
PERFORMANCE MODELING AND RESOURCE

MANAGEMENT FOR MAPREDUCE APPLICATIONS

Zhuoyao Zhang

A DISSERTATION
in

Computer and Information Science
Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2014

Boon Thau Loo
Associate Professor,

Computer and Information Science
Supervisor of Dissertation

Insup Lee
Cecilia Fitler Moore Professor,

Computer and Information Science
Co-Supervisor of Dissertation

Val Tannen
Professor, Computer and Information Science

Graduate Group Chairperson

Dissertation Committee

Zachary Ives (Chair), Associate Professor, Computer and Information Science

Susan Davidson, Weiss Professor, Computer and Information Science

Andreas Haeberlen, Raj and Neera Singh Assistant Professor, Computer and

Information Science

Ludmila Cherkasova, Principal Scientist, Hewlett-Packard Labs

PERFORMANCE MODELING AND RESOURCE MANAGEMENT FOR

MAPREDUCE APPLICATIONS

COPYRIGHT

2014

Zhuoyao Zhang

Dedicated to my parents.

iii

Acknowledgments

From the first day I joined the Ph.D program in Penn, I have spent five fruit-

ful years in this group until finally, my research work comes into this dissertation.

Here, I would like to express my deepest gratitude to my advisor, my collabora-

tors, my friends and family and other individuals who support me through these

years. Without their help, it is not possible for me to go this far.

First of all, I would like to thank my advisors, Professor Boon Thau Loo and

Insup Lee who offered me the opportunity to pursue graduate studies at Penn and

guided me through my research work. Insup provided me great support during

my early years by exposing me to different research areas through our discussions.

He also introduced me the work of real-time system which later helps me form

the initial idea of my dissertation work. Boon have been extremely supportive

through each step during my study. He gave me valuable advice on shaping my

research directions, refining theoretical approaches as well as on technical details

like designing experiments and analyzing results. He is also a great mentor who

is open minded and willing to encourage students exploring new ideas, so that I

could have freedom to choose research topics I am interested. I have learned from

him not only the research skill, but also the importance of collaboration, passion

about work, self-discipline and life balancing.

Next, I would like to thank Dr. Lucy Cherkasova who is my mentor during

my internship in HP Labs. We worked together for two summers and have been

kept collaborating remotely for more than two years. It was an exciting and fruitful

working experience, during this time period, we have published papers on several

conferences, workshops and journals. We filed two patents and presented our

iv

work in different occasions. All this could be achieved without her help. Lucy

is especially patient and considerate in mentoring my research work as well as

other aspects in my Ph.D life. I remember she walked through every page of my

slides in preparing my talk and rehearsal multiple times with me even for internal

presentations and that really helps me to clear my thoughts and is especially useful

when I need to explain my works to other researchers later. The time we spent in

HP Labs has been one of the most precious pieces of memory in my life.

I would also like to thank my collaborators. Among them, I would like to first

thank Dr. Godfrey Tan who I worked with in my first project on job scheduling

in large-scale distributed systems and encouraged me a lot during my first years

as a Ph.D student. Dr. Linh T.X. Phan who is now a research assistant profes-

sor in Penn has a profound influence on my early research. She first brought the

idea to introduce theories from real-time system into the parallel data processing

platform which inspired me for my later works. I was also fortunate enough to col-

laborate with many other individuals from different places. Saumya Jain and Qi

Zheng who were Penn graduate students and worked with me on several projects.

I appreciate a lot for their help in system implementation and experiments. Ab-

hishek Verma and Feng Yan are my collaborators during my summer intern and

we worked together on MapReduce related problems from whom I have learnt

a lot about Hadoop system. I also had a great time work with other students in

the group such as Sanchit Aggarwal, Yang Li and Harjot Gill, who broadened my

horizon, and enabled me to explore different types of problems outside my core

research area.

This dissertation benefited from many great suggestions provided by my the-

sis committee members, professor Zachary Ives who is also my WPE-II committee

chair, professor Susan Davidson and Andreas Haeberlen who provided me valu-

able advise through the write up.

In addition, I have to thank members from the NetDB group: Wenchao Zhou,

Changbin Liu, Anduo Wang, Mengmeng Liu, Alex Gurney and Ling Ding, all

of them have given me great suggestions in preparing my WPE-II writing and

v

presentation, my thesis proposal defense and my job searching process. I also

would like to give my special thanks to Mike Felker for helping me go through

many tedious details of administrative tasks, and also to Cheryl Hickey and many

other wonderful staff who make my life much easier.

Besides my research work, I want to thank my friends that colors my life after

work. Special thanks to my best friend Lin Shao who listened to me and stayed

with me through my hard times. My current and previous roommates: Qi Zhang,

Jie Li, Xiang Yang, Weiyu Zhang, Yanfei Wang, Jiechang Hou, Matt Malloy, Han-

jun Xiao, Yang Wu for those memorable times we shared together. Also friends I

made these years: Zhuowei Bao, Chen Chen, Naobo Chen, Jian Chang, Qing D-

uan, Pengfei Huang, Zhihao Jiang, Dong Ling, Gang Song, Shaohui Wang, Meng

Xu, Zhepeng Yan, Yifei Yuan, Mingchen Zhao, Jianzhou Zhao and many others.

My research was funded in part by the following funding agencies and sources:

NSF CNS-1117185, CNS-1040672, CNS-0834524, CNS-0845552, IIS-0812270 and ARO

grant W911NF-11-1-0403.

Last but not least, I dedicate this dissertation to my parents, Yongting Zhang

and Xunjian Liu for their selfless love. They have made great sacrifice to support

my study abroad and my dreams. In the past five years, I spent very little time

with them which I believe has made their life much more difficult especially I am

the only child in the family, but they never complied a word about that. It would

worth everything if this dissertation could bring them proud and comfort.

vi

ABSTRACT

PERFORMANCE MODELING AND RESOURCE MANAGEMENT FOR

MAPREDUCE APPLICATIONS

Zhuoyao Zhang

Boon Thau Loo
Insup Lee

Big Data analytics is increasingly performed using the MapReduce paradigm

and its open-source implementation Hadoop as a platform choice. Many applica-

tions associated with live business intelligence are written as complex data analy-

sis programs defined by directed acyclic graphs of MapReduce jobs. An increasing

number of these applications have additional requirements for completion time

guarantees. The advent of cloud computing brings a competitive alternative solu-

tion for data analytic problems while it also introduces new challenges in provi-

sioning clusters that provide best cost-performance trade-offs.

In this dissertation, we aim to develop a performance evaluation framework

that enables automatic resource management for MapReduce applications in achiev-

ing different optimization goals. It consists of the following components: (1) a

performance modeling framework that estimates the completion time of a given

MapReduce application when executed on a Hadoop cluster according to its in-

put data sets, the job settings and the amount of allocated resources for processing

it; (2) a resource allocation strategy for deadline-driven MapReduce applications

that automatically tailors and controls the resource allocation on a shared Hadoop

cluster to different applications to achieve their (soft) deadlines; (3) a simulator-

based solution to the resource provision problem in public cloud environment that

guides the users to determine the types and amount of resources that should lease

from the service provider for achieving different goals; (4) an optimization strategy

to automatically determine the optimal job settings within a MapReduce applica-

tion for efficient execution and resource usage. We validate the accuracy, efficien-

cy, and performance benefits of the proposed framework using a set of realistic

MapReduce applications on both private cluster and public cloud environment.

vii

Contents

Contents viii

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions of the dissertation . 3

1.2.1 Contribution 1: performance modeling framework for MapRe-

duce applications . 4

1.2.2 Contribution 2: resource allocation for deadline-driven MapRe-

duce applications . 5

1.2.3 Contribution 3: resource provision in public cloud environ-

ment . 6

1.2.4 Contribution 4: performance optimization for MapReduce

applications . 7

1.3 Overview of dissertation . 8

2 Background 10

2.1 MapReduce framework . 10

2.2 Pig programs . 12

3 Performance Modeling Framework 15

3.1 Platform performance model . 17

3.1.1 Profiling MapReduce phases 17

3.1.2 Microbenchmarks . 21

3.1.3 Platform modeling . 23

viii

3.1.4 Accuracy of the platform performance model 27

3.2 MapReduce job model . 31

3.2.1 Estimate task durations within a job 32

3.2.2 Performance model for a single MapReduce job 34

3.2.3 Accuracy of the MapReduce job model 36

3.3 MapReduce workflow peformance model 45

3.3.1 Estimate input data size through the worklfow 45

3.3.2 Modeling MapReduce workflows with sequential jobs 47

3.3.3 Modeling MapReduce workflows with concurrent jobs 53

3.4 Model sensitivity . 59

3.4.1 Impact of sample data size . 59

3.4.2 Impact of input data on the map function performance 61

3.4.3 Impact of data skew in reduce stage 62

3.4.4 Variability of job profiles in public cloud environment 64

3.5 Conclusion . 66

4 Resource Management for MapReduce Applications 68

4.1 Deadline-driven resource allocation on shared Hadoop cluster 69

4.1.1 Resource allocation for single MapReduce job 70

4.1.2 Resource allocation for MapReduce workflows: a basic ap-

proach . 71

4.1.3 Schedule concurrent jobs within a workflow 75

4.1.4 Resource allocation for MapReduce workflows: a refined ap-

proach . 80

4.1.5 Deadline-driven job scheduler 84

4.2 Resource provisioning in public cloud environment 88

4.2.1 Solution framework . 90

4.2.2 Resource provision for homogeneous cluster 97

4.2.3 Resource provision for heterogeneous cluster 105

4.3 Conclusion . 113

ix

5 Performance Optimization with optimal job settings 115

5.1 Motivation . 116

5.1.1 Why not use best practices? . 117

5.2 Problem definition and the solution outline 119

5.2.1 Two optimization strategies . 121

5.3 Evaluation results . 125

5.3.1 Experimental workloads . 126

5.3.2 Performance optimization benefits 127

5.3.3 Performance benefits of the optimization strategies 129

5.4 Conclusion . 131

6 Related Work 133

6.1 Performance model for MapReduce applications 133

6.2 Resource management for MapReduce jobs 136

6.3 MapReduce performance optimizations 140

7 Conclusion 142

7.1 Summary . 142

7.2 Future work . 143

Bibliography 145

x

List of Tables

3.1 Relative error distribution . 29

3.2 Application characteristics. 38

3.3 UPenn cluster description. 40

3.4 EC2 Testbed description. 41

3.5 Job profiles of Adjlist on UPenn cluster. 44

3.6 Job profiles of WordCount on UPenn cluster. 44

3.7 Processing time per record for KMeans with different number of initial centroids. 62

3.8 Measured and predicted completion times for KMmeans 63

3.9 Job profiles on the EC2 cluster with small instances (time in sec) 66

3.10 Job profiles on the EC2 cluster with medium instances (time in sec) 66

3.11 Job profiles on the EC2 cluster with large instances (time in sec) 67

4.1 CPU types used by different EC2 instances. 90

4.2 Application characteristics. 110

4.3 Cluster provisioning results for workloadW1. 112

4.4 Cluster provisioning results for workloadW2. 112

4.5 Cluster provisioning results for workloadW3. 112

5.1 Notation Summary . 122

5.2 Example of the global optimization strategy . 125

xi

List of Figures

1.1 Overview of the dissertation . 8

2.1 Architecture of MapReduce framework . 11

2.2 Example of a Pig program’ execution plan represented as a DAG of MapRe-

duce jobs. 13

3.1 Ensemble of Models. 16

3.2 MapReduce Processing Pipeline. 17

3.3 A fragment of a platform profile for read and collect phases. 23

3.4 Benchmark results. 26

3.5 Shuffle phase model for Hadoop where each JVM (slot) configured with 2GB

of memory. 27

3.6 CDF of prediction error. 28

3.7 Validating the accuracy of the platform performance model on the small 5-node

test cluster. 30

3.8 Validating the accuracy of platform performance model on the large 66-node

production cluster. 30

3.9 MapReduce Performance Model. 32

3.10 Predicted vs. measured completion times of 13 applications on the small 5-node

test cluster. 39

3.11 Predicted vs. measured completion times of 13 applications (with a large input

dataset) on the large 66-node production cluster. 39

3.12 Predicting the job completion time in the UPenn cluster. 42

3.13 Predicting job completion time in heterogeneous EC2 cluster. 43

xii

3.14 A special case of jobs with a single reduce task: their possible executions on the

heterogeneous EC2 cluster. 44

3.15 Predicted and measured completion time for PigMix with 128x64 slots. 49

3.16 Predicted and measured completion time for PigMix with 64x64 slots. 50

3.17 DAGs of Pig programs in the TPC-H and HP Labs Proxy query sets. 50

3.18 Predicted and measured completion time for TPC-H and Proxy queries execut-

ed with 128x64 slots. 52

3.19 Difference in executions of (a) two sequential MapReduce jobs; (b) two concur-

rent MapReduce jobs. 54

3.20 Execution of Concurrent Jobs . 56

3.21 Predicted completion times using basic vs refined models (128x64 slots). 57

3.22 Predicted completion times using basic vs refined models (32x64 slots). 58

3.23 Predicted completion time using linear extrapolation (128x64 slots). 59

3.24 Impact of sample data size on completion time estimates 60

3.25 Profile for TPC-H Q10 with different input data size (scale factor). 61

3.26 Predicted vs measured stage durations for KMeans application with different

number of reduce tasks (i.e., K = 16 and K = 50). 64

4.1 Resource allocations satisfy a given deadline . 71

4.2 PigMix executed with the estimated resources: do we meet deadlines? 74

4.3 TPC-H/Proxy queries with the estimated resources: do we meet deadlines? . . 75

4.4 Impact of concurrent job scheduling on their completion time. 76

4.5 Example of Johnson’s Algorithm. 78

4.6 Measured completion times for different schedules of concurrent jobs in TPC-

H queries. 79

4.7 Measured completion times for different schedules of concurrent jobs in Proxy

queries. 80

4.8 Resource allocation estimates for an optimized Pig program. 81

4.9 TPC-H Queries: efficiency of resource allocations with refined approach. 84

4.10 Proxy’s Queries: efficiency of resource allocations with refined approach. 84

4.11 Implementation of the deadline-scheduler. 85

xiii

4.12 Completion time of two applications when executed on different type EC2 in-

stances. 89

4.13 Simulator. 93

4.14 Simulator validation. 96

4.15 Solution Outline. 97

4.16 Job completion times on different EC2-based Hadoop clusters. 101

4.17 Normalized completion times on different EC2-based clusters. 101

4.18 Analysis ofW1 on the three platforms. 102

4.19 Analysis ofW2 on the three platforms. 104

4.20 Possible benefits with heterogeneous cluster. 105

4.21 Performance versus cost trade-offs for different applications. 106

4.22 Performance versus cost trade-offs for different workloads. 111

5.1 Motivating Examples. 117

5.2 Effect of reduce task settings for processing the same job with different input

dataset sizes. 118

5.3 Effect of reduce task settings when only a fraction of resources is available. . . 119

5.4 Example workflow with 3 sequential jobs . 120

5.5 Example of the local optimization strategy . 123

5.6 MapReduce workflows for TPC-H and Proxy queries. 126

5.7 Workflow model validation for TPC-H Q1 and TPC-H Q19. 128

5.8 Local and global optimization strategies: resource usage with different w increase

thresholds. 129

5.9 Local and global optimization strategies: resource usage with w increase=10%

while processing different size input datasets. 130

xiv

Chapter 1

Introduction

Data-intensive analytic applications have become core to the functions of the mod-

ern enterprises. Large companies like Google, Facebook, and LinkedIn are pro-

cessing and analyzing Terabytes of data every day. These data analytic tasks range

from business intelligent analytics [29], social network connection analysis [16], to

more advanced scientific data analysis and machine learning applications [89] and

the amount of data produced daily is exploding [15].

The enterprises and organizations are experiencing a paradigm shift towards

large-scale data intensive computing. Many of them are increasingly using the

MapReduce paradigm [21] and its open-source implementation Hadoop [72] as a

platform choice for their Big Data analysis as it offers a simple and powerful frame-

work for processing large data sets on distributed systems: the program logic is

simply expressed by the map and reduce functions and the MapReduce execution

engine will automatically execute the application in parallel on a set of nodes, co-

ordinate their executions and handle failures transparently.

For more complex data analytics, several projects, such as Pig [26], Hive [63],

Scope [17], and Dryad [32] provide high-level SQL-like abstractions on top of

MapReduce engines to raise the level of abstraction for processing large data sets.

These frameworks allow data analysts to specify complex analytic tasks without

directly writing map and reduce functions and will compile the specified program

automatically into directed acyclic graphs (DAGs) of MapReduce jobs which we re-

ferred to as MapReduce workflows.

1

Chapter 1. Introduction

1.1 Motivation

Though first introduced for batch-oriented workloads, there is recently an emerg-

ing technological trend to shift towards using MapReduce and the frameworks on

top of it in support of latency-sensitive applications, e.g., personalized recommen-

dations [19], advertisement placement [18], real-time web indexing [24] etc. These

applications are typically a part of an elaborate business pipeline, and have to pro-

duce results by a certain deadline. There is a need for a mechanism that could

automatically tailor and control resource allocations for different applications in

shared MapReduce clusters to achieve their (soft) deadlines. Unfortunately, the

existing Hadoop implementation does not support resource management for such

latency sensitive applications.

On the other hand, the advent of cloud computing provides a new delivery

model with virtually unlimited resources. It allows the customers to deploy their

Hadoop clusters by leasing computing and storage resources offered by the cloud

providers. One of the open questions in such environments is to determine the

right resource provision strategy i.e. the choice and the amount of resources that

a user should lease from the service providers to achieve performance goals for

their MapReduce applications. Moreover, instead of a fixed capital investment that

made up-front as for original private cluster, cloud providers offer a more cost-

efficient option for many users in a ”pay-as-you-go” fashion, i.e., the customers

only pay for the time they used the rented resources. As a result, the monetary

cost for executing the user’s workloads becomes another optimization goal which

should be considered in making the cluster provision decision.

The solutions to the above problems rely on a profound understanding of the

relationship between the execution performance of a given MapReduce applica-

tion and the amount of resources available for processing it. Currently, there is a

lack of performance models that could accurately predict the completion time for

a given MapReduce application according to its input dataset(s), the job settings

and the amount of allocated resources. It is especially challenging to develop such

2

1.2. Contributions of the dissertation

performance model because of nondeterminism during the execution due to the

interference of applications in a shared cluster, the non-uniform data distribution

and the heterogeneity of the hardware.

Based on the above motivation, the goal of this dissertation is therefore to

develop a performance evaluation framework that enables automatic resource

management for MapReduce applications in achieving different optimization

goals. Towards developing such performance evaluation framework, we need to

address the following challenges:

• Automation: The desired framework should automatically control the re-

source management with minimal manual interventions and work seamless-

ly with the Hadoop distribution.

• Accuracy: The desired framework should be sufficiently accurate in predict-

ing the application completion time or required amount of resources even

with the presence of system nondeterminism.

• Efficiency: The desired framework should be efficient and able to provide

timely response in support of latency sensitive applications in online envi-

ronment.

• Generality: The desired framework should be applied to different applica-

tions, e.g., complex MapReduce workflows and Hadoop clusters, e.g., het-

erogeneous cluster that consists of different type of hardwares.

1.2 Contributions of the dissertation

In this dissertation, we aim to develop a performance evaluation framework that

enables automatic resource management for MapReduce applications in achiev-

ing different optimization goals. The techniques we use combine of mathematical

analysis, benchmarking, simulation, implementation, deployments and empirical

measurements on both private cluster and public cloud platform. We focus on

Hadoop – the most widely used open source implementation of MapReduce plat-

form and the Pig framework [26] – a popular and widely-adopted system built on

3

Chapter 1. Introduction

Hadoop for expressing a broad variety of data analysis tasks to build our model.

While the results provided in this dissertation are based on the Hadoop and Pig

experience, we believe that the proposed models and resource management strate-

gies are general and can be applied for application executed on similar frameworks

such as Hive and Dryad.

A more detailed description about the contributions of this dissertation is pre-

sented as follows.

1.2.1 Contribution 1: performance modeling framework for

MapReduce applications

Problem: To enable resource management for MapReduce applications, the first

challenging problem is to understand the relationship between the performance

and the amount of resource available for executing the application. It requires

a performance model which is able to estimate the completion time of a given

MapReduce application according to different amount of computing resources.

The estimated completion time also depends on the performance of the platform

hardware, the input data sets, the job settings and could be affected by the per-

formance uncertainty caused by resource contention on a shared cluster. While

there have been some research efforts [45, 28, 64, 66] towards developing perfor-

mance models for MapReduce jobs, these techniques either rely on simplified as-

sumptions or do not apply to complex applications that are expressed as a DAG of

MapReduce jobs.

Solution: To solve the problem, we build a performance modeling framework [82,

86, 85, 88] which can accurately predict the completion time of a given applica-

tion that consists of single or a DAG of MapReduce jobs according to its input

dataset(s), the job settings and the amount of allocated resources. It consists of an

ensemble of performance models that orchestrate the performance prediction at

different system and applications levels which are:

4

1.2. Contributions of the dissertation

• A platform performance model that estimates a phase duration as a function of

processed data at the Hadoop level.

• A MapReduce job model that is used to predict a single MapReduce job execu-

tion time as a function of allocated resources.

• A workflow performance model that combines all parts together for evaluating

the completion time of complex application which represented as a DAG of

MapReduce jobs.

1.2.2 Contribution 2: resource allocation for deadline-driven

MapReduce applications

Problem: In the enterprise setting, users would benefit from sharing Hadoop

clusters and consolidating diverse applications over the same datasets. With the

trend towards using MapReduce for latency sensitive applications, there is a chal-

lenge to automatically tailor and control resource allocations on such shared clus-

ters for different applications to achieve their (soft) deadlines. The existing Hadoop

implementation does not support resource management for those applications:

The original scheduler employed in Hadoop is a simple FIFO scheduling policy

that assigns all available resource to each job according to their submission time.

The Fair scheduler [8] and Capacity scheduler [2] introduced later try to share the

cluster resource among the running jobs either according to the job size or parti-

tioned resource pool, but none of them aims to provide resource allocation in order

to satisfy the completion time requirement for the applications.

Solution: We solve this problem using our deadline-driven resource allocation

strategy based on our performance modeling framework [87, 85, 88]. Once we are

able to estimate the application completion time according to the resource alloca-

tion, we could also solve the related problem that is to estimate the appropriate

amount of resources required for completing an application with a given (soft)

deadline. We first propose a simple basic approach which works efficiently for ap-

plications with single or sequential jobs, and then propose a refined approach that

5

Chapter 1. Introduction

works for more complex applications that contain both sequential and concurren-

t jobs. Towards solving this problem, we also optimize an application execution

by enforcing the optimal schedule of its concurrent jobs. Such optimization helps

reducing the total completion time, and more importantly, it eliminates possible

non-determinism of concurrent jobs’ execution in the workflow, and therefore, en-

ables a more accurate performance and resource requirement prediction.

1.2.3 Contribution 3: resource provision in public cloud

environment

Problem: In contract to the private cluster, the advent of cloud computing pro-

vides an attractive alternative option to customers for provisioning a suitable size

Hadoop cluster, consuming resources as a service, executing the MapReduce work-

load, and paying for the time these resources were used. One of the open questions

in such environments is the choice of types and amount of resources that a user

should lease from the service provider for optimizing both the performance and

cost objectives. Specifically, the problem we are trying to solve in the dissertation

is: given a workload, determine a Hadoop cluster(s) configuration (i.e., the num-

ber and types of VMs, and the job schedule) that provides best cost/performance

trade-offs: i) minimizing the cost (budget) while achieving a given makespan tar-

get, or ii) minimizing the achievable jobs makespan for a given budget.

Solution: We offer a simulation-based framework for solving this problem [84,

83]. We first extract job profiles by executing the workloads on different (interest-

ed) platforms. Then, for each platform and a given Hadoop cluster size, we deter-

mine the optimized MapReduce job schedule i.e., the execution order of the jobs in

the workloads. After that, our event based MapReduce simulator will take the job

profiles and the schedules as inputs and output the simulated makespan/costs for

executing the workloads. We first provide our solution for homogeneous clusters

by iterating through all the possible choices to determine the optimal one. We then

6

1.2. Contributions of the dissertation

extend the approach for a heterogeneous solution that consists of sub-clusters of

different types.

1.2.4 Contribution 4: performance optimization for MapReduce

applications

Problem: Optimizing the execution efficiency of MapReduce jobs is an open chal-

lenge and has been studied from different perspectives [75, 28, 46, 71, ?, 79]. In this

dissertation, we focus on improving the execution performance for MapReduce

applications by automatically tuning the job settings. i.e, the number of reduce

tasks in each job as such parameter could significantly impact the total comple-

tion time as well as the resource usage. Determining the right number of reduce

tasks is non-trivial: it depends on the input sizes of the job, on the Hadoop cluster

size, and the amount of resources available for processing this job. This problem

is more complicated for applications defined as MapReduce workflows given the

data dependency of the jobs: the output of the previous job becomes the input of

the next job, as a result, the job settings of the previous job could also have an

impact on the map execution of the next job so as the entire completion time. Cur-

rently, it is solely the user’s responsibility to configure the number of reduce tasks

for each MapReduce job within the application. Such manual, experience based

configuration probably leads to inefficient results.

Solution: Based on our performance modeling framework, we provide an au-

tomatic way for guiding the user efforts of tuning the reduce task settings in a

MapReduce application while achieving different performance objectives [80, 81].

It contains two strategies for analyzing the performance trade-offs, i.e., to optimize

the completion time while minimize the resource usage for its execution: a local op-

timization that searches for trade-offs at a job level, and a global optimization that

makes the trade-off decisions at the workflow level.

7

Chapter 1. Introduction

1.3 Overview of dissertation

Hadoop cluster

Performance modeling framework (Chapter 3)

Platform performance model MapReduce job model Workflow performance model

Resource management (Chapter 4) Performance

optimization with

optimal job settings

(Chapter 5)

Input data
Workflow
structure Job profiles Completion time

target

Deadline-driven
resource allocation

Resource provision in
public cloud

Resource allocation Job settings

Figure 1.1: Overview of the dissertation

Figure 1.1 presents an overview of our solution framework which shows the

different components within the system and their connections. The rest of this

dissertation is organized as follows: we first start by introducing the background

on the MapReduce framework, its open source implementation Hadoop and the

Pig system built on top of it in Chapter 2.

In Chapter 3, we introduce the performance modeling framework with a de-

tailed description on each consisting performance model and demonstrate that

the framework can accurately estimate the completion time of a given MapReduce

application according to its input data sets and the amount of allocated resources.

In Chapter 4, we propose our resource management solutions by first intro-

ducing our resource allocation strategy for supporting multiple latency sensitive

MapReduce applications executed on a shared Hadoop cluster. After that, we pro-

vide our resource provisioning strategy for guiding the user to select the platform

8

1.3. Overview of dissertation

from public cloud providers that provides the best cost/performance trade-offs for

a given MapReduce workload.

In Chapter 5, we introduce our optimization strategy for MapReduce applica-

tions through tuning the job settings for better performance and resource usage.

We propose both a local and a global optimization algorithms that applies on the

job and workflow level respectively.

Chapter 6 describes the related work on performance modeling, resource man-

agement and optimization for MapReduce related platforms. Chapter 7 sum-

maries the dissertation work and proposes a few directions for future research

work.

9

Chapter 2

Background

This chapter provides a basic background on the MapReduce framework [20, 21]

and its open source implementation Hadoop [9, 72] as well as a framework built

on top of it: the Pig system [26] that offers a higher-level abstraction for expressing

more complex analytic tasks using SQL-style constructs.

2.1 MapReduce framework

The MapReduce framework was first introduced by Google [21] and is now wide-

ly used in large-scale data processing on distributed clusters. In the MapReduce

model, computation is expressed as two functions: map and reduce. The map

function takes an input pair and produces a list of intermediate key/value pairs.

The intermediate values associated with the same key k2 are grouped together and

then passed to the reduce function. The reduce function takes intermediate key k2

with a list of values and processes them to form a new list of values.

map(k1, v1) → list(k2, v2)

reduce(k2, list(v2)) → list(v3)

MapReduce jobs are executed across multiple machines: the map stage is par-

titioned into map tasks and the reduce stage is partitioned into reduce tasks. The

underlying system automatically execute these map and reduce tasks in parallel

10

2.1. MapReduce framework

on distributed clusters. The scheduling of tasks in MapReduce is performed by a

master node which manages a number of worker nodes in the cluster.

Figure 2.1 shows a high level description of the MapReduce architecture. In the

map stage, each map task processes a logical split of input data (typically stored

in a distributed file system such as HDFS), applies the user-defined map function,

and generates the intermediate set of key/value pairs. In the reduce stage, each

reduce task fetches its partition of intermediate key/value pairs from all the map

tasks and merges the data with the same key. After that, it applies the user-defined

reduce function to produce the aggregate values and then write the results back to

HDFS.

< key, value>

map

map

map

<Key, list(V)>

reduce

reduce

split1

split2

split3

Figure 2.1: Architecture of MapReduce framework

Hadoop [9, 72] is an open source implementation of the MapReduce frame-

work and has been widely used in many companies such as Yahoo!, Facebook,

LinkedIn etc. In Hadoop, the cluster is constructed to contain a master node called

the JobTracker while the other node are called worker node. Each worker node

in the cluster is configured with a fixed number of map and reduce slots which

represent the resource unit for processing the map and reduce tasks.

The worker nodes periodically connect to the JobTracker to report its current

status and the available slots. The JobTracker decides the next job to execute based

on the reported information and according to a scheduling policy. The popular

job schedulers include FIFO, Fair [77], and Capacity scheduler [2]. The assignment

11

Chapter 2. Background

of tasks to slots is done in a greedy way: assign a task from the selected job im-

mediately whenever a worker reports to have a free slot. If the number of tasks

belonging to a MapReduce job is greater than the total number of slots available

for processing the job, the task assignment will take multiple rounds, which we

call waves.

Optionally, a Hadoop job could define a combiner function that aggregates the

map outputs. It takes a key and a subset of associated values and produces a single

value. The combiner function is useful when it efficiently reduces the amount of

data that need to be transferred to the reduce tasks.

The Hadoop implementation also includes counters for recording timing infor-

mation such as start and finish timestamps of the tasks or the number of bytes

read and written by each task. These counters are sent by the worker nodes to

the master periodically with each heartbeat and are written to logs after the job is

completed.

2.2 Pig programs

The Hadoop Pig system [26] which is among the similar projects such as Hive [63],

Scope [17], and Dryad [32], aims to raise the level of abstraction for processing

large datasets using Hadoop. It provides high-level SQL-like abstractions on top

of MapReduce engines that enable data analysts to specify complex analytics tasks

without directly writing Map and Reduce functions. The current Pig system is

made up of the following two main components:

• The language, called Pig Latin, that combines high-level declarative style of

SQL and the low-level procedural programming of MapReduce. A Pig pro-

gram is similar to specifying a query execution plan: it represent a sequence

of steps, where each one carries a single data transformation using a high-

level data manipulation constructs, like filter, group, join, etc. In this way, the

Pig program encodes a set of explicit dataflows.

12

2.2. Pig programs

• The execution environment to run Pig programs. The Pig system takes a Pig

Latin program as input, compiles it into a DAG of MapReduce jobs, and co-

ordinates their execution on a given Hadoop cluster. Pig relies on underlying

Hadoop execution engine for scalability and fault-tolerance properties.

The following specification shows a simple example of a Pig program. It de-

scribes a task that operates over a table URLs that stores data with the three at-

tributes: (url, category, pagerank). This program identifies for each category

the url with the highest pagerank in that category.

URLs = load ’dataset’ as (url, category, pagerank);

groups = group URLs by category;

result = foreach groups generate group, max(URLs.pagerank);

store result into ’myOutput’

The example Pig program is compiled into a single MapReduce job. Typically,

Pig programs are more complex, and can be compiled into an execution plan con-

sisting of several stages of MapReduce jobs, some of which can run concurrently.

The structure of the execution plan can be represented by a DAG of MapReduce

jobs that could contain both concurrent and sequential branches. Figure 2.2 shows

a possible DAG of five MapReduce jobs {j1, j2, j3, j4, j5}, where each node repre-

sents a MapReduce job, and the edges between the nodes represent data dependen-

cies between jobs.

J1

J2

J3

J4

J5 J6

Figure 2.2: Example of a Pig program’ execution plan represented as a DAG of
MapReduce jobs.

To execute the plan, the Pig engine first submits all the ready jobs (i.e., the jobs

that do not have data dependencies on the other jobs) to Hadoop. After Hadoop

13

Chapter 2. Background

has processed these jobs, the Pig system deletes them and the corresponding edges

from the processing DAG, and identifies and submits the next set of ready jobs.

This process continues until all the jobs are completed. In this way, the Pig engine

partitions the DAG into multiple stages, each containing one or more independent

MapReduce jobs that can be executed concurrently. Note that for stages with con-

current jobs, there is no specifically defined ordering in which the jobs are going to

be executed by Hadoop. For example, the DAG shown in Figure 2.2 is partitioned

into the following four stages for processing:

• first stage: {j1, j2};
• second stage: {j3, j4};
• third stage: {j5};
• fourth stage: {j6}.

14

Chapter 3

Performance Modeling Framework

In this chapter, we introduce a performance modeling framework that aims to es-

timate the MapReduce application completion time as a function of the allocated

resource, the input data sets and the job settings. The intuition of our work comes

from two parts:

• We observe that the executions of map and reduce tasks consist of specific,

well-defined data processing phases. Only map and reduce functions are

custom and their computations are user-defined for different MapReduce

jobs. The executions of the remaining phases are generic, i.e., the logic of

these phases is defined by the Hadoop processing framework. The execution

time of each generic phase depends mostly on the amount of data processed

by the phase and the I/O performance of underlying Hadoop cluster.

• In MapReduce environments, many production jobs are run periodically on

new data. For example, Facebook, Yahoo!, and eBay process terabytes of

data and event logs per day on their Hadoop clusters for spam detection,

business intelligence and different types of optimization. We can extract a

representative job profile that reflects the performance characteristics of the

customized map and reduce functions and use the job profiles to predict the

future execution of the same applications when executed on a different set of

input data.

15

Chapter 3. Performance Modeling Framework

Specifically, the modeling framework consists of three performance models that

orchestrates the prediction of the application completion time at different system

and applications levels. Figure 3.1 outlines the ensemble of performance models

designed for evaluating the application completion time.

Figure 3.1: Ensemble of Models.

Chapter 3.1 first describes a platform performance model that estimates a gener-

ic phase duration as a function of processed data on a given Hadoop cluster. With

the information of the input dataset(s) and the job settings, we could estimate the

amount of data processed by each job (and the tasks within the job) in the appli-

cation. Based on the estimated data flowing through each phases, we are able to

predict the duration for generic phases by applying the derived platform perfor-

mance model. To estimate the duration of the customized map and reduce phases,

we extracted a compact job profile that captures the performance of the map and

reduce functions and use it to approximate their durations according to the num-

ber of records processed by those functions. Once we estimated the duration of

all phases, the map and reduce task durations can be estimated as the sum of the

phase durations that belong to the task.

After that, Chapter 3.2 presents a MapReduce job model that is used to predict

execution time of MapReduce application that contains single job according to the

map (reduce) task durations and the amount of allocated resources (i.e., number

of map and reduce slots). Finally, Chapter 3.3 present the workflow performance

16

3.1. Platform performance model

model that combines all parts together for evaluating the completion time for com-

plex MapReduce workflows.

3.1 Platform performance model

We first describe our benchmarking approach for building a MapReduce platform

model that aims to predicting the completion time of different MapReduce phases

as a function of processed data. We use a set of microbenchmarks to profile generic

phases of the MapReduce processing pipeline of a small given Hadoop cluster.

Based on the benchmark results, we then derive an accurate platform performance

model of a given cluster. The advantage of our approach includes

• Generality: The platform performance model is derived once for the given

cluster, and then can be reused for characterizing performance of generic

phases of different applications.

• Scalability: We derive the model using a small test cluster and then use it for

the larger production cluster with the same hardware. The benchmarking

process is performed without interfering the production cluster.

3.1.1 Profiling MapReduce phases

Figure 3.2: MapReduce Processing Pipeline.

As showed in Figure 3.2, the execution of each map (reduce) task is comprised

of a specific, well-defined sequence of processing phases.

17

Chapter 3. Performance Modeling Framework

For each map task, it first reads a split of the input data from the Hadoop dis-

tributed file system (HDFS) (read phase), applies the user-defined map function,

and generates the intermediate set of key/value pairs (read phase). The map task

then buffers the map outputs and sorts and spills the data into disk once the in-

termediate data grows beyond certain threshold (collect and spill phase). After all

the input data are processed, the map task merges the spilled data and partitions

them for different reduce tasks according to a partition function (merge phase).

For each reduce task, it first fetches its partition of intermediate key/value pairs

from all the map tasks and sort/merges the data with the same key (shuffle phase).

After that, it applies the user-defined reduce function to the merged value list to

produce the aggregate results (reduce phase). Finally, the reduce outputs are writ-

ten back to HDFS (write phase).

Note, that only map and reduce phases with customized map and reduce func-

tions execute the user-defined pieces of code. The execution of the remaining phas-

es are generic (i.e., the logic of these phases is defined by Hadoop code), and their

durations depend mostly on the amount of data flowing through a phase and the

I/O performance of the underlying Hadoop cluster. Our goal is therefore to de-

rive a platform performance model that predicts a duration of each generic phase on

a given Hadoop cluster platform as a function of processed data.

In order to accomplish this, we run a set of microbenchmarks that create dif-

ferent amounts of data for processing per map (reduce) tasks and for processing

by their phases. We profile the duration of each generic phase during the task exe-

cution and derive a function that defines a phase performance as a function of the

processed data from the collected measurements.

For map tasks, we profile the following generic phases:

• Read phase – a map task typically reads a block (e.g., 64 MB) from the Hadoop

distributed file system (HDFS). However, written data files might be of arbi-

trary size, e.g., 70 MB. In this case, there will be two blocks: one of 64 MB

and the second of 6 MB, and therefore, map tasks might read files of varying

18

3.1. Platform performance model

sizes. We measure the duration of the read phase as well as the amount of

data read by the map task.

• Collect phase – this generic phase follows the execution of the map phase

with a user-defined map function. We measure the time it takes to buffer

map phase outputs into memory and the amount of generated intermediate

data.

• Spill phase – we measure the time taken to locally sort the intermediate data

and partition them for the different reduce tasks, applying the combiner if

available, and then writing the intermediate data to local disk.

• Merge phase – we measure the time for merging different spill files into a

single spill file for each destined reduce task.

For reduce tasks, we profile the following generic phases:

• Shuffle phase – we measure the time taken to transfer intermediate data from

map tasks to the reduce tasks and merge-sort them together. We combine the

shuffle and sort phases because in the Hadoop implementation, these two

sub-phases are interleaved. The processing time of this phase depends on the

amount of intermediate data destined for each reduce task and the Hadoop

configuration parameters. In our testbed, each JVM (i.e., a map/reduce s-

lot) is allocated 700 MB of RAM. Hadoop sets a limit (∼46% of the allocated

memory) for in-memory sort buffer. The portions of shuffled data are merge-

sorted in memory, and a spill file (∼320 MB) is written to disk. After all the

data is shuffled, Hadoop merge-sorts first 10 spilled files and writes them in

the new sorted file. Then it merge-sorts next 10 files and writes them in the

next new sorted file. At the end, it merge-sorts these new sorted files. Thus,

we can expect a different scaling function for a duration of the shuffle phase

when the size of intermediate data per reduce task is larger than 3.2 GB in

our Hadoop cluster as the merge-sorts process need to scan the entire output

data multiple times when merging more than 10 on disk files. For a different

19

Chapter 3. Performance Modeling Framework

Hadoop cluster, this threshold can be similarly determined from the cluster

configuration parameters.

• Write phase – this phase follows the execution of the reduce phase that ex-

ecutes a custom reduce function. We measure the amount of time taken to

write the reduce output to HDFS.

Note, that in platform profiling we do not include phases with user-defined

map and reduce functions. However, we do need to profile these custom map and

reduce phases for modeling the execution of given MapReduce applications:

• Map (Reduce) phase – we measure a duration of the entire map (reduce) func-

tion and the number of processed records. We normalize this execution time

to estimate a processing time per record.

Apart from the phases described above, each executed task has a constant over-

head for setting and cleaning up. We account for these overheads separately for

each task.

For accurate performance modeling, it is desirable to minimize the overheads

introduced by the additional monitoring and profiling technique. There are two

different approaches for implementing phase profiling.

• Counter based profiling: The current Hadoop implementation includes several

counters to record information such as the number of bytes read and written.

We modified the Hadoop code by adding counters that measure durations

of the six generic phases to the existing counter reporting mechanism. We

can activate the subset of desirable counters in the Hadoop configuration for

collecting the set of required measurements.

• Dynamic instrumentation based profiling: We also implemented the alternative

profiling tool inspired by Starfish [28] approach based on BTrace – a dynam-

ic instrumentation tool for Java [7]. This approach does have a special ap-

peal for production Hadoop clusters because it has a zero overhead when

monitoring is turned off. However, in general, the dynamic instrumentation

20

3.1. Platform performance model

overhead is significantly higher compared to adding new Hadoop counters

directly in the source code.

For building the platform performance mode, we execute a set of microbench-

marks (described in Chapter 3.1.2) and measure the durations of six generic exe-

cution phases for processing different amount of data: read, collect, spill, and merge

phases for the map task execution, and shuffle and write phases in the reduce task

processing. This profiling is done on a small test cluster (5-nodes in our experi-

ments) with the same hardware and configuration as the production cluster. While

for these experiments both profiling approaches can be used, the Hadoop counter-

based approach is preferable due to its simplicity and low overhead, and that the

modified Hadoop version can be easily deployed in this test environment.

For predicting the completion time for a particular MapReduce job, we needs

additional measurements that characterize the execution of user-defined map and

reduce functions of a given job. For profiling the map and reduce phases of the

given MapReduce jobs in the production cluster we apply our alternative profiling

tool that is based on BTrace approach. Remember, this approach does not require

Hadoop or application changes, and can be switched on for profiling a targeted

MapReduce job of interest. Since we only profile map and reduce phase executions

the extra overhead is relatively small.

3.1.2 Microbenchmarks

We generate and perform a set of parameterizable microbenchmarks to character-

ize execution times of generic phases for processing different data amounts on a

given Hadoop cluster by varying the following parameters:

• Input size per map task (M inp): This parameter controls the size of the input

read by each map task. Therefore, it helps to profile the Read phase durations

for processing different amount of data.

• Map selectivity (M sel): this parameter defines the ratio of the map output to

the map input. It controls the amount of data produced as the output of the

21

Chapter 3. Performance Modeling Framework

map function, and therefore directly affects the Collect, Spill and Merge phase

durations in the map task. Map output determines the overall amount of da-

ta produced for processing by the reduce tasks, and therefore impacting the

amount of data proceeded by Shuffle and Reduce phases and their durations.

• Number of map tasks Nmap: This parameter helps to expedite generating the

large amount of intermediate data per reduce task.

• Number of reduce tasks N red: This parameter helps to control the number of

reduce tasks to expedite the training set generation with the large amount of

intermediate data per reduce task.

Thus, each microbenchmark MBi is parameterized as

MBi = (M inp
i ,M sel

i , Nmap
i , N red

i).

Each created benchmark uses input data consisting of 100 byte key/value pairs

generated with TeraGen [1], a Hadoop utility for generating synthetic data. The

map function simply emits the input records according to the specified map selec-

tivity for this benchmark. The reduce function is defined as the identity function.

Most of our benchmarks consist of a specified (fixed) number of map and reduce

tasks. For example, we generate benchmarks with 40 map and 40 reduce tasks

each for execution in our small cluster deployments with 5 worker nodes. We

run benchmarks with the following parameters: M inp={2MB, 4MB, 8MB, 16MB,

32MB, 64MB}; M sel={0.2, 0.6, 1.0, 1.4, 1.8}. For each value of M inp and M sel, a

new benchmark is executed. We also use benchmarks that generate special ranges

of intermediate data per reduce task for accurate characterization of the shuffle

phase. These benchmarks are defined by Nmap={20,30,...,150,160}; M inp = 64MB,

M sel = 5.0 and N red = 5 which result in different intermediate data size per reduce

tasks ranging from 1 GB to 12 GB.

We generate the platform profile by running a set of our microbenchmarks on

the small 5-node test cluster that is similar to a given production Hadoop cluster.

We gather durations of generic phases and the amount of processed data for all

22

3.1. Platform performance model

executed map and reduce tasks. A set of these measurements defines the platform

profile that is later used as the training data for a platform performance model:

• Map task processing: in the collected platform profiles, we denote the mea-

surements for phase durations and the amount of processed data for read,

collect, spill, and merge phases as (Dur1, Data1), (Dur2, Data2), (Dur3, Data3),

and (Dur4, Data4) respectively.

• Reduce task processing: in the collected platform profiles, we denote phase du-

rations and the amount of processed data for shuffle and write as (Dur5, Data5)

and (Dur6, Data6) respectively.

Figure 3.3 shows a small fragment of a collected platform profile as a result of

executing the microbenchmarking set. There are six tables in the platform profile,

one for each phase. Figure 3.3 shows fragments for read and collect phases. There

are multiple map and reduce tasks that process the same amount of data in each

microbenchmark. This is why there are multiple measurements in the profile for

processing the same data amount.

Row Data Read
number MB msec

j Data1 Dur1
1 16 2010
2 16 2020
...

Row Data Collect
number MB msec

j Data2 Dur2
1 8 1210
2 8 1350
...

Figure 3.3: A fragment of a platform profile for read and collect phases.

3.1.3 Platform modeling

Now, we describe how to create a platform performance model MPhases which char-

acterizes the phase execution as a function of processed data. To accomplish this

goal, we need to find the relationships between the amount of processed data and

durations of different execution phases using the set of collected measurements.

Therefore, we build six submodels M1,M2, ...,M5, and M6 that define the relation-

ships for read, collect, spill, merge, shuffle, and write respectively of a given Hadoop

23

Chapter 3. Performance Modeling Framework

cluster. To derive these submodels, we use the collected platform profile (see Fig-

ure 3.3).

Below, we explain how to build a submodel Mi, where 1 ≤ i ≤ 6. By using

measurements from the collected platform profiles, we form a set of equations

which express a phase duration as a linear function of processed data. Let Dataji

be the amount of processed data in the row j of platform profile with K rows. Let

Durji be the duration of the corresponding phase in the same row j. Then, using

linear regression, we solve the following sets of equations (for each i = 1, 2, · · · , 6):

Ai +Bi ·Dataji = Durji , where j = 1, 2, · · · , K (3.1)

To solve for (Ai, Bi), one can choose a regression method from a variety of known

methods in the literature (a popular method for solving such a set of equations is

a non-negative Least Squares Regression). With ordinary least squares regression,

a few bad outliers can significantly impact the model accuracy, because it is based

on minimizing the overall absolute error across multiple equations in the set. To

decrease the impact of occasional bad measurements and to improve the overall

model accuracy, we employ robust linear regression [30]. (which is typically used

to avoid a negative impact of a small number of outliers).

Let (Âi, B̂i) denote a solution for the equation set (1). Then Mi = (Âi, B̂i) is the

submodel that defines the duration of execution phase i as a function of processed

data. The platform performance model is MPhases = (M1,M2, ...,M5,M6).

For the shuffle phase, according to the discussion in Chapter 3.1.1, we expect

that there will be different behavior when it processes data smaller/larger than

around 3.2 GB and thus better be approximated by a piece-wise linear function

comprised of two linear functions: one for processing up to 3.2 GB of intermediate

data per reduce task, and the second segment for processing the datasets larger

than 3.2 GB.

We derived the platform performance model by executing the set of our mi-

crobenchmarks on a small 5-nodes clusters and collecting the corresponding phase

durations. Each machine has four AMD 2.39GHz cores, 8 GB RAM and two 160G-

24

3.1. Platform performance model

B hard disks. We used Hadoop 0.20.2 with additional two machines dedicated as

the JobTracker and the NameNode. Each working node is configured with 2 map

and 1 reduce slots. The file system block size is set to 64MB. The replication level

is set to 3. We disabled speculative execution since it did not lead to significant

improvements in our experiments.

Figure 3.4 shows the relationships between the amount of processed data and

the execution durations of different phases for a given Hadoop cluster. It reflects

the platform profile for six generic execution phases: read, collect, spill, and merge

phases of the map task execution, and shuffle and write phases in the reduce task.

Each graph has a collection of dots that represent phase duration measurements

(Y-axes) of the profiled map (reduce) tasks as a function of processed data (X-axes).

The red line on the graph shows the linear regression solution that serves as a

model for the phase. As we can see (visually) the linear regression provides a good

solution for five out of six phases. As it was expected, the shuffle phase is better

approximated by a linear piece-wise function comprised of two linear functions.

To validate whether our explanation on the shuffle phase behavior is correc-

t, we perform a set of additional experiments. We configured each JVM (i.e., a

map/reduce slot) with 2 GB RAM (compared to JVM with 700 MB of RAM used

in previous experiments). As we explained earlier, Hadoop sets a limit (∼46% of

the allocated memory) for in-memory sort buffer. The portions of shuffled data

are merge-sorted in memory, and a spill file (in the new case, ∼900 MB) is writ-

ten to disk. After all the data is shuffled, Hadoop merge-sorts first 10 spilled files

and writes them in the new sorted file. Then it merge-sorts next 10 files and writes

them in the next new sorted file. Finally, at the end, it merge-sorts these new sorted

files. Thus, we can expect that in the new configuration the shuffle performance is

significantly different for processing intermediate data large than 9 GB. Figure 3.5

indeed confirms our conjecture: shuffle performance changes for processing inter-

mediate data large than 9 GB. Indeed, the shuffle phase performance is affected

by the JVM memory size settings, and its performance can be more accurately ap-

proximated by a linear piece-wise function.

25

Chapter 3. Performance Modeling Framework

●●●
●●●●●●●●●●●●●●
●
●●●●●●●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●
●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●
●
●●●●

●●●
●●●●●●●
●
●
●
●
●●●●●●
●
●●●
●●●●●●●●●●●
●●●
●

●●
●●●●●●●●●
●

●●●
●●
●●
●
●●●
●
●

●
●
●●●●●●●●●●
●
●●●●●
●
●
●
●

●●●
●
●●●●
●
●●●

●

●●
●●
●●●●
●●●●●●●●●●●●●
●●
●●
●
●●●●
●●●

●

●●
●
●●●●●
●
●
●●●●●●●●●●
●
●●●●●●●●●●●

●

●
●
●●
●
●●

●

●●●●●●
●
●●
●
●
●●
●
●●
●

●

●●●●●●
●●●●●
●
●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●

●
●
●
●
●
●

●●
●
●
●
●●●●●
●
●●
●
●●
●

●

●●

●●●●●
●
●●●

●

●●●●
●●
●●●●●
●
●
●●●
●
●
●
●●●●

●
●●

●
●●●●
●

●●
●●●

●

●
●
●
●●●
●●

●
●
●●●●●●●●●
●
●●●
●●
●●●●●●●
●●●●
●●●●

●

●
●●
●●●●

●

●●
●
●●●●
●●
●
●●●●●●●●
●●●●
●
●●●●●
●●●●●●●
●
●
●

●

●
●
●●

●
●
●
●
●
●●
●
●●

●

●●●●●
●
●

●

●
●
●
●
●
●
●●●
●
●
●
●●●
●●

●

●
●●●
●
●●●●●
●
●●●●●●●
●
●

●●
●
●
●
●●
●
●●●
●●
●
●

●●
●
●
●
●
●
●●●●
●●
●●●
●
●●●
●
●
●
●

●
●
●
●
●●
●●●●●

●

●

●

●

●

●●

●
●●●●
●
●●
●●●

●●
●●●
●

●

●
●

●

●

●●●●●

●
●●●●●

●●

●
●
●●●●●
●●
●

●●

●

●●
●

●●●
●
●
●●●●●●

●
●

●
●●

●

●

●

●●
●●●●
●
●●●●

●●
●
●
●●●
●
●●
●

●
●●●●●●●

●

●●●●
●●
●●
●
●
●
●
●

●
●
●●
●

●

●
●●●●

●

●●●●●●●●
●

●

●

●

●●

●
●●

●●
●●
●
●
●
●●●●
●
●●

●

●
●
●
●●
●

●

●●

●

●●
●●
●

●

●
●●●
●●●●

●
●
●●
●
●

●●

●

●
●●

●●
●
●●
●
●●●
●

●

●●
●
●

●●

●●
●●
●●
●
●●
●
●●
●●●●
●●

●●

●●
●●
●
●
●

●

●
●
●●●
●

●

●●●●●●

●
●

●
●
●
●
●
●
●●●

●
●

●
●●●

●

●●
●
●●

●●

●

●

●

●

●●●●
●

●

●

●

●●●●●
●●
●●
●
●●
●●

●
●
●●

●

●

●
●●
●

●
●
●
●

●

●●●
●
●

●
●

●
●

●

●

●

●●
●●
●●
●●●●
●

●
●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●
●
●

●

●
●

●

●
●
●●
●

●
●●
●

●

●●●●●
●●

●

●

●●

●

●●●

●

●●●●●●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●
●●
●●

●

●
●

●

●
●
●●●

●
●

●

●●
●●

●●
●
●●

●

●

●

●

●
●

●

●

●

●
●
●
●
●

●●●●●

●●
●

●
●●●
●●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●
●
●
●
●
●●
●
●
●
●●

●●

●●●
●

●

●
●●

●

●

●●

●

●●

●

●
●

●
●

●●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●●●
●●
●●
●

●

●
●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●
●

●

●

●
●●
●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●●

●●

●

●

●

●
●

●

●

●
●

●
●
●●

●

●

●

●●

●
●
●

●

0 10 20 30 40 50 60

0
10

00
20

00
30

00
40

00

Data Size (MB)

R
ea

d
P

ha
se

 D
ur

at
io

n
(m

s)

(a) read

●
●
●
●
●
●●●●
●
●

●

●●
●
●●●●●
●●●●
●
●●
●
●●●●
●●
●●●●●●

●●●●●●●●●●
●
●
●●
●●●●●
●●
●●●●●●●
●
●
●

●
●●●
●
●●●●

●●●●●●
●●●●●●
●●
●
●●●●
●●
●●●
●
●
●
●
●●●●●
●
●●
●
●●●

●●●●●●
●●

●
●●●●●●●●●
●●●●●●●●
●
●●
●●●●●●●●●●●

●
●

●

●●●●●●
●●●●●
●
●●●●
●●
●●
●
●●●●●
●●●●
●
●●●●●●

●●●
●
●
●●
●
●
●●
●●●
●
●●
●●
●●●●
●
●●
●●
●
●●

●

●
●
●
●
●
●●●

●●●●●●●●●●
●●
●●●
●●●●

●

●●
●●●●
●

●

●

●

●
●●●

●●

●

●

●●

●●
●●
●●
●
●
●●●
●
●●●●
●●
●
●●●
●●●●●
●
●
●
●●●
●
●
●●●●
●

●
●
●
●
●●
●
●●

●

●
●

●
●
●●

●●

●
●
●
●

●

●

●
●
●

●●●
●
●
●●●●●

●

●●

●

●

●●

●

●

●
●●

●

●●
●

●

●

●

●●

●
●
●

●
●
●
●
●
●●
●
●
●●

●●

●●

●

●
●

●

●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●
●
●●
●
●●
●●
●●

●
●

●●●

●

●

●
●
●●

●
●

●●

●

●●
●

●
●
●

●

●

●●
●
●●●
●●●

●

●

●

●●
●
●

●
●

●

●●

●●

●●●●

●●

●
●

●

●

●
●●

●

●

●●
●

●

●●

●●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●●
●

●

●
●●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

20 40 60 80 100 120

20
00

40
00

60
00

80
00

Data Size (MB)

C
ol

le
ct

 P
ha

se
 D

ur
at

io
n

(m
s)

(b) collect

●
●●●

●●
●
●
●
●
●●

●
●●
●●●
●●
●
●●

●●
●●
●●●●
●
●●
●
●●●
●●
●●

●

●●

●●●
●
●●●●●●●

●

●

●●●●●●
●●●●
●●●●
●●●●●
●

●●

●
●●●●
●●●

●

●
●

●
●●
●
●●●●
●
●●
●
●
●●
●
●
●●
●●●●
●●●
●●●
●●
●

●

●
●

●

●●
●●●
●●
●
●●

●●●●

●

●
●●
●
●●●●
●

●
●
●●

●●
●●●

●
●●
●

●●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●
●
●
●

●

●●

●

●●
●
●●●

●●

●●●●●
●
●●●
●
●●
●
●●
●
●●●●●●●●
●●●
●●●●●
●●●●
●
●
●
●
●●●
●
●

●
●
●●●
●
●

●

●

●●●●●●
●

●●

●●
●●●●
●
●

●

●●

●
●●
●●●
●
●●
●
●●
●
●●●
●
●
●●
●
●

●●
●
●
●●
●●
●
●
●

●

●
●

●
●

●●●●●●

●

●

●●●
●

●

●
●●●
●

●●
●

●

●

●

●

●

●

●
●●●
●

●
●●●●●●●
●

●●

●●

●●●

●
●
●●

●

●●●
●●●●
●

●

●
●
●
●

●
●

●
●●
●●

●●
●
●
●
●●●
●

●
●
●
●

●
●

●●●●●●
●●●●●●
●●
●●

●
●●

●●

●
●●●●

●

●
●
●●
●

●

●●●●
●
●

●
●
●●

●

●
●●
●●

●●

●
●

●

●
●

●●●
●●●●

●●●

●

●●●●

●

●●●
●
●
●
●●

●
●●
●
●

●●●●
●
●●●

●

●

●
●●

●
●

●

●●●
●
●
●●

●●
●
●
●●
●

●●
●

●●
●
●
●●

●
●
●
●

●
●●

●
●

●
●

●●
●
●●●●
●

●
●
●
●

●
●●●●

●●

●

●

●●
●●

●
●●

●
●

●

●

●

●●

●
●●
●
●
●●
●

●

●
●

●●●●

●●

●

●●●
●●●●

●

●

●

●
●

●●

●
●
●●
●
●●

●

●●●●

●
●●

●

●●

●

●
●

●
●●●●●
●
●
●

●
●●

●
●
●
●●

●

●●

●●

●●
●●

●●●
●
●●
●

●

●
●●

●

●
●

●
●●

●●

●
●●
●
●●●●●
●
●

● ●

●

●

●●

●
●
●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●
●●
●

●

●

●

●

●●
●

●●●

●●

●
●
●●
●●●
●●
●

●
●
●
●

●
●

●

●

●
●

●
●

●

●

●●

●
●
●●
●●

●●●●
●
●

●●
●
●
●
●
●

●
●
●●●●●●

●

●●●

●

●●

●●
●●
●●
●
●

●

●

●

●●
●
●●
●●

●●●●

●

●
●●
●
●
●
●

●●

●
●

●
●

●

●
●●

●

●●●●
●●
●
●
●●●
●

●
●●
●
●

●●
●●

●●

●

●●●

●
●

●●

●

●●

●●
●

●

●

●●
●

●

●●
●●●●

●●
●
●
●

●

●●

●
●
●●

●

●
●
●●

●
●

●●
●
●
●
●●

●

●
●
●
●
●
●●
●
●

●
●●
●
●●

●
●
●
●

●

●

●

●
●

●●●●●
●
●
●

●

●

●
●
●●
●
●●●●
●

●
●●●
●●
●
●●

●
●

●
●●
●●●

●

●

●

●

●
●●

●

●

●
●
●●●●

●

●
●●
●●

●

●
●●
●

●

●●

●●

●
●

●
●

●
●
●

●
●

●
●
●
●
●
●

●

●

●●
●
●●●

●
●●
●
●

●

●

●

●
●
●

●●
●

●

●

●
●

●

●●●

●
●●●

●

●●●●●
●

●

●●
●
●

●
●

●

●
●●
●●

●

●
●

●●
●
●

●

●

●●●●
●

●

●●●
●●

●
●

●●

●
●

●

●

●
●

●
●

●●

●
●

●
●
●

●●

●
●

●
●
●

●

●

●●
●
●●●

●
●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●
●●
●
●
●

●●
●
●
●
●
●●
●
●

●
●

●

●●

●

●●

●
●

●●

●

●
●

●●
●

●

●
●

●
●
●●●
●
●
●
●●●

●

●●

●

●

●

●

●

●
●●●
●●●
●●●
●●
●●
●
●●●
●●
●
●●

●

●

●

●●●
●

●

●●●
●●●●●
●

●●

●
●

●

●

●
●●
●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●
●
●

●

●

●
●●

●
●

●

●
●

●

●

●●

●

●

●

●●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●●
●
●●
●●

●●
●

●
●

●

●

●●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●
●●

●
●

●

●

●

●

●

●

●
●

●

●

0 20 40 60 80 100 120

0
10

00
20

00
30

00
40

00
50

00
60

00

Data Size (MB)

S
pi

ll
P

ha
se

 D
ur

at
io

n
(m

s)

(c) spill

●
●
●●

●
●●
●

●

●●

●
●●
●
●●
●

●●●●
●
●

●

●

●

●

●
●●
●
●●●
●●●
●●

●
●

●●

●

●●

●●

●

●●
●

●●

●

●

●●
●●
●

●

●
●●
●
●●
●

●●●

●●
●
●
●
●
●

●

●●
●●

●●
●

●●

●

●

●●●●
●●

●●
●●●
●

●
●

●

●

●●●

●

●
●●
●●●
●

●
●

●●

●

●
●

●
●

●

●

●●●
●●●

●

●
●●
●●
●
●

●
●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●●
●●

●

●

●

●
●●●
●
●

●

●●

●●

●

●

●
●

●

●
●●
●●●●
●
●
●

●

●

●●
●●
●
●

●
●

●

●

●
●
●
●●
●●

●
●

●●

●

●
●
●
●
●
●●

●
●
●

●
●

●●
●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●
●

●

●●

●●●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●

●

●

40 60 80 100 120

10
00

20
00

30
00

40
00

50
00

60
00

70
00

Data Size (MB)

M
er

ge
 P

ha
se

 D
ur

at
io

n
(m

s)

(d) merge

●●●●●
●●●●●

●●●●●

●
●●●
●

●●
●●

●

●●
●
●
●

●●●

●

●

●

●

●

●
●

●
●
●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

2000 4000 6000 8000 10000 12000

0
50

00
00

10
00

00
0

15
00

00
0

Data Size (MB)

S
hu

ffl
e

P
ha

se
 D

ur
at

io
n

(m
s)

(e) shuffle

●
●●
●

●

●
●●
●
●

●●
●
●
●

●
●
●

●
●

●
●●
●
●

●
●●●
●

●
●
●●●

●
●●
●●

●

●
●●●

●

●

●●

●
●
●
●●

●

●
●

●
●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

2000 4000 6000 8000 10000 12000

50
00

0
15

00
00

25
00

00
35

00
00

Data Size (MB)

W
rit

e
P

ha
se

 D
ur

at
io

n
(m

s)

(f) write

Figure 3.4: Benchmark results.

26

3.1. Platform performance model

●●●●●

●●
●●●

●●●
●●

●
●
●
●
●

●
●
●
●●

●●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●
●

●

●
●
●
●

●

●
●●●

●●
●●

●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●
●
●
●

2000 4000 6000 8000 10000 120000e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

Data Size (MB)

S
hu

ffl
e

P
ha

se
 D

ur
at

io
n

(m
s)

Figure 3.5: Shuffle phase model for Hadoop where each JVM (slot) configured with
2GB of memory.

3.1.4 Accuracy of the platform performance model

In order to formally evaluate the accuracy and fit of the generated model MPhases

we compute for each data point in our training dataset a prediction error. That is,

for each row j in the platform profile we compute the duration durpredi of the corre-

sponding phase i by using the derived model Mi as a function of data Dataj . Then

we compare the predicted value durpredi against the measured duration dmeasrd
i . The

relative error is defined as follows:

errori =
|dmeasrd

i − dpredi |
dmeasrd
i

We compute the relative error for all the data points in the platform profile. Fig-

ure 3.6 show the CDF of relative errors for all six phases.

The CDF of relative errors proves that our performance model fits well to the

experiment data. Table 3.1 shows the summary of relative errors for derived mod-

els of six processing phases. For example, for the read phase, 66% of the map tasks

have the relative error less than 10% and 92% of the map tasks have the relative

error less that 20%. For the shuffle phase, 76% of the reduce tasks have the relative

error less that 10% and 96% of the reduce tasks have the relative error less that

27

Chapter 3. Performance Modeling Framework

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●
●●●●
●●●●●
●●●●
●●●●●
●●●●
●●●●●
●●●
●●●
●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●●
●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●●●
●●●
●●●●
●●●●●●
●●●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●●●
●●●●
●●●●●
●●●●
●●●●
●●●●●
●●●●
●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●●
●●●●
●●●●●●
●●●●●
●●●●
●●●●
●●●●●●
●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●
●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●

●●●●●●
●●●●●
●●●●●●●

●●●●●●●●●●●●●● ●●●●●●
●●●●● ●● ●● ●

Prediction error(%)

Fr
ac

tio
n

of
 ta

sk
s

(a) read

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●● ●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●
●●● ●●

Prediction error (%)

Fr
ac

tio
n

of
 ta

sk
s

(b) collect

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●● ●

Prediction error (%)

Fr
ac

tio
n

of
 ta

sk
s

(c) spill

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●● ●●●● ● ● ● ● ● ●●●●
●● ●●●

Prediction error (%)

Fr
ac

tio
n

of
 ta

sk
s

(d) merge

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●
●

●
●

●

Prediction error (%)

Fr
ac

tio
n

of
 ta

sk
s

(e) shuffle

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

Prediction error (%)

Fr
ac

tio
n

of
 ta

sk
s

(f) write

Figure 3.6: CDF of prediction error.

28

3.1. Platform performance model

20%. In summary, almost 80% of all the predicted values are within 15% of the

corresponding measurements. Thus the derived platform performance model fits

well the collected experimental data.

Table 3.1: Relative error distribution

phase error ≤ 10% error ≤ 15% error ≤ 20%
read 66% 83% 92%
collect 56% 73% 84%
spill 61% 76% 83%
merge 58% 84% 94%
shuffle 76% 85% 96%
write 93% 97% 98%

Next, we validate the accuracy of the constructed platform performance mod-

el for predicting different phase durations of two example applications provid-

ed with Hadoop – TeraSort and WordCount. We execute these applications on the

same 5-node cluster and compare the measured phase durations with the predict-

ed phase completion time based on our model. The input data used by both appli-

cation is generated using the TeraGen program with a total size of 2.5 GB.

Figure 3.10 shows the comparison of the measured 1 and predicted durations

for 6 generic execution phases. The number of reduce tasks is fixed in these ex-

periments and set to 40 in both jobs. The graphs reflect that the constructed per-

formance model could accurately predict the durations of each phase as a func-

tion of the processed data. The differences between the measured and predicted

durations are within 10% in most cases (only for the shuffle phase of WordCount

application the difference is around 16%).

The next question to answer is whether the model constructed in the small test

cluster can be effectively applied for modeling the application performance in the

larger production clusters?

To answer this question we execute the same jobs (with the scaled input dataset

of 7.5 GB) on the large production cluster in HP Labs which consists of 66 HP

1All the experiments are performed five times, and the measurement results are averaged. This
comment applies to the results in Figure 3.10 and 3.11.

29

Chapter 3. Performance Modeling Framework

 0

 2

 4

 6

 8

 10

read collect spill merge shuffle write

P
h
as

e
d
u

ra
ti

o
n
 (

s)

Measured-duration
Predicted-duration

(a) WordCount

 0

 2

 4

 6

 8

 10

read collect spill merge shuffle write

P
h
as

e
d
u

ra
ti

o
n
 (

s)

Measured-duration
Predicted-duration

(b) TeraSort

Figure 3.7: Validating the accuracy of the platform performance model on the small
5-node test cluster.

 0

 2

 4

 6

 8

 10

 12

 14

read collect spill merge shuffle write

P
h
as

e
d
u
ra

ti
o
n
 (

s)

Measured-duration
Predicted-duration

(a) WordCount

 0

 2

 4

 6

 8

 10

 12

 14

read collect spill merge shuffle write

P
h
as

e
d
u
ra

ti
o
n
 (

s)
Measured-duration
Predicted-duration

(b) TeraSort

Figure 3.8: Validating the accuracy of platform performance model on the large
66-node production cluster.

DL145 GL3 machines. Each machine has the same hardware as the one in our test

cluster. The machines are set up in two racks and interconnected with gigabit Eth-

ernet. We used Hadoop 0.20.2 with two machines dedicated as the JobTracker and

the NameNode, and remaining 64 machines as workers. Each worker is config-

ured with 2 map and 1 reduce slots. The number of reduce tasks is fixed and set to

60 in both applications.

Figure 3.8 shows measured and predicted durations of six processing phases.

The predicted phase durations closely approximate the measured ones. These re-

30

3.2. MapReduce job model

sults justify our approach for building the platform performance model by using

a small test cluster.

Running benchmarks on the small cluster significantly simplifies the approach

applicability, since these measurements do not interfere with production work-

loads while the collected platform profile leads to a good quality platform per-

formance model that can be efficiently used for modeling production jobs in the

larger enterprise cluster.

3.2 MapReduce job model

The next part of our performance modeling framework is a bounds based MapRe-

duce job model for predicting the performance of a MapReduce application with

single job. It combines the platform model we described in Chapter 3.1 in approx-

imating execution times of the generic phases, a compact job profile that represent

the characteristics of the user-defined map and reduce functions and a bound-

s based analytical model proposed in ARIA project [66] that estimates the lower

and upper bounds on the job completion time as a function of allocated map and

reduce slots. The advantage of our approach includes:

• Non-intrusive: To get the job profile, our approach does not require any

modifications or instrumentation or either the application or the underlying

Hadoop/Pig execution engines.

• Light-weight: The bounds based analytical performance model relies on the

average and maximum duration of the map (reduce) task durations and can

estimate the application duration instantly once those information is avail-

able.

The overall flow of the computation process is shown in Figure 3.9. We first

estimate the average and maximum durations for the map and reduce tasks ac-

cording to the input data set and the job settings using our platform performance

model. We then apply the bounds based analytical model to approximate the en-

tire job completion time.

31

Chapter 3. Performance Modeling Framework

Figure 3.9: MapReduce Performance Model.

3.2.1 Estimate task durations within a job

The first step of our approach is to estimate the map and reduce task durations

within a MapReduce job.

Since for each MapReduce job, the map and reduce tasks are consist of a se-

quence of execution phases, and the the completion time of the tasks can be esti-

mated as the sum of its phase durations. Specifically, for map tasks the completion

time is estimated as the sum of the durations of read, map, collect, spill, and merge

phases.

T J
Mtask = T J

read + T J
map + T J

collect + T J
spill + T J

merge (3.2)

For reduce tasks, the completion time is estimated as the sum of durations for

shuffle, reduce, and write phases.

T J
Rtask = T J

shuffle + T J
reduce + T J

write (3.3)

The phase durations of generic phases (read, collect, spill, merge, shuffle and

write) are approximated with the platform performance model by applying the de-

rived functions to the data amounts flowing through the phases:

T J
phase =Mphase(Data

J
phase) (3.4)

phase ∈ {read, collect, spill,merge, shuffle, write}

32

3.2. MapReduce job model

The map (reduce) phase duration depends on the user-defined map (reduce)

functions (invoked per record). To model the performance for these customized

phases, for a given job J , we extract a special job profile from the previous run of

this job. It includes the following metrics:

• the map (reduce) selectivity SelJM (SelJR) that reflects the ratio of the map

(reduce) output size to the map (reduce) input size;

• the processing time per record of map (reduce) function T J
Rec map (T J

Rec red).

In addition, we also need to know the number of map and reduce tasks of each

job, denoted as NJ
M and NJ

R respectively. Note that NJ
M is determined by the input

data of the job, and NJ
R is defined by the job configuration.

With the extracted job profile, the map (reduce) phase duration is directly es-

timated from the number of input records RecordJmap (RecordJreduce) and the map

(reduce) function processing time per record T J
Rec map (T J

Rec red):

T J
map = T J

Rec map ×RecordJmap (3.5)

Treduce = T J
Rec red ×RecordJreduce (3.6)

From the above discussion, we can find that to estimate the phase durations, a

critical part of the model is the ability to estimate the data size flow through the

phases within a job. We will show next how could we estimate these information

given the input dataset.

Given a MapReduce job with certain input dataset(s), we collect the average

and maximum data block size (in bytes and in the number of records) for all the

dataset(s). This information determines the average and maximum input sizes per

map task in the job, denoted as InpJ,avgM and InpJ,max
M respectively.

Note, that the input data size for read phase equals to the input data size for

each map task. The amount of data flowing through collect, spill, and merge phases

is estimated by applying the map selectivity SelJM to the input data size (in bytes

and in records)2. Using the average and maximum input data sizes InpJ,avgM and
2If the combiner is defined for data aggregation and reduction during the spill phase, we ap-

ply an additional combiner selectivity SelJM comb, that is measured with special Hadoop counters
available for this case.

33

Chapter 3. Performance Modeling Framework

InpJ,max
M , we can estimate the average and maximum map task durations respec-

tively.

The input size for the shuffle phase (i.e., the reduce input size) depends on the

map outputs and the number of reduce task number. Let’s assume that the map

outputs are distributed evenly to each reduce task, than the reduce input size is

estimated as

DataJshuffle = (InpJ,avgM × SelJM ×NJ
M)/NJ

R (3.7)

The input size for the write size is estimated by applying the reduce selectivity

to the reduce input size as

DataJwrite = DataJshuffle × SelJR (3.8)

3.2.2 Performance model for a single MapReduce job

The proposed performance model for single MapReduce job is based on a general

model for computing performance bounds on the completion time of a given set of

n tasks that are processed by k servers, (similarly, n map tasks are processed by k

map slots in MapReduce environment). Let T1, T2, . . . , Tn be the duration of n tasks

in a given set. Let k be the number of servers that can each execute one task at a

time. The assignment of tasks to servers is done using an online, greedy algorithm:

assign each task to the server which finished its running task the earliest. Let avg

andmax be the average and maximum duration of the n tasks respectively. Then the

completion time of a greedy task assignment is proven to be at least:

T low =
n · avg
k

and at most

T up =
(n− 1) · avg

k
+max

The difference between lower and upper bounds represents the range of pos-

sible completion times due to task scheduling non-determinism. Note, that these

34

3.2. MapReduce job model

provable lower and upper bounds on the completion time can be easily computed

if we know the average and maximum durations of the set of tasks and the number

of allocated slots.

As motivated by the above model, in order to approximate the overall com-

pletion time of a MapReduce job J , we need to estimate the average and maximum

task durations during map and reduce execution stage of the job. Once we have

got (estimated) the average and maximum map (reduce) task durations for a job J

(denoted as MJ
avg (MJ

max) and RJ
avg (RJ

max)), then, by applying the outlined bounds

model and the number of map (reduce) slots available for processing the job, we

can estimate the completion times of different processing stage of the job. Note that

given a MapReduce job with known input dataset(s), the average and maximum

of map (reduce) task duration is independent of the amount of resource assigned

to the job, i.e., they represent the invariant that characterize the job processing.

For example, let job J be partitioned into NJ
M map tasks. Then the lower and

upper bounds on the duration of the entire map stage in the future execution with

SJ
M map slots (denoted as T low

M and T up
M respectively) are estimated as follows:

T low
M = NJ

M ·MJ
avg/S

J
M (3.9)

T up
M = (NJ

M − 1) ·MJ
avg/S

J
M +MJ

max (3.10)

Similarly, we can compute bounds of the execution time of other processing

phases of the job. As a result, we can express the estimates for the entire job

completion time (lower bound T low
J and upper bound T up

J) as a function of map

(reduce) tasks (NJ
M , N

J
R) and the allocated map (reduce) slots (SJ

M , S
J
R) using the

following equation form:

T low
J = Alow

J · N
J
M

SJ
M

+Blow
J · N

J
R

SJ
R

+ C low
J . (3.11)

where Alow
J , Blow

J and C low
J represent the coefficient we get from the invariant dur-

ing the job execution.

The equation for T up
J can be written in a similar form (see [66] for details and

exact expressions for the coefficients in these equations). Typically, the average

35

Chapter 3. Performance Modeling Framework

of lower and upper bounds (T avg
J) is a good approximation of the job completion

time.

Modeling for heterogeneous clusters

In many practical deployments today, clusters are grown incrementally over time.

It is not unusual for companies to start off with an initial cluster, and then gradual-

ly add more compute and I/O resources as the number of users increases. More of-

ten than not, it is economical to add newer servers with increased compute power

to existing clusters, rather than discard the old hardware. As a result, the practical

cluster is typically heterogeneous that contains different types of nodes.

We argue that the MapReduce job model also works for heterogeneous envi-

ronments. Intuitively, in a heterogeneous Hadoop cluster, slower nodes result in

longer task executions. These measurements then are reflected in the calculated

average and maximum task durations that comprise the job profile. While the

bounds-based performance model does not explicitly consider different types of

nodes, their performance is implicitly reflected in the job profile and used in the

future prediction.

For heterogeneous cluster that consists of groups of nodes of different type, the

job profiles can be generated by combining the profiles we get from each type of

nodes that the cluster contains. Specifically, the average task durations are generat-

ed according to the weighted average of the average durations when executed on

each type of nodes and the maximum durations are from the max of the durations

from each type.

3.2.3 Accuracy of the MapReduce job model

To validate the accuracy of the MapReduce job model, we use the same hardware

platform as we described in Chapter 3.1.4 and use a set of 13 applications made

available by the Tarazu project [13]:

36

3.2. MapReduce job model

1. Sort sorts randomly generated 100-byte tuples. The sorting occurs in MapRe-

duce framework’s in-built sort while map and reduce are identity functions.

2. WordCount counts all the unique words in a set of documents.

3. Grep searches for an input string in a set of documents.

4. InvertedIndex takes a list of documents as input and generates word-to-document

indexing.

5. RankedInvertedIndex takes lists of words and their frequencies per file as in-

put, and generates lists of files containing the given words in decreasing or-

der of frequency.

6. TermVector determines the most frequent words on a host (above a specified

cut-off) to aid analysis of the host’s relevance to a search.

7. SequenceCount generates a count of all unique sets of three consecutive words

per document in the input data.

8. SelfJoin is similar to the candidate generation part of the Apriori data mining

algorithm. It generates association among k+1 fields given the set of k-field

associations and uses synthetically generated data as input.

9. AdjacencyList is useful in web indexing to generate adjacency and reverse

adjacency lists of nodes of a graph for use by PageRank-like algorithms. It

uses synthetically generated web graph based on a Zipfian distribution.

10. HistogramMovies generates a histogram of the number of movies with differ-

ent average ratings (from 1 to 5).

11. HistogramRatings generates a histogram of all user ratings (ranging from 1 to

5).

12. Classification classifies the input movies into one of k pre-determined clusters

using the cosine-vector similarity.

13. KMeans clusters movies into k clusters in a similar way as Classification and

recomputes the new centroids afterwards.

Table 3.2 provides a high-level summary of these 13 applications with the cor-

responding job settings (e.g, number of map and reduce tasks). Applications 1, 8,

37

Chapter 3. Performance Modeling Framework

and 9 process synthetically generated data, applications 2 to 7 use the Wikipedia

articles dataset as input, while applications 10 to 13 use the Netflix movie ratings

dataset. We present results of running these applications with: i) small input dataset-

s defined by parameters shown in columns 3-4, and ii) large input datasets defined

by parameters shown in columns 5-6 respectively.

Table 3.2: Application characteristics.

Input Input #Map, Input #Map,
Application data (GB) Reduce (GB) Reduce

(type) small tasks large tasks
1. TeraSort Synthetic 2.8 44, 20 31 495, 240
2. WordCount Wikipedia 2.8 44, 20 50 788, 240
3. Grep Wikipedia 2.8 44, 1 50 788, 1
4. InvIndex Wikipedia 2.8 44, 20 50 788, 240
5. RankInvIndex Wikipedia 2.5 40, 20 46 745, 240
6. TermVector Wikipedia 2.8 44, 20 50 788, 240
7. SeqCount Wikipedia 2.8 44, 20 50 788, 240
8. SelfJoin Synthetic 2.1 32, 20 28 448, 240
9. AdjList Synthetic 2.4 44, 20 28 508, 240
10. HistMovies Netflix 3.5 56, 1 27 428, 1
11. HistRatings Netflix 3.5 56, 1 27 428, 1
12. Classification Netflix 3.5 56, 16 27 428, 50
13. KMeans Netflix 3.5 56, 16 27 428, 50

Validation in homogeneous environment

Figure 3.10 shows the comparison of the measured and predicted job completion

times 3 for 13 applications (with a small input dataset) executed using 5-node test

cluster. The graphs reflect that the designed MapReduce performance model close-

ly predicts the job completion times. The measured and predicted durations are

less than 10% for most cases (with 17% error being a worst case for WordCount and

HistRatings). Note the split at Y-axes in order to accommodate a much larger scale

for a completion time of the KMeans application.

The next question to answer is whether the platform performance model construct-

ed using a small 5-node test cluster can be effectively applied for modeling the
3All the experiments are performed five times, and the measurement results are averaged. This comment

applies to the results in Figure 3.10, 3.11.

38

3.2. MapReduce job model

 0

 100

 200

 300

			
	T

er
aS

ort

W
ord

Count

			
			

			
G

re
p

			
	In

vIn
dex

Ran
kIn

vIn
d

		T
er

m
V

ec
t

			
Seq

Count

			
		S

el
fJ

oin

			
			

A
djL

ist

			
		H

ist
M

ov

			
			

H
ist

Rat

			
		C

la
ss

ifi

			
		K

M
ea

ns

 1500

 1600

 1700

Jo
b
 C

o
m

p
le

ti
o
n
 T

im
e

(s
)

Predicted-CT

Measured-CT

Figure 3.10: Predicted vs. measured completion times of 13 applications on the
small 5-node test cluster.

 0

 100

 200

 300

 400

			
	T

er
aS

ort

W
ord

Count

			
			

			
G

re
p

			
	In

vIn
dex

Ran
kIn

vIn
d

		T
er

m
V

ec
t

			
Seq

Count

			
		S

el
fJ

oin

			
			

A
djL

ist

			
		H

ist
M

ov

			
			

H
ist

Rat

			
		C

la
ss

ifi

			
		K

M
ea

ns

 3600

 3800

Jo
b
 C

o
m

p
le

ti
o
n
 T

im
e

(s
)

Predicted-CT

Measured-CT

Figure 3.11: Predicted vs. measured completion times of 13 applications (with a
large input dataset) on the large 66-node production cluster.

application performance in the larger production clusters. To answer this question

we execute the same 12 applications (with a large input dataset) on the 66-node

production cluster. Figure 3.11 shows the comparison of the measured and pre-

dicted job completion times for 13 applications executed on the 66-node Hadoop

cluster. The predicted completion times closely approximate the measured ones:

for 12 applications they are less than 10% of the measured ones (a worst case is

39

Chapter 3. Performance Modeling Framework

WordCount that exhibits 17% of error). Note the split at Y-axes for accommodating

the Classification and KMeans completion time in the same figure.

These results justify our approach for building the platform performance mod-

el by using a small test cluster. Running benchmarks on the small cluster sig-

nificantly simplifies the approach applicability, since these measurements do not

interfere with production workloads while the collected platform profile leads to

a good quality platform performance model that can be efficiently used for mod-

eling production jobs in the larger enterprise cluster.

Validation in heterogeneous environment

We evaluate the accuracy of the bounds-based performance model for predicting

the job completion time in heterogeneous environments using the following two

platforms in our experiments. The workload we used is the same application set

we used in our homogeneous experiments.

The UPenn heterogeneous cluster It contains 36 worker nodes of 3 different

types as shown in Table 3.3.

Table 3.3: UPenn cluster description.

Node #nodes CPU type RAM #m,r
type (GB) slots

Type1 16 Xeon X3220 (quad-core) compute nodes,
Quad Core Intel Xeon X3220, 2.40GHz

4.0 2, 1

Type2 12 Xeon X3363 (quad-core) compute nodes,
Quad Core Intel Xeon X3363, 2.83GHz

4.0 2, 1

Type3 8 Xeon X3450 (quad-core) compute nodes,
Quad Core Intel X3450 Xeon 2.66GHz

4.0 2, 1

The heterogeneity is caused by the extension of the cluster over time. In 2007,

the cluster had 16 nodes with the same hardware (Type1 nodes). Then, two years

later, 12 more nodes were added to the cluster with more powerful CPUs (Type2

nodes). Finally, in 2010, 8 more nodes (Type3) were added to the cluster to satis-

fy the growing workloads and computing demands. Each node has a Dual SATA

250GB drive. All the nodes are connected to the same rack: each node has 1 G-

40

3.2. MapReduce job model

bit/s network connection to a 10 Gbit/s switch. An additional server node (Type3)

runs the NameNode and JobTracker of the deployed Hadoop cluster. While the n-

odes in the UPenn cluster represent different server generations, they all have the

same number of CPU cores and the same amount of RAM. This explains why we

configure these nodes in a similar way, with the same number of map and reduce

slots.

The Amazon EC2 platform The EC2 environment offers a choice of different ca-

pacity Virtual Machines (VMs) for deployment. These VMs can be deployed on a

variety of hardware and be allocated different amounts of system resources. We

build a heterogeneous Hadoop cluster that consists of different VM types:

• 10 VMs based on small instances (m1.small),

• 10 VMs based on medium instances (m1.medium), and

• 10 VMs based on large instances (m1.large).

The description of each VM instance type is shown in Table 3.4. Since the compute

and memory capacity of a medium VM instance is doubled compared to a small

VM instance (similarly, large VM instances have a doubled capacity compared to

the medium ones), we configured different numbers of map and reduce slots for

different VM instances as shown in Table 3.4. Each VM instance is deployed with

100GB of Elastic Block Storage (EBS).

Table 3.4: EC2 Testbed description.

Instance #VMs CPU capacity (relative) RAM #m,r
type (GB) slots
Small 10 1 EC2 Compute Unit (1 virtual core

with 1 EC2 Compute Unit)
1.7 1, 1

Medium 10 2 EC2 Compute Unit (1 virtual core
with 2 EC2 Compute Unit)

3.75 2, 1

Large 10 4 EC2 Compute Units (2 virtual cores
with 2 EC2 Compute Units each)

7.5 4, 4

We use an additional high-CPU VM instance for running the NameNode and

JobTracker of the Hadoop cluster.

41

Chapter 3. Performance Modeling Framework

Figure 3.12 shows the predicted vs measured results for 13 applications pro-

cessed on the UPenn heterogeneous Hadoop cluster.4 Given that the completion

times of different programs range between 80 seconds (for HistMovies) and 48 min-

utes (for KMeans), we normalize the predicted completion times with respect to the

measured ones for the sake of readability and comparison.

 0

 0.5

 1

 1.5

 2

			
	T

er
aS

ort

W
ord

Count

			
			

			
		G

re
p

			
	In

vIn
dex

Ran
kIn

vIn
d

Ter
m

Vec
to

r

			
Seq

Count

			
		S

elf
Jo

in

			
			

AdjL
ist

	H
ist

M
ovies

		H
ist

Rati
ng

			
		C

las
sif

			
		K

M
ea

ns

N
o

rm
al

iz
ed

 C
o

m
p

le
ti

o
n

 T
im

e

lower
avg

upper
Measured-CT

Figure 3.12: Predicting the job completion time in the UPenn cluster.

The three bars in Figure 3.12 represent the normalized predicted completion

times based on the lower (T low) and upper (T up) bounds, and the average of them

(T avg). We observe that the actual completion times (shown as the straight Measured-

CT line) of 13 programs fall between the lower and upper bound estimates (except

for the Grep application). Moreover, the predicted completion times based on the

average of the upper and lower bounds are within 10% of the measured results

for 11 out of the 13 applications. The worst prediction is around 18% error for the

AdjList application.

The UPenn cluster contains servers of three different CPU generations, but

each node has a similar number of CPU cores, memory, disk storage and network

bandwidth. The bounds-based model does work well in this environment. Now,

we perform a similar comparison for EC2-based heterogeneous cluster, where the

4All the experiments are performed five times, and the measurement results are averaged. This comment
also applies to the results in Figure 3.13.

42

3.2. MapReduce job model

cluster nodes are formed by VM instances with very different computing capaci-

ties.

Figure 3.13 shows the normalized predicted completion times (based on the

lower, upper, and average bounds) compared to the measured ones for executing

13 applications on the EC2-based heterogeneous cluster. The results validate the

accuracy of the proposed model: the measured completion times of all 13 program-

s fall between the lower and upper bound estimates. The average of the lower and

upper bounds are within 10% of the measured value for 9 out of 13 applications

with a worst case of 13% error for the WordCount application.

 0

 0.5

 1

 1.5

 2

			
	T

er
aS

ort

W
ord

Count

			
			

			
		G

re
p

			
	In

vIn
dex

Ran
kIn

vIn
d

Ter
m

Vec
to

r

			
Seq

Count

			
		S

elf
Jo

in

			
			

AdjL
ist

	H
ist

M
ovies

		H
ist

Rati
ng

			
		C

las
sif

			
		K

M
ea

ns

N
o

rm
al

iz
ed

 C
o

m
p

le
ti

o
n

 T
im

e

lower
avg

upper
Measured-CT

Figure 3.13: Predicting job completion time in heterogeneous EC2 cluster.

For a further analysis on validating the accuracy of job profiles we generated

for heterogeneous cluster, we use a sub-cluster that consists of two different kind

of node: 8 nodes of Type1 and 8 nodes of Type2. Table 3.5 and Table 3.6 shows the

job profiles for two applications: Adjlist and WordCount when they are executed

on homogeneous cluster based on nodes of Type1(Type2) as well as the heteroge-

neous cluster. The results show that the cluster of node Type2 has a shorter average

and maximum task durations as nodes of Type2 have more powerful processors.

The average map and reduce task duration when executed on the heterogeneous

cluster are in between of the average durations when they are executed on the oth-

er two homogeneous clusters while the maximum task durations are very close to

the max of task durations extracted from the execution on homogeneous clusters.

43

Chapter 3. Performance Modeling Framework

avg map max map avg reduce max reduce
Type1 106s 132s 723s 764s
Type2 94s 117s 634s 654s
Heterogeneous 100s 131s 679s 760s

Table 3.5: Job profiles of Adjlist on UPenn cluster.

avg map max map avg reduce max reduce
Type1 19s 28s 44s 58s
Type2 14s 22s 38s 46s
Heterogeneous 17s 27s 43s 60s

Table 3.6: Job profiles of WordCount on UPenn cluster.

Among the 13 applications, there are 3 special ones: Grep, HistMovies, and His-

tRatings, which have a single reduce task (defined by the special semantics of these

applications). The shuffle/reduce stage durations of such an application depend

on the Hadoop node type that is allocated to execute this single reduce task. If

there is a significant difference in the Hadoop nodes, it may impact the completion

times of the shuffle/reduce stages across the different runs, and therefore, make

the prediction inaccurate.

Figure 3.14 analyzes the executions of Grep, HistMovies, and HistRatings, on the

heterogeneous EC2-based cluster.

 0

 100

 200

 300

 400

 500

 600

 700

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

Grep									 HistMovies 			 HistRatings

map
shuffle
reduce

Figure 3.14: A special case of jobs with a single reduce task: their possible execu-
tions on the heterogeneous EC2 cluster.

44

3.3. MapReduce workflow peformance model

The three bars within each group represent (from left to right) the job comple-

tion times when the reduce task is executed by the reduce slot of a large, medium,

or small VM instance. Each bar is further split to represent the relative durations of

the map, shuffle, and reduce stages in the job execution. We observe that the com-

pletion time of the Grep application is significantly impacted by the type of VM

instance allocated to the reduce task execution. The reduce task execution time on

the small VM instance is almost twice as long as that on a large VM instance

In comparison, the execution times of HistMovies and HistRatings on different

capacity VMs are not significantly different, because for these applications the re-

duce task duration constitutes a very small fraction of the overall completion time

(see Figure 3.14). In summary, if the execution time of a reduce stage constitutes

a significant part of the total completion time, the accuracy of the bounds-based

model may be adversely impacted by the node type allocated to the reduce task

execution.

3.3 MapReduce workflow peformance model

Next, we further explain our performance model in predicting the completion

time for more complex MapReduce applications that contain a DAG of MapRe-

duce jobs, i.e., MapReduce workflows. It is based on the MapReduce job model

we explained in Chapter 3.2. We first introduce a single basic approach in Chap-

ter 3.3.2, We show that such basic approach is efficient for estimating completion

time for a workflow consists of sequential MapReduce jobs, but is pessimistic for

workflows that contains concurrent jobs. We then propose a refined approach to

address workflows with concurrent execution in Chapter 3.3.3. We validate the

accuracy of our approach with several different workloads.

3.3.1 Estimate input data size through the worklfow

Before we are going to describe our approach in estimating the workflow dura-

tions, we need to first explain the method we used to estimate the amount of data

45

Chapter 3. Performance Modeling Framework

flow through each job within the workflow. These information is then used to

estimate the duration of each phase in the MapReduce pipeline by using the plat-

form mode we introduced in Chapter 3.1 that forms the basis of our evaluation

framework.

Among the input datasets of a MapReduce jobs in a workflow, we distinguish

external and internal datasets. The external datasets reside in HDFS and exist prior

to the workflow execution. For example, the first job in a workflow has only exter-

nal input datasets. The input of a intermediate job in a workflow is defined by the

output of previous job. We call such input datasets as internal ones.

For an intermediate job in a given workflow, the input data size per map task

depends on the following factors:

• the output size of the previous job,

• the number of reduce tasks of the previous job, and

• the block size on HDFS.

In particular, each reduce task generates an output file which is stored in HDFS.

If the output file size is larger than the HDFS block size (default value 64MB), the

output file will be split into multiple data blocks, and each of them will be read by

a map task of the next job. For example, let the output size be 70 MB. In this case,

this output will be written as two blocks: one of 64 MB and the second of 6 MB,

and it will define two map tasks that read files of varying sizes (64 MB and 6 MB).

Based on these observations, we can estimate the number of map tasks and the

average map input size of the next jobs as

NJi
M = dDataJi−1

write/Datablocke ×N
Ji−1

R (3.12)

InpJiM = (Datawrite ×NR)/N
Ji
M (3.13)

For jobs that read from multiple datasets (e.g, jobs that perform the join opera-

tion), we get the job profiles and the input data information for each dataset and

estimate the average and maximum map task durations based on these informa-

tion (denoted as T J,avg
MI

and T J,max
MI

respectively. Specifically, suppose given a job J

46

3.3. MapReduce workflow peformance model

with K different input datasets, we have

T J,avg
M task =

∑
1≤i≤K T

J,avg
MI

×NJ
MI∑

1≤i≤K N
J
Mi

(3.14)

T J,max
M task = max1≤i≤KT

J,max
Mi

(3.15)

3.3.2 Modeling MapReduce workflows with sequential jobs

Consider a MapReduce workflow W that contains N MapReduce jobs

W = {J1, J2, ...JN}. We show first a simple approach to estimate the workflow

completion time according to the input dataset and allocated map and reduce slots

for the workflow (denoted as SW
M and SW

R respectively). It is based on the platform

performance model and the MapReduce job model we introduced in Chapter 3.1

and Chapter 3.2 respectively.

According to the description in Chapter 3.2, for a given MapReduce workflow

with N jobs, we can estimate the average and maximum map and reduce task

durations for each job Ji within the workflow given the workflow input datasets.

Then, by applying the bounds based model outlined in Chapter 3.2.2 and the es-

timated average (maximum) task durations, we are able to approximate the lower

and upper bound of completion time of each job Ji that belongs to the workflow

as a function of SW
M and SW

R in the following form:

T low
Ji

(SW
M , S

W
R) = Alow

Ji
· N

Ji
M

SW
M

+Blow
Ji
· N

Ji
R

SW
R

+ C low
Ji

(3.16)

For a workflow that contains only sequential jobs, a straightforward approach

is to estimate the overall program completion time as a sum of completion times

of all the jobs that constitute the workflow:

T low
W (SW

M , S
W
R) =

∑
1≤i≤N

T low
Ji

(SW
M , S

W
R) (3.17)

The computation of the estimates based on different bounds (T up
W and T avg

W) are

handled similarly: we use the respective models for computing T up
J or T avg

J for

each MapReduce job Ji (1 ≤ i ≤ N) that constitutes the workflow.

47

Chapter 3. Performance Modeling Framework

If individual MapReduce jobs within the workflow are assigned different num-

ber of slots, our approach is still applicable: we would need to compute the com-

pletion time estimates of individual jobs as a function of their individually as-

signed resources.

Evaluate the effectiveness of the workflow performance model

We evaluate the accuracy of the proposed performance model using the same

testbed as we described in Chapter 3.1.4.

We use the well-known PigMix [5] benchmark as our case for study. The bench-

mark was created for testing Pig system performance. It consists of 17 Pig pro-

grams (L1-L17), which uses datasets generated by the default Pigmix data gen-

erator with 8 tables. The details about the table layout and the query set can be

found in [5]. In our experiments, we generate 125 million records for the largest

table and has a total size around 1 TB across 8 tables. The PigMix programs cov-

er a wide range of the Pig features and operators, and the data set are generated

with similar properties to Yahoo’s datasets that are commonly processed using Pig.

With the exception of L11 (that contains a stage with 2 concurrent jobs), all PigMix

programs involve DAGs of sequential jobs.

We first run the benchmark to build the specific job profiles with the map (re-

duce) selectivity and the execution time per record for the map(reduce) function.

By using the extracted job profiles and the designed workflow performance model

described above, we compute the completion time estimates of Pig programs in

the benchmarks as a function of allocated resources. Then we validate the predict-

ed completion times against the measured ones. We execute each benchmark three

times and report the measured completion time averaged across 3 runs.

Figure 3.15 shows the results for the PigMix benchmark when each program

in the set is processed with 128 map and 64 reduce slots. Given that the comple-

tion times of different programs in PigMix are in a broad range of 100s – 2000s, for

presentation purposes and easier comparison, we normalize the predicted com-

pletion times with respect to the measured ones. The three bars in Figure 3.15 rep-

48

3.3. MapReduce workflow peformance model

 0

 0.5

 1

 1.5

 2

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e Tlow

Tavg

Tup

Measured-CT

Figure 3.15: Predicted and measured completion time for PigMix with 128x64 slots.

resent the predicted completion times based on the lower (T low) and upper (T up)

bounds, and the average of them (T avg). We observe that the actual completion

times (shown as the straight Measured-CT line) of all 17 programs fall between

the lower and upper bound estimates. Moreover, the predicted completion times

based on the average of the upper and lower bounds are within 10% of the mea-

sured results for most cases. The worst prediction (around 20% error) is for the

Pig query L11. The measured completion time of L11 is very close to the lower

bound. Note, that the L11 program is the only program in PigMix that is defined

by a DAG with concurrent jobs.

Figure 3.16 shows the results for the PigMix benchmark when each program

in the set is processed with 64 map and 64 reduce slots. Indeed, our model accu-

rate computes the program completion time estimates as a function of allocated

resources: the actual completion times of all 17 programs are in between the com-

puted lower and upper bounds. The predicted completion times based on the

average of the upper and lower bounds provide the best results: 10-12% of the

measured results for most cases.

Limitation of the performance model

The proposed performance model works well for the PigMix benchmark, however,

as most the Pig programs within PigMix is compiled into MapReduce workflows

with sequential jobs. It is not clear about the effectiveness of the model in predict-

49

Chapter 3. Performance Modeling Framework

 0

 0.5

 1

 1.5

 2

 2.5

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e

Tlow

Tavg

Tup

Measured-CT

Figure 3.16: Predicted and measured completion time for PigMix with 64x64 slots.

ing the completion time for more general workflows with both sequential and con-

current jobs. To get a better understanding about the accuracy of the performance

model for general MapReduce workflow, we performed similar experiments for

two other workloads. One of the workloads is based on TPC-H queries, and the

other consists of customized queries for mining web proxy logs from HP Labs. We

briefly describe the datasets and queries we used in these two workflow as follows:

(a) TPC-H Q5 (b) TPC-H Q8 (c) TPC-H Q10

(d) Proxy Q1 (e) Proxy Q2 (f) Proxy Q3

Figure 3.17: DAGs of Pig programs in the TPC-H and HP Labs Proxy query sets.

TPC-H. This workload is based on TPC-H [12], a standard database benchmark

for decision-support workloads. The TPC-H benchmark comes with a data gener-

ator that is used to generate the test database for queries included in the TPC-H

50

3.3. MapReduce workflow peformance model

suite. There are eight tables: customer, supplier, orders, lineitem, part, partsupp, nation,

and region used by queries in TPC-H. The input dataset size is controlled by the s-

caling factor (a parameter in the data generator). The scaling factor of 1 generates 1

GB input dataset. The created data is stored in ASCII files where each file contains

pipe-delimited load data for the tables defined in the TPC-H database schemas.

The Pig system is designed to process flexible plain text and can load these data

easily with its default storage function. We select 3 queries Q5, Q8, Q10 out of 22

SQL queries from the TPC-H benchmark and express them as Pig programs. We

pick these queries as they result in DAGs with of concurrent MapReduce jobs 5.

• The TPC-H Q5 query lists for each nation in a region, the revenue that result-

ed from lineitem transactions in which the customer ordering parts and the

supplier filling them were both within that nation. It joins 6 tables, and its

dataflow results in 3 concurrent MapReduce jobs. The DAG of the program

is shown in Figure 3.17 (a).

• The TPC-H Q8 query determines how the market share of a given nation

within a given region has changed over two years for a given part type. It

joins 8 tables, and its dataflow results in two stages with 4 and 2 concur-

rent MapReduce jobs respectively. The DAG of the program is shown in

Figure 3.17 (b).

• The TPC-H Q10 query identifies the customers, who have returned parts that

effect on lost revenue for a given quarter, It joins 4 tables, and its dataflow

results in 2 concurrent MapReduce jobs with the DAG of the program shown

in Figure 3.17 (c).

HP Labs’ Web Proxy Query Set. This workload consists of a set of Pig programs

for analyzing HP Labs’ web proxy logs. The dataset contains 6 months access logs

to web proxy gateway at HP Labs during 2011-2012 years. The total dataset size

(12 months) is about 36 GB. There are 438 million records in these logs, The proxy

5While more efficient logical plans may exist, our goal here is to create a DAG with concurrent jobs to
stress test our model.

51

Chapter 3. Performance Modeling Framework

log data contains one record per each web access. The fields include information

such as date, time, time-taken, c-ip, cs-host, etc. The log files are stored as plain text

and the fields are separated with spaces. Our main intent is to evaluate our models

using realistic Pig queries executed on real-world data. We aim to create a diverse

set of Pig programs with dataflows that result in the DAGs of MapReduce jobs

with concurrent jobs:

• The Proxy Q1 program investigates the dynamics in access frequencies to

different websites per month and compares them across the 6 months. The

Pig program results in 6 concurrent MapReduce jobs with the DAG of the

program shown in Figure 3.17 (d).

• The Proxy Q2 program tries to discover the co-relationship between two web-

sites from different sets (tables) of popular websites: the first set is created

to represent the top 500 popular websites accessed by web users within the

enterprise. The second set contains the top 100 popular websites in US ac-

cording to Alexa’s statistics 6. The DAG of the Pig program is shown in Fig-

ure 3.17 (e).

• The Proxy Q3 program presents the intersect of 100 most popular websites

(i.e., websites with highest access frequencies) accessed both during work

and after work hours. The DAG of the program is shown in Figure 3.17 (f).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Q5 Q8 Q10

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e

Tlow

Tavg

Tup

Measured-CT

(a) TPC-H

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Q1 Q2 Q3

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e

Tlow

Tavg

Tup

Measured-CT

(b) Proxy Queries

Figure 3.18: Predicted and measured completion time for TPC-H and Proxy queries exe-
cuted with 128x64 slots.

6http://www.alexa.com/topsites

52

3.3. MapReduce workflow peformance model

Figure 3.18 shows the normalized results of predicted completion times in re-

spect the actual measured ones for TPC-H and Proxy queries processed with 128

map and 64 reduce slots. As we can find from the figure, the proposed perfor-

mance model is pessimistic in estimating the completion time for workflows with

concurrent jobs – for queries TPC-H Q5, Q10 and Proxy Q2, Q3 the measured com-

pletion times are closer to lower bound estimates, and for queries TPC-H Q8 and

Proxy Q1, even the lower bound on the predicted completion time is higher than

the measured program completion time in the cluster.

3.3.3 Modeling MapReduce workflows with concurrent jobs

As we shown in Chapter 3.3.2, the simple performance model works well for work-

flows with sequential jobs. However, it over-estimates the completion time for

workflows with concurrent jobs. To understand the reason for such results, we

show in this chapter an analysis of the execution of concurrent jobs in the work-

flow and identify that the execution overlap among the concurrent jobs reduce the

overall workflow completion time. Based on the observation, we refine the previ-

ous model by incorporating the execution overlap into the model.

Modeling concurrent jobs’ executions

Let us consider two concurrent MapReduce jobs J1 and J2. There are no data de-

pendencies among the concurrent jobs. Therefore, unlike the execution of sequen-

tial jobs where the next job can only start after the previous one is entirely finished

(shown in Figure 3.19 (a)), for concurrent jobs, once the previous job completes

its map phase and begins reduce phase processing, the next job can start its map

phase execution with the released map resources in a pipelined fashion (shown in

Figure 3.19 (b)). As a result, with such “overlap” in executions of concurrent jobs,

the entire workflow completion time is reduced.

The performance model we proposed in Chapter 3.3.2 approximates the com-

pletion time of a workflow W = {J1, J2} as a sum of completion times of J1 and J2

53

Chapter 3. Performance Modeling Framework

J1
M J1

R

J1

J2
M J2

R

J2

(a) Sequential execution of two jobs J1 and J2.

J1
M J1

R

J1 J2
M J2

R

J2
(b) Concurrent execution of two jobs J1 and J2.

Figure 3.19: Difference in executions of (a) two sequential MapReduce jobs; (b) two con-
current MapReduce jobs.

(see eq. 3.17) independent on whether jobs J1 and J2 are sequential or concurrent. While

such an approach results in straightforward computations, at the same time, if we

do not consider possible overlap in execution of map and reduce stages of con-

current jobs then the computed estimates are pessimistic and over-estimate their

completion time.

Modeling MapReduce workflows with concurrent jobs

Now, we explain how we refine the previous performance model for predicting

the completion time TW of a MapReduce workflow W as a function of allocated

resources (SW
M , S

W
R).

Given a MapReduce workflow W that is compiled from a Pig program as a

DAG of MapReduce jobs. This DAG represents the Pig program execution plan.

The Pig engine partitions the DAG into multiple stages, each stage contains one or

more independent MapReduce jobs which can be executed concurrently. For plan

execution, the Pig system will first submit all the jobs from the first stage. Once

they are completed, it will submit jobs from the second stage, etc. This process

continues until all the jobs are completed.

Note that due to the data dependencies within a Pig execution plan, the next

stage can not start until the previous stage finishes. Thus, the completion time of

such a MapReduce workflow W which contains S stages can be estimated as fol-

54

3.3. MapReduce workflow peformance model

lows:

TW =
∑

1≤i≤S

TSi
(3.18)

where TSi
represents the completion time of stage i.

For a stage that consists of a single job J , the stage completion time is defined

by the job J ’s completion time. For a stage that contains concurrent jobs, the stage

completion time depends on the completion time of the consisting jobs as well as

their execution order.

Suppose there are |Si| jobs within a particular stage Si and the jobs are executed

according to the order {J1, J2, ...J|Si|}. To describe the model, we use the following

notations:

timeStartMJi the start time of job Ji’s map phase

timeEndMJi the end time of job Ji’s map phase

timeStartRJi the start time of job Ji’s reduce phase

timeEndRJi the end time of job Ji’s reduce phase

Figure 3.20(a) shows an example of three concurrent jobs execution in the order

J1, J2, J3. With the execution overlaps, instead of using the sum of the completion

time for each of the consisting job, the stage completion time should be estimated

as the time elapses from the start point of the first scheduled job to the end point

of the last scheduled job as:

TSi
= timeEndRJ|Si|

− timeStartMJ1 (3.19)

We next explain how to estimate the start (end) time of each job’s map (reduce)

phase. Given the input dataset(s) and the number of allocated map (reduce) slots

(SW
M , S

W
R) to the MapReduce workflowW , we can compute for any MapReduce job

Ji(1 ≤ i ≤ |Si| the duration of its map and reduce stages (denoted as TM
Ji

and TR
Ji

respectively) using the platform model and bounds based estimates as described

55

Chapter 3. Performance Modeling Framework

J1
M J1

R

J1 J2
M J2

R

J2 J3
M J3

R

J3
(a)

J1
M

J1
R

J2
M

J2
R

J3
M

J3
R

(b)

Figure 3.20: Execution of Concurrent Jobs

in Chapter 3.2.2. 7 Then we have

timeEndMJi = timeStartMJi + TM
Ji

(3.20)

timeEndRJi = timeStartRJi + TR
Ji

(3.21)

Note, that Figure 3.20 (a) can be rearranged to show the execution of jobs’ map

(reduce) stages separately as shown in Figure 3.20 (b). It is easy to see that since

all the concurrent jobs are independent, the map phase of the next job can start

immediately ones the previous job’s map stage is finished, i.e.,

timeStartMJi = timeEndMJi−1
= timeStartMJi−1

+ TM
Ji−1

(3.22)

On the other hand, the start time timeStartRJi of the reduce stage of the concurrent

job Ji should satisfy the following two conditions:

1. timeStartRJi ≥ timeEndMJi

2. timeStartRJi ≥ timeEndRJi−1

Therefore, the start time of the reduce stage can be expressed using the follow-

7Here, we use the completion time estimates based on the average of the lower and upper
bounds.

56

3.3. MapReduce workflow peformance model

ing equation:

timeStartRJi = max{timeEndMJi , timeEnd
R
Ji−1
} =

= max{timeStartMJi + TM
Ji
, timeStartRJi−1

+ TR
Ji−1
} (3.23)

Then the completion time of the entire workflow W is defined as the sum of its

stages using eq. (3.18).

Evaluate the refined performance model

We evaluate the accuracy of the refined performance model in predicting the com-

pletion time for MapReduce jobs with concurrent jobs using the same TPC-H and

the HP Lab’s proxy query set we used in Chapter 3.3.2. The testbed we used is the

same as we described in Chapter 3.1.4. We no longer use the PigMix benchmark

because it contains mostly workflows with sequential jobs.

 0

 0.5

 1

 1.5

 2

 2.5

Q5 Q8 Q10

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e CT-Predicted-Refined-Model
CT-Predicted-Basic-Model

Measured-CT

(a) TPC-H

 0

 0.5

 1

 1.5

 2

 2.5

Q1 Q2 Q3

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e CT-Predicted-Refined-Model
CT-Predicted-Basic-Model

Measured-CT

(b) Proxy’s Queries

Figure 3.21: Predicted completion times using basic vs refined models (128x64 slot-
s).

Figure 3.21 shows the workflow completion time estimates based on the per-

formance model introduced in Chapter 3.3.2 (called the basic model here) and the

refined performance model for TPC-H and Proxy queries that represent workflows

with concurrent jobs. The completion time estimates are computed using T avg
W (the

average of the lower and upper bounds). Figures 3.21 and 3.22 show the results for

the case when each program is processed with 128x64 and 32x64 map and reduce

slots respectively.

57

Chapter 3. Performance Modeling Framework

 0

 0.5

 1

 1.5

 2

 2.5

Q5 Q8 Q10

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e CT-Predicted-Refined-Model
CT-Predicted-Basic-Model

Measured-CT

(a) TPC-H

 0

 0.5

 1

 1.5

 2

 2.5

Q1 Q2 Q3

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e CT-Predicted-Refined-Model
CT-Predicted-Basic-Model

Measured-CT

(b) Proxy’s Queries

Figure 3.22: Predicted completion times using basic vs refined models (32x64 slots).

In all cases, the completion time estimates based on the refined model are sig-

nificantly improved compared to the basic model results which are too pessimistic.

In most cases (11 out of 12), the predicted completion time is within 10% of the

measured ones.

Compare with prediction based on linear extrapolation

As a comparison, we also show in the next experiments the prediction results for

the TPC-H and proxy queries using a simple linear extrapolation. The experiments

are performed on the 64 nodes Hadoop cluster with 2 map slots and 1 reduce s-

lot configured for each node. For TPC-H, we first execute the queries on the data

generated with scaling factor equals to 5 and 10 and use the measured durations

to derive the linear function to predict the completion time when executed them

on a larger dataset generated with scaling factor equals to 20. For proxy queries,

we first execute them with the logs collected for 1 and 3 months to derive the lin-

ear function and then use the derived functions to predict the performance when

executing with the 6-months logs.

The results from Figure 3.23 clearly shows that the linear extrapolation ap-

proach does not work well in predicting completion time for MapReduce workl-

fows. In most cases (5 out 6), the completion time estimates have a difference more

58

3.4. Model sensitivity

that 30% from the measured results with a worst case of 90%. The inaccuracy is

caused by 1) the linear extrapolation does not capture the different impact of input

data set on different phases and 2) the linear extrapolation does not handle the

execution overlap among concurrent executions.

 0

 0.5

 1

 1.5

 2

 2.5

Q5 Q8 Q10

P
ro

g
ra

m
 C

o
m

p
le

ti
o

n
 T

im
e CT-model-prediction

CT-linear-prediction
Measured-CT

(a) TPC-H

 0

 0.5

 1

 1.5

 2

 2.5

Q1 Q2 Q3

P
ro

g
ra

m
 C

o
m

p
le

ti
o

n
 T

im
e CT-model-prediction

CT-linear-prediction
Measured-CT

(b) Proxy’s Queries

Figure 3.23: Predicted completion time using linear extrapolation (128x64 slots).

3.4 Model sensitivity

In the following part, we discuss a set of factors that could affect the accuracy

of our modeling framework which include: 1) impact of sample data size where

we use to extract the job profile (Chapter 3.4.1). 2) impact of the characteristics

of input data on the map function performance (Chapter 3.4.2). 3) impact of data

skew in the reduce stage (Chapter 3.4.3). We also investigate the stability of the

job execution across different runs (Chapter 3.4.4). Through the discussion, we try

to identify the limitations of our approach and also the applicable applications for

our framework.

3.4.1 Impact of sample data size

In designing our modeling framework, we exploit the fact that a typical production

MapReduce application is executed routinely on new data. We take advantage of

59

Chapter 3. Performance Modeling Framework

this observation, and for a periodic application, we automatically build its jobs’

profiles from the past execution. These extracted job profiles are used for future

predictions when this application is executed on new data. The question is how

sensitive the model and the prediction results to a given training data (i.e. to the

extracted job profile from the last job execution).

In our profiling approach, we estimate processing costs per record during the

map and reduce phases. This normalized cost is used to project the map/reduce

phase duration when these tasks need to process the increased (or decreased)

amounts of data (records). Figure 3.24 shows a predicted completion time (nor-

malized with respect to the measured time) of TPC-H Q10 with different scale fac-

tors. Our prediction is based on the job profiles extracted from TPC-H Q10 with

the scale factor 9.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

3 5 7 9 10 15 20

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e

Scale Factor

Tavg

Measured-CT

Figure 3.24: Impact of sample data size on completion time estimates

Using these job profiles we predict T avg for TPC-H Q10 based on different s-

cale factors. The predicted results are accurate for scale factors 10,15, 20, and still

acceptable for scale factor 7. The prediction errors for scale factors 3 and 5 are

significantly higher.

To understand the logic behind these results, we analyze TPC-H Q10 process-

ing in more detail (see its DAG in Figure 3.17 (c)). Our measurements reveal that

the first stage is responsible for 40% of the overall execution time. Therefore, ana-

lyzing the profiles of two concurrent jobs J1 and J2 of this stage will be very useful.

60

3.4. Model sensitivity

Figures 3.25 (a) and (b) show the processing costs per record during different exe-

cution phases of J1 and J2 respectively. Apparently, the job profiles are quite stable

starting at the scale factor 8 and up. It explains why the completion time predic-

tions for these scale factors are accurate. However, for small scale factors, the pro-

cessing costs per record are significantly higher. There is an overhead associated

with a task execution and it contributes a significant portion in the task duration

when processing a small set of records. The overhead impact is significantly di-

minished when processing a larger dataset, and the cost per record becomes more

representative of the actual processing cost.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

1 2 3 4 5 6 7 8 9 10 15 20

P
e

r
R

e
co

rd
 C

o
st

 (
m

s)

Scale Factor

Avg-Map
Avg-Reduce

(a) Job profiles for Q10-1-1

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

1 2 3 4 5 6 7 8 9 10 15 20

P
e

r
R

e
co

rd
 C

o
st

 (
m

s)

Scale Factor

Avg-Map
Avg-Reduce

(b) Job profiles for Q10-1-2

Figure 3.25: Profile for TPC-H Q10 with different input data size (scale factor).

3.4.2 Impact of input data on the map function performance

As we discussed in Chapter 3.1, the map (reduce) task is consists of a sequence

of phases, and among these phases, there are two customized ones: the map

and reduce phases. There execution performance is determined by the user de-

fined functions and we estimate the duration for these customized phases by ex-

tracting a profile from the past execution which contains the average execution

time per record for the map(reduce) functions and use the profile to estimate the

map(reduce) phase duration when it is execution on a larger data set.

61

Chapter 3. Performance Modeling Framework

The intuition behind the approach is that the map(reduce) function performs

the same computation logic on each input record and the average execution time

per record for the map(reduce) function remains consistent when applied on dif-

ferent input data set. Such assumption holds for most data processing operation

such as projection and selection and simple MapReduce application such as Word-

Count and Sort However, for some more complex applications, the map(reduce)

function performance could be significantly impacted by the input data set.

As an example, the computation of the map function in the KMeans application

significantly depends on the number of initial centroids. It defines the number of

clusters in the clustering algorithm (i.e., the K value). Table 3.7 shows the pro-

cessing time per record of the map function for KMmeans with different number of

initial centroids (i.e., K=16 and K=50).

Table 3.7: Processing time per record for KMeans with different number of initial
centroids.

Process time per record
KMeans 16 175ms
KMeans 50 522ms

For KMeans with 50 centroids, the map function has a much higher execution

time compared with KMeans with 16 centroids, since the increased number of cen-

troids in the clustering algorithm increases the number of comparisons for each

record in the map phase and it leads to an increased compute time of the map

function. As a result, for these complex application whose map(reduce) function

impacted by input data, we have to extract the profile based on the new data set

and use it for a more accurate performance prediction.

3.4.3 Impact of data skew in reduce stage

The proposed MapReduce performance model relies on the assumption that the

intermediate data generated by the map stage is uniformly distributed across the

reduce tasks. However, this assumption may not hold for some applications with

skewed input/output data.

62

3.4. Model sensitivity

Take the KMeans application again for example, Figure 3.11 in Chapter 3.2.3

shows the predicted completion times closely approximate the measured ones. In

these experiments, we considered the KMeans application with K=50, i.e., defined

by the number of reduce tasks has set to 50. The performance prediction for K-

Means application with K=50 is quite accurate.

However, the situation changes when we perform the same experiments for

KMeans with K=16. Table 3.8 shows the measured and predicted completion time

for the KMeans 16 and KMeans 50 when these jobs are executed on the large 66-

node cluster.

Table 3.8: Measured and predicted completion times for KMmeans

Measured Completion Predicted Completion
Time (sec) Time (sec)

KMeans 16 1910 1275
KMeans 50 3605 3683

The measured completion time for KMmeans 16 is 1910 sec. while the predicted

completion time is 1275 sec (i.e., a prediction error of 33%). For a more detailed

analysis of the KMeans execution time under different parameters, we break down

its overall completion time into three main stages, such as map, shuffle, and reduce

stages, and compare their durations when it is configured with 16 and 50 reduce

tasks respectively. The results are illustrated in Figure 3.26.

We can see that the proposed model predicts accurately the duration of the

map stage in both cases: the difference between the measured and predicted re-

sults is 3% and 4% respectively. However, for KMeans with 16 reduce tasks, the

model under-estimates the shuffle and reduce stage durations. Since the shuffle

and reduce stages represent a significant fraction in the overall completion time

of KMeans 16 – this leads to a significant inaccuracy in predicting the job comple-

tion time. The prediction error is caused by the skew in the intermediate data and

the unbalanced data distribution to the reduce tasks. As the number of input cen-

troids (i.e., the K value) also defines the number of reduce tasks, by increasing the

reduce task number (the number of initial centroids), the amount of data attached

63

Chapter 3. Performance Modeling Framework

 0

 200

 400

 600

 800

 1000

 1200

map shuffle reduce

P
h

as
e

d
u

ra
ti

o
n

 (
s)

Measured-duration
Predicted-duration

(a) KMeans 16

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

map shuffle reduce

P
h

as
e

d
u

ra
ti

o
n

 (
s)

Measured-duration
Predicted-duration

(b) KMeans 50

Figure 3.26: Predicted vs measured stage durations for KMeans application with
different number of reduce tasks (i.e., K = 16 and K = 50).

with each key is more evenly distributed which reduced the unbalanced work in

reduce stage. Moreover, the increased number of reduce tasks results in a smaller

portion of data processed by each reduce task. This significantly decreases the du-

rations of shuffle and reduce stages and masks a possible impact of a data skew in

these stages on the overall completion time. Therefore, the prediction of execution

time for KMmeans 50 is more accurate.

3.4.4 Variability of job profiles in public cloud environment

Another interesting problem is to understand the variability of job profiles. If

the job profiles when executed on the MapReduce framework vary significantly

across different executions, it will lead to inaccuracy with our performance mod-

eling framework in predicting the completion times. The question becomes more

important in public cloud environment as it is expected that there will be more

performance uncertainty in such shared environment.

We execute the set of 13 applications shown in Table 3.2 on three Hadoop clus-

ters deployed with different types of EC2 VM instances: small, medium and large

with more details about each instance type and our configurations in Table 3.4 in

Chapter 3.2.3

64

3.4. Model sensitivity

Tables 3.9-3.11 summarize the job profiles collected for these applications. For

better analysis, we separate the shuffle duration from the reduce task as the shuffle

duration is mostly affected by the network performance. Specifically, these tables

show the average durations for map, shuffle and reduce processing as well as the

standard deviation for these stages across 5 runs.

The standard deviation for the measured map, shuffle, and reduce processing

shows that the map task durations are very stable across different applications

and clusters (stdev is less than 10% for all cases). While shuffle durations for some

applications exhibit a higher standard deviation. From one hand, the variability

is caused by the shared network where different instances compete for the same

bandwidth. One the other hand, the data skew also caused more variability as

the shuffle time is significantly impacted by the amount of data that needs to be

transferred. As a result, the Classification and KMeans applications show a higher

stand deviation in their shuffle processing. The reduce processing turns to be more

stable than the shuffle processing. However, some of the applications (e.g., Grep,

HistMovies and HistRatings), since they contain a single reduce task, their reduce

processing shows a higher stdev mostly because the different performance they

have when executed on different instances.

One interesting observation from the analysis of the job profiles is that the shuf-

fle durations of the Hadoop cluster formed with large instances are much longer

compared to the clusters formed with small instances. The reason is that the A-

mazon EC2 instance scaling is done with respect to the CPU and RAM capacity,

while the storage and network bandwidth is only fractionally improved. As we

configure a higher number of slots on large instances, it increases the I/O and net-

work contention among the tasks running on the same instance, and it leads to

significantly increased durations of the shuffle phase. At the same time, the map

task durations of most applications executed on the Hadoop cluster with large in-

stances are significantly improved, e.g., the map task durations of Classification

and KMeans applications improved almost three times. We will discuss about the

problem and possible opportunities from these observations in Chapter 4.2.

65

Chapter 3. Performance Modeling Framework

Table 3.9: Job profiles on the EC2 cluster with small instances (time in sec)
Application avgMap avgShuffle avgReduce map STDEV shuffle STDEV reduce STDEV

TeraSort 29.1 248.5 31.2 0.82% 4.51% 0.97%
WordCount 71.5 218.7 12.1 1.16% 5.83% 3.68%
Grep 19.0 125.7 4.5 1.19% 26.43% 10.53%
InvIndex 83.9 196.8 18.2 1.33% 8.03% 3.96%
RankInvIndex 35.4 376.0 81.9 1.05% 3.79% 0.81%
TermVector 98.9 360.0 137.2 0.78% 2.45% 2.45%
SeqCount 101.2 256.8 54.1 1.01% 3.63% 6.62%
SelfJoin 11.9 217.9 12.3 0.70% 4.87% 3.12%
AdjList 265.9 72.7 291.1 1.53% 6.57% 0.84%
HistMovies 17.9 138.9 3.4 1.49% 40.85% 34.84%
HistRating 58.9 111.8 4.8 2.10% 35.58% 22.41%
Classif 3147.3 58.5 4.0 1.21% 12.76% 3.13%
Kmeans 3155.9 80.4 87.5 0.32% 30.09% 11.43%

Table 3.10: Job profiles on the EC2 cluster with medium instances (time in sec)
Application avgMap avgShuffle avgReduce map STDEV shuffle STDEV reduce STDEV

TeraSort 36.9 466.3 26.5 1.06% 14.07% 1.21%
WordCount 83.0 562.4 11.6 0.48% 7.01% 9.09%
Grep 23.8 256.6 3.2 4.95% 24.13% 9.48%
InvIndex 101.0 449.5 13.6 0.52% 8.65% 1.62%
RankInvIndex 45.7 741.6 64.0 0.63% 9.40% 2.77%
TermVector 128.1 432.4 71.9 0.23% 7.08% 2.81%
SeqCount 126.8 482.1 35.0 0.52% 21.70% 14.98%
SelfJoin 11.1 408.1 11.2 0.92% 13.86% 1.65%
AdjList 270.1 163.2 206.4 2.74% 8.70% 1.16%
HistMovies 20.1 246.7 3.7 3.14% 26.39% 17.04%
HistRating 71.7 240.4 5.0 0.23% 31.39% 14.22%
Classif 3013.8 177.2 3.9 0.82% 44.03% 4.33%
Kmeans 2994.0 189.7 51.7 3.93% 80.84% 6.96%

3.5 Conclusion

Hadoop is increasingly being deployed in enterprise private clouds and also of-

fered as a service by public cloud providers (e.g., Amazons Elastic Map-Reduce).

Many companies are embracing Hadoop for advanced data analytics over large

datasets that require completion time guarantees. Design of new job profiling

tools and performance models for MapReduce environments has been an active

research topic in industry and academia during past few years.

66

3.5. Conclusion

Table 3.11: Job profiles on the EC2 cluster with large instances (time in sec)
Application avgMap avgShuffle avgReduce map STDEV shuffle STDEV reduce STDEV

TeraSort 27.3 806.4 20.0 0.66% 7.78% 16.14%
WordCount 54.7 1028.6 12.9 4.33% 10.24% 9.15%
Grep 18.3 791.8 4.3 3.50% 16.48% 22.81%
InvIndex 61.8 1152.6 14.9 6.47% 5.10% 8.68%
RankInvIndex 28.3 1155.8 40.5 1.49% 9.20% 8.19%
TermVector 85.3 1007.6 30.2 3.88% 5.98% 10.04%
SeqCount 62.0 1046.1 37.6 1.51% 6.70% 2.10%
SelfJoin 16.4 1015.7 18.5 1.93% 4.86% 19.11%
AdjList 149.0 436.9 149.1 0.56% 13.34% 2.78%
HistMovies 22.3 724.2 5.2 6.97% 22.46% 17.25%
HistRating 51.4 628.6 3.6 10.59% 21.01% 40.83%
Classif 1004.6 711.2 3.9 0.87% 37.15% 27.74%
Kmeans 1024.6 716.9 58.5 1.31% 10.75% 5.25%

In this chapter, we offer a new MapReduce performance modeling framework

that can efficiently predict the completion time of a MapReduce application. It

combines 3 different performance models which includes 1) a platform perfor-

mance model. 2) a MapReduce job performance model and 3) a MapReduce work-

flow performance model. We first use a set of microbenchmarks to profile generic

phases of the MapReduce processing pipeline of a given Hadoop cluster and de-

rive an accurate platform performance model of a given cluster. Next, the intro-

duced MapReduce job performance model combines the knowledge of the extract-

ed job profile and the derived platform performance model to predict a MapRe-

duce job completion time on a new dataset. Finally, the workflow performance

model is used to predict the completion time of a MapReduce workflow that could

contain both sequential and concurrent jobs. Our approach is non-intrusive, ef-

ficient and accurate. The proposed approach also enables automated deadline-

driven resource allocation and provisioning for complex MapReduce applications

defined by the DAGs of MapReduce jobs which will be covered in the next chap-

ter.

67

Chapter 4

Resource Management for

MapReduce Applications

It is common in the enterprise setting, that a Hadoop cluster is shared by mul-

tiple applications and each of these applications need to complete with certain

time target, that are formulated as the completion time guarantees. The techno-

logical trend towards using MapReduce based frameworks in support of these

latency-sensitive applications requires the system to employ an automatic resource

allocation control for achieving different performance goals for each application.

Currently, there is no job scheduler for MapReduce environments that given a job

completion deadline, could allocate the appropriate amount of resources to the job

so that it meets the deadline.

On the other hand, the advent of cloud computing provides a new delivery

model with virtually unlimited computing and storage resources. It offers a com-

pelling alternative to rent resources in a “pay-as-you-go” fashion. It is an attractive

and cost-efficient option for many users because acquiring and maintaining a com-

plex, large-scale infrastructure such as a Hadoop cluster requires a significant up-

front investment and then a continuous maintenance and management support.

However, a typical cloud environment offers a choice of different capacity Virtu-

al Machines for deployment with different prices. These VMs can be deployed

on a variety of hardware and be allocated different amounts of system resources.

68

4.1. Deadline-driven resource allocation on shared Hadoop cluster

Therefore, a user is facing a variety of platform and different choices could lead

to significant difference in execution performance as well as the monetary cost de-

pending on the applications the user plans to execute. The selection of the optimal

cluster deployment is a non-trivial problem and currently there is no guidance that

could help the user make the decisions.

In this chapter, we focus on the resource management for MapReduce work-

loads in order to achieve their performance goals. Specifically, we try to provide

solutions to the following two problems.

• Resource allocation in shared Hadoop cluster. i.e., given a MapReduce applica-

tion which could be defined as a DAG of MapReduce jobs with a completion

time goal, determine the appropriate amount of resources required for com-

pleting it with a given (soft) deadline and control the resource allocation with

our deadline-aware scheduler.

• Resource provision in public cloud environment. i.e., given a workload that con-

sists of multiple MapReduce applications, select the type and size of the un-

derlying platform for a Hadoop cluster that provides best cost/performance

trade-offs: i) minimizing the cost (budget) while achieving a given makespan

target, or ii) minimizing the achievable makespan for a given budget.

4.1 Deadline-driven resource allocation on shared

Hadoop cluster

We first propose our solution to the deadline driven resource allocation problem

for MapReduce applications. It is based on the performance evaluation model

described in Chapter 3 and contains an efficient strategy to estimate the minimal

resource requirement for an application to achieve its completion time target. We

start, as a building block, the resource management for applications that contain a

single MapReduce job and then extend it for more complex applications defined

as MapReduce workflows. We first propose a simple approach which works effec-

69

Chapter 4. Resource Management for MapReduce Applications

tively for sequential MapReduce workflows, and then refine it to incorporate the

execution overlaps for concurrent jobs within a workflow.

Besides, in refining the resource allocation approach, we identify that the ex-

ecution order of the concurrent jobs within a workflow could significantly affect

the overall completion time. Motivated by such observation, we first optimize

a MapReduce workflow execution by enforcing the optimal schedule of its con-

current jobs. The proposed optimization could reduce the total completion time.

Moreover, it has another useful outcome: it eliminates existing non-determinism

in execution of concurrent jobs, and therefore, it enables better performance pre-

dictions and more accurate resource estimates.

4.1.1 Resource allocation for single MapReduce job

As a building block, we first introduce the resource allocation strategy for simple

latency sensitive applications that contain a single MapReduce job. It is based on

the bounds based performance model as described in Chapter 3.2.2. As the pro-

posed model predicts the job completion time as a function of allocated resources

(i.e., the number of map and reduce slots) using the following form:

T low
J = Alow

J · N
J
M

SJ
M

+Blow
J · N

J
R

SJ
R

+ C low
J (4.1)

It also can be used to find the appropriate number of map and reduce slots that

could support a given job deadline D: let us substitute D instead of T low
J in Equa-

tion 4.1 as

D = Alow
J · N

J
M

SJ
M

+Blow
J · N

J
R

SJ
R

+ C low
J (4.2)

Equation 4.2 yields a hyperbola if SJ
M and SJ

R are the variables. Figure 4.1 shows

an example of such hyperbola.

All integral points on this hyperbola are possible allocations of map and reduce

slots which result in meeting the same deadline D. There is a point where the sum

of the required map and reduce slots is minimized. We calculate this minima on

the curve using Lagrange’s multipliers [66], since we would like to conserve the

number of map and reduce slots required for the minimum resource allocation per

70

4.1. Deadline-driven resource allocation on shared Hadoop cluster

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
N

um
be

r
of

 r
ed

uc
e

sl
ot

s

Number of map slots

A

B

C

Figure 4.1: Resource allocations satisfy a given deadline

job J with a given deadline D. Note, that we can use D for finding the resource

allocations from the corresponding equations for upper and lower bounds on the

job completion time estimates.

4.1.2 Resource allocation for MapReduce workflows: a basic

approach

Now, consider a more complex application defined as a workflow that consists of

N jobs: W = {J1, J2, ...JN}with a given completion time goal D. The problem is is

to estimate a required resource allocation (a number of map and reduce slots) that

enables the workflow W to be completed with the (soft) deadline D.

First of all, there are multiple possible resource allocations that could lead

to a desirable performance goal. We could have picked a set of intermediate

completion times Di for each job Ji from the set W = {J1, J2, ...JN} such that

D1 + D2 + ... + DN ≤ D , and then determine the number of map and reduce

slots required for each job Ji to finish its processing within Di. However, such

a solution would be difficult to implement and manage by the scheduler. When

each job in a DAG requires a different allocation of map and reduce tasks then it is

difficult to reserve and guarantee the timely availability of the required resources.

A simpler and more elegant solution would be to determine a specially tailored

71

Chapter 4. Resource Management for MapReduce Applications

resource allocation of map and reduce slots (SW
M , S

W
R) to be allocated to the entire

workflow W (i.e., to each its job Ji, 1 ≤ i ≤ N) such that W would finish within a

given deadline D. We called it the basic resource allocation approach.

There are a few design choices for determining the required resource allocation

for a given MapReduce workflow. These choices are driven by the bound-based

performance models designed in Chapter 3.2.2:

• Determine the resource allocation when deadline D is targeted as a lower

bound of the workflow completion time. Typically, this leads to the least

amount of resources that are allocated to the workflow for finishing within

deadline D. The lower bound on the completion time corresponds to “ide-

al” computation under allocated resources and is rarely achievable in real

environments.

• Determine the resource allocation when deadline D is targeted as an upper

bound of the workflow completion time. This would lead to a more aggres-

sive resource allocations and might result in a workflow completion time that

is much smaller (better) than D because worst case scenarios are also rare in

production settings.

• Finally, we can determine the resource allocation when deadlineD is targeted

as the average between lower and upper bounds on the workflow completion

time. This solution provides a balanced resource allocation that is closer for

achieving the workflow completion time D.

For example, when D is targeted as a lower bound of the workflow completion

time, we need to solve the following equation for an appropriate pair(SW
M , S

W
R) of

map and reduce slots: ∑
1≤i≤N

T low
Ji

(SW
M , S

W
R) = D (4.3)

By using the Lagrange’s multipliers method as described in [66], we determine the

minimum amount of resources (i.e. a pair of map and reduce slots (SW
M , S

W
R) that

72

4.1. Deadline-driven resource allocation on shared Hadoop cluster

results in the minimum sum of the map and reduce slots) that needs to be allocated

to W for completing with a given deadline D.

Solution when D is targeted as an upper bound or an average between lower and

upper bounds of the workflow completion time can be found in a similar way.

Evaluating the basic approach in supporting deadline-driven applications

We evaluate the accuracy of the basic approach in estimating the appropriate re-

source allocation for a MapReduce workflow with completion time requirement

using the same PigMix benchmark and TPC-H and proxy query set described in

Chapter 3.3.2 as well as the testing workloads. The experiments are performed on

the same testbed as we described in Chapter 3.1.4.

We first evaluate the approach with the PigMix benchmark. In this set of ex-

periments, let T denote the completion time when it is processed with maximum

available cluster resources (i.e., when the entire cluster is used for processing). We

set D = 3 · T as a completion time goal. Using the Lagrange multipliers’ approach

(described in Chapter 4.1.2) we compute the required resource allocation, i.e., a

fraction of cluster resources, a tailored number of map and reduce slots that allow

the workflow to be completed with deadline D. As discussed in Chapter 4.1.2, we

can compute a resource allocation when D is targeted as either a lower bound, or

upper bound or the average of lower and upper bounds on the completion time.

Figure 4.2 shows the measured workflow completion times based on these three

different resource allocations. Similar to our earlier results, for presentation pur-

poses, we normalize the achieved completion times with respect to deadline D.

In most cases, the resource allocation that targets D as a lower bound is insuffi-

cient for meeting the targeted deadline (e.g., the L17 program misses deadline by

more than 20%). However, when we compute the resource allocation based on D

as an upper bound – we are always able to meet the required deadline, but in most

cases, we over-provision resources, e.g., L16 and L17 finish more than 20% earli-

er than a given deadline. The resource allocations based on the average between

73

Chapter 4. Resource Management for MapReduce Applications

lower and upper bounds result in the closest completion time to the targeted dead-

lines.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e Tlow-based
Tavg-based
Tup-based

Deadline

Figure 4.2: PigMix executed with the estimated resources: do we meet deadlines?

The basic approach proves to be effective for the MapReduce workflows gen-

erated from the PigMix benchmark. However, as most of the queries from PigMix

are compiled into sequential MapReduce workflow, it is not clear whether the pro-

posed approach works well for workflows with concurrent jobs. To understand

the performance of the approach for workflows with concurrent jobs. We perfor-

mance the similar experiments on the two other workloads: TPC-H and Proxy

query set.

Figure 4.3 presents the results for these two workloads. While each of the three

considered resource allocations is meeting the desired deadline, we observe that

the basic approach is inaccurate for programs with concurrent jobs. There is sig-

nificant resource over-provisioning: the considered workflows finish much earlier

(up to 50% earlier) than the targeted deadlines.

In summary, while the basic approach produces good results for workflows

with sequential MapReduce jobs, it over-estimates a completion time of workflows

with concurrent jobs, and leads to over-provisioned resource allocations for work-

flows with concurrent jobs. The reason of the inaccuracy also comes from the exe-

cution overlaps among the concurrent jobs. As we discussed in Chapter 3.3.3. The

pipelined execution of concurrent jobs in workflow W may significantly reduce

74

4.1. Deadline-driven resource allocation on shared Hadoop cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q5 Q8 Q10

P
ro

g
ra

m
 C

o
m

p
le

ti
o

n
 T

im
e

Tlow-based
Tavg-based
Tup-based

Deadline

(a) TPC-H

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q1 Q2 Q3

P
ro

g
ra

m
 C

o
m

p
le

ti
o

n
 T

im
e

Tlow-based
Tavg-based
Tup-based

Deadline

(b) Proxy Queries

Figure 4.3: TPC-H/Proxy queries with the estimated resources: do we meet dead-
lines?

the program completion time. Therefore, W may need to be assigned a smaller

amount of resources for meeting the same deadline D.

In the following part, we will first present an important observation we found

that the execution order of the concurrent jobs could significantly affect the work-

flow completion time and propose a scheduling algorithm for optimizing the com-

pletion time based on the observation. We then refine the proposed approach for

estimating the resource allocation of such optimized MapReduce workflows in

meeting their deadlines.

4.1.3 Schedule concurrent jobs within a workflow

As we explained in Chapter 3.3.3, the concurrent jobs within a workflow are exe-

cuted in a pipelined fashion which lead to shorter total completion time. With such

execution model, we find one more interesting observation: the execution order of

the concurrent jobs within a workflow could significantly affect the total comple-

tion time. The current Pig implementation submits concurrent MapReduce jobs

from the same Pig program in a random order. Some ordering may lead to a sig-

nificantly less efficient resource usage and an increased processing time. Consider

the following example with two concurrent MapReduce jobs:

75

Chapter 4. Resource Management for MapReduce Applications

• Job J1 has a map stage duration of 10s and the reduce stage duration of 1s.

• Job J2 has a map stage duration of 1s and the reduce stage duration of 10s.

There are two possible executions of J1 and J2 shown in Figure 4.4: (a) J1 is fol-

lowed by J2, (b) J2 is followed by J1.

J1
M=10s J1

R=1s

J1 J2
M=1s J2

R=10s

J2

(a) J1 is followed by J2.

J1
M=10s J1

R=1s

J1

J2
M=1s J2

R=10s

J2

(b) J2 is followed by J1.

Figure 4.4: Impact of concurrent job scheduling on their completion time.

Now, let us analyze the results of these two different execution orders in terms of

the total completion time.

• J1 is followed by J2. Then, the reduce stage of J1 overlaps with the map stage of

J2 leading to overlap of only 1s. Thus, the total completion time of processing

two jobs is 10s+ 1s+ 10s = 21s.

• J2 is followed by J1. Then the reduce stage of J2 overlaps with the map stage

of J1 leading to a much better pipelined execution and a larger overlap of

10s. Thus, the total makespan is 1s+ 10s+ 1s = 12s.

As we can see, there can be a significant difference in the job completion time

(75% in the example above) depending on the execution order of the jobs. To op-

timize the schedule of the concurrent jobs within a workflow, we apply the classic

Johnson’s algorithm for building the optimal two-stage jobs’ schedule [35].

76

4.1. Deadline-driven resource allocation on shared Hadoop cluster

Johnson’s Algorithm

In 1953, Johnson [35] proposed an optimal algorithm for a two stage production

schedule. A collection of production items and two machines are given. Each item

must pass through stage one, and then stage two. Each machine can handle only

one item at a time. There are two arbitrary positive numbers given for each item

representing the work time for that item to pass through the stage.

We restate the algorithm in terms of MapReduce jobs. Let us consider a col-

lection of n jobs. Each job j is represented by the pair of map and reduce stage

durations (mj, rj). Each job j = (mj, rj) is augmented by the attribute Dj defined

as follows:

If min(mj, rj) = mj then Dj = (mj,map) else Dj = (rj, reduce). The first argument

in Di called a stage duration, and the second the stage type (map or reduce).

An optimal schedule can be constructed by the following algorithm described

below: it works by filling job indexes into the schedule σ by taking the the jobs

from the list L and placing them into the schedule from the both ends (head and

tail) and proceeding towards the middle. Some informal explanation of the algo-

Algorithm 1 Johnson’s Algorithm

Input: List L of n MapReduce jobs. Di is the stage duration and the stage type
(map or reduce) of job i as defined above.
Output: Schedule σ : order of jobs

1: Sort L based on map or reduce stage durations using Di

2: head← 1, tail← n
3: for each stage duration Di in L do
4: if Di is map stage then
5: // Put job i from the front
6: σhead ← i
7: head← head + 1
8: else
9: // Put job i from the end

10: σtail ← i
11: tail← tail - 1
12: end if
13: end for

77

Chapter 4. Resource Management for MapReduce Applications

rithm. First, we order all the n jobs in the list L according to the following rule: job

j precedes job j + 1 if and only if min(mj, rj) ≤ min(mj+1, rj+1). In other words,

we can sort the jobs using their job attribute Di that represents the stage duration

(smallest duration of the two stages) and the stage type.

Then the jobs from this ordered list L put from the front of the schedule (if the

duration represents the map stage) or from the end of the schedule (if the duration

represents the reduce stage).

Let us illustrate the Johnson’s algorithm execution with the following example

workloads that contains five MapReduce jobs with description in Figure 4.5 (left

part) where the last column represents the additional attribute Di: This collection

of jobs can be sorted according to the attributeDi and Figure 4.5 (right part) shown

the sorted set of MapReduce jobs.

i mi ri Di

1 4 5 (4,m)
2 4 1 (1,r)
3 30 4 (4,r)
4 6 30 (6,m)
5 2 3 (2,m)

i mi ri Di

2 4 1 (1,r)
5 2 3 (2,m)
1 4 5 (4,m)
3 30 4 (4,r)
4 6 30 (6,m)

Figure 4.5: Example of Johnson’s Algorithm.

Then if we follow the Johnson’s algorithm and start placing the jobs in the

schedule from both ends toward the middle, we have the following sequence:

(5,1,4,3,2). This job execution ordering define the schedule with minimum overall

makespan. For our example, the makespan of optimal schedule is 47. The worst

schedule is the reverse order of the optimal one: it has a makespan of 78 (this is

66% increase in the makespan compared to the optimal time). Indeed, the optimal

schedule provides significant savings.

Evaluate the performance benefits with optimized concurrent job execution

We next evaluate the completion time improvements when we execute a workflow

by enforcing the optimized execution order of its concurrent jobs. We use the TPC-

78

4.1. Deadline-driven resource allocation on shared Hadoop cluster

H and Proxy query set as the experiment workloads as they contain workflows

with concurrent jobs.

Figures 4.6 and 4.7 show the scheduling impact of concurrent jobs on the work-

flow completion time for the three TPC-H queries Q5, Q8, and Q10 and Proxy

queriesQ1, Q2, andQ3 respectively when each workflow in those sets is processed

with 128 map and 64 reduce slots.

Figures 4.6 (a) and 4.7 (a) show two extreme measurements: the best program

completion time (i.e., when the optimal schedule of concurrent jobs is chosen) and

the worst one (i.e., when concurrent jobs are executed in the ”worst” possible order

based on our estimates). For presentation purposes, the best (optimal) completion

time time is normalized with respect to the worst one. The choice of optimal sched-

ule of concurrent jobs reduces the completion time by 10%-27% compared with the

worse case ordering.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q5 Q8 Q10

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e Best-CT
Worst-CT

(a) Job completion times

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q5 Q8 Q10

S
ta

ge
 C

om
pl

et
io

n
T

im
e Best-CT

Worst-CT

(b) Stage completion times

Figure 4.6: Measured completion times for different schedules of concurrent jobs
in TPC-H queries.

The performance benefits with the optimized schedule of concurrent is even

more pronounced if we consider the stage completion time. Figures 4.6 (b) and 4.7 (b)

show completion times of stages with concurrent jobs under different schedules

for the same TPC-H and Proxy queries. The performance benefits at the stage lev-

el are even higher: they range between 20%-30%.

In summary, the optimal execution of concurrent jobs leads to a better overall

79

Chapter 4. Resource Management for MapReduce Applications

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q1 Q2 Q3

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e Best-CT
Worst-CT

(a) Job completion times

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q1 Q2 Q3

S
ta

ge
 C

om
pl

et
io

n
T

im
e Best-CT

Worst-CT

(b) Stage completion times

Figure 4.7: Measured completion times for different schedules of concurrent jobs
in Proxy queries.

performance: an improved completion time and better resource utilization. More-

over, this optimization has another useful outcome: it eliminates possible non-

determinism in workflow execution by eliminating the random execution order of

concurrent jobs. This enables a more accurate performance model for a comple-

tion time prediction and a refined resource allocation approach for estimating the

appropriate resource requirements of a given workflow in meeting its deadline.

4.1.4 Resource allocation for MapReduce workflows: a refined

approach

Now, consider a MapReduce workflow W with a given deadline D, as we shown

in the previous discussion, the optimized execution of concurrent jobs in W re-

sults in a shorter workflow completion time. Therefore, an even smaller amount

of resources for W may satisfy the same given deadline D compared to its non-

optimized execution. As shown in Chapter 4.1.2, the earlier proposed basic model

does not take the pipelined execution between concurrent jobs in a workflow, and

therefore, it overestimates the completion time and the amount of resources re-

quired for the workflows with concurrent jobs for meeting their deadlines. How-

ever, the unique benefit of this model is that it allows to express the completion

80

4.1. Deadline-driven resource allocation on shared Hadoop cluster

time D of a workflow via a special form equation shown below:

D =
AW

SW
M

+
AW

SW
R

+ CW (4.4)

where SW
M and SW

R denote the number of map and reduce slots assigned to W . As

we show Chapter 4.1.2, Equation eq. (4.4) can be used for finding the resource allo-

cation (SW
M , S

W
R) such that the workflowW completes within timeD. This equation

yields a hyperbola if SW
M and SW

R are considered as variables. We can directly cal-

culate the minima on this curve using Lagrange’s multipliers (see Chapter 3.2.2).

B (M’,R) A (M,R)

D (Mmin,Rmin) C (M,R’)

N
u

m
b

er
 o

f
R

ed
u

ce
 S

lo
ts

 (
R

)

Number of Map Slots (M)

Figure 4.8: Resource allocation estimates for an optimized Pig program.

The performance model introduced in Chapter 3.3.3 for accurate completion

time estimates of a workflow with concurrent jobs is more complex. It requires

computing a function max for stages with concurrent jobs, and therefore, it can-

not be expressed as a single equation for solving the resource allocation problem.

However, we can use the ”over-sized” resource allocation derived by the basic ap-

proach with eq. (4.4) as an initial point for determining the solution required by the

optimized workflowW . The hyperbola with all the possible solutions according to

the basic approach is shown in Figure 4.8 as the red curve, and A(M,R) represents

the point with a minimal number of map and reduce slots (i.e., the pair (M,R)

results in the minimal sum of map and reduce slots). Algorithm 2 described be-

81

Chapter 4. Resource Management for MapReduce Applications

low shows the computation for determining the minimal resource allocation pair

(Mmin, Rmin) for an optimized Pig program P with deadline D. This computation

is illustrated by Figure 4.8.

Algorithm 2 Determining the resource allocation for a Pig program
Input:
Job profiles of all the jobs in W = {J1, J2, ...JN}
D← a given deadline
(M,R)← the minimum pair of map and reduce slots for W and deadline D by
applying the basic model
Optimal execution of jobs J1, J2, ...JN based on (M,R)
Output:
Resource allocation pair (Mmin, Rmin) for optimized W

1: M ′ ←M , R′ ← R
2: while T avg

W (M ′, R) ≤ D do { // From A to B}
3: M ′ ⇐M ′ − 1
4: end while
5: while T avg

W (M,R′) ≤ D do { // From A to C}
6: R′ ⇐ R′ − 1,
7: end while
8: Mmin ←M,Rmin ← R , Min← (M +R)
9: for M̂ ←M ′ + 1 to M do { // Explore blue curve B to C}

10: R̂ = R− 1
11: while T avg

W (M̂, R̂) ≤ D do
12: R̂⇐ R̂− 1
13: end while
14: if M̂ + R̂ < Min then
15: Mmin ⇐ M̂,Rmin ⇐ R̂,Min← (M̂ + R̂)
16: end if
17: end for

First, we find the minimal number of map slots M ′ (i.e., the pair (M ′, R)) such

that deadlineD can still be met by the optimized workflow with the enforced opti-

mal execution of its concurrent jobs. We do it by fixing the number of reduce slots

toR, and then step-by-step reducing the allocation of map slots. Specifically, Algo-

rithm 2 sets the resource allocation to (M − 1, R) and checks whether workflow W

can still be completed within time D (we use T avg
W for completion time estimates).

If the answer is positive, then it tries (M −2, R) as the next allocation. This process

continues until point B(M ′, R) (see Figure 4.8) is found such that the number M ′

82

4.1. Deadline-driven resource allocation on shared Hadoop cluster

of map slots cannot be further reduced for meeting a given deadline D (lines 1-4

of Algorithm 2).

At the second step, we apply the same process for finding the minimal number

of reduce slots R′ (i.e., the pair (M,R′)) such that the deadline D can still be met

by the optimized Pig program P (lines 5-7 of Algorithm 2).

At the third step, we determine the intermediate values on the curve between

(M ′, R) and (M,R′) such that deadline D is met by the optimized MapReduce

workflow W . Starting from point (M ′, R), we are trying to find the allocation of

map slots from M ′ to M , such that the minimal number of reduce slots R̂ should

be assigned to W for meeting its deadline (lines 10-12 of Algorithm 2).

Finally, (Mmin, Rmin) is the pair on this curve such that it results in the the min-

imal sum of map and reduce slots.

Evaluate the refined approach in supporting deadline-driven applications

We evaluate the refined approach in estimating the appropriate resource alloca-

tion using the same TPC-H and Proxy query set as our experiment workloads as

our refined approach focuses on latency sensitive MapReduce workflows with con-

current jobs. In this set of experiments, let T denote the total completion time

when program W is processed with maximum available cluster resources. We set

D = 2·T as a completion time goal. Then we compute the required resource alloca-

tion for W by applying the refined resource allocation strategy when D is targeted

as T avg
W , i.e., the average of lower and upper bounds on the completion time.

Figures 4.9 (a) and 4.10 (a) compare the measured completion times achieved by

the TPC-H and Proxy’s queries respectively when they are assigned the resource

allocations computed with the basic versus refined models. The completion times

are normalized with respect to the targeted deadlines. While both models sug-

gest sufficient resource allocations that enable the considered workflows to meet

their deadlines, the resource allocations computed with the refined model are much

more accurate: all the queries complete within 10% of the targeted deadlines.

Figures 4.9 (b) and 4.10 (b) compare the amount of resources (the sum of map

83

Chapter 4. Resource Management for MapReduce Applications

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q5 Q8 Q10

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e Refined-RA
Basic-RA
Deadline

(a) Can we meet deadlines?

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q5 Q8 Q10

of

 M
ap

 a
nd

 R
ed

uc
e

S
lo

ts Refined-RA
Basic-RA

(b) Resource savings with refined approach

Figure 4.9: TPC-H Queries: efficiency of resource allocations with refined approach.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q1 Q2 Q3

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e Refined-Opt-RA
Basic-RA
Deadline

(a) Can we meet deadlines?

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q1 Q2 Q3

of

 M
ap

 a
nd

 R
ed

uc
e

S
lo

ts Refined-Opt-RA
Basic-RA

(b) Resource savings with refined approach

Figure 4.10: Proxy’s Queries: efficiency of resource allocations with refined approach.

and reduce slots) computed with the basic approach versus refined approach for

TPC-H and Proxy’s queries respectively. The refined approach is able to achieve

targeted deadlines with much smaller resource allocations (20%-40% smaller) com-

pared to resource allocations suggested by the basic approach. Therefore, the pro-

posed optimal schedule of concurrent jobs combined with the refined resource al-

location strategy lead to the efficient execution and significant resource savings for

deadline-driven MapReduce applications with concurrent jobs.

4.1.5 Deadline-driven job scheduler

Based on the estimated resource allocation for each application, our ultimate goal

is to propose a novel deadline-drive scheduler for MapReduce environments that

84

4.1. Deadline-driven resource allocation on shared Hadoop cluster

supports a new API: a MapReduce application can be submitted with a desirable

completion time target (deadline). The scheduler will then estimate and allocate

the appropriate number of map and reduce slots to the job so that it meets the

required deadline. Figure 4.11 shows the implementation of our scheduler. Specif-

ically, it consists of the following five interacting components shown in Figure 4.11:

Scheduler

Profile
database

Slot estimator

Slot allocator

Job settings
(deadline)

Figure 4.11: Implementation of the deadline-scheduler.

1. Profile Database: We use a MySQL database to store the past profiles ex-

tracted for each job. The profiles are identified by the (user, job name) which

can be specified by the application.

2. Slot Estimator: Given the past profile of the job and the deadline, the slot

estimator calculates the minimum number of map and reduce slots that need

to be allocated to the job in order to meet its deadline. Essentially, it uses the

refined approach introduced in Chapter 4.1.4.

3. Slot Allocator: Using the slots calculated from the slot estimator, the slot

allocator assigns tasks to jobs such that the job is always below the allocated

thresholds by keeping track of the number of running map and reduce tasks.

In case there are spare slots, they can be allocated based on the additional

policy. There could be different classes of jobs: jobs with/without deadlines.

We envision that jobs with deadlines will have higher priorities for cluster

resources than jobs without deadlines. However, once jobs with deadlines

are allocated their required minimums for meeting the SLOs, the remaining

slots can be distributed to the other job classes.

85

Chapter 4. Resource Management for MapReduce Applications

4. SLO-Scheduler: This is the central component that co-ordinates events be-

tween all the other components. Hadoop provides support for a pluggable

scheduler. The scheduler makes global decisions of ordering the jobs and

allocating the slots across the jobs. The scheduler listens for events like job

submissions, worker heartbeats, etc. When a heartbeat containing the num-

ber of free slots is received from the workers, the scheduler returns a list of

tasks to be assigned to it.

The scheduler has to answer two inter-related questions: which job should the

slots be allocated and how many slots should be allocated to the job? The scheduler

executes the Earliest Deadline First algorithm (EDF) for ordering the applications to

maximize the utility function of all the users. For applications that defined as

MapReduce workflows, the scheduler also enforces the optimized execution order

for the concurrent branches within its workflow. The second question is answered

using the refined approach discussed in Chapter 4.1.4. The detailed slot allocation

schema is shown in Algorithm 3.

As shown in Algorithm 3, it consists of two parts: 1) when an application is

added, and 2) when a heartbeat is received from a worker. Whenever an applica-

tion is added, we fetch the profiles of all jobs that belongs to the application from

the database and compute the minimum number of map and reduce slots required

to complete the job within its specified deadline using our refined resource alloca-

tion estimates discussed earlier in Chapter 4.1.2.

Workers periodically send a heartbeat to the master reporting their health, the

progress of their running tasks and the number of free map and reduce slots. In

response, the master returns a list of tasks to be assigned to the worker. The master

tracks the number of running and finished map and reduce tasks for each job. For

each free slot and each job, if the number of running maps is lesser than the number

of map slots we want to assign it, a new task is launched. As shown in Lines 9 -

13, preference is given to tasks that have data local to the worker node. Finally, if

at least one map has finished, reduce tasks are launched as required.

86

4.1. Deadline-driven resource allocation on shared Hadoop cluster

Algorithm 3 Earliest deadline first algorithm

1: When application W is added:
2: Fetch the profiles for each job within W from database
3: Compute the execution order for concurrent jobs (if any) within W
4: Compute minimum number of map and reduce slots (mw, rw) using our re-

fined approach

5: When a heartbeat is received from node n:
6: Sort workflows in order of earliest deadline
7: for each slot s in free map/reduce slots on node n do
8: for each w in workflows do
9: if RunningMapsw < mw and s is map slot then

10: get the next ready job j within w
11: if job j has unlaunched map task t with data on node n then
12: Launch map task t with local data on node n
13: else if j has unlaunched map task t then
14: Launch map task t on node n
15: end if
16: end if

17: if RunningReducesw < rw and s is reduce slot then
18: get the next ready job j within w
19: if job j has unlaunched reduce task t then
20: Launch reduce task t on node n
21: end if
22: end if
23: end for
24: end for

25: for each task Tj within W finished do
26: Recompute (mw, rw) based on the current time, current progress and dead-

line of W
27: end for

In some cases, the amount of slots available for allocation is less than required

minima for job J and then J is allocated only a fraction of required resources. As

time progresses, the resource allocations are recomputed during the job’s execu-

tion and adjusted if necessary as shown in Lines 22-24.

87

Chapter 4. Resource Management for MapReduce Applications

4.2 Resource provisioning in public cloud

environment

Cloud computing provides a new delivery model with virtually unlimited com-

puting and storage resources. It offers a compelling alternative to rent resources

in a ”pay-as-you-go” fashion. It is an attractive and cost-efficient option for many

users because acquiring and maintaining a complex, large-scale infrastructure such

as a Hadoop cluster requires a significant up-front investment and then a continu-

ous maintenance and management support.

A typical cloud environment offers a choice of different capacity Virtual Ma-

chines for deployment with different prices. For example, the Amazon EC2 plat-

form provides a choice of small, medium, and large VM instances, where the CPU

and RAM capacity of a medium VM instance is two times larger than a capacity

of a small VM instance, and the CPU and RAM capacity of a large VM instance is

two times larger than a capacity of a medium VM instance. These differences are

also reflected in the pricing: the large instance is twice (four times) more expensive

compared with the medium (small) instance. It means that for the same price a user

may deploy a 40-node Hadoop cluster using 40 small VM instances (with one map

and one reduce slot per instance) or a 10-node Hadoop cluster using 10 large VM

instances (with four map and four reduce slots per instance). Therefore, a user is

facing a variety of platform and configuration choices that can be obtained for the

same budget. Intuitively, these choices may look similar, and it might not be clear

whether there is much difference in MapReduce application performance when

these applications are executed on different type platforms.

Figure 4.12 shows two motivating examples. In these experiments, we execute

two popular applications TeraSort and KMeans on three Hadoop clusters deployed

with different type VM instances: i) 40 small VMs, ii) 20 medium VMs, and iii)

10 large VM instances. We configure Hadoop clusters according to their nodes

capacity: each small VM instance is configured with one map and one reduce slot

per instance; similarly, medium (large) VM instances are configured with two (four)

88

4.2. Resource provisioning in public cloud environment

map and two (four) reduce slots per instance. Therefore, these clusters can be

obtained for the same price per time unit.

 0

 1000

 2000

 3000

 4000

 5000

 6000

small medium large

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
(s

) map
shuffle
reduce

(a) TeraSort

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

small medium large

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
(s

) map
shuffle
reduce

(b) KMeans

Figure 4.12: Completion time of two applications when executed on different type
EC2 instances.

Apparently, a Hadoop cluster with 40 small instances provides the best comple-

tion time (so as the monetary cost) for a TeraSort application as shown in Fig. 4.12 (a),

while a Hadoop cluster with 10 large instances is the best option for KMeans as

shown in Fig. 4.12 (b). To further understand different stage contributions into the

overall job completion time, we present the completion time break-down with re-

spect to the map/shuffle/reduce stage durations. The results show that TeraSort

has a longer shuffle duration when executed on large(medium) instances then the

medium(small) ones which lead to longer completion time. The reason is as we ex-

plained in Chapter 3.4.4 that cloud environments use VM instance scaling with re-

spect to CPU and RAM capacity but not with the storage and network bandwidth

As we configure more slots on large instances, it increases the I/O and network

contention that leads to significantly increased durations of the shuffle phase (The

job profiles shown in Tables 3.9-3.11 also confirms our explanation). On contrast,

for KMeans, the map stage duration dominates and the map execution is signifi-

cantly improved when executed on large instances. On explanation is as shown

in Table 4.1, most large instances are configured with a different (more powerful)

CPU model than the small and medium ones. 1

1We reserved 30 instances for each type and gather their cpu information.

89

Chapter 4. Resource Management for MapReduce Applications

Instance type CPU type
Small 30/30 Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz
Medium 19/30 Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz

11/30 Intel(R) Xeon(R) CPU E5430 @ 2.66GHz
Large 26/30 Intel(R) Xeon(R) CPU E5-2651 v2 @ 1.80GHz

4/30 Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz

Table 4.1: CPU types used by different EC2 instances.

As a result, for applications like TeraSort which has a longer shuffle stage, the

small instances outperforms the large ones. While for applications such as KMean-

s whose map stage duration dominates in the total completion time, it get more

benefits when executed on the Hadoop cluster with large instances. These exam-

ples demonstrate that seemingly equivalent platform choices for a Hadoop cluster

might result in a different application performance.

In this chapter, we aim to solve the problem of the platform choice to provide

the best cost/performance trade-offs for a given MapReduce workload. As shown

in Fig. 4.12 this choice is non-trivial and depends on the application characteris-

tics. The problem becomes even more challenging for MapReduce workload with

performance objectives to minimize the makespan (the overall completion time) of

the given job set.

For a given a set of jobs J we aim to offer a framework for solving the following

two problems:

• given a customer makespan target T (i.e., a desirable completion time for the

entire set of jobs J), select the instance type, the cluster size, and propose the

job schedule for meeting the makespan target T while minimizing the cost;

• given a customer budget C, select the instance type, the cluster size, and

propose the job schedule, that minimizes achievable makespan for a given

cost C.

4.2.1 Solution framework

The performance modeling framework could accurately estimate the completion

time of a given MapReduce application according to the allocated resource. The

90

4.2. Resource provisioning in public cloud environment

framework also forms the foundation of our resource allocation strategy that im-

plemented with our deadline-driven scheduler. However, the framework is not ac-

curate enough for our resource provision problem. From our discussion in Chap-

ter 3.3.3, we already observed that there are execution overlaps between the map

and reduce stage across different jobs. However, in practical execution, the map

(reduce) stages from different jobs could also be interleaved if there are enough

available resources or if the jobs contains small number of map(reduce) tasks (e.g.,

the Grep application only has a single reduce task). The modeling framework does

not consider such overlap which leads to pessimistic results in those cases. More-

over, for a workload that contains multiple independent MapReduce applications,

the inaccuracy will accumulate when more jobs are executed at the same time.

To address the problem, we make use of a new MapReduce simulator, called

SimMR [67], that can replay execution traces of real workloads collected in Hadoop

clusters (as well as synthetic traces based on statistical properties of workloads)

for evaluating different resource allocation and scheduling ideas in MapReduce

environments.

Specifically, the designed framework is based on the following three main com-

ponents:

• Job Profiler: it extracts a detailed job processing trace that consists of NJ
M of

map task durations and NJ
R shuffle/sort and reduce phase durations where

NJ
M and NJ

R represent the number of map and reduce tasks within a job J .

The job profile and processing trace can be obtained from the past run of

this job [66] or extracted from the sample execution of this job on the smaller

dataset [68]. This information is created for each platform of choice, e.g.,

small, medium, and large EC2 instances.

• Job Scheduler: it minimizes the overall completion time of a given set of MapRe-

duce jobs by designing an optimized MapReduce jobs’ execution. We apply

the classic Johnson algorithm [35] described in Chapter 4.1.3 that was pro-

posed as an optimal solution for two-stage production job schedule.

• A simulator for Performance/Cost Analysis: by varying the cluster size, the sim-

91

Chapter 4. Resource Management for MapReduce Applications

ulator generates the set of solutions across different platforms in a form of

the trade-off curves: the cluster size and the achieved makespan define the

performance/cost) metric for a given platform. These trade-off curves enable

us to select the appropriate solution: the minimized makespan for a given

cost or the minimized cost for achieving a given makespan.

JobProfiler

Our Job Profiler module uses the past job run(s) and extracts a detailed job profile that

contains recorded durations of all map and reduce tasks. A similar job trace can

be extracted from the Hadoop job tracker logs using tools such as Rumen [6]. The

obtained map/reduce task distributions can be used for extracting the distribution

parameters and generating scaled traces, i.e., generating the replayable traces of

the job execution on the large dataset from the sample job execution on the smaller

dataset as described in [68]. These job traces can be replayed using a MapReduce

simulator [67] or used for creating the compact job profile for analytic models.

Optimized Job Schedule

As we showed in Chapter 4.1.3, the total completion time of n concurrent jobs

depends significantly on the execution order of these jobs. For minimizing the

makespan of a given set of MapReduce jobs J = {J1, J2, . . . , Jn} we apply the

classic Johnson algorithm [35, 69] with more details described in Chapter 4.1.3.

The algorithm requires the knowledge of the map and reduce stage duration

within a job. To estimate the stage durations within each job, we use a compact job

profile that characterize the job execution during map, shuffle, and reduce phases

via average and maximum task durations and then apply the MapReduce job model

we introduced in Chapter 3.2.

92

4.2. Resource provisioning in public cloud environment

Simulator

We use a event based Hadoop simulator called SimMR [67] that can replay execu-

tion traces of real workloads collected in Hadoop clusters. Figure 4.13 shows the

overall design of SimMR.

Simulator engine

Makespan
cost

Job
scheduler

Cluster
description

Trace generator

Figure 4.13: Simulator.

The basic blocks of the simulator are the following:

1. Trace Generator – a module that generates a replayable workload trace. This

trace is generated either from the detailed job profile (provided by the Job

Profiler) or by feeding the distribution parameters for generating the syn-

thetic trace (this path is taken when we need to generate the job execution

traces from the sampled executions on the smaller datasets).

2. Simulator Engine – a discrete event simulator that takes the cluster configu-

ration information and accurately emulates the Hadoop job master decisions

for map/reduce slot allocations across multiple jobs.

3. Scheduling policy – a scheduling module that dictates the jobs’ ordering and

the amount of allocated resources to different jobs over time.

Trace Generation We can generate job traces using two methods: JobProfiler and

Synthetic TraceGen. JobProfiler extracts the job performance metrics by processing

the counters and logs stored at the JobTracker at the end of each job. The job tracker

93

Chapter 4. Resource Management for MapReduce Applications

logs reflect the MapReduce jobs’ processing in the Hadoop cluster. They faithfully

record the detailed information about the map and reduce tasks’ processing. The

logs also have useful information about the shuffle/sort stage of each job.

Alternatively, we can model the distributions of the durations based on the s-

tatistical properties of the workloads and generate synthetic traces using Synthetic

TraceGen. This can help evaluate hypothetical workloads and consider what-if s-

cenarios. We store job traces persistently in a Trace database (for efficient lookup

and storage) using a job template. The job template summarizes the job’s essential

performance characteristics during its execution in the cluster.

Simulator engine The simulator engine is the main component of SimMR which

replays the given job trace. It manages all the discrete events in simulated time

and performs the appropriate action on each event. It maintains data structures

similar to the Hadoop job master such as a queue of submitted jobs jobQ. The slot

allocation algorithm makes a new decision when a map or reduce task completes.

Since our goal is to be fast and accurate, we simulate the jobs at the task level and

do not simulate details of the TaskTrackers.

The simulator engine reads the job trace from the trace database. It commu-

nicates with the scheduler policies using a very narrow interface consisting of the

following functions:

1. CHOOSENEXTMAPTASK(jobQ),

2. CHOOSENEXTREDUCETASK(jobQ)

These two functions ask the scheduling policy to return the jobId of the job

whose map (or reduce) task should be executed next.

The simulator maintains a priority queue Q for seven event types: job arrivals

and departures, map and reduce task arrivals and departures, and an event signal-

ing the completion of the map stage. Each event is a triplet (eventT ime, eventType, jobId)

where eventT ime is the time at which the event will occur in the simulation; eventType

is one of the seven event types; and jobId is the job index of the job with which the

event is associated.

94

4.2. Resource provisioning in public cloud environment

The simulator engine fires events and runs the corresponding event handlers.

It tracks the number of completed map and reduce tasks and the number of free

slots. It allocates the map slots to tasks as dictated by the scheduling policy. When

minMapPercentCompleted percentage of map tasks are completed (it is the pa-

rameter set by the user), it starts scheduling reduce tasks. We could have started

the reduce tasks directly after the map stage is complete. However, the shuffle

phase of the reduce task occupies a reduce slot and has to be modeled as such.

Hence, we schedule a filler reduce task of infinite duration and update its dura-

tion to the first shuffle duration when all the map tasks are complete. This enables

accurate modeling of the shuffle phase.

Scheduling policies Different scheduling and resource allocation policies can be

used with SimMR for their evaluation, e.g., FIFO (Hadoop default scheduler),

Fair [8], Capacity [2] and also our deadline-driven scheduler. While for the re-

source provision problem, we use the schedules that determined by Johnson’s al-

gorithm and the simulator engine will enforce the computed execution order of

the jobs within the workload during the simulation.

Validation of Simulation Results

To validate the accuracy of the simulation results, we create a test workloadW that

contains 10 applications from Table 3.2:excludes the Adjlist, KMeans and Classifica-

tion. We executed the workload on 3 Hadoop cluster formed with Amazon EC2

instance, each consists of the small, medium, and large EC2 instances respectively.

In the experiments, we use 28 small instances, 20 medium instances and 24 large

instances for each cluster. We choose these numbers because according to our sim-

ulation results, they all lead to a makespan of approximately 20000 seconds when

execute the workload on each cluster (the execution order of jobs are determined

by the Johnson’s algorithm).

We then deploy the Hadoop clusters with the required number of instances

95

Chapter 4. Resource Management for MapReduce Applications

and execute the workload W (with the corresponding Johnson job schedule) on

the deployed clusters.

Figure 4.14 (a) shows the comparison between the simulated and the actual

measured makespan (we repeated measurements 5 times). The results for small

and large EC2 instances are very accurate. We can see a higher prediction error

(17%) for medium instances. Partially, it is due to a higher variance in the job profile

measurements collected on medium instances, especially during the shuffle phase.

 0

 5000

 10000

 15000

 20000

 25000

 30000

			small 			medium 			large

M
ak

es
p
an

 (
s)

Simulated time
Execution time

(a) with different number of instances.

 0

 0.5

 1

 1.5

 2

		small 		medium 		large

M
ak

es
p
an

 (
s)

Simulation with real trace
Simulation with normal distribution

Measured-CT

(b) with synthetic trace.

Figure 4.14: Simulator validation.

The simulation results in Figure 4.14 (a) are obtained by executingW in 3 clus-

ters consists of the small, medium and large instances respectively and replaying

the job traces collected in different platforms. Alternatively, the user can generate

the synthetic traces defined by a given task duration distribution. This approach

is especially attractive as it could also used to scale up trace, i.e., generate the

replayable traces of the job execution on the large dataset from the sample job ex-

ecution on the smaller dataset(s).

We generate synthetic job traces using a normal distribution with the mean µ and

variance σ of the map/reduce task durations collected from the job sample exe-

cutions on the 30-node Hadoop clusters with different instances. Figure 4.14 (b)

shows the normalized makespan results that compare i) the simulated makespan

with real (collected) job traces, ii) the simulated makespan with synthetically gen-

96

4.2. Resource provisioning in public cloud environment

erated traces, and iii) the total completion time we measured during the actual

execution of these jobs. In the testbed executions and the simulations, we use the

same Johnson schedule within each cluster. As Figure 4.14 (b) shows both sim-

ulation with the recorded execution traces and the synthetically generated traces

provide accurate makespan predictions (each one is within 10% of the real mea-

surements).

4.2.2 Resource provision for homogeneous cluster

Based on the solution framework we proposed, we will first describe our resource

provision strategy for deploying homogeneous clusters and then extend the ap-

proach to heterogeneous deployment which might brings us more benefits.

Figure 4.15 shows the diagram for the framework execution in decision mak-

ing process per selected platform type. For example, if the platforms of interest

Figure 4.15: Solution Outline.

are small, medium, and large EC2 VM instances then the framework will generate

three trade-off curves. For each platform and a given Hadoop cluster size, the Job

Scheduler component generates the optimized MapReduce job schedule. Then the

workload makespan is obtained by replaying the job traces in the simulator ac-

cording to the generated schedule. After that the size of the cluster is increased

by one instance (in the cloud environment, it is equivalent to adding a node to

a Hadoop cluster) and the iteration is repeated: a new job schedule is generated

and its makespan is evaluated with the simulator, etc. We have a choice of stop

conditions for iterations: either a user can set a range of values for the cluster size

97

Chapter 4. Resource Management for MapReduce Applications

(driven by the cost/budget constraints), or at some point, the increased cluster size

does not improve the achievable makespan. The latter condition typically happens

when the Hadoop cluster is large enough to accommodate all the jobs to be execut-

ed concurrently, and therefore, the increased cluster size cannot improve the jobs

makespan.

Our solution is based on a simulation framework: in a brute-force manner, it

searches through the entire solution space by exhaustively enumerating all pos-

sible candidates for the solution and checking whether each candidate satisfies

the required problem’s statement. Typically, the solution space is bounded by the

budget B, which a customer intends to spend. Assume that given jobs should be

processed within deadline D and let Pricetype be the price of a type VM instance

per time unit. Then the customer can rent N type
max of VMs instances of a given type:

N type
max = B/(D · Pricetype) (4.5)

Algorithm 4 shows the pseudo code to determine the size of a cluster which is

based on the type VM instances and which results in the minimal monetary cost.
The algorithm iterates through the increasing number of instances for a Hadoop

cluster. It simulates the completion time of workloadW processed with Johnson’s

schedule on a given size cluster and computes the corresponding cost (lines 2-6).

Note, that k defines the number of worker nodes in the cluster. The overall Hadoop

cluster size is k + 1 nodes (we add a dedicated node for Job Tracker and Name N-

ode, which is included in the cost). The min costtype keeps track of a minimal cost

so far (lines 7-8) for a Hadoop cluster which can processW within deadline D.

We apply Algorithm 4 to different types of VM instances, e.g., small, medium,

and large respectively. After that we compare the produced outcomes and make a

final provisioning decision.

Evaluation of resource provision for homogeneous cluster

We perform two case studies with two workloadsW1 andW2 created from these

applications:

98

4.2. Resource provisioning in public cloud environment

Algorithm 4 Provisioning Solution for Homogeneous Cluster
Input:
W = {J1, J2, ...Jn} ←workload with traces and profiles for each job;
type← VM instance type, e.g., type∈ {small, medium, large};
N type

max ← the maximum number of instances to rent;
Pricetype← unite price of a type VM instance;
D ← a given time deadline for processingW .
Output:
N type← an optimized number of VM type instances for a cluster;
min costtype← the minimal monetary cost for processingW .

1: min costtype ←∞
2: for k ← 1 to N type

max do
3: // Simulate completion time for processing workloadW with k VMs
4: Cur CT = Simulate(type, k,W)
5: // Calculate the corresponding monetary cost
6: cost = Pricetype × (k + 1)× Cur CT
7: if Cur CT ≤ D & cost < min costtype then
8: min costtype ← cost, N type ← k
9: end if

10: end for

• W1 – it contains all 13 applications shown in Table 3.2.

• W2 – it contains ten applications: 1-8 and 10-11, i.e., excluding from the entire

set the following three applications: AdjList, Classification, and KMeans.

We execute the set of 13 applications shown in Table 3.2 on three Hadoop clus-

ters deployed with different types of EC2 VM instances (they can be obtained for

the same price per time unit): i) 40 small VMs, ii) 20 medium VMs, and iii) 10 large

VM instances. We configure these Hadoop clusters according to their nodes capac-

ity as shown in Table 3.4, with 1 additional instance deployed as the NameNode

and JobTracker.

These experiments pursue the following goals: i) to demonstrate the perfor-

mance impact of executing these applications on the Hadoop clusters deployed

with different EC2 instances; and 2) to collect the detailed job profiles for creating

the job traces used for replay by the simulator and trade-off analysis in determin-

ing the optimal platform choice.

99

Chapter 4. Resource Management for MapReduce Applications

Figure 4.16 presents the completion times of 13 applications executed on the

three different EC2-based clusters. The results show that the platform choice may

significantly impact the application processing time. Note, we break the Y-axis as

the KMeans and Classification applications take much longer time to finish com-

pared to other applications. Figure 4.17 shows the normalized results with respect

to the execution time of the same job on the Hadoop cluster formed with small VM

instances. For 7 out of 13 applications, the Hadoop cluster formed with small in-

stances leads to the best completion time (and the smallest cost). However, for the

CPU-intensive applications such as Classification and KMeans, the Hadoop cluster

formed with large instances shows better performance.

The presented results show that a platform choice for a Hadoop cluster may

have a significant impact on the application performance. Moreover, the choice of

the “right” platform becomes a challenging task if an objective is to minimize the

makespan (the overall completion time) for a given budget or minimize the cost

for achieving a given makespan.

Analyzing Performance and Cost Trade-Offs

Once the job profiles and job execution traces are collected, we can follow the pro-

posed framework shown in Figure 4.15. For each platform of choice, i.e., small,

medium, and large EC2 instances, and a given Hadoop cluster size, the Job Scheduler

component generates the optimized MapReduce job schedule using the Johnson

algorithm. After that the overall jobs’ makespan is obtained by replaying the job

traces in the simulator accordingly to the generated job schedule. At each iteration,

the cluster size is increased by one instance (in this framework, it is equivalent to

adding a node to a Hadoop cluster) and the process is repeated.

Workload W1: Analysis of Performance and Cost Trade-Offs. Figure 4.18 (a)

shows the simulation results for an achievable, optimized makespan ofW1 when

it is processed by the Hadoop cluster with different number of nodes (instances)

and the three platforms of choice: small, medium, and large EC2 instances.

100

4.2. Resource provisioning in public cloud environment

 0

 2000

 4000

 6000

 8000

 10000

 12000

			
	T

er
aS

ort

W
ord

Count

			
			

			
		G

re
p

			
	In

vIn
dex

Ran
kIn

vIn
d

		T
er

m
V

ec
t

			
Seq

Count

			
		S

el
fJ

oin

			
			

A
djL

ist

			
		H

isM
ov

			
			

H
isR

at

			
	C

la
ss

ifi
c

			
		K

M
ea

ns

 30000

 36000

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

small
medium

large

Figure 4.16: Job completion times on different EC2-based Hadoop clusters.

 0

 1

 2

 3

 4

 5

 6

 7

 8

			
	T

er
aS

or
t

W
or

dC
ou

nt

			
			

			
		G

re
p

			
	In

vI
nd

ex

Ran
kI

nv
In

d

		T
er

m
V

ec
t

			
Seq

Cou
nt

			
		S

el
fJ

oi
n

			
			

A
dj

List

			
		H

isM
ov

			
			

H
isR

at

			
	C

la
ss

ifi
c

			
		K

M
ea

ns

N
o

rm
a
li

z
e
d

 C
o

m
p

le
ti

o
n

 T
im

e small
medium

large

Figure 4.17: Normalized completion times on different EC2-based clusters.

For each instance type, the jobs’ makespan is inversely proportional to the

Hadoop cluster size. However, there is a diminishing return for the cluster sizes

above 100-200 nodes.

For each point along the curves in Figure 4.18 (a), we calculate the monetary

cost for processing workload W1. It is obtained by multiplying the makespan

time, the corresponding cluster size, and the EC2 instance cost per unit of time (in

seconds).

Figure 4.18 (b) shows the obtained performance and cost trade-offs for pro-

101

Chapter 4. Resource Management for MapReduce Applications

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 100 200 300 400 500

M
a
k
e
sp

a
n
 (

s)

Number of instances

small
medium

large

(a) Simulated makespan.

 0

 50000

 100000

 150000

 200000

 0 10 20 30 40 50 60 70 80 90

M
a
k
e
sp

a
n
 (

s)

cost ($)

small
medium

large

(b) Makespan vs. cost trade-offs.

Figure 4.18: Analysis ofW1 on the three platforms.

cessing workload W1. The Y -axis shows the achievable makespan, while X-axis

shows the corresponding cost across the three platforms of choice.

Each point along the curves in Figure 4.18 (b) corresponds to some point in

Figure 4.18 (a). Note, there could be multiple points from Figure 4.18 (a) that re-

sult in either similar makespan or similar cost. At first, the makespan drops sig-

nificantly with a small increase in the corresponding cost. It represents the case

when the Hadoop cluster is small and adding more nodes could significantly re-

duce the total completion time. Therefore, while adding more nodes increases the

cost, the improved makespan decreases the cluster time for ”rent”. The tail of the

curve corresponds to the situation when the increased cluster size results in the in-

creased cost but provides very little performance improvements to the achievable

makespan.

Another interesting observation is that not all the curve points in Figure 4.18 (b)

are monotone (e.g., see the curves for the clusters with small and medium instances

near the cost of $60). The reason is that at some cluster sizes, adding one more node

might reduce the number of waves (rounds) in the job execution and significantly

improve the jobs’ makespan. For example, we can clearly see in Figure 4.18 (a)

such drop points around the cluster sizes of 200 nodes for the clusters with small

102

4.2. Resource provisioning in public cloud environment

and medium instances. As a result, the total cost drops significantly compared with

the nearest points.

By searching along the generated trade-off curves in Figure 4.18 (b), we can

determine the optimal solutions for the following problems: i) given a budget

M , determine the platform type and the cluster size that leads to the minimized

makespan; or ii) given a makespan target D, determine the platform type and the

cluster size that minimizes the cost.

To demonstrate and quantify the benefits of our approach, let us select the

makespan target of 30000 sec and the budget constraint of $65. These constraints

are shown in Figure 4.18 (b) with dashed lines. The minimal costs for processing

workloadW1 with makespan target of 30000 seconds are $55.47, $56.38 and $35.33

with small, medium, and large instances respectively. Therefore, by selecting the

Hadoop cluster formed with large instances, we can save approx. 37% in monetary

cost compared with clusters based on medium and small instances. Similarly, for

the budget of $65, the minimal makespan of 2805 seconds can be achieved by the

Hadoop cluster formed with large instances. This results in 59.2% performance im-

provement compared with a makespan of 6874 seconds for Hadoop clusters based

on small and medium instances.

Apparently, the Hadoop cluster formed with large EC2 instances is the best

choice for processingW1 workload for achieving different performance objectives.

Workload W2: Analysis of Performance and Cost Trade-Offs. As demonstrat-

ed by Figures 4.19, the seven (out of ten) applications that comprise workloadW2

show a better (individual) performance on the Hadoop cluster formed with small

instances. However, as in the case study with WorkloadW1, it does not necessary

imply that the Hadoop cluster formed with small EC2 instances will be the best

cost/performance choice for meeting the performance objectives for executing the

entireW2 workload and minimizing its makespan. Figure 4.19 (a) shows the sim-

ulation results for an achievable, optimized makespan ofW2 when it is processed

103

Chapter 4. Resource Management for MapReduce Applications

by the Hadoop cluster with different number of nodes (instances) and the three

platforms of choice: small, medium, and large EC2 instances.

 0

 10000

 20000

 30000

 40000

 50000

 0 20 40 60 80 100 120 140

M
a
k
e
sp

a
n
 (

s)

Number of instances

small
medium

large

(a) Simulated makespan.

 0

 20000

 40000

 60000

 80000

 100000

 0 10 20 30 40 50

M
ak

es
p
an

 (
s)

cost ($)

small
medium

large

(b) Makespan vs. cost trade-offs.

Figure 4.19: Analysis ofW2 on the three platforms.

Now, using the results from Figure 4.19 (b), we calculate the makespan ver-

sus cost trade-offs curves for new workload W2. These results are shown in Fig-

ure 4.19 (a).

To demonstrate and quantify the benefits of our approach, we select the makespan

target of 20000 sec and the budget constraint of $35 . These constraints are shown

in Figure 4.19 (b) with dashed lines. Now, we can compare different achievable re-

sults for using Hadoop clusters formed with different types of EC2 instances. The

minimal costs for processing workloadW2 with makespan target of 20000 seconds

is $9.0 provided by the small EC2 instances. This is 70.6% less compared to the case

with large instances that can achieve the same makespan at a cost of $30.67.

However, given a budget of $35, the minimal makespan of 1487 seconds for

processing workloadW2 can be achieved by the Hadoop cluster formed with medi-

um instances. This leads to 69.4% performance improvement compared with a

makespan of 4855 seconds for a Hadoop cluster based on the large instances. This

outcome is interesting because it shows that the platform choice is non-trivial and

additionally depends on the performance objectives.

The case studies with workloadsW1 andW2 demonstrate that the choice of the

104

4.2. Resource provisioning in public cloud environment

”right” platform for a Hadoop cluster is workload-dependent as well as influenced

by the given performance objectives.

4.2.3 Resource provision for heterogeneous cluster

According to the example shown in Chapter 4.2, we analyzed the application per-

formance of TeraSort and KMeans on different platforms, and observed that these

applications benefit from different types of VMs as their preferred choice. There-

fore, a single homogeneous cluster might not always be the best choice, and het-

erogeneous solution might offer a better cost/performance outcome.

As a motivating example, given a workload that contains two applications J1,

J2, Figure 4.20 shows both the homogeneous provision and heterogeneous provi-

sion for completing the workload with the same time period. The homogeneous

cluster (show in the left) contains 100 small instances while the heterogeneous clus-

ter(show in the right) contains 50 small instances and 5 large instances. Suppose

each small instance costs $1 pre minute and each large instance costs $4, then the

homogeneous provision will cost 100 × 1 × 20 = $2000 in this case. However, the

heterogeneous provision will cost (50× 1×+5× 4)× 20 = $1400 which saves $600

compared with the homogeneous solution.

J1=10 min J2=10 min

J1= 20 min

J2= 20 min100 small instances

50 small instances

5 large instances

Heterogeneous cluster
Homogeneous cluster

Figure 4.20: Possible benefits with heterogeneous cluster.

While each application has a preference platform (i.e. the platform that leads

to better performance/costs) according to its characteristics, the preference choice

of a give application often depends on the size of a Hadoop cluster and given per-

formance goals. Continuing the motivating example from Chapter 4.2, Figure 4.21

105

Chapter 4. Resource Management for MapReduce Applications

shows the trade-off curves for three representative applications TeraSort, KMeans,

and AdjList obtained as a result of exhaustive simulation of application completion

times on different size Hadoop clusters. The Y-axis represents the job completion

time while the X-axis shows the corresponding monetary cost. Each figure shows

three curves for application processing by a homogeneous Hadoop cluster based

on small, medium, and large VM instances respectively.

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

cost ($)

small
medium

large

(a) TeraSort

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 10 20 30 40 50

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

cost ($)

small
medium

large

(b) KMeans

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 2 4 6 8 10 12

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

cost ($)

small
medium

large

(c) AdjList

Figure 4.21: Performance versus cost trade-offs for different applications.

First of all, the same application can result in different completion times when

being processed on the same platform at the same cost. This reflects an interesting

phenomenon of “pay-per-use” model. There are situations when a cluster of size

N processes a job in T time units, while a cluster of size 2 ·N may process the same

job in T/2 time units. Interestingly, these two different size clusters have the same

106

4.2. Resource provisioning in public cloud environment

cost, and if the purpose is meeting deadline D where T ≤ D then both clusters

meet the performance objective.

Second, we can see an orthogonal observation: in many cases, the same com-

pletion time can be achieved at a different cost (on the same platform type). Typi-

cally, this corresponds to the case when an increased size Hadoop cluster does not

further improve the job processing time.

Finally, according to Figure 4.21, we can see that for TeraSort, the small instances

results in the best choice, while for KMeans the large instances represent the most

cost-efficient platform. However, the optimal choice for AdjList is not very clear,

it depends on the deadline requirements, and the trade-off curves are much closer

to each other than for TeraSort and KMeans.

Another important point is that the cost savings vary across different appli-

cations, e.g., the execution of KMeans on large VM instances leads to higher cost

savings than the execution of TeraSort on small VMs. Thus, if we would like to par-

tition a given workloadW = {J1, J2, ...Jn} into two groups of applications each to

be executed by a Hadoop cluster based on different type VM instances, we need

to be able to rank these application with respect to their preference “strength” be-

tween two considered platforms.

In the next section, we consider a heterogeneous solution that consists of two

homogeneous Hadoop sub-clusters deployed with different type VM instances2.

As an example, we consider a heterogeneous solution formed by small (S) and large

(L) VM instances. To measure the ”strength” of application preference between

two different VM types we introduce an application preference score PScoreS−L

defined as a difference between the normalized costs of simulated cost/performance

curves (such as shown in Figure 4.21):

PScoreS−L =

∑
1≤i≤NS

max
CostSi

NS
max

−
∑

1≤i≤NL
max

CostLi

NL
max

(4.6)

where NS
max and NL

max are defined by Eq. 4.5 for Hadoop clusters with small and

large VM type instances respectively.
2The designed framework can be generalized for a larger number of clusters. However, this might signif-

icantly increase the algorithm complexity without adding new performance benefits.

107

Chapter 4. Resource Management for MapReduce Applications

The value of PScoreS−L indicates the possible impact on the provisioning cost,

i.e, a large negative (positive) value indicates a stronger preference of small (large)

VM instances, while values closer to 0 reflect less sensitivity to the platform choice.

For optimized heterogeneous solution, we need to determine the following pa-

rameters:

• The number of instances for each sub-cluster (i.e., the number of worker n-

odes plus a dedicated node to host JobTracker and Name Node for each sub-

cluster).

• The subset of applications to be executed on each cluster.

Algorithm 5 shows the pseudo code of our heterogeneous solution. For a presen-

tation simplicity, we show the code for a heterogeneous solution with small and

large VM instances.

First, we sort the jobs in the ascending order according to their preference rank-

ing PScoreS−L. Thus the jobs in the beginning of the list have a performance pref-

erence for executing on the small instances. Then we split the ordered job list into

two subsets: first one to be executed on the cluster with small instances and the

other one to be executed on the cluster with large instances (lines 4-5). For each

group, we use Algorithm 4 for homogeneous cluster provisioning to determine the

optimized size of each sub-cluster that leads to the minimal monetary cost (lines 6-

7). We consider all possible splits by iterating through the split point from 1 to the

total number of jobs N and use a variable min costS+L to keep track of the found

minimal total cost, i.e, the sum of costs from both sub-clusters (lines 9-12).

Evaluation of resource provision for heterogeneous cluster

In the performance study, we use the same set of 13 applications described in Sec-

tion 3.2. Table 4.2 provides the description of the applications with the application

preference score PScoreS−L in the last column

A positive value of the application preference score PScoreS−L (e.g, KMean-

s, Classification) indicates that the application is more cost-efficient on large VMs,

108

4.2. Resource provisioning in public cloud environment

Algorithm 5 Provisioning Solution for Heterogeneous Cluster
Input:
W = {J1, J2, ...Jn} ← workload with traces and profiles, where jobs are sorted
in ascending order by their preference score PScoreS−L;
D ← a given time deadline for processingW .
Output:
NS ← number of small instances;
NL← number of large instances;
WS ← List of jobs to be executed on small instance-based cluster;
WL← List of jobs to be executed on large instance-based cluster;
min costS+L← the minimal monetary cost of heterogeneous clusters.

1: min costS+L←∞
2: for split← 1 to n− 1 do
3: // Partition workloadW into 2 groups
4: JobsS ← J1, ..., Jsplit
5: JobsL ← Jsplit+1, ..., Jn
6: (ÑS,min costS) = Algorithm 4(JobsS, small,D)
7: (ÑL,min costL) = Algorithm 4(JobsL, large,D)
8: total cost← min costS +min costL

9: if total cost < min costS+L then
10: min costS+L ← total cost
11: WS ← JobsS, WL ← JobsL

12: NS ← ÑS , NL ← ÑL

13: end if
14: end for

while a negative value (e.g., TeraSort, WordCount) means that the application fa-

vors small VM instances. The absolute score value is indicative of the preference

”strength”. When the preference score is close to 0 (e.g., Adjlist), it means that the

application does not have a clear preference between the instance types.

We create three different workloads described as follows:

• W1 – it contains all 13 applications shown in Table 3.2.

• W2 – it contains 11 applications: 1-11, i.e., excluding KMeans and Classification

from the application set.

• W3 – it contains 12 applications: 1-12, i.e., excluding KMeans from the appli-

cation set.

Figure 4.22 shows the simulated cost/performance trade-off curves for three

workloads executed on both homogeneous and heterogeneous Hadoop cluster(s).

109

Chapter 4. Resource Management for MapReduce Applications

Application Input data Input data #map,red PScoreS−L

(type) size (GB) tasks
1. TeraSort Synthetic 31 495, 240 -3.74
2. WordCount Wikipedia 50 788, 240 -5.96
3. Grep Wikipedia 50 788, 1 -3.30
4. InvIndex Wikipedia 50 788, 240 -7.90
5. RankInvIndex Wikipedia 46 745, 240 -5.13
6. TermVector Wikipedia 50 788, 240 3.11
7. SeqCount Wikipedia 50 788, 240 -4.23
8. SelfJoin Synthetic 28 448, 240 -5.41
9. AdjList Synthetic 28 508, 240 -0.7
10. HistMovies Netflix 27 428, 1 -1.64
11. HistRatings Netflix 27 428, 1 -2.53
12. Classification Netflix 27 428, 50 19.59
13. KMeans Netflix 27 428, 50 18.6

Table 4.2: Application characteristics.

For homogeneous provisioning, we show the three trade-off curves for Hadoop clus-

ters based on small, medium and large VM instances respectively.

Figure 4.22 (a) shows that workload W1 is more cost-efficient when executed

on the Hadoop cluster with large VMs (among the homogeneous clusters). Such

results can be expected because W1 contains both KMeans and Classification that

have very strong preference towards large VM instances (see their high positive

PScoreS−L). In comparison, W2 contains applications that mostly favor the s-

mall VM instances, and as a result, the most efficient trade-off curve belongs to a

Hadoop cluster based on the small VM instances. Finally, W3 represents a mixed

case: it has Classification application that strongly favors large VM instances while

most of the remaining applications prefer small VM instances. Figure 4.22(c) shows

that a choice of the best homogeneous platform depends on the workload perfor-

mance objectives (i.e., deadline D).

The yellow dots in Figure 4.22 represent the completion time and monetary

cost when we exploit a heterogeneous provisioning case. Each point corresponds to

a workload split into two subsets that are executed on the Hadoop cluster formed

with small and large VM instances respectively. This is why instead of the explicit

110

4.2. Resource provisioning in public cloud environment

 0

 50000

 100000

 150000

 200000

 0 20 40 60 80 100

M
a
k
e
sp

a
n
 (

s)

cost ($)

heterogeneous
small

medium
large

(a) Workload W1

 0

 50000

 100000

 150000

 200000

 0 10 20 30 40 50 60 70

M
a
k
e
sp

a
n
 (

s)

cost ($)

heterogeneous
small

medium
large

(b) Workload W2

 0

 50000

 100000

 150000

 200000

 0 10 20 30 40 50 60 70 80

M
a
k
e
sp

a
n
 (

s)

cost ($)

heterogeneous
small

medium
large

(c) Workload W3

Figure 4.22: Performance versus cost trade-offs for different workloads.

trade-off curves for the homogeneous cluster case, the simulation results for the

heterogeneous case look much more scattered across the space.

To evaluate the efficiency of our provisioning algorithms, we consider different

performance objectives for each workload:

• D= 20000 seconds for workloadW1;

• D= 10000 seconds for workloadW2;

• D= 15000 seconds for workloadW3.

Tables 4.3-4.5 present the provisioning results for each workload with homoge-

neous and heterogeneous Hadoop clusters that have minimal monetary costs while

meeting the given workload deadlines.

111

Chapter 4. Resource Management for MapReduce Applications

Among the homogeneous Hadoop clusters for W1, the cluster with large VM

instances has the lowest monetary cost of $32.86.

By contrast, for workload W2, the homogeneous Hadoop cluster with small

VMs provides the lowest cost of $10.68.

For W3, all the three homogeneous solutions lead to a similar minimal cost,

and the Hadoop cluster based on medium VMs has a slightly better cost than the

other two alternatives.

Intuitively, these performance results are expected from the trade-off curves for

three workloads shown in Figure 4.22.

Cluster Type Number of Completion Monetary
Instances Time (sec) Cost ($)

small (homogeneous) 210 15763 55.43
medium (homogeneous) 105 15137 53.48
large (homogeneous) 39 12323 32.86
small + large heterogeneous 48 small +

20 large
14988 24.21

Table 4.3: Cluster provisioning results for workloadW1.

Cluster type Number of Completion Monetary
Instances Time (sec) Cost ($)

small (homogeneous) 87 7283 10.68
medium (homogeneous) 43 9603 14.08
large (homogeneous) 49 9893 32.98
small+ large heterogeneous 76 small +

21 large
6763 14.71

Table 4.4: Cluster provisioning results for workloadW2.

Cluster type Number of Completion Monetary
Instances Time (sec) Cost ($)

small (homogeneous) 140 13775 32.37
medium (homogeneous) 70 13118 31.05
large (homogeneous) 36 13265 32.72
small + large heterogeneous 74 small +

15 large
10130 18.0

Table 4.5: Cluster provisioning results for workloadW3.

112

4.3. Conclusion

The best heterogeneous solution for each workload is shown in the last row in

Tables 4.3-4.5. For W1, the minimal cost of the heterogeneous solution is $24.21

which is 26% improvement compared to the minimal cost of the homogeneous

solution based on the large VM instances. In this heterogeneous solution, the ap-

plications SelfJoin, WordCount, InvIndex are executed on the cluster with small VMs

and applications Classification, KMeans, TermVector, Adjlist, HistMovies, HistRating,

Grep, TeraSort, SeqCount, RankInvInd are executed on the cluster with large VM in-

stances.

The cost benefits of the heterogeneous solution is even more significant forW3:

it leads to cost savings of 42% compared to the minimal cost of the homogeneous

solution. In this heterogeneous solution, the applications HistMovies, HistRating,

Grep, TeraSort, SeqCount, RankInvInd, SelfJoin, WordCount, InvIndex are executed on

the cluster with small VMs and applications Classification, TermVector, Adjlist are

executed on the cluster with large VMs.

However, for workload W2, the heterogeneous solution does not provide ad-

ditional cost benefits. One important reason is that for a heterogeneous solution,

we need to maintain additional nodes deployed as JobTracker and NameNode for

each sub-cluster. This increases the total provisioning cost compared to the ho-

mogeneous solution which only requires a single additional node for the entire

cluster. The workload properties also play an important role here. As W2 work-

load does not have any applications that have ”strong” preference for large VM

instances, the introduction of a special sub-cluster with large VM instances is not

justified.

4.3 Conclusion

In this chapter, we focus on two resource management problems for MapReduce

workloads. One is resource allocation on shared Hadoop cluster which aims to

tailer and control the amount of cluster resources that should be allocated to each

application. The other is resource provisioning in public cloud environment which

113

Chapter 4. Resource Management for MapReduce Applications

aims to help users to select the the best cost/performance platform for a given

workload that contains multiple applications with different platform preferences.

We solve these problems by combining the profiling strategy, the platform e-

valuation framework described in Chapter 3 and also a simulator that replays the

extracted traces with different platform settings. Specifically, for the resource al-

location problem, we use our evaluation framework to accurately estimate the

amount of resource that required by each application and our deadline-driven

scheduler controls the resource allocation during runtime. For the resource pro-

visioning problem, we demonstrate that seemingly equivalent platform choices

for a Hadoop cluster might result in a very different application performance, and

thus lead to a different cost. We propose our solution for both homogeneous and

heterogeneous clusters. Our case study with Amazon EC2 platform reveals that

for different workloads, an optimized platform choice may result in 41%-67% cost

savings for achieving the same performance objectives. Moreover, depending on

the workload characteristic, the heterogeneous solution may outperform the ho-

mogeneous cluster solution by 26%-42%.

114

Chapter 5

Performance Optimization with

optimal job settings

How to execute the MapReduce applications more efficiently is an important issue

which has been studied in several works [46, 71, 34, 75]. In this chapter, we focus

on optimizing the execution performance of MapReduce applications that defined

as a workflow of sequential jobs through automatically turning the job settings a-

long the workflow.

We first show in Chapter 5.1 that the number of reduce task could significantly

affect the MapReduce job completion time and the choice of the right number of

reduce tasks depends on the Hadoop cluster size, the size of the input dataset(s)

of the job, and the amount of resources available for processing this job. For more

complex applications defined as MapReduce workflows, the effect of the job set-

tings could also propagate through the workflow due to the data dependency: the

output of one job becomes the input of the next job, and therefore, the number

of reduce tasks in the previous job defines the number (and size) of input files

of the next job, and affect its processing efficiency. Besides, we also identify the

performance trade-offs during the application execution: depend on the applica-

tion property and the input data size, a nearly optimal completion time might be

achieved with a relatively small amount of the cluster resources.

We then provide an automatic performance optimization tool that automates

115

Chapter 5. Performance Optimization with optimal job settings

the user efforts of tuning the job settings within a MapReduce application. i.e.,

tuning the numbers of reduce tasks along the MapReduce workflow. It is based

on the performance modeling framework we proposed in Chapter 3 to evaluate

the execution efficiency of different job settings and aims to determine the one

for optimizing the total completion time while minimizing the resource usage for

its execution. It adopts two optimization strategies to achieve trade-offs between

these two goals: a local one with trade-offs at a job level, and a global one that

makes the optimization trade-off decisions at the workflow level.

5.1 Motivation

Figure 5.1 shows a simple motivating example for the problem of tuning the job

settings and its impact on the completion time. In these experiments, we use the

Sort benchmark [47] with 10 GB input on 64 machines each configured with a single

map and a single reduce slot, i.e., with 128 map and 128 reduce slots overall.

Figure 5.1 (a) shows the job completion time as different numbers of reduce

tasks are used for executing this job. The configurations with 64 and 128 reduce

tasks produce much better completion times compared with other settings shown

in this graph (10%-45% completion time reduction). Intuitively, settings with a low

number of reduce tasks limit the job execution concurrency. While, settings with a

higher number of reduce tasks increase the job execution parallelism but they also

require a higher amount of resources (slots) assigned to the program. Moreover,

at some point (e.g., 512 reduce tasks) it may lead to a higher overhead and higher

processing time.

Figure 5.1 (b) shows a complementary situation: it reflects how the job com-

pletion time is impacted by the input data size per map task. In a MapReduce

workflow, the outputs generated by the previous job become inputs of the next

one, and the size of the generated files may have a significant impact of the perfor-

mance of the next job. In these experiments, we use the same Sort benchmark [47]

with 10 GB input, which has a fixed number of 120 reduce tasks, but the input

116

5.1. Motivation

 0

 500

 1000

 1500

 2000

1 2 4 8 16 32 64 128 256 512

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
 (

s)

Number of reduce tasks
(a)

 0

 100

 200

 300

 400

 500

 600

1 2 4 8 16 32 64 128 256 512
 0

 2000

 4000

 6000

 8000

 10000

 12000

Jo
b

 C
o

m
p

le
ti

o
n

 T
im

e
 (

s)

N
u

m
b

e
r

o
f

m
a
p

 t
a
sk

s

Input size per map task (MB)
(b)

Figure 5.1: Motivating Examples.

file sizes of map tasks are different. The line that goes across the bars reflects the

number of map tasks executed by the program (practically, it shows the concur-

rency degree in the map stage execution). The interesting observation here is that

the smaller size input per task incur higher processing overhead that overwrites

the benefits of a high execution parallelism. However, a larger input size per map

task limits the concurrency degree in the program execution. Another interesting

observation in Figure 5.1 (b) is that there are a few different input sizes per map

task that result in a similar completion time, but differ in how many map slots are

needed for job processing.

5.1.1 Why not use best practices?

There is a list of best practices [3] that offers useful guidelines to the users in deter-

mining the appropriate configuration settings. The offered rule of thumb suggests

to set the number of reduce tasks to 90% of all available resources (reduce slots)

in the cluster. Intuitively, this maximizes the concurrency degree in job execu-

tions while leaving some “room” for recovering from the failures. This approach

may work under the FIFO scheduler when all the cluster resource are (eventual-

ly) available to the next scheduled job. This guideline does not work well when

the Hadoop cluster is shared by multiple users, and their jobs are scheduled with

117

Chapter 5. Performance Optimization with optimal job settings

Hadoop Fair Scheduler (HFS) [77] or Capacity Scheduler [2]. Moreover, the rule

of thumb suggests the same number of reduce tasks for all applications without

taking into account the amount of input data for processing in these jobs.

To illustrate these issues, Figure 5.2 shows the impact of the number of reduce

tasks on the query completion time for TPC-H Q1 and TPC-H Q19 with different

input dataset sizes. Both queries are compiled into workflows with two sequential

MapReduce jobs (See the query description in Chapter 5.3.1).

 0

 100

 200

 300

 400

 500

 600

8 16 24 32 64 128 256

Q
u

er
y

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

Number of reduce tasks

5GB
10GB
15GB
20GB

(a) TPC-H Q1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

8 16 24 32 64 128 256

Q
u

er
y

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

Number of reduce tasks

5GB
10GB
15GB
20GB

(b) TPC-H Q19

Figure 5.2: Effect of reduce task settings for processing the same job with different input
dataset sizes.

The rule of thumb suggests to use 115 reduce tasks (128*0.9=115). However, as

we can see from the results in Figure 5.2 (a), for dataset sizes of 10 GB and 15 GB

the same performance could be achieved with 50% of the suggested resources. The

resource savings are even higher for TPC-H Q1 with 5 GB input size: it can achieve

the nearly optimal performance by using only 24 reduce tasks (this represents 80%

savings against the rule of thumb setting). The results for TPC-H Q19 show similar

trends and conclusion.

In addition, Figure 5.3 shows the effect of reduce task settings on TPC-H Q1

query completion time when only a fraction of resources (both map and reduce

slots) is available for the job execution.

Figures 5.3 (a) and (b) show the results with the input dataset size of 10 GB and

1 GB respectively. The graphs reflect that when less resources are available to a job

118

5.2. Problem definition and the solution outline

 100

 200

 300

 400

 500

 600

 700

 800

 900

8 16 32 64 128 256

Q
u

er
y

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

Number of reduce tasks

10%

20%

30%

50%

100%

(a) input size 10 GB

 50

 100

 150

 200

 250

 300

 350

 400

 450

8 16 32 64 128 256

Q
u

er
y

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

Number of reduce tasks

10%

20%

30%

50%

100%

(b) input size 1 GB

Figure 5.3: Effect of reduce task settings when only a fraction of resources is avail-
able.

(e.g., 10% of all map and reduce slots in the cluster), the offered rule of thumb setting

(115 reduce tasks) could even hurt the query completion time since the expected

high concurrency degree in the job execution cannot be achieved with limited re-

sources while the overhead introduced by a higher number of reduce tasks causes

a longer completion time. This negative impact is even more pronounced when

the input dataset size is small as shown in Figure 5.3 (b). For example, when the

query can only use 10% of cluster resources, the query completion time with the

rule of thumb setting (115 reduce tasks) is more than 2 times higher compared to

the completion time of this query with eight reduce tasks.

5.2 Problem definition and the solution outline

Our main goal is to determine the job settings (i.e., the number of reduce tasks for

each job) that optimize the overall completion time of the application. However,

we also aim for an additional goal that is to minimize the resource usage for achiev-

ing this optimized time. Often nearly optimal completion time can be achieved

with a significantly smaller amount of resources (see the outcome of 64 and 128

reduce tasks in Figure 5.1 (a)). Moreover, it was observed in [77, 73, 61, 60] that

119

Chapter 5. Performance Optimization with optimal job settings

the lack of reduce slots in the Hadoop cluster is a main cause of a starvation prob-

lem. Therefore, optimizing (decreasing) the reduce task settings while achieving

performance objectives is a desirable feature of an efficient workload management

in the cluster.

Towards solving the problem, one critical observation we have is that the op-

timization problem for complex MapReduce workflows can be efficiently solved

through the optimization problem of the pairs of its sequential jobs.

As an example, Figure 5.4 shows a MapReduce workflow that consists of three

sequential jobs: J1, J2, and J3. To optimize the overall completion time we need to

Figure 5.4: Example workflow with 3 sequential jobs

tune the reduce task settings in jobs J1, J2, and J3. A question to answer is whether

the choice of reduce task setting in job J1 impacts the choice of reduce task setting

in job J2, etc.

A critical observation here is that the size of overall data generated between the

map and reduce stages of the same job and between two sequential jobs does not

depend on the reduce task settings of these jobs. For example, the overall amount of

output data Dout
1 of job J1 does not depend on the number of reduce tasks in J1. It

is defined by the size and properties of Dinterm
1 , and the semantics of J1’s reduce

function. Similarly, the amount of Dinterm
2 is defined by the size of Dout

1 , properties

of this data, and the semantics of J2’s map function. Again, the size of Dinterm
2 does

not depend on the number of reduce tasks in J1.

Therefore the amount of intermediate data generated by the map stage of J2 is

the same (i.e., invariant) for different settings of reduce tasks in the previous job J1.

120

5.2. Problem definition and the solution outline

It means that the choice of an appropriate number of reduce tasks in job J2 does

not depend on the choice of reduce task setting of job J1. It is primarily driven by

an optimized execution of the next pair of jobs J2 and J3. Finally, tuning the reduce

task setting in J3 is driven by optimizing its own completion time.

In such a way, the optimization problem of the entire workflow can be efficient-

ly solved through the optimization problem of the pairs of its sequential jobs. Therefore,

for two sequential jobs J1 and J2, we need to design a model that evaluates the

execution times of J1’s reduce stage and J2’s map stage as a function of a num-

ber of reduce tasks in J1. Such a model will enable us to iterate through a range

of reduce tasks’ parameters and identify a parameter that leads to the minimized

completion time of these jobs.

5.2.1 Two optimization strategies

According to the observation we described in Chapter 5.2, the optimization prob-

lem of reduce task settings for a given MapReduce workflow W = {J1, ..., Jn} can

be efficiently solved through the optimization problem of the pairs of its sequen-

tial jobs. Therefore, for any two sequential jobs (Ji, Ji+1), where i = 1, ..., n− 1, we

need to evaluate the execution times of Ji’s reduce stage and Ji+1’s map stage as

a function of the number of reduce tasks NJi
R in Ji (see the related illustration in

Figure 5.4). Let us denote this execution time as Ti,i+1(N
Ji
R).

By iterating through the number of reduce tasks in Ji we can find the reduce

task setting NJi,min
R that results in the minimal completion time Tmin

i,i+1 for the pair

(Ji, Ji+1), i.e., Tmin
i,i+1 = Ti,i+1(N

Ji,min
R). By determining the reduce task settings s for

all the job pairs, i.e., smin = {NJ1,min
R , ..., NJn,min

R }, we can determine the minimal

total completion time TW (smin). The optimizations can be used with Hadoop Fair

Scheduler (HFS) [8] or Capacity Scheduler [2] and multiple jobs executed on a clus-

ter. Both schedulers allow configuring different size resource pools each running

jobs in the FIFO manner.

Note, that the proposed approach for finding the reduce task setting that min-

imizes the total completion time can be applied to a different amount of available

121

Chapter 5. Performance Optimization with optimal job settings

resources, e.g., the entire cluster or a fraction of available cluster resources. In

such a way, the optimized execution can be constructed for any size resource pool

managed (available) in a Hadoop cluster.

We aim to design the optimization strategy that enables a user to analyze the

possible trade-offs, such as execution performance versus its resource usage. We

aim to answer the following question: if the performance goal allows a specified

increase of the minimal total completion time TW (smin), e.g., by 10%, then what is

the resource usage under such execution compared to RW (smin)?

We define the resource usage Ri,i+1(N
Ji
R) for a sequential job pair (Ji, Ji+1) exe-

cuted with the number of reduce tasks NJi
R in job Ji as follows:

Ri,i+1(N
Ji
R) = T Ji

R task ×N
Ji
R + T

Ji+1

M task ×N
Ji+1

M

where NJi+1

M represent the number of map tasks of job Ji+1, and T Ji
R task and T

Ji+1

M task

represent the average execution time of reduce and map tasks of Ji and Ji+1 re-

spectively. The resource usage for the entire MapReduce workflow is defined as

the sum of resource usages for each job within the workflow.

Table 5.1 summarizes the notations that we use for defining the optimization

strategies below.

Table 5.1: Notation Summary

Ti,i+1(N
Ji
R) Completion time of (Ji, Ji+1) with NJi

R reduce tasks
Ri,i+1(N

Ji
R) Resource usage of pair (Ji, Ji+1) with NJi

R reduce tasks
TW (s) Completion time of the entire workflow W with setting s
RW (s) Resource usage of the entire workflow W with setting s
Tmin
i,i+1 Minimal completion time of a job pair (Ji, Ji+1)

NJi,min
R Number of reduce tasks in Ji that leads to Tmin

i,i+1

w increase Allowed increase of the min workflow completion time
NJi,incr

R Number of reduce tasks in Ji to meet the increased time

The first algorithm is based on the local optimization. The user specifies the al-

lowed increase w increase of the minimal overall completion time TW (smin). Our

goal is to compute the new job settings that allow achieving this increased com-

pletion time.

122

5.2. Problem definition and the solution outline

To accomplish this goal, a straightforward approach is to apply the user-defined

w increase to the minimal completion time Tmin
i,i+1 of each pair of sequential jobs

(Ji, Ji+1), and then determine the corresponding number of reduce tasks in Ji. Fig-

ure 5.5 illustrates the possible relationship between the completion time of job pair

(Ji, Ji+1) and the number of reduce tasks in ji. The horizontal red line represents

the relaxed completion time when applied the user defined threshold on the min-

imal pair duration and the vertical green line is the corresponding setting of the

reduce tasks in satisfying the new completion time. We could find out such new

setting by step-by-step decrease the reduce task number (start from the one that

leads to the minimal duration) and recompute the pair completion time.

The pseudo-code defining this strategy is shown in Algorithm 6. The comple-

tion time of each job pair is locally increased (line 2), and then the corresponding

reduce task settings are computed (lines 4-6).

0

100

200

300

400

500

0 10 20 30 40 50 60

C
o

m
p

le
ti

o
n

 t
im

e

Number of reduce tasks

User defined threshold
on completion time

Reduce task setting that
satisfy the threshold

Figure 5.5: Example of the local optimization strategy

While this local optimization strategy is simple to implement, there could be

additional resource savings achieved if we consider a global optimization. Intuitive-

ly, the resource usage for job pairs along the workflow might be quite different

depending on the job characteristics. Therefore, we could identify the job pairs

with the highest resource savings (gains) for their increased completion times.

The pseudo-code defining this global optimization strategy is shown in Algo-

123

Chapter 5. Performance Optimization with optimal job settings

Algorithm 6 Local optimization strategy for deriving workflow reduce tasks’ set-
tings

1: for i← 1 to n do
2: T incr

i,i+1 = Tmin
i,i+1 × (1 + w increase)

3: NJi,cur
R ← NJi,min

R

4: while Ti,i+1(N
Ji,cur
Ri

) < T incr
i,i+1 do

5: NJi,cur
R ← NJi,cur

R − 1
6: end while
7: NJi,incr

R ← NJi,cur
R

8: end for

Algorithm 7 Global optimization strategy for deriving workflow reduce tasks’ set-
tings

1: scur = smin = {NJ1,min
R , ..., NJn,min

R }
2: Tw incr = TW (smin)× (1 + w increase)
3: for i← 1 to n do
4: NJi,incr

R ← NJi,min
R

5: end for
6: while true do
7: bestJob = −1, maxGain = 0
8: for i← 1 to n do
9: NJi,tmp

R ← NJi,incr
R − 1

10: stmp = scur ∪ {NJi,tmp
R } − {NJi,incr

R }
11: if TW (stmp) ≤ Tw incr then

12: Gain = RW (smin)−RW (stmp)
TW (stmp)−TW (smin)

13: if Gain > MaxGain then
14: maxGain← Gain, bestJob← i
15: end if
16: end if
17: end for
18: if bestJob = −1 then
19: break
20: else
21: N bestJob,incr

R ← N bestJob,incr
R − 1

22: end if
23: end while

rithm 7. First, we apply the user-specified w increase to determine the targeted

completion time Tw incr (line 2). The initial number of reduce task for each job Ji is

set to NJi,min
R (lines 3-5), and then we go through the iteration that at each round

estimates the gain we can get by decreasing the number of reduce tasks by one for

124

5.3. Evaluation results

each job Ji. The gain is defined as the total resource savings (the difference of the

resource usage before and after decreasing the reduce task number of Ji) divided

by the corresponding completion time degrade (the difference of the completion

time before and after decreasing the reduce task number of Ji). We aim to identify

the job that achieves the highest gain with the decreased amount of reduce tasks

while satisfying the targeted overall completion time (lines 8-17). We pick the job

which brings the largest gain and decrease its reduce task setting by 1 (line 21).

Then the iteration repeats until the number of reduce tasks in any job cannot be

further decreased because it would cause a violation of the targeted overall com-

pletion time Tw incr (line 11).

We demonstrate the process of our global optimization strategy with a sim-

plified example as follows. Give a MapReduce applicaiton with 3 sequential jobs

J1, J2 and J3, Table 5.2 shows for each job pair, the corresponding results when

we decrease the reduce task number by 1 for J1, J2 and J3 respectively while the

last column shows the gain of each operation. As we can see, job pair (j2, j3) has

the highest gain and we will decrease the reduce task number for j2 by 1 in this

case. After that, the same process continues until the further decrease of reduce

task number for any job will violate the completion time threshold for the entire

workflow.

Table 5.2: Example of the global optimization strategy

Job pair CT increase R saving Gain
(J1; J2) 2 1 0.5
(J2; J3) 3 2 0.67

(J3) 5 2 0.4

5.3 Evaluation results

We present a set of validation results for the benefits by tuning the jobs settings

and experiments that justify the choice of two optimization strategies. The testbed

125

Chapter 5. Performance Optimization with optimal job settings

we used is the same as we described in Chapter 3.1.4, but we use a different set of

workloads.

5.3.1 Experimental workloads

To validate the accuracy, effectiveness, and performance benefits of the proposed

framework, we use a workload set that consists of queries from TPC-H benchmark

and custom queries mining on HP Lab’s web proxy log. We provide descriptions

of these queries below.

The TPC-H and proxy queries are translated into MapReduce application using

Pig and are compiled into sequential MapReduce workflows that are graphically

represented in Figure 5.6.

Sort Group

(a) TPC-Q1

Join Group

(b) TPC-Q19

Join

Join Sort Group

(c) TPC-Q3

Join Sort Group Group

(d) TPC-Q13

Sort

Join

Group

(e) proxy-Q1

Join

Group

Group Group

(f) proxy-Q2

Figure 5.6: MapReduce workflows for TPC-H and Proxy queries.

• TPC-H Q1: This query provides a summary report of all the lineitems shipped

as of a given date. The lineitems are grouped by different attributes and list-

ed in ascending order. The query is translated into a workflow with two

sequential MapReduce jobs as shown in Figure 5.6 (a).

126

5.3. Evaluation results

• TPC-H Q19: This query reports gross discounted revenue for all orders for

three different types of parts that were shipped by air or delivered in person.

The query is translated into a workflow with two sequential MapReduce jobs

as shown in Figure 5.6 (b).

• TPC-Q3: This query retrieves the shipping priority and potential revenue of

the orders that had not been shipped and list them in decreasing order of

revenue. The query is translated into four jobs as shown in Figure 5.6 (c).

• TPC-Q13: This query determines the distribution of customers by the num-

ber of orders they have made. (It counts and reports how many customers

have no orders, how many have 1, 2, 3, etc.) The query is translated into four

jobs as shown in Figure 5.6 (d).

• proxy-Q1: This program compares the average daily access frequency for

each website during years 2011 and 2012 respectively. The program is trans-

lated into three sequential jobs as shown in Figure 5.6 (e).

• proxy-Q2: This program computes the intersection between the top 500 pop-

ular websites accessed by HP users and the top 100 popular web-sites in US.

The program is translated into four jobs as shown in Figure 5.6 (f).

5.3.2 Performance optimization benefits

Since it is infeasible to validate optimal settings by testbed executions (unless we

exhaustively execute the programs with all possible settings), we evaluate the

models’ accuracy to justify the optimal settings procedure and demonstrate the

potential benefits with our performance optimizations. In this set of experiments,

we use queries TPC-H Q1 and TPC-H Q19 from the TPC-H benchmark as our s-

tudy cases.

We execute these two queries with the total input size of 10 GB (a scaling fac-

tor of 10 using TPC-H data generator) in our 66-node Hadoop cluster. Figure 5.7

shows measured and predicted query completion times for a varied number of re-

duce tasks in the first job of both workflows (the number of reduce tasks for the

127

Chapter 5. Performance Optimization with optimal job settings

second job is fixed in these experiments). First of all, results presented in Figure 5.7

reflect a good quality of our models: the difference between measured and predict-

ed completion times for most of the experiments is less than 10%. Moreover, the

predicted completion times accurately reflect a similar trend observed in measured

completion times of the studied workflows as a function of the reduce task config-

uration. These experiments demonstrate that there is a significant difference (up

to 4-5 times) in the total completion times depending on the reduce task settings.

 0

 100

 200

 300

 400

 500

 600

4 8 16 32 64 128 256

Q
u

er
y

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

Number of reduce tasks

Measured
Predicted

(a) TPC-H Q1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4 8 16 32 64 128 256

Q
u

er
y

 C
o

m
p

le
ti

o
n

 T
im

e
(s

)

Number of reduce tasks

Measured
Predicted

(b) TPC-H Q19

Figure 5.7: Workflow model validation for TPC-H Q1 and TPC-H Q19.

Figure 5.7 shows that the query completion time decreases with the increased

number of reduce tasks (because it leads to a higher concurrency degree and a

smaller amount of data processed by each task). However, at some point job set-

tings with a high number of reduce tasks (e.g., 256) may have a negative effect due

to higher overheads and higher resource allocation required to process such a job.

Another interesting observation from the results in Figure 5.7 is that under two

settings with a number of reduce tasks equal to 64 and 128 the total completion

times are very similar while the number of required reduce slots for a job execu-

tion increases twice. The proposed framework enables the user to identify useful

trade-offs in achieving the optimized total completion time while minimizing the

amount of resources required for a workflow execution.

128

5.3. Evaluation results

5.3.3 Performance benefits of the optimization strategies

In Chapter 5.3.2 and 5.1.1, we show that tuning the reduce task settings in work-

flows lead to significant performance benefits (2-5 times completion time improve-

ments). Moreover, we observe that a similar overall completion time may be ob-

tained within a certain range of reduce task settings. Figures 5.7-5.3 show that

users may achieve nearly optimal completion time (5%-10% of the minimal one)

by using a significantly smaller number of reduce tasks (half or less). This can lead

to significant resource savings of both map and reduce slots over time. Therefore,

tuning the reduce task settings that minimize the overall completion time while

optimizing the resources used by the application is a desirable feature for an effi-

cient workload management in the cluster.

We evaluate two optimization strategies introduced in Chapter 5.2.1 for de-

riving job settings along the workflow and analyzing the achievable performance

trade-offs.

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 5% 10% 15%

N
o

rm
al

iz
ed

 r
es

o
u

rc
e

u
sa

g
e

Threshold (%)

local optimization
global optimization

(a) TPC-H Q1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0% 5% 10% 15%

N
o

rm
al

iz
ed

 r
es

o
u

rc
e

u
sa

g
e

Threshold (%)

local optimization
global optimization

(b) TPC-H Q3

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 5% 10% 15%

N
o

rm
al

iz
ed

 r
es

o
u

rc
e

u
sa

g
e

Threshold (%)

local optimization
global optimization

(c) TPC-H Q13

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 5% 10% 15%

N
o

rm
al

iz
ed

 r
es

o
u

rc
e

u
sa

g
e

Threshold (%)

local optimization
global optimization

(d) TPC-H Q19

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 5% 10% 15%

N
o

rm
al

iz
ed

 r
es

o
u

rc
e

u
sa

g
e

Threshold (%)

local optimization
global optimization

(e) Proxy Q1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0% 5% 10% 15%

N
o

rm
al

iz
ed

 r
es

o
u

rc
e

u
sa

g
e

Threshold (%)

local optimization
global optimization

(f) Proxy Q2

Figure 5.8: Local and global optimization strategies: resource usage with different
w increase thresholds.

Figure 5.8 presents the normalized resource usage under local and global op-

129

Chapter 5. Performance Optimization with optimal job settings

timization strategies when they are applied with different thresholds for a overall

completion time increase, i.e., w increase= 0%, 5%, 10%, 15%. Figures 5.8 (a)-(d)

show the measured results for four TPC-H queries with the input size of 10GB (i.e.,

scaling fastor of 10), and Figures 5.8 (e)-(f) show results for two proxy queries that

process 3-month data of web proxy logs. For presentation purposes, we show the

normalized resource usage with respect to the resource usage under the rule of

thumb setting that sets the number of reduce tasks in the job to 90% of the available

reduce slots in the cluster. In the presented results, we also eliminate the resource

usage of the map stage in the first job of the workflow as its execution does not

depend on job settings.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

5 10 15 20

N
o

rm
al

iz
ed

 r
es

o
u

rc
e

u
sa

g
e

Input size (GB)

10% local optimization
10% global optimization

(a) TPC-H Q1

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20

N
o

rm
al

iz
ed

 r
es

o
u

rc
e

u
sa

g
e

Input size (GB)

10% local optimization
10% global optimization

(b) TPC-H Q3

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20
N

o
rm

al
iz

ed
 r

es
o

u
rc

e
u

sa
g

e
Input size (GB)

10% local optimization
10% global optimization

(c) TPC-H Q13

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20

N
o

rm
al

iz
ed

 r
es

o
u

rc
e

u
sa

g
e

Input size (GB)

10% local optimization
10% global optimization

(d) TPC-H Q19

 0

 0.05

 0.1

 0.15

 0.2

 0.25

1-month 3-month 6-month

N
o

rm
al

iz
ed

 r
es

o
u

rc
e

u
sa

g
e

Input data

10% local optimization
10% global optimization

(e) Proxy Q1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1-month 3-month 6-month

N
o

rm
al

iz
ed

 r
es

o
u

rc
e

u
sa

g
e

Input data

10% local optimization
10% global optimization

(f) Proxy Q2

Figure 5.9: Local and global optimization strategies: resource usage with
w increase=10% while processing different size input datasets.

The results are quite interesting. The first group of bars in Figure 5.8 shows the

normalized resource usage when a user aims to achieve the minimal overall com-

pletion time (w increase= 0%). Even in this case, there are 5%-30% resource savings

compared to the rule of thumb settings. When w increase= 0% the local and global

130

5.4. Conclusion

optimization strategies are identical and produce the same results. However, if

a user accepts 5% of the completion time increase it leads to very significant re-

source savings: 40%-95% across different queries shown in Figure 5.8. The biggest

resource savings are achieved for TPC-H Q1 and Proxy Q1: 95% and 85% respec-

tively. Moreover, for these two queries global optimization strategy outperforms

the local one by 20%-40%. As we can see the performance trade-offs are applica-

tion dependent.

Figure 5.9 compares the normalized resource usage under local and global op-

timization strategies when the queries process different amounts of input data (for

proxy queries, x-month means that x-months of logs data are used for process-

ing). In these experiments, we set w increase=10%. The results again show that the

reduce task settings and related performance benefits are not only application de-

pendent, but also depend on the amount of data processed by the application. The

global optimization policy always outperforms the local one, and in some cases,

the gain is significant: up to 40% additional resource savings for TPC-H Q1 and

Proxy Q1 for processing smaller datasets.

In summary, our performance optimization through tuning the job settings of-

fers an automated way for a proactive analysis of achievable performance trade-

offs to enable an efficient workload management in a Hadoop cluster.

5.4 Conclusion

Many companies are on a fast track of designing advanced data analytics over

large datasets using MapReduce environments. Optimizing the execution efficien-

cy of these applications is a challenging problem that requires the user experience

and expertize.

In this chapter, we propose an automatic performance optimization frame-

work for guiding the user efforts of tuning the job settings (i.e., the number of

reduce tasks) within MapReduce applications defined as sequential workflows

while achieving performance objectives. The proposed approach is based on our

131

Chapter 5. Performance Optimization with optimal job settings

performance evaluation framework described in Chapter 3. We design and an-

alyze two optimization strategies for determining the reduce task numbers in a

MapReduce workflow that optimize the overall completion time while minimiz-

ing the resource usage for executing this workflow The approach does not require

any change of the Hadoop or Pig systems and our evaluation results show that in

many cases, by allowing 10% increase in the overall completion time, one can gain

40%-90% of resource usage savings.

132

Chapter 6

Related Work

Performance modeling, resource management, and performance optimization are

new topics in MapReduce environments but they have already received much at-

tention. We provide here a summary about the works from each part in the fol-

lowing sections respectively.

6.1 Performance model for MapReduce applications

In the past few years, performance modeling has received much attention and

different approaches were offered for predicting performance of MapReduce ap-

plications.

ParaTimer [44] and its earlier work Parallax [45] offers a progress estimator for

estimating the progress of parallel queries expressed as Pig programs that can

translate into directed acyclic graphs (DAGs) of MapReduce jobs. Instead of de-

tailed platform performance profiling that is designed in our work, the authors

rely on earlier debug runs of the query for estimating throughput of map and re-

duce stages on the user input data samples. The approach relies on a simplified

assumption that map (reduce) tasks of the same job have the same duration. The

usage of the FIFO scheduler limits the approach applicability for progress estima-

tion of multiple jobs running in the cluster with a different Hadoop scheduler.

In Starfish [28], the authors apply dynamic Java instrumentation to collect a run-

133

Chapter 6. Related Work

time monitoring information about job execution. They create a fine granularity

job profile that consists of a diverse variety of metrics. This detailed job profiling

enables the authors to predict the job execution under different Hadoop configu-

ration parameters, automatically derive an optimized cluster configuration, and

solve cluster sizing problem [27]. However, collecting a large set of metrics comes

at a cost, and to avoid a significant overhead, profiling is applied to a small fraction

of tasks. Another main challenge outlined by the authors is a design of an efficient

searching strategy through the high-dimensional space of parameter values. Our

phase profiling approach is inspired by Starfish [28]. However, we build a light-

weight profiling tool that only collects phase durations and therefore, it can profile

each task at a minimal cost. Moreover, the counter-based platform profiling can be

done in a small deployment cluster, and it does not impact the production jobs.

Tian and Chen [64] propose predicting a given MapReduce application perfor-

mance from a set of test runs on small input datasets and a small Hadoop cluster.

By executing a variety of 25-60 test runs the authors create a training set for build-

ing a model of a given application. Once derived, this model is able to predict the

future performance of the same application when executed on a larger input and

a larger Hadoop cluster. The limitation for this model is that the model it closely

tired with the application characteristic, when given a new application, the model

has to be rebuilt using another training set created with the new application.

ARIA [66] builds an automated framework for extracting compact job profiles

from the past application run(s). These job profiles form the basis of a MapReduce

analytic performance model that computes the lower and upper bounds on the job

completion time. It also provides an SLO-based scheduler for MapReduce jobs

with timing requirements. However, the proposed approach works only for single

MapReduce jobs. In [58], the authors design a model based on closed Queuing

Networks for predicting the execution time of the map phase of a MapReduce job.

The proposed model captures contention at compute nodes and parallelism gains

due to the increased number of slots available to map tasks.

Ganapathi et al. [25] use Kernel Canonical Correlation Analysis to predict the

134

6.1. Performance model for MapReduce applications

performance of MapReduce workloads. However, they concentrate on Hive queries

and do not attempt to model the actual execution of the MapReduce job, but dis-

cover the feature vectors through statistical correlation.

The problem of predicting the application performance on a new or different

hardware has fascinated researchers and been an open challenge for a long time

[42, 56]. In 1995, Larry McVoy and Carl Staelin introduced the lmbench [42] –

a suite of operating system microbenchmarks that provides an extensible set of

portable programs for system profiling and the use in cross-platform comparison-

s. Each microbenchmark was purposely created to capture some unique perfor-

mance properties and features that were present in popular and important appli-

cations of that time. Although such microbenchmarks can be useful in understand-

ing the end-to-end behavior of a system, the results of these microbenchmarks pro-

vide little information to indicate how well a particular application will perform

on a particular system.

A different approach is to use a set of specially generated microbenchmarks to

characterize the relative performance of the processing pipelines of two underlying

Hadoop clusters: old and new ones. Herodotou et. al. [27] attempt to derive a rela-

tive model for Hadoop clusters comprised of different Amazon EC2 instances. They

use the Starfish profiling technique and a small set of six benchmarks to exercise

job processing with data compression and combiner turned on and off. The model

is generated with the M5 Tree Model approach [51].

The other prior examples of successfully building relative models include a

relative fitness model for storage devices [43] using CART models, and a relative

model between the native and virtualized systems [74] based on a linear-regression

technique. The main challenges outlined in [43, 74] for building the accurate mod-

els are the tailored benchmark design and the benchmark coverage. Both of these

challenges are non-trivial: if a benchmark collection used for system profiling is

not representative or complete to reflect important workload properties then the

created model might be inaccurate. Finding the right approach to resolve these

issues is a non-trivial research challenge.

135

Chapter 6. Related Work

Besides using performance model in predicting the completion time, a few

MapReduce simulators were introduced for the analysis and exploration of Hadoop

cluster configuration and optimized job scheduling decisions. The designers of M-

RPerf [70] aim to provide a fine-grained simulation of MapReduce setups. To accu-

rately model inter- and intra rack task communications over network MRPerf uses

the well-known ns-2 network simulator. The authors are interested in modeling d-

ifferent cluster topologies and in their impact on the MapReduce job performance.

In our work, we follow the directions of SimMR simulator [67] and focus on sim-

ulating the job master decisions and the task/slot allocations across multiple jobs.

We do not simulate details of the TaskTrackers (their hard disks or network packet

transfers) as done by MRPerf. In spite of this, our approach accurately reflects the

job processing because of our profiling technique to represent job latencies dur-

ing different phases of MapReduce processing in the cluster. SimMR is very fast

compared to MRPerf which deals with network-packet level simulations.

Mumak [10] is an open source Apache’s MapReduce simulator. It replays traces

collected with a log processing tool, called Rumen [6]. The main difference be-

tween Mumak and SimMR is that Mumak omits modeling the shuffle/sort phase

that could significantly affect the accuracy.

6.2 Resource management for MapReduce jobs

With a primary goal of minimizing the completion times of large batch jobs the

simple FIFO scheduler (initially used in Hadoop) was quite efficient. As the num-

ber of users sharing the same MapReduce cluster increased, a new Capacity sched-

uler [2] was introduced to support more efficient and flexible cluster sharing. Ca-

pacity scheduler partitions the cluster resources into different resource pools and

provides separate job queues and priorities for each pool. However, within the

pools, there are no additional capabilities for performance management of the jobs.

As a new trend, in current MapReduce deployments, there is an increasing

fraction of ad-hoc queries which expect to get quick results back. When these

136

6.2. Resource management for MapReduce jobs

queries are submitted along with long production jobs, neither FIFO or Capacity

scheduler works well in these situation. This situation has motivated the design of

the Hadoop Fair Scheduler (HFS) [77]. It allocates equal shares to each of the users

running the MapReduce jobs, and also tries to maximize data locality by delaying

the scheduling of the task, if no local data is available. Similar fairness and data

locality goals are pursued in Quincy scheduler [33] proposed for the Dryad envi-

ronment [32]. The authors design a novel technique that maps the fair-scheduling

problem to the classic problem of min-cost flow in a directed graph to generate

a schedule. The edge weights and capacities in the graph encode the job com-

peting demands of data locality and resource allocation fairness. While both HFS

and Quincy allow fair sharing of the cluster among multiple users and their ap-

plications, these schedulers do not provide any special support for achieving the

application performance goals and the service level objectives (SLOs).

A step in this direction is proposed in FLEX [73] which extends HFS by propos-

ing a special slot allocation schema to optimize explicitly some given scheduling

metric. FLEX relies on the speedup function of the job (for map and reduce stages)

that produces the job execution time as a function of the allocated slots. This func-

tion aims to represent the application model, but it is not clear how to derive this

function for different applications and for different sizes of input datasets. FLEX

does not provide a technique for job profiling and detailed MapReduce perfor-

mance model, but instead uses a set of simplifying assumptions about the job exe-

cution, tasks durations and job progress over time. The authors do not offer a case

study to evaluate the accuracy of the proposed approach and models in achieving

the targeted job deadlines.

Another interesting extension of the existing Hadoop FIFO and fair-share sched-

ulers using the dynamic proportional sharing mechanism is proposed by Dynamic

Priority (DP) scheduler [55]. It allows users to purchase and bid for capacity (map

and reduce slots) dynamically by adjusting their spending over time. The authors

envision the scheduler to be used by deadline or cost optimizing agents on users

behalf. While this approach allows dynamically controlled resource allocation, it

137

Chapter 6. Related Work

is driven by economic mechanisms rather than a performance model and/or ap-

plication profiling for achieving job completion deadlines.

LATE [79] improves the MapReduce job completion time when executing on

heterogeneous environment. It identifies the ”stragglers” (i,e, tasks that make s-

low progress) and schedule speculative execution for those tasks earlier to elim-

inate its negative effect on completion time. [38] proposes a general scheduling

algorithm which tries to optimize both the completion time and monetary cost in

public cloud through a pre-computed matching of the tasks and the computer n-

odes. Dynamic proportional share scheduler [17] allows users to bid for map and

reduce slots by adjusting their spending over time. Similar to Capacity and Fair

scheduler, they are not designed for achieving the application completion time

goals.

Jockey [23] focus on the Dryad framework and the SCOPE system on top of it.

It tries to provide latency SLOs for data parallel jobs by pre-computing the statis-

tics on the job’s remaining run time and corresponding resource allocation with a

simulator and then dynamically control the resource allocation during runtime to

achieve the jobs completion time target. The limitation of Jockey is that it needs

to train(simulate) the completion time distributions for each job and when the in-

put size changes, they system needs to train it again as a new job which leads to

scalability problem.

In [49], the authors try to adopt the online scheduling strategy from real-time

system like Earliest Deadline First (EDF) that assigns higher priority to a job with a

tighter (earlier) deadline. However, it does not provide any guarantees for achiev-

ing the job performance goals: the scheduler assigns all available resources to the

job with the highest priority (i.e., the earliest deadline) and then kills the job if its

deadline can not be satisfied.

Another group of related work is based on resource management that considers

monetary cost and budget constraints. In [59], the authors provide a heuristic to

optimize the number of machines for a bag of jobs while minimizing the overall

completion time under a given budget. This work assumes the user does not have

138

6.2. Resource management for MapReduce jobs

any knowledge about the job completion time. It starts with a single machine and

gradually adds more nodes to the cluster based on the average job completion time

updated every time when a job is finished. In our approach, we use job profiles for

optimizing the job schedule and provisioning the cluster.

In [11], the authors design a budget-driven scheduling algorithm for MapRe-

duce applications in the heterogeneous cloud. They consider iterative MapReduce

jobs that take multiple stages to complete, each stage contains a set of map or re-

duce tasks. The optimization goal is to select a machine from a fixed pool of hetero-

geneous machines for each task to minimize the job completion time or monetary

cost. The proposed approach relies on a prior knowledge of the completion time

and cost for a task i executed on a machine j in the candidate set. In our work,

we aim at minimizing the makespan of the set of jobs and design an ensemble of

methods and tools to evaluate the job completion times as well as their makespans

as a function of allocated resources.

In [38], Kllapi et al. propose scheduling strategies to optimize performance/cost

trade-offs for general data processing workflows in the cloud. Different machines

are modelled as containers with different CPU, memory, and network capacities.

The computation workflow contains a set of nodes as operators and edges as data

flows. The authors provide a greedy and local search algorithms to schedule op-

erators on different containers so that the optimal performance (cost) is achieved

without violating budget or deadline constraints. Compared to our profiling ap-

proach, they estimate the operator execution time using the CPU container require-

ments. This approach does not apply for estimating the durations of map/reduce

tasks – their performance depends on multiple additional factors, e.g., the amount

of RAM allocated to JVM, the I/O performance of the executing node, etc. The

authors present only simulation results without validating the simulator accuracy.

139

Chapter 6. Related Work

6.3 MapReduce performance optimizations
Though MapRecuce and Hadoop have gained increasing popularity due to its sim-

ple programming model, flexible data presentation as well as its scalability and

fault tolerance, the execution performance remains a concerns for many users as

studies [48] shows that Hadoop query times are 1 to 2 orders of magnitude s-

lower than database system performing the same analysis. How to improve the

execution efficiency for processing applications of different types on MapReduce

framework has received great attention from both the academical and industrial

community.

An important part of the optimization works focus on reducing the cost to

transfer data through networks during the execution. MRShare [46] and CoScan [71]

offer the automatic sharing frameworks that merge the executions of MapReduce

jobs that have common data inputs in such a way that this data is only scanned

once, and the entire completion time is significantly reduced. AQUA [75] pro-

poses an automatic query analyzer for MapReduce applications on relational data

analysis. It uses a cost based approach to 1) decide the most efficient strategy for

join operation and 2) reconstruct the MapReduce DAGs to minimize the possible

intermediate data generated during the workflow execution. In [34], the authors

detect from the user code the similar logic of data operations like selection and pro-

jection, and then apply the traditional database query optimizations (e.g., B+Trees

for selection and column-store-style technique for projection) for those operations.

Another part of the optimization works focus on eliminating the impact of data

skew in the reduce stage. In [52], the authors propose a load balancer to balance the

reducer work in MapReduce workloads. It uses a progressive sampler to estimate

the load associated with each reduce-key and use Key Chopping to split keys with

heavy load and Key packing to pack keys with light load. SkewTune [40] focus

on reduce the negative affect of completion time caused by skewed data as well

as hardware heterogeneity. Specifically, it identifies the tasks that process large

amount of data during the execution, then dynamically break those tasks into s-

mall sub-tasks and redistribute the sub-tasks to different nodes.

140

6.3. MapReduce performance optimizations

Originally, Hadoop was designed for homogeneous environment. There has

been recent interest [79] in heterogeneous MapReduce environments. There is a

body of work focusing on performance optimization of MapReduce executions in

heterogeneous environments. Zaharia et al. [79], focus on eliminating the nega-

tive effect of stragglers on job completion time by improving the scheduling strat-

egy with speculative tasks. The Tarazu project [13] provides a communication-

aware scheduling of map computation which aims at decreasing the communica-

tion overload when faster nodes process map tasks with input data stored on slow

nodes. It also proposes a load-balancing approach for reduce computation by as-

signing different amounts of reduce work according to the node capacity. Xie et

al. [76] try improving the MapReduce performance through a heterogeneity-aware

data placement strategy: a faster nodes store larger amount of input data. In this

way, more tasks can be executed by faster nodes without a data transfer for the

map execution. Polo et al. [50] show that some MapReduce applications can be

accelerated by using special hardware. The authors design an adaptive Hadoop

scheduler that assigns such jobs to the nodes with corresponding hardware.

Much of the recent work also focuses on anomaly detection [39], stragglers [62]

and outliers [14] control in MapReduce environments as well as on optimization

and tuning cluster parameters and testbed configuration [31, 36].

These are interesting orthogonal optimization directions that pursue different

performance objectives. In our work, we focus on optimizing the execution perfor-

mance via tuning the number of reduce tasks of its jobs, while keeping the Hadoop

cluster configuration unchanged. We are not aware of published papers solving

this problem.

141

Chapter 7

Conclusion

This chapter summarizes the dissertation work and provides a few possible direc-

tions for future research work.

7.1 Summary

This dissertation centers around performance modeling and resource management

for MapReduce applications. It introduces a performance modeling framework

for estimating completion time for complex MapReduce applications defined as a

DAG of MapReduce jobs when it is executed on a given platform with different

resource allocations and different input data set(s).

Based on the performance modeling framework, we further introduce resource

allocation strategies as well as our customized deadline-driven scheduler in esti-

mating and controlling the appropriate amount of resource that should be allo-

cated to each application to meet their (soft) deadlines. For the problem of re-

source provision in public cloud environment, we identify that different applica-

tions show different execution efficiency when executed on different platforms and

provide guidance to help users determine the optimal Hadoop cluster deployment

according to their workloads.

In addition, the proposed performance modeling framework also enables au-

tomated tuning of the job settings (i.e., number of reduce tasks) along the applica-

142

7.2. Future work

tions defined as sequential MapReduce workflows for optimizing both completion

time and the resource usage for the workflows.

7.2 Future work

To conclude this dissertation, we discuss some interesting directions for future

research.

Dynamic resource management framework. Building on the current performance

modeling framework, I hope to extend it towards a more general resource manage-

ment and optimization framework which dynamically allocates different types of

resources according to the characteristics of MapReduce jobs and different service

level objectives (e.g., completion time, cost, energy consumption). The resources

considered could be defined in details by its computing, communication and stor-

age capacity and provided by different service providers. The framework should

also be able to adapt to the change of workloads and system utilization by dynami-

cally adding or removing available resources in an elastic computing environment.

Generalizing the framework for parallel data processing in distributed systems.

Our performance modeling framework is built on the MapReduce and Hadoop

architecture. However, the methodology we provided should not be restricted

to this specific platform. As the big data problem become more important, new

frameworks are evolving for parallel data processing in distributed systems. First

the Hadoop is evolving to the next generation called YARN [4, 65], which sup-

pots different processing mode and aims to improve the system utilization. There

are projects aims to provide better performance for MapReduce styple proceed-

ing by using in memory file systems like Spark [78], Shark [22] and M3R [57] and

there are also I/O efficient large scale data processing system like Sailfish [53] and

Themis [54]. As a future work, I plan to extend the existing approaches on dif-

ferent data-parallel middleware platforms in distributed systems and explore the

possibility to generalize the framework to support different platforms.

143

Chapter 7. Conclusion

Performance modeling in public cloud with virtualization. Today’s public cloud

platforms make extensive use of virtualization across computing storage, and net-

work resources. An interesting trend that has emerged in recent years is the virtu-

alization of the network layer, first demonstrated by the use of the OpenFlow [41]

API as part of the Software Defined Networking (SDN) stack [37], and more re-

cently, the proposed use of Network Function Virtualization (NFV) to virtualized

network services. These new innovations aim at making cloud service deploy-

ment easier, but also introduce a new set of challenges related to SLA guarantees

in a multi-tenant setting. An interesting avenue of work that I plan to explore, is

to develop novel performance models and resource allocation strategies that can

take into considerations the high degrees of variance in highly virtualized envi-

ronments.

144

Bibliography

[1] Apach Hadoop: TeraGen Class. http://hadoop.apache.org/common/

docs/r0.20.2/api/org/apache/hadoop/examples/terasort/

TeraGen.html.

[2] Apache Capacity Scheduler Guide. http://hadoop.apache.org/

common/docs/r0.20.1/capacity_scheduler.html.

[3] Apache hadoop: Best practices and anti-patterns. http://developer.

yahoo.com/blogs/hadoop/posts/2010/08/apache_hadoop_best_

practices_a/,2010.

[4] Apache Hadoop NextGen MapReduce (YARN). http://hadoop.apache.

org/docs/current2/hadoop-yarn/hadoop-yarn-site/YARN.

html.

[5] Apache PigMix Benchmark. http://wiki.apache.org/pig/PigMix.

[6] Apache Rumen: a tool to extract job characterization data from job tracker

logs. https://issues.apache.org/jira/browse/MAPREDUCE-728.

[7] BTrace: A Dynamic Instrumentation Tool for Java. http://kenai.com/

projects/btrace.

[8] Fair Scheduler Guide, http://hadoop.apache.org/docs/r0.20.2/

fair_scheduler.html.

[9] Hadoop: Open source implementation of MapReduce. http://hadoop.

apache.org/.

145

http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/examples/terasort/TeraGen.html
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/examples/terasort/TeraGen.html
http://hadoop.apache.org/common/docs/r0.20.2/api/org/apache/hadoop/examples/terasort/TeraGen.html
http://hadoop.apache.org/common/docs/r0.20.1/capacity_scheduler.html
http://hadoop.apache.org/common/docs/r0.20.1/capacity_scheduler.html
http://developer.yahoo.com/blogs/hadoop/posts/2010/08/apache_hadoop_best_practices_a/, 2010
http://developer.yahoo.com/blogs/hadoop/posts/2010/08/apache_hadoop_best_practices_a/, 2010
http://developer.yahoo.com/blogs/hadoop/posts/2010/08/apache_hadoop_best_practices_a/, 2010
http://hadoop.apache.org/docs/current2/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current2/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current2/hadoop-yarn/hadoop-yarn-site/YARN.html
http://wiki.apache.org/pig/PigMix
https://issues.apache.org/jira/browse/MAPREDUCE-728
http://kenai.com/projects/btrace
http://kenai.com/projects/btrace
http://hadoop.apache.org/docs/r0.20.2/fair_scheduler.html
http://hadoop.apache.org/docs/r0.20.2/fair_scheduler.html
http://hadoop.apache.org/
http://hadoop.apache.org/

Bibliography

[10] Mumak: Map-Reduce Simulator https://issues.apache.org/jira/

browse/MAPREDUCE-728.

[11] Yang Wang and Wei Shi. On Optimal Budget-Driven Scheduling Algorithms

for MapReduce Jobs in the Hetereogeneous Cloud. Technical Report TR-13-

02, Carleton University, 2013.

[12] TPC Benchmark H (Decision Support), Version 2.8.0, Transaction Processing

Performance Council (TPC), http://www.tpc.org/tpch/, 2008.

[13] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N. Vijayku-

mar. Tarazu: Optimizing MapReduce on heterogeneous clusters. In Proceed-

ings of the Seventeenth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS XVII, pages 61–74, 2012.

[14] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica,

Yi Lu, Bikas Saha, and Edward Harris. Reining in the Outliers in Map-Reduce

Clusters using Mantri. In Proceedings of the 9th USENIX Conference on Operat-

ing Systems Design and Implementation, OSDI’10, pages 1–16, 2010.

[15] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan

Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ran-

ganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, Rodrigo Schmidt,

and Amitanand Aiyer. Apache hadoop goes realtime at facebook. In

Proceedings of the 2011 international conference on Management of data, SIGMOD

’11, pages 1071–1080, 2011.

[16] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael Ernst. Haloop: Ef-

ficient iterative data processing on large clusters. Proc. VLDB Endow., 3(1):285–

296, 2010.

[17] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and

J. Zhou. Easy and Efficient Parallel Processing of Massive Data Sets. Proc. of

the VLDB Endowment, 1(2), 2008.

146

https://issues.apache.org/jira/browse/MAPREDUCE-728
https://issues.apache.org/jira/browse/MAPREDUCE-728

Bibliography

[18] Songting Chen. Cheetah: A high performance, custom data warehouse on

top of mapreduce. Proc. VLDB Endow., 3(2):1459–1468, 2010.

[19] Sudipto Das, Yannis Sismanis, Kevin S. Beyer, Rainer Gemulla, Peter J. Haas,

and John McPherson. Ricardo: integrating r and hadoop. In Proceedings of the

2011 international conference on Management of data, SIGMOD ’11, pages 987–

998, 2010.

[20] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing

on large clusters. In Proceedings of the 6th Conference on Symposium on Opearting

Systems Design & Implementation - Volume 6, OSDI’04, pages 10–10, 2004.

[21] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

[22] Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael J. Franklin,

Scott Shenker, and Ion Stoica. Shark: Fast data analysis using coarse-grained

distributed memory. In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’12, pages 689–692, 2012.

[23] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Ro-

drigo Fonseca. Jockey: Guaranteed job latency in data parallel clusters. In

Proceedings of the 7th ACM European Conference on Computer Systems, EuroSys

’12, pages 99–112, 2012.

[24] Francesco Fusco, Marc Ph. Stoecklin, and Michail Vlachos. Net-fli: On-the-

fly compression, archiving and indexing of streaming network traffic. Proc.

VLDB Endow., 3(1-2):1382–1393, 2010.

[25] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson. Statistics-driven

workload modeling for the cloud. In Proc. of 5th International Workshop on Self

Managing Database Systems (SMDB), pages 87–92, 2010.

[26] Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shra-

van M. Narayanamurthy, Christopher Olston, Benjamin Reed, Santhosh S-

147

Bibliography

rinivasan, and Utkarsh Srivastava. Building a High-Level Dataflow System

on Top of Map-Reduce: The Pig Experience. Proc. of the VLDB Endowment,

2(2):1414–1425, 2009.

[27] Herodotos Herodotou, Fei Dong, and Shivnath Babu. No one (cluster) size

fits all: Automatic cluster sizing for data-intensive analytics. In Proc. of ACM

Symposium on Cloud Computing, SOCC ’11, pages 18:1–18:14, 2011.

[28] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang

Dong, Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A Self-tuning Sys-

tem for Big Data Analytics. In Proc. of 5th Conf. on Innovative Data Systems

Research (CIDR), pages 261–272, 2011.

[29] Dustin Hillard, Stefan Schroedl, Eren Manavoglu, Hema Raghavan, and

Chirs Leggetter. Improving ad relevance in sponsored search. In Proceedings

of the third ACM international conference on Web search and data mining, WSDM

’10, pages 361–370, 2010.

[30] Paul W. Holland and Roy E. Welsch. Robust regression using iteratively

reweighted least-squares. Communications in Statistics-Theory and Methods,

6(9):813–827, 1977.

[31] Intel. Optimizing Hadoop Deployment. http://communities.intel.

com/docs/DOC-4218, 2010.

[32] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.

Dryad: Distributed data-parallel programs from sequential building blocks.

In Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on Com-

puter Systems 2007, EuroSys ’07, pages 59–72, 2007.

[33] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar,

and Andrew Goldberg. Quincy: fair scheduling for distributed computing

clusters. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Sys-

tems Principles, SOSP ’09, pages 261–276, 2009.

148

http://communities.intel.com/docs/DOC-4218
http://communities.intel.com/docs/DOC-4218

Bibliography

[34] Eaman Jahani, Michael J. Cafarella, and Christopher Ré. Automatic optimiza-

tion for mapreduce programs. Proc. VLDB Endow., 4(6):385–396, 2011.

[35] S.M. Johnson. Optimal Two- and Three-Stage Production Schedules with Set-

up Times Included. Naval Res. Log. Quart., 1954.

[36] Karthik Kambatla, Abhinav Pathak, and Himabindu Pucha. Towards opti-

mizing hadoop provisioning in the cloud. In Proceedings of the 2009 Conference

on Hot Topics in Cloud Computing, HotCloud’09, 2009.

[37] Hyojoon Kim and Feamster Nick. Improving network management with soft-

ware defined networking. Communications Magazine, 51(2):114–119, 2013.

[38] Herald Kllapi, Eva Sitaridi, Manolis M. Tsangaris, and Yannis Ioannidis.

Schedule optimization for data processing flows on the cloud. In Proceed-

ings of the 2011 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’11, pages 289–300, 2011.

[39] Andy Konwinski, Matei Zaharia, Randy Katz, and Ion Stoica. X-tracing

Hadoop. Hadoop Summit, 2008.

[40] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skew-

tune: mitigating skew in mapreduce applications. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data, SIGMOD’12,

pages 25–36, 2012.

[41] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-

terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: En-

abling innovation in campus networks. SIGCOMM Comput. Commun. Rev.,

38(2):69–74, 2008.

[42] Larry McVoy and Silicon Staelin. lmbench: Portable tools for performance

analysis. In Proceedings of the 1996 Annual Conference on USENIX Annual Tech-

nical Conference, ATEC ’96, pages 23–23, 1996.

149

Bibliography

[43] Michael P. Mesnier, Matthew Wachs, Raja R. Sambasivan, Alice X. Zheng, and

Gregory R. Ganger. Modeling the relative fitness of storage. In Proceedings of

the 2007 ACM SIGMETRICS International Conference on Measurement and Mod-

eling of Computer Systems, SIGMETRICS ’07, pages 37–48, 2007.

[44] Kristi Morton, Magdalena Balazinska, and Dan Grossman. ParaTimer: a

progress indicator for MapReduce DAGs. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’10, pages

507–518, 2010.

[45] Kristi Morton, Abram Friesen, Magdalena Balazinska, and Dan Grossman.

Estimating the progress of MapReduce pipelines. In Proceedings of IEEE 26th

International Conference on Data Engineering, ICDE’10, pages 681–684, 2010.

[46] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and

Nick Koudas. MRShare: sharing across multiple queries in MapReduce. Proc.

VLDB Endow., 3(1-2):494–505, September 2010.

[47] Owen OMalley and Arun C. Murthy. Winning a 60 Second Dash with a Yel-

low Elephant. Proceedings of sort benchmark., 2009.

[48] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. De-

Witt, Samuel Madden, and Michael Stonebraker. A comparison of approaches

to large-scale data analysis. In Proceedings of the 2009 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD ’09, pages 165–178, 2009.

[49] Linh T.X. Phan, Zhuoyao Zhang, Qi Zheng, Boon Thau Loo, and Insup Lee.

An empirical analysis of scheduling techniques for real-time cloud-based data

processing. In Proceedings of the 2011 IEEE International Conference on Service-

Oriented Computing and Applications, SOCA ’11, 2011.

[50] Jorda Polo, David Carrera, Yolanda Becerra, Vicenc Beltran, Jordi Torres, and

Eduard Ayguade. Performance management of accelerated mapreduce work-

150

Bibliography

loads in heterogeneous clusters. In Proceedings of 41st International Conference

on Parallel Processing, ICPP’10, pages 653–662, 2010.

[51] J.R. Quinlan. Learning with continuous classes. In Proc. of Australian joint

Conference on Artificial Intelligence, 1992.

[52] Smriti R. Ramakrishnan, Garret Swart, and Aleksey Urmanov. Balancing re-

ducer skew in mapreduce workloads using progressive sampling. In Pro-

ceedings of the Third ACM Symposium on Cloud Computing, SoCC ’12, pages

16:1–16:14, 2012.

[53] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein, Mike Ovsiannikov, and

Damian Reeves. Sailfish: A framework for large scale data processing. In

Proceedings of the Third ACM Symposium on Cloud Computing, SoCC ’12, pages

4:1–4:14, 2012.

[54] Alexander Rasmussen, Vinh The Lam, Michael Conley, George Porter, Rishi

Kapoor, and Amin Vahdat. Themis: An i/o-efficient mapreduce. In Proceed-

ings of the Third ACM Symposium on Cloud Computing, SoCC ’12, pages 13:1–

13:14, 2012.

[55] Thomas Sandholm and Kevin Lai. Dynamic Proportional Share Scheduling

in Hadoop. LNCS: Proceedings of the 15th Workshop on Job Scheduling Strategies

for Parallel Processing, 6253:110–131, 2010.

[56] Margo Seltzer, David Krinsky, Keith Smith, and Xiaolan Zhang. The case

for application-specific benchmarking. In Proc. of Workshop on Hot Topics in

Operating Systems, HOTOS’99, pages 102–107, 1999.

[57] Avraham Shinnar, David Cunningham, Vijay Saraswat, and Benjamin Herta.

M3r: Increased performance for in-memory hadoop jobs. Proc. VLDB Endow.,

5(12):1736–1747, 2012.

151

Bibliography

[58] Bardhan Shouvik and Menasce Daniel A. Queuing Network Models to Pre-

dict the Completion Time of the Map Phase of MapReduce Jobs,. In In Proc. of

the Computer Measurement Group International Conference, 2012.

[59] João Nuno Silva, Luı́s Veiga, and Paulo Ferreira. Heuristic for Resources Al-

location on Utility Computing Infrastructures. In Proc. of the 6th Intl. Workshop

on Middleware for Grid Computing, MGC ’08, pages 9:1–9:6, 2008.

[60] Jian Tan, Xiaoqiao Meng, and Li Zhang. Delay tails in MapReduce schedul-

ing. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint In-

ternational Conference on Measurement and Modeling of Computer Systems, SIG-

METRICS ’12, pages 5–16, 2012.

[61] Jian Tan, Xiaoqiao Meng, and Li Zhang. Performance Analysis of Coupling

Scheduler for MapReduce/Hadoop. In Proceedings of the IEEE International

Conference on Computer Communications, INfOCOM’12, pages 2586–2590, 2012.

[62] Jiaqi Tan, Xinghao Pan, Soila Kavulya, Eugene Marinelli, Rajeev Gandhi, and

Priya Narasimhan. Kahuna: Problem Diagnosis for MapReduce-based Cloud

Computing Environments. In Proceedings of the 12th IEEE/IFIP Network Oper-

ations and Management Symposium, NOMS’10, pages 112–119, 2010.

[63] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive - a

Warehousing Solution over a Map-Reduce Framework.

[64] Fengguang Tian and Keke Chen. Towards Optimal Resource Provisioning

for Running MapReduce Programs in Public Clouds. In Proceedings of the

2011 IEEE 4th International Conference on Cloud Computing, CLOUD ’11, pages

155–162, 2011.

[65] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarw-

al, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,

152

Bibliography

Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Ben-

jamin Reed, and Eric Baldeschwieler. Apache hadoop yarn: Yet another re-

source negotiator. In Proceedings of the 4th Annual Symposium on Cloud Com-

puting, SOCC ’13, pages 5:1–5:16, 2013.

[66] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. ARIA: Auto-

matic Resource Inference and Allocation for MapReduce Environments. In

Proceedings of the 8th ACM International Conference on Autonomic Computing,

ICAC’11, pages 235–244, 2011.

[67] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. Play It Again,

SimMR! In Proceedings of the 2011 IEEE International Conference on Cluster Com-

puting, CLUSTER ’11, pages 253–261, 2011.

[68] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. Resource Pro-

visioning Framework for MapReduce Jobs with Performance Goals. In Pro-

ceedings of the 12th ACM/IFIP/USENIX Middleware Conference, Middleware’11,

pages 165–186, 2011.

[69] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. Two Sides

of a Coin: Optimizing the Schedule of MapReduce Jobs to Minimize Their

Makespan and Improve Cluster Performance. In Proceedings of the 20th IEEE

Intl Symposium on Modeling, Analysis and Simulation of Computer and Telecom-

munication Systems, MASCOTS’12, pages 11–18, 2012.

[70] Guanying Wang, Ali R. Butt, Pandey Pandey, and Karan Gupta. A simulation

approach to evaluating design decisions in mapreduce setups. In Proceedings

of the 17th IEEE Intl Symposium on Modeling, Analysis and Simulation of Comput-

er and Telecommunication Systems, MASCOTS’09, pages 1–11, 2009.

[71] Xiaodan Wang, Christopher Olston, Anish Das Sarma, and Randal Burns.

CoScan: Cooperative Scan Sharing in the Cloud. In Proceedings of the 2nd

ACM Symposium on Cloud Computing, SOCC ’11, pages 11:1–11:12, 2011.

153

Bibliography

[72] T. White. Hadoop:The Definitive Guide. Page 6,Yahoo Press.

[73] Joel Wolf, Deepak Rajan, Kirsten Hildrum, Rohit Khandekar, Vibhore Kumar,

Sujay Parekh, Kun-Lung Wu, and Andrey Balmin. FLEX: A Slot Allocation

Scheduling Optimizer for MapReduce Workloads. In Proceedings of the 11th

ACM/IFIP/USENIX Middleware Conference, Middleware’10, pages 1–20, 2010.

[74] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant Shenoy.

Profiling and modeling resource usage of virtualized applications. In Pro-

ceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware,

Middleware ’08, pages 366–387, 2008.

[75] Sai Wu, Feng Li, Sharad Mehrotra, and Beng Chin Ooi. Query optimization

for massively parallel data processing. In Proceedings of the 2nd ACM Sympo-

sium on Cloud Computing, SOCC ’11, pages 12:1–12:13, 2011.

[76] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, J. Majors, A. Man-

zanares, and Xiao Qin. Improving mapreduce performance through data

placement in heterogeneous hadoop clusters. In Proceedings of IEEE Interna-

tional Symposium on Parallel Distributed Processing, Workshops and Phd Forum,

IPDPSW’10, pages 1–9, 2010.

[77] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy,

Scott Shenker, and Ion Stoica. Delay scheduling: A Simple Technique for

Achieving Locality and Fairness in Cluster Scheduling. In Proceedings of

the 5th European Conference on Computer Systems, EuroSys ’10, pages 265–278,

2010.

[78] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ion Stoica. Spark: Cluster computing with working sets. In Proceedings of the

2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages

10–10, 2010.

154

Bibliography

[79] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion

Stoica. Improving mapreduce performance in heterogeneous environments.

In Proceedings of the 8th USENIX conference on Operating systems design and im-

plementation, OSDI’08, 2008.

[80] Zhuoyao Zhang, L. Cherkasova, and Boon Thau Loo. Getting more for less

in optimized mapreduce workflows. In Integrated Network Management (IM

2013), 2013 IFIP/IEEE International Symposium on, pages 93–100, May 2013.

[81] Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. Autotune: Opti-

mizing execution concurrency and resource usage in mapreduce workflows.

In Presented as part of the 10th International Conference on Autonomic Computing,

pages 175–181, San Jose, CA, 2013.

[82] Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. Benchmarking

approach for designing a mapreduce performance model. In Proceedings of

the 4th ACM/SPEC International Conference on Performance Engineering, ICPE

’13, pages 253–258, 2013.

[83] Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. Exploiting cloud

heterogeneity for optimized cost/performance mapreduce processing. In

Fourth International Workshop on Cloud Data and Platforms, CloudDP ’14, Ams-

terdam, the Netherlands, 2014.

[84] Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. Optimizing cost

and performance trade-offs for mapreduce job processing in the cloud. In

IEEE/IFIP Network Opertions and Management Symposium, NOMS ’14, Krakow,

Poland, 2014.

[85] Zhuoyao Zhang, Ludmila Cherkasova, Abhishek Verma, and Boon Thau Loo.

Automated profiling and resource management of pig programs for meeting

service level objectives. In Proceedings of the 9th International Conference on

Autonomic Computing, ICAC ’12, pages 53–62, 2012.

155

Bibliography

[86] Zhuoyao Zhang, Ludmila Cherkasova, Abhishek Verma, and Boon Thau Loo.

Meeting service level objectives of pig programs. In Proceedings of the 2Nd

International Workshop on Cloud Computing Platforms, CloudCP ’12, pages 8:1–

8:6, 2012.

[87] Zhuoyao Zhang, Ludmila Cherkasova, Abhishek Verma, and Boon Thau

Loo. Optimizing completion time and resource provisioning of pig program-

s. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (Ccgrid 2012), CCGRID ’12, pages 811–816, 2012.

[88] Zhuoyao Zhang, Ludmila Cherkasova, Abhishek Verma, and Boon Thau Loo.

Performance modeling and optimization of deadline-driven pig programs.

ACM Trans. Auton. Adapt. Syst., 8(3):14:1–14:28, September 2013.

[89] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering based

on mapreduce. In Proceedings of the 1st International Conference on Cloud Com-

puting, CloudCom’09, pages 674–679, 2009.

156

	Contents
	Introduction
	Motivation
	Contributions of the dissertation
	Contribution 1: performance modeling framework for MapReduce applications
	Contribution 2: resource allocation for deadline-driven MapReduce applications
	Contribution 3: resource provision in public cloud environment
	Contribution 4: performance optimization for MapReduce applications

	Overview of dissertation

	Background
	MapReduce framework
	Pig programs

	Performance Modeling Framework
	Platform performance model
	Profiling MapReduce phases
	Microbenchmarks
	Platform modeling
	Accuracy of the platform performance model

	MapReduce job model
	Estimate task durations within a job
	Performance model for a single MapReduce job
	Accuracy of the MapReduce job model

	MapReduce workflow peformance model
	Estimate input data size through the worklfow
	Modeling MapReduce workflows with sequential jobs
	Modeling MapReduce workflows with concurrent jobs

	Model sensitivity
	Impact of sample data size
	Impact of input data on the map function performance
	Impact of data skew in reduce stage
	Variability of job profiles in public cloud environment

	Conclusion

	Resource Management for MapReduce Applications
	Deadline-driven resource allocation on shared Hadoop cluster
	Resource allocation for single MapReduce job
	Resource allocation for MapReduce workflows: a basic approach
	Schedule concurrent jobs within a workflow
	Resource allocation for MapReduce workflows: a refined approach
	Deadline-driven job scheduler

	Resource provisioning in public cloud environment
	Solution framework
	Resource provision for homogeneous cluster
	Resource provision for heterogeneous cluster

	Conclusion

	Performance Optimization with optimal job settings
	Motivation
	Why not use best practices?

	Problem definition and the solution outline
	Two optimization strategies

	Evaluation results
	Experimental workloads
	Performance optimization benefits
	Performance benefits of the optimization strategies

	Conclusion

	Related Work
	Performance model for MapReduce applications
	Resource management for MapReduce jobs
	MapReduce performance optimizations

	Conclusion
	Summary
	Future work

	Bibliography

