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ABSTRACT 

A SYSTEMATIC ANALYSIS OF THE CONCORDANCE BETWEEN CHROMATIN 

ACCESSIBILITY AND GENE EXPRESSION CHANGES 

Karun Kiani 

Arjun Raj 

 

A major goal in the field of transcriptional regulation is the mapping of changes in the 

binding of transcription factors to the resultant changes in gene expression. Recently, 

methods for measuring chromatin accessibility have enabled us to measure changes in 

accessibility across the genome, which are thought to correspond to transcription factor 

binding events. In concert with RNA-sequencing, these data in principle enable such 

mappings; however, few studies have looked at their concordance over short duration 

treatments with specific perturbations. Here, we used tandem, bulk ATAC-seq and RNA-

seq measurements from MCF-7 breast carcinoma cells to systematically evaluate the 

concordance between changes in accessibility and changes in expression in response to 

retinoic acid and TGF-β. We found two classes of genes whose expression showed a 

significant change: those that showed some change in accessibility of nearby chromatin, 

and those that showed virtually no change despite strong changes in expression. The 

peaks associated with genes in the former group had a lower baseline accessibility prior 

to exposure to signal. Analysis of paired chromatin accessibility and gene expression data 

from distinct paths along the hematopoietic differentiation trajectory showed a much 

stronger correspondence, suggesting that the multifactorial biological processes 

associated with differentiation may lead to changes in chromatin accessibility that reflect 

rather than drive altered transcriptional status. Together, these results show many gene 
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expression changes can happen independent of changes in accessibility of local 

chromatin in the context of a single-factor perturbation and suggest that some changes 

to accessibility changes may occur after changes to expression, rather than before. 

Furthermore, we establish the role of cell-intrinsic differences in clonal melanoma 

cell lines leading to a rare subpopulation of cells that demonstrate invasive behavior both 

in vitro and in vivo. This population is molecularly characterized by the high expression 

of SEMA3C, and knockout studies demonstrate that the formation of the invasives 

subpopulation is negatively regulated by the transcription factor NKX2.2. Overall, these 

results establish a role for non-genetic differences in important cancer attributes such as 

cellular invasion.  
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CHAPTER 1: INTRODUCTION 

 

I have always been inspired by the natural world. For example, Agave americana is a 

flowering plant referred to more colloquially as the century plant that is native to the 

semi-arid to arid climates of Northern Mexico and the American southwest. The century 

plant, despite its moniker, lives only for about 10-30 years and has an interesting 

strategy for reproduction: at the end of its life cycle, it sprouts a flowering stalk that can 

stand up to 8 m tall to spread seeds and then soon thereafter dies. Every time I notice a 

century plant in bloom I cannot help but wonder: how is it that one year the plant may 

continue business as usual, while eventually, when the conditions are opportune, the 

plant activates a complex genetic program to massively rewire its metabolism and 

reroute all of its energy into growing and maintaining the flowering stalk as long as 

possible (“Agave Americana (century Plant)” n.d.)? 

To borrow concepts from control theory, I have been fascinated by how 

dynamical biological systems are constantly able to maintain or achieve new states of 

stability through the interaction of controllers, systems, and sensors (Strogatz et al. 1994; 

Åström and Murray 2010). Specifically, in examples like the above, sprouting in the 

century plant or other biological processes ranging from glucose homeostasis to 

transdifferentiation to development, sensors constantly probe the environment and 

activate or suppress complex gene regulatory programs in response to what may or may 

not be going on.   

The advent of recent technological advances in sequencing methods as well as 

computational approaches to analyze these data have allowed for the quantification of 

genetic, epigenetic, and transcriptional states of populations of cells as well as individual 
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cells at an unprecedented level. This abundance of data provides an opportunity to use 

the principles of systems biology to begin to understand the interplay through which 

transcriptional regulation is achieved. 

 The transcription of genes represents an output that results from the interplay of 

nucleotide sequence, transcription factor binding, chromatin accessibility, and DNA 

methylation, among a host of other factors. Throughout this dissertation my hope was to 

pop the metaphorical hood of transcriptional regulation in dynamical biological systems 

and begin to better understand and contribute to the conversation by examining the 

relationship between different modalities of sequencing data (Chapter 2), and better 

understanding the heterogeneity of phenotypes relevant to the natural history of disease 

(Chapter 3).  

1.1 Transcription factors and control of gene expression 

A complex interplay of cis-regulatory elements such as promoters, enhancers, silencers, 

and insulators, as well as transcription factors, control the level of gene expression, 

which is important for development, establishing cell identity, and coordinating 

transcriptional responses to a variety of stimuli. Genome-wide studies have estimated 

200-300 transcription factors that bind directly to core promoter elements while an 

additional approximately 1400 transcription factors that bind to a specific DNA 

sequence and thus regulate only a specific subset of genes. 

The importance of proper transcription factor control of gene expression is 

underscored by the large corpus of evidence demonstrating the association of 

transcription factor dysfunction with a wide array of human diseases ranging from 

cancer to development disorders (Jimenez-Sanchez, Childs, and Valle 2001). 
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1.1.1 Structure and syntax of transcription factor activity  

Transcription factors typically recognize degenerate DNA sequences that are 6-12 base 

pairs in length. This straightforward sequence specificity suggests that additional, more 

complex, rules are involved in controlling transcriptional output. One such level of 

control is requiring combinatorial input of transcription factor binding. Transcription 

factors often bind to enhancer regions that contain focused clusters of transcription 

factor binding sites such that combinatorial binding can result in precise and distinct 

patterns (Spitz and Furlong 2012). For example, in the fruit fly D. melanogaster, the 

pMAD, the phosphorylated form of the transcription factor MAD, provides part of the 

ability for cells to adopt a particular fate during development. It is the combinatorial 

binding with cell-type specific transcription factors that confers cell-fate specification, 

such as Tinman (Xu et al. 1998; H.-H. Lee and Frasch 2005) in the dorsal mesoderm or 

Scalloped (Guss et al. 2001) for the wing imaginal disc. 

 Another method of control of transcription factor activity comes from not only the 

timing of transcription factor expression, but also the timing of its DNA-binding activity 

as demonstrated for mammalian myoblast differentiation with MYOD1 where some 

enhancers are continuously bound while others are bound at only early or late stages in 

development (Cao et al. 2010).  

Finally, cooperativity serves to modulate transcription factor activity. This occurs 

with regards to both (1) indirect effects that do not affect affinity for the cognate motif 

and (2) direct effects that alter motif affinity. In the former case, the activity of two 

transcription factors binding at a given enhancer can in some cases lead to increased 

occupancy for each transcription factor (Voss et al. 2011). This occurs through both 

synergistic action between the two transcription factors and nucleosome repositioning, 
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termed ‘assisted loading,’ as well as local bending of DNA which assists binding. In the 

latter case, binding to a protein cofactor can affect the affinity of the two factors for their 

respective motifs (Spitz and Furlong 2012). More recent works have also demonstrated 

an alternative mechanism where protein-protein interactions can altogether change a 

transcription factor’s DNA sequence specificity. For example, homeodomain-containing 

Hox proteins in D. melanogaster when interacting with extradenticle (EXD) proteins 

can induce subtle changes to DNA-binding specificities (Slattery et al. 2011). Thus, 

transcription factors use a variety of methods to interact with local chromatin in order to 

facilitate changes in gene expression. 

1.1.2 Measuring the binding of transcription factors to DNA 

Technologies that make use of chromatin immunoprecipitation combined with 

microarray (ChIP-chip) or high-throughput sequencing (ChIP-seq) have been 

instrumental in determining transcription factor-DNA binding patterns genome-wide 

and still serve as the “gold-standard” for measuring protein-DNA interactions. Briefly, 

they crosslink DNA-protein interactions and employ the use of a specific antibody 

targeting the transcription factor of interest to pull down and subsequently sequence 

only the chromatin sequences that are bound to the transcription factor. Similarly, 

transcription factor-DNA interactions can be mapped globally using DamID, which uses 

a fusion of a DNA methyltransferase domain to the DNA-binding protein of interest to 

identify regions with adenine methylation. Other chromatin accessibility measuring 

methods (mentioned later in this introduction) can also indirectly infer the activity of 

transcription factors by looking for their “footprints” at sites of accessible chromatin. 

 One can categorize the binding sites from these methods based on features such as 

nearest gene, the relative frequency of regions relative to gene structure (e.g. promoter, 
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intron, exon, etc.), or the type of chromatin domain. These data can then be compared 

between conditions, cell lines and cell types, or transcription factors to begin to 

understand the underlying regulation and logic of transcription factor binding. 

1.1.3 Integration of ChIP-seq data with genome-wide expression data from 

RNA-seq 

Combining whole-genome transcriptomic data from RNA-sequencing (RNA-seq) with 

transcription factor binding profiles from ChIP-seq provides a valuable opportunity to 

study the interplay between transcription factor binding and gene transcription with 

implications for both normal physiology and disease pathogenesis (Feng et al. 2014). 

While there exist many tools that can be used “out of the box” for the analysis of these 

data independently (Angelini and Costa 2014), the integration of these data types is not 

trivial and presents one of the greatest challenges in modern biology (Gomez-Cabrero et 

al. 2014). Early approaches use a variety of frameworks including a log-linear regression 

model (Ouyang, Zhou, and Wong 2009) or a support vector regression (Cheng, Yan, Yip, 

et al. 2011; Cheng, Yan, Hwang, et al. 2011; Cheng et al. 2012; Dong et al. 2012; Cheng 

and Gerstein 2012). Many of these approaches attempted at using transcription factor 

binding or histone modification data to predict gene expression within a condition. 

Using these data to correlate variations of features of epigenetic marks and gene 

expression between two conditions adds another level of complexity, and usually these 

methods only show predictive power when categorizing gene expression as a categorical 

output variable (i.e. upregulated, downregulated, or unchanged expression) (Klein et al. 

2014). However, an important caveat of these approaches is that ChIP-seq data for 

transcription factor binding is mainly based on a given binding peak’s proximity to the 

transcriptional start site, and many existing approaches rely on local interaction. Owing 
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to the paucity of data and extra analysis considerations of techniques that map long-

range chromatin interactions such as HiChIP and Hi-C, their integration with 

transcriptomic data has been relatively under-explored (Angelini and Costa 2014). 

1.2 Chromatin accessibility and gene regulation 

The core structural unit of DNA packaging is referred to as a nucleosome, which 

consists of approximately 147 base pairs of DNA wrapped around a hetero-octamer of 

positively charged histone molecules much like a garden hose is wrapped around a reel. 

The nucleosome serves as the cornerstone for the multiple layers of topological 

complexity that allows the almost 3 meters of DNA to be confined within the volume of 

the nucleus of eukaryotic cells.  

Nucleosomal DNA is not evenly distributed across the genome, and varies greatly 

between cell types, and even within the same cell type depending on context. DNA bound 

to histone molecules is referred to as relatively inaccessible while nucleosome-free DNA 

is thought to be more accessible in that it can be bound by other DNA-interacting 

macromolecules such as transcription factors, architectural proteins, or polymerases. It 

is helpful to conceptualize DNA along a continuum of inaccessible to accessible because 

it has widespread consequences for gene regulation. For example, nucleosome-depleted 

regions are commonly thought to represent non-coding DNA regions that are involved in 

the regulation of expression of nearby genes, termed cis-regulatory elements and include 

enhancers and promoters. Cis-regulatory elements exert these effects by interacting with 

transcriptional regulators such as transcription factors. Indeed, while the accessible 

portion of the genome is only approximately 3% of the total genome, over 90% of 

transcription factor binding sites are confined to this accessible compartment (Thurman 

et al. 2012). Nucleosomes are dynamic in terms of their positioning along the genome, 
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their assembly and disassembly, and the myriad of post transcriptional modifications. 

Thus, the topology of chromatin within 3 dimensional space provides an important point 

of regulation of transcription.  

1.2.1 Measuring bulk chromatin accessibility  

Methods for measuring chromatin accessibility are based on enzymes being able to 

physically interact with accessible chromatin in order to fragment, tagment, or 

chemically label (e.g., methylate) these accessible portions of DNA (Boyle et al. 2008; 

Schones et al. 2008; Hesselberth et al. 2009; Kelly et al. 2012; Buenrostro et al. 2013; 

Minnoye et al. 2021). Early experiments in the 1970s used the endonuclease 

deoxyribonuclease I (DNase I) to show promoters and introns of expressed genes are 

more sensitive than other regions to digestion by DNase I, indicating that the chromatin 

is particularly accessible in these regions.  

With the establishment of high-throughput sequencing technologies, these 

enzymatic methods could be combined with sequencing to begin to resolve chromatin 

accessibility genome-wide. For example, DNase I hypersensitive site sequencing (DNase-

seq) was one of the first instantiations of this approach and still is the approach of choice 

for transcription factor footprinting, which can identify the location of transcription 

factor binding sites due to the protection of the local chromatin from the transcription 

factor itself (Hesselberth et al. 2009).  

Using a micrococcal nuclease (MNase) in a technique called MNase-seq leverages 

the ability of MNase to both act as an endonuclease to cleave internucleosomal DNA and 

an exonuclease to degrade DNA not protected by proteins. This ability makes MNase-seq 

particularly useful for isolating DNA fragments spanning a single nucleosome (West et 

al. 2014). Alternatively, nucleosome occupancy and methylome sequencing (NOMe-seq) 
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chemically modifies rather than cleaves accessible DNA using a GpC methyltransferase 

to create sites of ectopic methylation of CG dinucleotides (nb: the endogenous 

methylation of DNA found in both the human and mouse genomes occurs at CG 

dinucleotides) (Kelly et al. 2012). NOMe-seq does not rely on any enrichment-based 

steps and therefore requires a greater read depth compared to other methods. However, 

this necessity also proves to be an advantage because it creates a more quantitative 

measurement of accessibility compared to other techniques (Kelly et al. 2012; Minnoye 

et al. 2021). 

However, the current genome-wide chromatin accessibility method du jour for 

almost the last decade has been Assay for Transposase-Accessible Chromatin and 

sequencing, or ATAC-seq (Buenrostro et al. 2013) or one of its derivative variants 

(Corces et al. 2016, 2017). A genetically engineered hyperactive transposase (Tn5) is 

preloaded with Illumina adapters to simultaneously cleave and tag accessible chromatin 

regions. These target DNA fragments are purified and amplified via PCR before being 

sequenced using high-throughput technologies (Buenrostro et al. 2013). The major 

advantages of ATAC-seq and its variants in that they require relatively low sample input 

(500-50,000 cells versus millions needed for DNase-seq) and the protocol takes less 

than a day to completely compared to the few days needed for DNase-seq or MNase-seq 

(Buenrostro et al. 2013; Minnoye et al. 2021). 

1.2.2 Chromatin accessibility at single-cell resolution 

 Advances in barcoding and microfluidic technologies have allowed the measurement of 

chromatin accessibility at single-cell resolution. While these exist for many of the 

methods mentioned for bulk profiling (e.g. scDNase-seq (Jin et al. 2015) or scMNase-seq 

(Lai et al. 2018)), single-cell ATAC-seq (scATAC-seq) has become a popular approach 
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due to its relative simplicity and reproducibility (Buenrostro et al. 2015; X. Chen et al. 

2018; Cusanovich et al. 2015; Lareau et al. 2019; Satpathy et al. 2019).  

 Droplet based methods exist in multiple commercially available kits (e.g. Chromium 

Next Gem Single Cell ATAC-seq or SureCell ATAC-seq) that when combined with 

standard sequencing library reagents and proprietary robotic sample processing devices 

allow for a relatively straightforward and reproducible approach to scATAC-seq. 

Alternatively, plate-based methods (X. Chen et al. 2018; Mezger et al. 2018) require 

single cells to be sequestered into individual wells of a plate but this approach limits 

overall throughput of the assay. Given limitations and relative novelty of these 

technologies, they will, for the most part, not be the focus of this dissertation but their 

future use is discussed in more detail in Section 5.2 of chapter 5.  

1.2.3 Integration of ATAC-seq and RNA-seq data 

Many studies have examined the relationship between chromatin accessibility data and 

gene expression data to some degree or another in an attempt to better understand 

underlying regulation (González, Setty, and Leslie 2015; Ackermann et al. 2016; Ampuja 

et al. 2017; Ramirez et al. 2017; de la Torre-Ubieta et al. 2018; Starks et al. 2019; Bunina 

et al. 2020; Hota et al. 2022), but the analyses usually are the subject of at best one panel 

of one figure. They often either focus on accessibility measurements at or near the 

promoter only (Ampuja et al. 2017) or look at only at the relationship between chromatin 

accessibility and gene expression (Starks et al. 2019) rather than the relationship 

between their change over time or in response to some perturbation. Here, we sought to 

rigorously and systematically characterize the concordance, or lack thereof, between 

chromatin accessibility and gene expression data in response to single-factor 

perturbations (Sanford et al. 2020; Kiani et al. 2022) to better understand the 
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underlying logic of transcription in this context as well as limitation of the technologies 

involved.  

1.3 Cell-intrinsic differences and metastasis in melanoma 

1.3.1 Disease and metastasis background 

Owing to the high metastatic potential of cutaneous melanoma, it has been estimated by 

the SEER database that the 5-year overall survival rate of stage IV metastatic melanoma 

is approximately 30%, a value that has scarcely changed in the last twenty years (Song et 

al. 2015). Metastasis refers to the result of a complex series of events where cancer cells 

are able to leave the primary tumor and travel via lymphatic or hematological spread 

before arriving at a different anatomical site and resuming proliferation. These events 

are characterized by molecular changes that lead to distinct cellular phenotypes. In 

particular, a cell must first become invasive to leave the primary tumor and migrate to 

the site of metastasis and subsequently re-adopt a proliferative phenotype to establish 

the metastatic nidus (Polyak and Weinberg 2009; Mittal 2018). Moreover, typically very 

few cells from the original tumor will undergo the necessary steps to metastasize (Francí 

et al. 2006; Mani et al. 2008). 

1.3.2 Cell-autonomous differences and metastatic potential 

While there exists evidence to support that the rare cells that do in fact leave the primary 

tumor to metastasize do so due to external factors such as the tumor microenvironment 

(Olmeda et al. 2017; Kaur et al. 2019), less work has characterized whether or not cell-

intrinsic factors prime certain cells for metastasis. More classically, the erstwhile factors 

are considered to be mutations that drive an increased capacity for metastasis (Nataraj, 

Marrocco, and Yarden 2021; Nguyen et al. 2022). However, more recently, the role of 
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non-genetic changes in transcriptional regulation have also been implicated in driving 

the phenotype switching to an invasive identity (Arozarena and Wellbrock 2019; Quinn 

et al. 2021). Indeed, there is precedent demonstrating that non-genetic differences lead 

to distinct behaviors in biology and cancer, specifically in the context of therapy 

resistance (Symmons and Raj 2016; A. Raj and van Oudenaarden 2008; Emert et al. 

2021; Goyal et al. 2021; E. A. Torre et al. 2021; Shaffer et al. 2017; Sharma et al. 2010; 

Gupta et al. 2011). What is far less explored is how these non-genetic differences may 

contribute to invasiveness in melanoma. Changes in expression of genes such as 

ALDH1A1, KIT, and HSP90AB1 have been implicated in distinguishing metastatic 

melanomas from their primary tumor counterparts (Metri et al. 2017; Turner, Ware, and 

Bosenberg 2018). 

1.4 Summary 

Through two distinct, but related themes, in this dissertation I seek to better gene 

expression regulation both through the context genome-wide omics methods to 

developing new technologies to interrogate the role and consequences of non-genetic 

heterogeneity to using established bioinformatic methods to better understand rare 

invasive behavior in melanoma. As a whole, these themes move the field forward by 

creating a framework for systematically examining the interplay of genome-wide 

chromatin accessibility and gene expression data, allowing the combination of single-cell 

transcriptomics with lineage information, and establishing a basis for a novel role of 

NKX2.2 in melanoma metastatic potential.   
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CHAPTER 2: CHANGES IN CHROMATIN ACCESSIBILITY ARE NOT 

CONCORDANT WITH TRANSCRIPTIONAL CHANGES FOR SINGLE-

FACTOR PERTURBATIONS 

 

2.1 Introduction 

2.1.1 Transcription factor activity and changes in gene expression 

Transcription factors regulate gene expression by binding to specific DNA sequences, 

facilitating transcription through the recruitment and activation of the transcriptional 

machinery. Deciphering the combinatorial logic underlying which transcription factors 

bind to what portions of DNA and in what contexts is a central challenge in creating a 

complete model of transcriptional regulation. Sequencing-based methods have enabled 

the measurement of transcript levels for all genes as well as the putative binding profiles 

of transcription factors across the genome. However, the precise mapping between 

changes in these putative binding profiles and the changes in transcriptional activity 

remain the subject of debate.  

2.1.2 Measuring transcription factor activity 

A key component of decoding the relationship between transcription factor activity and 

the resultant changes in transcription is the measurement of transcription factor binding 

to DNA. Recently, the combination of biochemical binding assays with sequencing-based 

readouts has led to a cornucopia of methods for making such measurements. One 

workhorse method is chromatin immunoprecipitation sequencing (ChIP-seq), which 

characterizes the binding of transcription factors and other DNA-protein interactions 

genome-wide (Barski et al. 2007; Robertson et al. 2007; Ma and Zhang 2020) by using 
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immunoprecipitation of proteins that bind to chromatin and subsequently sequencing 

the coprecipitated DNA. However, ChIP-seq is limited in that each experiment can only 

interrogate the binding profile of one transcription factor at a time. 

An alternative approach that circumvents that issue is the measurement of 

changes in accessibility of DNA to infer changes in the binding of all transcription factors 

at once. Accessible regions of DNA (i.e. those regions depleted of nucleosomes) represent 

only 3% of the genome, but often participate in the regulation of gene expression 

(Weintraub and Groudine 1976; C. Wu, Wong, and Elgin 1979; C.-K. Lee et al. 2004; 

Thurman et al. 2012). These regions can be detected genome-wide by combining the 

enzymatic activity of nucleases with high-throughput sequencing using techniques such 

as DNase I hypersensitive site sequencing (DNase-seq) (Boyle et al. 2008) and assay for 

transposase accessible chromatin with sequencing (ATAC-seq) (Buenrostro et al. 2013). 

The interpretation of these accessibility methods leans heavily on the assumption that 

changes in regulatory factor binding are reflected in changes in chromatin accessibility. 

Certainly, there are many examples in which the correspondence between changes in 

accessibility strongly correspond to changes in transcriptional output. For instance, 

summation of ChIP-seq signal for 42 transcription factors mapped by encode in K562 

chronic myelogenous leukemia cells paralleled the signal from accessible sites revealed 

by DNase-seq (Thurman et al. 2012). Moreover, computational methods to infer 

transcription factor footprints from accessibility measurements have been shown to 

recapitulate ChIP-seq binding well (Pique-Regi et al. 2011). Accessibility methods can 

also be used to look for changes in accessibility across various perturbations and cell 

types. Changes in accessibility generally seem to correspond to changes in transcription 

in the sense that large changes in transcriptional output are reflected in broad changes in 
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the accessibility of several loci in the surrounding chromatin (González, Setty, and Leslie 

2015; de la Torre-Ubieta et al. 2018). 

2.1.3 The relationship between chromatin accessibility and gene expression 

changes 

However, it is unclear how well these accessibility based methods capture the activity of 

all transcription factors. It is possible that some transcription factors’ binding and 

activity does not result in corresponding changes in accessibility and vice versa. Such a 

lack of correspondence could manifest itself as a lack of correlation between changes in 

accessibility and changes in transcription. Given the underlying assumption that a 

change in transcription must be mediated by the change in some transcription factor 

activity, then such a lack of correspondence would suggest that changes in the activity of 

transcription factors could change expression without changing accessibility near its 

binding site. While reports from the literature generally show a strong correspondence 

(de la Torre-Ubieta et al. 2018; González, Setty, and Leslie 2015; Ampuja et al. 2017; 

Starks et al. 2019), it is worth noting that the comparisons in such studies are often 

across rather different cell types. In such cases, it is possible that the changes in 

accessibility are not driven by regulation per se, but rather reflect the consequences of 

sequential exposure to multiple regulatory factors that characterize the differentiation 

process. Such accessibility changes could, in principle, signify the reinforcement of genes 

that are already transcriptionally active genes, or could even just appear around actively 

transcribed genes without any functional role. Disentangling such possibilities could be 

revealed with the use of single-factor perturbations that more directly affect an 

individual pathway; however, few such data are available. 



   
 

15 

Here, we used tandem bulk RNA-seq and ATAC-seq data from MCF-7 breast 

carcinoma cells exposed to multiple doses of retinoic acid or TGF-β to determine the 

degree of concordance between changes in chromatin accessibility and changes in gene 

expression. Furthermore, we evaluated concordance in another published data set of 

hematopoietic differentiation to validate our approach based on well-defined and 

specific perturbations. We demonstrate that while some differentially expressed genes 

have a high concordance between gene expression and chromatin accessibility changes, 

many other genes are differentially expressed without changes in their local chromatin 

accessibility.   

2.2 Results 

2.2.1 Genome-wide expression and chromatin accessibility changes reflect 

known biology of two perturbations 

To measure the correspondence between changes in chromatin accessibility and changes 

in gene expression, we used MCF-7 breast carcinoma cells due to their previously 

described transcriptional responses to all-trans retinoic acid (Hua et al, 2009) (referred 

to from here on as retinoic acid) and transforming growth factor beta (TGF-β) (Mahdi et 

al, 2015). We used paired, bulk accessibility (ATAC-seq) and expression data (RNA-seq) 

from these cells (Sanford et al, 2020) collected 72 hours after continuous exposure to 

three different doses of each signal (Figure 2.1). We chose this timescale because 

previous work with MCF-7 cells showed more transcriptional changes at 72 hours 

compared to 24 hours after exposure to retinoic acid (Hua et al, 2009), and chromatin 

accessibility changes may not be detectable until 24 hours after perturbation (Ramirez et 

al, 2017). Differential gene expression and differential peak accessibility analysis showed 
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a dose-dependent response to both signals compared to ethanol control (Figure 2.1, bar 

plots). The ethanol ‘vehicle’ controls comprise three different densities of cells, and the 

transcriptomes of control conditions globally were similar regardless of cell density 

(Figure 2.2). To confirm that global gene expression and chromatin accessibility 

patterns were similar between signals and dosages, we performed principal component 

analysis. For both RNA-seq and ATAC-seq data, all samples exposed to the same signal 

or ethanol control clustered together, indicating that their gene expression and 

chromatin accessibility were more similar to each other than to other conditions, 

supporting the quality of these data.  

To validate that changes in gene expression were consistent with the known 

biology of these signaling pathways, we performed over-representation analysis on the 

upregulated genes in response to high dose retinoic acid or TGF-β against curated gene 

sets from the molecular signatures database (Liberzon et al, 2011, 2015). The top ten 

gene sets based on false discovery rate (FDR)-adjusted p-values were processes 

canonically associated with retinoic acid (morphogenesis, organ development, anterior-

posterior patterning) and TGF-β (extracellular matrix, endopeptidase activity), 

respectively (Figure 2.3). Gene set enrichment analysis (Subramanian et al, 2005) 

showed that genes that were differentially expressed in response to high dose retinoic 

acid were significantly enriched for genes associated with skeletal system 

morphogenesis, and genes that were differentially expressed as a result of exposure to 

high dose TGF-β were significantly enriched for genes associated with epithelial-to-

mesenchymal transition (Figure 2.4). Thus, the differentially expressed genes generally 

reflected the known biology of the signals the cells were exposed to.  
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We next wondered if the changes in chromatin accessibility in response to signal 

were associated with the activity of specific transcription factors, in particular, those 

associated with the biology of these signaling pathways. We used a modified version of 

the chromVAR package along with its curated database of transcription factor motifs, 

cisBP, to identify the transcription factors with the largest predicted change in activity 

(Schep et al, 2017). We used the set of differential peaks to determine the set of the top 

150 transcription factors with the greatest magnitude of change. These included the 

binding motifs of transcription factors that are canonical effectors of retinoic acid (RAR-

α, HOXA13) and TGF-β signaling (SMAD3, SMAD4, and SMAD9). For each of these 

transcription factor motifs, we calculated a motif enrichment score for each condition 

based on the bias-uncorrected deviation score from chromVAR. The motif enrichment 

score represents the percentage change in ATAC-seq fragment counts in all peaks that 

contain a given transcription factor’s motif (Figure 2.5). For example, the enrichment 

score of 28% for SMAD3 in the TGF-β condition meant that peaks containing the 

SMAD3 motif on average saw a 28% increase in fragment counts after exposure to TGF-

β. We pooled together the low, medium, and high doses  for each condition together in 

order to decrease the variability of motif enrichment scores estimates. Thus, our data 

recapitulated expected changes in accessibility, presumably due to the activity of 

transcription factors well-known to be activated by the signals used. Thus, of the changes 

in accessibility we did detect, they made sense based on a model of transcription factor 

activity leading to changes in accessibility. However, it was still possible that the activity 

of many transcription factors was not captured by changes in accessibility. 
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2.2.2 The relationship between changes in chromatin accessibility and gene 

expression varies on a gene by gene basis 

We next wondered whether genes that were differentially expressed were more likely to 

have differentially accessible peaks nearby, i.e., was there concordance between gene 

expression and chromatin accessibility changes at the level of individual genes? To 

characterize the extent of concordance between these data, we looked at the overlap 

between genes that were differentially expressed in response to high dose signal and 

genes with differentially accessible peaks nearby after exposure to signal (Figure 2.6). 

We assigned each accessible peak to the nearest transcriptional start site (“nearest 

approach”) and found that of the over 2000 genes upregulated in response to high dose 

retinoic acid, more than half of them had at least one differential peak assigned to its 

transcriptional start site (p-value < 2.2x10-16, Fisher’s exact test). Similarly, a third of 

the genes whose expression was upregulated in response to TGF-β had differential peaks 

assigned to them (p-value < 2.2x10-16, Fisher’s exact test). Thus, genes that are 

differentially expressed are more likely than random chance to have a nearby peak that is 

differentially accessible in response to retinoic acid or TGF-β.  

While using this overlap-based approach showed correspondence between genes 

that are differentially expressed and their nearby peaks in response to signal, aspects of 

the nature of the concordance of these changes were not captured by this analysis. For 

example, the overlap-based method counted all differentially accessible genes that had at 

least one differentially accessible peak assigned to them as concordant, but did not take 

into account the proportion or degree to which those nearby peaks change. Moreover, we 

did not take into account the relationship between directionality of changes in gene 

expression and chromatin accessibility. The underlying assumption at the basis of this 
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relationship is that when peaks become more accessible that the nearby gene increases 

its expression, and the overlap-based approach does not take this correspondence of the 

direction of change into account. To better characterize these facets of concordance, we 

first individually examined the changes in chromatin accessibility nearby two genes 

whose expression were upregulated in response to retinoic acid. 

  HOXA1 and SLC5A5 induction are associated with exposure to retinoic acid (Glover et 

al, 2006; Schmutzler et al, 1997; Kogai et al, 2000), and both genes showed a dose-

dependent increase in expression in response to retinoic acid (Figures 2.7A, B). After 

optimizing parameters for calling peaks and determining differentially accessible peaks 

(Figure 2.8), we found that while a large number of peaks are differentially accessible 

near the HOXA1 locus (Figure 2.7A, track view middle, black traces in accessibility 

plot, right), very few peaks are differentially accessible near the SLC5A5 locus (Figure 

2.7B, track view middle, accessibility plot, right). Therefore, genes with high expression 

change in response to signal can show a large degree of accessibility changes or show 

very little accessibility changes, suggesting that changes in transcription factor activity 

may or may not be reflected in changes in accessibility. 

2.2.3 Chromatin accessibility changes are less concordant with large 

changes in gene expression in signaling compared to hematopoietic 

differentiation 

Next, we evaluated the concordance between accessibility and gene expression genome-

wide while also factoring in the directionality of changes and the relative proportion of 

peaks that are changing on a gene-by-gene basis. As a point of comparison, we used 

previously published gene expression and chromatin accessibility data from 

hematopoietic differentiation (González et al, 2015) that demonstrated that large 
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changes in gene expression were typically associated with gains or losses (depending on 

the direction of expression change) of cell type-specific enhancers when comparing the 

expression and accessibility of hematopoietic stem and progenitor cells (HSPCs) to 

monocytes. 

Before using this data set as a comparison to ours for measuring concordance 

between chromatin accessibility and gene expression changes, we verified that the 

hematopoietic differentiation data was similar to our own by a variety of metrics. First, 

we wanted to compare whether the number of differentially expressed genes and 

differentially accessible peaks between HSPCs and monocytes in the hematopoietic 

differentiation data was similar to the numbers from MCF-7 cells exposed to retinoic 

acid or TGF-β. We found that both HSPC and monocyte populations had greater than 

2000 genes that were specifically expressed in their respective cell types compared to the 

approximately 2000 and 1500 genes differentially expressed in MCF-7 cells in response 

to high dose retinoic acid and TGF-β, respectively (Figure 2.1). Moreover, HSPC and 

monocyte populations had more than 6000 differentially accessible peaks (Supplemental 

Figure 3A) compared to the approximately 15000 and 6000 differentially accessible 

peaks in MCF-7 cells in response to high dose retinoic acid and TGF-β, respectively 

(Figure 1A).  

Next, we annotated the location of peaks based on where in the genome they were 

located relative to gene bodies and quantified what proportion of peaks fell into 

annotation categories such as promoter, intergenic, exonic, intronic, etc. ATAC-seq 

peaks from MCF-7 cells had a larger proportion of peaks at gene promoters (within 3 

kilobases upstream or downstream of the transcription start site) whereas a greater 

proportion of the DNase I hypersensitive sites in the HSPC and monocyte populations 
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were from distal intergenic regions compared to promoters (Figures 2.9A, B). This 

finding could be the result of inherent differences in the assays or could reflect biological 

differences. Moreover, the MCF-7 data had a greater proportion of peaks located at gene 

promoters, which could in principle bias our results toward having a larger degree of 

concordance because accessibility changes at promoters were more strongly correlated 

with gene expression changes than distal accessible. Despite this bias, our data 

demonstrate less concordance.   

Given the different assays used to determine genome-wide chromatin 

accessibility, we realigned the DNase-seq data to the hg38 reference and examined the 

peaks at a ‘housekeeping gene’ (GAPDH), hematopoietic differentiation-specific genes 

(CD34, CD14) and retinoic acid and TGF-β-related genes (DHRS3, SERPINA11) to spot-

check that the accessibility data were similar. Indeed, there were similar accessibility 

profiles for GAPDH, and appropriate differences in accessibility given the cell type of 

signal for the other sites, indicating the accessibility data were comparable (Figure 

2.10).  Moreover, to look at similarities in accessibility genome-wide, we calculated the 

intersection of the consensus peak sets from hematopoietic differentiation and MCF-7 

signal response data sets. We observed that approximately 55% of peaks from 

hematopoietic differentiation data (DNase-seq) overlapped with peaks from the MCF-7 

signal response data set (ATAC-seq). These results show that the datasets do not have 

systematic qualitative differences in either expression or accessibility, enabling us to 

compare the degree of concordance across these two systems. 

In the original analysis of hematopoietic differentiation, the authors found that 

regulatory complexity (defined as the number of accessible regions closest to a gene’s 

transcriptional unit) was an important discriminating factor for whether changes in 
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accessibility corresponded to changes in expression, with areas of high complexity 

showing more correspondence than those of low complexity. Hence, we similarly 

grouped genes from our MCF-7 dataset into high and low complexity for our 

comparisons. We categorized genes with more than 7 peaks assigned to them using the 

‘nearest approach’ as ‘high complexity’, while genes with 7 or fewer peaks were 

categorized as having ‘low complexity’ (Figure 2.11). The cutoff for loci complexity was 

calculated by taking a tertile based approach (González et al, 2015) and calling any 

number of peaks above the highest tertile cutoff as high and any peak below that as low 

complexity (Figure 2.12). Because high complexity genes on average had higher levels 

of expression in the hematopoietic differentiation data, we sought to determine if there 

was any difference in expression between high and low complexity genes in our MCF-7 

data. The median expression of high complexity loci was similarly higher than low 

complexity loci in response to both exposure to high dose retinoic acid (23.30 versus 

13.27 TPM) and high dose TGF-β (24.06 versus 13.05 TPM) (Figure 2.13A, p-value < 

2.2x10-16 for both, Kolmogorov-Smirnov test) demonstrating that high complexity genes 

are more highly expressed as in the hematopoietic differentiation data. Despite this 

difference in expression, the distributions of peak widths for peaks of high and low 

complexity genes were similar (Figure 2.13B). 

We began our analysis by focusing on the high complexity genes. To determine 

the concordance between gene expression changes and chromatin accessibility changes, 

we used the ‘nearest approach’ to assign peaks to genes. For each gene we compared the 

log2 of the fold change in expression between conditions versus the proportion of peaks 

that were differentially accessible in the same direction (i.e., peaks that increase in 

accessibility for genes that increase in expression after exposure to signal and vice versa). 
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We observed that for hematopoietic differentiation, the 100 most highly expressed high 

complexity genes in the HSPC and monocyte populations had a high proportion of peaks 

which were differentially accessible in the concordant direction, reproducing the 

conclusions of González et al. that large changes in expression were consistently 

associated with concordant changes in chromatin accessibility (Figure 2.14A). Next, we 

used this approach on our data to compare expression and accessibility changes between 

ethanol vehicle control and high dose retinoic acid or TGF-β. For both signals, we 

observed two distinct groups of genes within the top 100 most differentially expressed 

genes. One group of genes (‘accessibility-concordant genes’) behaved similarly to those 

in the hematopoietic differentiation data, demonstrating a concordance between 

expression and accessibility changes (Figures 2.14B,C). However, the other group of 

genes (‘accessibility-non-concordant genes’) had large expression changes with little to 

no peaks nearby changing in accessibility, creating a skew in the distribution toward a 

lower proportion of peaks being differentially accessible in a concordant manner 

compared to the hematopoietic differentiation data (Figures 2.14A-C, density plots).  

Adjusting the minimum peak coverage parameter changes the number of 

differential peaks and the proportion of differential peaks that change in the 

corresponding direction of expression. We wondered if a lower minimum coverage 

threshold changed the qualitative result we noticed before and thus conducted the same 

analysis using a lower minimum peak coverage threshold for determining differential 

peaks (see methods). We observed that a similar pattern occurred in high complexity 

genes with this set of parameters (Figures 2.15A, B).  

González and colleagues showed that for some low complexity genes, large 

changes in expression were not accompanied with concordant changes in accessibility 
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(González et al, 2015). We similarly wanted to confirm whether this decreased 

correspondence was the case in our data in response to retinoic acid and TGF-β. Using 

the same approach as before, we compared the log2 of the fold change in expression of 

low complexity genes to the proportion of peaks with differential accessibility in the 

concordant direction. The hematopoietic differentiation and signaling data for low 

complexity all qualitatively had genes whose expression increased without concordant 

changes in accessibility (Figures 2.16A-C). The distribution of the proportion peaks 

that were differentially accessible in the concordant direction for the top 100 up and 

downregulated genes was roughly uniform when comparing HSPCs to monocytes 

(Figure 2.16). By comparison,the distribution was skewed toward more genes having a 

lower proportion of peaks being differentially accessible in the concordant direction in 

response to signals in MCF-7 cells, especially in the case of TGF-β (Figure 2.16, density 

plots on right). Thus, while both the signaling in MCF-7 and hematopoietic data 

demonstrated large gene expression changes without concordant changes in chromatin 

accessibility with low complexity genes, a greater proportion of genes did so in the 

signaling data. 

2.2.4 Peaks nearby genes with high concordance have lower accessibility 

prior to exposure to signal 

We wondered what the differences were between genes that were differentially expressed 

and had large accessibility changes versus those that were differentially expressed and 

had low accessibility changes. First, for high dose retinoic acid and TGF-β, we split genes 

into four groups based on whether they were differentially expressed and the proportion 

of peaks assigned to them using the ‘nearest’ method that were differentially accessible 

in the appropriate direction.  These four groups were (1) genes with differentially 
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upregulated expression and concordant accessibility changes (2) genes with differentially 

upregulated expression non-concordant accessibility changes (3) genes with 

differentially downregulated expression and a concordant accessibility changes, and (4) 

genes with with differentially downregulated expression and non-concordant 

accessibility changes (Figures 2.17A,B).  We quantified the distribution of peak 

complexity across these groups and observed that they were similar across all four gene 

subgroups (Figures 2.18A,B).  

  We first asked whether the change in accessibility between these two gene groups was 

due to differences in the preexisting accessibility of peaks for these genes. Indeed, we 

found the baseline accessibility of peaks for genes with concordant increases in 

expression and accessibility in ethanol vehicle conditions was lower than those of peaks 

of genes that increase in expression without a commensurate change in chromatin 

accessibility (Figure 2.18C). This relationship was also recapitulated for concordant 

peaks that increase in expression and accessibility in response to high dose TGF-β 

(Figure 2.18D). Similarly, when comparing genes that are differentially downregulated 

in expression a similar pattern holds true in the opposite direction (Figures 2.17C,D, 

Figures 2.18C,D). One explanation may be that genes whose nearby chromatin was 

already accessible were permissive toward the action of the appropriate transcription 

factors to modulate expression. An alternative explanation is that the ATAC-seq assay 

itself had saturated in its ability to measure chromatin accessibility. In contrast, the 

difference in accessibility decreased between genes with a low proportion of peaks that 

were differentially accessible and genes with a high proportion of accessible peaks after 

exposure to signal (Figures 2.18C,D). Thus, the difference in the proportion of 
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accessible peaks nearby the two groups of genes was partially explained by the pre-

existing chromatin accessibility. 

2.2.5 Multiple approaches to integrating chromatin accessibility and gene 

expression changes show a low degree of concordance during signaling. 

Finally, we measured to what degree the change in accessibility of chromatin nearby a 

gene is reflected in the change in gene expression. Because linear distance is not always a 

good predictor of what accessible regions interact with what genes, we used multiple 

approaches to assign peaks to genes. First, we used the ‘nearest approach’ to create a 

one-to-one mapping between accessible sites and genes by assigning them to the nearest 

transcriptional start site (Nair et al, 2021; Li et al, 2012), again comparing our signaling 

dataset to the hematopoietic differentiation dataset. Because many genes have multiple 

peaks assigned to them, we used two methods for collapsing peak values per gene: either 

the median accessibility of peaks across genes or the maximum (Figure 2.19A, 

schematic). We observed a stronger correlation between accessibility and expression 

changes in differentiation data (median approach Pearson’s r = 0.34, maximum 

approach Pearson’s r = 0.26) than in MCF-7 in response to signal (retinoic acid: median 

approach Pearson’s r = 0.27, maximum approach Pearson’s r = 0.10; TGF-β: median 

approach Pearson’s r = 0.27, maximum approach Pearson’s r = 0.10; Figure 2.19A, 

right side). 

Next, we used a window-based approach where there was the possibility of a 

many-to-one mapping of peaks to genes. We assigned all peaks within a 100 kilobase 

window (Sanford et al, 2020) in order to maximize the number of differential peaks 

assigned to a gene (Figures 2.20A,B). Similar to the ‘nearest’ approach, we collapsed 

values using median accessibility change across all peaks assigned to a gene as well as 
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maximum accessibility per gene (Figure 2.19B, schematic) We observed a similar effect 

using this approach where there was a stronger correlation between change in 

accessibility and change in expression between HSPC versus monocyte versus MCF-7 

cells exposed to signal (Figure 2.19B). Of note, the correlation coefficients were similar 

between both methods of assigning peaks. 

We also wondered if the correlation between the extent of chromatin accessibility 

changes and gene expression changes would be different at the two lower doses. We used 

both the median and maximum peak value per gene while assigning peaks to genes using 

the nearest and window approaches. We observed similarly weak correlation as high 

dose signal using all methods at both low and medium doses (Figures 2.20C,D). 

Consequently, the correlation between the magnitude of change in gene expression and 

chromatin accessibility was modest across the range of doses of signals.  

To see if peaks in specific genomic regions (promoters, parts of the gene body, 

downstream and intergenic areas) had unique relationships between change in 

chromatin accessibility and change in gene expression, we subsetted our correlation 

analysis. We annotated peaks using ChiPseeker (Yu et al, 2015) to categorize them as 

being at promoters, within the gene body (5’ UTR, 3’ UTR, intronic, and exonic 

sequences), downstream of the gene end, or at intergenic sequences. We used peaks 

assigned to genes using the ‘nearest’ approach and took the median change in 

accessibility per gene. The strongest correlation between changes in accessibility and 

gene expression across sets of comparisons was at promoter peaks (Figure 2.19C). 

While promoter correlation is quantitatively stronger, the overall qualitative conclusion 

remains the same. Thus, despite using a variety of approaches for both assigning peaks 

to genes as well as collapsing the accessibility of all peaks for a given gene to a single 
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value, we failed to appreciate a strong relationship between changes in accessibility and 

changes in gene expression. 

Finally, we wondered if peaks that contained the motifs of transcription factors 

that are associated with retinoic acid and TGF-β signaling only (as opposed to all peaks) 

would show a stronger correlation between the changes in chromatin accessibility and 

gene expression. We annotated peaks with a log-likelihood score of a given motif being 

found in that peak and subsetted on those peaks with a nonzero log-likelihood score to 

examine the correlation between changes in accessibility and gene expression. Using this 

approach, we examined log-likelihood scores for motifs associated with retinoic acid 

signaling (RARA-α, HOXA13, and FOXA1) and motifs associated with TGF-β (SMAD3, 

SMAD4, and SMAD9). We observed that focusing on peaks annotated with peaks we 

would a priori expect to be involved in modulating gene expression in response to signal 

showed limited correlation between changes in chromatin accessibility and changes in 

gene expression (Figure 2.21). 

2.3 Discussion 

Here, we integrated tandem, genome-wide chromatin accessibility and transcriptomic 

data to characterize the extent of concordance between them in response to inductive 

signals. We demonstrated that while certain genes have a high degree of concordance of 

change between expression and accessibility changes, there is also a large group of 

differentially expressed genes whose local chromatin remains unchanged. By 

comparison, data from cell types along the hematopoietic differentiation trajectory had a 

much higher degree of concordance between genes with large gene expression changes 

and chromatin accessibility changes. 
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What might explain the lack of concordant changes in chromatin accessibility? 

One explanation could be that pre-existing chromatin accessibility dictates the de novo 

binding of transcription factors, but that the binding of transcription factors to those 

regions does not result in further changes to accessibility. Such effects have been 

reported in the context of glucocorticoid signaling, in which the glucocorticoid receptor 

almost exclusively binds to chromatin that is already accessible in response to 

dexamethasone (John et al, 2011). Indeed, we demonstrated that genes that lacked 

concordance between changes in chromatin accessibility and gene expression were more 

likely to have nearby chromatin that was already accessible (Figures 3C,D). It is possible 

that in MCF-7 cells, the transcriptional effects of RA and TGF-β do not lead to a 

significant change in the activity of pioneer transcription factors, which are able to bind 

directly to condensed or inaccessible chromatin to facilitate its opening (Zaret, 2020). 

Also, implicit in our approach is the assumption that an increase in accessibility is 

associated with an increase in expression, which is not necessarily the case if a genomic 

locus becomes accessible to a repressive factor or a bound repressive factor is displaced 

by a nucleosome. 

We looked at MCF-7 cells exposed to retinoic acid and TGF-β because these two 

signals induce a robust transcriptional response through distinct mechanisms. RAR-α 

remains bound to DNA and interacts with transcriptional activators in response to 

retinoic acid binding, while SMAD family members require TGF-β to bind to surface 

receptors to translocate to the nucleus. Yet, despite these differences, we observed that 

many genes changed expression independent of changes in chromatin accessibility for 

both signals. It is, however, possible that signaling molecules that exert their effects 

through very different types of transcription factors may have a different profile of 
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concordance between changes in accessibility and gene expression. It is possible that 

other types of factors in a different context (e.g., different cell line) may yield a stronger 

correspondence. 

Our data characterized molecular changes resulting from a single input (retinoic 

acid or TGF-β) in a clonal cell line, whereas the majority of work reporting a stronger 

concordance between simultaneous measurements of accessibility and transcription 

compared entirely different cell types or cells undergoing a directed differentiation 

protocol. What we have observed in the case of a single perturbation applied to cells that 

are not thought to change type per se is increased or decreased transcription with less 

concomitant nearby change in accessibility. How can one reconcile these observations? 

One possibility is that if we were to leave the signal on for longer, or combine it over time 

with the effects of several other signals, that we eventually would observe many further 

changes in accessibility proximal to a gene, concordant with the aforementioned results 

from comparisons between cell types. Whatever the source, these further changes in 

accessibility do not seem to occur randomly, given that they largely reflect the direction 

of change in transcription (increased accessibility for upregulation, decreased for 

downregulation). It may be that these subsequent changes in accessibility do not 

explicitly change transcription, but rather alter the underlying regulatory logic of the 

gene; i.e., the removal of a signal may not lead to a decrease in the gene’s transcription, 

or the gene’s transcription may be sensitized or desensitized to some other set of 

transcription factors. 

2.4 Contributions 

This chapter contains direct quotes and figures from Kiani et al. published in 2022 in 

BioRxiv [in revision, Molecular Systems Biology] (Kiani et al. 2022). We are greatly 
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indebted to Professor Christina Leslie and Alvaro González for many insightful 

discussions and for assistance in working with their datasets. We also thank the 

members of the Raj lab for valuable feedback, especially Ally Coté and Lee Richman.  



   
 

32 

 

 

Figure 2.1 Schematic of tandem RNA-seq and ATAC-seq data. 

Cells were treated with either ethanol vehicle control (gray) or three different doses of 

retinoic acid (shades of red) or TGF-β (shades of blue). After 72 hours of continuous 

exposure, bulk RNA-seq and ATAC-seq were performed on samples. We show the 

number of differentially expressed genes and differentially accessible peaks for each dose 

of each condition compared to ethanol vehicle control. 

  



   
 

33 

 

 

Figure 2.2 Global analysis of expression and chromatin accessibility changes 

in response to varying signals in MCF-7 cells. 

PCA of variance stabilizing transformed raw counts from gene expression and chromatin 

accessibility data demonstrating the first two principal components.  
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Figure 2.3 Validation that changes in gene expression reflect known biology 

of perturbations. 

Overrepresentation analysis of differentially upregulated genes in response to high dose 

retinoic acid (red) or TGF-β (blue). Top ten gene sets for each signal by -log10 FDR-

adjusted p-value are shown. 

 

 

Figure 2.4 Gene set enrichment analysis of expression data further 

corroborates that expression changes reflect known biology of 

perturbations. 

Gene set enrichment analysis (GSEA) (Subramanian et al, 2005) of differentially 

expressed genes in response to high dose retinoic acid against a gene set for skeletal 

system morphogenesis. Genes whose expression were differentially expressed in 

response to TGF-β were enriched for genes associated with epithelial-to-mesenchymal 

transition. Green traces represent running enrichment scores across fold change ranked 

gene lists. 
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Figure 2.5 Validation that changes in chromatin accessibility reflect known 

biology of perturbations. 

Motif enrichment analysis of differentially accessible peaks for selected motifs of 

transcription factors related signaling pathways of these signals. Y-axis shows percentage 

change of ATAC-seq signal at motif containing peaks relative to ethanol vehicle control 
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samples. For each condition, we pooled together replicates for all three doses. Error bars 

represent bootstrapped confidence intervals.  
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Figure 2.6 Overlap between changes in gene expression and changes in 

chromatin accessibility in response to high dose retinoic acid or high dose 

TGF-β. 

Of the genes that were differentially expressed (right circle of Venn diagram) we looked 

at the overlap (shaded) of how many of them also had at least one differentially 

accessible peak (left circle). To disprove the null hypothesis that there is no association 

between genes that are differentially expressed and genes that have differentially 

accessible peaks assigned to them using the ‘nearest’ approach, we performed Fisher’s 
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exact test to show the probability of these data or more extreme if the null hypothesis 

was true for both signals was less than 2.2x10-16.  
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Figure 2.7 Expression and accessibility change of HOXA1 and SLC5A5 in 

response to increasing doses of retinoic acid. 

(A) Left: Expression (TPM, triplicate average) in response to increasing dose of 

retinoic acid (error bars represent SEM). Middle: track view of HOXA1 locus with 

accessibility in fragments per million and peaks and differential peaks annotated. 

Right: quantification of peak accessibility (normalized fragment counts, triplicate 

average) within a 50 kilobase window of HOXA1 locus with peaks that are 

differentially accessible between ethanol vehicle control and high dose retinoic 

acid conditions marked with black lines.  

(B) Left: Expression (TPM, triplicate average) in response to increasing dose of 

retinoic acid (error bars represent SEM). Middle: track view of SLC5A5 locus 

with accessibility in fragments per million and peaks and differential peaks 

annotated. Right: quantification of peak accessibility (normalized fragment 
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counts, triplicate average) within a 50 kilobase window of SLC5A5 locus with 

peaks that are differentially accessible between ethanol vehicle control and high 

dose retinoic acid conditions marked with black lines.   
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Figure 2.8 Tuning peak calling parameters  

Representative peak calls at the CYP26A1 using different peak merge parameters (colors) 

and minimum normalized fragment count coverage (shades of the same color). Based on 

these results we selected a merge distance of 50 base pairs and a minimum coverage of 

30 normalized fragment counts.  
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Figure 2.9  Comparison of accessibility data from hematopoietic 

differentiation and MCF-7 cells in response to signal. 

(A) Number of differentially expressed genes (left) specific to CD34+ hematopoietic 

stem and progenitor cells (HSPCs, blue) and CD14+ monocytes (orange) from 

data from González et al., 2015 and the number of differentially accessible peaks 

(DNase-seq) between the two populations (right). 

(B) Annotation of distribution of peak location in relation to gene transcriptional 

units for consensus files for HSPCs and monocytes (left). Distribution of 

accessible peak features for consensus peaks for MCF-7 cells in ethanol, high dose 

retinoic acid, and high dose TGF-β.  
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Figure 2.10 Comparison of peak calls at multiple loci across both 

hematopoietic differentiation and MCF-7 genome-wide accessibility data 

sets. 

Consensus peak calls for MCF-7 signal samples (ATAC-seq) and hematopoietic 

differentiation samples (DNase-seq) at a ‘housekeeping’ gene GAPDH, hematopoietic 

cell-specific marker loci CD34 and CD14, a retinoic acid responsive site, DHRS3, and a 
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TGF-β responsive site SERPINA11. Values are fragments per million for ATAC-seq 

samples and counts per million for DNase-seq samples. 

 

 

 

Figure 2.11 Schematic demonstrating classification of genes into “high” 

versus “low” complexity genes based on the number peaks assigned to a 

gene using the ‘nearest’ approach.  

High complexity genes (light green) are characterized by greater than 7 peaks assigned to 

a given gene by the ‘nearest’ approach while low complexity genes (teal) have 7 or fewer 

genes assigned to them.  
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Figure 2.12 Distribution of gene complexity in response to high doses of 

both perturbations. 

Density plot of number of peaks per gene in retinoic acid (red) and TGF-β (blue, overlap 

in purple) with median complexity marked by dotted line and high complexity cutoff 

marked by solid line.  
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Figure 2.13 Expression and peak width distributions in MCF-7 signal data 

based on locus complexity. 

(A) log2-transformed expression of low complexity (teal) and high complexity genes 

(green) in response to retinoic acid (left) and TGF-β (right). P-values represent 

the probability of these data or more extreme under the null hypothesis that the 

distribution of gene expression values were drawn from the same probability 

distribution via the Kolmogorov-Smirnov test.  

(B) Distribution of peak widths for low complexity (teal) and high complexity (green) 

peaks with the median peak width (151 base pairs) marked by the dotted black 

line. 
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Figure 2.14 Signaling shows less concordance between highly differentially 

expressed genes and chromatin accessibility changes compared to 

hematopoietic differentiation data for high complexity genes.  

(A) Concordance between expression and accessibility changes between hematopoietic 

stem and progenitor cells and monocytes. Left: plot showing changes in gene 

expression in CD34+ hematopoietic stem and progenitor cells (blue) and CD14+ 



   
 

49 

monocytes (orange) from González et al., 2015 (schematic, top). For the plots, each 

dot is a gene, and on the x axis is log2 fold change in expression and on the y-axis the 

proportion of differentially accessible DHSs for each associated gene. The top 100 

most highly expressed genes in hematopoietic stem and progenitor cells and 

monocytes are colored in shades of orange and blue, respectively. Middle: density 

plot of the distribution of the proportion of high complexity DHS associated with the 

top 100 expressed genes in CD34+ hematopoietic stem and progenitor cells and 

CD14+ monocytes with median value marked by vertical black line. Right: example 

tracks DNase I sequencing data for KIT and CCR1 (marked on plot on left). 

(B) Concordance between expression and accessibility changes between cells exposed to 

ethanol vehicle control and high dose retinoic acid. Left: plot showing changes in 

gene expression and chromatin accessibility between ethanol vehicle control and 

high dose retinoic acid. Each dot is a gene, and on the x axis is the log2 fold change in 

expression and on the y-axis the proportion of differentially accessible ATAC-seq 

peaks for each gene. The top 100 most highly expressed genes in ethanol vehicle 

control and high dose retinoic acid are colored in shades of gray and red, 

respectively. Middle: density plot of the distribution of the proportion of high 

complexity ATAC-seq peaks associated with the top 100 expressed genes in ethanol 

vehicle control and high dose retinoic acid with median value marked by vertical 

black line. Right: example ATAC-seq tracks of STRA6 and WNT11. 

(C) Concordance between expression and accessibility changes between cells exposed to 

ethanol vehicle control and high dose TGF-β. Left: plot showing changes in gene 

expression and chromatin accessibility between ethanol vehicle control and high 

dose TGF-β. Each dot is a gene, and on the x axis is the log2 fold change in 
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expression and on the y-axis the proportion of differentially accessible ATAC-seq 

peaks for each gene. The top 100 most highly expressed genes in ethanol vehicle 

control and high dose TGF-β are colored in shades of gray and blue, respectively. 

Middle: density plot of the distribution of the proportion of high complexity ATAC-

seq peaks associated with the top 100 expressed genes in ethanol vehicle control and 

high dose retinoic acid with median value marked by vertical black line. Right: 

example ATAC-seq tracks of PMEPA1 and COL4A3. 
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Figure 2.15 Concordance between gene expression change and proportion of 

differentially accessible peaks per gene for high and low complexity genes 

using a lower minimum coverage threshold for differential peaks. 

(A) Concordance between expression and accessibility changes between cells exposed 

to ethanol vehicle control and high dose retinoic acid. Left: plot showing changes 

in gene expression and chromatin accessibility between ethanol vehicle control 

and high dose retinoic acid for high and low complexity genes. Each dot is a gene, 

and on the x axis is the log2 fold change in expression and on the y-axis the 

proportion of differentially accessible ATAC-seq peaks for each gene. The top 100 

most highly expressed genes in ethanol vehicle control and high dose retinoic 

acid are colored in shades of gray and red, respectively. Right: density plot of the 

distribution of the proportion of high complexity ATAC-seq peaks associated with 

the top 100 expressed genes in ethanol vehicle control and high dose retinoic acid 

with median value marked by vertical black line. 

(B) Concordance between expression and accessibility changes between cells exposed 

to ethanol vehicle control and high dose TGF-β. Left: plot showing changes in 

gene expression and chromatin accessibility between ethanol vehicle control and 

high dose retinoic acid for high and low complexity genes. Each dot is a gene, and 

on the x axis is the log2 fold change in expression and on the y-axis the 

proportion of differentially accessible ATAC-seq peaks for each gene. The top 100 

most highly expressed genes in ethanol vehicle control and high dose retinoic 

acid are colored in shades of gray and blue, respectively. Right: density plot of the 

distribution of the proportion of high complexity ATAC-seq peaks associated with 
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the top 100 expressed genes in ethanol vehicle control and high dose retinoic acid 

with median value marked by vertical black line.  
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Figure 2.16 Concordance between gene expression change and proportion of 

differentially accessible peaks per gene for low complexity genes.  

Concordance between expression and accessibility changes between hematopoietic stem 

and progenitor cells and monocytes, ethanol control and high dose retinoic acid, and 
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ethanol control and high dose TGF-β. Left: For the plots, each dot is a gene, and on the x 

axis is log2 fold change in expression and on the y-axis the proportion of differentially 

accessible DHSs/peaks for each associated gene. Right: density plot of the distribution of 

the proportion of high complexity DHS or peaks associated with the top 100 expressed 

genes in either condition with median value marked by vertical black line. 
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Figure 2.17 Separation of differentially expressed genes in response to signal 

into high and low concordance groups shows differences in pre-existing 

accessibility. 

(A) Categorization of differentially expressed genes in response to high dose retinoic acid 

based on direction of expression change and proportion of peaks differentially 

accessible in the same direction. 
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(B) Categorization of differentially expressed genes in response to high dose TGF-β 

based on direction of expression change and proportion of peaks differentially 

accessible in the same direction. 

(C) Differential accessibility in ethanol vehicle control conditions prior to addition of 

high dose retinoic acid. Accessibility of every peak assigned using the ‘nearest’ 

approach for gene groups from (a) in ethanol vehicle control conditions. P-values 

represent the probability of these data or more extreme under the null hypothesis 

that the distribution of peak accessibilities were drawn from the same probability 

distribution via the Kolmogorov-Smirnov test.  

(D) Differential accessibility in ethanol vehicle control conditions prior to addition of 

high dose TGF-β. Accessibility of every peak assigned using the ‘nearest’ approach for 

gene groups from (b) in ethanol vehicle control conditions. P-values represent the 

probability of these data or more extreme under the null hypothesis that the 

distribution of peak accessibilities were drawn from the same probability distribution 

via the Kolmogorov-Smirnov test.   
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Figure 2.18 Accessibility-concordant and accessibility-non-concordant genes 

have similar loci complexity and differences in peak accessibility after 

exposure to signal depending on change in gene expression. 

(A) Distribution of loci complexity the four groups of genes with differential 

expression in response to high dose retinoic acid.  

(B) Distribution of loci complexity the four groups of genes with differential 

expression in response to high dose TGF-β.  

(C) Accessibility after exposure to high dose retinoic acid. Accessibility of every peak 

assigned using the ‘nearest’ approach for gene groups based on accessibility 

concordance. P-values represent the probability of these data or more extreme 

under the null hypothesis that the distribution of peak accessibilities were drawn 

from the same probability distribution via the Kolmogorov-Smirnov test.  

(D) Accessibility after exposure to high dose TGF-β. Accessibility of every peak 

assigned using the ‘nearest’ approach for gene groups based on accessibility 

concordance. P-values represent the probability of these data or more extreme 

under the null hypothesis that the distribution of peak accessibilities were drawn 

from the same probability distribution via the Kolmogorov-Smirnov test. 
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Figure 2.19 Multiple approaches to quantifying peak accessibility shows low 

correlation between gene expression changes and accessibility changes in 

signaling. 

(A) ‘Nearest’ approach to assigning peaks to genes shows less concordance in signaling 

compared to hematopoietic differentiation. Left: schematic showing ‘nearest’ 

approach where peaks are assigned to the nearest transcriptional site and change in 

accessibility (purple) on a per-gene basis is calculated by either median change in 

accessibility (top row) or maximum peak change (bottom row). Right: scatter plots 

showing change in peak accessibility (median or maximum) versus log2 fold change 

in expression on y axis for hematopoietic differentiation data from González et al. 

(left column) and for high dose retinoic acid and high dose TGF-β (right two 

columns). Pearson’s correlation coefficients reported with 95% confidence interval 

from bootstrapping with 10,000 replicates in parentheses. 

(B) ‘Window’ approach to assigning peaks to genes shows less concordance in signaling 

compared to hematopoietic differentiation. Left: schematic showing ‘window’ 

approach where all peaks within a certain window of the the transcriptional start site 

are assigned to that gene and the change in accessibility (purple) on a per-gene basis 

is calculated by the median change in accessibility (top row) or the maximum change 

in accessibility (bottom row). Right: scatter plots showing change in peak 

accessibility (median or maximum) using ‘window’ approach with a 100 kilobase 

window versus log2 fold change in expression on y axis for hematopoietic 

differentiation data from González et al. (left column) and for high dose retinoic acid 
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and high dose TGF-β (right two columns). Pearson’s correlation coefficients reported 

with 95% confidence interval from bootstrapping with 10,000 replicates in 

parentheses. 

(C) Using ‘nearest’ approach to look for correlation between accessibility and gene 

expression changes based on annotations of peak location. First two columns 

showing correlation for hematopoietic differentiation data from González et al, and 

right four columns showing correlation for high dose retinoic acid and high dose 

TGF-β, respectively. Pearson’s correlation coefficients reported with 95% confidence 

interval from bootstrapping with 10,000 replicates in parentheses.  
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Figure 2.20 Effect of window size on number of differentially accessible 

peaks based on gene expression change and correlation of gene expression 

and accessibility changes using medium and low dose signals. 

(A) Distributions of number of differentially accessible peaks for differentially 

expressed and non-differentially expressed genes in response to high dose 

retinoic acid (left) or high dose TGF-β (right) based on window size around 

transcriptional start site (TSS). 

(B) ‘Nearest’ approach to assigning peaks to genes shows less concordance in 

signaling compared to hematopoietic differentiation. Scatter plots showing 

change in peak accessibility (median or maximum) versus log2 fold change in 

expression on y axis for medium and low dose retinoic acid (first two columns) 

and medium and low dose TGF-β (second two columns). Pearson’s correlation 

coefficients reported with 95% confidence interval from bootstrapping with 

10,000 replicates in parentheses. 

(C) ‘Window’ approach to assigning peaks to genes shows less concordance in 

signaling compared to hematopoietic differentiation. Scatter plots showing 

change in peak accessibility (median or maximum) versus log2 fold change in 

expression on y axis for medium and low dose retinoic acid (first two columns) 

and medium and low dose TGF-β (second two columns). Pearson’s correlation 

coefficients reported with 95% confidence interval from bootstrapping with 

10,000 replicates in parentheses.  
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Figure 2.21 Focusing on peaks annotated for biologically relevant 

transcription factor motifs fails to demonstrate a strong correlation 

between the magnitude of gene expression and chromatin accessibility 

changes. 

(A) Peaks annotated for motifs of transcription factors related to retinoic acid biology 

(RAR-α, HOXA13, FOXA1, left column) showed weak correlation between 
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changes in gene expression and chromatin accessibility in response to high dose 

retinoic acid. Peaks are colored based on the log-odds of a motif being present in 

a given peak. Plot of expression and accessibility change for 5000 randomly 

sampled peaks lacking the corresponding peak (right column). Pearson’s 

correlation for peaks not having a given motif are for all peaks without that motif, 

not the 5000 subsampled peaks.  Pearson’s correlation coefficients reported with 

95% confidence interval from bootstrapping with 10,000 replicates in 

parentheses. 

(B) Peaks annotated for motifs of transcription factors related to retinoic acid biology 

(SMAD3, SMAD4, SMAD9, left column) showed weak correlation between 

changes in gene expression and chromatin accessibility in response to high dose 

TGF-β. Peaks are colored based on the log-odds of a motif being present in a 

given peak. Plot of expression and accessibility change for 5000 randomly 

sampled peaks lacking the corresponding peak (right column). Pearson’s 

correlation for peaks not having a given motif are for all peaks without that motif, 

not the 5000 subsampled peaks.  Pearson’s correlation coefficients reported with 

95% confidence interval from bootstrapping with 10,000 replicates in 

parentheses. 
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CHAPTER 3: DETERMINING DRIVERS OF A RARE, EARLY-INVADING 

SUBPOPULATION OF CLONAL MELANOMA CELLS 

3.1 Introduction 

A devastating feature of many cancers, including cutaneous melanoma, is the ability of 

cells to metastasize to distant sites, gain a foothold and begin rapidly dividing, and, 

eventually, disrupt end organ function at the site of metastasis, making metastasis a 

large factor in cancer morbidity and mortality. Metastasis involves rare cells in the 

primary tumor to undergo multiple molecular and behavioral changes to first become 

invasive to leave the tumor and travel via the bloodstream or lymphatics, establish itself 

at a new site, and then revert to a proliferative state to create the metastasis (Mittal 

2018; Mani et al. 2008; Francí et al. 2006; Polyak and Weinberg 2009). While there has 

been previously established roles for the local tumor microenvironment or cell-intrinsic 

factors like mutations for invasive behavior in metastasis (Olmeda et al. 2017; Kaur et al. 

2019; Nataraj, Marrocco, and Yarden 2021; Nguyen et al. 2022), more recently, the role 

of non-genetic, cell-intrinsic factors have been implicated (Arozarena and Wellbrock 

2019; Quinn et al. 2021). What is unclear is the role that single cells have in initiating 

phenotype switching within the primary tumor to begin invasion and dissemination of 

the tumor. Namely, are the rare cells that are able to leave the primary tumor and invade 

other tissues intrinsically primed to do so (Quinn et al. 2021), do they leave because of 

external factors such as their local microenvironment (Kaur et al., 2019; Olmeda et al. 

2017), or some combination of the two? 

 Genetic differences such (i.e., mutations) have often been implicated in driving the 

transition to a more invasive state underlying metastasis (Nataraj et al., 2021; Nguyen et 

al., 2022). However, recent work has established the role of non-genetic changes in 
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regulatory pathways to cause the switch to an invasive phenotype (Arozarena and 

Wellbrock, 2019; Quinn et al., 2021). For example, this phenotype switching in 

melanoma is driven by changes in Wnt pathway signaling and by factors in the local 

tumor milieu.  

Here, we show that within clonal melanoma cell lines there are rare and highly 

invasive subpopulations. Moreover, this phenotype is transient and marked by the 

expression of SEMA3C. The transcription factor NKX2.2 also negatively regulates the 

formation of the invasive subpopulation. 

3.2 Results 

3.2.1 SEMA3C marks a rare and invasive population  

Invasiveness of cells was measured using polytetrafluoroethylene transwells and a serum 

gradient to encourage invasion. The so-called early invading cells are the small 

percentage of cells that invade through the transwells in the first 8 hours of the assay 

(Figure 3.1). To identify a candidate marker of the behavior, early invading cells, late-

invading cells, and non-invading cells had their transcriptomes profiled via RNA 

sequencing. SEMA3C, a gene whose protein product is expressed on the cell surface, was 

identified as a differentially expressed gene that marked early invading cells (Figure 

3.2). To establish SEMA3C as a bona fide marker of the early invading population, cells 

were sorted based on the degree of SEMA3C expression using flow-assisted cell sorting 

(Figure 3.3) and their rate of invasiveness was measured using the transwell assay. In 

fact, SEMA3C-high cells were far more invasive than SEMA3C-low cells and the overall 

population (Figure 3.4), suggesting SEMA3C is a marker of the early-invading 

population.   
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3.2.2 NKX2.2 is a transcription factor that promotes the invasive 

subpopulation 

ATAC-sequencing was performed on early-invading, late-invading, and non-invading 

FS4 cells to characterize differences in chromatin accessibility and identify putative 

regulatory factors. Overall, a relatively small amount (1107) of differential peaks were 

identified that characterized the early-invading population. The homeobox-domain 

containing transcription factor NKX2.2 (also commonly referred to as NKX2-2) was 

identified as a putative regulator of the early-invading phenotype. To test the role of 

NKX2-2 in creating an early invading subpopulation, we knocked it out using CRISPR-

Cas9-mediated genome editing. Much to our surprise, rather than making cells less 

invasive as we hypothesized, knockout of NKX2-2 caused 1205Lu cells to become more 

invasive and proliferate at a faster rate (Figure 3.5). Principal component analysis of 

RNA and ATAC-sequencing data demonstrated that cells with an active guide targeting 

NKX2-2 separately in principal component space for both data modalities (Figure 3.6). 

While there was some overlap in the transcriptional profile between NKX2-2 knockout 

1205Lu cells and early invading 1205Lu and FS4 cells (Figures 3.6, 3.7, 3.8, 3.9), the 

knockout cells were still transcriptionally distinct. Most of the common differentially 

expressed genes were those downregulated in early invaders and in NKX2-2 knockout 

cells which were genes involved in cell migration, cell motility, and extracellular matrix 

organization (Figure 3.10).  

3.3 Discussion 

Overall, these findings indicate that clonal melanoma cells can have a cell-intrinsic, non-

genetic ability to become invasive. This rare population in our system is characterized by 
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high expression of the surface protein SEMA3C and enrichment for cells highly 

expressing SEMA3C enriches for invasive cells. This work also establishes the foundation 

for NKX2.2 as a regulator of invasive behavior in melanoma. This is result is particularly 

interesting given that to date the only mention of NKX2.2, which has been implicated in 

Ewing Sarcoma, and melanoma is an immunohistochemical study mentioning that 2/6 

melanoma samples stained positive for NKX2.2 (Yoshida et al. 2012). Future work 

should better delineate the mechanism by which NKX2.2 increases both invasiveness 

and proliferation and look to recapitulate these results in vivo.  

3.4 Contributions 

This chapter contains quotes and figures from Kaur et al. published in 2022 in BioRxiv 

(Kaur et al. 2022). AK, designed, performed and analyzed all experiments. KK curated 

and performed all analysis on sequencing data generated by AK. Figures 3.1, 3.3, 3.4, and 

3.5 were made by AK, while the rest of the figures and associated analyses mentioned in 

this chapter were done by KK. 
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Figure 3.1 A rare, early invading subpopulation of cells is prime for invasion 

Schematic showing the transwell assay with definitions of different invasive cell 

populations and their relative proportions of the total population for the FS4 cell line.  
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Figure 3.2 RNA-sequencing establishes SEMA3C as a potential marker of the 

early-invading population 

Heatmap showing all differentially expressed genes (including SEMA3C) between early-

invading and non-invading FS4 melanoma cells.  
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Figure 3.3 Fluorescence-activated cell sorting (FACS) of a 1205Lu melanoma 

cells based on SEMA3C protein expression 
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Figure 3.4 FS4 cells highly expressing SEMA3C are more invasive 
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Figure 3.5 NKX2.2 negatively regulates both invasive and proliferative 

behaviors in 1205Lu melanoma cells 

1205lu melanoma cells expressing either AAVS or NKX2.2 knockout were seeded on the 

transwell and the number of invading cells was calculated (left). 1205lu melanoma cells 

expressing either AAVS or NKX2.2 knockout were seeded in tissue culture plates and 

cells were allowed to grow for 10 days. Cells were imaged every 24 hours and cell counts 

at different times were determined and used to calculate growth rate of the cells (right). 

Error bars represent standard error across 3 replicates. 
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Figure 3.6 NKX2.2 knockout cells cluster separately in principal component 

space using gene expression and chromatin accessibility data 
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Figure 3.7 Pairwise distance metrics show that NKX2.2 knockout cells are 

most similar to 1205Lu early and late invaders. 

Matrix of distance (measured by 1 - Pearson’s r) between samples’ expression for the 

union of differentially expressed genes between both cell lines 

when comparing early invaders to non-invaders.  
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Figure 3.8 Differentially expressed genes show some overlap between cell 

lines and early-invading cells and NKX2.2 knockout cells 
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Figure 3.9 Odds ratio analysis looking at similarity of NKX2.2 knockout cells 

to 1205Lu and FS4 early invaders 
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Figure 3.10 Overrepresentation analysis of genes differentially 

downregulated after NKX2.2 knockout. 
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 

In the work presented in this thesis through two different projects, I both used existing 

bioinformatic approaches and developed computational techniques to better understand 

principles of gene regulation both more broadly in the context of response to single-

factor perturbations as well as in the context of distant metastasis in melanoma. A 

systematic analysis of tandem, bulk RNA-seq and ATAC-seq demonstrated that the 

changes in gene expression from signals such as retinoic acid or TGF-β were not 

necessarily concordant with changes in chromatin accessibility. Moreover, the genes 

which had concordant changes between chromatin accessibility and gene expression 

tended to be less accessible prior to stimulation with signal. Further analysis using 

multiple types of assigning peaks and subsetting peaks based on computationally 

predicted transcription factor activity failed to demonstrate any further indication of 

concordance.  These results suggest that at least in the context of these two signals, there 

are two modes of regulation at play. However, questions remain whether and to what 

degree these findings hold in other systems and contexts. 

 Additionally, we identified a highly invasive subpopulation within clonal melanoma cell 

lines that are marked with the transient, high expression of SEMA3C. This 

subpopulation was shown to drive the distant metastasis, (i.e., those beyond local lymph 

nodes) in mouse models of melanoma. Using bioinformatic analyses we identified the 

transcription factor NKX2.2 as a possible regulator of this invasive state and that its 

knockout created highly invasive cells. Further studies should better elucidate this 

factor's role more mechanistically as well as characterize what role it has in metastasis in 

vivo. 
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4.1 Determining which peaks interact with which genes 

Finding which gene(s) a given region of accessibility interacts with is by no means a 

trivial task. Here, we adopted two different heuristics to map peaks to genes. The first, 

commonly used both in ATAC-seq and other peak-based genomic profiling methods (Li 

et al. 2012; Nair et al. 2021) is to simply find the nearest transcription start site and 

assign the peak to that gene. This creates a one-to-one peak to gene mapping, but since 

this linear approach fails to take into account the three-dimensional conformation of 

chromatin and the long range contacts that may occur, we also used a window-based 

approach. This took every peak within a window around the transcriptional start site 

creating a many-to-one mapping. However, this method also has its own shortcomings 

given that certain enhancers, like the sonic hedgehog limb-bud-specific enhancer, can act 

from over 850 kilobases away (Lettice et al. 2003), much farther away than our largest 

window of 100 kilobases. Current work involves leveraging deep learning architectures, 

especially convolutional neural nets to infer from sequence alone cis-regulatory 

elements, predicted transcription factor binding sites, and higher order transcription 

factor “syntax” (Vaishnav et al. 2022; de Almeida et al. 2022; Novakovsky et al. 2022). 

While the use of these machine learning-based approaches is still in its infancy, the 

findings from these studies and further refinements may create better mappings with 

which to infer concordance.  

Alternatively, there are other approaches that can be invoked to further elucidate 

a given peak’s contribution to gene expression change. For example, Weissman and 

colleagues developed a technique which correlated peaks and the eigenvector of this 

correlation matrix, named “eigenpeaks”, on a gene-by-gene basis. Then, eigenpeaks were 

correlated with gene expression. This method reduces the covariance of multiple peaks 
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nearby into one value, and there was rarely more than one eigenpeak per gene, 

indicating that nearby cis-regultory elements typically act in concert in their system 

(Mold et al. 2022). Moreover, ArchR, a software package developed for single-cell 

chromatin accessibility analysis tested over 50 models to create a gene score from 

chromatin accessibility data. The highest scoring models tested on data from bone 

marrow and peripheral blood monocyte samples used signals from the promoter and 

gene body and used an exponential decay function to weight the contribution of more 

distal regulatory elements (Corces et al. 2018). Finally, Cicero, which was also developed 

for single-cell chromatin accessibility data, uses a combination of co-accessibility 

correlations with a graphical LASSO and distance penalty to infer a cis-regulatory map 

(Pliner et al. 2018). While Cicero in theory could be adapted to bulk chromatin 

accessibility data, it may not be as effective given the model assumes input from many 

cells rather than the usually limited number of samples done in bulk studies, but its 

tractability for this purpose should be explored. 

Finally, peak-gene pairs can be further informed from topologically associating 

domains (TADs) measured by Hi-C. However, TAD boundaries are not always 

informative of gene expression relationships and the disruption of TAD boundaries does 

not necessarily have an effect on gene expression or development phenotypes (Despang 

et al. 2019; Ghavi-Helm et al. 2019; Paliou et al. 2019; Williamson et al. 2019; Tena and 

Santos-Pereira 2021). Furthermore, TAD boundaries are not as stable as previously 

thought as studies in cancer have demonstrated that reprogramming of binding sites and 

TAD boundaries is a hallmark of therapy resistance in multiple systems (Achinger-

Kawecka et al. 2020; Zhou et al. 2022). A possible “gold-standard” approach to 

definitively establish accessible peak to gene mappings is to use tandem RNA-seq and 
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ChIP-seq or HiChIP for the transcription factor(s) of interest to a signaling process along 

with ATAC-seq. However, the scale and cost of this kind of experiment is significant and 

can suffer from technical shortcomings of the ChIP-seq/HiChIP techniques in that they 

are heavily reliant on the affinity of available antibodies for a protein of interest and that 

each experiment can only interrogate one protein at a time and do not identity 

interacting proteins that often work in tandem in the regulatory complex. Furthermore, 

the downstream analysis, like many multi-omics analyses, is by no means 

straightforward. 

4.2 Applying findings related to chromatin accessibility and gene expression 

to single-cell technologies 

The observant reader of this dissertation (and bless you if you have made it this far) will 

notice that thus far in the discussion of concordance of chromatin accessibility and gene 

expression measurements, there has been little to no mention of single-cell technologies. 

Recent advances in barcoding, microfluidics, and robotics have made both scRNA-seq 

and scATAC-seq as well as both assays in tandem far more straightforward to perform 

and the results more reproducible. However, as these technologies are still nascent, the 

sparsity of data produced due to technical dropouts as well as issues with separating 

biological variation from technical artifacts and batch effects makes it difficult to more 

systematically analyze concordance between these data (Minnoye et al. 2021). The recent 

introduction of the Chromium Single Cell Multiome ATAC + gene expression kit (10X 

Genomics, Pleasanton, CA) has proved to be exciting in that it allows for simultaneous 

measurements of gene expression and chromatin accessibility in the same cell. However, 

this method is still somewhat hampered in that gene expression measurements are 

restricted to nuclear transcripts only.  
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Despite these limitations, there is reason for optimism that future work looking 

to determine concordance at a single cell resolution will be more tractable. First, single-

cell technologies are improving in their accuracy and precision rapidly as a result of 

constant innovation. For example, very recent work by Chen and colleagues have 

established a new method, sequencing of nuclear protein epitope abundance, chromatin 

accessibility, and the transcriptome in single cells (NEAT-seq). NEAT-seq is able to 

interrogate all tenets of the central dogma of biology, and as a test case, NEAT-seq was 

used to identify transcription factors with regulatory activity in creating specific T-cell 

subsets (A. F. Chen et al. 2022). Furthermore, there is some indication that ‘pseudo-bulk’ 

accessibility profiles, i.e. those created from combining the sparse data from all members 

of the same cluster in low dimensional space can recapitulate accessibility profiles from 

bona fide bulk experiments (Minnoye et al. 2021), but this assumption needs to be more 

rigorously examined. Another intriguing future direction is to create pseudo-bulk 

profiles from a multiome experiment and compare the results of the concordance 

analyses presented in this dissertation to one done in the same system using true bulk 

sequencing data. 

4.3 Further considerations for future work examining concordance 

4.3.1 Expanding the palette of transcription factors 

Here, we examine the activity of two groups of transcription factors related to the 

biological signaling of the two perturbations used. As a result, our findings are relevant 

to the transcriptional effectors of retinoic acid (retinoic acid receptor α and HOX family 

transcription factors) and TGF-β (SMAD transcription factors) within the context of 

MCF-7 breast cancer cells being exposed to these signals for approximately three days. 
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There is no guarantee that other transcription factors would behave similarly within this 

system, and it remains largely unknown what may happen if one were to interrogate the 

effects of varying systems, perturbations or time scales. Indeed, as established here and 

previously, within the context of developmental signals there often is far more 

concordance between chromatin accessibility changes and gene expression. Along with 

these findings is the fact that there are lineage defining transcription factors that are able 

to bind to inaccessible chromatin and make the chromatin accessible for itself and other 

factors to bind, the so-called pioneer factors (Zaret 2020). Among these are members of 

the fork head box (FOX) family and GATA family members, and surely the relationship 

of concordance when examining these factors would be different than our findings.  

Alternatively, there is a body of work demonstrating that some factors depend 

heavily on the pre-existing chromatin accessibility landscape for their binding. For 

example, the glucocorticoid receptor binds almost exclusively to pre-existing accessible 

chromatin prior to stimulation with dexamethasone (John et al. 2011), and that activator 

protein 1 (AP-1) establishes this binding pattern for the glucocorticoid receptor by 

maintaining chromatin accessibility (Biddie et al. 2011). Similarly, the lineage-defining 

transcription factor Foxp3 binds to preformed accessible sites established by its 

structural homolog, Foxo1, to establish regulatory T cell identity (Samstein et al. 2012). 

Of note, this process of regulatory T cell specification via Foxp3 is considered a ‘late 

differentiation’ process, as the precursor cell state, the mature naive CD4+ T cell is 

considered mature. These studies looked at chromatin accessibility data along with 

ChIP-seq data of the factor of interest, and further work looking to examine concordance 

in these contexts should also include transcriptomic data. Thus, there is a need to further 

examine a variety of factors in a variety of contexts using approaches established in this 
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dissertation as a starting framework to gain a better understanding which underlying 

regulatory relationships are more unique to specific contexts and which are more general 

principles of eukaryotic gene regulation. 

Finally, a limitation of the findings in the above work is that they are from a 

clonal cell line system. Further studies should investigate to what degree our findings are 

applicable to in vivo systems responding to physiologic situations. Indeed, some work 

has demonstrated similar findings to ours from primary placental tissue samples (Starks 

et al. 2019). A particularly promising primary system are cells from the peripheral 

immune compartment as they are often poised to react quickly to signals such as 

lipopolysaccharide, and primary cells are relatively straightforward to collect and 

manipulate ex vivo. Another often overlooked opportunity due to a bias toward 

mammalian and yeast systems for examining eukaryotic gene regulation is to examine 

concordance between chromatin accessibility and gene expression within the plant 

kingdom. In fact, there exists some precedent of this in the literature, especially using 

the model system Arabidopsis thaliana (Farmer et al. 2021). The wide array of 

aneuploidy in plant genomes as well as the rich array of physiological process that 

requires precise transcriptional regulation such as flowering, phototropism, and 

thigmotropism, to name a few, present an invaluable opportunity to better understand 

eukaryotic gene regulation.  

4.3.2 The issue of timing 

In our work, MCF-7 cells were continuously exposed to perturbations for 72 hours and at 

the end of this time period cells were split into two pots for either chromatin accessibility 

or gene expression measurements. The underlying assumption of this approach is that 

72 hours of continuous exposure is sufficient to induce all changes in gene expression 
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and chromatin accessibility to measure. Other groups (Hota et al. 2022; Ramirez et al. 

2017; Bunina et al. 2020) have instead used serial measurements at multiple time points 

after a perturbation and looked at the concordance between changes in chromatin 

accessibility at a given time point and gene expression at a later time point. Whether or 

not the assumption of ordinality of accessibility change to expression change is correct is 

subject to debate and may miss secondary changes to chromatin accessibility in response 

to gene expression changes. However, this more temporally aware approach is 

nonetheless important, and care should be taken to consider these dynamics when 

examining concordance in the future.   

4.3.3 Disentangling possible confounding effects due to the cell cycle 

As many studies, including our own, examine or will examine the concordance between 

these data in actively cycling cells, it is important to remember that during the process of 

mitosis, transcription is halted, chromatin condenses into chromosomes in anticipation 

of metaphase and the resulting progeny must re-establish at least part of the 

transcriptional program of their antecedents. Cell cycle can indeed be such an important 

confounder that scRNA-seq analyses routinely regresses out the effect of cell cycle based 

on transcriptionally inferred cell cycle scores (Nestorowa et al. 2016). Further work 

should be done to consider what effect, if any, this may have on our findings. A 

considerable body of work exists on “mitotic bookmarking,” or the retention of specific 

transcription factors at target loci on mitotic chromosomes such that the necessary 

transcriptional information can be propagated to progeny (Zaidi et al. 2010; Teves et al. 

2016). Hsiung and colleagues used a murine erythroblast model to compare chromatin 

accessibility between cells undergoing mitosis  and those in interphase to demonstrate 

that chromatin accessibility at the macromolecular level is largely independent of cell 
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cycle (Hsiung et al. 2015). However, future work has to consider whether or not that is 

the case for the system of interest as well as whether any transcription factors salient to 

the biological questions are likely to be retained for bookmarking or evicted during 

mitosis. 

4.3.4 Transcription factor footprinting in chromatin accessibility data 

A commonly cited limitation of methods for measuring chromatin accessibility genome-

wide is that inferring the specific transcription factor bound to an accessible region from 

these data is non-trivial. Thus, it is necessary to corroborate findings with further 

mechanistic studies including, but not limited to, genetic perturbation of transcription 

factors, ChIP-seq, or measuring of nascent RNA (Minnoye et al. 2021).  There are also 

more technical considerations for transcription factor footprinting. Historically, DNase-

seq has continued to outperform ATAC-seq for transcription factor footprinting (Sung, 

Baek, and Hager 2016), but more recent advances have begun to also better adapt 

footprinting for ATAC-seq, including better modeling the effects of Tn5 transposase bias 

(Karabacak Calviello et al. 2019). Regardless of modality, to accurately identify 

transcription factor binding, libraries produced must be sequenced at a great depth. 

Thus, with the current state of the art, there are limitations in inferring the activity of 

transcription factors using accessibility data. 

5.3.5 An accessible peak does not a site of transcription make  

Another important level of transcriptional regulation not addressed in the contents of 

Chapter 2 are the host of the post-translational modifications, including methylation, 

acetylation, phosphorylation, methylation, SUMOylation, among others (Strahl and Allis 

2000). By altering the electronic charge of histone tails, these modifications can alter the 
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binding of histone tails to DNA and therefore gene expression (Kouzarides 2007; Yanjun 

Zhang et al. 2021).  

Of note is histone acetylation, which reduces the positive charge of lysine 

residues in the histone tail, leaving DNA exposed (Bannister and Kouzarides 2011). Thus, 

histone acetylation is often considered an active histone mark (Pogo, Allfrey, and Mirsky 

1966; Clayton et al. 1993). While many lysine residues can be acetylated, the acetylation 

of the 27th residue of histone 3 (H3k27ac) is of particular interest because it is often 

localized at promoters and enhancers of actively transcribed genes (Creyghton et al. 

2010; Rada-Iglesias et al. 2011).  

H3K27ac histone modifications are recognized by the p300/cyclic AMP response 

element-binding protein (CBP) activating protein complex. The p300/CBP complex can 

then relax chromatin structure at promoters through its intrinsic histone 

acetyltransferase activity as well as recruiting other acetyltransferases (Q. Jin et al. 2011). 

Bromodomain and extraterminal domain (BET) proteins also recognize the H3k27ac 

using their bromodomains and act as scaffolds to recruit other transcription factors and 

RNA polymerase II to modulate gene expression (Josling et al. 2012; Taniguchi 2016; 

Benton, Fiskus, and Bhalla 2017).  

 While in many cases the result of increased H3K27 acetylation is more accessible 

chromatin and increased gene expression, the exact interplay between these so called 

“epigenetic” marks is far more complicated. Recent work has only begun to interrogate 

enhancer elements using an activity-by-contact model along with CRISPRi to test 

enhancer-gene interactions in 30 genes (Fulco et al. 2019). Future work should expand 

these methodologies to more genes in more context as well as more rigorously build a 

model of gene regulation by examining changes not only in gene expression and 
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chromatin accessibility, but also using localization of important transcription factors and 

histone modifications.  

4.5 Single-cell variability in melanoma metastatic potential 

4.5.1 Further characterization of NKX2.2 deficient cells 

One of the most stark findings by Kaur and colleagues was that the rare and transient 

population of highly invasive cells characterized by high SEMA3C expression composed 

the vast majority of melanoma cells that migrated from the primary tumor and 

metastasized in the lung (Kaur et al. 2022). Furthermore, NKX2.2 was identified from 

ATAC-seq data in the FS4 cell line (cf. the 1205 Lu cell line that in vivo and CRISPR-

Cas9 knockout studies were done) for characterizing early invading cells. The initial 

hypothesis was that knock down of this factor whose motif was overrepresented in peaks 

differentially accessible in early invading cells would lead to loss of the invasive 

phenotype. Much to our surprise, it not only increased invasiveness, but it also starkly 

increased the rate of cell proliferation. This finding is notable given that previous 

literature in melanoma had demonstrated a trade-off or anti-correlation between 

invasiveness and proliferation, meaning an increase in one attribute usually comes at the 

price of a decrease in another (Hoek et al. 2006, 2008). Indeed this tradeoff paradigm 

has been adopted from pareto optimality theory in economics (Debreu 1954) and been 

applied to biology and division of cellular tasks (Riolo et al. 2013; Hart et al. 2015). 

Further transcriptional profiling of NKX2.2 knockout melanoma cells may lend insights 

into a possible edge case where the rules of pareto optimality may fail. Furthermore, 

while proliferation and invasiveness increased as a result of knockout using functional 

assays in vitro, an important and logical next step is to adopt an experimental schema 
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similar to the previously mentioned one which Kaur and colleagues used to demonstrate 

the invasive potential of cells highly expressing SEMA3C in vivo. It is important to 

recapitulate similar results using a mixture of NKx2.2 deficient and control cells in 

murine models to further establish the role of NKX2.2 as a bona fide regulator of this 

rare, invasive state.  

4.5.2 Elucidating the role and mechanism of NKX2.2 

Our work used a systems biology approach to identify NKX2.2 as a regulator of the early 

invading phenotype. However, further work is necessary to more mechanistically 

characterize what role, if any, NKX2.2 has in creating this invasive and proliferative 

phenotype and understanding its relevance to disease pathogenesis. It is promising that 

there is considerable overlap in genes downregulated in NKX2.2 knockout cells 

compared to safe harbor controls and those downregulated early invaders versus non-

invaders. This seems to indicate that at least in this aspect, the downregulation of a 

similar set of genes related to cell migration and the extracellular matrix have their 

expression modulated by NKX2.2. As a homeobox domain-containing protein, NKX2.2 

is most commonly implicated in the morphogenesis of the central nervous system 

(Lovrics et al. 2014) and pancreatic beta cell function (Raum et al. 2006), but there is a 

dearth of literature on the transcription factors role in cancer, especially in the context of 

melanoma. Interestingly, while NKX2.2 is implicated as necessary for oncogenic 

transformation in Ewing’s sarcoma with an EWS/FLI fusion (Smith et al. 2006), the only 

mention of NKX2.2 and melanoma in the literature to the best of my knowledge is a 

paper demonstrating NKX2.2 as a useful immunohistochemical marker of Ewing 

sarcoma. This study looked at other small round cell tumors and noted that 2/6 of 

malignant melanomas tested also stained positive for NKX2.2 (Yoshida et al. 2012), 
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indicating that as far as NKX2.2 and melanoma are concerned, we are in terra incognita. 

A useful first step is to more definitively look at binding of NKX2.2 in both bulk and 

highly invasive populations using ChIP-seq or HiChIP. While these techniques are by no 

means trivial, they would identify binding and long-range interaction patterns in these 

cells to begin to establish the NKX2.2 regulome specifically in melanoma and melanoma 

metastatic potential. 

4.6 Concluding remarks 

Throughout the course of this dissertation, I have demonstrated through systematic 

analysis of chromatin accessibility and gene expression data that there are two distinct 

groups of gene expression changes in response to single-factor perturbations: those with 

concordant accessibility changes and those without. The proposed future experiments 

would explore how these results hold in other systems or for other transcription factors. 

Finally, I have begun to lay the foundation of the role of the transcription factor NKX2.2 

in invasive behavior in melanoma metastatic melanoma. Taken together, these findings 

will not only help better delineate the fundamental regulatory axioms at play in 

transcriptional regulation, but also help deliver insights to help inform stem cell-based 

therapeutics and more effective cancer therapies.  
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CHAPTER 5: MATERIALS AND METHODS 

 

5.1 PCA of RNA and ATAC-sequencing samples 

Principal component analysis and visualization of RNA-seq and ATAC-seq samples was 

performed using raw counts and performing a variance stabilizing transform. Results 

were visualized using functions from the R DESeq2 package (Love, Huber, and Anders 

2014).  

5.2 Bulk RNA-sequencing analysis 

Initial RNA sequencing analysis was performed as previously (Goyal et al. 2021). Briefly, 

reads were aligned to the hg38 assembly using STAR v.2.7.1a and counted uniquely 

mapped reads with HTSeq v0.6.1 and hg38 GTF file from Ensembl (release 90). We used 

DESeq2 v1.22.2 in R 3.5.1 using a minimum absolute-value log-fold-change of 0.5 and a 

q value of 0.05. For genes with multiple annotated transcriptional start sites, we used the 

‘canonical’ transcription start site from the knownCanonical table from GENCODE v29 

in the UCSC Table Browser.  

We performed functional over-representation and gene set enrichment analysis 

(Subramanian et al, 2005) of upregulated transcripts in the high dose retinoic acid and 

high dose TGF-β using clusterProfiler v4.0.5 and enrichplot v1.12.3 (T. Wu et al. 2021). P 

values for the over-representation analysis were adjusted using a false discovery rate 

approach. We used the C5 ontology and H hallmark curated gene sets from the 

Molecular Signatures Database (MSigDB) v7.4 (Liberzon et al. 2011, 2015) as reference 

gene sets to compare our upregulated genes to.  
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5.3 ATAC-sequencing analysis  

ATAC-seq alignment and peak calling was performed as previously (Sanford et al, 2020). 

We aligned peaks to the hg38 assembly using bowtie2 v2.3.4.1, and filtered out low-

quality alignments with samtools v1.96, removed duplicate read pairs with picard 1.96, 

and used custom Python scripts along with bedtools v2.25.0 to create alignment files 

with inferred Tn5 insertion points. We called peaks using MACS2 (Zhang et al. 2008) 

v2.1.1.20160309 with the command, ‘macs2 callpeak --nomodel --nolambda --keep-dup 

all --call-summits -B --SPMR --format BED -q 0.05 --shift 75 --extsize 150’. 

Since we had three biological replicates per condition, we used a majority rule 

approach to retain only summits that were found in at least two replicates (Yang et al. 

2014). Using these condition-specific peak files, we used bedtools to create a consensus 

peak file by merging each individual condition's peak summit file together in a manner 

that disallowed overlapping peaks. We used bedtools merge command ‘bedtools merge -

d 50’ to combine features within 50 base pairs of each other into a single peak after 

testing multiple merge distances. We used the number of ATAC-seq fragment counts at 

each peak in this merged consensus peak file for differential peak analysis.  

We used the custom peak analysis algorithm from Sanford et al., 2020 that took 

advantage of additional ethanol control conditions to estimate false discovery rate in 

ethanol controls to then identify differential peaks. Briefly, reads were quantified for 

each peak in the master consensus file and fragments at each peak were normalized to 

correct for differences in total sequencing depth using the equation: 

sample's total reads in peaks/mean number of reads in peaks across all samples. Next, 

an estimated false discovery rate was calculated in each cell of a 50x50 grid containing 

50 exponentially-spaced steps of minimum fold-change values (ranging from 1.5-10) and 
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50 exponentially-spaced steps of minimum number of normalized fragment counts in 

the condition with the greater number of counts (ranging from 30 to 237 or 10 to 237). 

The estimated false discovery rate (FDR) was calculated using the equation: estimated 

FDR = (no. of conditions)(est. number of false positive peaks per condition)total number 

of differential peaks in experimental conditions. After calculating the estimated FDR in 

each cell of the 50x50 grid, we then pooled together differential peaks contained in any 

cell with an FDR less than 0.25%.  

We performed motif analysis on our set of differential peaks using chromVAR 

v1.8.0 (Schep et al. 2017), its associated cisBP database of transcription factor motifs, 

and the motifmatchR package from bioconductor. To decrease the variance of the 

transcription factor motif deviations scores, we pooled together the different dosages of 

retinoic acid or TGF-β. The chromVAR code was modified to extract an internal metric 

that equals the fractional change in fragment counts at motif-containing peaks for a 

given motif.   

5.4 Hematopoietic differentiation data processing 

We used preexisting RNA- and DNase I-seq data (aligned to genome assembly hg19) of 

hematopoietic differentiation (González, Setty, and Leslie 2015) to compare against our 

data. We used data from the website provided in the paper 

(http://cbio.mskcc.org/public/Leslie/Early_enhancer_establishment/) to download 

annotations of peaks (peaksTable.txt), counts of DNase-seq (DNaseCnts.txt), and RNA-

seq counts (RNAseqCnts.txt). Counts presented in these data files were quantile 

normalized and averaged when biological replicates were available. We filtered peaks 

with “CD14” or “CD34” under the “accessPattern” annotation to choose for peaks that 

were relevant for comparing HSPCs to monocytes. We used a log2 fold change of greater 
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than or equal to 2 as a cutoff for assigning differential peaks. We used the preexisting 

annotations of genes for each peak for peak-gene mapping. For determining the log2 fold 

change in gene expression we discarded genes whose maximum expression value across 

the two conditions was fewer than 5 quantile-normalized units.  

For visualization of this data set with our own accessibility data, we realigned raw 

fastq files DNase-seq files to the hg38 assembly using bowtie v2.3.4.1 and filtered out 

low-quality alignments with samtools v1.1 to generate new .bam alignment files. The 

alignment files were combined using samtools merge in a single .bam file per cell type. 

Bam files were converted to .bigWig format using deeptools 3.5.1 (Ramírez et al, 2016) 

“bamCoverage -- normalizeUsing CPM” to create a ‘consensus’ .bigWig for visualization. 

Peaks for CD34+ and CD14+ samples were made by filtering peaks annotated for these 

populations in the “accessPattern” column and creating separate .bed files using a 

custom script. The peak location in these .bed files were then lifted over from hg19 to 

hg38 using UCSC hgLiftOver. For comparing the overlap of peaks between data sets, we 

created consensus peak sets across all sample types and used the bedtools intersect 

function to quantify the proportion of peaks that intersected between the hematopoietic 

differentiation and signaling data. 

5.5 Peak annotation 

Peaks were annotated using ChIPseeker (Yu, Wang, and He 2015) to determine the 

relative proportion of features in the data from González et al., 2015 (DNAse-seq) and 

Sanford et al., 2020 (ATAC-seq). For ease of visualization, certain categories like the 

three promoter categories were collapsed into one. ChiPseeker was also used to identify 

the nearest transcriptional start site to a gene used for the nearest integration approach 

described below. For making scatter plots of change in accessibility versus change in 
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expression annotated by peak feature, a custom script was used to combine annotations 

from ChIPseeker into four categories: downstream, gene body, integenic, and promoter. 

For each of the top 150 most variable transcription factor motifs we identified 

using differential accessibility analysis, we used the R bioconductor motifmatchR 

package to annotate both the number of motif matches and a log-likelihood match score 

for each peak. 

5.6 RNA-seq and ATAC-seq data integration 

We employed two methods for assigning peaks to genes. In the ‘nearest’ approach, we 

used annotation from ChIPseeker to assign each peak to the nearest transcriptional start 

site. With this method, each peak is uniquely mapped to a single gene. In the ‘window’ 

approach we used a window of 50 kilobases on either side of the transcriptional start site 

(100 kilobases in total) to assign peaks to a gene, which could result in a peak being 

assigned to multiple genes.  

5.7 Track Visualization 

We visualized accessibility data using the web based version of integrative genomics 

viewer (IGV) (Robinson et al. 2011, 2020). We prepared accessibility data for 

visualization by taking consensus files and converting them to .bigWig file format with 

either fragments per million or counts per million normalization. Bed files for identifying 

peaks were created using custom scripts.  

5.8 Statistics and software 

Unless otherwise stated, we performed analyses using R v4.1.0 with data manipulation 

and visualization done with tidyverse v1.3.1 (Wickham et al. 2019) and ggpubr v0.4.0. 

We used a Kolmogorov-Smirnov test to compare means. Unless otherwise stated, 95% 



   
 

99 

confidence intervals for Pearson’s r were calculated by bootstrapping using 10,000 

replicates.  

5.9 Reproducible analyses 

All data and remaining code for these analyses can be found at 

https://www.dropbox.com/sh/qbjuagz511c072g/AAChvYMjdoG7A0eNdqbEmaUla?dl=

0. Analyses were done in R or on the command line. We used a selection of color-blind 

friendly colors from a custom palette.  
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