
AFRL-HE-WP-TR-2000-0088 

^5*£»s23H BP^sSsill 

UNITED STATES AIR FORCE 
RESEARCH LABORATORY 

Design Concepts for Automating 

Maintenance Instructions 

Norman Badler 
Charles Erignac 

University of Pennsylvania 
Center for Human M&S 
200 South 33rd Street 
Philadelphia, PA 19104 

Patrick Vincent 

TASC Inc. 
2555 University Blvd. 
Fairborn, OH 45324 

Edgar Sanchez 

Boeing Company 
S0343067 

P.O. Box 516 
St. Louis, MO 63166 

Edward S. Boyle 
Jeffrey L. Wampler 

John D. lanni 

Air Force Research Laboratory 

February 2000 

Final Report for the Period January 1999 to February 2000 

Approved for public release; distribution unlimited. 

Human Effectiveness Directorate 
Deployment and Sustainment Division 
Sustainment Logistics Branch 
2698 G Street 
Wright-Patterson AFB OH 45433-7604 

Wn.Q QUALITY TjJ£?p/»r*ri A 

<2O00O9^S O^J- 



NOTICES 

When US Government drawings, specifications or other data are used for any purpose other than a 
definitely related Government procurement operation, the Government thereby incurs no responsibility nor 
any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way 
supplied the said drawings, specifications or other data, is not to be regarded by implication or otherwise, as 
in any manner licensing the holder or any other person or corporation, or conveying any rights or 
permission to manufacture, use, or sell any patented invention that may in any way be related thereto. 

Please do not request copies of this report from the Air Force Research Laboratory. Additional copies may 
be purchased from: 

National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22161 

Federal Government agencies registered with the Defense Technical Information Center should direct 
requests for copies of this report to: 

Defense Technical Information Center 
8725 John J.KingmanRd, Ste0944 
Ft. Belvoir, VA 22060-6218 

DISCLAIMER 

This Technical Report is published as received and has not been edited by the Air Force Research 
Laboratory, Human Effectiveness Directorate. 

TECHNICAL REVIEW AND APPROVAL 

AFRL-HE-WP-TR-2000-0088 

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National 
Technical Information Service (NTTS). At NTIS, it will be available to the general public, including 
foreign nations. 

This technical report has been reviewed and is approved for publication. 

FOR THE COMMANDER 

^SSTAT^. 3MT^.tORIGIAN,LtCoXUSAF / 
Deputy Chief 
Deployment & Sustainment Division 
Air Force Research Laboratory 

6      ^ 



REPORT DOCUMENTATION PAGE Form Approved 
OMBNo. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1.  AGENCY USE ONLY (Leave blank) 2.  REPORT DATE 

February 2000 

3.  REPORT TYPE AND DATES COVERED 

Final Report January 1999 to February 2000 
4. TITLE AND SUBTITLE 

Design Concepts for Automating Maintenance Instructions 

6.  AUTHOR(S) 
Norman Badler, Charles Erignac, Patrick Vincent, Edgar Sanchez, Edward S. Boyle, 
Jeffrey L. Wampler, John D. Ianni 

5.  FUNDING NUMBERS 
C - F33615-99-D-6001 
PE -62202F 
PR-1710 
TA-D0 
WU-09 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

University of Pennsylvania TASC Inc. Boeing Company 
Center for Human M&S 2555 University Blvd. S0343067 
200 South 33rd Street Fairborn, OH 45324 P.O. Box 516 
Philadelphia, PA 19104 St. Louis, MO 63166 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory, Human Effectiveness Directorate 
Deployment and Sustainment Division 
Air Force Materiel Command 
Sustainment Logistics Branch 
Wright-Patterson AFB OH 45433-7604  

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AFRL-HE-WP-TR-2000-0088 

11. SUPPLEMENTARY NOTES 

AFRL Monitor: Jeffrey L. Wampler, AFRL/HESS, (937)255-7773 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release, distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 
This task was performed under the Technology for Readiness and Sustainment (TRS) contract (F33615-99-D-6001) for the 
Air Force Research Laboratory (AFRL), Sustainment Logistics Branch (HESS) at Wright-Patterson AFB, OH. The period oi 
research covered the time period 29 January 99 through 29 February 00. The primary objective of this task was to design, 
develop, and demonstrate a conceptual framework to support the automated validation and verification USAF technical orders 
(TOs), specifically job guide procedures for maintenance tasks. The outcome of this effort was the definition and 
demonstration of a conceptual framework for an application or system that could be used by TO authors and Air Force 
personnel to help validate and verify the safety and accuracy of job guide procedures in maintenance TOs. In addition, this 
task also produced a core set of critical research and development tasks considered essential to overcoming important barriers 
to the development of an automated TO validation and verification system or application. 

14. SUBJECT TERMS 

Technical Orders 
Product Data Managers 
Computational Linguistics 

Human Modeling Human Simulation 
Natural Language Generation (NLG) 
Automated Validation 

15. NUMBER OF PAGES 

78 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 



THIS PAGE LEFT INTENTIONALLY BLANK 

XI 



FOREWORD 

This research task was performed under the Technology for Readiness and 

Sustainment (TRS) contract (F33615-99-D-6001) for the Air Force Research Laboratory 

(AFRL), Sustainment Logistics Branch (HESS) at Wright-Patterson AFB, OH. The period of 

performance spanned one year starting 29 January 1999. The objective of this task was to 

develop and demonstrate a framework that can support the automated validation and 

verification of aircraft maintenance Technical Orders (TOs). 

The research team examined all stages of TO generation to determine which tasks 

most warranted further research. From that investigation, validation and verification of 

appropriate, safe, and correct procedure steps emerged as the primary research target. This 

process would be based on available computer-aided design (CAD) data, procedure step 

ordering from existing sources, and human models. This determination was based on which 

tasks could yield the greatest impact on the authoring process and offer the greatest potential 

economic benefits. The team then developed a research roadmap and outlined specific 

technologies to be addressed in possible subsequent Air Force research tasks. 

To focus on the potential technology integration of the validation and verification 

component into existing or future TO generation procedures, we defined a demonstration 

scenario. Using the Front Uplock Hook assembly from an F/A-18 as the subject, we 

examined task procedure steps and failures that could be exposed by automated validation 

tools. These included hazards to personnel, damage to equipment, and incorrect disassembly 

order. Using the Parameterized Action Representation (PAR) developed on previous projects 

for actions and equipment behaviors, we characterized procedure steps and their positive and 

negative consequences. Finally, we illustrated a hypothetical user interface extension to a 

typical Interactive Electronic Technical Manual (IETM) authoring system to demonstrate 

how this process might appear to the TO author. 

XXI 



TABLE OF CONTENTS 

Section Page 

1 Introduction  1 

1.1 Background  1 
1.2 Scope  2 
1.3 Technical Orders  3 
1.4 TO Validation and Verification  5 
1.5 Potential Benefits of a TO Validation Tool  6 

2 Part I: Survey of Current Research and Technologies  8 

2.1 Introduction  8 
2.2 Technical Domains Related to Technical Order 

Validation  8 

2.2.1 Product Data Management  8 
2.2.2 Virtual Design Engineering and Manufacturing  9 
2.2.3 Concurrent Engineering  10 
2.2.4 Human Models  11 

3 Part II: AMI Conceptual Framework  14 

3.1 Framework Overview  14 
3.2 Framework Components  15 

3.2.1 Validation by Simulation  17 
3.2.2 Proof of Soundness  17 
3.2.3 Framework Functions  17 
3.2.4 Procedure Diagnosis  18 
3.2.5 Action Failures and Hazards  19 
3.2.6 User Interface  19 
3.2.7 Translation to PAR and Execution of Textual 

Orders  20 
3.2.8 Model Storage and Importation  21 

3.3 Source Databases  23 
3.4 Framework Processes  24 

3.4.1 Editing Process  24 
3.4.2 System Dependent Validation  25 

3.4.2.1. Geometric Domain  25 
3.4.2.2. Physics-based Domain  25 
3.4.2.3. Agent Domain  26 

3.4.3 Human Factor Dependent Validation  28 

3.5 Real-World Applications  28 

IV 



Section Page 

3.5.1 Publishing Simulation Graphics  28 
3.5.2 Model Importation, Building, and Maintenance  29 

3.6    Authoring and Simulation Library  30 

3.6.1 Task Scenario  30 
3.6.2 Actionary  31 
3.6.3 3D Models  33 
3.6.4 Human Models  33 
3.6.5 Physical Behavior Models  33 

4 AMI Conceptual Demonstration  35 

4.1 Introduction  35 
4.2 Conceptual Demonstration Development  35 

4.2.1 Initial State  35 
4.2.2 Role of Technical Order  37 
4.2.3 Script Authoring  39 
4.2.4 Support Data  43 

4.3 Summary  44 

5 AMI Research Roadmap  45 

5.1 Critical Technologies  45 

5.1.1 Human Models  45 
5.1.2 PAR-Based Agent and Specific Skills  46 
5.1.3 Natural Language Technologies  47 
5.1.4 Semi-Qualitative Simulation  49 

5.2 Outline of Future Task Efforts - FY2000  49 

5.2.1 Represent Procedure Steps with PAR  49 
5.2.2 Validate TOs through Automatic Generation of 50 

Virtual Motion Simulation  
5.2.3 Determine Knowledge Representation 50 

Requirements  
5.2.4 Create PARs Through Human Performance 51 

Motion Capture and Semantic Analysis  

5.3 Brief Outline of Future Task Efforts -FY2001  51 
5.3    Development Program  52 

References  54 

APPENDIX: IETM Authoring Requirements 



LIST OF ILLUSTRATIONS 

Figure Page 

1 IETM Document  4 

2 AMI Framework  14 

3 Human Model at Work  16 

4 Translation and Execution of Natural Language Orders  21 

5 Translation and Simulation of a TO  22 

6 3D Model Decimation  29 

7 Open Action Taxonomy  32 

8 F/A-18  36 

9 General View of the Work Area  37 

10 Front Uplock Hook Assembly  38 

11 First Version of Subtask Sequence  40 

12 Second Version of Subtask Sequence  42 

13 Third and Final Version of Subtask Sequence  43 

14 User Interface  46 

15 Text and PAR Script Input  47 

16 Simulation and Status Feedback  48 

Table 

1 Geometric and Non-Geometric Models  30 

vx 



GLOSSARY 

AMI Automated Maintenance Instructions 

API Application Program Interface 

ASL Authoring/Simulation Library 

CAD Computer-Aided Design 

CAE Computer-Aided Engineering 

CAM Computer-Aided Manufacturing 

COTS Commercial Off The Shelf 

FUH Front Uplock Hook 

HFDV Human Factors Dependent Validation 

IETM Interactive Electronic Technical Manual 

KBE Knowledge-Based Engineering 

LSA Logistic Support Analysis 

NLG Nose Landing Gear 

NLP Natural Language Processing 

PAR Parametrized Action Representation 

PDM Product Data Management 

PDM Product Data Models 

SD Source Databases 

SDV System Dependent Validation 

TO Technical Order 

VR Virtual Reality 

XML Extensible Markup Language 

V1X 



THIS PAGE LEFT INTENTIONALLY BLANK 

VX1X 



SECTION 1 

INTRODUCTION 

1.1  BACKGROUND 

Technical Orders (TOs) and engineering drawings are the most expensive and 

arguably the most important data acquisitions made in the support of a weapon system [1]. 

The production of maintenance TOs, job guides, illustrated parts breakdown manuals, and 

other publications used to support the maintenance of weapon systems and support 

equipment accounts for a significant percentage of the total procurement cost for weapon 

systems. In fact, informal estimates project that this cost may be as high as 15% of the total 

acquisition cost of new weapon systems [2]. Based on this information, it only seems logical 

that there should be significant impetus for investing in research activities that focus on 

identifying and maturing technologies that can make the TO authoring process more efficient 

and cost effective. 

AFRL/HESS has sponsored several research efforts over the past few years to investigate 

specific technologies that may be considered elements of a unified solution set for 

automating the production of TOs. These efforts were conducted under the Automation of 

Maintenance Instructions (AMI) program through the the AFRL Logistics Technology 

Research Support contract (F41624-97-D-5002). These research tasks included the 

following: 

• Technologies for Maintenance Instructions - Delivery Order 8. 

• Product Modeling Technologies for Automating Maintenance Instructions - 

Delivery Order 14. 

• Maintenance Action Representations - Delivery Order 17. 

While these research tasks provided some important insights into core technologies related to 

the authoring of maintenance instructions, it became evident that a more focused effort was 

needed to define a framework that could effectively support the automated production of 

maintenance instructions (AMI), and formulate future research objectives. 



1.2      SCOPE 

At the outset of this task, three primary research objectives were pursued. The first 

objective was to identify and evaluate current research and technology trends applicable to 

the automated production of maintenance instructions. The second was to define an 

engineering computing framework that could effectively support the automated production of 

aircraft maintenance instructions, or TOs. The third objective was to develop a storyboard 

(concept) demonstration that could be used to explain the main components of the computing 

framework defined earlier. The main components included existing technologies and 

methods, as well as technology gaps. Existing technologies included CAD, computer-aided 

manufacturing (CAM), computer-aided engineering (CAE), and current authoring tools. 

Methods included concurrent engineering design and development practices. Technology 

gaps represented important, unsatisfied research needs that lie in the critical path to 

successfully develop and demonstrate a prototype system for the automated authoring of 

maintenance TOs. 

As the task progressed and a more detailed analysis of the current TO authoring 

process was conducted during two workshops, the scope of the research task was refocused 

on the TO validation and verification process. The decision to refocus the research effort was 

made for primarily three reasons. First, no tools or applications currently exist to support this 

very important step in the TO authoring process. Second, the prospects for successfully 

addressing and demonstrating all aspects of the current TO authoring process in an 

automated system was considered unrealistic, given the timeframe and projected budget 

outlays for the AMI program. Finally, major breakthroughs would be required in key 

technology and research areas that support AMI, including breakthroughs in geometric 

reasoning to get at the function logic of parts/components, the assembly/disassembly 

sequence related to the removal and installation of components, etc. 

Thus, rather than aiming for complete automation of the TO authoring process, the 

decision was made to focus future research efforts on high-payoff technology areas that 

could support the automated validation of TO maintenance procedures. The objective would 

be to provide the TO author the capability to visualize the performance of a candidate 

procedure to determine whether a procedure, as written, is reasonable and safe to perform. In 



essence, are procedure steps logically ordered and clearly defined, or is there a better way to 

arrange the steps? This type of validation should be possible with existing human modeling 

technology. 

1.3      TECHNICAL ORDERS 

A TO is a document that instructs technicians how to perform an operational or 

maintenance task on a weapon system. It is an "order" because the actions it describes are 

formulated as individual orders. The technician is expected to carry them out as if they were 

issued by a supervisor. Many types of TO publications are produced to support the operation 

and sustainment of a weapon system. These publications include operations manuals, job 

guides, illustrated parts breakdown, support equirpment manuals, software manuals, etc. The 

focus of the research conducted under this effort, and preceding AMI research, is on 

maintenance instructions found in job guides that are used by Air Force personnel to repair 

and maintain a weapons system. Hence, the reference to a "TO" throughout the remainder of 

this report will refer to maintenance instructions found in job guides. 

A TO starts by defining a set of input conditions that describe the initial state of the 

maintained system. It also identifies the necessary spare parts, special tools, and personnel 

required to perform the task. The remainder of a TO is an ordered sequence of actions that 

the maintenance technician(s) must perform to safely and effectively complete the task. 

Where applicable, warnings and caution messages are also specified to point out potential 

safety hazards associated with the task. 

Until recently, TOs were only available in a printed form featuring technical drawings to 

complement textual information. They are now available in several electronic forms: 

• Logistic Support Analysis (LSA): LSA is an electronic database of maintenance tasks. 

This is a purely textual representation. A task is modeled as a sequence of subtask 

records. Each record contains a narrative description and miscellaneous data. 

• Interactive Electronic Technical Manual (IETM): An ITEM is meant to replace 

printed material with portable computers suitable for use in the field. An IETM TO is an 

interactive electronic document combining text and graphics (see Figure 1). Aside from 

enabling browsing of large numbers of technical manuals, ITEM allows step-by-step 



tracking of task execution, adapting the task sequence to the actual situation, and 

performing electronic checklists. 

w.e. Donn rnnwAno upi.orx iinnK- INSTAU 

Figure 1. IETM Document. 

To date, maintenance manuals have been manually authored in printed or electronic 

form. Although electronic systems like IETM provide major assistance, the authoring process 

is still labor intensive (see Appendix). The author must gather information from multiple 

sources (engineering, vendors, maintenance, etc.) and in various forms (printed material, 

CAD files, LSA records, etc.). When this is not enough, the author must consult experts 

(such as design engineers). Once the research step is completed, the author compiles the 

information into a TO. 

The author draws from personal experience and researched material to produce the 

initial conditions and the sequential steps of the maintenance procedure. If an IETM-like 

system is used, the elements are structured as database references, interactive text, and 

annotated graphics. The level of detail in the TO (subtask breakdown and the associated set 

of notices and warnings) must be explicit enough to allow Air Force technicians to safely 

complete the task. 



TO authoring is similar to writing a computer program in that each order contains 

precise semantics. Its execution modifies the state of the world in a predictable way, based on 

standard human factors and technical personnel training and performance. An order is 

inserted in a TO's sequence with the assumption that the orders preceding it will be carried 

out successfully and establish the expected execution context necessary for the inserted order 

to perform correctly. In other words, when placing an order in a TO, one assumes that its 

input condition will be satisfied by the initial state of the scenario or the accumulated effect 

of the preceding orders. 

1.4      TO VALIDATION AND VERIFICATION 

The primary purpose of the Air Force TO validation and verification process is to ensure that 

procedures can be effectively and safely performed by personnel with the planned skills and 

training. TO validation is the process the weapon system manufacturer performs to ensure 

that maintenance procedures can be performed as written, by properly trained personnel, in a 

safe manner. TO verification is the confirmation process the Air Force uses to ensure the 

adequacy and accuracy of TOs. While the verification process is equally important, the main 

focus of this research effort was on developing a conceptual framework for developing an 

automated tool to support the validation of TOs by the weapon system manufacturer. It is 

possible that the same framework could be extended to include the Air Force verification 

process, but this report does not purport this view. The current methods of TO validation 

include desktop validation and validation through demonstration. In general, a desktop 

validation is accomplished using engineering drawings and other supporting technical 

documentation. It is typically used in cases where existing procedural data may be validated 

by comparison to source data (e.g. engineering data, etc.) if the procedure was originally 

validated by demonstration on equipment of identical configuration. The more prevalent 

method for TO validation is through demonstration on a physical system. In general, TO 

procedures that are detailed in a job guide must be validated through demonstration if the 

procedure falls into any one of the following categories: 

■ New procedures. 

■ All software-dependent procedures for any new production buy or for any 

software update. 



■ Modified system procedures that have encountered problems. 

■ Procedures in which steps are re-sequenced, added, or deleted to the extent that 

any hookup, operation, or indications are affected. 

■ Procedures validated by demonstration on equipment of a different configuration. 

The framework that will be discussed in Section 3 of this report focuses on the 

conceptual design of an automated tool or application that would support both types of TO 

validation, namely desktop validation and validation through demonstration. 

1.5      POTENTIAL BENEFITS OF A TO VALIDATION TOOL 

The current TO validation process could be streamlined in some respects through the 

use of a desktop validation tool or application that would remove some of the constraints a 

TO author must operate under in the current process. First, a demonstration validation 

requires that a physical system (i.e., the aircraft) must be in place and available to the author 

to perform the validation of a procedure. This requires that authors must schedule time to get 

access to an aircraft just to view the work area. It may also require assembly line/flight 

testing activities to be temporarily halted to perform the validation. This may not be efficient 

and effective from a scheduling standpoint, particularly with regard to manufacturing 

concerns. Second, the TO author cannot perform the actual maintenance procedure or task. A 

union technician must perform the task. If the author cannot fit in the confines of the work 

area to observe the performance of the task, the author must rely on the technician to identify 

problems or improvements with the procedure. This can be difficult in some cases because 

the aircraft must be through the assembly process sufficiently to provide the "users view" of 

the task. 

Third, many times inspection seals must be broken to perform a procedure. This 

requires re-inspection of the area and new inspection seals. Finally, accidental damage to 

aircraft may be induced during the physical validation of the maintenance task (e.g., dropped 

parts, cross-threaded hardware, etc.) 

Although a TO validation tool should not be purported as direct replacement for the 

physical validation of TO procedures, it could help alleviate some of these problems by 

providing the TO author the capability to validate selective tasks even earlier in the weapon 



system development process. This may help reduce the time and effort associated with 

scheduling aircraft and personnel resources required for the validation task, and possibly 

serve as a legitimate, certifiable method for validating specific maintenance tasks without the 

need for follow-up validation on a physical system. 

The remainder of this report focuses on synopsizing the state of the art in key 

technology areas related to the development of such a validation tool. It also describes the 

engineering and computing framework that would be required to support the design, 

development, and implementation of a TO validation tool. Finally, the development of a 

conceptual demonstration is discussed. The conceptual demonstration is intended to explain 

the core functions and requirements of such a tool and convey the important, unmet research 

needs that should be addressed to foster the development of a prototype TO validation tool. 



SECTION 2 

PART I: SURVEY OF CURRENT RESEARCH AND TECHNOLOGIES 

2.1 INTRODUCTION 

We identified four technological domains related to TO authoring, and more 

importantly TO validation. These domains included (a) product data management (PDM), (b) 

virtual design engineering and manufacturing, (c), concurrent engineering, and (d) human 

form modeling. Virtual design tools produce the models necessary to validation simulations. 

PDM systems deliver this information to the validation application. Concurrent engineering 

practices and supporting software, including human modeling applications, allow authoring 

and validation to be pursued while products are still in their design stage. 

2.2 TECHNOLOGY DOMAINS RELATED TO TECHNICAL ORDER 
VALIDATION 

2.2.1   Product Data Management 

PDM [3] is an enterprise-wide framework aimed at modeling and tracking all of the 

data concerning produced goods and services as well as related processes. PDM was initially 

developed to organize and store data pertaining to engineering activities in a company 

producing industrial, transportation, and consumer goods. A PDM system stores the design, 

manufacturing, and maintenance data for each product in a uniform framework, and also 

manages the processes critical to a product's life cycle. PDM is increasingly used on a larger 

range of products such as buildings, bridges, factories, cable networks, software, and 

services. Since PDM is a general framework, it can be used for any production activity. 

Furthermore, its scope is wide since anyone who deals with products consumes or creates 

PDM data. 

Product data generally consists of specifications, configuration data, CAD/CAM/CAE 

files, manufacturing data, revisions, and maintenance manuals. However, it also extends to 

financial and marketing documents. In any case, a PDM system can be scaled up or down to 

manage specific disciplines of a company. PDM covers the entire life cycle of a product - 

design, testing, manufacturing, support, and maintenance. In particular, it supports concurrent 

engineering functions. 



The core of a PDM system is its data vault. This metadatabase, or database of 

databases, inventories every product datum in the system by maintaining an associated 

metadata record. It contains format, location, ownership, security, and revision information. 

The data itself is stored in an application-specific database. CAD/CAM/CAE software and 

other applications can directly access a PDM system to store and retrieve data. 

The major functions of a PDM system are listed below: 

• Uniform Data Referencing and Access: Objects or data records can be referenced with 

a unique name by different databases. They can also be accessed uniformly by various 

applications. 

• Process Management: A PDM system can model and manage data workflow. It can 

trigger and monitor specification, design, approval, revision, or any other business 

process. 

• Data Administration: The content of PDM metadata allows access privileges (security) 

to be managed, authorship to be recorded, and multiple versions of a single datum 

(revision control) to be tracked. Furthermore, all the data concerning a product can be 

transferred, backed up, and archived as a single block. 

Many vendors offer PDM solutions. The Object Modeling Group developed a PDM 

Enablers specification [4] to promote interoperability between different PDM systems. For 

more information on PDM see CIM, 98. 

2.2.2  Virtual Design Engineering and Manufacturing 

For decades, weapon systems have been modeled with CAD software. More recently, 

emerging technologies have supported other related processes such as engineering, 

prototyping, and manufacturing. Off-the-shelf CAE software can model and test the 

mechanical, thermal, and structural properties of a product before its first prototype is even 

built. Similarly, CAM software is used to develop molds, stamping tools, weaving patterns, 

and machining paths from CAD models. 

The advent of virtual reality (VR) has spawned the development of virtual 

prototyping applications that enable a product to be assembled, inspected, and tested in a 



Virtual world. Some aspects of designs can be tested for maintainability and human factors 

while they are still on the drawing board. More generally, interactive 3D visualization is used 

at every step of a design cycle to view single parts, animate assemblies, visualize scientific 

data, and create marketing and technical documentation. 

Current CAD models are parametric. Along with their geometric description, they 

include dimensioning constraints that relate different parts. For example, the diameter of a 

shaft and the bore it runs through can be constrained such that the bore is updated when the 

diameter changes. These parametric models allow encoding some of the design intent into the 

CAD data. 

Knowledge-based engineering (KBE) goes further in this direction by capturing 

design expertise. With a KBE approach, a design bureau can record the lessons learned from 

past projects and reuse them in the future. For example, a KBE system can help choose an 

energy source or manufacturing process. A KBE application is mostly an expert system. 

It is now possible to go "virtual" though most of a product's design. Software vendors 

sell integrated computer-based solutions that support virtual design and manufacturing [5]. 

Nevertheless, "hands on" virtual prototyping applications, such as technical order validation, 

remain experimental [6]. 

2.2.3  Concurrent Engineering 

Traditional product design is a chain of sequential development stages going from 

conceptual design to a finished product. Each stage deals with a specific aspect of the 

product, such as engineering, manufacturing, prototyping, testing, and servicing. When a 

design fails to satisfy the constraints of a given stage, it is sent back to one of the earlier 

stages for redesign. This process can be very costly, because most design defects are 

discovered during the later stages when changes are more expensive to correct. 

Concurrent engineering [7] attempts to reduce development costs by accomplishing 

each development stage in parallel. This method is particularly challenging because it relies 

on the collaboration of specialized teams. Aside from the organizational difficulties, 

concurrent engineering relies on collaborative design environments to share models and 

ideas. 

10 



These environments are built upon available CAD/CAM/CAE software integrated 

within a PDM system. In particular, the PDM system allows the versioning and review 

processes to be shared across design teams. Along with these core applications, simpler and 

"lighter" CAD model visualization tools are being used to communicate the design's shape 

and function to a wider audience within and outside a company. These tools allow models to 

be annotated to simplify review processes. Some are geared toward collaborative design 

sessions, allowing remote users to share the same virtual space where they can manipulate, 

modify, and annotate a 3D assembly in turn while communicating through voice or video 

links [8]. 

TO validation fits within a concurrent engineering process as a co-design activity. 

Concurrent engineering can help authors identify maintainability flaws early in the design 

process and prevent cost overruns and delays later during physical prototyping. 

2.2.4  Human Models 

Computer-graphic human form models (referred to as human models) have been 

available for 25 years.Significant developments occurred during the last decade, as computer 

power and three-dimensional graphics improvements have led to interactive models with 

sufficient biomechanical accuracy to allow their use as ergonomic evaluation surrogates. 

These models allow figures with anthropometric variations based on a sample population and 

represent body shape with more or less smooth polygonal surfaces and adjustable joints. The 

more capable human models provide mechanisms to control the actions of the model, for 

example, through a walking algorithm, inverse kinematics limb reach, and automatic 

satisfaction of balance and other postural constraints. Additional improvements include 

analytical reports on strength, visibility, reach zones, comfort zones, and lifting hazards. 

As human models mature, they appear to be departing from stand-alone systems and 

assuming a more integrated role in the design engineering process. This requires that they 

interface with CAD models and the design process at increasingly early stages of the product 

life cycle. Where human models were used primarily by human factors engineers, they are 

now used by engineers throughout the design process. This shifting of responsibility should 

affect both the engineering process and the need for human modeling software. Engineers 

u 



will be able to easily perform cursory human use analysis as part of form, fit and function 

analyses. 

Features important to manipulation and maintenance (as well as manufacturing) 

should find their way into the Product Data Models (PDM) to be shared across the 

engineering enterprise. We have decried the lack of what we called maintenance features that 

would allow a human model to understand a device in terms such as handles, connections, 

contents, and even function. As designers use human models to evaluate their designs, we 

hope they will note these features, sites, parts, and contents in the PDM databases so that 

such information can be used elsewhere by the design team. Besides helping the human 

factors analyst, such annotations will clearly help the TO author. Annotations that relate part 

features to CAD features are now inserted manually by TO staff and used by the TO author 

to create callouts in the graphic images that accompany and amplify the TO steps and text. It 

seems inefficient to ask the TO authoring staff to insert information that is already known to 

the design engineers. Although it is not within the research scope of this project, we hope that 

PDM systems will emerge to reinforce good labeling habits. The alternative - directly 

automating the determination of maintenance features from the CAD data - is a fascinating 

research project but appears unlikely to be economically justifiable in actual practice. 

The second effect of this shift in responsibility is related to the design of human 

modeling software. Early human models required that each joint be posed manually, 

sometimes through a tediously-created and non-intuitive data file. Interactive systems 

ameliorated some of these problems, but not enough: only the development of robust and 

flexible inverse kinematic algorithms made human models usable. As the human models are 

integrated into enterprise-wide CAD systems, users will want better software tool integration 

and easier-to-use interfaces. A proven approach to the former is through a software library 

and application program interface (API) that allows another system (such as a host CAD 

package) to access and control the human model. The user interfaces for the human model, in 

turn, are expected to resemble those of the host software. The best example of this situation is 

the Jack Toolkit, from Engineering Animation, Inc. The toolkit interface lives in the host 

software, which encourages user interfaces that are as simple and straightforward as possible. 

We expect that in the future, other human models will have to adopt this software approach 

12 



to live across multiple systems. The alternative is to wed the human model with the CAD 

system, but this becomes difficult to extend outside the CAD vendor's environment. 

In general, human models can potentially aid the TO validation process. Since the 

primary role of the TO author is to create instructions for real human maintainers, such 

instructions should be first tested on synthetic maintainers within the given CAD 

environment. Accordingly, a level of control as close as possible to the actual instruction 

level will greatly aid the TO creation and validation process. In particular, a user interface 

that supports the expression of task instructions in natural language (as found in TOs) will 

reduce the need for the TO author to be both animator and programmer. 

13 



SECTION 3 

PART II: AMI CONCEPTUAL FRAMEWORK 

3.1      FRAMEWORK OVERVIEW 

The TO authoring process, as described in the Appendix, is a labor-intensive process. 

The author must compile information from existing technical and LSA manuals, engineering 

drawings, and various other sources to produce a specific maintenance procedure. Once the 

procedure is initially authored, it must be validated by comparing it with design documents 

and safety guidelines, or by actual demonstration on a physical system. If a problem is 

detected, the author modifies the TO and re-validates the procedure. The cycle is iterated 

until the maintenance procedure is successfully validated. Once validated, TOs are published 

by the airframe manuafacturer (vendor) and delivered to the Air Force for follow-on 

verification of the adequacy and accuracy of TO procedures. 

Source 
Databases 

Authoring 
Database 

Authoring 
Process 

IETM 

■SW:-:-:-:-K-:W:- 

i\ 

Scenarios 
'version, lime stamps. 
Author J. Doe. 

Initial State: geometry, 
assumptions. PAR.... 

LSA 

~r ' r 

Actionary 

DramO          Uns««¥0 

R«*0      /    > 

<, Access) 

V 

CAE 

p\* ~ nrt 

3D Models 

| Import) 

CAD Physical 
Behaviors 

Hazards 
Fall. leak. 

Flows m Fluid, heat 

PDM Human Form 
Models 

Simulate 

Edit Scenario 

Validate 

System or 
structural failure 
generated by 
physical behavior 
(CAE) models. 

Human factor failure 
(reachability, effort, etc..) 
generated by human form 
models. 

Figure 2. AMI Framework. 

Our AMI framework (see Figure 2) will define the concepts and processes necessary 

to implement a desktop TO validation and verification tool that could support the TO author 

14 



in the validation process, and ultimately reduce the time and cost associated with the 

validation of TO procedures. Such a tool would test a maintenance procedure by simulating it 

in a 3D virtual environment. The assessment would cover both human factors and system 

domains. A variety of human models would be used in the simulation to ensure that the 

ergonomic requirements (visibility, accessibility, effort, and exertion) are within occupational 

standards. Likewise, the simulation would test whether the procedure is feasible with respect 

to the maintained systems. Using physics-based models, the simulation would detect 

unfeasible or hazardous actions. 

The main benefit of our framework is to complement current TO authoring systems 

with a desktop validation tool that would enable rapid prototyping and development of 

maintenance procedures. The first iterations of the traditional "generate and test" approach 

would take place entirely at the author's workstation: the author would edit and simulate a 

procedure until it passes a validation test. Only a few final validations would need to be done 

using manual methods such as engineering review or demonstration. 

Although the framework is meant to complement existing TO authoring tools, it 

would make sense to specify the validation tool as a stand-alone application with authoring 

capabilities. Furthermore, entities could also use the tool in their verification process. The 

validation may also be stored and replayed. We eventually expect manufacturers and 

regulating authorities to endorse or certify maintenance procedure validation tools for 

adhering to industry and government standards. 

It is difficult to envision the precise boundaries of the validation tool's specifications 

on a conceptual level. However, it is clear that the validation tool would have to interface 

with other engineering or authoring applications. We anticipate that such integration would 

be achieved with a PDM system, which could potentially position the maintenance authoring 

process as a co-design activity early in a product development cycle. 

3.2      FRAMEWORK COMPONENTS 

Although existing technology does not allow TO authoring to be automated, we 

propose to simplify the task by automating the validation step. Our framework relies on 

simulation to apply a validation process by demonstration in a desktop VR environment. We 

15 



can simulate a maintenance procedure from a system or human factors perspective to recreate 

the working conditions of an actual technician (see Figure 3). As in a live validation, the 

simulation will be successful if the procedure can be completed with the desired result and 

without hazardous consequences. 

Figure 3. Human model at work. 

The framework is meant to bring the benefits of verification to the author's desktop. 

Although it would not serve as a total substitute for physical testing, we expect that most 

hazards and unfeasible subtasks would be detected. With such a validation tool, an author 

would be able to repetitively edit and test procedures until they pass desktop validation. 

In addition, the 3D representation of the maintained system would enable the author 

to gain considerable insight into the geometric complexity of the task. The author could 

survey the scene through the eyes of the virtual technician or from any other point of view. 

Furthermore, transparency effects and swept volumes could help locate hidden components 

and evaluate motions in confined spaces. 

The simulation will also encompass physical system behaviors. By modeling the 

system's behavior as it is being operated or maintained, hazards or system-related failures 

can be detected. Furthermore, model-based reasoning techniques would allow automatic 

annotation of the sequence of events that led to a hazard or failure. 

These geometric and system debugging functionalities will greatly simplify analysis 

and repair of a procedure. 

16 



3.2.1 Validation by Simulation 

The framework possesses the ability to simulate a maintenance procedure that would 

be a viable replacement for live validation. As in validation by actual demonstration, the 

validation tool will be deemed sound but not complete. In other words, although all the 

behaviors it produces are realistic (not spurious), it cannot prove that any strict interpretation 

of the procedure by any technician under any compliant input conditions will be successful. 

The soundness of a simulation relies on the fidelity of the model with respect to the 

system it represents. High fidelity models are complex and require large computational 

power, which might not be available to produce interactive simulation. It is the responsibility 

of the modeler to find an acceptable compromise between fidelity and speed. 

3.2.2 Proof of Soundness 

The only thing an actual or virtual validation by demonstration can prove is that a 

maintenance procedure is not sound through the detection of action failures or hazards. In 

other words, a procedure is believed sound until proved unsound. An action fails when its 

expected effect cannot be observed or when its input conditions cannot be achieved. A 

hazard is an unwanted physical process conducive to property damage or injury. 

System-related failures and hazards independent of the human model will be detected 

during the first run of a simulation. However, a simulation must be run with different human 

models that represent the technician population. If all simulations are successful, the 

procedure can be deemed sound. This need for multiple runs is synthesized in the Simulate 

and Validate states shown in Figure 2. 

3.2.3 Framework Functions 

The framework's core process is a simulation generated by a simulator. The 

simulation corresponds to the execution of a maintenance procedure. However, the validation 

tool must also provide the following functions: 

•    Editing: Direct editing of maintenance procedures is necessary regardless of whether the 

tool is running stand-alone or if the author imports procedures from other authoring 

applications. In the first case, the author must be able to input a whole procedure by using 

17 



the system's model library to compose it. In the second case, imported procedures must 

be cleaned up and dressed up to cover the simulation domains that were ignored by the 

source application, such as geometry. Editing must be validated by syntactic and 

semantic checks that allow the author to verify the correctness of the procedure model's 

form and content. 

•    Debugging: In the case of an action failure or hazard, the validation tool should stop the 

simulation and help the author isolate the problem. This is the first step toward correcting 

the procedure. Although geometric reasoning is still too complex for online debugging, 

causal reasoning of system behaviors is not. A computer can easily reason the sequence 

of events that triggered a procedural failure and assist a author in isolating the cause. 

Nevertheless, except for trivial errors, we should not expect the validation tool to 

automatically repair a procedure. 

Although not the focus of this research, the validation tool could also be used to produce 

media for electronic technical or training manuals, including animations, still images, or 

interactive simulations. We did not list publishing as a function, because it is not strictly 

necessary for validation. Nevertheless, we should expect publishing to be available under 

some form in the framework. For example, it could be used to communicate system failures 

to a design team. 

3.2.4   Procedure Diagnosis 

Procedure diagnosis takes place during debugging when an author encounters an error 

and tries to determine the cause of a faulty procedure. Unlike traditional system diagnosis 

(such as aircraft fault isolation), procedural faults can be attributed to either inaccurate or 

ambiguous TO procedures, or an error on the maintenance technician's part in not following 

a validated, published TO procedure. The latter problem is not going to be resolved by a TO 

validation tool, and is outside the scope of this research. However, the former case can be 

addressed to some extent by a TO validation tool. For example, assume the maintenance 

technician is following the step-by-step TO procedures for a task in a suystem. If a 

component burns out while performing the maintenance task, the relevant failure is not an 

actual component failure, but rather an induced failure that may have been by an omitted step 

in the TO procedures (e.g. not turning power off to the aircraft or system that caused the 

18 



component to short out) The flaw in the TO procedure could very well be attributed to the 

author's lack of insight into the different types of hazardous conditions associated with 

performing the task.   In this case, a validation tool might help improve this situation by 

allowing the TO author to simulate and visualize different scenarios and conditions for 

accomplishing the task to determine the safest set of conditions, as well as the proper 

sequence of steps for performing the task 

The validation tool is similar to a software development environment. It records a 

simulation trace, which is analyzed for debugging purposes. The models used in the semi- 

qualitative simulator can be automatically analyzed along with the simulation trace to help 

the author locate a problem [9]. The system assists the author by answering standard queries 

about the function of a device or the factors influencing its behavior. Because of their explicit 

representation, PAR actions can be included in this reasoning. These questions can also be 

used as online technical documentation. 

Although these self-documented models might help the author understand how a 

device works, a minimum engineering background will be required to use the tool efficiently. 

Current limitations in geometric reasoning do not allow similar debugging facilities to 

isolate geometric faults. Therefore, only system-related faults can be semi-qualitatively 

isolated. 

3.2.5  Action Failures and Hazards 

Some hazards and action failures could be turned off or ignored by the author to focus 

on specific aspects of the validation. However, if too many of these events are ignored, the 

simulation might deviate from its expected realistic behavior and compromise the fidelity of 

the validation. 

We recommend a tight edit-validate-debug cycle where the author aborts validation at 

the first error. This argument provides an extra incentive for including substantial editing and 

debugging functions in the validation tool. 

19 



3.2.6 User Interface 

The nature of the framework's user interface remains to be chosen. We expect the tool 

to use a graphical interface through which a maintenance procedure could be represented in 

three possible modes: 

Graph: A procedure is represented as a flowchart. The author builds a procedure by 

dragging, dropping, and connecting icons representing actions and sequencing constructs 

(used in LSA and IETM). 

Script: A procedure is a script written in a specific high-level programming language. The 

author must be familiar with the language to key in the procedure. 

Free Form Text: The author types or dictates a procedure in plain English (natural 

language). The interface translates the text in an adequate internal representation (script or 

graph). Reliable natural language processing (NLP) should be available in near- or long-term. 

Aside from providing a user-friendly interface, NLP would allow legacy TOs to be imported 

in a textual or semi-structured form. 

All three modes could be combined or layered to offer multiple levels of 

representation. The graph and natural language modes are the most user-friendly. However, 

current technology can only deliver a combination of script and graph modes. We propose 

using the PAR [10] language for scripting human actions. 

The user interface should also provide the ability to navigate and modify the virtual 

world in which the procedure takes place. Ideally, the objects in the scene should be "smart." 

Their relative geometric positions should be reflected into a corresponding physics-based 

model. For example, if a plug is inserted in a socket, the simulator should establish an 

electrical contact between them. 

3.2.7 Translation to PAR and Execution of Textual Orders 

One essential requirement of the validation tool is to provide the author with a high- 

level scripting language to control a virtual technician. This language is defined by a set of 

complex procedural actions and composition operators to sequence them. Each action can be 

defined by a sequence of lower-level actions, or a direct call to one of the agent's basic skills. 

20 



Since our intelligent agent must behave like an average technician, any action 

vocabulary must be equivalent in both the semantics and level of abstraction to the actions 

conveyed in textual orders. In a PAR of this scripting language, the high-level action 

vocabulary, as well as all of the underlying actions are stored in an Actionary, which 

represents the procedural knowledge of the software agent controlling the virtual technician. 

Regardless of whether translation from text to script is manual or automated, the 

closer the Actionary is to the usual TO vocabulary, the better the translation will be. Ianni's 

specifications [11] exemplify the basic action vocabulary of a virtual technician. 

If the translation is manual, the author is responsible for performing a realistic 

semantic mapping between the text and the actions composed in the corresponding script. If 

the translation is automated, the validation tool could assess the clarity of the order by 

exposing potential ambiguities or inconsistencies. 

Figure 4 depicts the whole translation and execution process. The author creates a 

new subtask and fills it with a textual order. The order is translated into a compact PAR 

script, which is expanded into a set of sub-actions during execution. The software agent 

performs the primitive actions of the expanded plan. If the effect of the action is hazardous, 

the author revises the order and starts over. 

Translating a procedure consists of scripting each of its subtasks individually. 

Technically, a whole TO could be modeled as one script made of the sequence of subtasks' 

scripts. Figure 5 summarizes the different translation steps from a TO to its simulation. 

21 



Natural Language to PAR Conversion and Execution 

Input order in 
natural language. 

Conversion of the 
        textual order into a Remove* Agent, Bolt)= 

Remove NLG door uplock hook.   U---^.™«L      _.._,. SeqlUnsc^AgentBolt Bulkhead). 
 - 1      within the context Remove(Agent, Bolt, Hook)) 

of the scenario. 

Remove<Agent, Bolt) 

Unscrew(Agent,Bolt,Bulkhead) 

Expansion of the PAR expression into a 
hierarchical plan by adjunction of 
preexisting PAR actions from the Actionary. 

GeCTba/(Agent,wrench) ^UseTooH Agent,wrench,BoK) >Reacft(Agent,Bolt)- 

> Grasp(Agent,Bolt| > Po«Agent,Boll) 

it,Boin—~ 

^ Grasp(i 

Simulate the order execution. / 
Execution Flow 

Hazard: latch falling. 

Remove NLG door uplock hook 
by removing bolts from structure 
without removing bolts from 
NLG door uplock hook. 

Repeat 
process. 

Figure 4. Translation and Execution of Natural Language Orders. 

3.2.8  Model Storage and Importation 

Each procedure is modeled as a task scenario. This top-level data structure is the 

equivalent of a TO. It defines the input conditions of the procedure by specifying initial 

conditions and the action sequence to perform. The initial conditions refer to the systems, 

tools, modeling assumptions, human forms, and metadata necessary to set up a simulation. 

The simulator uses various modules to generate human and system behaviors, as well 

as hazards and failures. Each of the modules covers a specific domain of the simulation: 

geometric, physics-based, and intelligent agent. 

The corresponding models are fetched from the authoring /simulation library (ASL) 

to build the corresponding simulation model. The ASL is a "backlot" of models reused across 

scenarios. The references between models are closed. This means that all the necessary 

information is in the database. In other words, the validation tool can run as a stand-alone 

application. 

22 



Natural Language 
Input 

-* Generated PAR Expanded PAR Output Simulation 

Dump APU 
accumulator. 
Dump emer brake 
accumulator. 

Disconnect 
elbows from NLG 
dooruplock 
hook. 

Remove NLG door 
uplock hook by 
removing bolts from 
structure without 
removing bolts from 
NLG door uplock 
hook. 

Dump Accumulaton; Agent, P1ane)= 
Seq(DumpAPUAcc( Agent, Plane), 

DumpEmerBreakf Agent, Plane)) 

SecflDrsconnectfAgent, Bbow_1), 
Disconnect( Agent, Gbow_2)) 

RemovefAgent, Bo!t)= 
Seq| U nscrew< Agent, Bolt,Bulkhead), 

Remove(Agent, Bolt, Hook)) 

-x 

/ 

Figure 5. Translation and Simulation of a TO. 

Similar to the maintenance procedure author, the framework feeds off source 

databases to populate the ASL. These databases are maintained by domain specific 

applications: TO authoring (IETM, LSA); CAE; CAD; and PDM. 

The records from input data sources might require specific conversion operations 

before being stored in the ASL. For example, geometric models must be simplified to allow 

real-time rendering. The complexity of the importation process is highly dependent on the 

difference between the format of each particular data source and ASL internal models. Some 

of these import steps might have to be accomplished manually if the data representations 

between the source data and ASL differbeyond what can be automated. 

We expect the validation tool to interface with each applicable data source (e.g. LSA 

tables containing task narrative desciptions, etc.) through an enterprise-wide PDM system. 

This would keep the source data and ASL in synch and trigger the necessary re-validations 

when an update to a TO procedure occurs. 

3.3      SOURCE DATABASES 

Figure 2 identifies four kinds of source data necessary to support the framework: 

23 



• TO Data: The TO data contains a description of the maintenance procedure in a format 

similar to LSA or IETM. Each description contains the input conditions (maintained 

system, spare parts, number of technicians, etc.) and a step-by-step narration of the 

procedure. It can be seen as a semi-structured document containing tabular information 

(various references, etc.), plain text (subtask narration), and pictures (schematics). 

• Computer Aided Design: CAD data describe the shape and structure of the maintained 

systems. Once imported, it will be used to supply geometry to the VR system and model 

system assemblies. Modern CAD models are parametric; they contain information such 

as position constraints or dimensioning that can be reused, and component geometry and 

behavior models. 

• Computer Aided Engineering: In general, a system CAE model is a block diagram that 

interconnects quantitative component models. The same topology can be reused in the 

framework. However, models may need to be simplified to perform interactively while 

remaining realistic. They also must be upgraded with a qualitative layer. Finite-element 

CAE models do not correspond to our lumped-parameter framework, and are outside the 

scope of our framework. 

• Other Product Data. Other product data is all the data used to complete a simulation 

model for the validation process. It may include serial or part numbers, references to 

technical documentation, etc. 

Under normal exploitation conditions, the validation tool would routinely exchange 

maintenance procedures with third-party authoring systems. This should take place under the 

auspices of the PDM system. CAE, CAD, product data, and any other kind of data necessary 

to maintain the virtual "backlot" would be imported as needed. 

3.4      FRAMEWORK PROCESSES 

Simulation can validate both the systems and human factors aspects of a maintenance 

procedure. The systems aspect checks the soundness of the procedure regarding the 

maintained system. The human factors aspect checks that the procedure is feasible and safe 

to perform for a representative set of human models. The human factors check requires the 

execution and analysis of several simulation runs using technicians of representative 

24 



anthropometry for accommodation analysis. This decoupling allows the author to first 

concentrate on the systems part of a procedure before dealing with specific human factors. 

We decompose the validation process in two steps: 

Step 1: System Dependent Validation (SDV). SDV is a simulation to detect systems failures 

and hazards. It also detects human factor hazards that are independent of a specific human 

model. For example, it can detect if the technician is exposed to toxic substances. 

Step 2: Human Factor Dependent Validation (HFDV). HFDV is a system validation with a 

specific human model. It detects the human factor hazards or failures specific to the 

technician model, such as failure to reach or insufficient strength. 

The difference between SDV and HFDV lies in the anthropometric and biomechanic 

characteristics of the technician, which are relevant in HFDV and not in SDV. For a given 

procedure, the author will have to run at least one SDV and enough HFDVs for an 

accommodation analysis. 

3.4.1 Editing Process 

LSA or IETM data does not contain all of the information necessary to produce a 

simulation. For instance, the system geometry necessary to render computer graphics and 

collision detection in a human model is not included in LSA task narrative data. The 

validation-specific part of the editing process must allow an imported procedure to be 

completed with the adequate data. 

If the validation fails, the author can edit the procedure in the source system. 

However, in order to use the validation tool as stand-alone, or to quickly re-test a modified 

procedure, the application should support part of the procedure editing process. In particular, 

the author should be able to edit a subtask sequence as well as its caution and warning 

messages. 

3.4.2 System Dependent Validation 

SDV is related to how simulations are performed. The simulation itself emerges from 

the interaction of dedicated simulators. 

25 



A scene management system uses the geometric description of the world to render 

interactive 3D graphics and detect collisions. A physics-based simulator generates systems 

behaviors. Finally, an intelligent agent drives each technician in the scenario by interpreting 

the scripted actions or orders. 

Simulated procedures interact with each other across domain boundaries. For example, an 

agent performing an action, such as opening a valve, will generate an animated motion in the 

geometric domain. The result of its actions also affects the simulated systems (physical or 

systems domain). This in turn may change the appearance of an object (position of a gauge). 

Finally, the change, needle motion, can capture the attention of the agent. Having perceived 

the system's new state, the technician might decide to close the valve. The simulation halts if 

an action fails or a hazard occurs. The program should then switch to a debugging mode. 

The simulation can be broken down into three domains: geometric, physics-based, 

and agent. These different simulation domains run in parallel and share the state variables 

common to their models. 

3.4.2.1. Geometric Domain. Geometric simulation generates the 3D graphics fed in 

the user interface. It is produced by a scene management system which stores the scene's 

geometric description in a scene graph. This system also is used to detect collisions between 

simulated solids. 

3.4.2.2. Physics-based Domain. A physics-based behavior simulation allows the 

production of a realistic response from the maintained system to the actions of the technician. 

This includes simulating physical processes that are reported as hazards (leaks, corrosion, 

combustion, electrical hydraulic or mechanical failure). 

There are two types of physics-based simulations. The first deals with the behavior of 

physical objects due to their geometry. It prevents objects from interpenetrating with realistic 

collision reactions and contact forces. The second type is non-geometric and models systems 

as interconnected functional modules that exchange signals. 

Most systems are modeled with non-geometric or lumped parameter models. They are 

assembled by interconnecting functional modules, as in block diagrams. The modules 

exchange signals representing flows of matter or energy. This paradigm applies to most 

26 



engineering domains (electric, hydraulics, control, mechanics, etc.). Traditionally, simulators 

use quantitative models, but we recommend semi-qualitative modeling. Semi-qualitative 

modeling allows physical processes to be simulated independently from the components in 

which they take place. This essential feature allows specific kinds of processes to be 

identified as hazards and the simulation to be halted when one of them occurs. For example, 

one can use a generic model of a fluid flow process and categorize it as a leak if it goes from 

the maintained system into the environment. In addition, the qualitative part of the simulation 

can be used as sensory input to the agents in the environment. Finally, a semi-qualitative 

simulation engine can "explain" the behaviors it generates. This self-explanatory feature is a 

core element of the system's debugging functionality. 

3.4.2.3. Agent Domain. The main product of TO authoring is a sequence of orders whose 

strict interpretation by technicians guarantees safe and successful maintenance procedures. 

The level of detail conveyed in the maintenance procedures must correspond to the skill level 

of the person performing the task. This can impact the level of detail the author must convey 

when writing the specific steps for a maintenance procedure. A desktop validation 

application would require an agent model with similar skills and expertise to interpret and 

perform a maintenance task in a realistic manner. In particular, interpreting means 

"understanding" an instruction and inferring the corresponding elementary action sequence. 

For example, when a technician is instructed to unscrew a bolt, the elementary task of 

grasping the right tool is not explicitly described. Furthermore, some of these tasks may be 

optional. In our example, this is the case if the technician already holds the right tool. 

We propose to model the agent's experience and skills with the Parameterized Action 

Representation (PAR) [10]. PAR would also be used as an internal representation or scripting 

language for action sequences that are explicitly described in a TO. In other words, in each 

task scenario, a PAR script would represent the orders stated in the corresponding TO. 

A PAR action contains input and output conditions. The action is executed if the 

input conditions are satisfied. The output conditions are asserted upon completion. These 

conditions apply to facts about the state of the world known by the agent at the time of 

execution. For example, an agent operating a valve will be interested in its state (open or 

closed). These facts are acquired via sensory input simulated as sensory actions, which can 

27 



be limited by the situation or capability of the agent. For example, an agent cannot read a 

gauge if it is out of sight. Alternatively, if the author does not care for sensor modeling, the 

agent can be omniscient and extract facts from the whole simulation environment at any 

time. 

Some of the input conditions can specify preparatory actions. These condition/action 

pairs are sub-goaling constructs where the action can be executed to achieve its associated 

condition if necessary. In our example, grasping a tool before using it is a preparatory action. 

An action can either trigger PAR sub-actions or call out a primitive action. Primitive 

actions are skills such as locomotion, grasp and attention that are built into the agent. Until 

now, the PAR framework has been implemented with the EAI Jack Toolkit that provides the 

human model and the aforementioned skills. 

PAR interpretation represents the cognitive process of the simulated technician. It 

drives the actions of the software agent controlling the geometric representation of the 

technician. A PAR-based agent is reactive. This means that its choice of preparatory actions 

will be based on the state of the world at the time of execution and not on planned or past 

actions. In other words, PAR actions are pre-set (static) hierarchical plans with optional parts. 

The agent is responsible for completing an action or reporting a failure, as well as its 

immediate cause. 

While statically-defined actions might be sufficient for most tasks, dynamic action 

plans will be necessary for complex ones. For example, disassembly requires specific 

planning algorithms to compute a valid extraction sequence and path for each part of an 

assembly [12]. One possible solution is to use dedicated skill modales to generate PAR 

actions on the fly. In our disassembly example, a disassembly action would call upon a 

disassembly-planning module to generate a whole PAR hierarchic plan to perform the task. 

The action would be, in essence, refined or expanded dynamically. The plan returned by the 

module would be interpreted as a regular static PAR action. 

3.4.3  Human Factor Dependent Validation 

HFD V is a series of system dependent validations, each using a different human form 

model. Each simulation takes into account the specific biometrics of the human model. Most 

28 



of the hazards (collision with a moving part) or failures (failure to reach or see) detected at 

this stage will be caused by geometric factors. Other model-dependent factors such as 

endurance and strength might reveal that a procedure is too demanding for certain segments 

of the technician population. 

The human models are supported in parametric form by dedicated software such as 

the EAI Jack Toolkit. The software provides physical skills and capabilities to our virtual 

technicians. A software agent completes the model with cognitive abilities. As with the 

biomechanical model, the parameters of the cognitive model could be manipulated to capture 

different expertise levels. The author could use them to assess whether a TO is explicit 

enough for an average technician. 

HFDV can be automated as a batch process. If the system has a predefined database 

of representative models, they can be tested in sequence until a fault occurs or until the whole 

group is exhausted. 

3.5      REAL-WORLD APPLICATIONS 

3.5.1   Publishing Simulation Graphics 

Our framework focuses on supporting the TO validation process. It uses desktop 

virtual reality to depict the execution of maintenance procedures in a simulated environment. 

The produced 3D computer graphics appeal to the author's natural geometric reasoning to 

provide valuable insight into a maintenance task problem. Similarly, electronic maintenance 

manuals could be enhanced with these graphics to further assist technicians. Likewise, 

material from failed procedures could be used to communicate maintainability issues to 

engineering teams. 

The published material could range from pictures and movies to animated or 

interactive 3D environments. It is still too early to say under which form data from the 

validation tool could be published or exported to another system; however, it will most likely 

be as an interactive multimedia document. Also, specific data combinations (2D, 3D, sound, 

and hypertext) could be generated. Such combinations will be platform independent as 

standards for pictures, movies, virtual worlds; human models will be integrated with semi- 

structured modeling languages such as the extensible Markup Language [13]. 

29 



3.5.2   Model Importation, Building, and Maintenance 

As stated earlier, we expect to use a PDM system to interface the 

authoring/simulation library (ASL) used to support a TO validation application, with the 

databases used to support TO authoring and engineering applications used by weapon system 

manufacturers. 

The ASL is populated and updated by importing data (graphical and textual) from 

sources such as CAD, CAM, CAE, IETM, LSA etc.). The data from each source must be 

converted to the ASL format using a specific data import process. Although CAD data is 

straightforward to convert by automated decimation (see Figure 6), CAE or TO conversion 

will tend to be more labor intensive. The main reason is that the formats of the 

High-Resolution Model 
Decimate 

Low-Resolution Model 

Figure 6. 3D Model Decimation. 

source data and ASL are quite different. Natural language processing might assist in 

converting the narrative parts of LSA and IETM files into PAR. 

Data importation will be a major process during the early phase of the validation tool. 

The virtual "backlot" will be updated with new models each time a procedure refers to a non- 

catalogued task scenario element. However, this up-front cost will be amortized once the 

ASL reaches its critical mass. Afterwards, occasional updates will keep the ASL in synch 

with the rest of the authoring system. 

If TOs are edited within the validation tool, they will have to be exported back to the 

original authoring system (if any). 

30 



Manual data conversion may require more time and skills than a single author may 

have to offer. This implies that support modelers may be required to assist authors in setting 

up new simulations. 

3.6     AUTHORING AND SIMULATION LIBRARY (ASL) 

Authoring and simulation data support the author-test-validate cycle. The data is 

obtained through import from other engineering and logistics data sources , or input directly 

during the authoring activity. In either case, the data is stored as reusable models in the ASL. 

We can classify the models by domain and geometric nature. We have three modeling 

domains: human, system, and task. Each can be divided into geometric and non-geometric 

components (see Table 1). 

Model Domains 

Components 

Geometric Non-Geometric 

Human 

System 

Task Scenario 

Human model 

Individual system 
component shape, system 
assembly 

Initial environment 
layout (technician and 
system position) 

Action representation, 
human model 
(biomechanics) 

Physics-based 
component model, 
hazard models 

Initial environment 
state, subtask sequence 

Table 1. Geometric and Non-Geometric Models. 

3.6.1   Task Scenario 

A task scenario is the internal representation of a TO. It lists the initial state and 

composition of the environment. In particular, it indicates the number of required 

technicians, the configuration of the maintained system, and the required spare parts. This 

information describes the spatial position of each entity having a geometric appearance, as 

well as its internal state. It also includes the TOs themselves along with caution and warning 

messages. These subtask sequences are stored in textual and scripted (PAR) form. 

Task scenarios are the master data of the validation tool. The rest of the ASL supports 

them. They are also the subjects of the validation process. 

31 



As a master document, a task scenario contains all the references to all the models it 

explicitly requires. Its metadata tracks their respective versions for revision control purposes. 

Extra meta-information such as the name of the author and a record of the validation process 

may be included. 

3.6.2  Actionary 

The Actionary is the library containing all the PAR actions of the validation tool. It 

represents the knowledge of the software agent driving the human model. This knowledge 

must be broad enough to enable a virtual technician and a human technician to interpret an 

order in a similar fashion. In other words, the Actionary provides a well-founded vocabulary 

of actions suitable to support direct translation of an order in textual form to a short script. 

Each action is a procedure with parameters such as agent, objects, and manner. The 

agent designates the entity that performs the action. The objects are the entity on which the 

action is performed. The manner indicates how the action is performed. 

An action has input and output conditions. The input conditions are subdivided into 

applicability and preparatory specifications. Applicability conditions define the properties 

that the agent of the object must have by design. For example, the OpenContainer action 

will only accept containers that have a lid. Preparatory conditions specify the initial state in 

which the environment must be to perform the action. In the example, a container must be 

closed in order to be opened. A preparatory condition can be associated with an action whose 

execution will satisfy the corresponding condition. This action/condition pair is a way of 

formulating sub-goaling. In our container example, the OpenCan action could have the 

Has_Can_Opener/Get_Can_Opener condition/action pair. An agent would have to get hold 

of a can opener with the GetCanOpener action if it started executing the OpenCan 

without one. Output conditions define the effects of an action when its execution is 

completed. 

The Actionary is an action taxonomy in which actions are grouped by categories and 

subcategories. For example, the Open action is refined depending on the type of its 

parameters. The most general Open category contains all the Open subcategories. We could 

have an Open subcategory for opening containers and another subcategory to open doors. 

32 



The latter category could be refined depending on the way a door opens: rotates or slides (see 

Figure 7). 

Open_Cpntainer 

Open_Can Open_Sliding_Door OpenRotatingDoor 

Figure 7. Open Action Taxonomy. 

An action inherits the conditions from the action categories to which it belongs. If the 

Open action requires its subject to be Openable, then all the Open subcategories will perform 

that check. 

When executed, a PAR action can either call a primitive action or execute a sequence 

of sub-actions (composite action). An action can execute many sequences in parallel. For 

example, the RemovePanel action might require the agent to hold the panel with one hand 

and open its latches with the other. The action's execution sequence would be of the form: 

Remove_Hatch(agent, hatch) = parJoin(Hold(agent, hatch, left_hand), 

Unlatch_Hatch(agent,hatch, right_hand)). 

The parjoin construct executes the hold and UnlatchHatch subactions in parallel. It also 

ensures that the action completes when both subactions are completed. 

Because of its procedural nature, its action composition constructs, and its taxonomic 

structure, PAR can be used as a scripting language for TOs, as defined by Ianni. 

3.6.3  3D Models 

3D models capture the shape and structure of the objects represented by the rendering 

system, including assemblies, tools, and human figures. Although this information is mainly 

used by the scene management system, it may be accessed by other components of the 

simulation such as an assembly-planning module. 

33 



3.6.4 Human Models 

The parametric human model completes a human figure geometric representation 

with anthropometric data to assess the human factor impact of a given scenario on 

technicians varying in size, force, and gender. This assessment also includes reachability, 

effort, and attention. Each individual of the technician population is represented with a 

unique set of parameters to plug into the parametric model. 

There are different implementations of human models, each with its own 

parameterization. Industry standards are being developed to improve interoperability, for 

example, by the SAE G-13 subcommittee [14]. 

3.6.5 Physical Behavior Models 

We propose to represent the maintained systems as assemblies of elementary devices. 

Each device has a model stored in the ASL. Therefore, complex systems can be modeled as a 

network of interconnected devices. This modeling method is based on block diagrams, and is 

used in most engineering fields. 

We do not need the same accuracy and level of detail as in engineering simulations. 

We only need physical models that are realistic enough to simulate hazards and action 

failures that are simple enough to run at interactive rates. 

We diverge from traditional engineering practices by advising the use of semi- 

qualitative models instead of purely qualitative ones. Semi-qualitative modeling allows the 

numerical behavior necessary for an interactive simulation to be generated and an abstract 

qualitative representation suitable for the sensory or cognitive tasks of software agents (such 

as PAR execution, planning, or diagnosis) to be maintained. Aside from its dual 

representation, semi-qualitative modeling has the following features: 

•    Physical Processes Can be Modeled: Physical processes such as matter or energy flows 

can be modeled as independent entities. These models are automatically instantiated 

when the conditions supporting a flow are met somewhere in the simulated system. For 

example, a fluid flow can be instantiated in any pipe whose pressure gradient is non zero. 

34 



• General Physics-based Models Can be Encoded: Semi-qualitative models can directly 

encode the most fundamental behavior of most physical domains. This allows very 

general model libraries from first principles to be created. 

• Domain Models can be Integrated: For example, a model library for fluids and a model 

library for thermodynamics can be combined within the same scenario. Dependencies 

between domain models can be encoded to provide automated model building. 

The use of physical behavior models has two benefits. First, we can model hazards as 

processes. When such a process is instantiated, it signals itself as a hazard and the simulation 

stops. For example, any flow of toxic vapors escaping from a pipe can be flagged as 

hazardous. Second, representing processes separately from the components in which they 

take place provides a process-centered view of a simulation. This is particularly useful to 

understand what is happening. For example, it is easy to understand why the fluid level of a 

tank varies if one knows the active adjacent fluid flows. This type of analysis can be partially 

automated for debugging purposes. 

35 



SECTION 4 

AMI CONCEPTUAL DEMONSTRATION 

4.1 INTRODUCTION 

To illustrate the AMI framework, we present a conceptual demonstration of desktop 

TO validation. Our goal is to show how the framework discussed in Section 3 could be 

applied in the process of authoring a TO procedure, and identify the various technologies on 

which our proposed validation tool and framework rely. We will strive to show how the 

framework supports the incremental authoring and validation of a given TO procedure via a 

"generate and test" loop. 

The sample maintenance procedure used for this conceptual demonstration involves the task 

of removing the nose landing gear (NLG) front uplock hook on an F/A-18 aircraft. To 

illustrate the use of the validation tool, we present an analyst's iteration through three variant 

methods for performing the task. Each of these variants is referred to as a scenario. Each 

scenario will be demonstrated in sequence, and each scenario ends or terminates when a 

hazard occurs, or when all the prescribed actions have been performed. The first two 

scenarios illustrate the occurrence of hazards: a hydraulic fluid leak, and the dislocation of 

the front uplock hooks latch (the hooking element of the front uplock hook). The third 

scenario represents successful accomplishment of the task. We will call the technician 

performing the scenarios Jack, after the EAI Jack human model use to develop this 

demonstration. It should be noted that the same framework could be implemented with other 

types of human models 

4.2 CONCEPTUAL DEMONSTRATION DEVELOPMENT 

4.2.1   Initial State 

The environment is comprised of Jack, an F/A-18 aircraft (see Figure 8), and two 

tools - a manual wrench and a pneumatic or electric wrench. 

36 



4.7«! 

-3,1m- 

Figure 8. F/A-18 (©1999 The Boeing Company). 

The airplane is jacked. The front-uplock hook is located in the front NLG's wheel well (see 

Figure 9), or more precisely, at the bottom of the bulkhead close to the front of the well. 

There are three jack pads: one located behind the NLG and two under the wing, 

2.87 m (113 in) off the centerline (see Figure 9). The front pad is 1.27 m (49.97 in) above the 

ground when the plane is resting on its landing gear (LG). The jack lifts it to 2.11 m 

(82.94 in). The nose landing gear front uplock hook is approximately at that height (a few 

centimeters higher). 

Each scenario starts with Jack standing in the wheel well facing the FUH (forward). 

Jack stands on a step stool or a ladder to reach the front uplock hook. We assume that the 

hydraulic lines are pressurized. 

37 



CAUTION 

TO PREVENT DAMAGE TO 

GROUND CABLE, DO NOT 

USE THIS LOCATION FOR 

GROUNDING WHEN LANDING 

GEAR IS CYCLED. 

NOSE LANDING 

GEAR DETAIL 

Figure 9. General View of the Work Area. 

4.2.2   Role of Technical Order 

The goal of the TO procedure is to safely remove the front uplock hook assembly 

without inducing or experiencing any hazards. This removal task requires special care 

because the bolts that hold the front uplock hook against the bulkhead also hold spring- 

loaded mechanisms inside the front upload hook (see Figure 10). 

As previously mentioned, the TO is a sequence of warnings and procedural steps that 

must be followed by the maintenance technician to prevent hazards during task execution. 

The direct orders must be carried out within the context of the warnings (standing orders). 

However, we must assume that the standing orders are consistent with the direct orders. The 

former only affects the latter in the way they are performed and do not require re-planning at 

that level. 

38 



-~:-l 

P13BB(T.3EÖM 

Figure 10. Front Uplock Hook Assembly. 

We restricted the TO to the following sequence of direct orders: 

1. Dump APU and emergency brake accumulators. 

2. Disconnect the two fluid lines (elbows) from the front uplock hook. 

3. Unbolt the front uplock hook from the bulkhead without removing the (three) bolts 

from the front uplock hook 

Each of these direct orders translates to a sequence of PAR scripts. They are refined in lower 

level PAR actions during execution. 

Two applicable warnings are associated with the direct orders: 

1.   Titanium alloy lines will break if flexed or twisted too much during component removal 

or installation. 

39 



2.   To prevent damage to NLG uplock hook spring loaded internal mechanism pivot points, 

do not remove bolts from NLG uplock hook. 

The first warning instructs the technician to disconnect the elbows with care. It specifies how 

the second step of the TO must be performed (with care). Also, the elbows do not provide 

structural support for thefront uplock hook. Therefore, if direct orders 2 and 3 were reversed, 

there would be a risk of breaking the fluid lines (a structural hazard). The second warning 

requires that the bolts be unscrewed without removing them from the front uplock hook. This 

standing order is directly translated the third direct order. 

The first standing order pertains to the neutralization of the fluid lines to be 

disconnected in the third order. It is an abstract version of the two separate steps. Each 

corresponds to complex procedures described in separate TOs. In the original TO they are 

performed at the beginning of the task rather than just before their effect is relevant. 

4.2.3   Script Authoring 

An author could write and validate the simplified TO in three iterations. We assume 

that editing is performed within the validation tool. It could also be done in a separate 

application. In this case, the new version of the TO should be re-imported into the validation 

tool. 

Setting Up the Environment. The author starts by creating a task scenario 

corresponding to the input conditions of the TO. This includes setting up the virtual 

environment. For the simplified TO, this includes a jacked F/A-18 model, a Jack figure 

representing the technician, a front uplock hook assembly, and two tools (a manual wrench 

and a pneumatic or electric wrench). The author must also adjust one or more cameras to 

observe the simulation. Some parts of the aircraft model may need to be removed or made 

transparent to facilitate observation. 

The author must tell the system which system models to use during the simulation 

and what kind of behaviors are of interest. Part of this step may be automated. For example, 

when the author adds the geometry of the NLG front uplock hook in the scene, its 

corresponding physics-based model is automatically added to the simulated system. 

40 



Dependent models may be added as well. However, the author controls the scope of the 

simulation. 

Editing the Subtask Sequence. The manner in which the author inputs the sequence of 

sub-tasks (or direct orders) in the task scenario depends on the tool's interface. The author 

uses a scripting language or free form text. In the first case, the text of the order could be 

input along with the script to simplify exporting the TO back to its original authoring 

environment. The text also serves as documentation for the script. In the second case, the 

program generates the script by natural language processing. 

The overall subtask sequence is represented in a flowchart. To add a subtask, the 

author must insert it in the flowchart, and input the order's text and script. When the 

subtask's input is completed, the program performs a syntactic and semantic check of the 

script. 

When writing the script, the author translates the order into a sequence of calls to 

procedural actions that are already defined in the system's database (or the Actionary if the 

script is PAR-based). The sequence of calls define a basic action vocabulary representative of 

the virtual technician skills. 

Demonstrated Authoring Process. The author edits and tests the TO three times. The 

first two versions fail validation because of improper formulation. The third one passes the 

test. 

The first version of the subtask sequence consists of two orders. The first instructs 

that the hydraulic lines attached to the be disconnected, and the second simply instructs the 

technician to remove the hook (see Figure 11). 

Disconnect elbows from NLG 
door uplock hook. 

Remove NLG door uplock 

Figure 11. First Version of Subtask Sequence. 

The first subtask is translated into PAR as: 

41 



Disconnect_Elbows(agenf, hook) = 

seq(Disconnect(agent, hook. Left_elbow), Disconnect(agre/7f, 

froo/c.right_elbow)) 

The action uses an agent and a hook as parameters to translate into the sequential 

disconnection of the front uplock hook elbows. The Disconnect action is a complex action 

assumed to be part of the Actionary. To execute it, the agent must know where to stand, what 

tool to use, and where to apply it. Since there are only two elbows, commanding their 

disconnection in the script is a simple task. Alternatively, the script could have been of the 

form: 

Disconnect_Elbows(asre/7f, hook) = execute( 

Generate_Dissasembly(agent, hook, { hook. Left_elbow, hook.Left_elbow}, 

DISCONNECT)) 

Generate_Dissasembly is a direct call to a disassembly-planning module. The planner 

returns a plan in a PAR script form equivalent to the original disconnection sequence. The 

execute construct actually performs the plan once it is returned by the module. 

The second order can be nai'vely scripted as: 

Remove_Hook(agent, hook)=seq(parJoin(Get_Hold(agent,hook), 

seq(Remove(ageA7f,/70o/c.bolt1), Remove(agfenf,/70o/c.bolt2), 

Remove(ageA7f,/70o/c.bolt3))), 

Put(agent, hook, Table)) 

The action has three nested constructs. The first sequence removes the hook and puts it away. 

The second removes the bolts and secures the hook. The third sequences the removal of each 

bolt. One could argue that this script should be purely sequential, starting with the GetHold 

and ending with the Put. Also, the author assumes that the Get_Hold will complete before 

the last Remove. Otherwise, the hook would fall. The agent must fetch the appropriate tool 

to disconnect an elbow. This information is in the script of the Disconnect action. Fetching a 

tool is optional. It will only be performed once for the first elbow. The Remove action also 

42 



requires a specific tool, an electric wrench. It has two steps: the technician first uses the 

wrench to unscrew the bolt, and then pulls it out from the assembly with the free hand. 

The aircraft hydraulic systems are pressurized. Therefore, a leak is spawned by the 

simulator as soon as the first elbow is removed. This hazard stops the simulation. 

The author corrects any mistakes by inserting a new order at the beginning of the 

subtask sequence (see Figure 12). This order dumps the appropriate aircraft accumulators. It 

is a complex standard procedure described by its own TO. As such, we assume it is already 

part of the Actionary. The author simply reuses it as the script associated to the first order. 

Dump APU accumulator. 
Dump emer brake accumulator. 

Disconnect elbows from NLG 
door uplock hook. 

Remove NLG door unlock hook. 

Figure 12. Second Version of Subtask Sequence. 

The second simulation runs past the second order, which, this time, ends without hazards. 

Because of the 's structure, removing its bolts completely from its assembly releases 

spring-loaded components. As the first removal action completes (hook.boM), the simulator 

detects the free spring-loaded parts and creates a hazard. This stops the simulation. 

The author must modify the last order (see Figure 13) to prevent the hook from 

falling apart. The Remove action is replaced with an Unscrew, which will only detach the 

hook from the bulkhead and leave the bolts in the hook. 

43 



Dump APU accumulator. 
Dump emer brake accumulator. 

Disconnect elbows from NLG 
door uplock hook. 

Remove NLG door uplock hook 
by removing bolts from 
structure without removing 
bolts from NLG door uplock 
hook. 

Figure 13. Third and Final Version of Subtask Sequence. 

The script is of the form: 

Remove_Hook(agent, hook)=seq(parJoin(Get_Hold(agent,hook), 

seq(Unscrew(agre/rt,/>oo/c.bolt1), Unscrew(agenf,/70o/c.bolt2), 

Unscrew(ager7f,/70o/f.bolt3))),Put(agent, hook, Table)) 

This time the procedure executes successfully. 

4.2.4  Support Data 

The edition-validation session requires a variety of models to set up the initial 

environment, edit the PAR scripts, and run the simulation. Geometric models are required for 

the airplane, the hook, the human model, the tools, and other maintenance structures such as 

a ladder or table. These models must carry the necessary sites, or landmarks, indicating 

locations to which the elements of the subtask sequence are relatively positioned. They also 

must identify grasp points on the tool or hook. If the agent uses a disassembly-planner, the 

geometric models must be appropriately annotated. The physics-based model of the relevant 

mechanical and hydraulic systems must be assembled from the semi-qualitative model 

library. Their initial state must also be specified. Finally, the Actionary must contain the 

44 



relevant high-level action vocabulary. In particular, the action corresponding to the 

accumulator dump must be available. 

4.3     CONCEPTUAL DEMONSTRATION - SAMPLE INTERFACES (VALIDATION MODE) 

The conceptual validation tool used to model each of the three scenarios previously 

discussed consists of an interface mockup similar to what we envision an author would use to 

build and monitor the TO validation process. It is expected that the tool would provide 

additional user interfaces to support other core functions of a TO validation tool, such as 

setting up initial conditions for the simulation environment, data import, reporting, etc. The 

user interfaces for these type functions were not developed as part of this research effort. 

The mock interface presented in Figure 14 contains the various text boxes used to 

input text and PAR scripts, as well as to display simulation status messages. It also features a 

window though which the user can see a 3D animation of the simulation environment, and 

change the virtual camera's position to inspect the execution of a task or the environment 

from different camera perspectives. 

A task diagram box allows the user to insert new tasks as boxes and sequence them 

with each other by interconnecting. We anticipate that other connectors, such as decision 

nodes, could be use to create sequences with conditional steps. Each box contains a narrative 

text for the corresponding task. 

The PAR box displays the PAR script corresponding to the active (in red) task box. 

The script can be edited manually or generated by natural language processing. It is 

envisioned that auxiliary windows could be brought up to browse an "Actionary" list for 

standard maintenance actions or tasks (e.g. jack aircraft). 

The final box on the interface is a status box that is intended to inform the user of the 

progress of the simulation. This box could also display error conditions encountered during 

the simulation to the TO author. 

45 



Simulation Viewport 

The viewport allows the user to 
navigate the simulation environment 
by moving a virtual camera. 

Task Diagram 

Each box 
corresponds to a 
task. The user 
builds the diagram 
by inserting boxes 
and connecting 
them. He fills in a 
task description in 
each box. 

PAR Script Box 

The script box 
contains the PAR 
description 
corresponding to 
the active task 
box. 

Status Box 

The program communicates error 
conditions and simulation status 
through this text box. 

Figure 14. User Interface. 

4.3.1   EDIT / VALIDATE CYCLE 

The edit/validate cycle is depicted in four steps in Figure 15 and Figure 16. The first 

two steps consist of data entry. The user inputs a task sequence and the corresponding PAR 

script. If the scripts are automatically generated, the user can always edit them. 

The third step is the actual task simulation. The user can run it continuously, step-by- 

step, or suspend it to focus on a specific detail. The results of the validation are displayed in 

the status box (Step 4). If the simulation fails, the message will contain a description of the 

error. At that point, we could expect the interface to switch into a debug mode showing a 

trace of the simulation and other relevant information such as contentions or variables out of 

nominal range. 

46 



j:j:^^:äj^|jWM^:::: 

Dump APU accumulator. 

Dump am«" brake 
accumulator. 

Disconnect elbows from 
NLG door uplock hook. 

Remove NLG door uplock 
hook. 

fAft Script 

l'^S^ätaiä^^ji:; 

Stepl 

The author 
inputs the text of 
the first task of 
the TO. 

mi-mmmmxzsssmmm 

tttaaUeftKK« 

wmmmmä ;-::*x-':.:-:: .-:::; 

Dump APU accumulator. 

Dump emer brake 
accumulator. 

Disconnect elbows from 
NLG door uplock hook. 

Remove NLG door uplock 
hook. 

b'ümp"Xccüinüiators (Tech, Plane) = 
Seq {Dump_APU_Acc (Tech, Plane) , Dump_Enier_Brake_A 
cc (Tech,Plane)) 

Step 2 

The first task 
description is 
translated into a 
PAR script. The 
translation is 
manual or via 
natural language 
processing. 

Figure 15. Text and PAR script input. 

47 



Step 3 

The author runs the 
simulation. 

%^mmmmMMmmmmmmmm: 

sJw$fft$*qiittxj*. 

Dump APU accumulator. 

Dump emer brake 
accumulator. 

Disconnect elbows from 
NLG door uplock hook. 

Remove NLG door uplock 
hook. 

m 

Dump_Accumulators{Tech,Plane) 
Seq (Dump_APU_Acc (Tech, Plane) , Dump_Emer_Brake_A 
cc (Tech,Plane)) 

j:| Task Failed: A spring loaded part in Hook  was 
|:1 released! 

Step 4 

The simulation 
halts and the 
ystem informs 

the author that a 
hazard has 
occurred. 

W 

4.4      SUMMARY 

Figure 16. Simulation and status feedback. 

Through a conceptual demonstration, we have shown how the AMI framework could 

be used to create and validate the steps in a typical removal procedure found in TOs. The 

author must first define the initial state of the procedure upon creating a task scenario. Once 

the simulation environment (layout, 3D, and simulation models, etc.) is configured, the 

author translates each subtask description sourced from LSA, existing IETM, or author's 

verbal rendering into a PAR script. Finally, through the Jack model, this PAR script sequence 

is executed by the virtual technician to support the validation process. If task procedure 

48 



actions fail, or hazards occur, the author can make the necessary modifications to the PAR 

scripts and recycle through the edit-validation process. 

Our demonstration focuses on translating texts to scripts. The process could be 

manual or automatic (when the technology becomes available). In both cases, the Actionary 

must mirror in abstraction and semantics the actions commonly depicted in TOs. 

The demonstration highlights the need for a dedicated skill module to handle 

assembly or disassembly actions. The rationale for this "outsourcing" relies on the radical 

difference between PAR, which is an executive framework, and an assembly-planner, which 

is deliberative. 

The implementation of the framework hinges on the development of large-scale 

action and simulation model libraries. We identified the need for dedicated skill modules. In 

particular, an assembly planner should support the planning and execution of goal and 

constraint-directed orders prescribing assembly tasks. However, current assembly-planning 

technology handles only a small class of assembly tasks. The technological implications for 

developing an AMI framework is discussed in the following section. 

49 



SECTION 5 

AMI RESEARCH ROADMAP 

5.1      CRITICAL TECHNOLOGIES 

Two broad technology areas are critical to the design and development of a TO 

validation tool like the one described in this report. These areas encompass both software 

components and modeling framework. In general, the software components correspond to the 

simulators, software agent, rendering system, user interface, translators, and data manager. 

The modeling framework defines the standards that must be followed to engineer correct and 

reusable models for each domain. 

The user interface and PDM components are mainstream technologies. Rendering and 

scene management systems are also reaching maturity. Although some are stand alone, others 

work as an integrated environment where various data and behavior sources interact 

uniformly. Human models are also available off the shelf. So far, we have been using the 

Jack Toolkit as an implementation candidate; however, other models exist. In any case, it 

would be prudent that the design of a TO validation tool be compatible with emerging 

industry standards for human models and 3D geometry [14]. 

5.1.1   Human Models 

Most human models today possess the basic capabilities needed to execute a task; 

they can reach and look, and walk and pose. Most models can change shape and size to 

reflect variations in human anthropometry; some even can adopt a specific person's body 

shape taken from laser or video scanning. The better models can be animated via procedural 

codes, motion capture, or interactive manipulation. The best models can be controlled 

through program interfaces and enjoy high-level behaviors such as attention, coordinated full 

body reach, balance, and collision detection. A desirable feature, not yet found in commercial 

human modeling systems, would be a direct linkage between strength, fatigue, comfort, 

collision avoidance, and task achievement. Inverse kinematic procedures can manage 

collision avoidance and task achievement, while dynamics simulation possesses all five 

features. True dynamics simulations are both expensive to simulate and difficult to control, 

and are not likely to be readily available outside the research or other specialized 

50 



communities (such as sport performance analysis or clinical biomechanic studies). However, 

most tasks in the aircraft maintenance domain are not characterized by fast, forceful 

movements - more likely by awkward postures, torque strength, repetitive actions, or 

hazardous substances. None of these situations requires true force-based dynamic 

simulations, so inverse kinematic procedures will usually suffice. 

In order to function within the TO validation domain, a human model should be able 

to understand and execute tasks or procedure steps, preferably stated in a form convenient to 

the user. The software structure of the human model should facilitate access through a well- 

defined functional API and should permit the return of model state information useful for 

evaluation and validation. Ideally, such information will be used to guide or modify the 

simulation, thereby providing some task responsiveness in lieu of actual force-based 

(dynamic) simulation. For example, a reach task failure may trigger alternative access paths, 

collision detection may be replaced by collision avoidance, and an occluded line of sight may 

cause automatic re-posing of the human model. These are precisely the situations appropriate 

for task validation: feasibility is more important than optimality. No existing human model 

meets are these requirements, but one with a good API and reporting facilities will be clearly 

superior. An instruction-level control and simulation system will fit comfortably on top of 

such an API. We next turn to examine a representation that will allow instructions to the 

human model (with a suitable API). With an instruction-level interface, the TO author should 

be able to launch human action validation studies from the TO text, see the results of the 

validation in computer graphics, and examine any resulting failure conditions. 

5.1.2   PAR-Based Agent and Specific Skills 

The AMI framework relies on the use of PAR scripts to model maintenance 

procedure subtasks and an Actionary to model the knowledge of the technician. We still have 

to prove that PAR is suitable for large-scale Actionaries. Furthermore, skill-specific 

technologies need to be integrated into the PAR system. In particular, (dis)assembly planning 

is a "must have" in the domain of maintenance simulation. 

Because of its generality, PAR is not expressive enough to capture the complexity of 

a (dis)assembly operation in a flexible way. For example, one could script a whole 

disassembly sequence as in the editing process. However, writing such a script would be 

51 



labor intensive for large assemblies. In particular, the author must select an assembly 

sequence that guarantees that the assembly is stable at all times. This is known as the 

fixturing problem or finding areas to support or grasp an assembly to counteract its weight 

and insertion forces. In the uplock hook scenario described earlier, the author must instruct 

the technician to hold the hook with the left hand. 

General assembly planning problems are currently too complex to be solved by 

computers. State-of-the-art assembly planning algorithms [15] will only handle simple 

problems. Simplifying assumptions such as one-step motion, one-step translation, and 

monotonic sequences means that the insertion path for each part is defined by a single 

rotation/translation or a single translation. Furthermore, the sequence cannot undo or 

temporarily reconfigure a subassembly to enable other insertions. Assembly planning 

research also addresses related problems such as fixturing [16] and use of assembly tools 

[17]. Few robust assembly planners exist. The most widely recognized as such is 

Archimedes 2 [12]. 

Using an assembly-planning module extends PAR functionality, but more 

importantly, it allows the author to let the virtual technician solve assembly problems as a 

human technician would and only detail critical tasks. The assembly skill allows textual and 

scripted orders to remain at the same level of abstraction. An assembly-planning module 

would allow an author to script assembly related orders the way they are naturally issued; 

i.e., with goals and constraints rather than with detailed assembly steps. 

The uplock hook example shows that in spite of the disassembly skill of the 

technician special constraints have to be made to explicitly prevent hazards. In particular, the 

third TO simulation instructs Jack to unscrew the bolts without removing them from the 

hook. Assembly planners are also meant to handle such constraints [18]. 

5.1.3   Natural Language Technologies 

In previous Air Force projects addressing TO generation, our research group 

investigated issues involving natural language understanding and generation. The theory 

behind this was based on the fact that TOs are written in natural language, not an artificial or 

algorithmic one. Therefore, the TO authoring process had something to do with the creation 

of such natural language text. As we studied the problem further and consulted TO authors, 

52 



the role of natural language shifted from generation more toward understanding. The main 

reason for the shift was that existing instruction sources -- either as TOs or as LSA records ~ 

could be a resource in building the procedural step representation, or PARs. Once the 

maintenance task was described in PAR form, it could be edited, animated, and used for task 

validation. Moreover, the PAR form by design lends itself to natural language sentence 

generation should that be necessary or required. 

Natural language technology can be used for TO validation under the following 

conditions: 

- A natural language parser must understand the syntax of the sentences it is presented. 

- A natural language parser must have a lexicon so that it can understand the words used 

in the instructions. The technology we use for this involves a particular kind of parser that 

uses tagged fields for each word (so-called lexical semantics) to properly interpret the 

input sentence. 

- The parser must output its sentence analysis in a form that is digestible by other 

processes; in particular, we demand that the output be in an action representation form 

(PAR) suitable for subsequent control and animation of a human model. 

- The natural language processing from sentence to PAR should occur fast enough to be 

transparent to the user of this technology. 

- Natural language processing should eventually be satisfied by commercial off the shelf 

(COTS) components. 

In the PAR implementation that we have developed, natural language technology is 

used to build the proposed framework to validate TOs. Our software module takes natural 

language instructions and generates one or more instantiated PARs. The basic linguistic 

representation of an action is a predicate-argument structure such as 'slide(John, box),' which 

indicates a particular action (the predicate 'slide') and its participants (the arguments 'John' 

and "box'). We use the XTAG Synchronous Tree Adjoining Grammar System, which consists 

of a parser for extracting the predicate-argument structure of an input sentence, and a 

translator for generating an instruction script from this predicate-argument structure. The 

parser extracts these structures by first associating each word in an input sentence with one or 

53 



more elementary tree fragments, which are combined into a single derivation tree for the 

entire input sentence using the constrained operations of the XTAG Synchronous Tree 

Adjoining Grammar System formalism. These elementary tree fragments have argument 

positions for the subjects and objects of verbs, adjectives, and other predicates, which 

constrain the way the fragments can be combined, and which determine the predicate- 

argument structure of the input sentence. The translator then converts this predicate-argument 

structure into an instruction script, which in turn generates one or more instantiated PARs. 

With this architecture, a wide variety of inflections and grammatical transformations can be 

reduced to a much smaller set of predicates in the parser, and a variety of synonymous 

predicates can be further reduced to a still smaller set of PARs and scripting-language 

keywords in the translator. Although some parts of the translator may be domain-specific 

(some actions may depend on particular objects in a domain), the parser can easily be ported 

between domains, since its predicates are based on linguistic observations instead of on a 

particular programming language or virtual environment. 

5.1.4   Semi-Qualitative Simulation 

Semi-qualitative simulation has mostly been applied to build virtual laboratories. It 

has not yet been used for large-scale applications. We are currently developing a new semi- 

qualitative modeling language with standard object-oriented features that should help create 

and maintain large model libraries [19]. 

We are also addressing performance issues to reduce the lag between quantitative and 

semi-qualitative simulators. This difference is mainly due to the ability to change the 

structure of the simulated system during a simulation. This feature is required for specific 

applications such as maintenance simulation. 

5.2     OUTLINE OF FUTURE TASK EFFORTS - FY2000 

5.2.1   Represent Procedure Steps with PAR 

Continue research to represent procedure steps with the Parameterized Action 

Representation (PAR) to describe how language inputs can effectively create PARs for 

downstream simulation and validation. The PAR allows a media-neutral form in which task 

instructions and their execution requirements may be stored for later retrieval, re-use, and 

simulation. By establishing a correspondence between the PAR parameters and the objects 

54 



and situations being examined, the PAR actions can animate a human form maintainer model 

such as Jack. The effort should focus on the feasibility of creating PAR instances from 

language and instruction analysis sources such as LSAR records, existing TOs, and the 

author's conception of the task. 

Four tasks comprise this two-year effort: (a) create PARs for selected maintenance 

tasks, (b) investigate the requirements to correctly parse LSA records and produce or select 

PARs for them, (c) determine how to convert spatialized descriptions (in LSAR) to draw 

references in TOs, and (d) collect TO author monologues during changes and updates. 

5.2.2 Validate TOs through Automatic Generation of Virtual Motion Simulation 

Demonstrate TO validation by automatically generating virtual human motion 

simulations. This will consist of simulated assembly and disassembly tasks based on TO 

procedure steps, and should consider validation-critical issues such as confined reach task 

planning, spatial reasoning for part and assembly removal and replacement, and qualitative 

modeling of object function and behavior during maintenance tasks. 

5.2.3 Determine Knowledge Representation Requirements 

Determine the necessary knowledge representation requirements to actually deploy 

automated maintenance instructions. Beyond demonstration systems, there are real and 

significant issues related to obtaining and managing the large amounts of data, part 

information, CAD files, and the engineering schematics necessary for TO generation and 

validation tool. The requirements for a usable and scalable system need to be outlined. 

This two-year program would include five tasks: (a) demonstrate that PARs for 

selected maintainer tasks can be simulated on a human model; (b) detect and report PAR 

simulation failures; (c) design software interfaces so that motion optimizations can be used if 

needed, but are not called if feasibility is more easily shown; (d) survey and establish 

priorities for human task functions that may need to be simulated; and (e) determine if the 

task analysis components of human models can be actively used during simulation to check 

task feasibility. 

3D 



5.2.4   Create PARs Through Human Performance Motion Capture and 
Semantic Analysis 

Use human performance motion capture and the semantic analysis of those motions to 

construct PAR patterns (called UPARs: uninstantiated PARs) for typical maintenance 

activities. Human motion collected in a VR environment may be used to represent either 

coarse or fine motion strategies for part removal and replacement. Investigate how VR inputs 

and outputs impact the generation and use of PARs for maintenance actions. Since PAR is a 

media-neutral form used for action representations, the outputs that may be obtained from 

PARs should also be media-neutral. Investigate such media-neutral representations, for 

example, XML for multimedia markup and interpretation. Develop demonstrations that show 

how PARs can use a media-neutral output representation and how they may be variously 

interpreted in textual or graphic fashion. 

5.3      BRIEF OUTLINE OF FUTURE TASK EFFORTS - FY2001 

Extend the task validation via human form and system simulation. Candidate 

extension capabilities could be enhancements to the geometry/function reasoning system, 

improved performance in complex geometric situations, visualization of human interaction 

(contacts, pressure) with objects, and automatic annotation of maintenance-significant part 

features. The system should also provide reports on the cause of any validation failures. Such 

information would be used to inform the TO author of possible flaws in the task procedures. 

In the future, such information may be provided to automatic procedure planners who may 

attempt to reformulate the procedure steps or recommend other geometric alternatives to the 

concurrent design team. 

Investigate the use of natural language as a direct means of modifying existing task 

PARs. This will be done initially using a fixed-initiative mode of interaction with the 

computer initiating the dialogue. The investigation should be expanded in the future to allow 

for more natural interaction, with more user initiation, and greater range of input modalities 

such as gesture. 

Create context filters for multimedia presentations of TOs. Context is used to 

establish what information is presented and in what form. Different situations may require 

the same information be filtered and output differently. Examine the feasibility of presenting 

56 



TOs in forms useful to authors, maintainers, instructors, and trainees, including thumbnail 

stills, animations, and speech. Determine the role and usefulness of XML or other 

alternatives for these functions. 

Demonstrate the prototype system on a typical TO generation, validation, and 

presentation task. Report on the process and recommend areas for further study as well as 

those ready for more systematic development. 

5.4      DEVELOPMENT PROGRAM 

In addition to integrating the results of any previous programs into electronic TO 

authoring systems, the following issues must be addressed, resolved, and implemented in any 

future development program: 

• The PDM requirements must be defined, preferably with standardized terms and data 

requirements for maintenance features, object function, contents, etc. It may be best to 

select a target CAD system and its associated PDM and define the needed framework. 

• Access to engineering and simplified CAD data on assembly shape, structure, and part 

function is needed to assess maintainer hazards, (dis)assembly orders, and equipment 

limitations. This data may be available through the PDM, but it may be scattered across 

enterprise databases and non-integrated software systems. 

• A human modeling system interface should be based on a human modeling standard, or 

at least on a standardized API. 

• A few robust extensions to human form animation systems need to be developed, 

especially collision avoidance reach planning and action failure reporting via the API. 

• PAR and natural language parser software must be migrated into the TO authoring 

environment. 

• Visual and textual interfaces must be implemented to launch validations and interpret 

their results within the authoring workstation. 

• TO prototypes must be evaluated and iterated with real authors performing actual 

authoring and update tasks. 

57 



Since the issues outlined above are part of a large-scale software effort, a competent 

software integrator should bear prime responsibility. Software components from the 

proposed FY2000 efforts need to be incorporated and possibly extended. While COTS 

components such as human models may be available for certain aspects of the development 

effort, a CAD visualization tool, a language parser, and the baseline electronic TO authoring 

system, ongoing dialogues between contractors will clearly lead to increased likelihood of 

successful integration and product performance. 

58 



REFERENCES 

1. Przemieniecki, J. S., Acquisition of Defense Systems, Washington, DC: American 

Institute of Aeronautics and Astronautics, Inc. (1993) 

2. Sanchez, E. and Boyle, E. Automated Support for Maintenance Technical Manuals, 

Technical Report AL/HR-TP-1997-0051, Human Resources Directorate, Logistics 

Research Division, Wright-Patterson AFB, OH (1997). 

3. CIMdata, Product Data Management: The definition. An Introduction to Concepts, 

Benefits, and Technology. http://www.cimdata.com/USTECH.pdf (December 1998). 

4. Object Modeling Group, PDM Enablers Joint Proposal to the OMB in Response to 

OMB Manufacturing Domain Task Force RFP1, http://www.omg.org (February 

1998). 

5. Chang, K-H, Silva, J., and Bryant, I. Concurrent Design and Manufacturing for 

Mechanical Systems, in Proceedings of ASME Design Engineering Technical 

Conferences, Las Vegas NV (September 1999). 

6. Dai, F., Hopgood, F.R., and Hosaka, M. Virtual Reality for Industrial Applications. 

Berlin: Springer-Verlag (1998). 

7. Dhillon, B.S. Advanced Design Concepts for Engineers. Lancaster PA: Technomics 

Publishing Co. (April 1998). 

8. Phillips Mahoney, D. All Eyes on CAD, Computer Graphics World, Perm Well 

Publishing, http://pennwell. shore.net/cgw/coverstory/1999/05 story.html (May 

1999). 

9. Iwasaki, Y., Farquhar, A., Fikes, R., and Rice, J. A Web-Based Compositional 

Modeling System for Sharing of Physical Knowledge. In Proceedings of the 15th 

International Joint Conference on Artificial Intelligence (IJCAI-97), pps. 23-29, San 

Francisco, CA, Morgan Kaufman Publishers (August 1997). 

10. Badler, N., Palmer, M., and Bindiganavale, R. Agents Animation Control for Real- 

Time Virtual Humans. Communications of the ACM 42(1), 65-74 (1999). 

59 



11. Ianni, J. A Specification for Human Action Representation. In Proceedings of Digital 

Human Modeling for Design and Engineering. The Hague, The Netherlands (May 

1999). 

12. Kaufman, S., Wilson, R., Jones, R., Carlton, T., and Ames, A. The Archimedes 2 

Mechanical Assembly Planning System. IEEE International Conference on Robotics 

and Automation, pp. 3361-3368 (1996). 

13. Extensible Markup Language. 

http://www.xml.org/xmlorg resources/whitepapers.shtml 

14. Society of Automotive Engineers G-13 Human Modeling Technology Subcommittee. 

Web address http://www.sae.org/technicalcommittees/gl3.htni 

15. Halperin, D., Latombe, J.C., and Wilson, R.A. A General Framework for Assembly 

Planning: The Motion Space Approach. To appear in Algorithmica, Special Issue on 

Robot Algorithms. 

16. Romney, B. Atlas: An Automatic Assembly Sequencing and Fixturing System To 

appear in Geometric Modeling: Theory and Practice (Springer-Verlag). 

17. Wilson, R. Geometric Reasoning About Assembly Tools. Technical Report SAND95- 

2423, Sandia National Laboratories (1996). 

18. Rondall, J. and Willson, R. A Survey of Constraints in Automated Assembly 

Planning. In Proceedings of the 1996 IEEE Conference on Robotics and Automation, 

pp. 1525-1532. 

19. Erignac, C. Semi-Qualitative Simulation in Virtual Environments. In Proceedings of 

the Thirteenth International Workshop on Qualitative Reasoning, Loch Awe, 

Scotland (June 1999). 

60 



APPENDIX 

IETM AUTHORING REQUIREMENTS 

1.        IETM AUTHORING REQUIREMENTS (see Figure A-1) 

Current weapon systems being fielded for operation are supported by Interactive 

Electronic Technical Manuals (IETMs). The information presently contained in paper 

documents is displayed electronically to technicians on Portable Maintenance Aids (PMAs). 

The combination of the data to support the weapon system and the presentation system 

running on the PMA enables the technician to interact with the computer. The system 

presents only the data required to complete a task and displays only that data applicable to a 

given weapon system. In order to deliver this type of information, data must be authored in a 

different manner than that used to produce paper documents. 

IETM authoring is driven by totally different considerations than the authoring of 

paper manuals. No longer is page appearance primary. What drives the software and 

hardware is the content of the data. In IETM authoring, each piece of data is inserted into a 

"slot" in a database. A maintenance procedure is not stored as a flat file; rather, a procedure's 

elements are arranged by database schema, and at display time the pieces needed are pulled 

from the database and assembled in the proper order. The IETM Authoring System database 

is compatible with MIL-D-87269 (Data Base, Revisable: Interactive Electronic Technical 

Manuals, For the Support of). The content of the database is accessible by selecting the 

desired system, subsystem, and sub-subsystem, and provides the following types of data: 

• Descriptive 

• Procedural (Tasks) 

• Fault 

• Part 

Additionally, when data is used in more than one place, it is created and stored once 

(the second, third, and fourth occurrences simply point to the first one), thus permitting 

common data to be reused. For instance, warnings, cautions, and notes are used throughout 

procedural data. Many of these are repeated many times. 

61 



GRAPHICS GENERATION 

\ 

IETMDB 

IETM AUTHORING VIEW PACKAGE COMPOSITION 

Figure A-l. Interactive Electronic Technical Manual Authoring. 

Another consideration is the electronic linking of data. If one procedure references 

another task, it is not necessary to name the referenced procedure by manual name and 

number. The system automatically links and permits the user (at display time) to select an 

option to initiate the link. 

The system also allows cross-links to be built between text and graphics. The 

authoring system displays graphics and permits the writer to insert a pointer or a callout to a 

specific spot (coordinate) on a graphic. The graphics developed by this effort comply with 

MIL-D-28003, the CALS Computer Graphics Metafile (CGM) standard. 

2.        RESEARCH 

An author spends much time doing research. Research cannot be fit into a practical 

time slot. It is a continuous process during the contract period for a technical manual. 

Through research, the author collects and evaluates information to gain thorough knowledge 

of the product, including its operating principles, use, materials, and maintenance. 

62 



The amount of data available depends on the development stage of the equipment. 

During the early stages of development, the author may be limited to information sources 

such as the following: 

Detail specifications 

Design data books 

Engineering design sketches 

Models 

Mockups 

Personal working relation with design engineer. 

As development progresses through production, delivery, and use of the equipment, research 

for the manual expands into areas such as the following: 

Engineering drawings 

Engineering orders 

Engineering change proposals 

Time compliance technical orders 

Publication change requests 

Field service reports 

3.        DATA SOURCES (See Figure A-2) 

The data sources listed in Table A-l are used in the development of IETM data. The 

data are broken down by the major data types provided in an IETM (descriptive, procedural, 

fault, part). Procedural (tasks) data contains all the information required to do maintenance 

on the aircraft. Each task provides complete, step-by-step, start-to-finish maintenance 

instructions. A list of typical tasks is provided below: 

• Removal 
• Installation 
• Inspection 
• Cleaning 
• Operational Checkout 

Adjustment 
Calibration 
Ground Handling 
Servicing 

63 



Figure A-2. As-Is Data Sources. 

64 



Table A-l. Data Sources Used in IETM Authoring 

LSA 
LSAR-024 Report - Maintenance Plan Part III: Identifies support equipment requirements 
by task 
LSAR 019 Report - Task Analysis Summary: Provides sequential task narrative 

Engineering Data (random reports/presentations) 
Data Item E-12.13E - Human Engineering Design Approach Document - Maintainer 
Data Item E-35.07E - Booklet of Maintenance and Operating Instructions 

Engineering/Vendor Drawings (including drawing notes) 

Retrofit Data - modifies aircraft configuration in the field 

Requirements Change Proposal (RCP) / Configuration Change Proposal (CCP) - used 
by vendor to submit recommended component changes to contractor 

Engineering Change Proposal (ECP) / Engineering Job Sheet (EJS) - used by 
engineering to submit recommended changes to aircraft to the customer 

Factory Visits/Actual Hands On 

Provisioning Data - Part ordering data / SM&R codes 

Process Specifications - Provides process instructions for tubing inst, elec. bonding, and 
grounding, etc. 

Standard Parts Specifications 

Engineering Coordination and Review of Data 

Validation /Verification - actual performance of the procedures (validation is performed by 
contractor / verification is performed by customer) 

Manufacturing Work Instructions (installation)/Visual Aids - Provides instruction for 
installing parts in factory 

Engineering Reports 
94B0128A - Maintainability Equipment Access Matrix: Provides location of components 
(door/access information). 

65 



IETM AUTHORING PROCESS WITH RESPECT TO DATA SOURCES 

STEPS DATA SOURCES USED 

Identify System Components LSA /System Functional Schematics 

Determine Level of Maintenance 
Requirements 

.    LSA 
•    Provisioning data 

Select LRU/WRA 

Research Task Requirements 

1. Should hydraulic and electrical power 
be off during maintenance? 

• LSA/system functional schematics 

• Human Engineering Design Approach 
Document - Maintainer 

• Booklet of Maintenance and Operating 
Instructions 

2. With external power off, is line still 
pressurized? 

• LS A/system functional schematics 
• Human Engineering Design Approach 

Document - Maintainer 
• Booklet of Maintenance and Operating 

Instructions 

3. How is line pressure relieved? • LSA/system functional schematics 
• Human Engineering Design Approach 

Document - Maintainer 
• Booklet of Maintenance and Operating 

Instructions 

4. When a fluid line is to be disconnected, 
will fluid continue to drain? 

• LSA/system functional schematics 
• Human Engineering Design Approach 

Document - Maintainer 
• Booklet of Maintenance and Operating 

Instructions 

5. Are safety devices required to be 
installed during maintenance? 

• LSA/system functional schematics 
• Human Engineering Design Approach 

Document - Maintainer 
• Booklet of Maintenance and Operating 

Instructions 

66 



STEPS DATA SOURCES USED 

6. If maintenance is to be performed on ah 
electrical or electromechanical component 
which is hard wired - 

a. Should wires be removed from an 
existing splice or cut as close to 
component being replaced as possible? 

b. Is hookup schematic required when 
splicing or reconnecting wires? 

c. Is wire bundle positioning and clamping 
critical? 

• Engineering/vendor drawings (including 
drawing notes) 

• Process specifications 
• LSA /system functional schematics 

7. Should aircraft be on jacks during 
component maintenance? 

• Engineering/vendor drawings (including 
drawing notes) 

• LSA /system functional schematics 

8. If aircraft is on jacks with power 
applied, should circuit breakers be pulled 
or ground power switches off to de- 
energize other systems? 

LSA/system functional schematics 

9. Will other components have to be 
removed for access? 

• Engineering/vendor drawings (including 
drawing notes) 

• LSA /system functional schematics 

10. Are fasteners securing component all 
the same type, size and length? 

• Engineering/vendor drawings (including 
drawing notes) 

• LSA /system functional schematics 
• Standard parts specifications 

11. Are the component fasteners one-time- 
usage only? 

• Engineering/vendor drawings (including 
drawing notes) 

• Standard parts specifications 

12. Are special torque instructions 
required? 

• Engineering/vendor drawings (including 
drawing notes) 

• Human Engineering Design Approach 
Document - Maintainer 

• Booklet of Maintenance and Operating 
Instructions 

• Process specifications 
• LSA /system functional schematics 

67 



STEPS DATA SOURCES USED 

13. Are the fasteners safe-tied? • Engineering/vendor drawings (including 
drawing notes) 

• Human Engineering Design Approach 
Document - Maintainer 

• Booklet of Maintenance and Operating 
Instructions 

• Process specifications 
• LSA/system functional schematics 

14. Should an old sealant be removed 
before component removal? 

• Engineering/vendor drawings (including 
drawing notes) 

• Process specifications 

• LSA /system functional schematics 

15. Prior to removal, are special alignment 
marks required to eliminate unnecessary 
rigging? 

• Engineering/vendor drawings (including 
drawing notes) 

• Human Engineering Design Approach 
Document - Maintainer 

• Booklet of Maintenance and Operating 
Instructions 

• Process specifications 
• LSA/system functional schematics 

16. Is component removal procedure the 
same for access as for replacement? 

Engineering/vendor drawings (including 
drawing notes) 

17. Are special electrical bonding and 
sealing instructions required? 

• Engineering/vendor drawings (including 
drawing notes) 

• Human Engineering Design Approach 
Document - Maintainer 

• Booklet of Maintenance and Operating 
Instructions 

• Process specifications 
• LSA/system functional schematics 

18. Will sealant cure time affect assembly 
sequence? 

• Engineering/Vendor Drawings (including 
drawing notes) 

• Process Specifications 

68 



STEPS DATA SOURCES USED 

19. Are warnings or cautions required? • Engineering/vendor drawings (including 
drawing notes) 

• Human Engineering Design Approach 
Document - Maintainer 

• Booklet of Maintenance and Operating 
Instructions 

• LSA/system functional schematics 

20. Are critical installation dimensions 
required? 

• Engineering/vendor drawings (including 
drawing notes) 

• Human Engineering Design Approach 
Document - Maintainer 

• Booklet of Maintenance and Operating 
Instructions 

• LSA/system functional schematics 

21. Are special parts assembly sequence 
required? 

• Engineering/vendor drawings (including 
drawing notes) 

• Human Engineering Design Approach 
Document - Maintainer 

• Booklet of Maintenance and Operating 
Instructions 

• Process specifications 
• LSA/system functional schematics 

22. What materials will be required to do 
procedure: 

Tape                           Shims 

Hydraulic Fluid          Lockwire 

Cotter Pins                  Grease 

Washers                     Fasteners 

• Engineering/vendor drawings (including 
drawing notes) 

• Human Engineering Design Approach 
Document - Maintainer 

• Booklet of Maintenance and Operating 
Instructions 

• Process specifications 
• LSA/system functional schematics 

23. Which way should lubrication fittings 
and bolt heads be facing when installed? 

• Engineering/vendor drawings (including 
drawing notes) 

• Human Engineering Design Approach 
Document - Maintainer 

• Booklet of Maintenance and Operating 
Instructions 

69 



STEPS DATA SOURCES USED 

24. Is the assembly being removed 
"procurable at o-level" or is it coded 
"assemble at o-level" which means that 
the parts which make up the assembly are 
procurable separately and assembly 
instructions will be required? 

Provisioning data 
Engineering/vendor drawings (including 
drawing notes) 
Human Engineering Design Approach 
Document - Maintainer 
Booklet of Maintenance and Operating 
Instructions 

LSA/system functional schematics 

25. Does the part have to be trimmed and 
drilled on installation? 

Engineering/vendor drawings (including 
drawing notes) 

LSA/system functional schematics 

26. Does new replacement component 
come complete and ready to install, or is it 
necessary to remove parts from old 
component for installation on new 
component? 

Engineering/vendor drawings (including 
drawing notes) 
LSA/system functional schematics 

27. Should parts be inspected (QA)? 

28. Is lubrication, servicing, air bleeding, 
or rigging required? 

Engineering/vendor drawings (including 
drawing notes) 
Human Engineering Design Approach 
Document - Maintainer 
Booklet of Maintenance and Operating 
Instructions 
Process specifications 

29. What checkout is required after 
installation? 

Human Engineering Design Approach 
Document - Maintainer 
Booklet of Maintenance and Operating 
Instructions 

30. Are test hookup and use instructions 
required? 

LSA 
Human Engineering Design Approach 
Document - Maintainer 
Booklet of Maintenance and Operating 
Instructions 

31. Is required GSE authorized and is it 
available? 

LSA 
Human Engineering Design Approach 
Document - Maintainer 
Booklet of Maintenance and Operating 
Instructions 

70 


