
Production and Playback of Human Figure Motion for 3D Virtual
Environments

John P. Granieri, Jonathan Crabtree, Norman I. Badler

Center for Human Modeling and Simulation
University of Pennsylvania

Philadelphia, PA 19104-6389, USA
granieri 1 crabtree 1 badleragraphics. cis .upenn. edu

Abstract
We describe a system for off-line production and

real-time playback of motion for articulated human fig-
ures in 30 virtual environments. The key notions are
(1) the logical storage of full-body motion in posture
graphs, which provides a simple motion access method
for playback, and (2) mapping the motions of hrgher
DOF figures to lower DOF figures using slaving to
provide human models at several levels of detail, both
in geometry and articulation, for later playback. We
present our system in the context of a simple prob-
lem: Animating human figures in a distributed simu-
lation, using DIS protocols for communicating the hu-
man state information. We also discuss several re-
lated techniques for real-time animation of articulated
figures in visual simulation.

1 Introduction
The ability to render realistic motion is an essen-

tial part of many virtual environment applications.
Nowhere is this more true than in virtual worlds con-
taining simulated humans. Whether these human fig-
ures represent the users’ virtual personae (avatars) or
computer-controlled characters, people’s innate sensi-
tivity as to what looks “natural” with respect ‘co hu-
man motion demands, at the very least, that moving
characters be updated with each new frame that the
image generator produces.

We first discuss a topical problem which requires
the real-time rendering of realistic human motion, and
then describe our system for authoring the motion off-
line, and playing back that motion in real time. We
also address some of the issues in real-time image gen-
eration of highly-articulated figures, as well as com-
pare several other methods used for real-time anima-
tion.

2 Human motion in DIS
The problem we are interested in is generating and

displaying motion for human figures, in particular sol-
diers, in distributed virtual environments. Parts of the
general problem and the need for representing simu-
lated soldiers (referred to as Dismounted Infantry, or
DIs), are covered in [15, 51. Although primarily driven

by military requirements today, the general technolo-
gies for projecting real humans into, and represent-
ing simulated humans within, virtual environments,
should be widely applicable in industry, entertainment
and commerce in the near future.

The Distributed Interactive Simulation (DIS) [7]
protocol is used for defining and communicating hu-
man state information in the distributed virtual envi-
ronment. The DIS protocol, at least the part relating
to human entities, is in its early stages of development,
and fairly limited in what it can specify about a hu-
man figure [ll:l, but is a good baseline to start with.
Our purpose here is not to engage in a discussion of the
intricacies (nor worth) of the DIS protocol, but merely
to use it as an example of a distributed simulation pro-
tocol which can communicate state information on a
simulated human entity between simulation nodes in
a network.

The informaLion representing a human entity is cur-
rently defined by several discrete enumerations in the
appearance field of an Entity State Protocol Data Unit
(PDU) in the DIS protocol [8]. The relevant informa-
tion we are interested in from the Entity State PDU
is shown in Fig. 1. The human is always in one of the
four postures, along with a weapon state. The head-
ing defines the forward direction. Although there are
enumerations for walking and crawling, we use combi-
nations, such as (posture=standing)+(velocity>Oj to
be equivalent to walking or running. Although the
protocol allow;; for up to three weapons of different
types on a soldier, we only modeled one, a rifle.

If the human can be in any of n possible postures,
there are potentially n2 transitions between the pos-
tures. Rather than create nz posture transitions, we
encode the postures and transitions into a -posture
graph [l]. The graph defines the motion path to tra-
verse to move the human figure from any one posture
to another. These graphs are directed and may in-
clude cycles. It also provides the logical structure for
the run-time motion database.

When the velocity of the human is zero, the possible
transitions between static (for lack of a better term)
postures are encoded in the posture graph of Fig. 2.
A few of the a.ctual postures are shown in Fig. 3. In

127
O-8186-7084-3/95 $04.00 0 1995 IEEE

Proceedings of the Virtual Reality Annual International Symposium (VRAIS '95)
0-8186-7084-3/95 $10.00 © 1995 IEEE

Figure 1: Essential human state information in a DIS
Entity State PDU

Prone Prone

Deployed Firing

i
Dead

Figure 2: The statzc posture graph

Figure 3: Some of the static postures a soldier can
take in DIS

the post,ure graph, the nodes represent static postures,
and t#he directed a.rcs represent the animated full-body
transitions, or movements, from posture to posture.
Each arc has an associated time for traversal, which
is used to find the shortest path, in time, if more than
one path exists between a starting posture and a goal
posture.

TThen the velocity of the figure is non-zero, the
possible transitions between locomotion postures are
shown in the posture graph of Fig. 4. In this graph,
the nodes are static postures, but the figure would
never be in the posture for more than one frame.

The system we built consists of two distinct parts:
1) the off-line motion data generator, and 2) the on-
line real-time playback mechanism, running in a high-
performance IRIS Performer-based [la] image genera-
tor application.

3 Off-line motion production
Motion production involves three steps: 1) creating

postures and motion for each node and arc in a posture
graph, for one human model, 2) mapping the result-
ing motion onto human models with lower degrees-
of-freedom (DOF) and lower resolution geometry, and

128

Proceedings of the Virtual Reality Annual International Symposium (VRAIS '95)
0-8186-7084-3/95 $10.00 © 1995 IEEE

finally 3) recording the results and storing in a format
for easy retrieval during playback.
3.1 Authoring the motion

TO STATIC
POSTURE GRAPH

The first, step in producing motion for real-time
playback is to create postures representing the nodes
in the posture graphs, as well as the corresponding mo-
tions between them, represented as the directed arcs
in the graphs. We used a slightly modified version of
the Jack human modeling and animation system [a]
for this purpose. Jack provides a nice constraint-
based, goal-driven system (relying heavily on inverse-
kinematics and primitive “behavioral” controls) for
animating human figures, as well as facilities for or-
ganizing motions for general posture interpolation [l].
It is important to note that the posture graphs pre-
sented in this paper differ from the posture transition
graphs presented in [l]. In the latter, the posture tran-
sition graphs are used to organize motion primitives
for general post,ure interpolation with collision avoid-
ance. In the former application (this paper) the pos-
ture graphs are a logical mechanism for organizing a
database of pre-recorded motion, and determining mo-
tion sequences as paths between nodes of the graph.
An underlying assumption of the posture graphs is
that the articulated human figure’s motion is contin-
uous, and therefore can be organized into a connected
graph.

Each directed transition in the static posture graph
typically was produced from 10 to 15 motion primi-
tives (e.g. move-arm, bend-torso, etc). Many of the
directed motions from a posture node A to a posture
node B are simply run in reverse to get the correspond-
ing motion frorn posture B to posture A. In several
cases, the reverse motion was scripted explicitly for
more natural results.

Figure 4: The locomotion posture graph

The human figure can also move (either forwards or
backwards, depending on the difference between the
heading and the direction of the velocity vector) by
either locomoting (if posture is standing) or crawling
(if posture is prone). The locomotion posture graph
transitions of Fig. 4 were generated by Hyeongseok
Ko’s walking svstem [9]. Six strides for each type of
walking transition were generated (forward walking,
backward walking, running): left and right starting
steps, left and right ending steps, and left and right
cyclic steps. The crawling animation was generated
manually, and is based on two animations - one that
goes from the -prone posture to the cyclic state, and
one complete cyclic motion. Note that only straight
line locomotion of fixed stride is modeled. We are
currently working on extending the system to handle
variable stride lengt,h and curved path locomotion, as
possible in the system of [9].
3.2 Slaving

The second step in the production process is con-
cerned with preparing the motion for the real-time
playback system. We wish to have tens, and poten-
tially hundreds of simulated humans in a virtual en-
vironment. This neccesitates having multiple level-
of-detail (LOD) models, where the higher resolution
models can be rendered when close to the viewpoint,
and lower resolution models can be used when farther

129

Proceedings of the Virtual Reality Annual International Symposium (VRAIS '95)
0-8186-7084-3/95 $10.00 © 1995 IEEE

motion 6OHz 1 3OHz / 15Hz fl

Figure 5: The different levels of detail for the human
models

away. We reduce the level of detail in the geometry
and articulation by creating lower-resolution (both m
geometry and articulation) human figures, with the
characteristics listed in the table of Fig. 5.

All the motions and postures of the first step
are authored on a (relatively) high resolution human
body model which includes fully articulated hands and
spine. This model is referred to as “human-l” in
the above table. We manually created the two lower-
resolution models! human-2 and human-3. Because
of the difference m internal joint structure between
human-l and the lower LOD models, their motions
cannot be controlled by the available human control
routines in Jack (which all make assumptions about
the structure of the human figure - they assume a
structure similar to human-l). Instead of controlling
their motion directly, we use the motion scripts gener-
ated in the first step to control the motion of a humair-
1, and then map the motion onto the lower resolution
huma,n-2 and human-3. We call this process slaving.
because the high resolution figure acts as the master,
and the low resolution figure acts as the slave.

Even though the different human models have dif-
ferent internal joint structures and segment shapes.
their gross dimensions (e.g., length of arms, torso, etc.)
are similar. The slaving process consists of internolat-
ing the motions for the full human figure, generating
all the in-between frames, and simultaneously having
a lower LOD human model (human-2 or human-3)
slaved, and then saving the in-between frames for the
soldier. We will describe the process used for slaving
from human-l to human-2; the case with human-3 IS
similar.

For each frame of an animation, we first compute
the position and joint angles for human-l. Then, an
approximation of the joint angles for human-2 are
computed. This is straightforward, as certain joints
are the same (the elbow, for example, is only one DOF
on both human models), a,nd others can be approx-
imated by linear combinations (for example, the 3.5
DOFs of the spine on human-l can be summed and
mapped directly onto the 7 DOF torso of human-2).
This gives a good first approximation of the posture
mapping, and provides an initial configuration for the
final mapping. For the resulting motion of human-2
to look correct, we need to have certain landmark sites
of the two bodies match exactly (the hands must be
on the rifle). The final mapping step involves solving
a set of constraints (point-to-point and orientation),
to bring the key landmark sites into alignment. The

Figure 6: human-l and human-2 models during slav-
ing. human-l is the master. Upper window is the
skeletal articulation. Models are offset for illustrative
purposes.

constraints are solved using an iterative inverse kine-
matics routine [17] to move the body parts into align-
ment.

Because of differences in geometry between the
master and slave, in general we cannot expect all
the landmark sites to match exactly. For the prob-
lem domain of this paper, animating the DIS proto-
col. the hands are always holding a rifle, so match-
ing the hand positions accurately from the master is
very important (otherwise the slave’s hands may pen-
etrat)e the rifle). Using a priority scheme in evaluat-
ing constraints, we assign higher priority to the hand-
matching constraints than others, to account for this
fact. If the slaving procedure cannot fit the master
and slave within a certain tolerance, it will generate a
warning for the animator.

3.3 Recording
The final step in the motion production process is

to record the resulting motions of the human figures.
The recorded motion for one transition is referred to as
a channel set (where each joint or figure position is re-
ferred to as a channel; the channel is indexed by time).
For each LOD human figure, a homogeneous trans-
form is recorded, representing figure position relative
to a fixed point, and for each joint, the joint angles
are recorded (one angle per DOF). Also for joints, the
composite joint transform is pre-computed and stored
as a 4x4 matrix (which can be plugged directly into
the parenting hierarchy of the visual database of the
run-time system). Each channel set has an associated

130

Proceedings of the Virtual Reality Annual International Symposium (VRAIS '95)
0-8186-7084-3/95 $10.00 © 1995 IEEE

motion f rames motion database

.----Q. = data flow ,‘--- 4 = control flow

Figure 7: Overview of multi-processing framework for
run-time system.

transition time. The channels of human-1 are inter-
polated and stored at 6OHz. human-2 at 30Hz. and
human-3 at 15Hz. These rates correspond to the mo-
tion sampling during playback (see below).

4 Real-time motion Dlavback
The real-time plavback fuLcti&s are packaged as

a single linkable library, intended to be embedded in
a host IRIS Performer-based visual simulation appli-
cation. The librarv loads the posture graphs shown
in Fig. 3 and 4. as”well as the associate; Channel set
mot& files. Onlv one set of motions are loaded. and
shared amongst any number of soldier figures being
managed by the library. The articulated soldier fig-
ures themselves are loaded into the Performer run-
time visual database. The library runs as a separate
process, the MOTION process, serving motion data to
the APP process (the APP, CULL and DRAW process are
defined in the Performer multiprocessing framework).
See Fig. 7 for a schematic overview of the runtime
system.

An update function in the APP process is provided
which maps joint angle values into the joint transforms
of the soldier figures in the Performer visual database.

The APP process sends requests to the MOTION pro-
cess, and receives ioint angle packets back from-the
librarv. The content of the reauest to the librarv is
sirnpl; the state information extiacted from a DIS “En-
tity State PDU, as shown in Figure 1. A simple con-
trol function translates these requests into playbacks
of channel sets (the traversal of arcs of the posture
graphs).

In the case of a static posture change (a motion
from the stat,ic posture graph of Figure 2) the sys-
tem will find the shortest path (as defined by traver-
sal time) between the current and goal postures in the
graph, and execute the sequence of transitions. For
example, if the posture graph is currently at Standing
Deployed, and F’rone Firing is requested, it will transi-
tion from Stand Deployed to Crawl to Prone Deployed,
and finally to Prone Firing.

The same shortest-path traversal method is used
for executing posture changes in the locomotion pos-
ture graph of Fig. 4. It is important to realize that the
only difference between the “static” and “locomotion”
posture graphs is conceptual; the data structures in-
volved are identical, and the distinction merely has to
do with the conditions under which posture transitions
are made. A posture change is made with a node of
the static gra,ph as a destination only upon receipt of
a DIS Entity State PDU indicating that the agent is
in such a posture. In the absence of further informa-
tion, the agent remains in that posture. Conversely,
when a posture change is made with a node of the
locomotion graph as the destination, something that
will occur if a. PDU indicates the agent now has a non-
zero speed, the agent does not remain in that posture
once it is rea,ched; absence of further information in
this case means that the agent’s speed is still nonzero,
and hence the a,gent must take another step, or crawl
another meter forwards, or whatever is appropriate
for the current mode of locomotion. This continued
motion requires that another posture change be made
immediately.

One may think of labeling the transition arcs be-
tween posture graph nodes with conditions, as in a
finite state machine. For instance, the transition from
Standing Deployed t,o Walking Forwards (left foot for-
ward) is taken whenever the agent’s speed becomes
non-zero and the agent’s heading vector agrees with
the velocity vector. On the other hand, if the vectors
are not pointing in approximately the same direction,
a transition is instead made to one of the Walking
Backwards states. While the agent’s speed remains
nonzero (as it is assumed to in the absence of PDU up-
dates), the system continually makes transitions back
and forth between, for example, the Walking Forwards
(left foot forward) and Walking Forwards (right foot
forward) nodes. This cycle of transitions creates a
smooth walking motion by concatenating successive
left and right, steps. Note that since we currently have
no cycles of more than two nodes, finding the shortest
path between postures in a cycle is a trivial matter!

Crawling is handled similarly, though it is a simpler
case; there it; no need for separate “left foot forward”
and “right foot forward” states.

The system samples all the pre-recorded motion us-
ing elapsed ‘time, so it is guaranteed to always play
back in real time. For a 2 second posture transition
recorded at 6Ofps, and a current frame rate of the im-
age generat,or of 2Ofps, the playback system would play
frames 0,3,6, 120. It recomputes the elapsed tran-
sition time on every frame, in case the frame rate of
the image generator is not uniform.

The motion frame update packets sent from the

131

Proceedings of the Virtual Reality Annual International Symposium (VRAIS '95)
0-8186-7084-3/95 $10.00 © 1995 IEEE

MOTION process back to the APP process are pack-
aged to only include those joint angles which have
changed from the last update. This is one way we
can minimize joint angle updates, and take advantage
of frame-to-frame coherence in the stored motions ‘.
A full update (all joint angles and figure positions) is
about 400 bytes.
4.1 Motion level-of-detail

It is recognized that maintaining a constant frame
rate is essential to the believability of a simulation,
even if it means accepting an update speed bounded
by the most complex scene to be rendered. Automatic
geometric level-of-detail selection, such as that sup-
ported by the 1RIS Performer toolkit, is a well-known
technique for dynamically responding to graphics load
by selecting the version of a model most appropriate
to the current viewing context [4, 6, 141.

The LOD selection within the visual database seeks
to minimize polygon flow to the rendering pipeline
(both in the software CULL and DRAW components
of the software pipeline, as well as to the transforma-
tion engines within the hardware pipeline).

Given our representation, which enforces the sep-
aration of geometry and motion, it is possible to ex-
pand level of detail selection into the temporal domain.
through motion level-of-detailselection. In addition to
reducing polygon flow, via selecting lower LOD geo-
metric models, we also are selecting lower LOD ar-
ticulation models, with fewer articulation matrices, as
well as sampling motion at lower frequencies. This re-
duces the flow of motion updates to the articulation
matrices in the visual database. The models we are
using are listed in Fig. 3.2.

In the playback system, we simultaneously transi-
tion to a different geometric representation with a sim-
pler articulation structure, and switch between stored
motions for each articulation model. We gain perfor-
mance in the image generator, while consuming more
run-time storage space for the motions. Our metric
for LOD selection is simply the distance to the virtual
camera. This appears to work satisfactorily for our
current application domain, but further evaluation of
the technique, as well as more sophisticated selection
metrics (e.g. the metrics described in [6, 41) need to
be explored.

5 Example implementations and uses
The real-time playback system is currently being

used in two DIS-based applications to create motion
for simulated soldiers in virtual environments.

The Team Tactical Engagement Simulator [15]
projects one or more soldiers into a virtual environ-
ment, where they may engage hostile forces and prac-
tice coordinated team activities. See Fig. 8 for a sanl-
ple view into the training environment. The soldier
stands in front of a large projection screen, which is
his view into the environment. He has a sensor on his
head and one on his weapon. He locomotes through

’ An initial implementation of the playback library was run
as an independent process, on another machine, from the host
image generator, and joint angle packets were sent over TCP/IP
stream sockets, hence the desire to minimize net traffic.

I,& --

Figure 8: A View of Battle Town with several soldiers
in different postures

the environment by stepping on a resistive pad and
controls direction of movement and field of gaze bv
turning his head. The soldier may also move”off thk
movement pad. and t,he view frustum is updated ac-
cordingly bksed on his eye position (head-coupled dis-
play). This allows the soldier, for example, to crouch
down to see under a parked vehicle, or to peek around
the corner of a building while still affording himself
the protection of the building. TTES also creates the
necessary DIS Entity State PDUs to represent the real
soldier (mapping from sensor values int#o the small set
of postures in the Entity State PDU), and sends them
out over the net to other TTES stations that are par-
ticipating in the exercise.

The playback system is also used in a version of
the SPSNET-IV [5] system, for generating motion of
SIMNET- and DIS-controlled soldier entities.

Motion level-of-detail selection is of particular rel-
evance to the example uroiects described above. be-
cause in the situation where a hostile agent enters the
field of view of a soldier lone of the real human Dartic- \
ipants) and brings his weapon into the deployed posi-
tion, the hostile’s actions will probably be noted only
in the participant’s peripheral vision. It is well-known
that humans can detect the presence of motion in their
peripheral vision very easily, but that resolution of de-
tail is very low. When head-tracking data is available
or a head-mount#ed disulav is in use it is Dossible to
designate areas of the Gieking frustum asAperipheral
and reduce geometric and motion detail accordinglv Y”
(not just based on linear distance to the camera, but
angular offsets also). In the TTES environment this
‘.focus of attention” information can be obtained from
the aim of the real soldier’s rifle when it is in the raised
position, as the real soldier will almost certainly be
sighting in this situation.

132

Proceedings of the Virtual Reality Annual International Symposium (VRAIS '95)
0-8186-7084-3/95 $10.00 © 1995 IEEE

6 Comparison of production/playback
methods

One of the most obvious criteria for evaluating a
given motion representation is size; there is a clear
progression in the methods used to animate humans
(or any entity whose geometric representation varies
over time) based on the amount of space required to
store a given motion. We look at three methods.

The first method, requiring the most storage, in-
volves generating and rendering the movements of
characters in an off-line fashion. Frame-by-frame,
a sequence of two-dimensional snapshots is captured
and saved for later playback. The image genera-
tor then displays the bit-mapped frames in sequence,
possibly as texture rnaps on simple rectangular poly-
gons. Hardware support for texture mapping and al-
pha blending (for transparent background areas in the
texture bitmaps) make this an attractive and fast play-
back scheme. Furthermore, mip-mapping takes care of
level-of-detail management that must be programmed
explicitly in other representations. Since the stored
images are two-dimensional, it is frequently the case
that artists will draw each frame by hand. In fact, this
is precisely the approach utilized in most video games
for many years. It is clear that very little computation
is required at run-time, and that altering the motions
incurs a high cost and cannot be done in real time. In
fact, modifying almost any parameter except playback
speed must be done off-line, and even playback speed
adjustments are limited by the recording frequency.
However, one real problem with using two-dimensional
recording for playback in a three-dimensional scene is
that non-symmetric characters will require the genera-
tion of several or many sets of frames, one for each pos-
sible viewing angle, increasing storage requirements
still further. The authors of the popular game DOOM
[13] record eight views of each animated character (for
ea.ch frame) by digitizing pictures of movable models,
and at run time the appropriate frames for the cur-
rent viewing angle (approximately) are pasted onto a
polygon. These eight views give a limited number of
realistic viewing angles; it is impossible, for instance,
to view a DOOM creature from directly above or be-
low. Interestingly enough, an article on plans for a
follow-up to DOOM reveals that the authors intend
to switch to one of the two remaining representations
we describe here:

Unlike the previous games, the graphic repre-
sentation of characters will be polygon mod-
els with very coarse texture mapping. This
will make it hard to emulate natural locomo-
tion, so they’ll stay away from creating too
many biped characters.[l6]

Making the move to the second method involves a
relatively slight conceptual change, namely taking 3-
dimensional snapshots instead of 2-dimensional snap-
shOtS. This means storing each frame of a figure’s
motion as a full three-dimensional model. Doing so
obviates the need for multiple data sets correspond-
ing to multiple viewing positions and shifts slightly
more of the computational burden over to the image

generator. Instead of drawing pixels on a polygon
the run-time system sends three-dimensional polyg-
onal information to the graphics subsystem. It is still
an inflexible approach because the figures are stored
as solid “lumps” of geometry (albeit textured), from
which it is extre:mely difficult, if not impossible, to ex-
tract the articulated parts of which the original model
is comprised. Modifications must still be effected off-
line, although rendering is done in real time. This is
essentially the a.pproach used by the SIMNET image
generators to display soldiers on a simulated battle-
field [3].

The final method is the one implemented by the
system described in this paper, in which we record
not the results of the motions, but the motions
themselves. We store a single articulated three-
dimensional model of each agent, and from frame to
frame record only the joint angles between articu-
lated segments. Modern rendering toolkits such as
the IRIS Performer system used in this project in-
creasingly allow support for storing coordinate trans-
formations within a visual database, with relatively
little cost associated with updating the transformation
matrices in real time. As a result of adopting this ap-
proach, storage space is reduced and it is far easier to
accurately perform interpolation between key frames
because articulation information is not lost during mo-
tion recording. It also allows for virtual agents with
some motions replayed strictly “as-is” and some mo-
tions which may be modified or generated entirely in
real time. For instance, the slight changes in shoulder
and elbow joint, orientation required to alter the aim of
a weapon held by a virtual soldier could be generated
on demand.

We believe t,hat the smallest representation pre-
sented in our size hierarchy, the third method, actually
retains the nmst useful information and affords the
most flexibility, while placing an acceptable amount
of additional computational burden on the run-time
display system.

7 Extensions & future work
We are currently exploring several extensions to the

techniques described above, to add more expressive
power to the tool bag of the real-time animator.

Key-framing <and interpolation The use of the
pre-recorded motions in the above posture graphs
trades time for space. We do not compute joint
angles on t,he fly, but merely sample stored mo-
tions. As the motions become more complex, it
becomes very time-consuming to produce ail the
motions in the off-line phase, so we only produce
key frames in a transition, every 5 to 10 frames,
and then use simple interpolations to generate the
inbetweens during real-time playback. This tech-
nique can’t be extended much beyond that, as
full-body human motion does not interpolate well
beyond th:Lt many frames. This also reduces the
amount of :stored motions by a factor proportional
to the spacing of the key frames, but increases
computation time when a playback frame lands
between two key frames.

133

Proceedings of the Virtual Reality Annual International Symposium (VRAIS '95)
0-8186-7084-3/95 $10.00 © 1995 IEEE

Partitioning full-body motion
In the posture graphs described previously, each
motion transition included all the joint angles for
the whole body. A technique to reduce motion
storage, while increasing playback flexibility, is to
partition the body into several regions, and record
motion independently for each region. For exam-
ple, the lower body can be treated separately dur-
ing locomotion, and the upper body can have a
variety of different animations played on it. Also,
to support the mapping of motion from partially
sensed real humans (i.e. sensors on the hands)
onto the animated human figures, we want to an-
imate the lower body and torso separately, then
place the hands and arms using a fast inverse
kinematics solution.

Articulation level-of-detail The v-ar-
ious LOD models we used for the human figures
were all built manually. Techniques for synthesiz-
ing lower LOD geometric models are known. hut
they don’t apply to building lower articulation
LOD models. Some techniques for automatically
synthesizing the lower articulation skeletal mod-
els, given a high resolution skeleton and a set of
motions to render, would be very useful.

Other dynamic properties A limitation is cur-
rently imposed by the fact that the segments of
our articulated figures must be rigid. However.
this is more an implementation detail than a con-
ceptual problem, since with sufficient computa-
tional power in the run-time system real-time seg-
ment deformation will become possible. In gen-
eral it seems likely that the limiting factor in vi-
sual simulation systems will continue to be the
speed at which the graphics subsvstem can ac-
tually render geometry. The adoption of coarse-
grained multiprocessing techniques [12] will allow
such operations as rigid or elastic body deforma-
tions to be carried out in parallel as anot,her part
of the rendering pipeline. The bottom line is that
greater realism in VR environments will not be
obtained by pouring off-line CPU time and run-
time space into rendering and recording charac-
ters in exacting detail; the visual effect of even
the most perfectly animated figure is significantly
reduced once the viewer recognizes that its move-
ments are exactly the same each and every time
it does something. We seek to capitalize on the
intrinsically dynamic nature of interacting with
and in a virtual world by recording less infornla-
tion and allowing motions to be modified on the
fly to match the context in which they are re-
played. Beginning efforts in this direction ma?
be found in [lo].

8 Conclusions
We have described a system for off-line production

and on-line playback of human figure motion for 3D
virtual environments. The techniques employed are
straightforward, and build upon several well known
software systems and capabilities. As the number of

Kinematics

Kinematics (interpolation schemes)

Ii Table lookup (method of this paper)

Tune to compute 1 frame of motion

Figure 9: Trade-off between time and generality for
motion generation techniques

possible states for a simulated human increases, the
posture graphs will need to be replaced with a more
procedural approach to changing posture. For appli-
cations built today on current workstations, the cur-
rent t,echnique is a balance between performance and
realism.

Figure 9 shows a. very coarse, and albeit intuitive,
plot of the trade-offs between generality and compu-
tation time for several motion generation techniques.
For realistic agent animation in virtual environments,
the research community will be trying to push this
curve t,o the left. making the more powerful techniques
run faster. The curve has been drifting to the left in
recent years mainly on the progress made in render-
ing hardware and overall workstation compute perfor-
mance.

We chose humans for animating, as they are what
we are interested in, but the techniques described in
this paper could be applied to other complex artic-
ulated figures, whose states can be characterized by
postures, and whose motions between postures can be
organized into posture graphs.
Acknowledgments

This research is partially supported’ by AR0
DXAL0389-C-0031 including U.S. Army Research
Laboratory (Aberdeen), Natick Laboratory, and
SAS.4 Ames Research Center; U.S. Air Force DEPTH
through H.ughes Missile Systems F33615-91-C-0001;
Saval Trammg Systems Center N61339-93-M-0843;
Sandia Labs AG-6076; DMSO through the University
of Iowa; NASA KSC NAGlO-0122; MOCO, Inc.; NSF
IR191-17110, CISE CDA88-22719, and Instrumenta-
tion and Laboratory Improvement Program #USE-
9152503.

References
[I] Norman I. Badler, Rama Bindiganavale, John

Granieri: Susanna Wei, and Xinmin Zhao. Pos-
ture interpolation with collision avoidance. In
Proceedings of Computer Anrmation ‘94, Geneva,

134

Proceedings of the Virtual Reality Annual International Symposium (VRAIS '95)
0-8186-7084-3/95 $10.00 © 1995 IEEE

PI

PI

Nl

[51

[‘5!

[71

PI

PI

PO1

[ill

WI

P31

%&erland, May 1994. IEEE Computer Society

Norman I. Badler, Cary B. Phillips, and Bon-
nie L. Webber. Simulating Humans: Computer
Graphics, Animation, and Control. Oxford Uni-
versity Press, June 1993.

Jay Banchero. Results to be published on system
for dismounted infantry motion in a SIMNET im-
age generator. Topographical Engineering Cen-
ter, US Army.

Edwin FT. Blake. A metric for computing adaptive
detail in animated scenes using object-oriented
programming. In G. Marechal, editor, Eurograph-
its ‘87, pages 295-307. North-Holland, August
1987.

David R. Pratt et al. Insertion of an Articulated
Human into a Networked Virtual Environment.
In Proceedings of the 1994 AI, Simulation and
Planning in High Autonomy Systems Conference,
University of Florida, Gainesville, 7-9 December
1994.

Thomas A. Funkhouser and Carlo H. Sequin.
Adaptive display algorithm for interactive frame
rates during visualization of complex virtual en-
vironments. In James T. Kajiya, editor, Com-
puter Graphics (SIGGRAPH ‘93 Proceedings),
volume 27, pages 247-254, August 1993.

Institute for Simulation and Training, Orlando,
FL. Stnndard for Distributed Interactive Simu-
lation - Application Protocols (v 2.0, 4th draft,
revised), 1993.

Institute for Simulation and Training, Orlando,
FL. En,umeration and Bit-encoded Values for use
with IEEE 1278.1 DIS - 1994, ist-cr-93-46 edi-
tion, 1994.

Hyeongseok Ko. Kinematic and Dynamic Tech-
niques for Analyzing, Predicting! and Animating
Human Locomotion. PhD thesis, University of
Pennsylvania, 1994.

Ken Perlin. Danse interactif. SIGGRAPH Video
Review, Vol. 101 1994.

Douglas A. Reece. Extending DIS for Individual
Combatants. In Proceedings of the 1994 AI, Sim-
ulation and Planning in High Autonomy Systems
Conference, University of Florida, Gainesville, 7-
9 December 1994.

John Rohlf and James Helman. IRIS Performer:
A High Performance Multiprocessing Toolkit for
Real-Time 3D Graphics. In Andrew Glassner,
editor, Proceedings of SIGGRAPH ‘94 (Orlando,
Florida, July 84-29, 1994), pages 381-395, July
1994.

Neil J. Rubenking. The DOOM Phenomenon. PC
Magazine, 13(19):314-318,1994.

[14] Greg Turk. Re-tiling polygonal surfaces. In Ed-
win E. Catmull, editor, Computer Graphics (SIG-
GRAPB ‘92 Proceedings), volume 26, pages 55p
64, July 1992.

[15] Frank Wysocki and David Fowlkes. Team Tar-
get Engagement Simulator Advanced Technology
Demonstration. In Proceedings of the Individual
Combatant Modeling and Simulation Symposium,
pages 144-190, 15-17 February 1994. Held in Fort
Benning, GA.

[16] Jeffrey Adam Young. Doom’s Day Afternoon.
Computer Player, pages 20-28, October 1994.

[17] Jianmin Zhao and Norman I. Badler. Inverse
kinematics positioning using nonlinear program-
ming for highly articulated figures. ACM Trans-
actions on Graphics, to appear, 1995.

Proceedings of the Virtual Reality Annual International Symposium (VRAIS '95)
0-8186-7084-3/95 $10.00 © 1995 IEEE

