X1 was the
stratifying variable in BGOF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

TABLE C.12 :Asymptotic variance of β̂ under the balanced goodness-of-fit design (BGOF)
and its efficiency relative to the goodness-of-fit based design (GOF), the bal-
anced design (BD) and the case-control design (CC). The phase I cohort
size was 2 × 104. The prevalence was 0.05 and 0.10, the correlation pa-
rameter ρ for phase I variables was 0 and 0.3, and the true value of β4 was
0.5, 0.7, and 0.9. The correlation between phase II variable X4 and phase
I variable X1, X2, and X3 are 0.6, 0.5, and 0.3, respectively. X3 was the
stratifying variable in BGOF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



TABLE C.13 :Asymptotic variance of β̂ in balanced goodness-of-fit design (BGOF) and
its efficiency relative to case-control designs (CC), balanced design (BD),
and goodness-of-fit design (GOF). The phase I cohort size is 2 × 104. The
prevalence is 0.05 and 0.10, the correlation ρ among phase I variables is
0 and 0.3, and the true value of β4 is 0.5, 0.7, and 0.9. The correlation
between phase II variable X4 and phase I variable X1, X2, and X3 is 0. X1

is the stratifying variable in BGOF. . . . . . . . . . . . . . . . . . . . . . . . . 76
TABLE C.14 :Asymptotic variance of β̂ in balanced goodness-of-fit design (BGOF) and

its efficiency relative to case-control designs (CC), balanced design (BD),
and goodness-of-fit design (GOF). The phase I cohort size is 2 × 104. The
prevalence is 0.05 and 0.10, the correlation ρ among phase I variables is
0 and 0.3, and the true value of β4 is 0.5, 0.7, and 0.9. The correlation
between phase II variable X4 and phase I variable X1, X2, and X3 is 0. X3

is the stratifying variable in BGOF. . . . . . . . . . . . . . . . . . . . . . . . . 77

TABLE D.1 : The estimated log OR (α) in the missingness model and the estimated MAF
(θ) using the family-supplemented weighted empirical likelihood method.
The prevalence is 0.03, genotype availability is 0.8 and 0.6, the true value
of β2 is 0.182 and 0.405, and MAF is 0.2. The true values of (α3, α4, α5)
in the three missingness models are: weak = (0.182, 0.405, 0.405), strong
= (0.405, 0.405, 0.405), and No interaction (NI) = (0.405, 0, 0). The mean
asymptotic standard error (“asym”) and empirical standard error (“emp”) of
α̂ were calculated based on 1000 simulations. . . . . . . . . . . . . . . . . . 78

TABLE D.2 : The estimated log OR of covariate X (β1) and genotype G (β2) in the as-
sociation model and the estimated MAF (θ) using the family-supplemented
weighted empirical likelihood method. The prevalence is 0.03, genotype
availability is 0.8 and 0.6, the true value of β2 is 0.182 and 0.405, and MAF
is 0.5. The true values of (α3, α4, α5) in the three missingness models are:
weak = (0.182, 0.405, 0.405), strong = (0.405, 0.405, 0.405), and No interac-
tion (NI) = (0.405, 0, 0). The mean asymptotic standard error (“asym”), em-
pirical standard error (“emp”), and coverage probability (“coverage”) of β̂1,
β̂2, and θ̂ were calculated based on 1000 simulations. . . . . . . . . . . . . 79

TABLE D.3 : The estimated log OR (α) in the missingness model and the estimated MAF
(θ) using the family-supplemented weighted empirical likelihood method.
The prevalence is 0.03, genotype availability is 0.8 and 0.6, the true value
of β2 is 0.182 and 0.405, and MAF is 0.5. The true values of (α3, α4, α5)
in the three missingness models are: weak = (0.182, 0.405, 0.405), strong
= (0.405, 0.405, 0.405), and No interaction (NI) = (0.405, 0, 0). The mean
asymptotic standard error (“asym”) and empirical standard error (“emp”) of
α̂ were calculated based on 1000 simulations. . . . . . . . . . . . . . . . . . 80

TABLE D.4 : The mean bias in and the mean square error (MSE) of estimated log OR
of covariate X (β1) and genotype G (β2) in the association model and the
estimated MAF (θ) using the family-supplemented weighted empirical likeli-
hood method (FS-WEL) and the naive method based on 1000 simulations.
The prevalence is 0.03, genotype availability is 0.8 and 0.6, the true value
of β2 is 0.182 and 0.405, and MAF is 0.5. The true values of (α3, α4, α5)
in the three missingness models are: weak = (0.182, 0.405, 0.405), strong
= (0.405, 0.405, 0.405), and No interaction (NI) = (0.405, 0, 0). In each of
the 12 settings, true values and estimates of coefficients β1, β2 and θ are
presented in this order in the magnitude of 10−3. . . . . . . . . . . . . . . . 81

xi



TABLE D.5 : The estimated log OR of covariate X (β1) and genotype G (β2) in the as-
sociation model and the estimated MAF (θ) using the family-supplemented
weighted empirical likelihood method. The prevalence is 0.10, genotype
availability is 0.8 and 0.6, the true value of β2 is 0.182 and 0.405, and MAF
is 0.5. The true values of (α3, α4, α5) in the three missingness models are:
weak = (0.182, 0.405, 0.405), strong = (0.405, 0.405, 0.405), and No interac-
tion (NI) = (0.405, 0, 0). The mean asymptotic standard error (“asym”), em-
pirical standard error (“emp”), and coverage probability (“coverage”) of β̂1,
β̂2, and θ̂ were calculated based on 1000 simulations. . . . . . . . . . . . . 82

TABLE D.6 : The estimated log OR (α) in the missingness model and the estimated MAF
(θ) using the family-supplemented weighted empirical likelihood method.
The prevalence is 0.10, genotype availability is 0.8 and 0.6, the true value
of β2 is 0.182 and 0.405, and MAF is 0.5. The true values of (α3, α4, α5)
in the three missingness models are: weak = (0.182, 0.405, 0.405), strong
= (0.405, 0.405, 0.405), and No interaction (NI) = (0.405, 0, 0). The mean
asymptotic standard error (“asym”) and empirical standard error (“emp”) of
α̂ were calculated based on 1000 simulations. . . . . . . . . . . . . . . . . . 83

TABLE D.7 : The mean bias in and the mean square error (MSE) of estimated log OR
of covariate X (β1) and genotype G (β2) in the association model and the
estimated MAF (θ) using the family-supplemented weighted empirical likeli-
hood method (FS-WEL) and the naive method based on 1000 simulations.
The prevalence is 0.03, genotype availability is 0.8 and 0.6, the true value
of β2 is 0.182 and 0.405, and MAF is 0.2. The true values of (α3, α4, α5)
in the three missingness models are: weak = (0.182, 0.405, 0.405), strong
= (0.405, 0.405, 0.405), and No interaction (NI) = (0.405, 0, 0). In each of
the 12 settings, true values and estimates of coefficients β1, β2 and θ are
presented in this order in the magnitude of 10−3. . . . . . . . . . . . . . . . 84

xii



LIST OF ILLUSTRATIONS

FIGURE 2.1 : Mean asymptotic variance of the estimated log OR for phase II covariate
(β̂4, panels a and b) and phase I stratifying covariate (β̂1, panels c and d)
under the case-control sampling (CC), the balanced sampling (BD), and
the goodness-of-fit based sampling (GOF). The cohort size was 3000 with
P (Y = 1) = 0.05, and the true value of β4 was between 0.5–0.9. Phase I
variables were uncorrelated in panels a and c and modestly correlated in
panels b and d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

FIGURE 2.2 : Insights into the relative efficiency of GOF. Panels a and b show the rela-
tionship between |d| and P (R = 1|y,x) separately for cases and controls.
Panels c and d show the distribution of the mean |d| from 1000 simulated
datasets in the phase II sample among cases and controls. The phase I
cohort size was 2× 104 with P (Y = 1) = 0.05, and the log OR of the phase
II variable Z was 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

FIGURE 3.1 : Mean asymptotic variance of the estimated log OR for phase II covariate
(β̂4, panels a and b) and phase I stratifying covariate (β̂1, panels c and
d) under the case-control sampling (CC), the balanced sampling (BD), the
goodness-of-fit based sampling (GOF) and the balanced goodness-of-fit
based sampling (BGOF). The cohort size was 3000 with P (Y = 1) = 0.05,
and the true value of β4 was between 0.5–0.9. Phase I variables were
uncorrelated in panels a and c and modestly correlated in panels b and d.
In the external model, η1 was deliberately increased by 10%. . . . . . . . . 28

xiii



CHAPTER 1

INTRODUCTION

My dissertation work focuses on the development of novel outcome-dependent sampling designs

and statistical methods of analysis. Outcome-dependent sampling strategies have been widely

applied in biomedical studies. The most well-known sampling scheme is the case-control design

for studying a rare binary outcome, that improves statistical efficiency by increasing the proportion

of cases in the sample compared with that in the full population. To elucidate whether an observed

association between a binary outcome and an exposure variable is confounded, it is cost-effective

to collect data for covariates only on a subset of cases and controls. Then for estimating the

odds ratio (OR) parameter with respect to the exposure, an equal number of cases and controls

matched on the exposure is more informative than the same number of unmatched cases and

controls. This matched sampling, referred to as the “balanced design” (Breslow and Cain, 1988), is

generally more efficient particularly for a rare exposure, heuristically because the exposed subjects

are oversampled. The key to the improved efficiency of an oversampling scheme is to identify

informative subjects. In these well-known designs, subjects in rare groups are generally considered

more informative. Appropriate statistical methods are required to account for the oversampling

scheme in order to obtain unbiased association parameter estimates.

It is common that some covariates can only be collected for a subgroup of subjects in an associa-

tion study for a binary outcome. The resultant incomplete data structure is usually described using

a two phase sampling scheme (Neyman, 1938; White, 1982), where the outcome and the com-

pletely observed covariates are collected on all subjects at phase I and the remaining covariates

are collected on a subgroup at phase II. The oversampling schemes are usually implemented in

two-phase designs for the purpose of greater efficiency. Existing oversampling designs mainly fo-

cus on improving efficiency for estimating association parameters with respect to phase I variables.

Phase II variables, however, are of great importance in studies where covariates of interest cannot

be fully collected. Therefore, in the first two projects of this dissertation work, we aim to propose

novel outcome-dependent sampling designs to improve efficiency for phase II covariates.

Efficient sampling designs have been implemented in “big data” literature in order to increase com-
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putational efficiency. Although outcome and covariates are available for all subjects, data reduction

is desirable to reduce computation burden. An innovative sampling scheme, the “local case-control

design” (LCC) Fithian and Hastie (2014) , was proposed recently for studying binary outcomes

in this context. It oversamples subjects who have lower predicted probability of having their true

case or control status based on a preliminary model and achieved greater efficiency compared with

case-control sampling. We find that the LCC design sheds new light into two-phase sampling.

In the first two projects, we mainly focus on the efficiency aspect of outcome-dependent sampling

designs. Another important issue under the outcome-dependent sampling framework is to adjust

for participation bias, an outcome-dependent selection bias. In case-control genetic association

studies, it is common that many individuals’ genotype data are missing for reasons related to the

disease under study. This type of selection bias, referred to as the “participation bias”, results in

a non-ignorable missing structure and leads to biased inference if the genetic variants of interest

are related to the disease and responsible for missingness. Participation bias widely exists in

biomedical studies (Anderson et al., 2011; Chard, 1991; Falcone et al., 2013; Horsfall, Nazareth,

and Petersen, 2012; Liew et al., 2015), but not many options regarding the sampling designs or

statistical methods to adjust for the bias are available (Aschengrau and Seage, 2013; Haneuse

and Chen, 2011; Haneuse et al., 2016). Chen, Weinberg, and Chen (2016) developed a family-

supplemented design (FSD) that adjusts for participation bias using a maximum likelihood approach

where they substitute first-degree family members’ genotype data for deceased individuals. They

proposed a valid estimator for the association parameter and showed greatly increased statistical

power. In this study we aim to extend FSD to more general case-control settings where one is

allowed to incorporate covariates and interaction effects into the association model.

In Chapter 2, we extend LCC to the two-phase settings in a common scenario where an exter-

nal model is available to relate the outcome variable and phase I covariates. We propose the

Goodness-of-fit based sampling scheme (“GOF”) that oversamples cases and controls with worse

goodness-of-fit based on the external model. We develop a pseudo-likelihood method for estimating

OR parameters and find that GOF has a unique advantage of increasing efficiency for estimating

OR parameters for the incomplete phase II covariates and consistently outperforms case-control

and balanced sampling in both simulated and real data settings in this aspect. GOF provides a new

perspective to define informative subjects in oversampling designs. Those who lack goodness-of-fit
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based on the external model only including phase I covariates indicate the necessity to incorporate

phase II covariates into the model for a better fit and thus are considered more informative with

respect to the phase II covariates.

The balanced design, however, gains great efficiency for estimating the matching variables at phase

I. Comparing the efficiency of GOF and the balanced sampling motivates us to propose a new hy-

brid two-phase sampling scheme in Chapter 3, the balanced goodness-of-fit based sampling de-

sign, which performs GOF sampling first and then further matches the GOF subsample on complete

covariates similarly to the balanced design. We propose a pseudo-likelihood method for estimating

OR parameters and develop its asymptotic properties. Through simulation studies and explorations

in a real cohort study, we find that BGOF generally leads to reduced asymptotic variances of the

OR estimates and the reduction for the matching covariates is comparable to that of the balanced

design.

In Chapter 4, we develop an estimating equation approach, the family-supplemented weighted em-

pirical likelihood method, to correcting for participation bias under non-ignorable missing structure,

a type of outcome-dependent selection bias, in case-control genetic association studies. The nov-

elty of the proposed method is to use first-degree family’s genetic information as a proxy for an

individual’s missing genotype. We apply a logistic regression model to relate missingness with

genotype and covariates, and use the expectation of the corresponding logistic regression score

function conditional on all the observed data, including family’s genotype data, as the estimating

equation for the missingness odds ratio parameters. We develop an empirical likelihood for the ge-

netic association parameters and weight the empirical likelihood among individuals with complete

data by the inverse of their probabilities of genotype data availability as the estimating equation for

the association parameters. We estimate the nuisance parameters, i.e., the covariate distribution

conditional on genotype, nonparametrically using data of controls inversely-weighted by their prob-

abilities that complete data have been collected. Finally, we obtain the estimators for association

and missingness by jointly solving these estimating equations. We develop the asymptotic proper-

ties of this method and evaluate the finite and large sample properties in simulation studies and a

family-based case-control genetic association study of young-onset breast cancer.
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CHAPTER 2

A NOVEL GOODNESS-OF-FIT BASED SAMPLING DESIGN FOR STUDYING BINARY

OUTCOMES

2.1. Introduction

In biomedical studies, it is common to oversample informative subjects to increase statistical ef-

ficiency. The best known example is the case-control design for studying rare outcomes, where

cases are oversampled such that the proportion of cases is much larger than that in the population.

To elucidate whether an observed association between a binary outcome and an exposure vari-

able is confounded, it is cost-effective to collect data for covariates only on a subset of cases and

controls. Then for estimating the odds ratio (OR) parameter with respect to the exposure, an equal

number of cases and controls matched on the exposure is more informative than the same number

of unmatched cases and controls. This matched sampling, referred to as the “balanced design”

(Breslow and Cain, 1988), is generally more efficient particularly for a rare exposure, heuristically

because the exposed subjects are oversampled. The oversampling can be accounted for by ap-

plying suitable statistical methods, and the resultant inference is comparable to that if the sampling

were unbiased. The key to the improved efficiency of an oversampling scheme is to identify infor-

mative subjects.

In general, for studying the association between a binary outcome and a set of covariates, it is

common that data for some covariates can only be made available for a subset of subjects. The

resultant incomplete data structure is usually described using a two phase sampling scheme (Ney-

man, 1938; White, 1982), where the outcome and the completely observed covariates are collected

on all subjects at phase I and the remaining covariates are collected on a subset at phase II. When

it is at investigators’ disposal to decide whose covariates to measure at phase II, the strategy for

subset selection affects the efficiency for estimating association parameters. Stratification on phase

I variables has been commonly adopted in this regard, where strata and sampling proportion within

each stratum have to be determined a priori. Besides the “balanced” design, the “optimal” sampling,

where the sampling proportion within each phase I stratum is chosen to minimize the asymptotic

variances of the estimated OR parameters, has been derived in various scenarios (Holcroft and
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Spiegelman, 1999; McIsaac and Cook, 2014; McNamee, 2005; Reilly, 1996; Wild et al., 2008).

To implement these designs, phase I variables used for stratification have to be discretized, and

this data coarsening for continuous variables incurs information loss. To ensure a sufficient num-

ber of subjects within each phase I stratum for phase II sampling, the number of phase I sampling

strata has to be carefully chosen. These decisions become very challenging with multiple phase

I covariates. The efficiency of a sampling strategy necessarily depends on the statistical method

for analysis. Consequently, the optimal design derived under one analysis method is usually not

optimal under alternative methods. Implementation of the optimal design usually requires true pa-

rameter values, and the design efficiency is compromised when assumed values deviate from the

truth.

Efficient sampling has been frequently implemented in the “big data” literature, mainly to increase

computational efficiency. For binary outcomes, data points in one category (cases) may be far

fewer than those in the other category (controls), resulting in high “imbalance”. A large number of

control data points are redundant in terms of statistical efficiency (Breslow and Day, 1980), and

they incur great computation burden. Data reduction is then desirable even if both the outcome

and covariates are fully observed for all subjects. Case-control subsampling is an obvious choice

for this purpose. Recently, an innovative sampling strategy was proposed, which oversamples sub-

jects who have lower predicted probability of having their true case or control status (Fithian and

Hastie, 2014). Because each data point has its own probability of being sampled, this sampling

scheme was termed “local” case-control sampling (LCC). By applying a prospective logistic regres-

sion model with an appropriate offset term that accounts for subsampling (Breslow and Cain, 1988),

this strategy has greater statistical efficiency and yields the same inference as if the full data were

used even under model mis-specification.

In this chapter, we investigated the efficiency of LCC when extended to the setting of two-phase

sampling. We call this extension goodness-of-fit based sampling (GOF) for reasons that we will

explain in section 2.2. We found that GOF has a unique advantage of increasing efficiency for

estimating OR parameters for the incomplete phase II covariates and consistently outperforms

case-control and balanced sampling in both simulated and real data settings in this aspect. This

advantage is highly valued in studies where covariates of interest cannot be fully collected for

economic reasons.
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The rest of this chapter is organized as follows. In Section 2.2, we describe the sampling and

estimation procedures of GOF, and compare its efficiency with case-control (CC) and balanced two-

phase sampling designs (BD) for estimating OR parameters. We provide insight into the improved

efficiency of GOF using a simulated data example in Section 2.4. In Section 2.5, we further evaluate

GOF using data from an ongoing biomarker study of gestational diabetes. We make final remarks

in Section 2.6.

2.2. Goodness-of-Fit Based Design for Two-Phase Sampling

In this section, we describe sampling and inference procedures of GOF. Let Y denote the binary

outcome variable with Y = 1 indicating cases and Y = 0 controls. Let X denote phase I covariates

that are available for all subjects, and Z denote phase II covariates that can only be measured on a

subset of subjects. A logistic regression model is used to describe the relationship between Y and

covariates X and Z,

logit P (Y = 1|x, z) = xβ1 + zβ2, (2.1)

where β1 and β2 are the OR parameters of interest. Note here to simplify notation, a variable with

value equal to one is implicitly included in X, with the corresponding regression coefficient in β1

being the intercept parameter. Let β denote the vector of all parameters (βT1 ,β
T
2 )
T . The outcome

and phase I variables (Y,X) are collected from a cross-sectional sample of N subjects. We wish

to select a subset of m (m < N) subjects for the measurement of Z. The main difference among

the existing and our proposed sampling designs is the probability of selecting subjects into phase

II, which is a function of completely collected data (Y,X). In a balanced design, discrete sampling

strata are defined based on Y and X.

2.2.1. A Brief Review of the LCC Sampling Design

In the LCC design (Fithian and Hastie, 2014), the regression variables Y , X, and Z are fully

observed on all N subjects. A preliminary model that is in the same form as equation (2.1) was

assumed to exist, which can be derived from external sources or from a small subset of the data put

aside specifically for deriving this model. Denote this model as P le(Y = 1|x, z), where superscripts

“l” and “e” represent “local” and “external” to the study dataset, respectively. This design selects
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subjects with probability

|y − P le(Y = 1|x, z)|.

That is, a Bernoulli experiment is conducted for each of the N subjects, with the success probability

for subject i equal to |yi − P le(Y = 1|xi, zi)|, i = 1, 2, . . . N. A subject is selected if the experiment

yields a success. Therefore, cases who have a smaller predicted probability of being a case and

controls who have a smaller predicted probability of being a control according to model P le have

greater probabilities of being selected. To achieve a bigger or smaller desirable sample size, the

sampling probabilities can be multiplied by a suitable constant number.

2.2.2. Extension of LCC to the Setting of Two-phase Sampling

While in LCC, the outcome variable Y and all covariates are available for all subjects, the two-

phase sampling design measures Z on a subset of subjects selected based only on (Y,X). In our

extension, we assume that an external model exists for relating Y to phase I covariates X, i.e.,

logit P e(Y = 1|x) = xη1,

where the parameters η1 are known. We note that such preliminary models often exist. For exam-

ple, the relationship between the risk of breast cancer and reproductive risk factors has been well

established. Either the complete set or a subset ofX can be involved depending on the value of η1.

We similarly define a quantity S(y,x) that measures the difference between Y and P e(Y = 1|X),

i.e.,

S(y,x) = |y − P e(Y = 1|x)|.

Let R denote whether a phase I subject is selected into phase II, with R = 1 indicating selection

and R = 0 non-selection, and V = {i : Ri = 1, i = 1, . . . N} denote the selected subset. We aim

to select m subjects, that is
∑N
i=1Ri = m. When N is large, sampling based on S may lead to a

phase II sample size greater than m as in LCC. Therefore, we propose to select phase II subjects

based on S(y,x) as below. Suppose that it is desirable to achieve a pre-specified case-control ratio

within m phase II subjects as commonly done in epidemiological studies. We propose the sampling

probability P (R = 1|y,x) to be S(y,x) multiplied by a constant c1(c1 > 0) for cases and c0(c0 > 0)
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for controls, i.e.,

P (R = 1|Y = 1,x) = min{1, c1S(1, x1)},

P (R = 1|Y = 0,x) = min{1, c0S(0, x1)}.

Because function S(y,x) informs goodness-of-fit of the external model P e(Y = 1|x), we term our

extension to LCC as the goodness-of-fit based sampling, with the notion of “goodness-of-fit” further

explored in Section 2.4.

When implementing GOF in practice, it may be necessary to try multiple values for c1 and c0 to

achieve the final sample size m. Compared with CC and BD, GOF selects phase II subjects based

on both Y and multiple phase I covariates without having to form discrete sampling strata. Notably,

the sampling probability P (R = 1|y,x) used for GOF is a deterministic function. One can flexibly

manipulate values of c1 and c0 according to practical needs. For example, when the cohort is

sufficiently large and outcome prevalence is not low, one may use the same value c (0 < c < 1) for

c1 and c0 as in LCC, that is,

P (R = 1|y,x) = min{1, cS(y,x)}.

This is equivalent to sampling in two steps. First a subset V is selected using sampling probabilities

S(y,x). A proportion c is then further randomly selected into the final sample at phase II, where

the value of c is selected to achieve the predetermined total sample size m. When it is desirable

to include all the cases in phase II, the sampling probability for cases can be set as 1, and c0 is

selected to achieve the targeted number of controls:

P (R = 1|Y = 1,x) = 1,

P (R = 1|Y = 0,x) = min{1, c0S(0,x)}.

2.2.3. Statistical Inference for the GOF Sampling Design

Because GOF selects phase II subjects based on both Y andX, fitting model (2.1) to phase II data

naively ignoring the sampling scheme can lead to biased estimates of parameters β. Note that the
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probability of observing a case given covariates (X,Z) in phase II is

P (Y = 1|x, z;R = 1) =
P (Y = 1|x, z)P (R = 1|Y = 1,x)

P (R = 1|x, z)
. (2.2)

Therefore, the logit of this probability takes the same form as model (2.1) but with an offset term

o(x) ≡ logmin{1, c1S(1,x)} − logmin{1, c0S(0,x)}, i.e.,

logit P (Y = 1|x, z;R = 1) = xβ1 + zβ2 + o(x). (2.3)

In the special case where P (R = 1|y,x) = cS(y,x), the offset o(x) equals −xη1. With c1 = 1 as

described above, the offset o(x) equals− logmin(1, c0S(0,x)). Similar to Fithian and Hastie (2014),

we propose to maximize a pseudo-likelihood based upon P (Y = 1|x, z;R = 1) for estimating

parameters β in model (2.1), the logarithm of which takes the following form

`(β) =

m∑
i=1

[
yi{wiβ + o(xi)} − log

{
1 + e{wiβ+o(xi)}

}]
,

where wi = (xi, zi). We note that this is a pseudo-likelihood rather than a maximum likelihood

approach, because `(β) is not based on the two-phase data likelihood (e.g., Lawless, Kalbfleisch,

and Wild, 1999). It is essentially the same as the conditional likelihood approach for two-phase

data under variable probability sampling (Breslow and Cain, 1988), except that the offset term o(x)

is a specified function. Parameters β can be solved from the pseudo-likelihood score equation

U(β) ≡ ∂`(β)/∂β =

m∑
i=1

(yi − µgi )w
T
i = 0, (2.4)

with µgi = expit{wiβ+o(xi)}. Note that E{U(β)} = 0 because E(Y |wi, Ri = 1) = µgi . Therefore, by

standard Z-estimation theory, the estimated coefficients β̂ is consistent and asymptotically normally

distributed, i.e.,
√
m
(
β̂ − β

)
→ N

{
0, (W TVW )−1

}
with V = diag{µgi (1− µ

g
i )} and W being the covariate matrix. Note that the form of the asymptotic

variance is exactly the same as if the data were prospectively generated under the pseudo-model

P (Y = 1|x, z;R = 1). This suggests that β̂ and its asymptotic variance estimates can be directly

obtained from standard statistical software by fitting logistic regression model (2.1) to phase II data
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with the offset term o(x). This is the same case for LCC.

2.3. Simulation Studies

We conducted simulation studies to evaluate the efficiency of GOF for estimating OR parameters in

order to understand its merits relative to CC and BD. We considered different phase I cohort sizes,

outcome prevalences, effect sizes of the covariate of interest, correlation among phase I variables

and correlation between phase I and phase II covariates. We included three phase I covariates

X1, X2 and X3, that is, X = (X1, X2, X3). X1 was a uniform variable in the range of 0 to 1, X2

was a standard normal variable, and X3 was a binary variable with the success probability 0.3.

Phase II included a single covariate Z which was also a standard normal variable. Specifically, we

generated the four covariates jointly as follows. We first generated a multivariate normal random

variable (T1, T2, T3, T4)



T1

T2

T3

T4


∼ N





0

0

0

0


,



1 ρ ρ 0.6

ρ 1 ρ 0.5

ρ ρ 1 0.3

0.6 0.5 0.3 1


σ2


.

Then we generated X1 by applying the cumulative distribution function for T1, and dichotomized T3

at its 70th percentile to create X3. X2 and Z were set to equal T2 and T4, respectively. We set σ2

equal to 1 and ρ to 0 or 0.3 corresponding to weak versus moderate correlations among phase I

covariates. We then generated the binary outcome variable Y for a cohort of 3000 individuals from

the logistic regression model

logit P (Y = 1|x, z) = β0 + β1x1 + β2x2 + β3x3 + β4z.

The intercept parameter β0 was selected to achieve the prevalence P (Y = 1) of 0.05 or 0.10.

The log OR parameters (β1, β2, β3) were set to be (0.5, 0.6,−0.7), and different values for β4 were

considered in the range of 0.5–0.9 corresponding to weak to strong effects of Z. We similarly

generated a separate cohort, which served as the “external data” to fit a logistic regression model
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for Y given only X, i.e.,

logit P e (Y = 1|x) = η0 + η1x1 + η2x2 + η3x3.

The fitted model P e (Y = 1|x) was then treated as the known external model and was used in all

simulation iterations. S(y,x) was calculated for each of the 3000 subjects. We included all cases

in phase II and sampled controls with probability min{1, cS(0,x)}. The constant c was chosen such

that 2.5 times as many controls as the cases on average across all iterations were initially selected.

Then a subset of controls were further randomly selected to ensure an equal number of cases

and controls in the final phase II sample. This two step selection was adopted to guarantee the

pre-specified case-control ratio in every iteration. For CC sampling, each phase II sample included

all the cases and an equal number of controls. For BD sampling, we selected all the cases and

an equal number of controls in each of the two strata formed by X1 that was dichotomized at its

median. We chose X1 to perform stratification because it had the highest correlation with phase II

covariate Z. For each set of parameter combinations, we repeated the above steps 1,000 times.

We compared the three sampling designs with respect to the empirical mean biases, empirical

variances, and mean asymptotic variances of β̂ = (β̂1, β̂2, β̂3, β̂4).

The results on estimation of β4 are presented in Table 2.1. Under GOF, CC and BD sampling

designs, the averaged estimates were close to the true values, the empirical and mean asymp-

totic standard errors were similar, and the 95% coverage probabilities were nearly identical to the

nominal level. Similar results for three association parameters of phase I covariates are presented

in Tables C.1, C.2, and C.3 in APPENDIX C. Figure 2.1 presents the mean asymptotic variance

of β̂4 (Panels 2.1a and 2.1b), the estimated log OR of phase II covariate Z, and β̂1 (Panels 2.1c

and 2.1d), the estimated log OR of the stratifying covariate in BD when the outcome prevalence

was 0.05. The variance of β̂4 under GOF appeared to be smaller, with percent reduction ranging

from 20–30% compared with CC and 15–27% compared with BD across all simulation scenarios.

The variance of β̂1 was smaller in GOF than in BD when all phase I variables were uncorrelated

(Panel 2.1c). But BD achieved smaller variance when the phase I covariates were moderately cor-

related (Panel 2.1d). Variances of phase I variables X2 and X3 were smaller under GOF than under

CC or BD. The performance of these sampling designs were similar when the outcome prevalence

was higher, i.e., 0.10. In general, GOF achieved smaller variance relative to CC and BD for estimat-
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Table 2.1: The estimated log OR of phase II covariate (β̂4) under the goodness-of-fit based design
(GOF), the case-control design (CC), and the balanced design (BD). The phase I cohort size was
3000, the prevalence was 0.05 and 0.10, the correlation parameter ρ for phase I variables was 0 and
0.3, and the true value of β4 was 0.5, 0.7, and 0.9. The mean asymptotic standard error (“asym”),
empirical standard error (“emp”), and coverage probability (“coverage”) of β̂4 were calculated based
on 1000 simulations.

P (Y = 1) ρ β4 GOF (asym/emp) coverage CC (asym) BD (asym)

0.05 0 0.5 0.52 (0.21/0.21) 0.951 0.52 (0.23) 0.53 (0.22)
0.7 0.72 (0.21/0.22) 0.948 0.71 (0.24) 0.72 (0.23)
0.9 0.93 (0.22/0.22) 0.947 0.92 (0.25) 0.93 (0.24)

0.3 0.5 0.52 (0.17/0.17) 0.948 0.51 (0.18) 0.52 (0.18)
0.7 0.72 (0.17/0.18) 0.941 0.71 (0.19) 0.72 (0.19)
0.9 0.93 (0.18/0.19) 0.935 0.93 (0.21) 0.93 (0.20)

0.10 0 0.5 0.51 (0.14/0.14) 0.951 0.51 (0.17) 0.51 (0.16)
0.7 0.71 (0.15/0.15) 0.939 0.70 (0.16) 0.71 (0.16)
0.9 0.91 (0.15/0.15) 0.953 0.91 (0.17) 0.91 (0.17)

0.3 0.5 0.50 (0.12/0.12) 0.943 0.50 (0.13) 0.50 (0.13)
0.7 0.71 (0.12/0.12) 0.951 0.71 (0.13) 0.71 (0.13)
0.9 0.91 (0.13/0.13) 0.944 0.92 (0.14) 0.91 (0.14)

ing phase II covariates and most phase I covariates at lower outcome prevalence, lower correlation

among phase I variables and larger true effect size of the phase II covariate.

2.4. Insight into the Efficiency of GOF

Figure 2.1 showed that GOF had superior efficiency for phase II covariates and phase I covariates

except for that used for stratification (X1) in BD, and for the latter BD may have higher efficiency. To

gain insight into the efficiency advantage of GOF, we performed additional simulation studies using

the same settings as in Section 2.3 except that the cohort size was 2× 104. This large sample size

admittedly is not typical in epidemiological studies, but it ensures that sampling based directly on

S(y,x) will yield sufficient subjects for inclusion in phase II. We therefore considered this setting

to inform the full advantage of sampling based on “goodness-of-fit”. For GOF, we first generated

a subset using S(y,x) as the sampling probability, and then further selected a random sample of

m = 600 subjects from the subset as the phase II sample. The case-control sampling included 300

cases and 300 controls. In the balanced sampling, we randomly sampled 150 subjects from each

of the four strata formed by the dichotomized X1 and Y . The full results in this big cohort scenario

are presented in Tables C.7 - C.11 in APPENDIX C.
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(d) ρ = 0.3

Figure 2.1: Mean asymptotic variance of the estimated log OR for phase II covariate (β̂4, panels a
and b) and phase I stratifying covariate (β̂1, panels c and d) under the case-control sampling (CC),
the balanced sampling (BD), and the goodness-of-fit based sampling (GOF). The cohort size was
3000 with P (Y = 1) = 0.05, and the true value of β4 was between 0.5–0.9. Phase I variables were
uncorrelated in panels a and c and modestly correlated in panels b and d.
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Because S(y,x) indicated the goodness-of-fit of the external model P e(Y = 1|x), we exploited the

standardized Pearson residuals to investigate the nature of the efficiency gain for GOF. The stan-

dardized Pearson residuals are commonly used to assess the goodness-of-fit of logistic regression

models (Agresti and Kateri, 2011). Let P ei denote P e(Y = 1|xi). If the external model P e(Y = 1|x)

were the true model, the standardized Pearson residual for the ith subject is defined as

di =
yi − p̂ei√

p̂ei (1− p̂ei )(1− ĥi)
.

Note that the denominator in this expression is the estimated standard error of the numerator with ĥi

being the ith subject’s estimated leverage. Larger absolute values of d indicates worse goodness-

of-fit of P e(Y = 1|x).

For illustration purpose, we present in Figure 2.2 results in the scenario where GOF achieved the

highest efficiency relative to other designs for estimating β4, the log OR of phase II covariate Z.

The outcome prevalence was 0.05, the correlation among phase I variables was 0, and β4 equaled

0.9. Panels 2.2a and 2.2b demonstrate the relationship between |d| and the sampling probability

P (R = 1|y,x) in GOF. As P (R = 1|y,x) increases, the magnitude of |d| also increases. In other

words, subjects who have worse goodness-of-fit are more likely to be selected into phase II under

GOF. Panels 2.2c and 2.2d display the distribution of the empirical mean |d| in the phase II sample

under simple random sampling (RS), CC, BD, and GOF separately for cases and controls, which

was estimated based on 1000 simulated datasets. While the mean of |d| for cases was comparable

under BD and GOF, the mean for controls under GOF was significantly larger than that under

RS, CC, or BD. GOF improved efficiency for estimating β4 by 27% compared with BD, and by

33% compared with CC. Our reasoning for the improved efficiency of GOF therefore is as follows.

Because the full model (2.1) was the true model, lack of fit based on P e would be suggestive of the

necessity to include Z in the model in order to achieve better goodness-of-fit. The subjects who

have larger contributions to lack-of-fit are therefore more supportive that phase II covariates should

be included in the model. GOF also improved efficiency by 20% for X1, 30% for X2 and 31% for X3

compared with CC. The efficiency of GOF relative to BD was 0.86 for X1, 1.23 for X2 and 1.25 for

X3.
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Figure 2.2: Insights into the relative efficiency of GOF. Panels a and b show the relationship between
|d| and P (R = 1|y,x) separately for cases and controls. Panels c and d show the distribution of
the mean |d| from 1000 simulated datasets in the phase II sample among cases and controls. The
phase I cohort size was 2 × 104 with P (Y = 1) = 0.05, and the log OR of the phase II variable Z
was 0.9.
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2.5. Illustration of GOF in a Real Study Setting

In this section, we used data from a biomarker study of gestational diabetes (Zhu et al., 2016) to

illustrate the implementation and performance of GOF in a real study setting. This study consisted

of 2,701 pregnant women among whom 100 developed gestational diabetes mellitus. The median

age was 28 years, and the median BMI was 24.2 with an interquartile range of 21.6–28.1. Approx-

imately equal proportions of the participants were non-Hispanic White (27%), non-Hispanic black

(28%), and Hispanic (29%), with a smaller proportion (16%) being Asian. Among these partici-

pants, 22% had a family history of gestational diabetes. To compare different designs, we treated

age, race, and BMI as phase I covariates X and family history as phase II covariate Z. Let I()

denote the indicator function. We bootstrapped (X, Z) for all 2,701 subjects and generated gesta-

tional diabetes mellitus, denoted by Y , from model

logit P (Y = 1|age, race, BMI, family history) = −8.38 + 0.073× age−

0.54× I(non-Hispanic Black) + 0.47× I(Hispanic)+

0.71× I(Asian) + 0.10× BMI + 0.57× I(family history),

which was developed from the original dataset. We considered three external logistic regression

models for sampling, each using a different subset of phase I covariates as predictors: race only

(model e1), race and age (model e2), and race, age and BMI (model e3). This allowed us to eval-

uate the efficiency of GOF when an increasing amount of phase I information becomes available.

The regression parameters in the external model were obtained from the original dataset. We sam-

pled all the 100 cases and twice as many controls into phase II. For GOF, in order to ensure that

200 controls can be sampled, we aimed to select 600 into the subset {i : Ri = 1, i = 1, 2, . . . , N}.

Therefore, we estimated the constant c0 roughly as the ratio of 600 over the empirical mean number

of controls, obtained as the sum of the sampling probability pe for all the controls in the full cohort

of 2,701 individuals. We repeated the simulation 1,000 times. In BD sampling, we stratified on

covariate race because race was most strongly correlated with phase II covariate family history.

We also considered race and BMI as phase II covariates and the matching variables used in BD

are race and age, respectively.

Table 2.2 presents the point estimate and mean asymptotic standard error of the coefficient for
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Table 2.2: The point estimate of the log OR for phase II covariate and its mean asymptotic stan-
dard error (SE) under the goodness-of-fit based design (GOF), the case-control design (CC) and
the balanced design (BD). The point estimate from the full cohort for family history was 0.57, for
BMI was 0.10, and for race was: Black -0.54, Hispanic 0.47, Asian 0.71. Relative efficiency was
calculated as the asymptotic variance under CC or BD over that of GOF.

Phase II Sampling Estimate Relative Efficiency

Variable Design External Model (SE) vs. CC vs. BD
Family GOF e1: race 0.582 (0.29) 1.02 0.97
History e2: race+age 0.577 (0.29) 1.07 1.02

e3: race+age+BMI 0.575 (0.27) 1.19 1.12

CC 0.579 (0.30)
BD 0.580 (0.29)

BMI GOF e1: race 0.104 (0.03) 0.99 0.97
e2: race+age 0.104 (0.02) 1.02 1.00
e3: race+age+fh 0.102 (0.02) 1.04 1.02

CC 0.103 (0.02)
BD 0.102 (0.02)

Race GOF e1: age -0.584 (0.43) 1.02 1.00
0.468 (0.34) 1.06 1.01
0.719 (0.39) 1.08 1.01

e2: age+fh -0.587 (0.43) 1.04 1.01
0.466 (0.34) 1.07 1.01
0.713 (0.39) 1.09 1.02

e3: age+fh+BMI -0.544 (0.41) 1.15 1.12
0.473 (0.33) 1.18 1.11
0.744 (0.39) 1.07 0.99

CC -0.570 (0.44)
0.474 (0.36)
0.707 (0.41)

BD -0.586 (0.43)
0.480 (0.35)
0.715 (0.39)
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phase II covariate and the relative efficiency with respect to CC and BD, when family history, BMI

and race were considered as phase II covariate, respectively. For example, when family history

was considered as phase II covariate, among the set of nested external models e1, e2 and e3, the

efficiency of GOF ranged from 1.02 to 1.19 relative to CC and from 0.97 to 1.12 compared with

BD. The results can be intuitively explained as follows. As richer phase I covariates are included

in the external model, it becomes more likely that the lack of goodness-of-fit is caused by phase II

covariates that were absent from the external model. Therefore, subjects who are better indicative

of lack-of-fit contributed more to the improvement on statistical efficiency for assessing phase II

covariates. Results were similar when we considered BMI or race as phase II covariate.

2.6. Discussion

The LCC sampling design (Fithian and Hastie, 2014) was originally proposed in the big data litera-

ture to increase computational efficiency. We found that it sheds new light on two-phase sampling.

Through GOF, we offer a new perspective to define “informative” subjects for efficient sampling.

When it is necessary to select a subset of individuals for measuring expensive variables, our pro-

posed GOF is a powerful sampling method to improve efficiency compared with case-control and

balanced designs. A unique feature of GOF is that it is highly efficient for estimating ORs for phase

II covariates. The balanced design was originally proposed to improve efficiency of assessing a rare

exposure by oversampling the “exposed” subjects while adjusting for expensive confounding vari-

ables measured at phase II. When phase II covariates are of interest, BD may only have marginal

efficiency advantage compared with CC depending on the relationship between the exposure and

phase II covariates. The efficiency advantage of GOF is derived from oversampling more infor-

mative subjects who have worse goodness-of-fit based on a preliminary model using only phase I

covariates as predictors.

GOF and BD improve statistical efficiency for estimating association parameters via different mech-

anisms, that explains their respective advantages of greater efficiency for phase II covariates and

the phase I matching covariates. When only phase II covariates are of interest, GOF is highly pre-

ferred. Ideally, an efficient design without sacrificing the efficiency of the matching variables may

have a wider range of application. Therefore, in chapter 3, we will propose a hybrid design that

inherits the advantages of both GOF and BD, that is able to achieve high efficiency for both phase
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I and phase II covariates.

The advantage of GOF lies in the fact that it makes full use of all phase I covariate data to determine

the sampling probability without coarsening. This very fact is also an important practical advantage

of GOF: it relieves data analysts from the necessary step of making decisions on creating phase

I sampling strata in BD. In practice, it may be necessary in GOF to experiment with sampling

probabilities to achieve pre-specified numbers of phase II cases and controls as we considered

in both simulation studies and the real data example. We suggest that the sample size of the

subset V in the first step of GOF be on average two to three times larger than the targeted phase

II sample size. This was found to work well in our numerical studies, because those who had

a poorer goodness-of-fit were still able to maintain a greater probability of being sampled. The

high efficiency of GOF coupled with the fact that data from GOF can be analyzed using standard

software and existing R packages makes GOF an attractive sampling method for reducing study

cost while maintaining statistical efficiency.
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CHAPTER 3

THE BALANCED GOODNESS-OF-FIT BASE SAMPLING DESIGN

3.1. Introduction

Outcome-dependent sampling strategies have been widely applied in biomedical studies. The most

well-known sampling schemes are the case-control design for studying a rare binary outcome and

the “balanced design” (Breslow and Cain, 1988) where cases and controls are further matched

on several discrete exposure variables. The case-control design improves statistical efficiency by

increasing the proportion of cases in the sample compared with that in the full population. The bal-

anced design is more efficient at estimating association between an outcome and a rare exposure

variable, heuristically because it oversamples the “exposed” subjects. The key to the improved effi-

ciency of an oversampling scheme is to identify informative subjects. In these well-known designs,

subjects in rare groups are generally considered more informative. Appropriate statistical meth-

ods are required to account for the oversampling scheme in order to obtain unbiased association

parameter estimates.

It is economical to collect some covariates only for a subgroup of subjects in an association study for

a binary outcome. The resultant incomplete data structure is usually described using a two phase

sampling scheme (Neyman, 1938; White, 1982), where the outcome and the completely observed

covariates are collected on all subjects at phase I and the remaining covariates are collected on a

subgroup at phase II. Different strategies for subgroup selection affect the efficiency for estimating

association parameters. The oversampling scheme can be implemented in two-phase designs for

the purpose of greater efficiency. Existing oversampling designs mainly focus on improving effi-

ciency for estimating association parameters with respect to phase I covariates. However, phase

II covariates are of great importance in studies where covariates of interest cannot be fully col-

lected for economic reasons. An ideal sampling design, of course, is able to increase efficiency for

estimating association for phase II covariates without sacrificing that for phase I covariates.

In the “big data” literature, efficient sampling designs have been frequently implemented in order to

increase computational efficiency. Although outcome and covariates are available for all subjects,

data reduction is desirable to reduce computation burden. An innovative sampling scheme, the
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“local case-control design” (LCC) Fithian and Hastie (2014) , was proposed recently for studying

binary outcomes in this context. It oversamples subjects who have lower predicted probability

of having their true case or control status based on a preliminary model and achieved greater

efficiency compared with case-control sampling. In Chapter 2, we extended LCC to the two-phase

sampling setting, and developed a goodness-of-fit based sampling design (GOF). In a common

scenario where an external model is available to relate the outcome variable and phase I covariates,

GOF oversamples cases and controls who have worse goodness-of-fit based on the external model.

GOF provides a new perspective to define informative subjects in oversampling designs. Those

who lack goodness-of-fit based on the external model only including phase I covariates indicate the

necessity to incorporate phase II covariates into the model for a better fit and thus are considered

more informative with respect to the phase II covariates. It has been shown that GOF has a great

advantage of increasing efficiency for estimating odds ratio (OR) parameters for the incomplete

phase II covariates, but the balanced design gains great efficiency for estimating the matching

variable. Comparing the efficiency of GOF and the balanced sampling motivated us to propose a

new two-phase sampling scheme, balanced goodness-of-fit based sampling (BGOF) in this chapter,

which performs GOF sampling first and then balanced sampling on the GOF subsample. BGOF is

easy to implement, and we found that it consistently outperforms case-control, balanced, and GOF

sampling in both simulated and real data settings.

The rest of this chapter is organized as follows. In section 3.2, we describe the sampling and esti-

mation procedures of BGOF, and compare its efficiency with GOF, case-control (CC) and balanced

designs (BD) for estimating OR parameters. In section 3.4, we further evaluate BGOF using data

from an ongoing biomarker study of gestational diabetes. We discuss future extensions in Section

3.5.

3.2. Balanced Goodness-of-Fit Based Design

In this section, we describe sampling and inferential procedures of BGOF and we use the same

notation as for GOF in Chapter 2. Let Y denote the binary outcome variable with Y = 1 indicating

cases and Y = 0 controls. LetX denote phase I covariates that are available for all subjects, and Z

denote phase II covariates that can only be measured on a subset of subjects. A logistic regression
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model is used to describe the relationship between Y and covariates X and Z,

logit P (Y = 1|x, z) = xβ1 + zβ2,

where β1 and β2 are the OR parameters of interest. Note here to simplify notation, a variable with

value equal to one is implicitly included in X, with the corresponding regression coefficient in β1

being the intercept parameter. Let β denote the vector of all parameters (βT1 ,β
T
2 )
T . The outcome

and phase I variables (Y,X) are collected from a cross-sectional sample of N subjects. We wish

to select a subset of m (m < N) subjects for the measurement of Z.

3.2.1. Sampling Procedure

Motivated by the high efficiency of BD for estimating ORs of the phase I stratifying covariates and

the high efficiency of GOF for estimating ORs of all the remaining covariates that was illustrated in

Chapter 2, we propose a novel hybrid design that unifies the advantages of both sampling methods.

This new design performs phase II sampling in two steps, GOF followed by BD. Therefore we

term this new design the balanced goodness-of-fit based sampling. At the first step, a subset

V = {i : Ri = 1, i = 1, . . . N} is generated using GOF, where R indicates selection (R = 1: yes;

R = 0: no) and M is the number of individuals in subset V, i.e., M ≡
∑N
i=1Ri. At the second step,

BD sampling is further performed on V . Discrete strata L are formed based on phase I variables

X, and subjects in V are cross-classified according to Y and L. Let Myl denote the total number

of subjects in stratum defined by Y = y and L = l, i.e., Myl ≡
∑M
i=1 I(Yi = y, L = l). The balanced

sampling randomly selects myl (myl < Myl) subjects from cell Y = y and L = l. With multiple

phase I covariates, a decision needs to be made about how to form strata L, for example, which

variables to stratify on, or how to categorize a continuous variable. We suggest that variables of

which statistical efficiency are of great interest, e.g., a rare exposure, have priority. The number of

strata should be chosen to guarantee that Myl is not too small.

3.2.2. Statistical Inference

Let πyl denote the sampling probability in cell Y = y and L = l, πyl ≡ myl/Myl. To make statistical

inference under BGOF, huristically, BGOF can be seen as a balanced design in cohort V which

is randomly generated from the distribution P (Y = 1|x, z, R = 1) as defined in equation (2.3).
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Therefore, motivated by methods of statistical inference for standard two-phase designs (Breslow

and Cain, 1988; Scott and Wild, 1991), we propose to estimate OR parameters β by solving an

estimating equation that takes the same form as (2.4) but with µgi replaced by µli:

µli = expit
{
wiβ + o(xi) + log

π1l
π0l

}
,

where the ith subject is in stratum l. Similar to estimation under GOF, the corresponding estimator

β̂ can be obtained using standard software for fitting logistic regression models with offset term

o(xi) + log(π1l/π0l) for the ith observation in stratum l. We present in the corollary below the large

sample properties of β̂ and present the proof in APPENDIX A. Let E∗yl and E∗l denote expectations

with respect to the distribution ofW in cell (y, l) and stratum l, respectively. Let ψyl denote the large

sample limit of Myl/N as N →∞, γyl that of myl/m as m→∞, and θ that of m/N as N →∞.

Corollary Suppose that the true value β lies inside a compact space, and that component of

(X,Z) are bounded. Define matries H and G as

H ≡
1∑
y=0

L∑
l=1

E∗yl{wT
i wiµ

l
i(1− µli)}

G ≡
1∑
y=0

L∑
l=1

(
γ−1yl − θψ

−1
yl

)
E∗l
{
wT
i µ

l
i

(
1− µli

)}
E∗l
{
wiµ

l
i

(
1− µli

)}
.

We show that β̂ is consistent and asymptotically normally distributed with

√
m(β̂ − β) D→ N

{
0, H−1(H −G)H−1

}
.

The asymptotic variance-covariance matrix H−1(H −G)H−1 can be consistently estimated empir-

ically with

Ĥ =
1

m

1∑
y=0

L∑
l=1

myl∑
i=1

wT
i wiµ

l
i

(
1− µli

)
,

Ĝ =
1

m

1∑
y=0

L∑
l=1

[(
m−1yl −M

−1
yl

) 1∑
y=0

myl∑
i=1

{
wT
i µ

l
i

(
1− µli

)} 1∑
y=0

myl∑
i=1

{
wiµ

l
i

(
1− µli

)}]
.

The asymptotic variance of β̂ differed from that in Proposition 1 of Breslow and Cain (1988) only by
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an extra term that represents variance reduction owing to the case-control sampling in phase I in

the latter. The same difference was observed for standard prospective and retrospective two-phase

designs which differ only in whether phase I is a simple random or retrospective sample (Scott and

Wild, 1991). These connections imply that the R package “osDesign” (Haneuse, Saegusa, and

Lumley, 2011) for the standard two-phase prospective design (option “cohort=TRUE”) can be used

directly for obtaining variance estimates for β̂, with the GOF subsample treated as phase I sample.

In other words, although GOF generates an outcome-dependent subsample because the sampling

probability depends on Y , in terms of variance estimation, it can be safely treated as a prospective

sample. As explained in APPENDIX A, the key to this interesting result is that the pseudo-model

for the GOF sub-sample, P (Y = 1|x, z;R = 1), is a genuine probability function.

3.3. Simulation Studies

We conducted simulation studies to compare the efficiency of BGOF, GOF, BD, and CC using the

same setup as for GOF in Chapter 2. The results on estimation of β4 under BGOF are presented in

Table 3.1. Across all the simulation scenarios, the averaged estimates were close to the true values,

the empirical and mean asymptotic standard errors were similar, and the coverage probabilities

were nearly at the 95% nominal level. Similar results for three OR parameters of phase I covariates

are presented in Tables C.1, C.2, and C.3 in APPENDIX C.

Table 3.2 presents the mean asymptotic variance of β̂ = (β̂1, β̂2, β̂3, β̂4) under BGOF and its ef-

ficiency relative to the CC, BD, and GOF sampling designs, calculated as the ratio between the

mean asymptotic variance under each of the other three designs and that under BGOF. BGOF and

GOF achieved comparable efficiency for estimating β̂2, β̂3, and β̂4. Notably, BGOF had the highest

efficiency for estimating β̂1. Across all parameter settings, BGOF improved efficiency over CC by

27–34% for β̂1, 20–34% for β̂2, 14–34% for β̂3 , and 18–34% for β̂4. Compared with BD, BGOF

improved efficiency by 8–21% for β̂1, 16–24% for β̂2, 10–24% for β̂3, and 15–28% for β̂4. In general,

BGOF achieved higher efficiency relative to CC and BD at lower outcome prevalence, lower corre-

lation among phase I variables and larger true effect size of the phase II covariate. For comparison

purpose, we also used the binary variable X3 as the stratifying variable in BGOF and BD and the

results were largely similar and are presented in Table C.4.

Table 3.2 showed that the correlation among phase I variables might affect the efficiency of BGOF
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Table 3.1: The estimated log OR of phase II covariate (β̂4) under balanced goodness-of-fit based
design (BGOF). The phase I cohort size was 3000, the prevalence was 0.05 and 0.10, the corre-
lation parameter ρ for phase I variables was 0 and 0.3, and the true value of β4 was 0.5, 0.7, and
0.9. The mean asymptotic standard error (“asym”), empirical standard error (“emp”), and coverage
probability (“coverage”) of β̂4 were calculated based on 1000 simulations.

P (Y = 1) ρ β4 BGOF (asym/emp) coverage

0.05 0 0.5 0.52 (0.20/0.21) 0.949
0.7 0.70 (0.21/0.21) 0.949
0.9 0.92 (0.22/0.21) 0.946

0.3 0.5 0.52 (0.17/0.17) 0.955
0.7 0.72 (0.17/0.18) 0.947
0.9 0.92 (0.18/0.19) 0.945

0.10 0 0.5 0.51 (0.14/0.14) 0.950
0.7 0.71 (0.15/0.14) 0.943
0.9 0.91 (0.15/0.15) 0.954

0.3 0.5 0.50 (0.12/0.12) 0.948
0.7 0.70 (0.12/0.13) 0.938
0.9 0.91 (0.13/0.13) 0.944

relative to BD, that is, the relative efficiency decreased with the correlation. Then a question arose

about whether the correlation between phase I and phase II variables may affect the relative effi-

ciency of BGOF versus BD. Therefore, we compared the four designs in a more extreme scenario

where phase II covariate Z was independent of all phase I covariates X with the remaining setup

identical to that above. For estimating the coefficient of the binary variable X3, BGOF lost 3–7%

efficiency compared with CC and BD when the three phase I covariates were uncorrelated, but

BGOF was slightly more efficient when they were moderately correlated, i.e., ρ = 0.3 (Table C.5

in APPENDIX C). For estimating ORs of X2 and Z, BGOF remained the most efficient in all pa-

rameter settings, although the gain became smaller compared with scenarios where phase I and

phase II covariates were correlated. BGOF and BD had similar efficiency for the stratifying variable

X1. We next investigated whether BGOF using X3 as the stratifying variable could boost efficiency

of BGOF for estimating its OR relative to BD, but it did not help (Table C.6). We also evaluated

the performance of BGOF in all the settings described above except with a large phase I cohort

of size 2 × 104 rather than 3000 and phase II sample size 600. The results are largely similar and

presented in Table C.7 - C.14.

Lastly, because GOF and BGOF required an existing external model, we examined the robustness

of their efficiency with respect to the “accuracy” of the external model, that is, how closely this
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Table 3.2: Asymptotic variance of β̂ under the balanced goodness-of-fit based design (BGOF) and
its efficiency relative to the goodness-of-fit based design (GOF), the balanced design (BD), and the
case-control design (CC). The phase I cohort size was 3000. The prevalence was 0.05 and 0.10,
the correlation parameter ρ for phase I variables was 0 and 0.3, and the true value of β4 was 0.5,
0.7, and 0.9. The correlation between phase II variable X4 and phase I variables X1, X2, and X3

was 0.6, 0.5, and 0.3, respectively.

P (Y = 1) ρ β4 Var(β̂4) REaof BGOF vs. Var(β̂1) RE of BGOF vs.

GOF BD CC GOF BD CC

0.05 0 0.5 0.042 1.00 1.20 1.23 0.32 1.14 1.13 1.32
0.7 0.043 1.01 1.24 1.29 0.33 1.14 1.18 1.34
0.9 0.046 1.01 1.28 1.34 0.36 1.13 1.21 1.34

0.3 0.5 0.028 1.00 1.15 1.20 0.25 1.17 1.08 1.29
0.7 0.030 1.01 1.18 1.24 0.27 1.16 1.11 1.28
0.9 0.033 1.01 1.20 1.28 0.30 1.16 1.15 1.26

0.10 0 0.5 0.020 1.00 1.18 1.21 0.15 1.14 1.12 1.31
0.7 0.021 1.01 1.20 1.25 0.16 1.13 1.15 1.32
0.9 0.023 1.01 1.24 1.29 0.17 1.13 1.18 1.33

0.3 0.5 0.014 1.00 1.14 1.18 0.12 1.17 1.09 1.29
0.7 0.015 1.01 1.16 1.22 0.13 1.16 1.11 1.28
0.9 0.016 1.01 1.17 1.24 0.14 1.15 1.13 1.27

Var(β̂2) RE of BGOF vs. Var(β̂3) RE of BGOF vs.

GOF BD CC GOF BD CC

0.05 0 0.5 0.026 1.00 1.22 1.26 0.094 1.00 1.10 1.13
0.7 0.026 1.01 1.24 1.30 0.090 1.01 1.18 1.22
0.9 0.027 1.02 1.27 1.34 0.090 1.01 1.24 1.30

0.3 0.5 0.021 1.00 1.19 1.24 0.077 1.00 1.12 1.21
0.7 0.021 1.01 1.22 1.29 0.076 1.00 1.17 1.28
0.9 0.022 1.01 1.22 1.31 0.078 1.01 1.19 1.34

0.10 0 0.5 0.013 1.02 1.18 1.21 0.044 1.00 1.11 1.14
0.7 0.013 1.03 1.19 1.24 0.043 1.00 1.16 1.20
0.9 0.014 1.03 1.20 1.27 0.044 1.01 1.21 1.27

0.3 0.5 0.010 1.01 1.16 1.20 0.038 1.01 1.11 1.19
0.7 0.011 1.02 1.16 1.22 0.038 1.01 1.14 1.25
0.9 0.011 1.02 1.16 1.24 0.039 1.02 1.16 1.30

a Relative Efficiency (RE): calculated as the asymptotic variance under each design over
that of BGOF
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external model reflected the true relationship between Y and X in the data. To this end, we

deliberately changed η1 by 10% from the “true” values to mimic the scenario where the external

information deviated from the truth. BGOF still maintained the highest efficiency for both phase

I and phase II covariates (Figure 3.1). GOF and BGOF were relatively robust, and the efficiency

advantage of BGOF may decrease as the external model becomes far less accurate.

3.4. Application of BGOF in a Biomarker Study of Genstational Diabetes

In this section, we considered the same biomarker study of gestational diabetes (Zhu et al., 2016)

as in Chapter 2 to illustrate the implementation and performance of BGOF. This study consisted

of 2,701 pregnant women among whom 100 developed gestational diabetes mellitus. We included

four standard risk factors for gestational diabetes, i.e., age, BMI, race and family history of ges-

tational diabetes. We used the same settings as in Chapter 2, section 2.5. To perform BGOF,

in order to ensure that 200 controls can be sampled, we aimed to select 600 into the subset

{i : Ri = 1, i = 1, 2, . . . , N} at the GOF step. Therefore, we estimated the constant c0 roughly

as the ratio of 600 over the empirical mean number of controls, obtained as the sum of the sam-

pling probability pe for all the controls in the full cohort.

Table 3.3 presents the point estimate and mean asymptotic standard error of the coefficient for

phase II covariate and the relative efficiency compared with CC and BD. When family history was

considered the phase II covariate, among the set of nested external models e1, e2 and e3, the

efficiency of BGOF ranged from 1.05 to 1.23 relative to CC and from 1.00 to 1.16 relative to BD.

BGOF achieved slightly higher efficiency compared with GOF (Table 2.2). At the GOF step, as

richer phase I covariates are included in the external model, the lack of goodness-of-fit is more

likely to be caused by phase II covariates absent from the external model. Therefore, subjects who

are better indicative of lack-of-fit are more informative with respect to phase II covariates and have

a greater probability of being selected into phase II. Results were similar when we considered BMI

or race as phase II covariate.

3.5. Discussion

The key working mechanism of an oversampling scheme is to identify informative subjects and to

increase their proportion in the sample. In existing designs, subjects in rare groups are generally
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(d) ρ = 0.3

Figure 3.1: Mean asymptotic variance of the estimated log OR for phase II covariate (β̂4, panels
a and b) and phase I stratifying covariate (β̂1, panels c and d) under the case-control sampling
(CC), the balanced sampling (BD), the goodness-of-fit based sampling (GOF) and the balanced
goodness-of-fit based sampling (BGOF). The cohort size was 3000 with P (Y = 1) = 0.05, and the
true value of β4 was between 0.5–0.9. Phase I variables were uncorrelated in panels a and c and
modestly correlated in panels b and d. In the external model, η1 was deliberately increased by 10%.
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Table 3.3: The point estimate of the log OR for phase II covariate and its mean asymptotic standard
error (SE) under the balanced goodness-of-fit based design (BGOF), the case-control design (CC)
and the balanced design (BD). The point estimate from the full cohort for family history was 0.57,
for BMI was 0.10 and for race was: Black -0.54, Hispanic 0.47, Asian 0.71. Relative efficiency was
calculated as the asymptotic variance under CC or BD over that of BGOF or GOF.

Phase II Sampling Estimate Relative Efficiency
Variable Design External Model (SE) vs. CC vs. BD

Family BGOF e1: race 0.584 (0.29) 1.05 1.00
History e2: race+age 0.579 (0.28) 1.11 1.05

e3: race+age+BMI 0.575 (0.27) 1.23 1.16

CC 0.579 (0.30)
BD 0.580 (0.29)

BMI BGOF e1: race 0.103 (0.02) 1.01 0.99
e2: race+age 0.103 (0.02) 1.05 1.03
e3: race+age+fh 0.103 (0.02) 1.07 1.04

CC 0.103 (0.02)
BD 0.102 (0.02)

Race BGOF e1: age -0.600 (0.43) 1.03 1.00
0.467 (0.34) 1.06 1.01
0.709 (0.39) 1.08 1.01

e2: age+fh -0.586 (0.43) 1.04 1.01
0.469 (0.34) 1.08 1.02
0.713 (0.39) 1.09 1.02

e3: age+fh+BMI -0.555 (0.41) 1.15 1.12
0.473 (0.33) 1.18 1.12
0.732 (0.39) 1.07 0.99

CC -0.570 (0.44)
0.474 (0.36)
0.707 (0.41)

BD -0.586 (0.43)
0.480 (0.35)
0.715 (0.39)
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considered more informative. Through GOF and BGOF, we provide a new perspective to define “in-

formative” subjects for efficient sampling. When it is necessary to select a subset of individuals for

measuring expensive variables, our proposed BGOF is a powerful sampling method to improve ef-

ficiency compared with case-control and balanced designs. The efficiency advantage of both GOF

and BGOF is derived from oversampling more informative subjects who have worse goodness-of-fit

based on a preliminary model using only phase I covariates as predictors. In our numerical studies,

BGOF was slightly less efficient than BD only for binary phase I variables in unrealistic situations

where all covariates were uncorrelated, or when phase II covariates are not associated with the

outcome and all phase I covariates are uncorrelated (data now shown). Intuitively, binary phase

I covariates minimally contribute to assessment of model fit, and therefore are least capable of

deriving efficiency gain from GOF sampling.

BGOF further improves GOF on estimating phase I covariates. Compared with BD, BGOF had

notably higher efficiency for assessing phase I covariates. Instead of four sampling cells that we

considered in the numerical studies, BD strata can also be based on composite categories created

based on multiple phase I variables. BGOF remained more efficient in unreported numerical stud-

ies. The advantage of GOF and BGOF lies in the fact that it makes full use of all phase I covariate

data to determine the sampling probability without coarsening. In practice, it may be necessary in

BGOF to experiment with sampling probabilities to achieve pre-specified numbers of phase II cases

and controls as we considered in the real data example. To realize the full efficiency advantage of

BGOF, the sample size achieved in the GOF step needs to be balanced against the targeted phase

II numbers. In one extreme scenario, where every subject is included in the GOF sample, BGOF

will be the same as BD and lose efficiency advantage over BD. In another extreme scenario, where

the GOF step directly selects the targeted number of phase II samples, BGOF will be the same

as GOF and thus not able to further improve the efficiency for assessing the stratifying covariates

of interest. We suggest that the sample size at the GOF step be on average two to three times

larger than the targeted phase II sample size. It worked well in our numerical analysis, because

those who had a poorer goodness-of-fit were still more likely to be sampled. BGOF is an attractive

sampling method for reducing study cost while maintaining high statistical efficiency for both phase

I and phase II covariates. Moreover, data from BGOF can be analyzed in use of existing packages

in standard software, that allows a highly practical application of this new design.
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We used similar pseudo-likelihood methods for analyzing data collected under BGOF and BD.

Semiparametric maximum likelihood approaches are available for analyzing data from BD (Breslow

and Holubkov, 1997; Lawless, Kalbfleisch, and Wild, 1999; Qin and Lawless, 1994; Scott and

Wild, 1997). These methods require that phase I covariates be discrete. Consequently, these

methods are not applicable to BGOF. We will compare the efficiency of BGOF when BD is analyzed

using maximum likelihood methods. But neither pseudo-likelihood nor maximum likelihood methods

had meaningfully improved efficiency for phase II covariates (e.g., Breslow and Chatterjee, 1999).

This also points to an alternative method that may have improved efficiency for analyzing BGOF:

a semiparametric maximum likelihood type of method that treats the subsample obtained at the

GOF step as the cohort while appropriately accounting for the GOF sampling may have improved

efficiency. We will investigate this method in future work.

BGOF relies on an existing preliminary model that relates the outcome variable with phase I co-

variates. In the absence of such external information, it is plausible to use internal phase I data to

derive such a model. Extension of BGOF based on the resultant model needs to deal with the non-

trivial complication that sample selection and subsequent statistical inference are based on data

from the same individuals. We will consider this extension in our future work. BGOF assumes

that phase I data are a cross-sectional sample. Two-phase case-control sampling, where phase I

consists of a case-control sample, has also been widely studied in the literature (Breslow and Cain,

1988; Breslow and Holubkov, 1997). We are interested in extending BGOF to this setting as well.
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CHAPTER 4

ADJUSTING FOR PARTICIPATION BIAS IN CASE-CONTROL GENETIC ASSOCIATION

STUDIES WITH GENOTYPE DATA SUPPLEMENTED FROM FAMILY MEMBERS: AN

EMPIRICAL LIKELIHOOD BASED ESTIMATING EQUATION APPROACH

4.1. Introduction

In case-control genetic association studies, it is common that many individuals’ genotype data are

missing for reasons related to the disease under study. This type of selection bias, referred to as

the “participation bias”, results in a non-ignorable missing structure and leads to biased inference

if the genetic variants of interest are related to the disease and responsible for missingness. For

highly lethal diseases, subjects, especially diseased cases, may be selectively excluded from the

study due to mortality related to the disease or not be able to participate in genotype data collection

because of their advanced disease status. Moreover, in pregnancy studies, chromosomal abnor-

malities are responsible for a great proportion of early pregnancy loss and thus conditions that can

only be examined after birth will be missing (Chard, 1991). Participation bias will be induced if

the pregnancy loss is related to the condition under study (Liew et al., 2015). Participation bias

has also been reported in genetic association studies of age-related macular degeneration (Chiu

et al., 2011) , ovarian cancer (Lacour et al., 2011), coronary heart disease (Williams, Pendyala, and

Superko, 2011), and other cardiovascular diseases (Anderson et al., 2011; Falcone et al., 2013;

Horsfall, Nazareth, and Petersen, 2012).

Participation bias is not restricted to scenarios where individuals are severely diseased. For ex-

ample, it widely exists in various electronic health record based studies and often leads to non-

ignorable missing structure (Haneuse et al., 2016). Moreover, healthy controls may cause partic-

ipation bias because they are less motivated to contribute genetic information to a study. We are

facing this issue in the Two Sister Study (O’Brien et al., 2016), a family-based case-control genetic

association study of breast cancer where genetic information on the single-nucleotide polymor-

phisms (SNPs) near the gene TOX3 on chromosome 16 were missing for 40% of the 924 controls.

Standard statistical methods for solving missing data issues, such as multiple imputation (Allison,

2000; Rubin, 1996) and inverse-probability weighting (Robins, Rotnitzky, and Zhao, 1994), are not
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applicable when the missing at random (MAR) assumption does not hold: MAR requires that the

missingness does not depend on the missing genetic information. However, the driving force be-

hind missingness remains unknown and thus an investigation on the missing mechanism and an

appropriate statistical method to adjust for potential participation bias is required.

Despite the widespread of participation bias in genetic association studies and the critical issues in

statistical inference caused by participation bias, not many options regarding the sampling designs

or statistical methods to resolve this problem are available, probably because participation bias is

usually difficult to estimate or adjust for (Aschengrau and Seage, 2013; Haneuse and Chen, 2011;

Haneuse et al., 2016). Chen, Weinberg, and Chen (2016) developed a family-supplemented de-

sign (FSD) that adjusts for participation bias in use of a maximum likelihood approach where they

substitute first-degree family members’ genotype data for deceased individuals. They proposed a

valid estimator for the association parameter and showed greatly increased statistical power. In

this study, we aim to develop a method to analyze data collected from the family supplemented de-

sign, which allows adjustments for covariates and interactive effects. The novelty of the proposed

method lies in the unique advantage of genetic information that transmits along family members.

Thus, family’s genotype, such as parents’ or spouse and children’s, are highly informative proxy

and can be utilized to infer an individual’s missing genotype. It is challenging because of possible

correlations between genotype and covariates besides the non-ignorable missing structure. We

apply a logistic regression model to relate missingness with genotype and covariates, and use the

expectation of the corresponding logistic regression score function conditional on all the observed

data, including family’s genotype data, as the estimating equation for the missingness odds ratio

parameters (OR). We develop an empirical likelihood for the genetic association parameters and

weight the empirical likelihood among individuals with complete data by the inverse of their proba-

bilities of genotype data availability as the estimating equation for the association parameters. We

estimate the nuisance parameters, i.e., the covariate distribution conditional on genotype, nonpara-

metrically using data of controls inversely-weighted by their probabilities that complete data have

been collected. We will obtain the estimators for association and missingness by jointly solving

these estimating equations. We term this new method the family-supplemented weighted empirical

likelihood method (FS-WEL).

The rest of this paper is organized as below. In section 4.2, we developed the estimation proce-
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dure and the large sample inference for FS-WEL. In section 4.3, we evaluated the finite sample

performance of FS-WEL via simulation studies across various scenarios. In section 4.4, we further

evaluated the proposed method by applying it to a young-onset breast cancer genetic association

study. We make final remarks in Section 4.5.

4.2. Methods

4.2.1. Framework and Notation

We use a logistic regression model to describe the relationship between the binary phenotype

variable Y with genotype G and a vector of covariates X,

logitP (Y = 1|X,G) = β0 + fβ(X,G), (4.1)

with Y = 1 denoting a case and Y = 0 a control. We will refer to this model as the “association

model”. The function fβ(G,X) is a pre-specified log odds function of genotype G and covariate X.

In a log-additive model for G,

fβ(X,G) = β1X + β2G,

where G is coded as the minor allele count, 0, 1, or 2, for a di-allelic SNP A/a. Let θ denote the

minor allele frequency (MAF). Under assumptions of Hardy-Weinberg equilibrium (HWE), random

mating and Mendelian inheritance, the frequencies of G is determined by θ as

Pθ(g) = θg(1− θ)2−g · {1 + I(G = 1)}, (4.2)

where I(·) is the indicator function. Define β = (β1, β2) and η = (β1, β2, θ). Data for (Y,X) were

collected for N1 cases and N0 controls, and let N denote the total number of subjects N0 + N1.

The genotype data G were made available for a subset of n1 (n1 < N1) cases and n0 (n0 < N0)

controls. We refer to the subset of data with both X and G available as the “complete observations”,

and denote the total number n1 + n0 as n. Let J denote the total number of unique values taken by

covariate X in the data.

Let R denote whether a subject has genotype data available or not (R = 1: yes; R = 0: no). We
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use a logistic regression model to describe the missing mechanism,

logitPα(R = 1|Y,X,G) = α0 + α1Y + α2X + α3G+ α4Y X + α5Y G. (4.3)

Henceforth we refer to model (4.3) as the “missingness model”. Let α denote all the parameters

(α0, α1, α2, α3, α4, α5)
T in the missingness model. This model recognizes that the missingness

depends on genotype itself. This non-ignorable missingness structure renders the imputation-

based methods for estimating association parameters infeasible, and fitting the association model

restricted to complete observations will also result in biased estimates for OR parameters β. Meth-

ods based on inverse probability weighting are standard for consistent estimation. However, G is

not available for individuals whose outcome R is 0, which makes it infeasible to estimate the prob-

ability of missingness by standard logistic regression analyses. Hence, we aim to develop a novel

method that allows one to apply weighting technique under the non-ignorable missingness. Genes

transmit within families, so that genotype data from family members can be exploited to help infer

an individual’s missing genotype. This very fact motivated a family-based supplementary design

(Chen, Weinberg, and Chen, 2016), where genotype data from family members are collected to

help infer missing genotypes. Suppose that genotype data of a subject’s spouse, denoted as Gs

and, of a child, denoted by Gc, can be made available for every subject who do not have data on

G. Let Gf denote the collection of all available familial genotype data (Gs, Gc). The key step is to

incorporate Gf into the estimating equation for the missingness model in terms of the conditional

probability Pθ(G|Gf ), a function of MAF, and to compensate for the missingness of G by inferring

its distribution based on Gf . Let Gi denote the ith subject’s genotype, Gfi the ith subject’s family’s

genotype, and Xi the ith subject’s covariate and i = 1, 2, ...N . Define δxg = P (X = x|G = g, Y = 0)

and δxg = (δxg;x = x1, x2, ..., xJ and g = 0, 1, 2).

4.2.2. Empirical Likelihood of the Association Model

Had genotype data been obtained for all N subjects in the case-control sample, the likelihood could

have been explicitly written out as a function of the OR parameter β in the association model, minor

allele frequency θ, and the nuisance conditional probability δxg, i.e.,

L(η, δxg) =

N0∏
i=1

P (xi, gi|Y = 0)

N∏
i=N0+1

P (xi, gi|Y = 1)
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Using a result from Satten and Kupper (1993), the joint distribution of X and G for cases is related

to that for controls as

P (x, g|Y = 1) =
ef(x,g)P (x, g|Y = 0)∑

x

∑
g
ef(x,g)P (x, g|Y = 0)

.

Then the above likelihood can be written as

N0∏
i=1

P (gi|Y = 0)P (xi|gi, Y = 0)

N∏
i=N0+1

efβ(xi,gi)P (gi|Y = 0)P (xi|gi, Y = 0)∑
x

∑
g
efβ(x,g)P (g|Y = 0)P (x|g, Y = 0)

.

Note that the intercept parameter β0 falls out of the likelihood function in this formulation. There-

fore, we have avoided estimating probability P (Y |x, g), which is not estimable using a case-control

sample, in the likelihood function. We approximate the distribution of genotype in controls by that

in the underlying population, i.e.,

P (g|Y = 0) u Pθ(g).

We obtain the empirical likelihood by replacing P (X|G, Y = 0) with the point mass δxg,

N∏
i=1

Pθ(gi)δxigi

{
efβ(xi,gi)∑

x

∑
g
efβ(x,g)Pθ(g)δxg

}yi
.

Here, instead of treating P (g|Y = 0), the genotype frequencies, as probabilities for a multinomial

variable, we model it as a parametric function of the minor allele frequency θ as governed by

population genetic theory. This modeling is not for the purpose of improving statistical efficiency.

But rather, we model it to be consistent with a later step in our approach where the conditional

probability Pθ(g|gf ) needs to be estimated as a function of θ as required for inferring an individual’s

missing genotype. This point will be described in section 4.2.4, equation 4.7.

Maximizing the above empirical likelihood jointly with respect to all parameters, (β1, β2), θ, and δxg,

leads to a more efficient estimator of (β1, β2) than that from a standard logistic regression analysis

due to the parametric modeling of P (G|Y = 0). In standard logistic regression analysis where

P (G|Y = 0) is treated as multinomial probabilities, the closed-form profile likelihood function for

(β1, β2), obtained by maximizing the above empirical likelihood with respect to δxg with (β1, β2) kept

fixed, can greatly facilitate computation. We found that it is infeasible to derive such closed-form
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profile-likelihood when P (G|Y = 0) is modeled parametrically. Therefore, we consider the following

procedure to reduce computational cost at the expense of losing some efficiency due to ignoring

information contained in cases.

For each combination of (x, g), we estimate the empirical distribution δxg nonparametrically by the

ratio of corresponding cell counts only among controls, i.e.,

δ̂xg =

N0∑
i=1

I(Xi = x,Gi = g)

N0∑
i=1

I(Gi = g)

, (4.4)

where g = 0, 1, 2 and x = x1, x2, ..., xJ−1, and

δ̂(xJ )g = 1−
xJ−1∑
x=1

δ̂xg.

Define δ̂xg = (δ̂xg;x = x1, x2, ..., xJ and g = 0, 1, 2).

4.2.3. Inverse-Probability-Weighted Empirical Likelihood

The non-ignorable missingness structure in the case-control sample brings new challenges in es-

timation. First, the nuisance parameter involves the genotype variable G and we are restricted to

controls with genotype data available for estimating δxg. Because G is associated with its missing-

ness, in order to construct an unbiased estimator for δxg, we modify δ̂xg in equation 4.4 by weighting

complete controls by the inverse of the probability of genotype availability:

δ̂xg(α) =

N0∑
i=1

I(Ri=1,Xi=x,Gi=g)
Pα(R=1|Y=0,X=xi,G=gi)

N0∑
i=1

I(Ri=1,Gi=g)
Pα(R=1|Y=0,X=xi,G=gi)

, (4.5)

where g = 0, 1, 2 and x = x1, x2, ..., xJ−1. Second, because genotype is not missing completely

at random (MCAR), naively applying the empirical likelihood method only in use of the complete

observations will lead to biased estimates. In order to form an unbiased estimating equation for the

association model, we weight a complete observation’s empirical score function Ui(η, δ̂xg(α)) by
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the inverse of the probability that one’s genotype is available

N∑
i=1

Ri
πi(α)

Ui(η, δ̂xg(α)) = 0, (4.6)

where πi(α) = Pα(R = 1|yi, xi, gi) and

Ui(η, δ̂xg(α)) =
d logLi(η, δxg)

dη
=


yi{xi −

∑
x

∑
g TT ·x∑

x

∑
g TT

}

yi{gi −
∑
x

∑
g TT ·g∑

x

∑
g TT

}(
gi
θ −

2−gi
1−θ

)
− yi

{∑
x

∑
g TT ·(

g
θ−

2−g
1−θ )∑

x

∑
g TT

}
 ,

where TT = δ̂xg(α)θ
g(1− θ)2−g{1 + I(G = 1)}eβ1x+β2g.

4.2.4. Estimating Equation for the Missingness Model

The major challenge resulted from the non-ignorable missingness structure is for estimating the OR

parameter α in the missingness model, which is required when calculating weights in estimating

equations 4.5 and 4.6. Although the case-control sample can be treated prospectively with respect

to estimation of α since the outcome Y is only a covariate in the missingness model, one cannot

directly fit a logistic regression model defined by equation 4.3 to estimate α because G is not

available for every individual with R = 0. Therefore, we propose an estimating equation that sums

up the expectation of each observation’s score function Si(α) of the missingness model conditional

on one’s observed data obi = (Ri = 0, Yi, Xi, G
f
i ) or (Ri = 1, Yi, Xi, Gi), i.e.,

Um(α,η, δ̂xg(α)) ≡
N∑
i=1

E
(
Si(α)|obi

)
=

N∑
i=1

{
RiSi(α) + (1−Ri)E

(
Si(α)|obi

)}
= 0,

where Si(α) is in the form of a standard score function for a logistic regression model, i.e.,

Si(α) = di
[
ri − Pα(R = 1|yi, xi, gi)

]
,

and di = (1, yi, xi, gi, yixi, yigi)
T . It is an unbiased estimating equation because its expectation

reduces to the expectation of a regular score function S(α) and thus equals 0. Moreover, by condi-
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tioning on the fully observed data, familial genotype data Gf is introduced into the estimation pro-

cedure. Then we derive the estimating equation for the missingness model as follows. First, similar

to the estimating equation for the association model, we relate the joint distribution of (X,G) among

cases to that among controls (Satten and Kupper, 1993) in order to avoid estimating P (Y |x, g) un-

der retrospective sampling. Second, we model the distribution of genotype as a parametric function

of θ, which renders an expression of the estimating equation in terms of Pθ(g|gf ) feasible. Finally,

we explicitly wrote out the estimating equation for the missingness model as

N∑
i=1

{
Ridi[1− πi(α)]− (1−Ri) (4.7)

∑
g

diPα(R = 1|yi, xi, g)Pα(R = 0|yi, xi, g)eyfβ(xi,g)δ̂xig(α)Pθ(g
f
i )Pθ(g|g

f
i )∑

g
Pα(R = 0|yi, xi, g)eyfβ(xi,g)δ̂xig(α)Pθ(g

f
i )Pθ(g|g

f
i )

}
= 0.

This expression reformulated the challenging task of estimating Si(α) for an individual without

genotype data into the key step of estimating Pθ(g|gf ), which informs a missing genotype using

familial genetic information. Consistent with the estimating equation for the association model,

nuisance parameter δxg are estimated nonparametrically only among controls by equation 4.5.

Finally, taking expectation with respect to the missing variable G integrates it out of the estimating

equation. Detailed derivation under the rare disease assumption is shown in APPENDIX A. Note

that conditional on outcome Y , covariate X, and genotype G, the probability of genotype availability

does not depend on family member’s genotype Gf , i.e. P (ri|yi, xi, g, gfi ) = P (ri|yi, xi, g). We

referred to Supplementary Table 1 of Chen, Weinberg, and Chen (2016) for the joint distribution of

(g, gf ). We obtain consistent point estimates of η, α, and δxg by jointly solving unbiased estimating

equations 4.5, 4.6, and 4.7.

4.2.5. Asymptotic Properties

Following standard Z-estimation theory, we derived the asymptotic properties of the FS-WEL me-

thod. We define Ai = Ri
πi(α)Ui(η, δxg) and Bi = Usi (α, δxg,η). We re-express δ̂xg(α) as

δ̂xg(α)− δxg =
1

N0

N0∑
i=1

{
I(Ri = 1, Xi = x,Gi = g)

Ci
− δxg

}
=:

1

N0

N0∑
i=1

fxgi
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where Ci = P (R = 1|Y = 0, xi, gi)P (G = g|Y = 0). Let fi denote the vector of {fxgi , x =

1, 2, ..., J − 1 and g = 0, 1, 2}. Then we define the following terms

c1 = E{y,x,g}

{
∂Ui(η, δxg)

∂η

}
,

c2 = E{y,x,g}

{
∂Ui(η, δxg)

∂δxg

}
,

c3 = E{y,x,g}

{
∂Ui(η, δxg)

∂δxg

∂δ̂xg(α)

∂α

}
− E{y,x,g}

{
U(η, δxg)

∂logπi(α)
∂α

}
,

d1 = E{r,y,x,g}

{
∂Usi (α, δxg,η)

∂η

}
,

d2 = E{r,y,x,g}

{
∂Usi (α, δxg,η)

∂δxg

}
,

d3 = E{r,y,x,g}

{
∂Usi (α, δxg,η)

∂α

}
+ E{r,y,x,g}

{
∂Usi (α, δxg,η)

∂δxg

∂δ̂xg(α)

∂α

}
.

Expectations E{y,x,g}(·) and E{r,y,x,g}(·) are taken with respect to joint distributions P (Y,X,G) and

P (R, Y,X,G,Gf ) in the sample, respectively. We showed in APPENDIX B that (η̂T , α̂T )T is con-

sistent and asymptotically normally distributed:

√
N

 η̂ − η
α̂−α

 D−→ N


0
0

 ,M−1V (M−1)T

 .

In the covariance matrix, M =

c1 c3

d1 d3

 and V is defined as

V11 V12

V T12 V22

, where

V11 = V(Ai) + p−10 Vy0(c2fi) + Covy0(Ai, c2fi) + Covy0(c2fi, Ai),

V22 = V(Bi) + p−10 Vy0(d2fi) + Covy0(Bi, d2fi) + Covy0(d2fi, Bi),

V12 = Cov(Ai, Bi) + Covy0(c2fi, Bi) + Covy0(Ai, d2fi) + p−10 Covy0(c2fi, d2fi),

and Vy0 and Covy0 are variance and covariance taken with respect to P (X,G|Y = 0), and V and

Cov are taken with respect to P (X,G).
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4.3. Simulation Study

In this section, we conducted simulation studies to quantify bias in estimates of parameters in both

the association and missingness model using the FS-WEL method and to evaluate the finite sample

performance of FS-WEL under various scenarios.

4.3.1. Parameters

We considered a cohort of 106 individuals. First, we generated genotype G for each individual in

the cohort based on the minor allele frequency θ = 0.2 and θ = 0.5 under the assumption of HWE,

random mating and the Mendelian inheritance. That is, generate G taking on values 0, 1, and 2

from a multinomial distribution of probability ((1− θ)2, 2θ(1− θ), θ2). Then we generated genotype

Gs for every individual’s spouse in the same way as for generating G, and generated genotype

Gc for their children from a multinomial distribution of probability presented in table 4.1 under the

same three assumptions stated above. Second, we generated a binary variable X conditional

on genotype G from a Bernoulli distribution of probability P (X|G), i.e., P (X = 1|G = 0) = 0.3,

P (X = 1|G = 1) = 0.5, and P (X = 1|G = 2) = 0.35. Then we generated a binary variable Y based

on the logistic regression model

logitP (Y = 1) = β0 + β1X + β2G, (4.8)

where β1 = log(1.2) and β2 took on values log(1.2) and log(1.5) to simulate relatively weak and

strong association between outcome Y and genotype G. The intercept β0 was chosen to determine

the outcome prevalence of 3% and 10%.

Then we generated R, the missingness status of genotype from model 4.3, where α1 = log(0.6),

α2 = log(1.2), and α3 takes on log(1.2) and log(1.5) to simulate relatively weak and strong asso-

ciation between missingness and genotype. We considered no interaction between Y and X, or

Y and G (α4 = α5 = 0) and differential association of missingness and X, and missingness and

G between cases and controls (α4 = α5 = log(1.5)). The intercept α0 was selected to determine

80% and 60% genotype availability. Last, we randomly selected 2000 cases and 2000 controls from

the cohort to form a case-control sample. Naive estimates of β1 and β2 were obtained from fitting

logistic regression model 4.8 restricted to complete observations under the assumption of missing
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Table 4.1: Distribution of children’s genotypes (Gc) conditional on parents’ genotypes (G and Gs)
under the assumption of Hardy-Weinberg equilibrium, random mating and the Mendelian inheri-
tance.

G Gs Gc

0 1 2

0 0 1 0 0
0 1 0.5 0.5 0
0 2 0 1 0

1 0 0.5 0.5 0
1 1 0.25 0.5 0.25
1 2 0 0.5 0.5

2 0 0 1 0
2 1 0 0.5 0.5
2 2 0 0 1

completely at random. The naive estimate of θ was calculated as

θ̃ =
2n02 + n01

2n0
, (4.9)

where n01 and n02 were numbers of individuals who have one and two copies of the minor allele

among n0 controls who have genotype available. We repeated the above steps 1000 times.

4.3.2. Results

Table 4.2 presents the point estimates, the mean asymptotic and empirical standard errors, and

the coverage probability for the log odds ratio parameter β in the association model and MAF

using the FS-WEL method. Point estimates are all close to true parameter values, two types of

standard errors are close to each other and the coverage probability are around the nominal level

of 0.95 across all simulated scenarios. Estimation results of the missingness model are presented

in supplementary table 1.

Table 4.3 shows the mean bias in and the mean squared error (MSE) of log odds ratio estimates

in the association model using FS-WEL and the naive method across 1000 iterations. Differences

between the estimates and the true parameter values are within 2% of true parameter values in OR

estimate β̂1 , 4% in β̂2, and 1% in θ̂ in use of FS-WPL. In contrast, the naive method over-estimates

β1 by 47% − 95% and β2 by 18% − 82% when the association of missingness and covariates is

differential between cases and controls, and by 8% − 15% and 8% − 24%, respectively, when the
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association is non-differential in the missingness model. The naive method over-estimates θ̂ by

2% − 12%. Moreover, MSE in the naive method is 1.3 − 8.1 times greater for β̂1, 1.3 − 6.4 times

greater for β̂2, and 1.1 − 10.4 times greater for θ̂ than MSE in FS-WEL. The FS-WEL method is

able to correct for non-ignorable missing structure across all simulation settings, even when 40%

of genotype data are missing, and MSE slightly increases when missingness increases from 20%

to 40%. Naively ignoring the non-ignorable missing structure, however, leads to great bias in OR

estimates, and the bias and MSE become even more prominent when the effect of covariates

and genotype on missingness further differentiates between cases and control and when missing

data proportion increases. We further investigated the performance of FS-WEL in scenarios with

a higher MAF (0.5) and a larger prevalence (0.1). FS-WEL still presents a superior capacity of

correcting for bias in OR estimates compared with the naive method and similar results are shown

in supplementary table 2− 7. We also evaluated FS-WEL when the underlying missing mechanism

is missing completely at random, and the proposed method produces consistent OR estimates

and slightly improves efficiency for the OR estimators compared with the naive method (data now

shown).

4.4. Real Data Example

In this section, we investigated a dataset derived from the ongoing Two Sister Study (https://

sisterstudy.niehs.nih.gov/English/twosisterstudy.htm), a family-based study on young-onset breast

cancer (under age 50). We drew part of the data from this transmission-based study to construct

a case-control sample in order to investigate the association between young-onset breast cancer

(defined by Y with Y = 1 denoting a case and Y = 0 a control) and genetic risk factors. The

original analysis (O’Brien et al., 2016) estimated relative risks by applying a log-linear model on

case-parent data that compared cases in a matched manner to the non-transmitted alleles carried

by their parents. In this study, we aim to directly compare cases to unrelated controls and to

estimate odds ratios of developing young onset breast cancer with respect to genetic and other risk

factors.

The constructed dataset consists of 521 women who had been diagnosed with breast cancer before

age 50 and had one or more first-degree family members previously diagnosed with breast cancer

(often the mother), and 924 controls who had never been diagnosed with breast cancer, but had
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an affected sister. Thus all cases and all controls had a first-degree family history of breast cancer.

When multiple controls were available from the same family, we randomly selected one of them.

Thus the study subjects used for this analysis are unrelated, but some with missing genotypes had

first-degree relatives available to provide proxy genotype information.

Age at first full-term pregnancy (X1) and age at menarche (X2) are two standard risk predictors for

breast cancer (Chen et al., 2006; Gail et al., 1989). In this case-control sample, 229 controls (25%)

had their first full-term pregnancy at age 24 or younger, 294 (32%) had it between age 24 and 30,

160 (17%) had it after age 30, and 241 (26%) were nulliparous. Among cases, 110 (21%), 143 (28%),

110 (21%) and 158 (30%) were in the four categories of age at first full-term pregnancy, respectively.

Age at menarche was 12 or before for 386 controls (42%), between 12 and 14 for 295 controls (32%),

and 14 or later for 243 controls (26%). Among cases, there are 238(46%), 171(33%) and 112(21%)

in the three categories of age at menarche, respectively. In general, a greater proportion of controls

than cases have a younger age at first full-term pregnancy and an older age at menarche. Genetic

information on SNPs rs8050542, rs8046979, rs4784220, rs1420533 and rs43143 near the gene

TOX3 on chromosome 16 were collected from all cases and 351 controls. Among 573 controls

whose genetic information was missing, both parents’ genotype data were collected for 328 controls

and one parent’s genotype is available for the remaining 245 controls.

The driving forces related to missingness of genotype data (G) is unknown and thus whether a

missing at random assumption holds is uncertain; hence, a non-ignorable missing structure among

controls (denoted by R with R = 1 indicating genotype available and R = 0 not available), i.e.,

logitP (R = 1|Y = 0, x1, x2, g) =α0 + α11I(24 < x1 ≤ 30 or nulliparous) + α12I(x1 > 30)+

α21I(12 < x2 < 14) + α22I(x2 ≤ 12) + α3g,

is the most flexible and appropriate. For each of the five SNPs, we applied the FS-WPL method and

investigated whether missingness depended on genotype at that locus and used parents’ genetic

information to infer an individual’s missing genotype. We considered the association model

logitP (Y = 1|x1, x2, g) =β0 + β11I(24 < x1 ≤ 30 or nulliparous) + β12I(x1 > 30)+

β21I(12 < x2 < 14) + β22I(x2 ≤ 12) + β3g.
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In contrast, the naive estimates were obtained from fitting the association model above restricted

to complete observations and MAF was estimated using complete controls based on equation 4.9.

We bootstrapped this dataset 1000 times and repeated both methods. We noticed that the naive

method tended to overestimate OR parameters for covariates in the association model; therefore,

covariates that were not statistically significantly associated with the risk of breast cancer in a

preliminary study using the naive model, i.e., number of pregnancies and the interactive effect of

age at menarche and age at first full-term pregnancy, were not included in this analysis for the

purpose of model parsimony.

Table 4.4 presents the estimated log OR parameters in the association model of the Two Sister

Study using FS-WEL and the naive method. Difference in the estimated log ORs between FS-WEL

and the naive method ranges from 1%−16% for β11, 2%−11% for β12, 1%−27% for β13, 28%−58%

for β21, 16%− 28% for β22 and 4%− 32% for β3. The estimates of θ are very close in use of the two

methods (1%−3%). Missingness of genotype data in controls does not depend on the SNPs under

study (P-value is 0.667 − 0.976), but only on covariate age at first full-term pregnancy i.e., P-value

< 0.05 for most of the SNPs and is at the marginal level 0.051 for rs43143 (table 4.4). Therefore, this

missing structure is not non-ignorable and the missing at random assumption holds in this study,

that explains the consistency of MAF estimates in use of the two methods. Because the naive

method assumes that genotype is missing completely at random while covariate age at first full-

term pregnancy, in fact, is responsible for the missingness, a bias in estimated log OR for age at first

full-term pregnancy in the association model is expected and biases in log OR estimates for other

variables might be caused by the correlation between age at first full-term pregnancy and other

variables. We further investigated the Two Sister Study under a missing at random assumption,

and the results are consistent with those obtained in FS-WEL (data not shown).

Among women without young-onset breast cancer in the Two Sister Study, there is a greater prob-

ability of genotype data availability for those who gave birth to their first child after age 30, and one

possible explanation is that those women might be of a higher education level and better social-

economic status and more likely to consent to genetic information collection. The odds of develop-

ing young-onset breast cancer for healthy women with breast cancer family history who gave birth

to their first child after age 30 are 80% − 90% greater than those whose first child was born before

age 24, and the odds for those whose age at menarche is before 12 tend to be 40%− 50% greater
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than those who had menarche after age 14. None of the five SNPs are found to be significant risk

factors for young-onset breast cancer after adjusting for multiple comparisons, which is consistent

with the results in the original Two Sister Study (O’Brien et al., 2016).

4.5. Discussion

Participation bias is a common issue in biomedical studies, which is difficult to explore or adjust for,

especially when the responsible variables cannot be fully collected, that induces a non-ignorable

missing structure. Imprudently assuming an MAR or MCAR mechanism would result in biased

inference in association analysis. Diseased and healthy individuals may cause participation bias

for different reasons, such as death, disease severity, and lack of motivation for participation. Our

proposed family-supplemented weighted empirical likelihood method is able to correct for partici-

pation bias in case-control genetic association studies under a very general framework where both

cases and controls can encounter genetic information missingness for reasons related to genotype,

many other covariates, and their interactive effects. The FS-WEL method is especially effective at

bias correction compared with the naive method that simply restricts analysis to observations with

complete data when a relatively large amount of missingness of genotype data exists, association

of missingness and covariates differentiates between cases and controls, and the disease under

study is relatively strongly associated with genotype.

Of course, if special scenarios where missingness only exists among controls such as in the Two

Sister Study, or among cases (unreported simulation studies), FS-WEL can be easily modified by

restricting missingness model to controls or cases, and in the latter scenario, the estimating pro-

cedure can be further simplified because the nuisance parameter, the conditional probability of

covariates on genotype, can be directly estimated among complete controls (equation 4.4) without

the weighting step. More generally, the driving forces behind missingness are usually unknown in

substantive studies based on electronic health record data or various secondary analyses derived

from original clinical trials. FS-WEL provides a method to investigate whether an MCAR or MAR

assumption holds, and is capable of adjusting for potential non-ignorable missingness. Further-

more, in unreported simulation studies, even when the underlying missing mechanism is MCAR,

the FS-WEL method leads to consistent estimates of association parameters and improves the sta-

tistical efficiency compared with the naive method, probably due to a larger effective sample size
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and parametric modeling of the genotype distribution in the estimating procedure of FS-WEL.

The FS-WEL method can effectively account for participation bias even when missingness is sub-

stantial. This great power results from the fact that genotype data from both parents or spouse and

child provide the most informative proxy for an individual’s missing genotype, which explains that

the quantity and variability of bias in OR estimates under FS-WEL are consistently small but dra-

matically increase under the naive method as a greater amount of missingness happens. In reality,

however, the most informative proxy might not be collected for every individual with missing genetic

information, such as in the Two Sister Study, more than 40% of those without complete data were

only supplemented with one parent’s generic information. The FS-WEL method is able to flexibly

handle different types of family’s genetic supplements from one parent, children only, one parent

and a sibling, etc. For example, integrating over the possible genotypes of the missing parent allows

one to infer an individual’s missing genotype based only on one parent’s supplement. As family’s

supplements become less informative, consistent OR estimates with greater variability (MSE) might

be expected as the proportion of missingness augments. A spouse’s genetic information alone is

non-informative and thus is not under consideration.

When applying FS-WEL in finite sample analyses, one may encounter the following numerical is-

sue and we provide suggestions on how to overcome it. Theoretically, cases and controls share

the same domain for covariates; however, in a real data analysis, distinction between cases and

controls can be observed. One may face this issue when estimating the nuisance parameter, i.e.,

the conditional probability of covariates on genotype, because the nonparametric estimation is per-

formed among controls. For distinctive covariate values that are only observed in cases, we suggest

approximating its probability conditional genotype in use of the adjacent value, for example, equally

splitting the probability of the adjacent value conditional on genotype into its own probability and

probability for the unique value in cases. The issue of different empirical domains between cases

and controls is less worrisome when one analyzes discrete covariates, such as the standard risk

factors, age at first full-term pregnancy and age at menarche in the Two Sister Study, but more com-

mon with continuous covariates, especially in relatively small samples. Nevertheless, in unreported

simulation studies, we considered continuous covariates where we treated each observed covariate

value as a “discrete” variable level, and FS-WEL still successfully corrected for participation bias

under nuisance parameter approximation.

47



The most effective strategy to deal with missing data is to further collect missing values them-

selves, which, however, is often not feasible, especially when missingness is caused by death and

severe diseases. In genetic association studies, the missing genotype enjoys a valuable privilege

of highly informative proxy from first-degree family members, and the proxy information is usually

conveniently available in family-based studies. If not, researchers should take full advantage of this

privilege and make extra effort to supplement the original dataset with family’s genetic information

to the possible extent. Beyond genetic association studies, multiphase designs with additional data

collection of possible responsible variables for participation bias at the design level, and post hoc

or parallel surveys with ongoing clinical trials on missing values themselves (at least a subset) and

possible reasons for data incompleteness have been suggested (Haneuse and Chen, 2011; Ha-

neuse et al., 2016). The main purpose is to exploit the distribution of incomplete variables, and to

investigate the driving mechanisms for missingness, which provides the foundation of evaluation on

study results and conclusions and application of novel approaches to correcting for potential biased

inference.
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Table 4.3: The mean bias in and the mean square error (MSE) of estimated log OR of covari-
ate X (β1) and genotype G (β2) in the association model and the estimated MAF (θ) using the
family-supplemented weighted empirical likelihood method (FS-WEL) and the naive method based
on1000 simulations. The prevalence is 0.03, genotype availability is 0.8 and 0.6, the true value of β1
is 0.182, of β2 is 0.182 and 0.405, and MAF is 0.2. The true values of (α3, α4, α5) in the three miss-
ingness models are: weak = (0.182, 0.405, 0.405), strong = (0.405, 0.405, 0.405), and No interaction
(NI) = (0.405, 0, 0). In each of the 12 settings, true values and estimates of coefficients β1, β2 and
θ are presented in this order in the magnitude of 10−3.

Model Naive Method FS-WPL Method

P (R = 1) eβ2 Missing True Biasa MSE Bias MSE

0.8 1.2 weak 182 90.972 14.317 -2.659 4.775
182 71.651 8.983 -3.543 3.864
200 4.514 0.072 -0.471 0.050

strong 182 86.399 13.224 -2.635 4.589
182 69.068 8.442 -3.390 3.297
200 11.074 0.177 -0.313 0.050

NI 182 18.522 6.495 3.093 4.635
182 36.302 4.920 0.003 3.775
200 10.124 0.152 -0.870 0.049

1.5 weak 182 91.532 14.456 0.374 4.855
405 75.328 9.064 -0.969 3.333
200 2.959 0.055 -1.883 0.051

strong 182 88.835 14.071 -2.513 4.827
405 73.935 9.050 0.813 3.584
200 8.889 0.130 -2.051 0.052

NI 182 14.350 5.949 -0.935 4.479
405 34.134 4.948 -2.355 3.814
200 9.087 0.135 -1.862 0.053

0.6 1.2 weak 182 169.575 37.065 -3.808 4.588
182 149.636 27.067 -2.874 4.700
200 9.246 0.156 -0.456 0.061

strong 182 161.017 33.907 -2.497 4.621
182 137.279 23.557 -3.223 3.974
200 23.201 0.614 -0.309 0.059

NI 182 27.175 9.309 3.040 4.691
182 44.436 7.287 -7.215 5.104
200 22.795 0.594 -0.300 0.062

1.5 weak 182 172.247 37.875 0.532 4.938
405 147.784 26.323 0.544 4.138
200 8.001 0.127 -2.036 0.063

strong 182 160.941 33.795 -3.009 4.906
405 139.789 24.250 0.697 4.364
200 21.001 0.512 -2.006 0.064

NI 182 19.376 8.870 -0.635 4.562
405 46.625 7.218 -2.549 4.723
200 21.003 0.513 -1.772 0.063

a Bias is defined as the mean estimate minus the true value
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Table 4.4: Estimated log OR parameters in the association model of the Two Sister Study using the
family-supplemented weighted empirical likelihood method (FS-WEL) and the naive method. Mean
asymptotic (“asy”) and bootstrap (“bts”) standard errors are calculated on 1000 bootstrap iterations.
p-value is resulted from a Wald test in use of the bootstrap standard error in both association and
missingness models.

Association Model Missingness Model

Model FS-WPL (asy/bts) P-value Naive (bts) P-value P-value

rs8051542 0.261 (0.096/0.112) 0.020 0.251 (0.105) 0.016 0.667
X1 (24, 30] 0.167 (0.204/0.203) 0.411 0.167 (0.188) 0.374 0.116

> 30 0.605 (0.230/0.233) 0.009 0.666 (0.222) 0.003 0.040
NLa 0.236 (0.306/0.204) 0.247 0.237 (0.190) 0.211 0.380

X2 (12, 14) 0.264 (0.201/0.203) 0.194 0.396 (0.185) 0.032 0.226
≤ 12 0.360 (0.227/0.193) 0.063 0.445 (0.177) 0.012 0.275

MAF 0.401 (0.011/0.012) 0.390 (0.020)

rs8046979 -0.196 (0.114/0.117) 0.092 -0.134 (0.097) 0.165 0.777
X1 (24, 30] 0.175 (0.202/0.210) 0.404 0.190 (0.195) 0.330 0.126

> 30 0.612 (0.228/0.235) 0.009 0.672 (0.228) 0.003 0.047
NL 0.183 (0.293/0.211) 0.385 0.215 (0.188) 0.251 0.405

X2 (12, 14) 0.303 (0.195/0.197) 0.125 0.390 (0.185) 0.035 0.205
≤ 12 0.357 (0.215/0.185) 0.054 0.451 (0.173) 0.009 0.245

MAF 0.498 (0.011/0.012) 0.486 (0.019)

rs4784220 0.223 (0.093/0.101) 0.027 0.252 (0.110) 0.023 0.894
X1 (24, 30] 0.207 (0.209/0.203) 0.308 0.175 (0.185) 0.345 0.111

> 30 0.667 (0.233/0.226) 0.003 0.677 (0.223) 0.002 0.041
NL 0.257 (0.314/0.206) 0.212 0.219 (0.191) 0.253 0.351

X2 (12, 14) 0.234 (0.204/0.206) 0.256 0.370 (0.194) 0.057 0.207
≤ 12 0.368 (0.228/0.191) 0.054 0.452 (0.184) 0.014 0.238

MAF 0.439 (0.008/0.009) 0.439 (0.016)

rs1420533 -0.209 (0.114/0.114) 0.066 -0.148 (0.095) 0.119 0.976
X1 (24, 30] 0.167 (0.202/0.210) 0.427 0.189 (0.197) 0.336 0.122

> 30 0.605 (0.229/0.237) 0.011 0.673 (0.230) 0.003 0.047
NL 0.167 (0.293/0.206) 0.416 0.213 (0.186) 0.254 0.388

X2 (12, 14) 0.302 (0.195/0.193) 0.118 0.387 (0.183) 0.034 0.185
≤ 12 0.352 (0.215/0.186) 0.058 0.451 (0.174) 0.009 0.242

MAF 0.496 (0.011/0.011) 0.489 (0.019)

rs43143 -0.091 (0.099/0.106) 0.392 -0.082 (0.093) 0.380 0.925
X1 (24, 30] 0.218 (0.202/0.208) 0.295 0.194 (0.194) 0.317 0.120

> 30 0.633 (0.229/0.242) 0.009 0.675 (0.231) 0.004 0.051
NL 0.251 (0.297/0.205) 0.221 0.240 (0.192) 0.211 0.375

X2 (12, 14) 0.289 (0.198/0.205) 0.159 0.392 (0.186) 0.035 0.216
≤ 12 0.384 (0.224/0.193) 0.047 0.445 (0.177) 0.012 0.254

MAF 0.440 (0.011/0.012) 0.446 (0.020)
a NL: nulliparous
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CHAPTER 5

CONCLUSION

In this dissertation, we focus on the two main issues under the outcome-dependent sampling frame-

work, efficiency and bias. We have developed two novel outcome-dependent sampling designs

that take advantage of the biased sampling scheme to improve statistical efficiency for estimating

association parameters, especially with respect to the incomplete phase II covariates. We also

have developed a new estimating equation approach to correcting for participation bias, a type of

outcome-dependent selection bias, in genetic association studies.

Our work provides a new perspective to define informative subjects in efficient sampling designs.

Existing efficient designs usually consider subjects in rare groups of an outcome or covariates at

phase I informative. We found that subjects who have worse goodness-of-fit based on an external

model relating the outcome only to phase I covariates are more informative with respect to phase

II covariates, and our proposed sampling designs greatly improve efficiency for estimating phase

II covariates by oversampling these informative subjects. Instead of relying on an existing prelim-

inary model that relates the outcome variable with phase I covariates, using internal phase I data

to derive such a model is considered for future work, which needs to deal with the nontrivial com-

plication that sample selection and subsequent statistical inference are based on data of the same

individuals. The proposed designs assume that phase I data are a cross-sectional sample, and

we are interested in extending them to Two-phase case-control sampling, where phase I consists

of a case-control sample as well. Last, extending the estimating equation approach to adjusting

for participation bias beyond genetic association studies, where the informative proxy from family

members for missing data are not necessarily available, is of interest in future work.
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APPENDIX A

THEORETICAL DERIVATION FOR CHAPTER 3

The proof of consistency and asymptotic normality of the pseudo-likelihood estimator β̂ can follow

similar steps for Propositions 1 and 2 in Breslow and Cain (1988). The proof requires accommo-

dation of the BGOF sampling, which is different from the prospective (Scott and Wild, 1997) and

retrospective (Breslow and Cain, 1988) two-phase designs. The M ≡
∑N
i=1Ri “phase I” subjects in

the GOF subsample is a biased random sample selected using pre-specified outcome-dependent

sampling probabilities. A key to the proof, which accommodates this sampling feature, is that the

pseudo-model for the GOF sub-sample, P (Y = 1|w;R = 1) is a genuine probabilitiy function so

that E(Y |w, R = 1) = P (Y = 1|w;R = 1) and var(Y |w;R = 1) = P (Y = 1|w;R = 1)P (Y =

0|w;R = 1). Let ψ̂1l denote M1l/N , ψ̂0l denote M0l/N , ψ̂l denote (ψ̂0l, ψ̂1l), and ψ̂ denote the

vector of all these 2L sampling probabilities, ψ̂ = {ψ̂l : l = 1, . . . L}. For subject i in the BGOF

sample who belongs to sampling stratum l, i = 1, . . . ,m1l + m0l, we re-write µ(wi;β, π0l, π1l) as

µ(wi;β, ψ̂l):

µ(wi;β, ψ̂l) =
exp

{
wiβ + o(xi) + logm1l/m0l − log ψ̂1l/ψ̂0l

}
1 + exp

{
wiβ + o(xi) + logm1l/m0l − log ψ̂1l/ψ̂0l

} .
Let p∗(Y |w;β, ψ̂l) denote the distribution of Y conditional on w in the BGOF subsample. The

pseudo-likeihood estimator is obtained by maximizing the following pseudo log-likelihood function

over β:

l(β; ψ̂) ≡ m−1
1∑
y=1

L∑
l=1

myl∑
i=1

log p∗(y|wi;β, ψ̂l)

= m−1
1∑
y=0

L∑
l=1

myl∑
i=1

[
y logµ(wi;β, ψ̂l) + (1− y) log{1− µ(wi;β, ψ̂l)}

]
.

Let p∗yl(w) denote the distribution of W in the (y, l) stratum, and E∗yl denote the expectation taken

with respect to p∗yl(w). Further let E∗l denote the expectation taken with respect to the distribution

of W within stratum l. Assume that myl/m converges to γyl as m → ∞, and m/N converges to a

53



constant θ > 0 as N →∞. To prove consistency of β̂, clearly l(β;ψ) converges to

l∗(β;ψ) =

1∑
y=0

L∑
l=1

γylE
∗
yl{log p∗(y|w)}

almost surely in a neighborhoodd of β. Since components of w are bounded, the convergence

is uniform by Theorem 2 in Jennrich (1969). Then l(β; ψ̂) converges to l∗(β;ψ) uniformly since

ψ̂yl
a.s→ ψyl as N → ∞, y = 0, 1, l = 1, . . . , L. Further, l∗(β;ψ) is uniquely maximized at the true

value of β assuming identifiability of β since it is an expected likelihood function. Consistency of β̂

follows from Lemma (1) in Manski and McFadden (1981).

To derive the large sample distribution of β̂, we perform Taylor’s series expansion at the true

value β on the pseudo-likelihood score function as follows. Below we use µli as the shorthand

for µ(wi;β,ψl).

0 = U(β̂; ψ̂) ≡ ∂l(β; ψ̂)

∂β
= m−1

1∑
y=0

L∑
l=1

myl∑
i=1

wT
i

{
y − µ(wi; β̂, ψ̂l)

}

≈ m−1
1∑
y=0

L∑
l=1

myl∑
i=1

wT
i {y − µ(wi;β,ψl)}

+ m−1
1∑
y=0

L∑
l=1

myl∑
i=1

wT
i wiµ

l
i

(
1− µli

)
(β̂ − β)

− m−1
L∑
l=1

1∑
y=0

myl∑
i=1

wT
i µ

l
i

(
1− µli

) (
log ψ̂1l/ψ̂0l − logψ1l/ψ0l

)
.

It is straightforward to show that

m−1
1∑
y=0

L∑
l=1

myl∑
i=1

wT
i wiµ

l
i(1− µli)

p→ H ≡
1∑
y=0

L∑
l=1

E∗yl{wT
i wiµ

l
i(1− µli)},

m−1
1∑
y=0

myl∑
i=1

wT
i µ

l
i(1− µli)}

p→ E∗l {wT
i µ

l
i

(
1− µli

)
}.

Re-arranging the terms above leads to

√
m(β̂ − β) = −H−1

{
m−1/2

1∑
y=0

L∑
l=1

myl∑
i=1

wT
i

(
y − µli

)
−

√
m

L∑
l=1

E∗l {wT
i µ

l
i

(
1− µli

)
}
(
log ψ̂1l/ψ̂0l − logψ1l/ψ0l

)}
. (A.1)
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Note that the first and second terms in the curly braces are independent, and that ψ̂l’s are indepen-

dent. For the first term, because its expectation equals zero, it can be written as

m−1/2
1∑
y=0

L∑
l=1

myl∑
i=1

[
wT
i

(
y − µli

)
− E∗yl

{
wT
i

(
y − µli

)}]
.

An application of Lindeberg-Feller Central limit theorem leads to a result that was proved in Breslow

and Cain (1988):
1√
m

1∑
y=0

L∑
l=1

myl∑
i=1

wT
i

(
y − µli

) D→ N(0, V ).

where

V = H −
1∑
y=0

L∑
l=1

γ−1yl E
∗
l

{
wTµl(1− µl)

}
E∗l
{
wµl(1− µl)

}
.

Using standard theory for the multinomial distribution, it can be shown that

√
m
(
log ψ̂1l/ψ̂0l − logψ1l/ψ0l

)
D→ N(0, ψ−10l + ψ−11l ).

Therefore, the second term in the curly brace in equation (A.1) converges in distribution to

N

[
0,

1∑
y=0

L∑
l=1

θψ−1yl E
∗
l

{
wTµl

(
1− µl

)}
E∗l
{
wµl

(
1− µl

)}]
.

Putting the above results together, we have the following results as stated in the Corollary:

√
N(β̂ − β) D→ N

{
0, H−1(H −G)H−1

}
,

where G is a matrix defined as

G ≡
1∑
y=0

L∑
l=1

(
γ−1yl − θψ

−1
yl

)
E∗l
{
wTµl

(
1− µl

)}
E∗l
{
wµl

(
1− µl

)}
.

The asymptotic variance-covariance matrix H−1(H −G)H−1 can be consistently estimated empir-

ically, with

Ĥ =
1

m

1∑
y=0

L∑
l=1

myl∑
i=1

wT
i wiµ

l
i

(
1− µli

)
,

55



and

Ĝ =
1

m

1∑
y=0

L∑
l=1

[(
m−1yl −M

−1
yl

) 1∑
y=0

myl∑
i=0

{
wT
i µ

l
i

(
1− µli

)} 1∑
y=0

myl∑
i=0

{
wiµ

l
i

(
1− µli

)}]
.
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APPENDIX B

THEORETICAL DERIVATION FOR CHAPTER 4

B.1. Derivation

In this section, we show the detailed derivation of the conditional expectation of the score function

of the missingness model on observed data for a deceased individual, i.e., R = 0.

E
(
Si(α)|obi

)
=− E(diP (R = 1|yi, xi, gi)|obi)

=−
∑
g

diP (R = 1|yi, xi, g)P (G = g|obi)

=−
∑
g

diP (R = 1|yi, xi, g)P (ri|yi, xi, g, gfi )P (g|yi, xi, g
f
i )

P (ri|yi, xi, gfi )

=−
∑
g

diP (R = 1|yi, xi, g)P (ri|yi, xi, g, gfi )P (g, xi, g
f
i |yi)

P (ri|yi, xi, gfi )
∑
g
P (g, xi, g

f
i |yi)

=−
∑
g

diP (R = 1|yi, xi, g)P (ri|yi, xi, g, gfi )P (g, xi, g
f
i |yi)∑

g
P (ri, g|yi, xi, gfi )

∑
g
P (g, xi, g

f
i |yi)

=−
∑
g

diP (R = 1|yi, xi, g)P (ri|yi, xi, g, gfi )P (g, xi, g
f
i |yi)∑

g
{P (ri|g, yi, xi, gfi )P (g|yi, xi, g

f
i )}

∑
g
P (g, xi, g

f
i |yi)

=−
∑
g

diP (R = 1|yi, xi, g)P (ri|yi, xi, g, gfi )P (g, xi, g
f
i |yi)∑

g
{P (ri|yi, xi, g, gfi )

P (xi,g,g
f
i |yi)∑

g
P (xi,g,g

f
i |yi)
}
∑
g
P (xi, g, g

f
i |yi)

=−
∑
g

diP (R = 1|yi, xi, g)P (ri|yi, xi, g, gfi )P (g, xi, g
f
i |yi)∑

g
{P (ri|yi, xi, g, gfi )P (xi, g, g

f
i |yi)

Following the result of Satten and Kupper (1993) for a rare outcome to relate P (X,G,Gf |Y = 1)

and P (X,G,Gf |Y = 0), i.e.,

P (x, g, gf |Y = 1) =
efβ(x,g)P (x, g, gf |Y = 0)∑

x

∑
g
efβ(x,g)P (x, g, gf |Y = 0)

,
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the conditional expectation score function can be further derived as

−E(diP (R = 1|yi, xi, gi)|obi)

≈ −
∑
g

diP (R = 1|yi, xi, g)P (ri|yi, xi, g, gfi )eyifβ(xi,g)P (xi, g, g
f
i |Y = 0)∑

g
P (ri|yi, xi, g, gfi )eyifβ(xi,g)P (xi, g, g

f
i |Y = 0)

= −
∑
g

diP (R = 1|yi, xi, g)P (R = 0|yi, xi, g)eyifβ(xi,g)δxigP (g, g
f
i |Y = 0)∑

g
P (R = 0|yi, xi, g)eyifβ(xi,g)δxigP (g, g

f
i |Y = 0)

≈ −
∑
g

diP (R = 1|yi, xi, g)P (R = 0|yi, xi, g)eyifβ(xi,g)δxigPθ(g, g
f
i )∑

g
P (R = 0|yi, xi, g)eyifβ(xi,g)δxigPθ(g, g

f
i )

Note that under the assumption of a rare disease, P (g, gfi |Y = 0) = Pθ(g, g
f
i ). Conditional on the

disease status Y , covariate X, and genotype information G, one’s missingness does not depend

on one’s family member’s genotype Gf , i.e. P (ri|yi, xi, g, gfi ) = P (ri|yi, xi, g). Conditional on

genotype G, distribution of covariate X among controls does not depend on Gf , i.e., P (x|g, gf , Y =

0) = P (x|g, Y = 0) = δxg.

B.2. Asymptotic Properties

In this section, we derive the asymptotic property of the family-supplemented weighted empirical

likelihood method. Let p1 and p0 denote the proportion of cases and controls in the sample. First we

applied Taylor expansion to the score function of the association model around the true parameter

(ηT , δTxg,α
T )T , i.e.,

0 =

N∑
i=1

Ri
πi(α̂)

Ui(η̂, δ̂xg(α̂))

0 u
1

N

N∑
i=1

Ri
πi(α)

Ui(η, δxg) +
1

N

N∑
i=1

Ri
πi(α)

∂Ui(η, δxg)

∂η
(η̂ − η)

+
1

N

N∑
i=1

Ri
πi(α)

∂Ui(η, δxg)

∂δxg
(δ̂xg(α)− δxg)

+
1

N

N∑
i=1

{
Ri

πi(α)

∂Ui(η, δxg)

∂δxg

∂δ̂xg(α)

∂α
− Ui(η, δxg)

Ri
π2
i (α)

∂πi(α)

∂α

}
(α̂−α) (B.1)
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In equation (B.1),

1

N

N∑
i=1

Ri
πi(α)

∂Ui(η, δxg)

∂η
=

1

N

∑
y

Ny∑
i=1

Ri
πi(α)

{
∂Ui(η, δxg)

∂η

}

=
∑
y

NyN 1

Ny

Ny∑
i=1

Ri
πi(α)

{
∂Ui(η, δxg)

∂η

}
P−→
∑
y

pyEy

{
∂Ui(η, δxg)

∂η

}
= E{y,x,g}

{
∂Ui(η, δxg)

∂η

}
=: c1,

where Ey is the expectation taken with respect to P (R,X,G|Y ) and E{y,x,g} is taken with respect

to P (Y,X,G) in the sample.

Similarly,

1

N

N∑
i=1

Ri
πi(α)

∂Ui(η, δxg)

∂δxg

P−→ E{y,x,g}

{
∂Ui(η, δxg)

∂δxg

}
=: c2

1

N

N∑
i=1

Ri
πi(α)

∂Ui(η, δxg)

∂δxg

∂δ̂xg(α)

∂α

P−→ E{y,x,g}

{
∂Ui(η, δxg)

∂δxg

∂δ̂xg(α)

∂α

}
=: c31

1

N

N∑
i=1

U(η, δxg)
Ri

π2
i (α)

∂πi(α)

∂α

P−→ E{y,x,g}

{
U(η, δxg)

1

πi(α)

∂πi(α)

∂α

}
= E{y,x,g}

{
U(η, δxg)

∂logπi(α)
∂α

}
=: c32

We denote c3 = c31 − c32 and therefore,

0 =
1

N

N∑
i=1

Ri
πi(α)

Ui(η, δxg) + c1(η̂ − η) + c2(δ̂xg(α)− δxg) + c3(α̂−α) (B.2)

Then we performed Taylor expansion on the score function of the missingness model around the
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true parameter (ηT , δTxg,αT )T , i.e.,

0 =

N∑
i=1

Usi (α̂, δ̂xg(α̂), η̂)

0 u
1

N

N∑
i=1

Usi (α, δxg,η) +
1

N

N∑
i=1

∂Usi (α, δxg,η)

∂η
(η̂ − η)

+
1

N

N∑
i=1

∂Usi (α, δxg,η)

∂δxg
(δ̂xg(α)− δxg)

+
1

N

N∑
i=1

(
∂Usi (α, δxg,η)

∂α
+
∂Usi (α, δxg,η)

∂δxg

∂δ̂xg(α)

∂α

)
(α̂−α) (B.3)

In equation (B.3),

1

N

N∑
i=1

∂Usi (α, δxg,η)

∂η

P−→ E

{
∂Usi (α, δxg,η)

∂η

}
=: d1,

1

N

N∑
i=1

∂Usi (α, δxg,η)

∂δxg

P−→ E

{
∂Usi (α, δxg,η)

∂δxg

}
=: d2,

1

N

N∑
i=1

∂Usi (α, δxg,η)

∂α

P−→ E

{
∂Usi (α, δxg,η)

∂α

}
=: d31,

1

N

N∑
i=1

∂Usi (α, δxg,η)

∂δxg

∂δ̂xg(α)

∂α

P−→ E

{
∂Usi (α, δxg,η)

∂δxg

∂δ̂xg(α)

∂α

}
=: d32,

where these expectations are taken with respect to the joint distribution P (R, Y,X,G,Gf ) in the

sample. Let d3 = d31 + d32 and equation (B.3) can be written as below

0 =
1

N

N∑
i=1

Usi (α, δxg,η) + d1(η̂ − η) + d2(δ̂xg(α)− δxg) + d3(α̂−α) (B.4)
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The nonparametric estimator of each element δxg in the vector δxg is

δ̂xg(α) =
1

N0

N0∑
i=1

I(Ri = 1, Xi = x,Gi = g)

πα(1, 0, xi, gi)
1
N0

∑N0

i=1
I(Ri=1,Gi=g)
πα(1,0,xi,gi)

,

where

πα(1, 0, xi, gi)
1

N0

N0∑
i=1

I(Ri = 1, Gi = g)

πα(1, 0, xi, gi)

P−→ πα(1, 0, xi, gi)E {I(Gi = g)|Y = 0}

= πα(1, 0, xi, gi)P (G = g|Y = 0) =: Ci.

Therefore,

δ̂xg(α)− δxg(α) =
1

N0

N0∑
i=1

{
I(Ri = 1, Xi = x,Gi = g)

Ci
− δxg

}
=:

1

N0

N0∑
i=1

fxgi

Let fi denote the vector of {fxgi , x = 1, 2, ..., J − 1 and g = 0, 1, 2} and thus

δ̂xg(α)− δxg =
1

N0

N0∑
i=1

fi (B.5)

Then we substitute the expression of δ̂xg(α)−δxg in equation (B.5) into equation (B.2) and equation

(B.4), i.e.,

M

 η̂ − η
α̂−α

+

 1
N

∑N
i=1Ai + c2 · 1

N0

∑N0

i=1 fi

1
N

∑N
i=1Bi + d2 · 1

N0

∑N0

i=1 fi

 =

0
0

 ,
where

M =

c1 c3

d1 d3

 ,
Ai =

Ri
πi(α)

Ui(η, δxg),

Bi = Usi (α, δxg,η).
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The influence functions of (ηT ,αT )T can be written out as

√
N

 η̂ − η
α̂−α

 = −M−1

∑y
1√
Ny

∑Ny
i=1 p

1/2
y Ai +

1√
N0

∑N0

i=1 p
−1/2
0 c2fi

1√
N

∑N
i=1Bi +

1√
N0

∑N0

i=1 p
−1/2
0 d2fi

 .
Finally under regularity conditions, (η̂T , α̂T )T is consistently and asymptotically normally distributed

as

√
N

 η̂ − η
α̂−α

 D−→ N


0
0

 ,M−1V (M−1)T

 .

The covariance matrix V is defined

V =

V11 V12

V T12 V22

 ,
where

V11 = V(Ai) + p−10 Vy0(c2fi) + Covy0(Ai, c2fi) + Covy0(c2fi, Ai),

V22 = V(Bi) + p−10 Vy0(d2fi) + Covy0(Bi, d2fi) + Covy0(d2fi, Bi),

V12 = Cov(Ai, Bi) + Covy0(c2fi, Bi) + Covy0(Ai, d2fi) + p−10 Covy0(c2fi, d2fi),

and Vy0 and Covy0 are variance and covariance taken conditional on Y = 0, and Vy1 and Covy1 are

taken conditional on Y = 1.
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APPENDIX C

ADDITIONAL SIMULATION RESULTS FOR CHAPTER 2 AND 3

In this APPENDIX, we present additional simulation studies in Chapter 2 and 3. Results under a

small cohort scenario of size 3000, are presented in table C.1 - C.6, and results under a big cohort

scenario of size 2× 104 are shown in table C.7 - C.14.
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Table C.4: Asymptotic variance of β̂ under the balanced goodness-of-fit design (BGOF) and its
efficiency relative to the goodness-of-fit based design (GOF), the balanced design (BD) and the
case-control design (CC). The phase I cohort size was 3000. The prevalence was 0.05 and 0.10,
the correlation parameter ρ for phase I variables was 0 and 0.3, and the true value of β4 was 0.5,
0.7, and 0.9. The correlation between phase II variable X4 and phase I variable X1, X2, and X3

are 0.6, 0.5, and 0.3, respectively. X3 was the stratifying variable in BGOF.

P (Y = 1) ρ β4 Var(β̂4) REaof BGOF vs. Var(β̂1) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0 0.5 0.042 1.00 1.22 1.23 0.36 1.00 1.15 1.16
0.7 0.043 1.01 1.28 1.29 0.37 1.01 1.18 1.18
0.9 0.046 1.01 1.34 1.35 0.40 1.01 1.19 1.20

0.3 0.5 0.029 1.00 1.21 1.21 0.30 1.00 1.10 1.11
0.7 0.030 1.01 1.24 1.25 0.32 1.00 1.10 1.11
0.9 0.034 1.01 1.28 1.29 0.35 1.01 1.10 1.10

0.10 0 0.5 0.020 1.01 1.20 1.22 0.17 1.01 1.15 1.16
0.7 0.021 1.01 1.24 1.25 0.18 1.01 1.17 1.17
0.9 0.023 1.01 1.29 1.29 0.19 1.01 1.18 1.19

0.3 0.5 0.014 1.00 1.18 1.18 0.14 1.00 1.10 1.11
0.7 0.015 1.00 1.21 1.21 0.15 1.00 1.11 1.11
0.9 0.017 1.01 1.24 1.24 0.16 1.00 1.11 1.11

Var(β̂2) RE of BGOF vs. Var(β̂3) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0 0.5 0.026 1.01 1.24 1.26 0.070 1.35 1.10 1.52
0.7 0.026 1.01 1.30 1.31 0.068 1.33 1.19 1.62
0.9 0.027 1.02 1.35 1.36 0.069 1.32 1.28 1.72

0.3 0.5 0.021 1.00 1.24 1.24 0.058 1.37 1.10 1.65
0.7 0.022 1.01 1.28 1.29 0.058 1.35 1.17 1.71
0.9 0.023 1.01 1.31 1.33 0.060 1.33 1.25 1.78

0.10 0 0.5 0.013 1.01 1.21 1.21 0.033 1.33 1.10 1.51
0.7 0.013 1.02 1.24 1.24 0.033 1.32 1.16 1.57
0.9 0.014 1.03 1.27 1.27 0.034 1.30 1.23 1.64

0.3 0.5 0.010 1.01 1.19 1.20 0.029 1.36 1.09 1.60
0.7 0.011 1.02 1.21 1.22 0.029 1.34 1.15 1.65
0.9 0.012 1.02 1.24 1.24 0.030 1.33 1.20 1.69

a Relative Efficiency (RE): calculated as the asymptotic variance under each design over
that of BGOF
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Table C.5: Asymptotic variance of β̂ in the balanced goodness-of-fit design (BGOF) and its ef-
ficiency relative to the goodness-of-fit based design (GOF), the balanced design (BD) and the
case-control design (CC). The phase I cohort size was 3000. The prevalence was 0.05 and 0.10,
the correlation parameter ρ for phase I variables was 0 and 0.3, and the true value of β4 was 0.5,
0.7, and 0.9. The correlation between phase II and phase I variables was 0. X1 was the stratifying
variable in BGOF.

P (Y = 1) ρ β4 Var(β̂4) REaof BGOF vs. Var(β̂1) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0 0.5 0.016 1.00 1.10 1.11 0.143 1.27 0.99 1.40
0.7 0.018 1.00 1.09 1.10 0.153 1.25 0.98 1.37
0.9 0.021 1.00 1.08 1.08 0.164 1.22 0.99 1.33

0.3 0.5 0.016 1.00 1.08 1.09 0.165 1.24 0.99 1.33
0.7 0.018 1.00 1.07 1.08 0.176 1.22 0.99 1.31
0.9 0.021 1.01 1.07 1.08 0.192 1.20 0.99 1.28

0.10 0 0.5 0.008 1.00 1.09 1.10 0.070 1.27 1.00 1.39
0.7 0.009 1.00 1.08 1.09 0.074 1.25 1.00 1.37
0.9 0.010 1.00 1.08 1.08 0.080 1.23 1.00 1.34

0.3 0.5 0.008 1.00 1.08 1.09 0.080 1.23 0.99 1.33
0.7 0.009 1.00 1.07 1.08 0.086 1.22 1.00 1.31
0.9 0.010 1.00 1.06 1.07 0.092 1.20 0.99 1.29

Var(β̂2) RE of BGOF vs. Var(β̂3) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0 0.5 0.016 1.00 1.18 1.18 0.100 1.00 0.93 0.93
0.7 0.016 1.01 1.17 1.18 0.104 1.00 0.93 0.94
0.9 0.017 1.00 1.16 1.16 0.109 1.00 0.93 0.93

0.3 0.5 0.017 1.00 1.15 1.16 0.086 1.01 1.02 1.04
0.7 0.018 1.00 1.15 1.16 0.092 1.00 1.01 1.04
0.9 0.019 1.01 1.14 1.15 0.098 1.00 1.01 1.03

0.10 0 0.5 0.008 1.01 1.16 1.16 0.047 1.00 0.94 0.95
0.7 0.008 1.00 1.15 1.15 0.049 1.00 0.94 0.95
0.9 0.009 1.00 1.15 1.14 0.051 1.00 0.94 0.95

0.3 0.5 0.009 1.00 1.14 1.14 0.042 1.01 1.02 1.05
0.7 0.009 1.00 1.13 1.14 0.044 1.00 1.02 1.05
0.9 0.010 1.00 1.12 1.13 0.047 1.00 1.01 1.04

a Relative Efficiency (RE): calculated as the asymptotic variance under each design over
that of BGOF
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Table C.6: Asymptotic variance of β̂ in balanced goodness-of-fit design (BGOF) and its efficiency
relative to the goodness-of-fit based design (GOF), the balanced design (BD) and the case-control
design (CC). The phase I cohort size was 3000. The prevalence was 0.05 and 0.10, the correlation
parameter ρ for phase I variables was 0 and 0.3, and the true value of β4 was 0.5, 0.7, and 0.9. The
correlation between phase II and phase I variables was 0. X3 was the stratifying variable in BGOF.

P (Y = 1) ρ β4 Var(β̂4) REaof BGOF vs. Var(β̂1) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0.0 0.5 0.016 1.01 1.09 1.11 0.180 1.00 1.08 1.11
0.7 0.018 1.00 1.07 1.10 0.190 1.00 1.07 1.10
0.9 0.021 1.00 1.07 1.07 0.201 1.00 1.07 1.09

0.3 0.5 0.016 1.01 1.09 1.10 0.202 1.01 1.07 1.08
0.7 0.018 1.00 1.07 1.08 0.215 1.00 1.06 1.08
0.9 0.021 1.01 1.07 1.08 0.230 1.00 1.06 1.07

0.10 0.0 0.5 0.008 1.00 1.08 1.10 0.088 1.00 1.08 1.10
0.7 0.009 1.00 1.07 1.09 0.092 1.00 1.08 1.10
0.9 0.010 1.00 1.06 1.08 0.098 1.00 1.07 1.09

0.3 0.5 0.008 1.00 1.08 1.09 0.099 1.00 1.07 1.08
0.7 0.009 1.00 1.07 1.08 0.104 1.00 1.07 1.08
0.9 0.010 1.00 1.06 1.07 0.110 1.00 1.06 1.07

Var(β̂2) RE of BGOF vs. Var(β̂3) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0.0 0.5 0.016 1.00 1.16 1.19 0.072 1.39 0.91 1.29
0.7 0.016 1.00 1.15 1.17 0.078 1.35 0.91 1.26
0.9 0.017 1.00 1.14 1.16 0.083 1.32 0.92 1.22

0.3 0.5 0.017 1.01 1.16 1.16 0.064 1.35 0.93 1.40
0.7 0.018 1.00 1.15 1.16 0.070 1.32 0.94 1.37
0.9 0.020 1.00 1.15 1.15 0.076 1.30 0.94 1.34

0.10 0.0 0.5 0.008 1.00 1.14 1.16 0.034 1.37 0.92 1.30
0.7 0.008 1.00 1.13 1.16 0.036 1.35 0.93 1.28
0.9 0.009 1.00 1.12 1.14 0.039 1.31 0.93 1.24

0.3 0.5 0.009 1.01 1.14 1.15 0.031 1.35 0.96 1.40
0.7 0.009 1.00 1.13 1.14 0.034 1.32 0.96 1.37
0.9 0.010 1.00 1.12 1.13 0.036 1.29 0.96 1.34

a Relative Efficiency (RE): calculated as the asymptotic variance under each design over
that of BGOF
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Table C.11: Asymptotic variance of β̂ under the balanced goodness-of-fit design (BGOF) and its
efficiency relative to the goodness-of-fit based design (GOF), the balanced design (BD) and the
case-control design (CC). The phase I cohort size was 2× 104. The prevalence was 0.05 and 0.10,
the correlation parameter ρ for phase I variables was 0 and 0.3, and the true value of β4 was 0.5,
0.7, and 0.9. The correlation between phase II variable X4 and phase I variable X1, X2, and X3

are 0.6, 0.5, and 0.3, respectively. X1 was the stratifying variable in BGOF.

P (Y = 1) ρ β4 Var(β̂4) RE of BGOF vs. Var(β̂1) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0 0.5 0.020 1.00 1.20 1.23 0.12 1.41 1.15 1.65
0.7 0.021 1.00 1.24 1.28 0.13 1.42 1.19 1.67
0.9 0.022 1.00 1.28 1.34 0.14 1.42 1.22 1.70

0.3 0.5 0.014 1.00 1.15 1.20 0.09 1.57 1.10 1.74
0.7 0.015 1.00 1.17 1.23 0.10 1.58 1.12 1.74
0.9 0.016 1.01 1.19 1.28 0.10 1.58 1.14 1.73

0.10 0 0.5 0.020 1.01 1.19 1.22 0.11 1.55 1.21 1.81
0.7 0.021 1.00 1.22 1.26 0.12 1.54 1.24 1.82
0.9 0.023 1.00 1.26 1.31 0.12 1.54 1.28 1.84

0.3 0.5 0.014 1.00 1.15 1.19 0.08 1.79 1.18 2.00
0.7 0.015 1.01 1.17 1.22 0.08 1.80 1.22 2.00
0.9 0.016 1.01 1.19 1.26 0.09 1.79 1.24 1.99

Var(β̂2) RE of BGOF vs. Var(β̂3) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0 0.5 0.045 1.00 1.11 1.14 0.045 1.00 1.11 1.14
0.7 0.044 1.00 1.18 1.22 0.044 1.00 1.18 1.22
0.9 0.043 1.00 1.25 1.31 0.043 1.00 1.25 1.31

0.3 0.5 0.040 0.94 1.11 1.12 0.040 0.94 1.11 1.12
0.7 0.041 0.93 1.15 1.17 0.041 0.93 1.15 1.17
0.9 0.041 0.92 1.19 1.22 0.041 0.92 1.19 1.22

0.10 0 0.5 0.043 1.00 1.13 1.15 0.043 1.00 1.13 1.15
0.7 0.043 1.00 1.18 1.22 0.043 1.00 1.18 1.22
0.9 0.043 1.00 1.23 1.29 0.043 1.00 1.23 1.29

0.3 0.5 0.040 0.95 1.12 1.13 0.040 0.95 1.12 1.13
0.7 0.040 0.94 1.15 1.18 0.040 0.94 1.15 1.18
0.9 0.041 0.94 1.18 1.21 0.041 0.94 1.18 1.21
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Table C.12: Asymptotic variance of β̂ under the balanced goodness-of-fit design (BGOF) and its
efficiency relative to the goodness-of-fit based design (GOF), the balanced design (BD) and the
case-control design (CC). The phase I cohort size was 2× 104. The prevalence was 0.05 and 0.10,
the correlation parameter ρ for phase I variables was 0 and 0.3, and the true value of β4 was 0.5,
0.7, and 0.9. The correlation between phase II variable X4 and phase I variable X1, X2, and X3

are 0.6, 0.5, and 0.3, respectively. X3 was the stratifying variable in BGOF.

P (Y = 1) ρ β4 Var(β̂4) RE of BGOF vs. Var(β̂1) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0 0.5 0.020 0.99 1.22 1.22 0.170 0.99 1.15 1.16
0.7 0.021 1.00 1.28 1.27 0.180 1.00 1.18 1.18
0.9 0.022 1.00 1.33 1.33 0.200 1.00 1.19 1.19

0.3 0.5 0.014 1.01 1.20 1.20 0.150 0.96 1.09 1.06
0.7 0.015 1.01 1.23 1.24 0.160 0.96 1.08 1.05
0.9 0.016 1.01 1.27 1.28 0.170 0.96 1.08 1.05

0.10 0 0.5 0.020 0.99 1.21 1.21 0.170 0.99 1.16 1.16
0.7 0.021 0.99 1.27 1.26 0.180 0.99 1.18 1.18
0.9 0.023 1.00 1.31 1.30 0.190 1.00 1.20 1.19

0.3 0.5 0.014 1.01 1.19 1.19 0.140 0.97 1.10 1.08
0.7 0.015 1.00 1.22 1.22 0.150 0.96 1.10 1.08
0.9 0.016 1.01 1.25 1.25 0.160 0.96 1.11 1.08

Var(β̂2) RE of BGOF vs. Var(β̂3) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0 0.5 0.013 1.00 1.22 1.23 0.019 2.40 1.02 2.73
0.7 0.013 1.00 1.27 1.26 0.019 2.29 1.15 2.80
0.9 0.014 1.00 1.31 1.31 0.020 2.17 1.26 2.86

0.3 0.5 0.010 1.00 1.21 1.22 0.015 2.46 1.07 2.95
0.7 0.011 1.00 1.24 1.25 0.016 2.34 1.18 2.95
0.9 0.011 1.01 1.28 1.28 0.017 2.23 1.29 2.96

0.10 0 0.5 0.013 1.00 1.20 1.20 0.013 3.40 1.25 3.93
0.7 0.013 1.00 1.23 1.23 0.013 3.20 1.40 3.93
0.9 0.014 1.00 1.26 1.25 0.014 2.98 1.52 3.85

0.3 0.5 0.010 1.01 1.19 1.20 0.011 3.58 1.30 4.24
0.7 0.011 1.00 1.21 1.22 0.011 3.30 1.42 4.11
0.9 0.011 1.01 1.23 1.23 0.013 3.04 1.52 3.94
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Table C.13: Asymptotic variance of β̂ in balanced goodness-of-fit design (BGOF) and its efficiency
relative to case-control designs (CC), balanced design (BD), and goodness-of-fit design (GOF).
The phase I cohort size is 2× 104. The prevalence is 0.05 and 0.10, the correlation ρ among phase
I variables is 0 and 0.3, and the true value of β4 is 0.5, 0.7, and 0.9. The correlation between phase
II variable X4 and phase I variable X1, X2, and X3 is 0. X1 is the stratifying variable in BGOF.

P (Y = 1) ρ β4 Var(β̂4) RE of BGOF vs. Var(β̂1) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0 0.5 0.008 1.01 1.10 1.11 0.046 1.91 0.97 2.10
0.7 0.009 1.01 1.09 1.09 0.051 1.82 0.98 2.00
0.9 0.010 1.01 1.09 1.09 0.057 1.75 0.98 1.90

0.3 0.5 0.008 1.00 1.08 1.09 0.056 1.78 0.97 1.92
0.7 0.009 1.00 1.07 1.08 0.061 1.72 0.98 1.84
0.9 0.010 1.00 1.07 1.08 0.068 1.64 0.98 1.76

0.10 0 0.5 0.008 1.00 1.10 1.10 0.037 2.38 1.09 2.61
0.7 0.009 1.00 1.09 1.09 0.041 2.23 1.07 2.43
0.9 0.010 1.00 1.08 1.08 0.047 2.09 1.06 2.27

0.3 0.5 0.008 1.00 1.07 1.09 0.046 2.15 1.07 2.33
0.7 0.009 1.01 1.07 1.08 0.051 2.03 1.06 2.19
0.9 0.010 1.01 1.05 1.06 0.058 1.91 1.04 2.03

Var(β̂2) RE of BGOF vs. Var(β̂3) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0 0.5 0.008 1.00 1.16 1.17 0.047 1.00 0.94 0.94
0.7 0.008 1.00 1.16 1.16 0.049 1.01 0.94 0.95
0.9 0.008 1.01 1.15 1.16 0.053 1.00 0.94 0.94

0.3 0.5 0.008 1.00 1.14 1.15 0.044 0.97 1.01 1.01
0.7 0.009 1.00 1.14 1.14 0.046 0.96 1.01 1.00
0.9 0.010 1.00 1.12 1.14 0.049 0.97 1.01 1.00

0.10 0 0.5 0.008 1.00 1.14 1.15 0.045 1.00 0.96 0.96
0.7 0.008 1.00 1.14 1.15 0.047 1.00 0.96 0.97
0.9 0.009 1.01 1.13 1.14 0.050 1.01 0.97 0.97

0.3 0.5 0.009 1.01 1.13 1.14 0.043 0.97 1.03 1.02
0.7 0.009 1.01 1.12 1.13 0.045 0.97 1.02 1.02
0.9 0.010 1.00 1.11 1.11 0.048 0.98 1.02 1.01
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Table C.14: Asymptotic variance of β̂ in balanced goodness-of-fit design (BGOF) and its efficiency
relative to case-control designs (CC), balanced design (BD), and goodness-of-fit design (GOF).
The phase I cohort size is 2× 104. The prevalence is 0.05 and 0.10, the correlation ρ among phase
I variables is 0 and 0.3, and the true value of β4 is 0.5, 0.7, and 0.9. The correlation between phase
II variable X4 and phase I variable X1, X2, and X3 is 0. X3 is the stratifying variable in BGOF.

P (Y = 1) ρ β4 Var(β̂4) RE of BGOF vs. Var(β̂1) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0.0 0.5 0.008 1.04 1.08 1.11 0.09 1.03 1.08 1.10
0.7 0.009 1.03 1.08 1.10 0.09 1.03 1.08 1.10
0.9 0.010 1.03 1.06 1.09 0.10 1.03 1.08 1.09

0.3 0.5 0.008 1.01 1.09 1.10 0.10 0.97 1.06 1.05
0.7 0.009 1.01 1.08 1.09 0.11 0.96 1.05 1.03
0.9 0.010 1.00 1.07 1.08 0.12 0.97 1.05 1.03

0.10 0.0 0.5 0.008 1.02 1.08 1.10 0.09 1.02 1.08 1.10
0.7 0.009 1.03 1.07 1.09 0.09 1.02 1.08 1.09
0.9 0.010 1.02 1.06 1.09 0.10 1.01 1.07 1.09

0.3 0.5 0.008 1.00 1.08 1.09 0.10 0.97 1.06 1.05
0.7 0.009 1.00 1.07 1.08 0.11 0.97 1.06 1.04
0.9 0.010 1.01 1.06 1.06 0.11 0.97 1.05 1.03

Var(β̂2) RE of BGOF vs. Var(β̂3) RE of BGOF vs.
GOF BD CC GOF BD CC

0.05 0.0 0.5 0.007 1.04 1.15 1.18 0.014 3.66 0.85 3.31
0.7 0.008 1.03 1.15 1.18 0.015 3.44 0.87 3.12
0.9 0.008 1.03 1.15 1.18 0.017 3.25 0.89 2.93

0.3 0.5 0.008 1.01 1.15 1.15 0.017 2.52 0.84 2.63
0.7 0.009 1.00 1.15 1.14 0.019 2.39 0.84 2.49
0.9 0.010 1.00 1.13 1.14 0.021 2.28 0.86 2.35

0.10 0.0 0.5 0.008 1.03 1.15 1.17 0.008 6.07 1.03 5.66
0.7 0.008 1.03 1.14 1.16 0.009 5.38 1.03 4.96
0.9 0.009 1.02 1.13 1.15 0.011 4.68 1.02 4.36

0.3 0.5 0.009 1.01 1.13 1.14 0.011 3.65 0.97 3.83
0.7 0.009 1.00 1.12 1.13 0.013 3.32 0.97 3.47
0.9 0.010 1.00 1.11 1.11 0.015 3.06 0.98 3.17
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APPENDIX D

ADDITIONAL SIMULATION RESULTS FOR CHAPTER 4

Table D.1: The estimated log OR (α) in the missingness model and the estimated MAF (θ) us-
ing the family-supplemented weighted empirical likelihood method. The prevalence is 0.03, geno-
type availability is 0.8 and 0.6, the true value of β2 is 0.182 and 0.405, and MAF is 0.2. The true
values of (α3, α4, α5) in the three missingness models are: weak = (0.182, 0.405, 0.405), strong
= (0.405, 0.405, 0.405), and No interaction (NI) = (0.405, 0, 0). The mean asymptotic standard error
(“asym”) and empirical standard error (“emp”) of α̂ were calculated based on 1000 simulations.

P (R = 1) eβ2 missing α̂0 α̂1 α̂2

0.8 1.2 weak 1.213 (0.115/0.114) -0.513 (0.162/0.165) 0.180 (0.119/0.116)
strong 1.123 (0.113/0.113) -0.506 (0.160/0.156) 0.192 (0.119/0.116)

NI 1.139 (0.113/0.113) -0.512 (0.156/0.162) 0.190 (0.120/0.117)

1.5 weak 1.211 (0.114/0.115) -0.509 (0.165/0.162) 0.180 (0.119/0.118)
strong 1.138 (0.113/0.117) -0.519 (0.163/0.165) 0.175 (0.119/0.119)

NI 1.140 (0.113/0.116) -0.508 (0.158/0.156) 0.186 (0.120/0.120)

0.6 1.2 weak 0.224 (0.092/0.094) -0.517 (0.136/0.136) 0.182 (0.097/0.097)
strong 0.135 (0.092/0.094) -0.509 (0.137/0.140) 0.188 (0.098/0.097)

NI 0.160 (0.092/0.095) -0.514 (0.133/0.138) 0.180 (0.098/0.097)

1.5 weak 0.223 (0.092/0.093) -0.511 (0.138 /0.141) 0.179 (0.097/0.098)
strong 0.144 (0.092/0.092) -0.513 (0.139/0.133) 0.180 (0.098/0.097)

NI 0.159 (0.092/0.094) -0.506 (0.135/0.137) 0.187 (0.098/0.099)

P (R = 1) eβ2 missing α̂3 α̂4 α̂5

0.8 1.2 weak 0.194 (0.152/0.158) 0.410 (0.167/0.169) 0.400 (0.220/0.220)
strong 0.423 (0.161/0.161) 0.401 (0.169/0.162) 0.408 (0.234/0.222)

NI 0.414 (0.162/0.166) -0.007 (0.161/0.162) 0.0001 (0.208/0.208)

1.5 weak 0.189 (0.152/0.150) 0.407 (0.168/0.164) 0.406 (0.215/0.213)
strong 0.408 (0.161/0.164) 0.418 (0.170/0.163) 0.407 (0.228/0.230)

NI 0.413 (0.162/0.164) -0.008 (0.161/0.161) -0.003 (0.204/0.198)

0.6 1.2 weak 0.181 (0.113/ 0.112) 0.406 (0.140/0.138) 0.414 (0.164/0.156)
strong 0.411 (0.117/0.120) 0.404 (0.142/0.141) 0.412 (0.171/0.168)

NI 0.409 (0.118/0.119) 0.004 (0.139/0.139) 0.003 (0.157/0.156)

1.5 weak 0.188 (0.113/0.115) 0.408 (0.140/0.145) 0.400 (0.160/0.158)
strong 0.406 (0.118/0.118) 0.408 (0.142/0.137) 0.404 (0.167/0.166)

NI 0.408 (0.118/0.120) -0.008 (0.138/0.144) -0.005 (0.154/0.149)
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Table D.3: The estimated log OR (α) in the missingness model and the estimated MAF (θ) us-
ing the family-supplemented weighted empirical likelihood method. The prevalence is 0.03, geno-
type availability is 0.8 and 0.6, the true value of β2 is 0.182 and 0.405, and MAF is 0.5. The true
values of (α3, α4, α5) in the three missingness models are: weak = (0.182, 0.405, 0.405), strong
= (0.405, 0.405, 0.405), and No interaction (NI) = (0.405, 0, 0). The mean asymptotic standard error
(“asym”) and empirical standard error (“emp”) of α̂ were calculated based on 1000 simulations.

P (R = 1) eβ2 missing α̂0 α̂1 α̂2

0.8 1.2 weak 1.097 (0.144/0.148) -0.515 (0.211/0.212) 0.180 (0.113/0.111)
strong 0.892 (0.140/0.143) -0.512 (0.207/0.201) 0.182 (0.114/0.113)

NI 0.926 (0.142/0.148) -0.504 (0.195/0.200) 0.187 (0.116/0.113)

1.5 weak 1.090 (0.144/0.149) -0.514 (0.220/0.223) 0.184 (0.113/0.108)
strong 0.891 (0.140/0.146) -0.508 (0.216/0.221) 0.181 (0.114/0.116)

NI 0.931 (0.142/0.149) -0.506 (0.201/0.210) 0.184 (0.116/0.119)

0.6 1.2 weak 0.120 (0.114/0.120) -0.511 (0.171/0.172) 0.183 (0.093/ 0.093)
strong -0.098 (0.113/0.114) -0.510 (0.172/0.171) 0.182 (0.094/0.093)

NI -0.095 (0.114/0.115) -0.502 (0.164/0.164) 0.188 (0.094/0.093)

1.5 weak 0.119 (0.114/ 0.111) -0.510 (0.177/0.173) 0.185 (0.093/0.091)
strong -0.096 (0.113/0.115) -0.517 (0.178/0.178) 0.181 (0.094/0.093)

NI -0.090 (0.113/0.113) -0.504 (0.169/0.166) 0.185 (0.094/0.093)

P (R = 1) eβ2 missing α̂3 α̂4 α̂5

0.8 1.2 weak 0.179 (0.120/0.122) 0.415 (0.165/0.167) 0.403 (0.179/0.175)
strong 0.404 (0.121/0.123) 0.407 (0.168/0.165) 0.407 (0.183/0.175)

NI 0.410 (0.124/0.131) 0.001 (0.155/0.154) -0.007 (0.163/0.168)

1.5 weak 0.184 (0.120/0.123) 0.409 (0.167/0.164) 0.407 (0.181/0.176)
strong 0.408 (0.122/0.127) 0.405 (0.169/0.172) 0.405 (0.185/0.187)

NI 0.409 (0.124/0.126) 0.001 (0.156/0.159) -0.005 (0.164/0.167)

0.6 1.2 weak 0.182 (0.090/0.094) 0.406 (0.136/0.135) 0.405 (0.135/0.133)
strong 0.404 (0.091/0.094) 0.408 (0.139/0.135) 0.407 (0.139/0.139)

NI 0.408 (0.092/0.094) -0.006 (0.133/0.133) -0.004 (0.127/0.126)

1.5 weak 0.182 (0.090/0.090) 0.400 (0.136/0.138) 0.409 (0.136/0.131)
strong 0.402 (0.092/0.093) 0.407 (0.139/0.141) 0.413 (0.140/0.138)

NI 0.405 (0.092/0.092) -0.007 (0.133/0.128) -0.004 (0.127/0.125)
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Table D.4: The mean bias in and the mean square error (MSE) of estimated log OR of covariate
X (β1) and genotype G (β2) in the association model and the estimated MAF (θ) using the family-
supplemented weighted empirical likelihood method (FS-WEL) and the naive method based on
1000 simulations. The prevalence is 0.03, genotype availability is 0.8 and 0.6, the true value of β2 is
0.182 and 0.405, and MAF is 0.5. The true values of (α3, α4, α5) in the three missingness models are:
weak = (0.182, 0.405, 0.405), strong = (0.405, 0.405, 0.405), and No interaction (NI) = (0.405, 0, 0).
In each of the 12 settings, true values and estimates of coefficients β1, β2 and θ are presented in
this order in the magnitude of 10−3.

Model Naive Method FS-WPL Method

P (R = 1) eβ2 Missing True Biasa MSE Bias MSE

0.8 1.2 weak 182 72.324 10.124 0.033 3.739
182 67.926 7.017 1.042 2.566
500 6.948 0.128 -1.725 0.080

strong 182 67.882 9.920 0.288 4.083
182 62.074 6.475 -0.631 2.506
500 18.470 0.421 -1.190 0.083

NI 182 18.951 5.832 2.062 3.984
182 37.357 4.048 2.326 2.737
500 17.588 0.386 -1.636 0.083

1.5 weak 182 72.487 10.654 3.643 4.445
405 66.778 7.044 -0.168 2.595
500 6.040 0.111 -2.865 0.090

strong 182 64.075 9.092 -2.146 4.196
405 59.557 6.001 -2.480 2.258
500 16.818 0.360 -2.908 0.088

NI 182 15.933 5.963 -0.193 4.409
405 34.628 4.129 -1.024 2.946
500 16.351 0.343 -2.841 0.086

0.6 1.2 weak 182 138.307 25.742 0.090 3.746
182 133.852 21.147 0.527 3.087
500 15.832 0.360 -1.699 0.098

strong 182 131.333 23.961 0.624 4.102
182 120.563 18.015 -1.693 3.245
500 38.113 1.558 -1.086 0.105

NI 182 22.227 8.218 2.412 3.999
182 51.096 6.351 2.069 3.282
500 37.579 1.514 -1.724 0.101

1.5 weak 182 136.611 25.988 3.697 4.506
405 131.872 20.655 -1.853 3.127
500 14.835 0.322 -2.625 0.110

strong 182 126.493 22.998 -2.285 4.301
405 120.704 17.906 -3.164 2.981
500 36.126 1.408 -2.717 0.107

NI 182 19.535 8.242 0.092 4.395
405 48.261 6.026 -0.392 3.442
500 36.311 1.412 -2.771 0.109

a Bias is defined as the mean estimate minus the true value
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Table D.6: The estimated log OR (α) in the missingness model and the estimated MAF (θ) us-
ing the family-supplemented weighted empirical likelihood method. The prevalence is 0.10, geno-
type availability is 0.8 and 0.6, the true value of β2 is 0.182 and 0.405, and MAF is 0.5. The true
values of (α3, α4, α5) in the three missingness models are: weak = (0.182, 0.405, 0.405), strong
= (0.405, 0.405, 0.405), and No interaction (NI) = (0.405, 0, 0). The mean asymptotic standard error
(“asym”) and empirical standard error (“emp”) of α̂ were calculated based on 1000 simulations.

P (R = 1) eβ2 missing α̂0 α̂1 α̂2

0.8 1.2 weak 1.089 (0.143/0.142) -0.512 (0.210/0.206) 0.178 (0.113/0.115)
strong 0.883 (0.140/0.137) -0.508 (0.206/0.197) 0.190 (0.114/0.113)

NI 0.950 (0.142/0.142) -0.511 (0.195/0.196) 0.180 (0.116/0.115)

1.5 weak 1.090 (0.143/0.147) -0.515 (0.219/0.223) 0.189 (0.113/0.115)
strong 0.891 (0.140/0.137) -0.520 (0.215/0.218) 0.185 (0.114/0.114)

NI 0.946 (0.142/0.149) -0.506 (0.201/0.203) 0.185 (0.116/0.120)

0.6 1.2 weak 0.100 (0.113/0.115) -0.519 (0.170/0.177) 0.184 (0.093/0.091)
strong -0.108 (0.113/0.113) -0.520 (0.171/0.170) 0.180 (0.094/0.093)

NI -0.045 (0.114/0.116) -0.511 (0.164/0.160) 0.180 (0.095/0.091)

1.5 weak 0.102 (0.113/0.122) -0.519 (0.175/0.184) 0.181 (0.093/0.097)
strong -0.111 (0.113/0.115) -0.507 (0.177/0.177) 0.185 (0.094/0.095)

NI -0.047 (0.113/0.116) -0.511 (0.168 /0.169) 0.181 (0.095/0.097)

P (R = 1) eβ2 missing α̂3 α̂4 α̂5

0.8 1.2 weak 0.187 (0.120/0.120) 0.412 (0.165/0.164) 0.407 (0.179/0.179)
strong 0.417 (0.122/0.123) 0.404 (0.168/0.167) 0.397 (0.184/0.177)

NI 0.410 (0.125/0.127) 0.002 (0.156/0.154) -0.002 (0.164/0.166)

1.5 weak 0.184 (0.121/0.124) 0.403 (0.166/0.168) 0.411 (0.182/0.186)
strong 0.408 (0.123/0.124) 0.407 (0.169/0.176) 0.415 (0.186/0.185)

NI 0.411 (0.125/0.129) 0.003 (0.156/0.161) -0.005 (0.166/0.168)

0.6 1.2 weak 0.180 (0.089/0.093) 0.411 (0.136/0.133) 0.414 (0.135/0.143)
strong 0.409 (0.091/0.096) 0.414 (0.138/0.136) 0.407 (0.139/0.139)

NI 0.407 (0.093/0.095) 0.004 (0.133/0.129) -0.001 (0.128/0.129)

1.5 weak 0.184 (0.090/0.096) 0.412 (0.136/0.137) 0.408 (0.136/0.144)
strong 0.406 (0.092/0.095) 0.404 (0.138/0.137) 0.406 (0.140/0.139)

NI 0.408 (0.093/0.095) -0.001 (0.133/0.139) 0.002 (0.128/0.126)
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Table D.7: The mean bias in and the mean square error (MSE) of estimated log OR of covariate
X (β1) and genotype G (β2) in the association model and the estimated MAF (θ) using the family-
supplemented weighted empirical likelihood method (FS-WEL) and the naive method based on
1000 simulations. The prevalence is 0.03, genotype availability is 0.8 and 0.6, the true value of β2 is
0.182 and 0.405, and MAF is 0.2. The true values of (α3, α4, α5) in the three missingness models are:
weak = (0.182, 0.405, 0.405), strong = (0.405, 0.405, 0.405), and No interaction (NI) = (0.405, 0, 0).
In each of the 12 settings, true values and estimates of coefficients β1, β2 and θ are presented in
this order in the magnitude of 10−3.

Model Naive Method FS-WPL Method

P (R = 1) eβ2 Missing True Biasa MSE Bias MSE

0.8 1.2 weak 182 70.375 10.634 -1.484 4.325
182 66.544 6.952 -0.919 2.669
500 4.121 0.091 -4.955 0.105

strong 182 67.080 9.962 -1.729 4.412
182 61.865 6.395 -0.154 2.697
500 15.142 0.307 -4.934 0.109

NI 182 16.610 5.638 0.217 4.015
182 38.474 4.203 2.395 2.856
500 13.799 0.274 -5.146 0.109

1.5 weak 182 69.026 10.241 -0.304 4.260
405 65.704 6.753 -3.477 2.486
500 -0.985 0.077 -9.807 0.176

strong 182 66.699 9.686 -1.199 3.995
405 66.490 7.217 0.892 2.587
500 9.217 0.165 -10.431 0.192

NI 182 21.966 6.250 3.630 4.406
405 33.733 3.781 -3.053 2.614
500 9.023 0.161 -9.923 0.175

0.6 1.2 weak 182 140.213 26.990 -1.713 4.398
182 136.738 22.004 -1.427 3.288
500 12.732 0.257 -4.788 0.124

strong 182 134.456 25.394 -2.097 4.407
182 122.709 18.591 -1.605 3.365
500 35.114 1.338 -4.597 0.131

NI 182 24.989 7.967 0.230 4.071
182 51.520 6.623 1.195 3.494
500 33.260 1.211 -4.896 0.127

1.5 weak 182 140.514 27.382 -0.416 4.310
405 132.061 20.802 -4.365 3.206
500 8.218 0.169 -9.628 0.191

strong 182 128.610 23.314 -1.694 3.977
405 124.718 18.915 0.635 3.159
500 29.057 0.946 -10.227 0.207

NI 182 26.604 8.726 3.285 4.425
405 49.575 6.249 -3.828 3.214
500 28.185 0.898 -9.964 0.193

a Bias is defined as the mean estimate minus the true value
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