
On The Convergence Time
Of Simulated Annealing

MS-CIS-90-89
GRASP LAB 242

Sanguthevar Rajasekaran

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

November 1990

On the Convergence Time of Simulated Annealing

Sanguthevar Rajasekaran
Dept . of Computer and Information Sciences

University of Pennsylvania

Philadelphia, PA 19104

ABSTRACT

Simulated Annealing is a family of randomized algorithms used to solve many com-

binatorial optimization problems. In practice they have been applied to solve some

presumably hard (e.g., NP-complete) problems. The level of performance obtained

has been promising 15, 2, 6, 141. The success of this heuristic technique has motivated

analysis of this algorithm from a theoretical point of view. In particular, people have

looked at the convergence of this algorithm. They have shown (see e.g., [lo]) that

this algorithm converges in the limit to a globally optimal solution with probability 1.

However few of these convergence results specify a time limit within which the algo-

rithm is guaranteed to converge (with some high probability, say). We present, for the

first time, a simple analysis of SA that will provide a time bound for convergence with

overwhelming probability. The analysis will hold no matter what annealing schedule

is used. Convergence of Simulated Annealing in the limit will follow as a corollary to

our time convergence proof.

In this paper we also look at optimization problems for which the cost function has

some special properties. We prove that for these problems the convergence is much

faster. In particular, we give a simpler and more general proof of convergence for

Nested Annealing, a heuristic algorithm developed in [12]. Nested Annealing is based

on defining a graph corresponding to the given optimization problem. If this graph is

'small separable', they [12] show that Nested Annealing will converge 'faster'.

For an arbitrary optimization problem, we may not have any knowledge about the

'separability' of its graph. In this paper we give tight bounds for the 'separability'

of a random graph. We then use these bounds to analyze the expected behavior of
Nested Annealing on an arbitrary optimization problem. The 'separability' bounds we

derive in this paper are of independent interest and have the potential of finding other
applications.

Introduction

1.1 Basic Ideas

Simulated Annealing (abbreviated as SA) is a hueristic algorithm proposed by Kirkpatrick et.

al. [7] for solving combinatorial optimization problems like the traveling salesman problem

etc. This randomized algorithm was derived in analogy with a physical system, say, a fluid.

Annealing is used to bring a fluid to a low energy state. The idea of SA is to use a procedure

similar to annealing to find the minimum value of a given cost function. SA makes use of

the Metropolis algorithm for computer simulation of annealing.

Annealing a substance involves melting the substance at a very high temperature and

then cooling it slowly. At each temperature sufficient time should be given for the system

to reach a steady state. The lower the temperature, the higher the time given should be.

SA imitates this procedure by first identifying the correspondence between the fluid and the

optimization problem, and then using the Metropolis' algorithm to simulate each step of

annealing.

Each basic step of Metropolis' simulation amounts to perturbing the value of one of the

variables by a small amount. If the new configuration has a lower cost, the configuration

will be accepted. If the new configuration has a higher cost, even then it will be accepted

with certain probability.

SA algorithm is repeated application of the above basic step until no more improvement

in the cost function is possible. As evident, SA allows hill climbing from local optima.

1.2 Previous Work

Many researchers have attempted to analyze the performance of SA by assuming a mathe-

matical model for it. The most popular model assumed is a (time inhomogeneous) Markov

chain. Typical convergence proof [lo] involved proving that the probability state vector of

the Markov chain converges in the limit to an 'optimal stationary probability state vector'

with probability 1. An optimal stationary probability state vector is one in which the only

non-zero entries correspond to globally optimal states of the Markov chain. There are also

results which compute the rate of convergence of the probability state vector to the optimal
vector. Such results are extremely important from a theoretical point of view since they

provide an explanation for why SA works in practice.

However none of these convergence proofs gives a time bound for convergence.

1.3 Contents of this paper

This paper analyzes the worst case convergence time of SA. In particular, we show that SA
converges in time M(n, d, D) with probability 2 (1 - n-n(l)). Here n is the number of states,

D is the diameter, and d is the degree of the underlying Markov chain. M(.) is a function

to be specified later. By convergence we mean that the Markov chain had been in a globally

optimal state at least once. We don't require the state probability vector to converge to an

optimum vector.

Since the objective in combinatorial optimization is to find the optimum value of a given

cost function, perhaps our definition of convergence is more appropriate from a computational

point of view. If we can keep track of the state with the minimum cost visited so far by the

Markov chain, our objective will be achieved.

We also show that faster convergence is possible in the case of cost functions with some

special properties. For cost functions which are 'small separable' faster convergence has

already been proved by Rajasekaran and Reif (see [12]). They call their algorithm 'Nested

Annealing' (abbreviated as NA). In fact we also consider the same class of cost functions and

give a simpler proof to the convergence of Nested Annealing. Also their proof applies only

to problems for which SA algorithm converges in time polynomial in the number of states

(of the corresponding Markov chain), whereas our proof applies to any problem.

NA employs the following idea. Given any optimization problem, define a corresponding

graph. If this graph is known to be 'small separable', then NA leads to 'faster' convergence.

Numerous other algorithms have also been designed which exploit the 'small separability'

of the underlying graphs (see e.g., [8]). But, given an arbitrary problem, we may not know

how 'separable' its graph is. In this paper we prove tight bounds on the 'separability' of a

random graph. We make use of these 'separability' bounds to analyze the expected behavior

of NA on an arbitrary optimization problem.

The 'separability' bounds derived here are of independent interest and have the potential

of finding other applications. For example, we could study the expected behavior of the

algorithms given in [8] on arbitrary graphs. I

1.4 Some Definitions and Preliminaries

SA is a class of randomized algorithms in the sense of Rabin [ll], and Solovay & Strassen
[13]. Traditional approaches to introducing randomness in algorithms was done assuming

certain distribution for possible inputs. Average case analysis of any algorithm will be

performed based on this assumption on the inputs. This average case performance measure

can be totally misleading in the case of applications where the input distribution assumed

does not hold. To rectify this problem Rabin [ll], and Solovay & Strassen [13] proposed

introducing randomness in the algorithm itself. An algorithm employing this technique is

called a 'randomized algorithm'.

To be more precise, a randomized algorithm is one which makes coin flips to make certain

decisions. A randomized algorithm will be shown to have a certain performance measure

with 'high probability' (this probability will be over the space of all possible outcomes for

coin flips made in the algorithm and not over the space of all possible inputs).

We say a randomized algorithm has a resource (like time, space, etc.) bound of d(f (n))

if there exists a constant c such that the resource used by the algorithm is no more than

ccu f (n) on any input of size n, with probability 2 (1 - n-").

An Optimization Problem is to find the minimum value of a given 'cost function' C(.) of

n parameters pl, p2, . . . , p,, subject to some given constraints.

If X is any non-negative random variable with mean p, Markov's inequality (see e.g., [3])

implies that Prob.[X > kp] 5 l / l c , for any Ic > 0.

A Model for SA

In this section we state the mathematical model to be used for SA. Before doing so, we give

a description of the SA algorithm itself.

Given a cost function C(pl, pz, . . . , p,) , a configuration or state of the Optimization Prob-

lem (abbreviated as OP) is defined to be an assignment of values to its n parameters. 'Neigh-

bors' of a given state are all those states which differ from the given state only in the value of

one parameter by a 'small' amount. 'Temperature' in the case of an OP is simply a control

parameter which has the same units as that of the cost function.

procedure Anneal(startstate, start-temperature);

while (not frozen) do

while (not steadystate) do

Generate a random neighbor of the current state;

Let A = cost of old state - cost of the new state;
Accept the new state with probability min{l, exp(-A/T)),

T being the current temperature;

Update the temperature; steadystate = false;

In the above algorithm 'frozen' is a boolean variable that becomes true when no improve-

ment in the given cost function has been observed in a 'long' time (say during the past few

temperatures). The boolean variable 'steadystate' becomes true when the system attains

steady state at the given temperature.

Many schemes (also called 'annealing schedules') have been proposed to compute the

sequence of temperatures the system should go through. For example, the temperature can

be decreased by a constant factor each time. For other annealing schedules see [lo].

One can construct a directed graph G(V, E) corresponding to a given OP in the following

way: Nodes in G are simply the states of the OP and the edges going out of any node (or

state) will be the neighbors of this state. As the reader can easily see, SA algorithm performs

a random walk on this graph. State transition made at any step is dependent only on the

current state. Also for a given temperature, the transition probabilities from out of any node

are fixed. These facts suggest modeling SA as a Markov chain. At any given temperature

SA can be modeled as a time homogeneous Markov chain. But the transition probabilities

can potentially change with temperature. Thus the whole of SA can be modeled as a time

inhomogeneous Markov chain [lo]. We assume G is strongly connected (i.e., there is a

directed path from i to j for any two nodes i and j in V).
For any node i in G, let N(i) be the set of neighbors of i, and let C(i) be the cost of state

i. If we assume that when the Markov chain is in state i, each one of its IN(i)l neighbors is

equally likely to be generated next, then, the transition probability from state i to state j

at temperature T , P;j(T), is given by

and

We make use of this model to prove the convergence time of SA.

3 Convergence of SA

We say the SA algorithm has converged if the underlying Markov chain had been in a
globally optimal state at least once. This definition of convergence is different from what

other researchers have assumed. So far, only the convergence of the probability state vector

to an optimal vector has been considered (see e.g. [lo]). Our definition of convergence is

more appropriate from a computational point of view, since we are only interested in finding

the minimum value of a given cost function. Convergence as defined here guarantees that

we will find the global minimum of the given function.

In this section we give a time bound within which the SA algorithm will converge. Given

a cost function C(pl,p2,. . . , p,), let G(V, E) be its state graph (as defined before). Let T be

the minimum temperature that SA was ever in. Also let A = max;,~, jEN(i){C(i) - C(j)).
Denote the degree and diameter of G(V, E) by d and D respectively.

Clearly, for any i E V, Pij (at any temperature) will be at least exp(-A/T) if j E N (i) .

We state a few crucial facts before we present and prove the main theorem.

Fact 3.1 Let X be the state of a Markov chain at time t = to. The probability that a global

minimum state is visited during the next q steps (for any q) is dependent only on X and q

and not on the states visited before.

Lemma 3.1 If X is any state in V , then the expected number of steps before a global optimal
-D

state is visited starting from X is 5 (a exp(-a/T)) .

Proof. Let g be any global optimal state. Then there exists a directed path from X to g in

G(V, E) of length q < D. Let el, e2,. . . , e, be the sequence of edges in the path.

Clearly, probability that g is visited starting from X is at least the probability that each
one of the edges ei, 1 5 i 5 q is traversed in succession. The later probability is at least

D [(i) ~ X ~ (- A / T)] 'I 2 [(a) ~ X ~ (- A / T)] , (assuming that each neighbor of a state is equally

likely to be generated next).

Therefore, probability that g will ever be visited starting from X is 2 [(l ld) exp(-A/T)ID.

This implies that the expected number of steps before g is visited is 5 [d exp(A/T)ID.

Theorem 3.1 SA converges in time < 2k[d exp(A/T)ID, with probability 2 (1 - 2 - k) , no

matter what the start state is.

Proof. Let E = 2[d exp(A/T)ID. We prove that the probability of a global optimal state g

not being visited in kE steps is 5 2-k , by induction on k.
Induction Hypothesis. Irrespective of the start state, probability that g is not visited in

kE steps is 5 2 - k .
Base case. When k = 1, for any start state X, expected number of steps before g is

visited is 5 E/2 (using lemma 3.1). An application of Markov7s inequality implies that the

probability of g not being visited starting from X in E steps is 5 112.

Induction step. Assume the hypothesis for all k 5 (r - 1). We'll prove the hypothesis for

k = r.

Let XE, X2E,. . . , X(r-l)E be the states of the Markov chain during time steps E, 2E, . . . , (r-
l)E respectively. Let A be the event: g is not visited during the first E steps, and B be the

event: g is not visited during the next (r - l) E steps.

Now, probability that g is not visited in rE steps, P, is given by

Using fact 3.1, Prob.[B/A] depends only on what state the Markov chain is in at time step

E and the time duration (r - l)E . And hence,

P = Prob.[A] Prob.[B/XE = i] x Prob.[XE = i].
icV

But, Prob.[A] is 5 112 and Prob.[B/XE = i] is < 2-('-l) for each i E V (using the induction

hypothesis). Therefore, we have,

Corollary 3.1 If A, T, and d are assumed to be constants and D = 8(l0g IVI), then, SA
converges in time polynomial in IVI with probability > (1 - 2-*(lVI)).

Observation. The above analysis is oblivious to the annealing schedule used. Even if the

system stays in the same temperature throughout, as long as enough time is given, the

system will converge.

The success of any heuristic technique depends on how good the input is. If the heuristic

is good on all possible inputs, then it will be termed an 'exact algorithm'. This fact is true

in the case of SA also.

In practice, SA has been used to obtain 'quasi optimal' solutions by running it for only a

small amount of time (in comparison with the time bound given in theorem 3.1). A plausible

reason for this behavior is there are many quasi optimal states (for a large fraction of all

possible inputs) in the Markov chain and these states are nearly uniformly distributed in

G(V, E). If we have some knowledge of how many quasi optimal states there are, and how

they are distributed in G(V, E) , we can make use of the above analysis technique to get

tighter bounds on the convergence time.

Also, the above proof assumes that each neighbor of a state is equally likely to be gener-

ated next. This is not a severe restriction. The analysis can be extended easily even to the

case where this assumption is invalid as we show now.

In some applications, it may be necessary to generate certain neighbors with higher

probability. Mitra et. al. [lo] assume that the probability of generating state j from state i

is $$ where g(i, j) is the 'weight' of j as a neighbor of i and g(i) is a normalizing function

such that CjEN(i)g(i, j) = g(i). Under this assumption the state transition probabilities
become:

and

If p = m.niev, jsr(;) y, for the above general model we can prove a convergence result
similar to the one given by theorem 3.1. We can prove the following

D
Theorem 3.2 SA algorithm converges in time 5 2k [~ ~ X ~ (A / T)] with probability 2 (1 -
2-"), no matter what the start state is.

4 Cost Functions with Special Properties

Rajasekaran and Reif [12] have shown that if the cost function being optimized is 'small

separable', then faster convergence can be obtained. They call their algorithm 'Nested

Annealing'. In this section we give a simpler proof of convergence of Nested Annealing.

Their convergence proof holds only for problems for which SA converges in time polynomial

in the number of states of the OP. However, our proof generalizes it to any problem. We

make a few definitions before presenting the proof.

4.1 Definitions

We say a graph G(V, E) with n nodes is ' s (n)- separable' if there exist constants a < 1, ,B > 0

such that V can be partitioned into three subsets Vl,.S, V2. Also, no vertex in Vl is adjacent

to any vertex in V2, both IVl I and JV21 are less than an, and IS1 is less than ,Bs(n). Moreover,

the induced subgraphs of G on Vl, and on V2 are s(Jr/;))-separable and s(V2)-separable,

respectively. S will be referred to as 'the separator set' or simply 'the separator'. Intuitively,

by eliminating (the nodes in) S from G we end up with two roughly equal disjoint subgraphs.

If C is a cost function on n parameters pl, p2, . . . , p,, we define 'separability' of C as

follows. Write C as C = C1 + C2 + . . . + Ck, where each C, is a product of functions of the

parameters. Call each C;, 1 5 i < k as a clause. Define a bipartite graph Gc(V, E) whose

nodes are the parameters and the clauses. There is an edge between a clause node and a

parameter node if that parameter occurs in that clause. Gc is called the 'graph of C'. We

say C is s(n)-separable if Gc is.

An Example. The problem of CNF-satisfiability is: given a boolean formula in conjunctive
normal form, F, on n variables, we have to decide if there is an assignment to the variables

that will make F true. The graph corresponding to this problem will consist of nodes one

for each variable and each clause. There is an edge between a clause node and a variable

node if and only if that variable occurs in that clause.

Small separability (i.e., small s (n)) of a cost function implies that by assigning values

to a small number of parameters we can obtain two independent subproblems such that

the parameters involved in one subproblem are disjoint from the parameters of the other

subproblem.

4.2 The Algorithm

Given a cost function C on the n parameters pl,pz,. . . ,pn, construct the graph of C,
Gc(V, E). If Gc is s(n)-separable, we can partition V into Vl, S, and Vz as mentioned
above.

In this section we assume each parameter is binary (i.e., can take on only two possible

values). The analysis we perform is applicable with some minor changes to other cases as well.

One way of computing the minimum value of C is as follows. For each possible assignment

of values to parameters in S, find the minimum value of C, and pick the minimum of these

minima. Finding the minimum of C under a particular assignment for S, is easy now. We

need to find the minimum of two functions C1 and C2 where Cl involves only parameters

from Vl and C2 involves only parameters from V2.

Let G1(Vl, El) and G2(&, E2) be the restrictions of G on & and V2 respectively. Finding

the minimum of Cl and C2 can be done recursively by finding separators for GI and G2
respectively.

At the top level, we are given a set S for which we need to find an 'optimum' assignment

(an assignment that corresponds to a global minimum for C). We can think of this as an OP

on IS1 parameters. There are thus 21'1 < 2PS(") states of the OP. The cost of each state is the
minimum of C under that particular assignment to S. Instead of considering each possible

state of this OP, and computing the cost of each state, we can run a Simulated Annealing

algorithm on this OP with 5 ps(n) parameters.

SA algorithm, in practice, only visits a small fraction of all possible states of the OP to
come up with a quasi-optimal solution. Therefore, if we use SA on the above OP with IS\

parameters, the number of states visited will be much less than 2Ps(n) and hence the run time
of the overall recursive algorithm will be much less. This is the whole idea behind Nested

Annealing.

Next we give a formal description of the algorithm followed by a simpler proof of conver-

gence.

procedure Nested-Annealing(Gc(V, E));

Find a separator set S for Gc. Let Vl, S, and V2 be the partition of V.

Also let G1 and G2 be restrictions of G on Vl and V2 respectively.
Find an optimal assignment for S by running an SA algorithm on these

parameters. For each state of the corresponding Markov chain visited

by SA we need to compute the cost.

To compute this cost, we need to find minimum of two other functions

C1 and C2 (see the discussion above). Each of C1 and C2 involves 5 a n

parameters.

Find these two minima recursively by finding separators for GI and G2

respectively.

Analysis. Let T(n) be the expected run time of NestedAnnealing to find a global optimal

solution on any OP with n parameters. To obtain an upper bound on T(n), we need to

know how many of the 21'1 states at the top level will be visited (including repeated visits)

by the corresponding SA algorithm, and on each state visited the time needed to compute

the cost of the state. Let 2M(n) stand for the worst case run time of SA on any OP with n

parameters. (In section 3 we have given upper bounds on 2M(n)). Then, clearly, the number
of states visited will be no more than 2M(PS(n)).

Computing the cost of each state involves computing the minimum of two other functions

involving no more than a n parameters each, accounting for a total expected cost of 5
2 T(an).

Thus we have,

T(n) 5 2M(PS(n)) 2T(an),

which solves to
l o g ~ (P s (a ' n)) T(n) 2Ei-1

If s(n) is assumed to be O(nu) for some a < 1, we have

Here y < &. Throughout we have used the fact that the expected value of the sum of

any random variables is the sum of the expected values of the individual random variables.

Let L = 27 M(P8(n)). Probability that the run time of Nested-Annealing exceeds kL is less

than 1/k, using Markov's inequality. Thus we have the following

Theorem 4.1 Nested-Annealing converges in time 5 nff L with probability 2 (1 - n-O).

For problems with M(n) = O(n), we have the following

Corollary 4.1 IfM(n) is O(n), Nested-Annealing converges in time 5 na20(s(n)) with prob-
ability 2 (1 - n-*).

The above corollary has already been proven in [12].

We can strengthen theorem 4.1 in the following way. Probability that the convergence

time of NestedAnnealing exceeds 2L is 5 1/2. Make k log n independent runs of the proce-

dure and terminate each procedure after exactly 2L steps. Pick the minimum of the minima

found in the log n runs. Probability that none of the runs finds the global minimum is 5 2-k.

Thus we have the following

Theorem 4.2 Nested-Annealing converges in time 5 2kL with probability 2 (1 - 2-k) (for
any k > 0).

A number of important problems like planar traveling salesman, planar satisfiability,

etc. (which have been proven to be NP-complete) have s(n) = fi. For all these prob-
lems NestedAnnealing converges in time 2°(M(Pfi)), whereas SA has a convergence time of
20(M("))

Even though the above analysis gives the time needed to find the global optimal value

in the worst case, we can also make use of it to get estimates of time bounds to obtain quasi

optimal solutions. If 2M(n) is an estimate on the run time of SA to obtain a quasi optimal
solution of any OP with n parameters, then theorem 4.2 can be interpreted as implying that

for the same problem NestedAnnealing will run in time 2°(M(P"(n))).

5 Separability of Random Graphs

All the algorithms that exploit the separability of the underlying graphs presuppose that

a separator is known for the given graph. There are algorithms for finding separators of

restricted classes of graphs. For example, if the graph is planar, efficient algorithms exist

for computing the separator set [8]. But in practice we may know nothing about the graph

being manipulated. In fact, deciding if a given graph is s(n)-separable is NP-hard [4]. In this

section we prove tight bounds for the separability of random graphs. We use these bounds

to study the expected behavior of NA on arbitrary OPs.

5.1 A Modification of NA

The separability results in this section assert that random graphs are not 'small separable'.

Let Gc (V, E) be the graph of a given OP. If Gc is s(n)-separable, then V can be partitioned

into &, S, and V2 such that IS1 = ~ (n) and there is no T/1- V2 edge. Moreover, (Vl 1 and JV21

are less than a n for some a < 1. If the cardinality of the separator set, S, itself is a constant

fraction (or more) of IVIJ and IV2(, then there is no gain in running all the levels of recursion

of the algorithm NestedAnnealing (given in section 4.2). It may suffice to stop the procedure

at the top level. In more precise terms, we can modify Nested-Annealing procedure in the

following way: Replace the instructions that call for computing the minimum of C1 and C2
recursively, with instructions to compute these two minima using SA.

This modified NA will have an expected convergence time of 2M(14) [~ M (M 1) + 2 ~ (1 & l)] =

0 (~ M (~ ~ ~ + ~ ~ X [~ K I ~ I B O)) . Here 2M(n) stands for the convergence time of SA on an OP with n

parameters.

If the separability of the given OP is not known we propose using this modified NA

together with the procedure (given in this section) for finding a separator in a random

graph. In this section we give expected bounds on the convergence time of this modified

NA on an arbitrary OP. The expected convergence of the original NestedAnnealing will be
nearly the same (upto a multiplicative constant) since (as we prove here) a random graph is

not 'small separable'.

5.2 The Separator Theorems

There are two popular models of random graphs [I]. The first consists of all graphs with n

vertices and M(n) edges (for some specified M(n)), each such graph having equal probability.

A member in this model is denoted as GM(n) or simply GM. The second model consists of

all graphs with n nodes in which each of the n2/2 possible edges is chosen independently

with probability p. A member in this model is denoted as G,.

There is a close connection between GM and G, (with p = B(M/n2)) (read e.g., chapter I1
of [I]). In this paper we assume the second model and derive tight bounds on the separability

of G,. Even though the results proved are for a general graph, they are easily extendible to

bipartite graphs. A random bipartite graph in the second model is denoted as G,(A, B, E)
where both A and B have n nodes each and each possible edge is chosen independently with

probability p. For any set of nodes X , we let r (X) stand for the neighbors of X .

Next we state and prove the separability results.

Theorem 5.1 Let p be > F. Then, almost every G,(V, E) has the following property. If X

is any subset of nodes of G, with f nodes, then, the set Tx = { y E V - X : T(y) n X = Q)
has at least $ nodes.

Proof. Let X c V be a set with m = : nodes. If q is any node in V - X , then, Prob.[T(q)n

X # Q] = 1 - (1 - p) l X I . This is the probability that X is a neighbor of q.

X will have a neighbor in each possible k-subset (for any k) of V - X if and only if X is

a neighbor of a t least n - 1x1 - (k - 1) nodes in V - X . Thus the probability, PI, that X

has a neighbor in each possible m-subset of V - X , is given by

But (1 - p) l x l = (1 - p)l lp 2 1/(2e). Therefore,

n-m-k n-2m

k=O

The probability, P, that there is at least one X such that X is a neighbor of each m-subset

Using the fact that m is < .Oln and the fact that () (for any small 6 < 1) is nearly

equal to 2H(e)n (where H(.) is the binary entropy function defined by H(c) = clog $ + (1 -

4 1% &), we get,
p < 2-0.1"
- .

Corollary 5.1 Almost every G,(V, E) is such that V can be partitioned into Vl,S, V2 in

such a way that there is no 1/1 - V2 edge and (VII = i. Also can be chosen to be any set

o f t nodes.

The above corollary suggests the following simple procedure for finding a separator set

for G,(V, E). Take any set of l / p nodes as 1/1, I'(Vl) - Vj as S, and V - S - as V2. The

separator set so found will be such that IS1 + rnax[l& 1, lV21] is no more than n - $. A similar

result can be proven for a bipartite graph (proof is along the same lines and hence omitted)

which will imply the following

Theorem 5.2 Modified NA converges in an expected 0(2~("-:)) time on an arbitrary OP
with n parameters, given that the graph of the OP is a member of G,.

A good guess for p will be 8(M/n2) where M is the number of edges in the graph of

the OP. This modified Nested Annealing is being currently implemented. Results of the

experiments will appear in a subsequent paper.

Next we show that the bound given in the above theorem is essentially tight.

Theorem 5.3 Let $ + m. For almost every Gp(V7 E), the following holds. If X is any set

of Sn nodes (for any S), then the cardinality of Tx = { y E V - X : I ' (y) n X = a) is at

the most [(e) + r] +, for any constant c > 0 .

Proof. [A similar theorem has been proven in [I] (page 47, theorem 15).] Let X be a set of

Sn nodes and Y be any set of y nodes in V - X. Probability that X has no neighbor in Y is
(1 - p)y6n. Thus, the probability, P, that there is at least one X whose Tx has cardinality

y is given by

If y is > [(s) + r] i, then, P 5 ~-' /P.D

Corollary 5.2 If X is any set of Sn nodes (where S is a constant), then, Tx has cardinality

O (~ / P > .

Similar results hold for bipartite graphs as well.

6 Conclusions

In this paper we have defined the convergence of SA to mean that an optimal global state

has been visited at least once by the Markov chain of the OP. This definition of convergence

is perhaps more appropriate from a computational point of view. We gave a proof of con-

vergence of an SA algorithm (for a general annealing schedule). An important open problem

will be to obtain tighter bounds for the convergence time.

Nested Annealing is a variation of SA proposed in [12]. Nested Annealing has been proven

to be faster for small separable cost functions. We gave a simpler proof of convergence for
Nested Annealing. We also generalized the convergence results of [12].

Further, we have analyzed the expected convergence time of NA on an arbitrary problem.

This was possible as a result of bounds we derived for the separability of a random graph.

References

[I] Bollobds, B., Random Graphs, Published by Academic Press, 1985.

[2] ElGamal, A., and Shperling, I., 'Design of Good Codes via Simulated Annealing,' List

of Abstracts, Workshop on Statistical Physics in Engineering and Biology, Yorktown
Heights, NY, April 1984.

[3] Feller, W., An Introduction to Probability Theory and its Applications, Volumes I and
11, Published by John Wiley and sons, 1966.

[4] Garey, M., and Johnson, D., Computers and Intractability: A Guide to the Theory of

NP-Completeness, Published by W.H. Freeman & Co., New York, 1979.

[5] Golden, B.L., and Skiscim, C.C., 'Using Simulated Annealing to solve Routing and
Location Problems,' Naval Research Logistics Quarterly, 33, 1986, pp. 261-279.

[6] Johnson, D. S., Aragon, C.R., McGeoch, L.A., Schevon, C., 'Optimization by Simulated
Annealing: An Experimental Evaluation (Part I),' Preliminary Draft, AT&T Bell Labs.,
Murray Hill, NJ, 1987.

[7] Kirkpatrick, S., Gelatt , C.D., and Vecchi, M.P., 'Optimization by Simulated Annealing,'
Science, May 1983.

[8] Lipton, R. J., and Tarjan, R.E., 'Applications of a Planar Separator Theorem,' SIAM
Journal on Computing, vo1.9, no.3, 1980.

[9] Lipton, R.J., and Tarjan, R.E., 'A Planar Separator Theorem,' SIAM Journal on Ap-
plied Mathematics, vo1.36, no.2, 1979.

[lo] Mitra, D. ,Romeo, F., and Vincentelli, A.S., 'Convergence and Finite-Time Behavior of
Simulated Annealing,' Advances in Applied Probability, Sept. 1986.

[l 11 Rabin, M.0 ., 'Probabilistic Algorithms,' in: Traub, J.F., ed., Algorithms and Complex-

ity, Academic Press, New York, 1976. pp. 21-36.

[12] Rajasekaran, S., and Reif, J.H., 'Nested Annealing: A Provable Improvement to Simu-
lated Annealing,' Proc. ICALP 1988. Also submitted to Theoretical Computer Science,

1988.

[13] Solovay, R., and Strassen, V., 'A Fast Monte-Carlo Test for Primality,' SIAM Journal
of Computing, vo1.6, 1977. pp. 84-85.

[14] Vecchi, M.P., and Kirkpatrick, S., 'Global Wiring by Simulated Annealing,' Technical
Report, IBM Thomas J. Watson Research Center, New York 10598.

