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Abstract

We consider a revenue maximizing make-to-order manufacturer that serves a market of
price and delay sensitive customers and operates in an environment in which the market size
varies stochastically over time. A key feature of our analysis is that no model is assumed for
the evolution of the market size. We analyze two main settings: i) the size of the market is
observable at any point in time; and ii) the size of the market is not observable and hence
cannot be used for decision-making. We focus on high-volume systems that are characterized
by large processing capacities and market sizes, and where the latter fluctuate on a slower
time scale than that of the underlying production system dynamics. We develop an approach
to tackle such problems that is based on an asymptotic analysis and that yields near-optimal
policy recommendations for the original system via the solution of a stochastic fluid model.

Keywords: Revenue management, dynamic pricing, market uncertainty, queueing, state de-
pendent queues, asymptotic analysis.

1 Introduction

An information service provider -such as a firm offering a software application or video content

on demand- serves a market of price and delay sensitive consumers. Similarly, a make-to-order

manufacturer sells customized products with specified delivery leadtimes that themselves affect

the overall demand faced by the firm. In both examples, and assuming that the respective firms

enjoy some degree of pricing power, the goal is to select the product pricing strategy to maximize

their profitability in a way that optimally balances their revenues with the congestion externalities

that arise when the corresponding service delivery or production systems become overloaded. This

classic problem has been studied extensively in the literature. In most cases, this body of work

has assumed that the firm has perfect information of the market and demand characteristics.

For example, it is typical to assume that orders arrive according to a non-homogeneous Poisson

process with instantaneous rate at time t given by Λf(p(t), d(t)), where Λ is the total market size,
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which is assumed constant, and f(p(t), d(t)) is a known market response function that gives the

fraction of all potential buyers that choose to place an order when the posted price is p(t) and

the target leadtime is d(t) time units. (See, e.g., [4] and references therein.)

In many practical settings, however, firms have imperfect knowledge of the market response

functions and market sizes they face. Typically, the former is addressed by fitting a particular

demand function to past demand observations at different (price, leadtime) offered combinations;

this can be achieved with a fairly high degree of accuracy, at least locally around a price range

of interest. The latter is captured through the firm’s forecast. Since forecasts often neglect

various exogenous and uncontrollable factors such as unpredicted competitive actions, weather

phenomena, political changes, etc., the end result is that the actual market size may exhibit

significant stochastic fluctuations around the nominal forecasted trend. This may result in severe

exposure for the firm both in terms of financial and operational performance. The objective of

this paper is to propose a general approach for deriving pricing policies that yield near-optimal

performance in the presence of such stochastic, inter-temporal market fluctuations. In particular,

the recommendations aimed at are simple, intuitive and “model free” with respect to the market

size evolution. In addition, we seek to understand the extent and significance of this market size

time variability on congestion and profitability.

We adopt the stylized M/M/1 queue as a model of a make-to-order firm that serves a market

of price and delay sensitive customers, whose size Λ(t) varies stochastically over time, noting that

the analytical framework that we will propose in the sequel is directly applicable to more complex

production and service systems. We assume that customers make their purchase decisions based

on the prevailing price and leadtime at the time of their arrival to the system, and that the firm

selects its price in a dynamic (or static) manner, to optimize its expected profitability.

To clarify the settings analyzed in the paper, it is worth putting them into perspective. In

particular, one could define a hierarchy of settings as follows: a) Λ(·) is constant and known;

b) Λ(·) is an observable continuous time Markov chain, with, say, k possible states {Λ1, ...,Λk};
c) Λ(·) is an observable Markov process with a continuum of states; d) Λ(·) is observable but

no model is available for its underlying dynamics; and e) Λ(·) is not observable and no model

is available for its underlying dynamics. In cases a) and b), one could formulate the problem

as a classical Markov Decision Process (MDP), that would be one-dimensional for a) and two-

dimensional for b). Then, the MDP could be analyzed to derive structural results of optimal

solutions (see, e.g., [4]). Note that as the number of possible market size states (k) increases, the

model parameters would be hard to estimate. This motivates the consideration of continuous time

models (c)), addressed through appropriate continuous time control problems. The primary focus

of this paper are cases d) and e), i.e., when Λ(·) is an exogenous process with unknown dynamics

and is not necessarily observable. Without a precise model for the evolution of the market size

process Λ(·) it is unclear what the appropriate modeling approach and objective criterion should
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be. The main contributions of this paper relate to this problem. Specifically, we propose an

analytical approach for this problem and quantify the structural differences between near-optimal

policies that may or may not have real-time market information. The optimal pricing policies

are dynamic. Our analysis yields simple and practical insights, as well as provably good policy

prescriptions. Finally, our analysis also provides insights for the simpler cases a)-c) that could

potentially be addressed via an MDP formulation.

Our study is motivated by applications that involve high volumes of demand and production,

and where the market size fluctuations, while potentially significant, vary slowly relative to the

underlying production dynamics. For example, a typical make-to-order automobile manufacturer1

may produce in total thousands of cars for all of its models per day, have a backlog of existing

orders that is equivalent to a few weeks worth of production, and observe major changes in

the underlying market for automobiles every several months or so. Focusing on systems that

are described by the above two conditions, we develop an asymptotic characterization of their

behavior as the production capacity and the potential market size grow large that highlights

the “macro” time scale of the market size process. This builds on the recent idea of multi-scale

fluid limits of Bassamboo et al. [6, 7]. Intuitively, viewed on the time-scale of the market size

fluctuations, the fast dynamics of the queue will always settle into an “equilibrium” state, and

the overall system behavior will be one that moves from one equilibrium state to another as the

market size process evolves, giving rise to a stochastic fluid limit model. The precise setting in

[6] differs from ours in two important aspects: first, [6] considers a many-server limit, whereas we

focus on a setting where the number of servers is fixed (and equal to one); and second, having

a handle on the integrated queue length is not sufficient in our setting to analyze the system

dynamics and ultimately the objective, which stems in part from the non-linearity present in the

current problem. To the best of our efforts, these differences do not allow one to generalize or

adapt the methodology developed in [6]. As a result, we develop a proof technique that relies on

an extension of a powerful framework advanced by Bramson [9], which is applicable to general

models of multiclass queueing networks; this alternate approach than that taken in [6], that

appears necessary in our setting, is one of the methodological contributions of our paper.

Adopting the limiting stochastic fluid model as a representation of the system dynamics, we

pursue to characterize the dynamic pricing policies that maximize the system’s revenues. The

optimal fluid dynamic pricing policy admits a simple and intuitive structure (Proposition 2): at

any point in time the firm should apply a price that is given by the pointwise maximum between the

price that would optimize the instantaneous revenue rate in the absence of the capacity constraint,

and the price that would induce full resource utilization; this is reminiscent of the static pricing

1The make-to-order model has gained significant ground in the automobile industry. For example, BMW claims
that 80% of the cars sold in Europe and 30% of those sold in the US are built to order. When a dealer inputs a
potential order to BMW’s web ordering service, a target leadtime is generated within five seconds. This is typically
11 to 12 days in Europe and about double that amount in the US [14].
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heuristic of Gallego and van Ryzin [15]. The first of these components is constant, while the

second one will vary over time in accordance to the market size fluctuations. Since the market

evolves on a slow time scale, the corresponding price adjustments will be relatively infrequent,

which is practically appealing. We subsequently apply this policy in the case of observable market

size and show that this pricing heuristic is near-optimal in the regime considered (Proposition 4).

The intuition gained from the stochastic fluid model and the associated optimal policy can be

used in the case of unobservable market size. In particular, we derive policies in the latter setting

that indirectly track changes in the market size through changes in congestion. The latter is done

by adjusting the posted price dynamically (either continuously or at discrete points in time) in

response to the current level of congestion; if the queue length is positive, the price increases

linearly, and if the queue is empty, the price decreases linearly until it reaches the capacity-

unconstrained revenue maximizing price. We show that the derived policies achieve the same

asymptotic performance as the best possible one when the market size is observable (Proposition

5). An extensive set of numerical results provides an illustration of the above findings.

The remainder of the paper is organized as follows: this section concludes with a brief literature

review. §2 describes the model, and its stochastic fluid model approximation is derived in §3. §4
studies the problem of profit maximization under dynamic pricing in the case where the market

size is observable. §5 focuses on the case of unobservable market size. §6 reports on an extensive

set of numerical experiments and offers some concluding remarks. The proofs of the main results

are collected in Appendix A, while Appendix B contains the proofs of auxiliary lemmas.

Literature Survey: This paper builds on an extensive literature on the economic analysis

of queues that originated with the seminal work of Naor [30]. The economic framework that we

adopt here was first proposed by Mendelson [28], and further extended by Mendelson and Whang

[29]. An extensive review of known results on customer behavior in queueing environments can

be found in the book by Hassin and Haviv [19].

In contrast to the above papers that focused on social welfare optimization, our work looks

at the revenue maximization objective. There is a growing set of papers that focus on the latter.

The closest one to ours is the paper by Maglaras and Zeevi [26] that showed that the revenue max-

imizing price in a high-volume single product system induces the so-called heavy-traffic. Afèche

[1] studied the revenue maximization for an M/M/1 queue for a market with two types of price

and delay sensitive customers. Both [26, 1], as well as most of the references therein, assume

that customers respond to steady-state delay estimates (as in [28, 29]), instead of real-time delay

quotations considered in our work.

Papers that have studied dynamic pricing in queues include Low [24] and Chen and Frank [12]

using exact analysis, and Kachani and Perakis [20], Kleywegt [21], Maglaras [25] and Çelik and

Maglaras [11] using fluid and diffusion model approximations; all of these references except [11]

assume that congestion costs are incurred by the firm and not the customers. Finally, Ata and
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Schneorson [4] studied using an MDP formulation the problem of dynamic arrival and capacity

control in an M/M/1 queue.

All of the papers listed above assume perfect knowledge of the demand function and market

size, which is taken to be constant over time. The effect of a stochastically varying market

size process, almost exclusively under the assumption of a Markov modulated process, has been

studied substantially, but in all cases that we know this did not involve any pricing decisions.

(See, e.g., [32] for an inventory context and [16] for a production setting.) The specification of our

market size uncertainty is closer to the one adopted in Bassamboo et al. [7] and Steckley et al.

[33]. Both looked at staffing and routing problems in call centers that face uncertain demands.

In terms of analysis, our work adopts the multi-scale fluid limit framework proposed by Bas-

samboo et al. [7], which is related to the stationary approximation heuristic proposed by Green

and Kolesar [17] for analyzing multiserver systems facing Poisson arrivals with time-varying in-

tensity. Our proof technique relies on Bramson’s [9] framework for proving state-space collapse

results in multiclass queueing networks; see also Dai and Tezcan [13] for a recent application of

these tools. The real time delay notification results in a queue with state-dependent parameters,

which was studied by Mandelbaum and Pats [27].

An early reference that focuses on learning parameters in a non-stationary environment is

Little [23] in the context of promotional spending. Finally, a related issue that we do not address

in this paper is that of estimating the demand function itself. There is a growing literature on

revenue management problems with or without queueing effects that involve such considerations;

see, e.g., Aviv and Pazgal [5], Afèche and Ata [2], Araman and Caldentey [3] and Besbes and

Zeevi [8], as well as the references therein.

2 Model

We will first describe a dynamic pricing problem setting for a queue that operates in an environ-

ment with a stochastically varying market size.

2.1 General setting

We model a make-to-order firm offering a single product or service as an M/M/1 queue. We

assume that the firm initially sets its service rate at µ and can dynamically adjust the price of

the product p(t) at time t. Potential customers arrive according to a non-homogeneous Poisson

process with instantaneous rate Λ(t), which can be interpreted as the market size at time t. It

is typical to assume that Λ(t) is constant for all times t (see, e.g., [4] and references therein).

In contrast, our model will allow this process to vary stochastically over time in an effort to

capture the uncertainty that results from the imperfections of forecasting techniques as well as

the presence of exogenous uncontrollable factors that may affect the market size at different
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points in time. More precisely, we assume that the market size {Λ(t), t ≥ 0} is a positive, almost

everywhere continuous stochastic process, independent of the firm’s controls and the state or the

evolution of the system in question. The focus of this paper is to study the effect of this market

size uncertainty on the behavior of the system, the structure of its optimal pricing policy, and its

overall profitability. Examples of models for Λ(t) are detailed in §6.1.1.

Each customer arrives with a private valuation (or willingness-to-pay) for the product, v,

which is an independent draw from a distribution function F , which is known by the firm. Upon

arrival to the system at time t, a customer is told the prevailing price p(t) for the product and

the expected time it will take until his service starts Q(t)/µ, where Q(t) denotes the number of

customers already in the system at time t. Based on this information, the customer computes his

perceived cost as p(t) + cQ(t)/µ. We assume that c, the sensitivity of customers to congestion is

positive and constant across customers2. A customer with valuation v will purchase the product

if and only if v ≥ p(t) + cQ(t)/µ. Customers join a single queue and are processed in the order of

their arrival (FIFO discipline). Let F̄ (·) := 1−F (·). Given the above discussion, the instantaneous

arrival rate at time t, when the price is p(t) is

λ(t) = Λ(t)P

(

v ≥ p(t) +
c

µ
Q(t)

)

= Λ(t)F̄

(

p(t) +
c

µ
Q(t)

)

.

Assumption The willingness-to-pay has support [0, vmax], where 0 < vmax < ∞, and F̄ is

Lipschitz continuous and decreasing on [0, vmax].

System dynamics. The arrival process to the firm is denoted by {A(t), t ≥ 0}, and is a

non-homogeneous Poisson process with instantaneous rate λ(t), t ≥ 0; i.e., A(t) is equal to the

number of arrivals in [0, t]. Let D(t) denote the number of service completions in [0, t], T (t) the

cumulative time allocated in processing jobs up to time t and Y (t) the cumulative idleness up to

time t. Let S(t) be a Poisson process with rate µ. The dynamics of the queue length process Q(t)

are governed by the following equations:

Q(t) = Q(0) + A(t) − D(t), (1)

D(t) = S(T (t)), (2)

T (t) + Y (t) = t, (3)

Y (t) cannot increase unless Q(t) = 0. (4)

2The latter assumption can be relaxed, cf. discussion following Theorem 1.
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Λ(t)
λ(t)

Control: p(t)

Figure 1: Model sketch

2.2 The economic objective

We first consider a baseline model where the market size Λ(·) is an observable and fully charac-

terized stochastic process.

Baseline model: [Λ(·) observable, known model for Λ(·) dynamics] The firm has two controls.

The first is whether to idle the server when there are orders waiting in queue to be processed;

the second is to dynamically select its posted price in an effort to control congestion, adjust to

changes in market size, and optimize its revenues.

For purposes of our analysis we will restrict attention to pricing policies that are functions

of Q(t)/µ and Λ(t)/µ, where Q(t)/µ is the expected workload embodied in all orders in queue

at time t, and Λ(t)/µ is the normalized market size: p(·, ·) : R+ × R+ → R+. The market size

information, Λ(t), is important since the firm has limited capacity, and needs to adjust its pricing

in order for its target market share (i.e., its potential demand in the absence of congestion) to be

close to its processing capabilities. We come back to this point shortly. We will also make the

following technical assumption:

Assumption p(·, ·) is non-decreasing with respect to its first argument and Lipschitz.

We denote P the set of pricing policies satisfying the above.

In this setting, the firm’s revenue optimization problem is to select a dynamic pricing strategy

p ∈ P and server allocation policy T (t) to maximize

E

[
∫ T

0
p
(Q(s)

µ
,
Λ(s)

µ

)

dA(s)

]

,

where T denotes the time horizon. It is easy to show that in our single-product setting it is

optimal to adopt a server allocation policy T (t) that is non-idling. Using results for intensity

control problems (see [10]) we can rewrite the dynamic pricing control problem as

max
p∈P

E

[
∫ T

0
p
(Q(s)

µ
,
Λ(s)

µ

)

Λ(s) F̄

(

p
(Q(s)

µ
,
Λ(s)

µ

)

+
c

µ
Q(s)

)

ds

]

. (5)

The policies considered above are implicitly allowed to use the dynamics of Λ(t) in deciding how
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to price at any given time. From a practical viewpoint, it is not clear how a firm would have

access to such a model and how much it would decide to rely on it. With this in mind, the focus

is on investigating settings where no such description is available and the firm only observes the

queue length and potentially the instantaneous market size.

Variant 1: [Λ(·) observable, no model for Λ(·) dynamics] We investigate in §4 what strategies

can the firm adopt when it has access to the value of Λ(·) at any point in time but no access to

a model of the market size dynamics.

Variant 2: [Λ(·) unobservable, no model for Λ(·) dynamics] As it will turn out later on,

our proposed solution to the dynamic pricing problem for variant 1 does indeed make use of the

information on the market size values. From a practical viewpoint, however, the firm may not

be able to observe the prevailing market size in real time so as to price accordingly. This case is

studied in §5 where the pricing decision at time t is now only allowed to be a function of the queue

length Q(t) and the prevailing price p(t−). In particular, we seek to understand what performance

is achievable in such cases.

Comments on modeling assumptions and proposed approach. The assumption that

vmax < ∞ is only made to simplify some arguments and is not necessary for the analysis. In

the current study, we restrict attention to policies in P. The main reason for that is to obtain

some form of tractability that can ultimately lead to a stochastic fluid model. The restriction on

P is only a sufficient condition for the analysis to come to hold and it is likely that the results

we derive could be appropriately extended to a broader set of policies, but at the expense of

significant additional technical complexity.

3 Fluid approximation

It seems difficult to tackle the variants presented above through exact analysis. This section

develops an asymptotic approximation for the dynamics of the system described above in settings

where: a) the processing capacity and market size are large, and b) the market size process varies

slowly relative to the production dynamics of the queue. The latter assumption essentially says

that the time it takes the server to process one order or even to clear a modest backlog of orders

is small relative to the time it takes for the market size to change significantly. For example, if the

market size evolved according to a bi-level continuous time Markov chain, then a set of parameter

values that would be in line with these assumptions would be a processing rate of 100 orders per

day, two market size levels that are 200 and 600 orders per day, respectively, and equal transition

rates between these two levels that are equal to .1 transitions per day; it roughly takes 2 weeks

for the market to switch between the high and low demand regimes.

The resulting approximation given in §3.2.2 is a stochastic fluid model, which we will use in

§4 and §5 for purposes of performance analysis and profit optimization.
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3.1 Setup

To quantify the characteristics mentioned above we will study a sequence of systems, indexed by

r, with increasing processing capacity and market size, which highlights the time scale separation

between the market size and the production dynamics. In particular, we let {ar, r ≥ 1} be an

increasing sequence such that limr→∞ ar = ∞ and limr→∞ ar/r = 0 and consider the following

set of parameters:

F r(·) = F (·), T r = arT, Λr(·) = rΛ (·/ar) and µr = rµ. (6)

That is, the underlying willingness-to-pay distribution F (i.e., the customer characteristics) re-

mains unchanged, the processing capacity and market size grow proportionally large as a function

of the scaling parameter r, and the market size dynamics are slowed down by the factor ar. In

particular, when the system has evolved over t units of time, the clock of the market size process

changed only by t/ar and hence as r increases, the market size will appear as varying on a slower

time scale from the perspective of the clock associated with the evolution of the queue. Conversely,

in order for the market size process to evolve over t time units over which some fluctuations may

be observed, the queue will have evolved over the much larger art time interval. This regime is

motivated by the work of Bassamboo et al. [6], where for the intuitive reasons given above, they

refer to the resulting limiting model as a Pointwise-Stationary-Approximation (PSA). For exam-

ple, the parameters of the continuous time Markov chain model given earlier can be embedded in

the sequence of systems with ar =
√

r, µr = r, two levels Λr
1 = 2 · r, Λr

2 = 6 · r, and a transition

rates of νr = 1; r = 100 recovers the parameters of the system of original interest.

We will study the behavior of the system for large r for any dynamic pricing policy p ∈ P,

which is a function of the workload and normalized market size at time t, p(Q(t)/µ,Λ(t)/µ). To

highlight the effect of the market size evolution on the structure of the optimal pricing policy and

the resulting system behavior, we will focus on the time scale on which the market size process

exhibits significant fluctuations, and on the expected revenue criterion over [0, arT ] given by

Rr(T ) = E

[
∫ arT

0
p

(

Qr(s)

µr
,
Λr(s)

µr

)

Λr(s) F̄

(

p

(

Qr(s)

µr
,
Λr(s)

µr

)

+ c
Qr(s)

µr

)

ds

]

= rarE

[
∫ T

0
p

(

Qr(aru)

rµ
,
Λ(u)

µ

)

Λ(u) F̄

(

p

(

Qr(aru)

rµ
,
Λ(u)

µ

)

+ c
Qr(aru)

rµ

)

du

]

.

Defining for all t ≥ 0, the normalized queue length

Q̃r(t) =
Qr(art)

r
, (7)
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the expected revenues in the rth system can be written as

Rr(T ) = rar E

[

∫ T

0
p

(

Q̃r(u)

µ
,
Λ(u)

µ

)

Λ(u) F̄

(

p

(

Q̃r(u)

µ
,
Λ(u)

µ

)

+ c
Q̃r(u)

µ

)

du

]

. (8)

That is, Q̃r(t) is the queue length process evaluated on the slower time scale of the market size

fluctuations driven by Λ(t). In terms of the physical queueing system, the transition from Q̃r(t)

to Q̃r(t + δt) corresponds to an evolution of the queue over arδt time units. The remainder of

this section is dedicated to constructing an asymptotic approximation for Q̃r(t) (cf. Theorem 1).

3.2 General analysis

Broad overview. The analysis of the behavior of Q̃r(t) as r grows large relies on a framework

developed by Bramson [9] to establish state space collapse results in stochastic networks operating

in heavy traffic. While our setting falls outside the class of problems studied in [9], the main steps

of his analysis can be extended to address our problem as well. The rough idea is that the

horizon [0, art], which is relevant in studying the evolution of Q̃r(t), can be “constructed” by

piecing together many shorter time intervals of length ∆. Each such interval is sufficiently long to

observe significant fluctuations in the queue length, but too short in the time scale of the market

size process (∆/ar ≈ 0) to observe any changes in the latter. This motivates the analysis of §3.2.1

that focuses on a fluid system where Λ(t) is constant. The latter will suggest that on each short

interval the queue length will reach a target configuration, and, moreover, this transient evolution

will appear instantaneous in the longer time scale of Λ(t). In §3.2.2, we use this result to “piece

together” the queue length evolution over the longer time interval over which the market size

process evolves.

3.2.1 Intermediate analysis on the “fast” time-scale of the queue

In this subsection we will assume that Λ(t) = Λ̄ for all t ≥ 0 for some constant Λ̄ > 0, and consider

the following set of deterministic fluid equations:

q(t) = q(0) +

∫ t

0
Λ̄F̄
(

p(q(s)/µ, Λ̄/µ) + cq(s)/µ
)

ds − d(t), (9)

d(t) = µτ(t), (10)

y(t) + τ(t) = t, (11)

y(t) cannot increase unless q(t) = 0, (12)

where q, d, τ, y are the fluid analogues of Q, D,T , Y ; the system of equations (9)-(12) is guaranteed

to have a solution and the latter is unique under the assumptions on F̄ and p(·, ·) (see [27,

Proposition 3.1]). The asymptotic justification of this model is offered as part of the proof of the
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main theorem of the next subsection.

Let p0 = p(0, Λ̄/µ) be the price under a candidate strategy p(·, Λ̄/µ) when the queue length is

empty. The next proposition establishes the following intuitive result: a) if Λ̄F̄ (p0)/µ ≤ 1 (i.e., the

system is over-capacitated), then q(t) → 0 as t → ∞; and b) if Λ̄F̄ (p0)/µ > 1 (i.e., the system is

under-capacitated), then q(t) → q∗ as t → ∞, where q∗ is such that Λ̄F̄ (p(q∗/µ, Λ̄/µ)+cq∗/µ) = µ.

Note that under the current assumptions that F̄ is decreasing on [0, vmax] and that p(·, Λ̄/µ) is

non-increasing, q∗ is unique. In the first case, the system drains its initial queue length and stays

empty thereafter, whereas in the second case, the queue monotonically converges to a state that

results in an arrival rate that exactly matches the system’s processing capacity. In both cases, the

limiting state can be expressed as a function of the market size Λ̄. In particular, one can write

the limit queue length configuration mentioned above as

q∗ = h(p)(Λ̄) = inf
{

x ≥ 0 : F̄
(

p(x/µ; Λ̄/µ) + (c/µ)x
)

= min
{

µ/Λ̄, F̄ (p0)
}}

for all Λ̄ > 0, (13)

where the superscript (p) emphasizes the dependence of the limit queue length configuration on

the pricing policy p(·, ·).

Proposition 1 Let q be the solution to (9)-(12) with q(0) ≤ M for some constant M . Then:

i.) Convergence: q(s) → h(p)(Λ̄) as s → ∞.

ii.) For all δ > 0, there is a continuous function of Λ̄, s(δ, M, Λ̄) < ∞ such that
∣

∣

∣
q(s) − h(p)(Λ̄)

∣

∣

∣
< δ for all s ≥ s(δ, M, Λ̄).

3.2.2 Stochastic fluid model approximation on the Λ(t) time-scale

We are now in position to present the main result of this section, which essentially establishes

that the Q̃r(t) process appears as if it is always in its target state configuration h(p)(Λ(t)), which

is a result of “piecing” together teh evolution of Q̃r(t) over many “short” intervals.

In the remainder of the text, for any event A, PΛ(A) will denote P(A|{Λ(t) : 0 ≤ t ≤ T}) and

for any random variable X, EΛ[X] will denote the conditional expectation E[X |{Λ(t) : 0 ≤ t ≤ T}].

Theorem 1 Fix a policy p(·, ·) ∈ P. Suppose Qr(0)/r ≤ M for some M > 0. Then for any

positive and continuous market size trajectory {Λ(t) : 0 ≤ t ≤ T} and for all ǫ > 0, we have

PΛ

{

sup
0<t≤T

∣

∣Q̃r(t) − h(p)(Λ(t))
∣

∣ > ǫ
}

→ 0 as r → ∞, (14)

where h(p)(·) is defined in (13).

In the limit, the dynamics of the queue degenerate to a simple function of the market size Λ(t).

Conversely, knowing the queue length position in large scale systems provides partial information

11



about the current market size value. We come back to implications of this point when designing

pricing policies in §5.

Remarks: i.) In Theorem 1, we assumed that Λ(·) is continuous. A corollary is that when

Λ(·) has a finite number of discontinuities on [0, T ], say at t1, ..., tk, then supt∈(0,T ]\{t1,...,tk}

∣

∣Q̃r(t)−
h(p)(Λ(t))

∣

∣ converges to zero in PΛ-probability as r → ∞. ii.) Our results extend to the case where

customers are differentiated both in terms of their valuation and delay sensitivity parameter, c;

i.e., (v, c) is a random variable characterizing each arriving customer. The proportion of customers

joining the system now depends on the joint distribution of (v, c).

4 Case 1: Λ(·) observable

The problem where the market size is observable will act as a benchmark for our subsequent

analysis in §5 where the Λ(·) process is unobservable and the firm has no model for its potential

evolution. The stochastic limit derived above for Q̃r(t) gives rise to a stochastic fluid model whose

dynamics are driven by the market size process Λ(t). The queue length position, h(p)(Λ(t)), is

characterized through the flow balance equation

Λ(t)F̄

(

p
(h(p)(Λ(t))

µ
,
Λ(t)

µ

)

+ c
h(p)(Λ(t))

µ

)

= min

{

µ,Λ(t)F̄

(

p
(

0,
Λ(t)

µ

)

)}

; (15)

i.e., whenever Λ(t)F̄ (p(0, Λ/µ)) ≤ µ, the server is under-utilized and h(p)(Λ(t)) = 0, whereas in

all other cases, the queue length increases such that the resulting congestion effect will reduce the

demand to equal the processing capacity µ.

4.1 The dynamic pricing fluid heuristic

Expression (15) yields that the instantaneous arrival rate is λ(t) = min
{

µ,Λ(t)F̄ (p(0, Λ(t)/µ))
}

,

which, in turn, results in the following approximating revenue maximization problem:

max
p∈P

E

[

∫ T

0
p
(h(p)(Λ(t))

µ
,
Λ(t)

µ

)

min

{

µ,Λ(t)F̄

(

p
(

0,
Λ(t)

µ

)

)}

du

]

, (16)

where P is the set of admissible policies defined in §2.2. In the remainder of the text, we suppose

that x 7→ xF̄ (x) is a unimodal function with maximizer p∗.

Proposition 2 For all l > 0, Let pµ(l) be the unique solution of F̄ (·) = min{1/l, 1} on [0, vmax].

Then, the optimal solution of (16) is given by

p̂(q/µ, Λ(t)/µ) = max{p∗, pµ(Λ(t)/µ)}. (17)

In addition, the corresponding queue length is given by h(p̂)(Λ(t)) = 0 for all t > 0.

12



The dynamic pricing heuristic given above is intuitive: if the capacity is ample, the firm

charges a static (monopoly) price that maximizes revenues per unit time, p∗; if the capacity is

scarce, i.e., the capacity constraint is violated under the monopoly price, then the optimal price

pµ(Λ(t)/µ) is higher and ensures that the capacity constraint is met while customers do not

experience any congestion. This structure resembles the pricing policy derived by Gallego and

van Ryzin [15] in their single product dynamic pricing problem. The monopoly price only depends

on the valuation distribution F , while the price that induces full resource utilization pµ(Λ(t)/µ)

also depends on the market size process Λ(t). An important insight of the above result is that

when Λ(·) is observable, the firm would not use information that can be extracted from the model

that describes the market size dynamics in its pricing policy. Such a dependence would manifest

itself in the solution of (16) if the optimal price at time t was not solely a function of Λ(t), but

depended on its future values. This is a direct consequence of the firm’s ability to change its price

dynamically in response to the changing market conditions.

In the sequel, we will characterize the asymptotic performance of the pricing heuristic p̂ derived

above, and then modify it in §5 so as to construct a policy that achieves the same asymptotic

performance without observing the market size Λ(t).

4.2 Asymptotic performance guarantees

We first derive an upper bound on the performance of any dynamic pricing policy in P. Recall

the expression of the expected revenues generated by a policy p, Rr(T ), given in (8). In what

follows, we assume that {Λ(s), 0 ≤ s ≤ T} is positive and continuous. Define

Rr
Λ(T ) := rarEΛ

[

∫ T

0
pr(u)Λ(u)F̄

(

pr(u) +
c

µ
Q̃r(u)

)

du
]

where pr(u) := p
(Q̃r(u)

µ
,
Λ(u)

µ

)

. (18)

The superscript in pr(u) is only used to emphasize the dependence of the current price on Q̃r(u)

and one should note that the mapping p(·, ·) is not changing with r. Note also that Rr(T ) =

E[Rr
Λ(T )], where the outer expectation is with respect to Λ(·).

Proposition 3 For any policy p(·, ·) ∈ P,

lim sup
r→∞

Rr
Λ(T )

rar
≤
∫ T

0
sup

x

{

x min{µ,Λ(u)F̄ (x)}
}

du. (19)

The next result shows that the policy p̂ specified in (17) achieves the upper bound in (19).

Proposition 4 Let p̂r(u) := p̂(Q̃r(u)/µ,Λ(u)/µ) for all u ≥ 0, where p̂ was defined in (17). Then

lim
r→∞

EΛ

[

∫ T

0
p̂r(u)Λ(u)F̄

(

p̂r(u) +
c

µ
Q̃r(u)

)

du
]

=

∫ T

0
sup

x

{

x min{Λ(u)F̄ (x), µ}
}

du.
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Together with the result of Proposition 3, this establishes that p̂ asymptotically achieves the best

possible performance in the parameter regime outlined in §3.

5 Case 2: Λ(t) unobservable

We already pointed out that an important element of the problem studied in §4 above and of the

resulting pricing heuristic p̂ is that the firm can accurately observe the market size process Λ(t)

at every point in time. From a practical viewpoint, in addition to the difficulty the firm may have

in trying to form a probabilistic model of the market size process, it may not be possible to detect

in real time the prevailing market size. As we illustrate below, however, it is possible to construct

a policy that can induce the market size by focusing on controlling the real time congestion in

the system and exploiting the intuitive structure of the pricing rule p̂.

5.1 The dynamic pricing fluid heuristic

Broadly speaking, whenever the queue length is positive, the firm should increase its price to

reduce congestion and essentially find the point pµ(Λ(t)/µ) that matches the demand with the

system’s processing capacity. When the queue length is zero, then the firm should lower its price

down to p∗ or to the level that the queue length starts to grow again. In both cases, the firm never

prices below p∗, which is the price that maximizes the revenue rate irrespective of the system’s

capacity constraint; this is consistent with (17). Recall that p∗ is independent of Λ(t), and is

known to the firm.

In more detail, we will assume that the firm increases the price linearly at a rate of $β+ per

unit time whenever the queue length is positive, and that it decreases the price at a rate of $β−

per unit time whenever the queue is empty and the prevailing price is above p∗. The actual price

at any time t will depend on the cumulative effect of the aforementioned price changes, which can

be succinctly expressed as follows:

p̃r(t) = p∗ + δr(t), p̃r(0) = p∗, (20)

where we note that the initial condition p̃r(0) can be any price point greater or equal than p∗ and

δr(t) := xr(t) − inf
0≤s≤t

xr(s), for xr(t) = −β−Y r(t) + β+(t − Y r(t)); (21)

i.e., xr(t) increases whenever the server is busy and decreases whenever the server is idling, and

the calculation of δr(t) simply corrects for the fact that the price is never allowed to drop below

p∗. Note that δr = Φ(xr), where Φ(·) is the one-sided regulator mapping (see Harrison [18, §2]).
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5.2 Asymptotic performance guarantees

The next result characterizes the asymptotic performance of the policy p̃ in the parameter regime

defined by (6).

Proposition 5 Suppose one applies the pricing policy p̃r(·) defined in (20)-(21). Then,

lim
r→∞

EΛ

[

∫ T

0
p̃r(u)Λ(u)F̄ (p̃r(u) +

c

µ
Q̃r(u))du

]

=

∫ T

0
sup

x

{

x min{Λ(u)F̄ (x), µ}
}

du.

That is, the policy p̃ defined through (20)-(21) achieves the same asymptotic revenues as the

ones achieved by p̂ that assumed that the market size Λ(t) was observable. This is accomplished

by focusing the pricing decisions on controlling congestion together with some degree of price

experimentation when the queue is empty; both of these, however, imply that the price changes

occur at the “faster” time scale of the queue length dynamics. The practical implications of the

latter are that the manager may now be changing prices daily rather than monthly, if s/he had

access to the value of the market size at all times.

Remark. A question of interest pertaining to the policy p̃ is the choice of the parameters

β− and β+. It is first important to note that for the policy p̃ to track indirectly the market size

changes, it should only exhibit significant changes on the slow time scale. If β+ and/or β− were to

be chosen too large, then the policy p̃ would be reacting to random queueing fluctuations rather

than underlying changes in the market size. This implies that the price responsiveness parameters

β+ and β− should be roughly of the same order than 1/ar. This allows to focus on the first order

effects associated with the changes in the market size. We investigate numerically the impact of

the parameters β+ and/or β− on performance in §6.

6 Numerical Examples and Concluding Remarks

This section reports a set of numerical experiments that compare the candidate policies described

thus far and strive to offer some insights on a) the effect of market size variability on pricing,

delays, and revenues; and b) the impact of not knowing the uncertain market size when making

the various pricing decisions. Overall, our findings will highlight the value of the asymptotic

approximation considered.

6.1 Setting of the experiments

6.1.1 Market size models

Throughout this section we will illustrate our results with two natural mathematical models for

the market size process, which we briefly describe below. Λ∞ will be used to denote a random

variable with the steady-state distribution of the process (when it exists).
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Bi-level (high-low) demand: A simple model for the market size uncertainty is to assume

that it evolves as a continuous time Markov Chain (CTMC) over a predetermined discrete set of

potential values. As an example, this approach was used in [32] to represent the evolution of an

underlying state-of-the world influencing the level of the demand in a discrete time setting for an

inventory problem. In our setting we could model the process Λ(t) as a CTMC with state space

{Λ1, Λ2}, transition rate ν, and transition probability matrix P = [pij ]. This process has a steady

state distribution: if the vector q is the solution to qP = q and q1 + q2 = 1, then the limiting

probabilities are given by (q1, q2).

One could generalize such a model by allowing the market size to take more than 2 levels.

However, as the number of levels increases, the informational requirements of such a CTMC model

grow substantially, and in those cases it may be more appropriate to use a more aggregated model.

A continuous model: We consider a model that allows the market size process to exhibit

random variations around a nominal trend. This property in conjunction with the fact that the

process should stay positive is typically required for interest rate models in the area of mathe-

matical finance. In the vast literature on such models (see, e.g., [22]), a celebrated example is the

Cox-Ingersoll-Ross (CIR) process that satisfies the following stochastic differential equation

dΛ(t) = α(b(t) − Λ(t))dt + σ
√

Λ(t)dB(t), (22)

where {B(t), t ≥ 0} is a standard Brownian motion, α and σ are positive constants and b(·) is a

positive function. This is an example of an affine diffusion process: b(·) represents the anticipated

“trend” (e.g., due to seasonal effects); α characterizes the speed at which the process reverts

toward b(·), while σ quantifies the stochastic variability of the process. The term
√

Λ(t) prevents

the process from becoming negative. When b(·) is constant and Λ(0) > 0, the process stays

positive under the condition that 2αb ≥ σ2. If b(·) is constant over time, then {Λ(t), t ≥ 0} has

a steady-state distribution and Λ∞ is distributed as σ2

4α
χ2

ν , where ν = 4bα/σ2 and χ2
ν denotes a

chi-square random variable with ν degrees of freedom.

The parameters of both of these models can be estimated using past data through, e.g.,

maximum likelihood estimation since the likelihood ratios associated with these two models are

available (see, e.g., [31]).

For the the purpose of numerical results, for the CTMC, we focus on bi-level models (with

state-space {Λ1, Λ2}) and fix throughout the transition rate to ν = 1. We consider the following

transition matrix parametrized by a single parameter: p11 = p22 = 1−p12 = 1−p21. With such a

structure, p11 is a proxy for the “inertia” associated with the process and the limiting probabilities

are just given by P1 = P2 = 1/2. Note that E[Λ∞] = (Λ1 + Λ2)/2 and var[Λ∞] = (Λ2/2 − Λ1/2)2

and hence Λ2−Λ1 is a proxy for the variability of the process. For the CIR model, we will restrict

attention to cases where the trend b(·) is constant and analyze the performance of the policies
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introduced in the paper for various combinations of the parameters α, b, σ.

6.1.2 Policies

We introduce below the pricing policies that we will analyze in the current section. They are

presented in ascending order of informational requirements.

i.) The dynamic pricing policy p̃(·) defined in (20)-(21). we will use the generic price respon-

siveness parameters β− = 0.5 and β+ = 0.1. We also analyze how this choice influences the

performance of p̃ in Table 5. Recall that this policy does not require any description of the

market size process dynamics.

ii.) The dynamic pricing policy p̂(·) defined in (17). This policy only requires the current value

of the market size.

iii.) The static pricing policy ps that employs the optimal static price when Λ(·) is constant and

equal to E[Λ∞]; this is obtained via simulation. This price ignores variations in Λ(·) but has

knowledge of the true mean of the market size.

iv.) The static pricing policy pf obtained through the fluid analysis. This price solves the fol-

lowing revenue optimization problem:

max
p≥0

p E

[
∫ T

0
Λ(s)F̄

(

p +
c

µ
Q(s)

)

ds

]

. (23)

This static problem (23) could be readily solved through simulation given a statistical de-

scription of {Λ(t), t ≥ 0}, but such a solution does not typically provide insights on the

structure of the optimal price, as well as the effect of the market size variability. An al-

ternative approach would use the stochastic fluid model approximation introduced earlier.

Specifically, the instantaneous demand rate at time t is given by λ(t) = min(µ,Λ(t)F̄ (p)),

i.e., the rate is equal to µ at time when the system is under-capacitated (µ ≤ Λ(t)F̄ (p)),

and it is equal to the available demand Λ(t)F̄ (p) when the system is over-capacitated. The

above expression leads to the following revenue optimization problem:

max
p

p E

[
∫ T

0
min(µ,Λ(s)F̄ (p))ds

]

. (24)

Suppose further that Λ(0) is drawn from the steady-state distribution3, then Λ(s) is dis-

tributed according to the steady-state distribution for all s ≥ 0, and the static pricing

3To avoid this assumption, one can alternatively look at a long run average objective.
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problem in (24) reduces to

max
p

pT E
[

min(µ,Λ∞F̄ (p))
]

. (25)

Note that pf requires the full description of the steady-state distribution of Λ(·).

High-low CTMC model: Using the limiting probabilities in the objective function (25)

reduces to:

max
p

p
[

P1 min(Λ1F̄ (p), µ) + P2 min(Λ2F̄ (p), µ)
]

,

which is readily solvable without any simulation.

Continuous CIR model: The static optimization problem can now be written as

max
p

{

pF̄ (p)h(µ/F̄ (p))
}

where h(y) = E[min(y,
σ2

4α
χ2

ν)] for all y > 0,

and be solved numerically.

Remark: We have compared the value of pf and that of the best static price (that solves (23)

for various instances and observed that the two prices were very close and their performances

were not statistically distinguishable.

6.1.3 Capacity and valuations

Throughout, we fix µ = 1. We assume that the customers’ willingness-to-pay is exponentially

distributed, F̄ (x) = exp(−x/2), x > 0, for which case the maximizer of pF̄ (p) is given by p∗ = 2.

6.2 General behavior

Figure 2 depicts a simulated sample path of the system behavior under the four candidate pricing

policies considered in our study. The market size is a realization of a CIR process with parameters

α = 0.1, b = e and σ = 0.2. In Figure 2(a), in addition to the sample path of Λ(t), we also show

the critical levels µ/F̄ (p∗) and µ/F̄ (pf ), and recall that p̂(t) = p∗ whenever Λ(t) ≤ µ/F̄ (p∗).

The latter is illustrated for example in Figure 2(d) for times around t = 5. On the other hand,

whenever Λ(t) ≤ µ/F̄ (pf ), h(pf )(Λ(t)), the limiting queue length under pf is equal to zero. We

observe this in Figure 2(b) from time t = 0 to time t = 6.

Figure 2(b) also illustrates how the queue length under pf “tracks” (with some latency) the

limiting queue length h(pf )(Λ(t)) (as predicted by the convergence result of Theorem 1). Figure

2(c) illustrates that the dynamic pricing policies p̂ and p̃ allow the system manager to maintain

lower queue length levels than those observed under the static price pf . Turning to the pricing

policies themselves, Figure 2(d) illustrates how p̃, the dynamic pricing policy that does not use

information about the market size, “tracks” p̂. In addition, the underlying structure of p̂ is
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Figure 2: Illustration of the system behavior for a given sample path of market size for r = 10 and
ar = 8: (a) depicts the market size process Λ(t), the level under which the system is congested
under pf and the level under which the system is congested when using p∗; (b) depicts the queue
length under pf as well as the limiting queue length; (c) represents the queue length processes
under the two dynamic policies p̂ and p̃; (d) shows the pricing policies pf , p̂ and p̃.

highlighted. Whenever the queue length is positive, the price increases linearly and whenever the

system is empty, the price decreases linearly until it reaches p∗.

6.3 Performance study

We focus on a problem of moderate size with r = 20 and ar = 14; i.e., using the scaling relations

in (6) we will study a system for which µr = 20 and Λr(t) = 10Λ(t/14) for a various market size

models Λ(·). Again, the main consequence of the expression Λr(t) = 20Λ(t/14) is that the time

scale within which Λr(·) is fluctuating is 14 times slower than that of the production dynamics.
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Let Rr
π denote the expected revenues associated with a pricing policy π. Focusing on the four

policies introduced earlier, we treat p̂(·) as a benchmark and for every other policy π, compute

its relative performance as θ(π) := 100 × (1 − Rr
π/Rr

p̂). Note that θ(π) measures by how much p̂

outperforms the policy π, in percentages of the performance of p̂.

Next, we analyze the impact of various market size model parameters on the performance of

the pricing policies. Throughout, we fix the horizon to be T = 10 and the estimated expected

revenues were derived by averaging over 103 replications; the standard error never exceeded 1.2%.

Impact of variability: σ and Λ2−Λ1 are proxies for the variability associated with the CIR

and CTMC models, respectively. Table 1 reports the changes in performance associated with

changes in these two parameters. We observe that the price based on the fluid approximation

CIR model CTMC model
Pricing policy σ Λ2 − Λ1

0.2 0.3 0.4 1 2 4

ps 0.5 2.6 4.5 0.5 4.7 15.7
pf 0.1 1.3 2.6 0.1 1.2 1.6
p̃ −0.2 0.3 0.7 0.2 1.3 4.2

Table 1: Relative performance θ(π) as variability increases. c = 0.2; CIR model: α = 0.2, b = e;
CTMC model: (Λ1 + Λ2)/2 = e, ν = 1, p11 = 0.7.

pf yields in general an improvement in expected revenues when compared with the price ps. For

these two static prices, relative performance deteriorates as variability increases. This illustrates

how the policies p̂(·) and p̃(·) are able to effectively operate in highly variable environments.

Impact of “inertia”: Table 2 reports the changes in performance associated with changes

in the inertia of the market size process, which is related to α and p11 in the CIR and CTMC

models, respectively. We observe that the value of dynamic pricing is higher in settings where

CIR model CTMC model
Pricing policy α p11

0.1 0.2 0.3 0.9 0.7 0.5

ps 5.8 2.6 1.4 5.6 4.7 4.3
pf 3.4 1.3 0.6 1.2 1.2 1.2
p̃ 0.9 0.3 0.0 1.2 1.3 1.4

Table 2: Relative performance θ(π) as inertia varies. c = 0.2; CIR model: b = e, σ = 0.3; CTMC
model: Λ1 = e − 1 Λ2 = e + 1, ν = 1.

inertia is high. This observation confirms the following intuition: when inertia is high, the market

size changes on an even slower time scale and the system has more time to reach the “equilibrium”

queue length and it is on the latter that the dynamic pricing policies are based. When inertia is

small, the system might not be able to reach the “equilibrium” sufficiently fast and the system
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would always be tracking with some delay the fluid prediction, making the control less effective.

Impact of the average level of the market size: Table 3 reports the changes in perfor-

mance associated with changes in the average market size, which is related to b and (Λ1+Λ2)/2 in

the CIR and CTMC models, respectively. For small market sizes, all policies perform comparably

CIR model CTMC model
Pricing policy b (Λ1 + Λ2)/2

2 e 4 2 e 4

ps 1.3 2.6 3.6 1.7 4.7 3.9
pf 0.6 1.3 2.9 0.1 1.2 3.0
p̃ −0.2 0.3 2.5 0.0 1.3 2.6

Table 3: Relative performance θ(π) as the average market size varies. c = 0.2; CIR model:
α = 0.2, σ = 0.3; CTMC model: Λ2 − Λ1 = 1, p11 = 0.7, ν = 1.

since the system will almost never be congested and pricing at (or close to) p∗ is optimal. As the

average market size increases, the policies p̂ and p̃ start outperforming ps and pf significantly.

Impact of delay sensitivity: We report in Table 4 the impact of varying c. An interesting

CIR model CTMC model
Pricing policy c c

0.1 0.2 0.3 0.1 0.2 0.3

ps 3.2 2.6 2.2 5.5 4.7 4.2
pf 1.7 1.3 1.1 1.2 1.2 1.1
p̃ 0.8 0.3 0.0 1.7 1.3 1.1

Table 4: Relative performance θ(π) as the delay sensitivity varies. CIR model: b = e, α = 0.2,
σ = 0.3; CTMC model: Λ1 = e − 1 Λ2 = e + 1, p11 = 0.7, ν = 1

point to note here is that the relative advantage of p̂ over ps and p̃ decreases as the delay sensitivity

increases. This is due to the fact that p̂ does not depend on delay sensitivity, whereas ps and p̃

take it into account (p̃ does that indirectly through congestion feedback).

Impact of price responsiveness parameters (β−, β+) of the policy p̃: We report in Table

5 the relative performance of p̃ as (β−, β+) varies. We observe that in general, β− should be chosen

higher than β+. The intuition associated with this is that the policy p̃ should not “overreact”

when the queue length is positive, as this could be the result of normal queue fluctuations rather

than changes in the underlying market size. We would also like to point out here that one could

refine such policies by imposing that the price only starts to increase at rate β+ when the queue

length has been busy for a predetermined amount of time. This would allow to avoid reacting

too fast to fluctuations of the queuing system on the fast time scale and only react to congestion

that builds up due to changes in the market conditions.
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β+

0.05 0.1 0.3 0.5

β− 0.05 ( 7.2 ; 7.1) (18.5 ; 18.3) (44.6 ; 44.4) (56.8 ; 56.8)
0.1 ( 2.7 ; 3.6) ( 9.6 ; 9.7) (32.4 ; 32.4) (45.5 ; 45.5)
0.3 ( 0.1 ; 1.4) ( 1.5 ; 2.6) (11.8 ; 12.4) (21.6 ; 22.0)
0.5 ( 0.1 ; 1.2) ( 0.3 ; 1.3) ( 5.8 ; 6.9) (12.4 ; 13.3)

Table 5: Relative performance θ(π) of p̃ as (β−, β+) varies. The first argument represents the
relative performance under the CIR model while the second one reports the performance under
the CTMC model. c = 0.2; CIR model: b = e, α = 0.2, σ = 0.3; CTMC model: Λ1 = e − 1
Λ2 = e + 1, p11 = 0.7, ν = 1

6.4 Concluding remarks

In this paper, we have developed pricing recommendations for a make-to-order manufacturer

operating in an environment with stochastically varying market size. In particular, we have

focused on large scale systems where the dynamics of the market size are slow relative to the

dynamics of the production queue. Two main informational settings were studied: i.) one in

which the decision maker observes the underlying market size at any point time and ii.) a setting

in which the market size is not observable. The paper derived near-optimal policies for both

cases, based on the analysis of a stochastic fluid model. A key point is that the decision maker

is able to take advantage of the feedback present in the system to design pricing policies where

the market size is not observable. From a general perspective, the paper has highlighted how one

can incorporate market size time variations in designing pricing policies and the value associated

with doing so. The broad set of numerical results illustrated this value in a variety of market

conditions. From a methodological point view, the proof technique we have used, that is based

on [9], should generalize to more general pricing problems than the single product application

considered here.
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[2] P. Afèche and B. Ata. Revenue management in queueing systems with unknown demand
characteristics. 2005. working paper, Kellogg School of Management.

22



[3] V. F. Araman and R. A. Caldentey. Dynamic pricing for non-perishable products with
demand learning. 2005. working paper, Stern School of Business, New York University.

[4] B. Ata and S. Schneorson. Dynamic control of an M/M/1 service system with adjustable
arrival and service rates. 2006. forthcoming in Management Science.

[5] Y. Aviv and A. Pazgal. Pricing of short life-cycle products through active learning. 2005.
under review.

[6] A. Bassambo, J. M. Harrison, and A. Zeevi. Dynamic routing and admission control in high-
volume service systems: Asymptotic analysis via multi-scale fluid limits. Queueing Systems,
51:249–285, 2005.

[7] A. Bassamboo, J. Harrison, and A. Zeevi. Design and control of a large call center: Asymp-
totic analysis of an LP-based method. Oper. Res., 54(3):419–435, 2006.

[8] O. Besbes and A. Zeevi. Dynamic pricing without knowing the demand function: Risk
bounds and near-optimal algorithms. working paper, Columbia University, 2007.

[9] M. Bramson. State space collapse with applications to heavy-traffic limits for multiclass
queueing networks. Queueing Systems, 30:89–148, 1998.
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A Proofs of the Main Results

Notation: Throughout, we let C > 0 and Cp denote Lipschitz constants associated with F̄

and a generic policy p ∈ P, respectively. For any integer k > 0, for any y ∈ R
k, we define

|y| := max{|yi|, i = 1, . . . , k}; for any function f : R+ → R
k and L > 0, we define ‖f(·)‖L :=

sup0≤t≤L |f(t)|.

Proof of Proposition 1. Let us first consider statement i.). We note that one can rewrite the

fluid equations (9)-(12) using the reflexion mapping Φ (see, e.g., [27])

q = Φ(x), where x(s) = q(0) +

∫ s

0
[Λ̄F̄

(

p(q(u)/µ, Λ̄/µ) + (c/µ)q(u)
)

− µ]du, (A-1)

and where Φ(x)(t) = x(t)+sup0≤s≤t(x(s))−. sup0≤s≤t(x(s))− represents the correction needed for

the process q(t) to stay non-negative. (See [18] for a discussion of one-sided regulators.). Then,

the results in [27, Section 3.1] directly imply i.), since F̄ (y) tends to zero as y → ∞.

We now turn to statement ii.). Fix δ > 0. Note that q(t) converges monotonically to h(p)(Λ̄).

If h(p)(Λ̄)− δ ≤ q(0) ≤ h(p)(Λ̄)+ δ, then q(t) ∈ [h(p)(Λ̄)− δ, h(p)(Λ̄)− δ] for all t ≥ 0 and hence

one can choose s(δ, M, Λ̄) = 0.

Suppose q(0) > h(p)(Λ̄)+δ. We know that q(t) ↓ h(p)(Λ̄) as t → ∞ and that q(t) is continuous.

Let τδ = inf{s ≥ 0 : q(s) = h(p)(Λ̄) + δ}, p̄ = p((h(p)(Λ̄) + δ)/µ, Λ̄/µ) and define the following

process

v = Φ(y), where y(s) = q(0) + Λ̄

∫ s

0
F̄
(

p̄ + (c/µ)(h(p)(Λ̄) + δ)
)

du − µs.

Note that we have y(s) = q(0) + (Λ̄F̄
(

p̄ + (c/µ)(h(p)(Λ̄) + δ)
)

− µ)s. Let τ1(Λ̄, δ) = inf{s ≥
0 : v(s) = h(p)(Λ̄) + δ} and note that its value is readily computed as τ1(δ, q(0), Λ̄) = (q(0) −
(h(p)(Λ̄) + δ))/

(

µ − Λ̄F̄
(

p̄ + (c/µ)(h(p)(Λ̄) + δ)
))

. For all s ≤ τδ, v(s) ≥ q(s) since y′(·) ≤ x′(·) in

that region. We deduce that τ1(δ, q(0), Λ̄) ≥ τδ and one can take s(δ, M, Λ̄) = τ1(δ, M, Λ̄).

Now suppose that q(0) < h(p)(Λ̄) − δ. Then necessarily Λ̄F̄ (p) > µ (and h(p)(Λ̄) > 0). We

know that q(t) ↑ h(p)(Λ̄). Let τδ = inf{s ≥ 0 : q(s) = h(p)(Λ̄)− δ} and p̄ = p((h(p)(Λ̄)− δ)/µ, Λ̄/µ)

and define the new process

v = Φ(y), where y(s) = q(0) + Λ̄

∫ s

0
F̄
(

p̄ + (c/µ)(h(p)(Λ̄) − δ)
)

du − µs,

and note that y(s) = q(0) + (Λ̄F̄
(

p̄ + (c/µ)(h(p)(Λ̄) − δ)
)

− µ)s. Let τ2(δ, q(0), Λ̄) = inf{s ≥ 0 :

v(s) = h(p)(Λ̄) − δ} = (−q(0) + (h(p)(Λ̄) − δ))/(Λ̄F̄
(

p̄ + (c/µ)(h(p)(Λ̄) − δ)
)

− µ). For all s ≤ τδ,
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v(s) ≤ q(s) since y′(·) ≥ x′(·) in that region, implying that τ2(δ, q(0), Λ̄) ≥ τδ. One can take

s(δ, M, Λ̄) = τ2(δ, 0, Λ̄).

We deduce from all cases that one can take

s(δ, M, Λ̄) = max
{

τ1(δ, M, Λ̄), τ2(δ, 0, Λ̄), 0
}

.

This completes the proof.

Proof of Theorem 1. Throughout, and in accordance with (6), we denote all quantities in the

rth system with a superscript r. For example the arrival process in the rth system is denoted

Ar(·). The proof is organized around three main steps. We first define for each r a sequence

of processes that are “initialized” at different times in [0, arT ] and analyze them (Step 1). The

underlying idea for introducing these processes is that at any time t, one of them will be “close”

to the desired limit h(p)(Λ(t)). We show that they admit limits that satisfy some fluid equations

(Step 2). We conclude in Step 3 by showing that for any t ∈ (0, T ], Q̃r(t) is close to one of the

processes introduced and the latter is close to the limit h(p)(Λ(t)) of the solution to some fluid

equation using Proposition 1. The proofs of the lemmas required for this result are provided in

Appendix B.

We will follow [9] verbatim adjusting his results to our framework whenever needed. We will

explicitly reference his corresponding results to facilitate the reading. Our proof is self-contained

with the exception of Lemma 3.

Λ(t) being continuous and strictly positive on [0, T ], it is bounded and there exists a con-

stant M1 > 0 such that max0≤t≤T Λ(t) ≤ M1. Note also that since the maximal willingness

to pay value vmax < ∞, Qr(u)/r ≤ M2 a.s. for all u ≥ 0 where M2 = max{M, vmaxµ/c}
(recall that M is such that Qr(0)/r ≤ M and c is the congestion sensitivity parameter). In-

deed, whenever Qr(u)/r ≥ vmaxµ/c, the arrival rate in the rth system is upper bounded by

Λr(t)F̄ ((c/µ)Qr(u)/r) ≤ Λr(t)F̄ (vmax) = 0 and hence is necessarily equal to zero, implying that

the queue cannot grow. Since it is assumed that Qr(0)/r ≤ M , it follows that Qr(u)/r will never

exceed M2 a.s..
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Step 1. Following Bramson’s notations (cf. [9, equation (5.3)]), we define for m = 1, 2, ..., ⌊arT ⌋,

Xr,m(t) =
Qr(t + m)

r
, (A-2)

T
r,m(t) = T

r(t + m) − T
r(m), (A-3)

Ar,m(t) =
1

r
[Ar(t + m) − Ar(m)] , (A-4)

Dr,m(t) =
1

r
[Dr(t + m) − Dr(m)] , (A-5)

Λr,m(t) =
1

r
Λr(t + m), (A-6)

X
r,m(·) = (Xr,m(·), Ar,m(·), T r,m(·), Dr,m(·), Λr,m(·)) . (A-7)

We now analyze approximations to the processes introduced above. This is the equivalent of [9,

Proposition 5.1].

Lemma 1 Fix ǫ > 0 and L > 0. For r large enough,

PΛ

(

max
m<arT

∥

∥

∥

∥

Ar,m(t) −
∫ t

0
Λr,m(u)g

(

1

µ
Xr,m(u);

1

µ
Λr,m(u)

)

du

∥

∥

∥

∥

L

> ǫ

)

≤ ǫ, (A-8)

PΛ

(

max
m<arT

∥

∥Dr,m(t) − µT
r,m(t)

∥

∥

L
> ǫ

)

≤ ǫ, (A-9)

PΛ

(

max
m<arT

sup
t1,t2≤L

|Dr,m(t2) − Dr,m(t1)| > µ|t2 − t1| + ǫ

)

≤ ǫ. (A-10)

One can choose a sequence ǫ(r) decreasing to 0 sufficiently slowly such that the inequalities (A-

8)-(A-10) still hold. For such a sequence ǫ(r), let N = max(µ, 1) and define

Kr
0 =

{

w : sup
t1,t2≤L

|Xr,m(t2) − X
r,m(t1)| ≤ N |t2 − t1| + ǫ(r), ∀m < arT

}

, (A-11)

Kr
1 =

{

w : max
m<arT

∥

∥

∥

∥

Ar,m(t) −
∫ t

0

1

r
Λr,m(u)g

(

1

µ
Xr,m(u);

1

µ
Λr,m(u)

)

du

∥

∥

∥

∥

L

≤ ǫ(r) ;

max
m<arT

‖Dr,m(t) − µT
r,m(t)‖L ≤ ǫ(r)

}

, (A-12)

Kr = Kr
0 ∩ Kr

1 . (A-13)

Paralleling the line of arguments leading to [9, Proposition 5.2, Corollary 5.1], one can establish

Lemma 2

PΛ(Kr) → 1 as r → ∞. (A-14)
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Let E be the space of RCLL functions x : [0, L] → R
5 and let

E′ = {x ∈ E : |x(0)| ≤ max{M1, M3} , |x(t2) − x(t1)| ≤ N |t2 − t1| for all t1, t2 ∈ [0, L]} ,

Er
0 = {Xr,m(·, ω), m < arT, ω ∈ Kr} ,

E0 = {Er
0 , r ∈ R

+}.

Note that the sample paths of X
r,m(·) lie in E. We next show that for r sufficiently large, ω ∈ Kr,

the vector of processes X
r,m(·, ω) is close to some cluster point of E0. This essentially parallels [9,

Proposition 6.1].

Lemma 3 Fix ǫ > 0, L > 0 and choose r large enough. Then for ω ∈ Kr and any m < arT ,

‖Xr,m(·, ω) − X̃(·)‖L ≤ ǫ (A-15)

for some cluster point X̃(·) of E0 with X̃(·) ∈ E′.

Step 2. In this step, we analyze the dynamics of the cluster points. The next lemma highlights

a special property of the cluster points X̃(·) that is specific to our analysis and is a consequence

of the time scale separation embedded in the parameter scaling of (6). It formalizes the intuition

presented in §3.2 that the market size should appear as constant in the limit, a key characteristic

of the “Pointwise-Stationary-Approximation”; it essentially states that the fifth element of any

cluster point X̃(·), which corresponds to Λ̃(·), cannot have any dependence on time.

Lemma 4 Any cluster point X̃(·) of E0 has its component Λ̃(·) constant.

Having established the above, we can now characterize the equations satisfied by the cluster points

by mimicking [9, Proposition 6.2]

Lemma 5 Fix L > 0. Then all cluster points X̃(·) of E0 are solutions of the fluid equations

(9)-(12) on [0, L] (where (X̃, D̃, T̃ , Λ̃) replaces (q, d, τ, Λ̄)).

Step 3. We are now in a position to conclude the proof. Fix η, ξ, ǫ > 0. By Lemma 2, there

exists an r0 > 0 such that for all r ≥ r0,

PΛ(Kr) > 1 − ξ. (A-16)

Take L = sup{s(ǫ, M2, ℓ) : ℓ ∈ [0, M1]}+ 1 where s(·, ·, ·) was defined in Proposition 1. Note that

the supremum is attained and is finite since s(ǫ, M2, ·) is continuous. Pick r large enough such
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that L/ar < η. For all v ∈ (L/ar, T ], let

mr(v) = min{m ∈ N : m ≤ arv, arv ≤ m + L} = max {⌈arv − L⌉ , 0} . (A-17)

Let τ ′ := arv − mr(v) and note that τ ′ ≥ L − 1 ≥ s(ǫ, M2, ℓ) for all ℓ ∈ [0, M1]. Q̃r(v) =

Qr(arv)/r = Qr(τ ′ + mr(v))/r = Xr,mr(v)(τ ′). We deduce that for all ω ∈ Kr, and for all

v ∈ [η, T ],

∣

∣Q̃r(v) − h(p)(Λ(v))
∣

∣ =
∣

∣Xr,mr(v)(τ ′) − h(p)(Λr,mr(v)(τ ′))
∣

∣

≤
∣

∣Xr,mr(v)(τ ′) − X̃(τ ′)
∣

∣+
∣

∣X̃(τ ′) − h(p)(Λ̃(τ ′))
∣

∣+
∣

∣h(p)(Λ̃(τ ′)) − h(p)(Λr,mr(v)(τ ′))
∣

∣

≤ ǫ + ǫ + ǫ.

Note that for r sufficiently large, the inequality |Xr,mr(v)(τ ′)− X̃(τ ′)| ≤ ǫ is true through (A-15).

The latter, combined with the continuity of h(p)(·) also ensures |h(p)(Λ̃(τ ′))−h(p)(Λr,mr(v)(τ ′))| ≤ ǫ.

To deduce
∣

∣X̃(τ ′) − h(p)(Λ̃(τ ′))
∣

∣ ≤ ǫ, we used the fact that the cluster point satisfies the fluid

equations (with Λ̄ = Λ̃) and Proposition 1 in combination with the fact that τ ′ ≥ L−1 ≥ s(ǫ, M3, ℓ)

for all ℓ ∈ [0, M1]. We deduce that for r sufficiently large

PΛ

(

∥

∥Q̃r(v) − h(p)(Λv)
∥

∥

[η,T ]
> 3ǫ

)

< ξ. (A-18)

Since η, ǫ, and ξ were arbitrary, the theorem is established.

Proof of Proposition 2. Let Λ∗ = µ/F̄ (p∗) and note that Λ(t) ≥ Λ∗ if and only if Λ(t)F̄ (p∗) ≥ µ

which in turn is equivalent to pµ(Λ(t)/µ) ≥ p∗.

i.) Suppose first that Λ(t) ≤ Λ∗. Then, setting p(q/µ, Λ(t)/µ) = p∗ yields h(p)(Λ(t)) = 0

and achieves an instantaneous revenue rate of Λ(t)p∗F̄ (p∗) which is the maximal possible. Hence,

p(q/µ, Λ(t)/µ) = p∗ = max{p∗, pµ(Λ(t)/µ)} is optimal in this case.

ii.) Suppose now that Λ(t) > Λ∗. Note first that the policy p̂(·, ·) sets the price equal to

pµ(Λ(t)/µ) at any point time, yields hp̂(Λ(t)) = 0 and achieves a revenue rate of

pµ(Λ(t)/µ)Λ(t)F̄ (pµ(Λ(t)/µ)) = pµ(Λ(t)/µ)µ.

Consider any policy p(·, ·) such that p(0, Λ(t)/µ) > pµ(Λ(t)/µ). Such a policy also yields h(p)(Λ(t)) =

0 but achieves a revenue rate of p(0, Λ(t)/µ)Λ(t)F̄ (p(0, Λ(t)/µ)). The latter is lower than that

achieved by p̂ by the unimodality assumption (x 7→ xF̄ (x) is non-increasing for x ≥ pµ(Λ(t)/µ)

since pµ(Λ(t)/µ) ≥ p∗). Consider now any policy p(·, ·) such that p(0, Λ(t)/µ) < pµ(Λ(t)/µ).
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For such a policy, the queue length h(p)(Λ(t)) > 0 and the revenue rate achieved is given

by p(h(p)(Λ(t))/µ,Λ(t)/µ)µ. Now note that by the definition of h(p)(Λ(t)) and pµ(·), we must

have p(h(p)(Λ(t))/µ,Λ(t)/µ) + (c/µ)h(p)(Λ(t)) = pµ(Λ(t)/µ) and hence p(h(p)(Λ(t))/µ,Λ(t)/µ) <

pµ(Λ(t)/µ). We deduce that the revenue rate achieved by p(·, ·) is dominated by that of p̂(·, ·).
We deduce that an optimal policy must satisfy p(0, Λ(t)/µ) = pµ(Λ(t)/µ) and that for such a

policy h(p)(Λ(t)) = 0.

From the two cases, we conclude that the pricing policy p̂(·, ·) is optimal in the fluid limit.

Proof of Proposition 3. Fix ǫ > 0, a policy p(·, ·) ∈ P and Λ(·). Let B =
{

ω : sup0<t≤T

∣

∣Q̃r(t)−
h(p)(Λ(t))

∣

∣ ≤ ǫ
}

, M1 = max{Λ(u), 0 ≤ u ≤ T} and M2 = vmax. Note that without loss of

generality, we can assume that p(·, ·) is bounded above by M2. For any such policy, the normalized

revenues are upper bounded as follows

Rr
Λ(T )

rar
≤ EΛ

[
∫ T

0
pr(u)Λ(u)F̄

(

pr(u) +
c

µ
Q̃r(u)

)

du

∣

∣

∣

∣

B
]

+EΛ

[
∫ T

0
pr(u)Λ(u)F̄

(

pr(u) +
c

µ
Q̃r(u)

)

du

∣

∣

∣

∣

Bc

]

PΛ

{

Bc
}

. (A-19)

The first term on the right hand side of (A-19), A1, can be rewritten and upper bounded as follows

A1 = EΛ

[
∫ T

0
pr(u)Λ(u)F̄

(

pr(u) +
c

µ
h(p)(Λ(u))

)

du

]

+EΛ

[
∫ T

0
pr(u)Λ(u)

(

F̄
(

pr(u) +
c

µ
Q̃r(u)

)

− F̄
(

pr(u) +
c

µ
h(p)(Λ(u))

)

)

du

∣

∣

∣

∣

B
]

≤ EΛ

[
∫ T

0
pr(u)Λ(u)F̄

(

pr(u) +
c

µ
h(p)(Λ(u))

)

du

]

+ EΛ

[
∫ T

0
pr(u)Λ(u)C

c

µ

∣

∣Q̃r(u) − h(p)(Λ(u))
∣

∣du

∣

∣

∣

∣

B
]

≤ EΛ

[
∫ T

0
pr(u)Λ(u)F̄

(

pr(u) +
c

µ
h(p)(Λ(u))

)

du

]

+ (Cc/µ)M1M2Tǫ.

Using the definition of h(p)(·), we deduce that

A1 ≤ EΛ

[
∫ T

0
pr(u)min{Λ(u)F̄ (pr(u)), µ}du

]

+ (Cc/µ)M1M2Tǫ

≤
∫ T

0
sup
q≥0

{

q min{Λ(u)F̄ (q), µ}
}

du + (Cc/µ)M1M2Tǫ. (A-20)

The second term on the right hand side of (A-19) can be upper bounded by M1M2TPΛ{Bc}.
Combining this with (A-20), we get

Rr
Λ(T )

rar
≤

∫ T

0
sup
q≥0

{

q min{Λ(u)F̄ (q), µ}
}

du + max{Cc/µ, 1}M1M2T (ǫ + PΛ{Bc}).
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Letting r → ∞, we get (using Theorem 1)

lim sup
r→∞

Rr
Λ(T )

rar
≤

∫ T

0
sup
q≥0

{

q min{Λ(u)F̄ (q), µ}
}

du + max{Cc/µ, 1}M1M2Tǫ.

Noting that the result is true for all ǫ > 0, we get the desired inequality.

Proof of Proposition 4. Fix ǫ > 0 and Λ(·). Suppose that one applies the policy p̂. Let

B =
{

ω : sup0<t≤T

∣

∣Q̃r(t)
∣

∣ ≤ ǫ
}

, M1 = max{Λ(u), 0 ≤ u ≤ T} and M2 = vmax.

EΛ

[
∫ T

0
p̂(u)Λ(u)F̄

(

p̂(u) +
c

µ
Q̃r(u)

)

du

]

≥ EΛ

[
∫ T

0
p̂(u)Λ(u)F̄

(

p̂(u) +
c

µ
Q̃r(u)

)

du

∣

∣

∣

∣

B
]

PΛ

{

B
}

≥
[
∫ T

0
p̂(u)Λ(u)F̄

(

p̂(u) +
c

µ
ǫ
)

du

]

PΛ

{

B
}

=

[
∫ T

0
p̂(u)Λ(u)F̄ (p̂(u))du +

∫ T

0
p̂(u)Λ(u)

[

F̄
(

p̂(u) +
c

µ
ǫ
)

− F̄ (p̂(u))
]

du

]

PΛ

{

B
}

≥
[
∫ T

0
p̂(u)Λ(u)F̄ (p̂(u))du − CM1M2

c

µ
ǫ

]

PΛ

{

B
}

.

Note that under p̂, h(p)(Λ(t)) = 0 for all 0 ≤ t ≤ T . Hence, using Theorem 1, we have that PΛ

{

B
}

converges to 1 as r → +∞ and in turn

lim inf
r→∞

EΛ

[
∫ T

0
p̂(u)Λ(u)F̄ (p̂(u) +

c

µ
Q̃r(u))du

]

≥
∫ T

0
p̂(u)Λ(u)F̄ (p̂(u))du − CM1M2

c

µ
ǫ.

This being true for all ǫ > 0, we have

lim inf
r→∞

EΛ

[
∫ T

0
p̂(u)Λ(u)F̄ (p̂(u) +

c

µ
Q̃r(u))du

]

≥
∫ T

0
p̂(u)Λ(u)F̄ (p̂(u))du

=

∫ T

0
max

q

{

q min{Λ(u)F̄ (q), µ}
}

du.

This establishes the desired result.

Proof of Proposition 5. This proof is a variant of that of Theorem 1. In particular the only

step that needs to be adapted is Step 2 where we showed that any cluster point X̃ satisfies the

fluid equations. Since now p̃ depends on the idleness process, one needs to modify the arguments

leading to (B-6) in the proof of Lemma 5. For any function m(·) defined on [0, T ], define Θ(m)(·) :

u 7→ β−m(u) + β+(u − m(u)). For u ∈ [0, T ], let f̃(u) := p∗ + Φ(Θ(Ỹ ))(u) and f̃ r,m(u) :=
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p∗ + Φ(Θ(Y r,m))(u). Now we have

∥

∥

∥
Ã(t) − Λ̃

∫ t

0
F̄
(

f̃(u) +
c

µ
X̃(u)

)

du
∥

∥

∥

L

≤ ‖Ã(t) − Ar,m(t)‖L +
∥

∥

∥
Ar,m(t) −

∫ t

0
Λr,m(u)F̄

(

f̃ r,m(u) +
c

µ
Xr,m(u)

)

du
∥

∥

∥

L

+
∥

∥

∥

∫ t

0
Λr,m(u)

∣

∣F̄
(

f̃ r,m(u) +
c

µ
Xr,m(u)

)

− F̄
(

f̃(u) +
c

µ
X̃(u)

)∣

∣du
∥

∥

∥

L

+
∥

∥

∥

∫ t

0
‖Λr,m(·) − Λ̃‖LF̄

(

f̃(u) +
c

µ
X̃(u)

)

du
∥

∥

∥

L

≤ δ + ǫ(r) + M1CT
(

‖f̃ r,m(u) − f̃(u)‖L + c/µ‖Xr,m − X̃‖L

)

+ Tδ.

Recall that the reflection operator Φ(·) is Lipschitz continuous with respect to the uniform norm

in the set of continuous real valued functions, and let CΦ denote the corresponding constant (see,

e.g., [27])

‖f̃ r,m(u) − f̃(u)‖L = ‖Φ(Θ(Y r,m))(u) − Φ(Θ(Ỹ ))(u)‖L

≤ CΦ‖Θ(Y r,m)(u) − Θ(Ỹ )(u)‖L

≤ CΦ|β− − β+|‖Y r,m(u) − Ỹ (u)‖L

≤ CΦ|β− − β+|δ.

We deduce that

∥

∥

∥
Ã(t) − Λ̃

∫ t

0
F̄ (f̃(u) +

c

µ
X̃(u))du

∥

∥

∥

L
≤ B1δ.

The rest of the proof establishing that any cluster point X̃ satisfies the fluid equations is similar

to that of Lemma 5.

The last point that needs to be adapted is the analysis of the fluid model equations. The

behavior of the fluid model is summarized in the next result

Lemma 6 Suppose Λ(·) = Λ̄ for all t and that q(0) ≤ M . In the fluid system defined through the

equations (9)-(12), there exists a finite τ(M, Λ̄) > 0 such that

p̃(t) = max{p∗, pµ(Λ̄/µ)} for all t ≥ τ(M, Λ̄),

q(t) = 0 for all t ≥ τ(M, Λ̄).

Hence, we can conclude that for all ǫ > 0, PΛ{sup0<s≤T |Q̃r(s)| > ǫ} → 0 and PΛ{sup0<s≤T |p̃r(s)−
p̂(s)| > ǫ} → 0 as r → ∞.
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Finally, establishing that the upper bound in Proposition 3 is achieved follows from the same

line of arguments as in the proof of Proposition 4.

B Proofs of Auxiliary Lemmas

Proof of Lemma 1. Let the arrival process in the rth system be represented as Ar(t) =

N
(

∫ t

0 Λr(u)F̄
(

p(Qr(u)
µr

, Λr(u)
µr

) + (c/(µr)Qr(u)
)

dt
)

, where N(·) is a unit rate Poisson process.

Define

Ñ(y) = N

(

y +

∫ m

0
Λr(u)F̄

(

p(
Qr(u)

µr
,
Λr(u)

µr
) + c/(µr)Qr(u)

)

du

)

−N

(
∫ m

0
Λr(u)F̄

(

p(
Qr(u)

µr
,
Λr(u)

µr
) + c/(µr)Qr(u)

)

du

)

,

and note that Ñ(·) is a unit rate Poisson process. We can write

Ar,m(t) =
1

r
[Ar(t + m) − Ar(m)]

=
1

r

[

N

(
∫ t+m

0
Λr(u)F̄

(

p(
Qr(u)

µr
,
Λr(u)

µr
) + c/(µr)Qr(u)

)

du

)

−N

(
∫ m

0
Λr(u)F̄

(

p(
Qr(u)

µr
,
Λr(u)

µr
) + (c/(µr)Qr(u)

)

du

)]

=
1

r
Ñ

(
∫ t+m

m

Λr(u)F̄

(

p(
Qr(u)

µr
,
Λr(u)

µr
) + c/(µr)Qr(u)

)

du

)

=
1

r
Ñ

(

r

∫ t

0
Λr,m(u)F̄

(

p(
Xr,m(u)

µ
;
Λr,m(u)

µ
) + (c/µ)Xr,m(u)

)

du

)

.

The three inequalities are proved in a similar fashion. We start with (A-8). By proposition 4.3 in

[9], for large enough r,

P

(

‖Ñ(t) − t‖M1Lr > ǫM1Lr
)

≤ ǫ

M1Lr

Note that 0 ≤ r
∫ t

0 Λr,m(u)g (Xr,m(u)/µ; Λr,m(u)/µ) du ≤ M1Lr for t ∈ [0, L] and hence,

r

∥

∥

∥

∥

Ar,m(t) −
∫ t

0
Λr,m(u)F̄

(

p(
Xr,m(u)

µ
;
Λr,m(u)

µ
) + (c/µ)Xr,m(u)

)

du

∥

∥

∥

∥

L

≤
∥

∥Ñ(t) − t
∥

∥

M1Lr
,
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implying that

P

(
∥

∥

∥

∥

Ar,m(t) −
∫ t

0
Λr,m(u)F̄

(

p(
Xr,m(u)

µ
;
Λr,m(u)

µ
) + (c/µ)Xr,m(u)

)

du

∥

∥

∥

∥

L

> ǫ

)

≤ P

(

1

r

∥

∥Ñ(t) − t
∥

∥

M1Lr
> ǫ

)

≤ ǫ

(M1L)2r
.

In turn, we have

P

(

max
m<arτ

∥

∥

∥

∥

Ar,m(t) −
∫ t

0
Λr,m(u)F̄

(

p(
Xr,m(u)

µ
;
Λr,m(u)

µ
) + (c/µ)Xr,m(u)

)

du

∥

∥

∥

∥

L

> ǫ

)

≤
⌊arτ⌋
∑

m=1

P

(
∥

∥

∥

∥

Ar,m(t) −
∫ t

0
Λr,m(u)F̄

(

p(
Xr,m(u)

µ
;
Λr,m(u)

µ
) + (c/µ)Xr,m(u)

)

du

∥

∥

∥

∥

L

> ǫ

)

≤ ǫarτ

(M1L)2r
.

(A-8) now follows for r large enough since ar/r → 0 as r → ∞. The inequalities (A-9) and (A-10)

follow in a similar fashion.

Proof of Lemma 2. We first note that Lemma 1 implies that P(Kr
1) → 1 as r → ∞. We now

show that P(Kr
0) → 1 as r → ∞ and the result will directly follow. Fix ǫ > 0. Let γ(·) denote a

generic process, N ≥ 0 be a generic constant and let (P0) be the following property:

P

(

max
m<arT

sup
t1,t2≤L

|γr,m(t2) − γr,m(t1)| > N |t2 − t1| + ǫ

)

≤ ǫ. (B-1)

We show that each component of X satisfies the property (P0) for r sufficiently large. We have

already shown in Lemma 1 that the component Dr,m(·) satisfies (P0) with N = µ. We also note

that T r,m(·) is Lipschitz with constant 1 and hence trivially satisfies the property with N = 1.

We now focus on Ar,m(·). Let 0 ≤ t1 ≤ t2 ≤ L.

∣

∣Ar,m(t2) − Ar,m(t1)
∣

∣ ≤
∣

∣

∣

∣

Ar,m(t2) −
∫ t2

0
Λr,m(u)F̄

(

p(
Xr,m(u)

µ
;
Λr,m(u)

µ
) + (c/µ)Xr,m(u)

)

du

∣

∣

∣

∣

+

∣

∣

∣

∣

Ar,m(t1) −
∫ t1

0
Λr,m(u)F̄

(

p(
Xr,m(u)

µ
;
Λr,m(u)

µ
) + (c/µ)Xr,m(u)

)

du

∣

∣

∣

∣

+

∫ t2

t1

Λr,m(u)F̄

(

p(
Xr,m(u)

µ
;
Λr,m(u)

µ
) + (c/µ)Xr,m(u)

)

du

≤ 2

∥

∥

∥

∥

Ar,m(t) −
∫ t

0
Λr,m(u)F̄

(

p(
Xr,m(u)

µ
;
Λr,m(u)

µ
) + (c/µ)Xr,m(u)

)

du

∥

∥

∥

∥

L

+M1|t2 − t1|.
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This implies that

P

(

max
m<arT

sup
t1,t2≤L

|Ar,m(t2) − Ar,m(t1)| > M1|t2 − t1| + 2ǫ

)

≤ P

(

2 max
m<arT

∥

∥

∥

∥

Ar,m(t) −
∫ t

0

1

r
Λr,m(u)F̄

(

p(
Xr,m(u)

µ
;
Λr,m(u)

µ
) + (c/µ)Xr,m(u)

)

du

∥

∥

∥

∥

L

> 2ǫ

)

≤ ǫ,

where the last inequality follows from Lemma 1. The property is hence satisfied for N = M1. Let

us now turn to the component Λr,m(·).

∣

∣Λr,m(t2) − Λr,m(t1)
∣

∣ =

∣

∣

∣

∣

Λ
( t2 + m

ar

)

− Λ
( t1 + m

ar

)

∣

∣

∣

∣

.

Note that Λ(·) being continuous on the compact set [0, τ ], it is also uniformly continuous. Let

δ > 0 be such that |Λ(t2)−Λ(t1)| < ǫ for all t1, t2 ∈ [0, τ ] such that |t2 − t1| < δ. Let k = min{n :

an > τ/δ}. For all r ≥ k, we have

∣

∣Λr,m(t2) − Λr,m(t1)
∣

∣ ≤ ǫ,

and hence Λr,m(·) satisfies the property (P0).

The last component of X to analyze is Xr,m. Using the queueing dynamics equations (1)-(4),

note that

Xr,m(t) =
Qr(t + m)

r

=
1

r
[Qr(0) + Ar(t + m) − Dr(t + m)]

= Ar,m(t) − Dr,m(t) +
1

r
[Qr(0) + Ar(m) − Dr(m)]

= Xr,m(0) + Ar,m(t) − Dr,m(t). (B-2)

Since both Ar,m and Dr,m satisfy (P0) we conclude (using (B-2)) that Xr,m also satisfies (P0) with

N = M1 + µ. The lemma is now established.

Proof of Lemma 3. Note that for all m < atτ , T r,m(0) = Ar,m(0) = Dr,m(0) = 0, Xr,m(0) =
Qr(m)

r
≤ M2, and Λr,m(0) = Λ(m/ar) ≤ M1. Hence |Xr,m(0)| ≤ max{M1, M2}. The result now

directly follows from Proposition 4.1 in [9].

Proof of Lemma 4. Since X̃(·) is a cluster point of E0, there exists a sequence (rl, ml, ωl) with
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ml < arl
τ and ωl ∈ Krl such that

∥

∥X
rl,ml(·, ωl)− X̃(·)

∥

∥

L
→ 0 as l → ∞. In particular, this implies

∥

∥Λrl,ml(·) − Λ̃(·)
∥

∥

L
→ 0 as l → ∞. (B-3)

Let S be the set of limit points of the sequence ml/arl
. Note that this set is nonempty since

ml/arl
lives in the compact set [0, τ ] and hence has at least one convergent subsequence. Let L

be the image of S by Λ(·).
Suppose L contains two distinct elements y1 6= y2. Take any u ∈ [0, L]. Denote by l′ and l′′

the indexes of two subsequences such that ml′/arl′
→ x1 and Λ(x1) = y1 and ml′′/arl′′

→ x2 and

Λ(x2) = y2.

Λrl′ ,ml′ (u) = Λ(u/arl′
+ ml′/arl′

) → Λ(x1) = y1 as l → ∞,

Λrl′′ ,ml′′ (u) = Λ(u/arl′′
+ ml′/arl′′

) → Λ(x2) = y2 as l → ∞.

Having y1 6= y2 contradicts (B-3). We deduce that L is necessarily a singleton. Denote by y the

unique point in L. Consider any converging subsequence of ml/arl
and denote by l′ its indexes

and x its limit (x ∈ S).

Λrl′ ,ml′ (u) = Λ(u/arl′
+ ml′/arl′

) → Λ(x) = y as l → ∞. (B-4)

Hence, we must have Λ̃(u) = y for all u ∈ [0, L]. In other words, for any cluster point, Λ̃(·) is

constant.

Proof of Lemma 5. Select any cluster point X̃(·) of E0. For a given δ > 0, choose (r, m, ω) so

that ǫ(r) ≤ δ,
∥

∥X̃(·) − X̃
r,m(·, ω)

∥

∥

L
≤ δ. (B-5)
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Let ω ∈ Kr. We have

∥

∥

∥
Ã(t) − Λ̃

∫ t

0
F̄ (p(X̃(u)/µ, Λ̃(u)/µ) +

c

µ
X̃(u))du

∥

∥

∥

L

≤
∥

∥Ã(t) − Ar,m(t)
∥

∥

L
+
∥

∥

∥
Ar,m(t) −

∫ t

0
Λr,m(u)F̄ (p(Xr,m(u)/µ; Λr,m(u)/µ) +

c

µ
Xr,m(u))du

∥

∥

∥

L

+
∥

∥

∥

∫ t

0
Λr,m(u)

∣

∣

∣
F̄ (p(Xr,m(u)/µ,Λr,m(u)/µ) +

c

µ
Xr,m(u)) − F̄ (p(X̃(u)/µ, Λ̃(u)/µ) +

c

µ
X̃(u))

∣

∣

∣
du
∥

∥

∥

L

+
∥

∥

∥

∫ t

0
‖Λr,m(·) − Λ̃‖LF̄ (p(X̃(u)/µ; Λ̃(u)/µ) +

c

µ
X̃(u))du

∥

∥

∥

L

(a)

≤ δ + ǫ(r) + LM1C(Cpδ + (c/µ)δ) + Lδ

≤ B1δ, (B-6)

where B1 is a suitably large positive constant and (a) follows from (B-5), the fact that ω ∈ Kr

and the Lipschitz continuity of F̄ and p. Now

∥

∥X̃(t) − (X̃(0) + Ã(t) − µT̃ (t))
∥

∥

L

≤
∥

∥X̃(t) − Xr,m(t)‖L + ‖Xr,m(0) − X̃(0)
∥

∥

L
+
∥

∥Ar,m(t) − Ã(t)
∥

∥

L
+ µ

∥

∥T̃ (t) − T
r,m(t)

∥

∥

L

+
∥

∥Xr,m(t) − (Xr,m(0) + Ar,m(t) − Dr,m(t))
∥

∥

L
+
∥

∥µT
r,m(t) − Dr,m(t)

∥

∥

L

≤ B2δ, (B-7)

where we made use of (B-5), the fact that ω ∈ Kr and B2 > 0 is chosen suitably large. Using

(B-6) and (B-7), we have

∥

∥

∥
X̃(t) − (X̃(0) + Λ̃

∫ t

0
F̄ (p(

X̃(u)

µ
;
Λ̃(u)

µ
) +

c

µ
X̃(u))du − µT̃ (t))

∥

∥

∥

L

≤
∥

∥X̃(t) − (X̃(0) + Ã(t) − µT̃ (t))
∥

∥

L
+
∥

∥

∥
Ã(t) − Λ̃

∫ t

0
F̄ (p(

X̃(u)

µ
;
Λ̃(u)

µ
) +

c

µ
X̃(u))du

∥

∥

∥

L

≤ (B1 + B2)δ.

Let Ỹ (t) = t − T̃ (t). We next show that X̃(s) > δ for all s ∈ [t1, t2] ⊂ [0, L] implies that

Ỹ (t2)−Ỹ (t1) ≤ 2δ. Suppose that X̃(s) > δ for all s ∈ [t1, t2] ⊂ [0, L]. This implies that Xr,m(s) >

0 for all s ∈ [t1, t2] since ‖X̃(s) − Xr,m(s)‖L ≤ δ. We deduce that Y r,m(t2) − Y r,m(t1) = 0. Now

Ỹ (t2) − Ỹ (t1) = Ỹ (t2) − Y r,m(t2) + Y r,m(t2) − Y r,m(t1) + Y r,m(t1) − Ỹ (t1)

≤ 2δ.
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Since δ was arbitrary, we conclude that (X̃, T̃ , D̃, Λ̃) satisfy the fluid equations. (9)-(12).

Proof of Lemma 6. Note that in the fluid system, q is bounded above by max{q(0), qmax} where

qmax = (µ/c)vmax. Note also that when Λ(·) is constant over time, so is p̂(t) = max{p∗, pµ}.
Hence, we will drop the dependence in time for p̂(t). Rewriting the fluid equations as a reflection,

we have

q = Φ(x), where x(s) = q(0) +

∫ s

0
[Λ̄F̄ (p̃(s) + (c/µ)q(s)) − µ]du.

Let τ (1) = inf{s ≥ 0 : x(s) = 0}. For any γ > 0, we have

τ (1) = inf
{

s ≥ 0 : q(0) +

∫ s

0

(

Λ̄F̄
(

p∗ + βu + (c/µ)q(u)
)

− µ
)

du = 0
}

≤ inf
{

s ≥ γ : q(γ) +

∫ s

γ

(

Λ̄F̄ (p∗ + βγ) − µ
)

du = 0
}

= γ +
q(γ)

µ − Λ̄F̄ (p∗ + βγ)

≤ γ +
max{M, qmax}

µ − Λ̄F̄ (p∗ + βγ)
.

We deduce that τ (1) is finite.

Suppose first that Λ̄F̄ (p∗) ≤ µ. Then p̂ = p∗. If q(0) = 0, then q(t) = 0 and p̃(t) = p∗ = p̂

for all t ≥ 0. If q(0) > 0, Following τ (1), q(t) stays equal to zero since x′(t) ≤ 0. We deduce

that following τ (1), p̃(·) decreases at rate β− until it reaches p∗ and hence one can take τ =

τ (1) + (β+/β−)τ (1) ≤ (1 + β+/β−)
(

γ + max{M, qmax}/(µ − Λ̄F̄ (p∗ + βγ)
)

.

Suppose now that Λ̄F̄ (p∗) > µ. This implies that p̂ = pµ = F̄−1(µ/Λ̄). We can assume

without loss of generality that q(0) > 0 (since if q(0) = 0, then q(δ) > 0 for some δ > 0). Let

τ (1) = inf{s ≥ 0 : q(t) = 0}. Choose γ such that γ > (pµ − p∗)/β. Since q(u) > 0 for all u < τ (1),

we have that in addition, q(τ (1)) = 0 and p̃(τ (1)) ≥ pµ. Let τ (2) = τ (1) + (p̃(τ (1)) − pµ)/β−. By

definition, p̃(·) is decreasing at rate β− on [τ (1), τ (2)] and the queue length stays at zero on that

interval. At τ (2), we have q(τ (2)) = 0 and p̃(τ (2)) = pµ.

We next show that for all t ≥ τ (2), q(t) = 0 and p̃(t) = pµ. Let τ (3) = inf{s ≥ τ (2) :

p̃(t) 6= pµ}. Suppose τ (3) < ∞ and p̃(t) decreases for ǫ > 0 units of time following τ (3). p̃(t)

would have had to decrease at rate β−. By definition of p̃, this would imply that the system

was idling on (τ (3), τ (3) + ǫ) and hence q(t) = 0 on that interval. In turn, this would imply that

Λ̄F̄ (p̃(t) + (c/µ)q(t)) − µ > 0 and that x(t) was increasing on (τ (3), τ (3) + ǫ), contradicting that

q(t) stays equal to zero. Similarly, if one supposes τ (3) < ∞ and p̃(t) increases for ǫ > 0 units of
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time following τ (3). Then this would imply that x(t) is decreasing on (τ (3), τ (3) + ǫ), and hence

that the system is idling, contradicting that p̃(t) increases on that interval. We conclude that

necessarily τ (3) = ∞ and one can take τ = τ (2) in the case where Λ̄F̄ (p∗) > µ. This concludes

the proof.
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