
Fault Management in Distributed

Systems

WPE-II Written Report

Wenchao Zhou

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104
wenchaoz@seas.upenn.edu

January 05, 2010

Abstract

In the past decade, distributed systems have rapidly evolved, from
simple client/server applications in local area networks, to Internet-scale
peer-to-peer networks and large-scale cloud platforms deployed on tens of
thousands of nodes across multiple administrative domains and geograph-
ical areas. Despite of the growing popularity and interests, designing and
implementing distributed systems remains challenging, due to their ever-
increasing scales and the complexity and unpredictability of the system
executions.

Fault management strengthens the robustness and security of dis-
tributed systems, by detecting malfunctions or violations of desired prop-
erties, diagnosing the root causes and maintaining verifiable evidences to
demonstrate the diagnosis results. While its importance is well recog-
nized, fault management in distributed systems, on the other hand, is
notoriously difficult. To address the problem, various mechanisms and
systems have been proposed in the past few years. In this report, we
present a survey of these mechanisms and systems, and taxonomize them
according to the techniques adopted and their application domains. Based
on four representative systems (Pip, Friday, PeerReview and TrInc), we
discuss various aspects of fault management, including fault detection,
fault diagnosis and evidence generation. Their strength, limitation and
application domains are evaluated and compared in detail.
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1 Introduction

In the past decade, distributed systems have been rapidly evolved, from sim-
ple client/server applications in local area networks, to large-scale cloud plat-
forms and Internet-scale P2P systems deployed on tens of thousands of nodes
across administrative domains and geographical areas. Despite of the growing
popularity and interests, designing and implementing these systems remains
challenging, due to their ever-increasing scales as well as the complexity and
unpredictability of the system executions. For instance, participating nodes
may have heterogeneous performance and be connected by communication net-
works with unpredictable delays and losses; nodes may join and leave the system
arbitrarily. Moreover, distributed systems, especially those Internet-scale P2P
systems, are known to be vulnerable to security threats, where malicious adver-
saries may intentionally deviate the systems from their expected behaviors.

Fault management provides avenues to detect malfunctions or violations of
desired properties, and diagnose the root causes which may be bugs in system
designs and implementation or malicious behaviors from compromised nodes.
In addition, verifiable evidences are also maintained to attest the diagnosis.
It is well recognized that fault management is an integral part for developing
robust and secure distributed systems. While its importance is recognized, fault
management of distributed systems is notoriously difficult, due to the complexity
and unpredictability of target systems.

A common practice for debugging distributed systems relies on logs gener-
ated by manually inserting prinf statements at various implementation points.
Systems designers analyze the logs by inspecting them manually or with ad-hoc
application-specific programs. This approach is feasible when the scale of the
target system is small and bugs are apparent. However, with the ever-increasing
scales and the complexity of distributed systems, logs may become overwhelm-
ingly large, which makes this approach labor-intensive and error-prone.

Over the past few years, there have been intensive research activities explor-
ing effective and efficient automation of fault management. Various techniques
have been proposed for detecting faults in distributed systems. Based on how
the expected behavior of a target system is defined, one may check the system
against specified properties (or invariants) [22, 19, 18], its reference implemen-
tation [12], or abstract state machine [20, 14, 27]. Once the faults are detected,
one may further diagnose the system to track the root causes using determin-
istic replay [9, 19, 14, 27], log-based causality analysis [22, 18, 8] or statistical
inference [2, 5]. In addition, references [12, 16] also propose mechanisms, par-
ticularly in untrusted environments, for generating evidences. In this paper, we
are going to provide a survey of the mechanisms and systems proposed for fault
management of distributed systems.

The rest of the paper is organized as follows. We start with problem state-
ment in Section 2, by defining faults in distributed systems and introducing
the progressing steps of fault management. Section 3 provides an taxonomy
of the mechanisms and systems proposed for fault management, according to
the techniques adopted and their application domains. We then present four
representative systems that cover different aspects of fault management: we
discuss Pip in Section 4, Friday in Section 5, PeerReview in Section 6, and
TrInc in Section 7. Finally, Section 8 reviews all the mechanisms and discusses
challenges.
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2 Problem Statement

To scope our survey paper, we begin first with a problem statement that
provides a concise definition of the types of faults in distributed systems that
we are focusing on, followed by an overview of fault management that detects,
diagnoses and generates evidences for these faults.

2.1 Faults in Distributed Systems

Generally, system faults can be defined as the deviation from the expected
behavior of a given system, which may affect the function, performance or both
of the system. A functional fault is an incompliance to the specification of the
system’s functionality, whereas a performance fault manifests itself as abnormal
consumption of important resources. For example, failing to organize nodes in
a well-formed ring in Chord DHT [24] is a classic functional fault; high latency
for Chord lookup request is a performance fault, which may indicate bugs in
the system design or implementation.

Faults in distributed systems may result from two types of causes. In some
situations, the running environment of a distributed system is fully trusted,
i.e. all the participating nodes are trusted. In this scenario, faults are derived
from bugs in the system design, implementation or configurations. We refer to
this type of faults as software errors. On the other hand, users may have full
confidence of the system design and implementation, and the faults manifest
themselves as malicious behaviors, as a result of part of the nodes being com-
promised by adversaries. Compared to software errors, malicious behaviors are
more difficult to be detected, as the compromised nodes may cheat about their
behaviors and collude with each other. Moreover, the nodes not only behave
erroneously, but also fail to behave consistently when interacting with multiple
other peers (known as equivocation [6]).

2.2 Fault Management

There are two general techniques for developing robust and secure systems
against system faults. The first technique, fault tolerance, aims to tolerate either
hardware or software faults and continue the system operation with, perhaps, a
reduction in throughput or an increase in latency. Various techniques are intro-
duced for fault tolerance, including voting-based consensus and replications. It
offers users the illusion of interacting with a single, reliable server, as exemplified
by PBFT [3], Ivy [21], SUNDR [17], and Zyzzyva [15]. The second technique,
fault management, provides users with information of existing faults as accurate
and informative as possible, to enable detection of malfunctions or violations
of desired properties, diagnosis of the root causes and maintenance of verifiable
evidences that demonstrate the diagnosis.

While fault tolerance focuses on improving the availability and reliability of
distributed systems; fault management complements it by enabling users to (1)
fix design or implementation bugs to strengthen the robustness of distributed
systems; and 2) detect and analyze malicious behaviors to minimize the impact
on the systems.

Being a challenging and rich research topic, fault management in distributed
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Figure 1: Progressing Steps of Fault Management in Distributed Systems

systems can be split into three progressing steps, i.e. fault detection, fault diag-
nosis and evidence generation as shown in Figure 1:

• Fault Detection: The first step is to monitor execution of a distributed
system and check the observations against its expected behaviors, which
may be encoded in the form of desired properties (or invariants), state ma-
chine model, or reference implementation. The fault is reported whenever
an deviation from the expected behavior is discovered. Instead of manual
inspection, automated processes are introduced.

• Fault Diagnosis: Once a fault is detected, additional mechanism is uti-
lized to diagnose the system to identify the nature of the fault and track
the root causes. To enable fault diagnosis, log-based mechanisms are gen-
erally required to reproduce the fault, and generate the causality paths [4].
As the embodiment of control flows and state transitions associated with
executions, causality paths connect abstract heterogeneous components or
system state, including values of monitored variable, read/write of files,
send/receive of messages, etc. Starting from the detected fault, users can
tracking back along causality paths to the root causes.

• Evidence Generation: Evidences can be broadly defined as a set of
processed information that demonstrate the assertions drawn from fault
diagnosis. After the cause of the fault is detected, the final step provides
the evidence that convinces system administrators or other peers about
the diagnosis results. Evidences might be used for debugging purposes,
to convince software owners to make modifications accordingly. In addi-
tion, evidences enable developing accountability or reputation in sysstems
where faults may be derived from malicious behaviors. Accountability, by
itself, can reduce the incidence of certain faults. For instance, knowing ma-
licious behaviors would be detected and recorded will certainly discourage
adversaries to compromise the system.

Generating evidences is trivial in a fully trusted environment, where the
causality path used in fault diagnosis for tracking root cause is directly
applicable to serve as the evidence. However, in an environment where
multiple adversaries may compromise the system in concert, the integrity
of the evidence must be enforced during its maintenance and validated
when it is used for demonstration.
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3 Taxonomy of Fault Management

Having presented the definition and the three progressing steps of trust man-
agement. We present a brief overview of the mechanisms and systems proposed,
and taxonomize them according to the techniques adopted and their application
domains (shown in Figure 2).

Fault Management

Fault Detection

Fault Diagnosis

Evidence Generation

Reference Implementation

Invariant Checking

Model Checking

Deterministic Replay

Statistical Inference

Log-based Causality Analysis

Accountability

System Debugging

Figure 2: Classification of Fault Management

3.1 Fault Detection

According to how the expected behavior of a distributed system is encoded,
different techniques are appliable for fault detection. Based on that, the mech-
anisms can be classified into three categories, i.e. invariant checking, reference
implementation, and model checking.

• Invariant Checking: The expected behavior of a distributed system is
specified as a set of desired properties (or invariant). For instance, in
Chord DHT, a desired property (well-formed ring) is that each node is
the predecessor of its successor. To check whether the properties hold,
relevant system state are acquired by inserting additional statement (e.g.
Pip [22] and P2Monitor [23]) or modifying the underlying operating system
to automatically expose them (e.g. WiDS [19] and D3S [18]).

The recorded data of system state are checked against the properties using
online assertions or offline analysis. To facilitate users expressing the prop-
erties, in some fault management systems, e.g. Pip, declarative domain-
specific languages are provided.

• Reference Implementation: Given a reference implementation, users
are able to detect faults by comparing the behavior of the actual system
and the one of the reference implementation1, as exemplified by PeerRe-
view [12]. Once all non-deterministic events, such as read/write of files
and send/receive of messages, are recorded (i.e. fixed), the reference imple-
mentation’s behavior exhibited in deterministic replay should be identical
to the one observed in the actual system.

1Note that, the prerequisite of applying this technique is that the behavior of the system
should be deterministic.
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• Model Checking: The complexity of distributed systems often leads to
bugs in corner cases, which can only be exposed through a particular se-
quence of state transitions. Model checking enables comprehensive check-
ing that covers these corner cases. Example systems include CMC [20],
MaceMC [14], and MODIST [27].

In model checking, the behavior of a distributed system is modeled as a
state machine. Starting from an initial state, a model checker performs
exhaustive search by systematically enumerating all possible execution
paths. The target system is steered to follow each of the execution paths
to check whether it behaves correctly. Due to the state explosion problem,
the scale of the exhaustive search is limited to 15-20 steps of state tran-
sitions. Random walk is introduced as a tradeoff between exhaustiveness
and performance.

3.2 Fault Diagnosis

According to the techniques used for fault diagnosis, the mechanisms can
be classified into three categories, i.e. deterministic replay, statistical inference,
and log-based causality analysis.

• Log-based Causality Analysis: Users may insert additional statements
in the source code of a target system to expose desired system state.
For instance, Pip [22] logs path instances started from outside inputs;
XTrace [8] maintains task trees. On the other hand, D3S [18], instead
of annotating source code, modifies operating systems to allow automatic
injection of state exposers and predicate checkers. Based on the logs and
snapshots of system state, with the support of visualization tools and
query engines, users are enabled to reason about the causality paths that
traceback to the root causes.

• Deterministic Replay: At runtime, distributed systems record all non-
deterministic events. Once a system fault is detected, users can perform
deterministic replay to faithfully reproduce the fault (e.g. liblog [10], Fri-
day [9], WiDS [19], and MaceMC [14]). Diagnosis is performed by inspect-
ing how system state progress towards the fault, similar to how GDB is
utilized for single-node applications.

To facilitate diagnosis, users are enabled to monitor events in the replayed
system based on data and control flow, leveraged by watchpoints and
breakpoints respectively. In some systems, e.g. Friday, on top of symbolic
low-level debugging, diagnosis of high-level faults, such as violation of
global distributed properties, is also supported, by enabling users to attach
arbitrary python commands to distributed watchpoints and breakpoints.

• Statistical Inference: A target system is modeled as a set of system
components, where no knowledge of the components is required (i.e. the
components are treated as black-boxes). As execution profiles, the system
state recorded at runtime are typically in the form of path instances con-
sisting of the used system components. Data mining techniques, such as
clustering, are used to correlate the detected faults and correct executions
to determine which components are most likely to be faulty. Magpie [2]
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and Pinpoint [5] are representative examples of the systems that adopt
such mechanism.

3.3 Evidence Generation

Based on the application domains, the mechanisms for evidence generation
can be classified into two categories, i.e. software debugging, and accountability.

• Software Debugging: When targeting software errors, as the runtime
environment is considered fully trusted, there is no need to question the
integrity of logs. The evidence generation is thus straightforward: the
causality paths that traceback to the root causes of the faults are di-
rectly applicable to serve as the evidence. Such systems include Pip [22],
D3S [18], XTrace [8], WiDS [19] and MaceMC [14].

• Accountability: Performed in totally untrusted environments, the in-
tegrity of evidences has to be enforced. Tamper-evident logs are intro-
duced to prevent modifications on history from un-authorized peers. In
addition, equivocation, i.e. making conflicting statements to different
nodes, should also be prevented by introducing additional protocols to
allow users to compare received statements (e.g. the consistency protocol
in PeerReview [12]).
Enhanced with attestation-based trusted hardware, e.g. TrInc [16], a sim-
plified version of Attested Append-only Memory (A2M) [6], equivocation
can be eliminated in distributed system, resulting in a significant reduction
in performance overhead.

3.4 Summary

Steps Categories Systems

Detection
Invariant Checking Pip [22], WiDS [19], D3S [18], P2Monitor [23]

Reference Implementation PeerReview [12]
Model Checking CMC [20], MaceMC [14], MODIST [27]

Diagnosis
Log-based Causality Analysis Pip [22], D3S [18], XTrace [8]

Deterministic Replay liglog [10], Friday [9], WiDS [19], MaceMC [14]
Statistical Inference Magpie [2], Pinpoint [5]

Evidence
Software Debugging Pip [22], D3S [18], XTrace [8], MaceMC [14]

Accountability PeerReview [12], TrInc [16]

Table 1: Taxonomy of Fault Management

In Table 1, we conclude the classification of the mechanisms and systems
according to our proposed taxonomy. It is not feasible to cover all the related
literatures in fault management of distributed systems. We are going to se-
lectively focus on some representative ones (shown in bold in Table 1), which
include: (1) Pip, an infrastructure for comparing actual and expected behaviors
to expose faults; (2) Friday, a system for debugging distributed applications
based on deterministic replay; (3) PeerReview, a comprehensive system that
provides accountability in distributed systems; and (4) TrInc, a trusted hard-
ware for preventing equivocations. These systems cover most of the categories
in the taxonomy.
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4 Pip: Actual Behavior against Expectations

Pip provides automatic checking of the behavior of a distributed system
against a programmer’s expectation about the system’s communication struc-
ture, timing and resource consumption. It generally targets three broad types of
users, including original developers for debugging their own system; secondary
developers for learning about an existing system; and system maintainers for
monitoring a system.

4.1 Overview

Behavior Model: Pip models application behaviors as a collection of path
instances, each of which consists of an ordered series of timestamped events
on one or more hosts. These path instances encode the causalities during the
execution of the system. Pip classifies the events into three types: i.e. tasks
– intervals of processing with a start and an end; messages – communication
between hosts or threads; and notices – strings with a timestamp which are
essentially logs entries. To illustrate, Figure 3 shows a example path instance
which reflects the execution of an http request. The behavior model adopted
in Pip is naturally suited to a wide range of distributed applications, especially
event-based applications.

Figure 1: A sample causal path from a three-tier system.

Each path instance is an ordered series of times-
tamped events. The Pip model defines three types of
events: tasks, messages, and notices. A task is like a
profiled procedure call: an interval of processing with
a beginning and an end, and measurements of resources
consumed. Tasks may nest inside other tasks but oth-
erwise may not overlap other tasks on the same thread.
Tasks may include asynchronous events like timer call-
backs, which Pip normally associates with the path in-
stances that scheduled them. A message is any commu-
nication event between hosts or threads, whether a net-
work message, a lock, or a timer. Pip records messages
when they are sent and again when they are received. Fi-
nally, a notice is an opaque string—like a log message,
with a timestamp and a path identifier for context.

Figure 1 shows a sample path instance. Each dashed
horizontal line indicates one host, with time proceeding
to the right. The boxes are tasks, which run on a single
host from a start time to an end time. The diagonal ar-
rows are messages sent from one host to another. The
labels in quotation marks are notices, which occur at one
instant on a host.

Pip associates each recorded event with a thread. An
event-handling system that dispatches related events to
several different threads will be treated as having one
logical thread. Thus, two path instances that differ only
on which threads they are dispatched will appear to have
identical behavior.

Our choice of tasks, messages, and notices is well
suited to a wide range of distributed applications. Tasks
correspond to subroutines that do significant process-
ing. In an event-based system, tasks can correspond to
event-handling routines. Messages correspond to net-
work communication, locks, and timers. Notices capture
many other types of decisions or events an application
might wish to record.

2.2 Tool chain
Pip is a suite of programs that work together to gather,

check, and display the behavior of distributed systems.
Figure 2 shows the workflow for a programmer using
Pip. Each step is described in more detail below.

Annotated applications: Programs linked against
Pip’s annotation library generate events and resource

Figure 2: Pip workflow. Shaded ovals represent input that
must be at least partially written by the programmer.

measurements as they run. Pip logs these events into
trace files, one per kernel-level thread on each host. We
optimized the annotation library for efficiency and low
memory overhead; it performs no analysis while the ap-
plication is running.

We found that the required annotations are easiest to
add when communication, event handling, and logging
are handled by specialized components or by a supported
middleware library. Such concentration is common in
large-scale distributed systems. For applications linked
against a supported middleware library, a modified ver-
sion of the library can generate automatic annotations
for every network message, remote procedure call, and
network-event handler. Programmers can add more an-
notations to anything not annotated automatically.

A separate program gathers traces from each host and
reconciles them. Reconciliation includes pairing mes-
sage send and receive events, pairing task start and end
events, and performing a few sanity checks. Reconcili-
ation writes events to a database as a series of path in-
stances. Normally, reconciliation is run offline, parsing
log files from a short test run. However, Pip may also
be run in an online mode, adding paths to the database
and checking them as soon as they complete. Section 4
describes annotations and reconciliation in more detail.

Expectations: Programmers write an external descrip-
tion of expected program behavior. The expectations
take two forms: recognizers, which validate or invali-
date individual path instances, and aggregates, which as-
sert properties of sets of path instances. Pip can generate
initial recognizers automatically, based on recorded pro-
gram behavior. These generated recognizers serve as a
concise, readable description of actual program behav-
ior. Section 3 describes expectations in more detail.

Formally, a set of recognizers in Pip is a grammar,
defining valid and invalid sequences of events. In its cur-
rent form, Pip allows users to define non-deterministic
finite-state machines to check a regular grammar. We
chose to define a domain-specific language for defining

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 117

Figure 3: An Example Path Instance in Pip

Workflow: Pip is a suite of programs that gather, check, and display behavior
of distributed systems. Figure 4 shows the architectural overview of Pip. Ap-
plications are annotated with log events and resource measurements, which will
be reconciled into path instances. The path instances are then checked against
the programmers’ expectations, which are written in declarative languages, to
detect unexpected behaviors.

4.1.1 Annotation

To annotate an application, the access of the source code of the application
is required. A number of source code annotations will manually injected to the
source code, to indicate which path is being handled, the beginning and end of
interesting tasks, and the transmission and receipt of messages. The annotated
applications are then linked against Pip’s annotation library, to generate events
and resource measurements during there execution, which will be logged into
local trace files. After the execution terminates, these trace files are gathered
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Each path instance is an ordered series of times-
tamped events. The Pip model defines three types of
events: tasks, messages, and notices. A task is like a
profiled procedure call: an interval of processing with
a beginning and an end, and measurements of resources
consumed. Tasks may nest inside other tasks but oth-
erwise may not overlap other tasks on the same thread.
Tasks may include asynchronous events like timer call-
backs, which Pip normally associates with the path in-
stances that scheduled them. A message is any commu-
nication event between hosts or threads, whether a net-
work message, a lock, or a timer. Pip records messages
when they are sent and again when they are received. Fi-
nally, a notice is an opaque string—like a log message,
with a timestamp and a path identifier for context.

Figure 1 shows a sample path instance. Each dashed
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suited to a wide range of distributed applications. Tasks
correspond to subroutines that do significant process-
ing. In an event-based system, tasks can correspond to
event-handling routines. Messages correspond to net-
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many other types of decisions or events an application
might wish to record.
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check, and display the behavior of distributed systems.
Figure 2 shows the workflow for a programmer using
Pip. Each step is described in more detail below.

Annotated applications: Programs linked against
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measurements as they run. Pip logs these events into
trace files, one per kernel-level thread on each host. We
optimized the annotation library for efficiency and low
memory overhead; it performs no analysis while the ap-
plication is running.

We found that the required annotations are easiest to
add when communication, event handling, and logging
are handled by specialized components or by a supported
middleware library. Such concentration is common in
large-scale distributed systems. For applications linked
against a supported middleware library, a modified ver-
sion of the library can generate automatic annotations
for every network message, remote procedure call, and
network-event handler. Programmers can add more an-
notations to anything not annotated automatically.

A separate program gathers traces from each host and
reconciles them. Reconciliation includes pairing mes-
sage send and receive events, pairing task start and end
events, and performing a few sanity checks. Reconcili-
ation writes events to a database as a series of path in-
stances. Normally, reconciliation is run offline, parsing
log files from a short test run. However, Pip may also
be run in an online mode, adding paths to the database
and checking them as soon as they complete. Section 4
describes annotations and reconciliation in more detail.

Expectations: Programmers write an external descrip-
tion of expected program behavior. The expectations
take two forms: recognizers, which validate or invali-
date individual path instances, and aggregates, which as-
sert properties of sets of path instances. Pip can generate
initial recognizers automatically, based on recorded pro-
gram behavior. These generated recognizers serve as a
concise, readable description of actual program behav-
ior. Section 3 describes expectations in more detail.

Formally, a set of recognizers in Pip is a grammar,
defining valid and invalid sequences of events. In its cur-
rent form, Pip allows users to define non-deterministic
finite-state machines to check a regular grammar. We
chose to define a domain-specific language for defining
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Figure 4: Architectural Overview of Pip

to a centralized location. These trace files are then processed by a reconciler,
which pairs start- and end-task and message-send and message-receive events.
The reconciled events are written into a database as path instances, which will
be used as input for expectation checks.

4.1.2 Invariant Checking

To enable easy expression of the expected behavior of a distributed sys-
tem, Pip allows programmers to express their expectations in a domain-specific
declarative language. Expectations are categorized into two types, i.e. recogniz-
ers and aggregates.

Recognizers are descriptions of expected structural or performance behaviors
of path instances. They can be further classified into validators and invalidators
which define valid and invalid sequences of events respectively. A path instance
is regarded valid if it matches at least one validator and no invalidator. For-
mally, the user-specified recognizers define a non-deterministic finite-state ma-
chine (NFS). For each path instance, the expectation checker verifies whether
the path instance can be accepted by the NFS.

The results of checking path instances against recognizers are fed to the
aggregates, which are essentially assertions about the properties of sets of path
instances. For instance, an aggregate might state expected properties related
some specific quantities. Any violation of the assertions indicates a fault.

4.1.3 Log-based Diagnosis

Once faults are detected, fault diagnosis is leveraged to identify their root
causes, by analyzing path instance logged in Pip which reveals a series of causal
relationship. Pip provides an interactive GUI environment that displays causal
structure, sets of validated and invalidated path instances, and resource graphs
for tasks or paths. This visualization toolkit enables programmers to study
most aspects of application behaviors and track back to root causes of faults. In
addition, Pip stores all of the path instances in an SQL database, so that pro-
grammers may further explore the logs using queries, to facilitate the debugging
of the target system.
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4.1.4 Evidence Generation

As the runtime environment is regarded as fully trusted. Evidence generation
in Pip is straightforward. The path instances that trace to the root causes
are sufficient to demonstrate the diagnosis results, for the purpose of software
debugging.

4.2 Evaluation

According to the taxonomy presented in Section 3. Pip adopts invariant
checking for fault detection, and log-based causality analysis for fault diagnosis.
We summarize the strengths and limitations of Pip as follows:

Strengths:

• Programmers are enabled to specify expectations in a clean and declarative
language. The expectations essentially define an NFS, where checking the
validity of a path instance can be reduced to classic problem of deciding
whether a word is in a regular language. This also makes possible to
automatically generate the description of actual behaviors based on a set
of path instances.

• Pip provides APIs in its annotation library for annotating resource mea-
surements, thus enabling programmers to reason about performance be-
haviors. This allows Pip to detect performance faults, in additional of
structural faults.

Limitations:

• Since the mechanism used for fault detection in Pip is based on invariant
checking, programmers have to apriori define the events and other system
state to be logged. Thus prior knowledge of the target system is presumed.
Improper settings may leads to false negatives or false positives.

• Enabled by the path instances collected at runtime, Pip uses log-based
causality analysis for fault diagnosis, it intrinsically limits the flexibility
of diagnosis, as the diagnosis largely depends on the comprehensiveness
of the logs. Logs of overwhelmingly large sizes may severely affect the
performance of the target system. On the other hand, if a certain sys-
tem state needed in diagnosis is not included in the logs, modification of
annotations and fresh runs of the target system will be needed.

• Extracting path instances requires access to the source code of the target
system, which might not be always available. In addition, understanding
of the source code is critical for annotating source code. For complex
systems, this process is non-trivial, and may become erroneous.

• The behavior model adopted in Pip is based on individual path instances.
So is the fault detection mechanism. It lacks of a global perspective:
the ability of reasoning about a global condition of system state at a
given time is missing in Pip. Therefore, it is hard to check high-level
global distributed properties, such verifying properties defined for mutual
exclusion.
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5 Friday: Global Comprehension for Distributed
Replay

Unlike the prior system Pip that is primarily based on log-based analysis,
the second system Friday, adopts a different approach for fault diagnosis based
deterministic replay. Friday debugs distributed systems with low-level symbolic
debuggers complemented with distributed watchpoints and breakpoints. To
enable reasoning about high-level distributed conditions and actions, Friday
further allows programmers to view and manipulate system state at any replayed
node using arbitrary python commands.

5.1 Overview

Deterministic Replay: In Friday, liblog [10] is leveraged to deterministi-
cally and consistently replay the execution of a distributed application. To
achieve this, each application should records all non-deterministic system calls,
messages, and node failures to a local log. These logged information will be
sufficient to replay the execution following the same code path.

bugging statistics, building behavioral models, or shad-
owing global state.

We have built an instance of Friday for the popu-
lar GDB debugger, using Python as the script language,
though our techniques are equally applicable to other
symbolic debuggers and interpreted scripting languages.

Applicability: Many distributed applications can ben-
efit from Friday’s functionality, including both fully
distributed systems (e.g., overlays, protocols for repli-
cated state machines) and centrally managed distributed
systems (e.g., load balancers, cluster managers, grid job
schedulers). Developers can evaluate global conditions
during replay to validate a particular execution for cor-
rectness, to catch inconsistencies between a central man-
agement component and the actual state of the distributed
managed components, and to express and iterate behav-
ioral regression tests. For example, with an IP routing
protocol that drops an unusual number of packets, a de-
veloper might hypothesize that the cause is a routing cy-
cle, and use Friday to verify cycle existence. If the hy-
pothesis holds true, the developer can further use Friday
to capture cycle dynamics (e.g., are they transient or
long-lasting?), identify the likely events that cause them
(e.g., router failures or congestion), and finally identify
the root cause by performing step-by-step debugging and
analysis on a few instances involving such events, all
without recompiling or annotating the source code.

Structure: We start with background on liblog in
Section 2. Section 3 presents the design and implemen-
tation of Friday, and also discusses the limitations of the
system. We then present in Section 4 concrete usage ex-
amples in the context of two distributed applications: the
Chord DHT [25], and a reliable communication toolkit
for Byzantine network faults [26]. We evaluate Friday

both in terms of its primitives and these case studies in
Section 5. Finally, we present related work in Section 6
and conclude in Section 7.

2 Background: liblog
Friday leverages liblog [8] to deterministically and
consistently replay the execution of a distributed appli-
cation. We give a brief overview here.
liblog is a replay debugging tool for distributed

libc- and POSIX C/C++-based applications on
Linux/x86 computers. To achieve deterministic replay,
each application thread records the side-effects of
all nondeterministic system calls (e.g., recvfrom(),
select(), etc.) to a local log. This is sufficient to
replay the same execution, reproducing race conditions
and non-deterministic failures, following the same code
paths during replay, as well as the same file and network
I/O, signals, and other IPC. liblog ensures causally
consistent group replay, by maintaining Lamport
clocks [16] during logging.
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Figure 1: Overall architecture of Friday

liblog is incrementally deployable—it allows instru-
mented applications to communicate with applications
that are not instrumented (e.g., DNS). liblog also sup-
ports replaying a subset of nodes without having to
gather the logs of all nodes in the distributed system.
Both incremental deployment and partial replay call for
logging all incoming network traffic.

Finally, liblog’s library-based implementation re-
quires neither virtualization nor kernel additions, result-
ing in a small per-process CPU and memory footprint. It
is lightweight enough to comfortably replay 60 nodes on
a Pentium D 2.8GHz machine with 2GB of RAM. We
have also built a proof-of-concept cluster-replay mecha-
nism that can scale this number with the size of the replay
cluster to thousands of nodes.

While liblog provides the programmer with the ba-
sic information and tools for debugging distributed ap-
plications, the process of tracking down the root cause
of a particular problem remains a daunting task. The in-
formation presented by liblog can overwhelm the pro-
grammer, who is put, more often than not, in the position
of finding a “needle in the haystack.” Friday enables
the programmer to prune the problem search space by
expressing complex global conditions on the state of the
whole distributed application.

3 Design
Friday presents to users a central debugging console,
which is connected to replay processes, each of which
runs an instance of a traditional symbolic debugger such
as GDB (see Figure 1). The console includes an embed-
ded script language interpreter, which interprets actions
and can maintain central state for the debugging session.
Most user input is passed directly to the underlying de-
bugger, allowing full access to data analysis and control
functions. Friday extends the debugger’s commands to
handle distributed breakpoints and watchpoints, and to
inspect the whole system of debugged processes.

3.1 Distributed Watchpoints and Break-
points

Traditional watchpoints allow a symbolic debugger to
react—stop execution, display values, or evaluate a pred-
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Figure 5: Architectural Overview of Friday

Architectural Overview: Figure 5 presents the architectural overview of Fri-
day. As the interface for users interacting with Friday, a central debugging
console is provided, which is connected to replay processes, each of which runs
an instance of a traditional symbolic debugger such as GDB. The information
provided by liblog may be overwhelmingly large, making difficult to track down
the root cause of a particular problem. To mitigate this problem, Friday intro-
duces distributed watchpoints and breakpoints to ease the search. On top of it,
users are enabled to write arbitrary commands to view and manipulate system
state.

5.1.1 Distributed Watchpoints and Breakpoints

An important feature supported by Friday is distributed watchpoints and
breakpoints. Friday extends the functionality of watchpoints to monitor vari-
able and expressions from multiple nodes in the replayed distributed applica-
tion. It allows users to refer to a variable on all nodes (indicated by watch
<variable>), a single node (indicated by watch <node ID> <variable>) or a
specific set of nodes (indicated by watch [<node ID, ...>] <variable>). For
instance, watch [@4] srv.successor indicates a watchpoint should be added

12



for the variable srv.successor located at node 4. Similarly, breakpoints are
also extended. Programmers can install breakpoints on one, several or all re-
played nodes.

Distributed watchpoints and breakpoints are implemented by setting lo-
cal instances on each replay process and mapping their addresses to a global
identifier. While distributed breakpoints are implemented directly based on
GDB breakpoints, in contrast, Friday implements its own mechanism for local
watchpoints. The memory page that maintains the watched variable is set to
write-protected. When the variable is updated, the ensuing SEGV signal is
intercepted, leading Friday to unprotect the memory page and complete the
update.

5.1.2 Command Support

Another crucial feature of Friday is the ability to view and manipulate the
distributed state of replayed application using python commands in an inter-
active or automated manner. Interactive commands are passed directly to the
debugger processes, whereas automated commands are triggered by watchpoints
or breakpoints.

In particular, the commands may involve four types of system state: 1)
Friday’s own debugging state, for gathering statistics or modeling global appli-
cation state; 2) state inside replay processes, for access to the state of the target
system; 3) the metavariable that maintains the node ID where a watchpoint or
breakpoint is triggered; and 4) the logical time kept by the Lamport clock or
real time recorded in logs.

watch srv.successor
command
if srv.node.addr !=
@nodesbyID[srv.successor](srv.predecessor) :
print "Node srv.node.addrs succesor "

"link is not symmetric."
end

watch srv.predecessor
command
if srv.node.addr !=
@nodesByID[srv.predecessor](srv.successor) :
print "Node srv.node.addrs predecessor "

"link is not symmetric."
end

Figure 6: Commands for Checking Whether a Chord Ring is Well-formed

As an example, the two sets of commands shown in Figure 6 define a high-
level distributed property, namely a Chord should be well-formed, by checking
two conditions: (1) each node should be the predecessor of its successor; and
(2) each node should be the successor of its predecessor.
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5.2 Evaluation

According to the taxonomy presented in Section 3. Friday adopts determin-
istic replay for fault diagnosis. We summarize the strength and limitation of
Friday of follows:

Strengths:

• Friday is the first replay-based debugging system for unmodified distributed
applications at the fine granularity of source symbols. In addition, it pro-
vides the ability to write arbitrary commands in an interactive or auto-
mated approach for tracking high-level distributed conditions and actions.

• The replay-based nature of Friday allows programmers to refine checks
after repeated replays without recompilation and fresh log extractions.
Programmers can dynamically select the system state to be monitored at
runtime of the replay.

Limitations:

• Friday has large storage requirement for logs, since all non-deterministic
events need to be recorded. The increase in the complexity of target
systems and their scales will lead to significant increase of the log size.
Furthermore, the logs are collected at a centralized location, the aggregate
size of the logs could be prohibitively large.

• Performing replay starting from an intermediate state is not supported.
Friday have to replay the application from the beginning. This limita-
tion might be addressed by introducing static snapshot of the application.
However, defining snapshot of an application is difficult by itself for com-
plex systems.

• The deterministic replay is performed at a centralized location, which re-
quires all information to be transmitted to that node. In addition, central-
ized replay also demands significant amount of CPU, memory and storage
resources, leading to limits on the scalability.

6 PeerReview: Practical Accountability for Dis-
tributed Systems

Pip and Friday manage faults derived from bugs in software design or imple-
mentation, where the runtime environment is assumed to be completely trusted.
In contrary, PeerReview is deployed in an untrusted environment, and focuses
on faults caused by malicious behaviors from compromised nodes.

PeerReview provides accountability in distributed systems. It maintains a
tamper-evident record that provides irrefutable evidence for all nodes’ actions.
Based on the logs, PeerReview ensures that an observable fault is eventually
detected and that a correct node can defend itself against any false accusations.

PeerReview is widely applicable to various applications, ranging from de-
tecting unexpected in interdomain routing [11], developing secure network co-
ordinates [25], to auditing P2P distributed virtual environments.
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6.1 Overview

System Model: In PeerReview, each node i is modeled as a deterministic state
machine Si, a detector module Di and an application Ai, as shown in Figure 7.
The state machine Si represents the behaviors that need to be checked; whereas
the application Ai represents the other functionalities, and the detector Di

implements PeerReview.

• Accuracy: (1) No correct node is forever suspected by
a correct node, and (2) no correct node is ever exposed
by a correct node.

Although a system with these properties is weaker than our
idealized detector from Section 3.1, it is still very strong
in practice: every instance of detectably faulty behavior is
eventually detected, and there are no false positives. As we
will see later, relaxing completeness in favor of a probabilis-
tic detection guarantee permits a highly scalable implemen-
tation, while still detecting faults with high probability and
avoiding false positives.

4. DESIGN OF PEERREVIEW
In the previous section, we discussed fault detection and de-
fined its properties. Next, we describe the design of Peer-
Review, an accountability system that satisfies these prop-
erties. A formal proof of these properties can be found in a
technical report [24].

4.1 Overview
We first describe a simplified version of PeerReview, called
FullReview. For FullReview, we make the (unrealistic) as-
sumption that there is a trusted entity that can reliably and
instantly communicate with all nodes in the system. The
system’s membership is static, and each node knows the
specification of the entire system.

FullReview works as follows: All messages are sent
through the trusted entity, which ensures that all correct
nodes observe the same set of messages in the same order.
Furthermore, each node i maintains a log λij for each other
node j, and in this log it records all messages that were
sent either from or to j. Periodically, i checks each of its
logs against the system specification. If a node i finds that
a node j has not yet sent the message it should have sent
in its last observed state, then i suspects j until that mes-
sage is sent. If j has sent a message it should not have sent
according to the specification, then i exposes j.

It is easy to see that FullReview is both complete and
accurate. On the one hand, when a node i sends an “incor-
rect”message, the trusted entity forwards the message to all
nodes, and i is exposed by every correct node. Also i is sus-
pected by every correct node as long as a message from i is
missing. On the other hand, no correct node can be exposed
or indefinitely suspected by any correct node.

However, FullReview is based on strong assumptions: a
trusted, reliable communication medium and a formal sys-
tem specification. Moreover, FullReview’s complexity is at
least quadratic in the number of nodes, for messages, stor-
age, and computation. In PeerReview, we refine this simple
design to arrive at a practical system:

• Each node only keeps a full copy of its own log; it
retrieves other logs when necessary. Nodes exchange
just enough information to convince another node that
a fault is, or is not, present.

• Tamper-evident logs and a commitment protocol en-
sure that each node keeps its log consistent with the
set of messages it has exchanged with all correct nodes
or else risk exposure.

• Each node is associated with a small set of other nodes,
who act as its witnesses. The witnesses collect evidence
about the node, check its correctness, and make the
results available to the rest of the system.

Application Ai
Application Ai

NetworkNetwork

State machine
Si

State machine
Si

Detector module
Di

Detector module
Di

Evidence

Chal. / resp.

Failure

indications
Requests

Messages

Figure 2: Information flow between application,
state machine, and detector module on node i.

• PeerReview uses a reference implementation of the
node software to check logs for faulty behavior. Thus,
it does not require a formal system specification, which
is difficult to obtain and maintain in practice.

• PeerReview uses a challenge/response protocol to deal
with nodes that do not respond to some messages. This
allows PeerReview to operate on an unreliable network
that satisfies only weak synchrony assumptions.

We will describe each of these refinements in the following
subsections.

4.2 System model
Each node i is modeled as a state machine Si, a detector
module Di, and an application Ai (Figure 2). The state ma-
chine represents all the functionality that should be checked
by PeerReview, whereas the application represents other
functions that need not be checked, e.g. a GUI. The de-
tector module Di implements PeerReview; it can observe all
inputs and outputs of Si, and it can communicate with the
detector modules on other nodes. We assume that a correct
node implements Si and Di as specified, whereas a faulty
node may behave arbitrarily.

The detector module issues failure indications about other
nodes to its local application. Informally, exposed(j) is raised
when i has obtained proof of j’s misbehavior; suspected(j)
says that i suspects that j does not send a message that it
is supposed to send; trusted(j) is issued otherwise.

4.3 Assumptions
The design of PeerReview is based on the following assump-
tions:

1. The state machines Si are deterministic.

2. A message sent from one correct node to another is
eventually received, if retransmitted sufficiently often.

3. The nodes use a hash function H(·) that is pre-image
resistant, second pre-image resistant, and collision re-
sistant.

Assumptions 1–3 are common for techniques based on state
machine replication [50], including BFT [13].

4. Each node has a public/private keypair bound to a
unique node identifier. Nodes can sign messages, and
faulty nodes cannot forge the signature of a correct
node.

Figure 7: Architectural Model of Node i

PeerReview Design: PeerReview assigns each node i a set of witnesses (an-
notated as w(i)), nodes that periodically check the correctness of node i and
collect verifiable evidences. Each node should keep a log that records all the
messages it has exchanged with other nodes, and report this to its witnesses.
Then the witnesses use a reference implementation of that node to detect faulty
behaviors.
Assumptions: PeerReview makes the following assumptions: (1) Any state
machine Si is deterministic; (2) A message sent from a correct node to another
is eventually received; (3) Each node can authenticate messages with signatures
that cannot be forged by other nodes; and (4) Each node i has the reference
implementation of all the state machines; (5) For each node i, and its witness
set w(i), it is assured {i} ∪ w(i) contains at least one correct node.

6.1.1 Detect Tampering and Inconsistency in Logs

Tamper-evident Logs: A log can be modeled as a linear append-only list
that contains all inputs and outputs of a node. Each log entry ek = (sk, tk, ck)
has a sequence number sk, a type (SEND or RECV) tk, and the content ck, where
the sequence numbers must be strictly increasing. Additionally, each entry
is attached with a recursively defined hash value hk = H(hk−1||sk||H(ck)), as
shown in Figure 8(a), whereH is a hash function and || represents concatenation.

An authenticator αj
k = σj(sk||hk) is a signed statement by node j that the

log entry with sequence number sk has hash value hk, where σj means the
statement is signed using j’s private key. The hash chain, along with a set of
authenticators, makes the log tamper-evident:

Once receiving αj
k fro node j, node i can challenge j for log entries preceding

ek. If j cannot response with the corresponding entries, then i can use αj
k as

the verifiable evidence that j has tampered with its log.
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Figure 3: (a) A linear log and its hash chain, which
is recursively defined on the log entries, and (b) a
forked log with two branches.

5. Each node has access to a reference implementation of
all Sj . The implementation can create a snapshot of
its state, and its state can be initialized according to a
given snapshot.

6. There is a function w that maps each node to its set of
witnesses. It is assumed that for each node i, the set
{i} ∪w(i) contains at least one correct node; otherwise,
PeerReview might lose completeness with respect to
node i.

Assumption 4 can be met, for instance, by installing each
node with a certificate that binds the node’s public key to its
unique identifier. However, any type of name binding that
avoids Sybil attacks [21] will work. In symmetric systems
where all nodes run the same protocols, a node can simply
use its own implementation as the reference implementation
(Assumption 5). Otherwise, nodes can obtain a reference
implementation for another node from a trusted source. The
appropriate definition of w (Assumption 6) depends on the
system configuration, which will be discussed in Section 5.3.

4.4 Tamper-evident logs
To enforce accountability, PeerReview must keep a secure
record of the inputs and outputs of each node, and it must
be able to detect if that record has been tampered with.
PeerReview implements such a record using a technique in-
spired by secure histories [39].

A log is an append-only list that contains all the in-
puts and outputs of a particular node’s state machine in
chronological order. The log also contains periodic state
snapshots and some annotations from the detector mod-
ule. Each log entry ek = (sk, tk, ck) has a sequence num-
ber sk, a type tk, and some type-specific content ck. The
sequence numbers must be strictly increasing but may be
non-contiguous; for example, a timestamp could be used.
Additionally, each record includes a recursively defined hash
value hk = H(hk−1||sk||tk||H(ck)) (Figure 3a); || stands for
concatenation. The base hash h−1 is a well-known value.

The resultant hash chain, along with a set of authen-
ticators, makes the log tamper-evident. An authenticator
αjk = σj(sk, hk) is a signed statement by node j that its log
entry ek has hash value hk; σj(·) means that the argument
is signed with j’s private key.

By sending αjk to node i, a node j commits to having
logged entry ek and to the contents of its log before ek. If j
subsequently cannot produce a prefix of its log that matches

the hash value in αjk, then i has verifiable evidence that j
has tampered with its log and is therefore faulty.

Moreover, i can use αjk as verifiable evidence to convince
other nodes that an entry ek exists in j’s log. Any node
can also use αjk to inspect ek and the entries preceding it
in j’s log. To inspect x entries, i challenges j to return
ek−(x−1), . . . , ek and hk−x. If j responds, i calculates the
hash value hk from the response and compares it with the
value in the authenticator. If j has not returned the correct
log entries in the correct order, the hash values will differ. In
this case, i has evidence that j is faulty. We discuss the case
in which j does not respond to the challenge in Section 4.8.

Summary: Logs and authenticators form a tamper-
evident, append-only record of a node’s inputs and outputs.

4.5 Commitment protocol
We must ensure that a node cannot add an entry to its log
for a message it has never received. Also, we have to ensure
that a node’s log is complete, i.e. that it contains an entry
for each message sent or received by the node to or from a
correct node.

When node i sends a message m to node j, i must commit
to having sent m, and j must commit to having received m.
They obtain an authenticator from the other node included
in the message and its acknowledgment, respectively. This
authenticator covers the corresponding log entry. A log entry
for a received message must include a matching authentica-
tor; therefore, a node cannot invent log entries for messages
it never received.

When i is about to send m to j, it creates a log entry
(sk, SEND, {j,m}), attaches hk−1, sk and σi(sk||hk) to m,
and sends the result to j. Thus, recipient j has enough in-
formation to calculate hk and to extract αik. If the signature
in αik is not valid, j discards m. Otherwise, j creates its
own log entry (sl, RECV, {i, sk,m}) and returns an acknowl-
edgment with hl−1, sl, and σj(sl||hl) to i. This allows i to

extract and verify αjl . If i does not receive a valid acknowl-
edgment, i sends a challenge to j’s witnesses; we will explain
the details in Section 4.8.

Summary: The commitment protocol ensures that the
sender (respectively the receiver) of each message m obtains
verifiable evidence that the receiver (respectively the sender)
of m has logged the transmission.

4.6 Consistency protocol
A faulty node can attempt to escape detection by keeping
more than one log or a log with multiple branches (Fig-
ure 3b). For example, this could be a promising strategy for
node B in Figure 1d, who might keep one log for messages
from A and another for messages from C. Both logs would
show correct behavior, even though node B is clearly faulty.
To avoid this attack, we exploit the fact that a node can
produce a connecting log segment for each pair of authenti-
cators it has ever signed if, and only if, it maintains a single,
linear log.

If a node i receives authenticators from another node j, it
must eventually forward these authenticators to the witness
set w(j). Thus, the witnesses obtain verifiable evidence of
all the messages j has sent or received. Periodically, each
witness ω ∈ w(j) picks the authenticators with the lowest
and the highest sequence number and challenges j to return
all log entries in this range. If j is correct, these log entries
form a linear hash chain that contains the hash values in
all the other authenticators. If they do not, ω has obtained

Figure 8: (a) A linear log and its hash chain, and (b) a forked log

Commitment Protocol: To ensure the log of each node is consistent with
the set of messages it has exchanged with other nodes, an authenticator is
included in the each message and its acknowledgement. Therefore, the sender
(respectively the receiver) of a message m will obtain verifiable evidence that
the receiver (respectively the sender) has logged the transmission.
Consistency Protocol: A faulty node might try to cheat by keeping multiple
logs (e.g., by forking its log, as shown in Figure 8b), and sending different copies
of logs to different nodes. To prevent this, when a node i receives a message
m from another node j, it forwards m to j’s witnesses, so they can ensure m
actually appears in j’s log. In practice, noting the situation where i could be a
faulty accomplice of j, each witness ω ∈ w(i) needs to extract the message m
from i’s log and send it to the witness set of j. The complexity of this step is
O(|w(i)| · |w(j)|).

6.1.2 Detect Faulty Behaviors

Each witness ω of a node i periodically checks i’s most recent authenticator
(say αi

k) and challenges i to return all log entries since its last audit. The
returned the new log entries are appended to ω’s local copy of i’s log.

Now ω has acquired logs of all the inputs and outputs of i, which enables it
to replay the inputs on the reference implementation of Si. As Si is determin-
istic, the replayed outputs should be identical to the actual outputs of i. Any
deviation found, ω can use αi

k as the verifiable evidence against i, this evidence
can be checked by any correct node.

6.1.3 Optimizations

When performing deterministic replay for node i, one can start from an
intermediate snapshot of Si, instead of always running from the beginning.
PeerReview assumes the reference implementation can be initialized to a given
snapshot of a state machine.

PeerReview has the assumption that the state machine of each node should
be deterministic, however, randomization is needed in some scenarios. A recent
work [1] bridges this gap by providing techniques to generate a pseudo-random
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sequence. The elements of the sequence up to a given point can be proved to
be correctly generated, while future values remains unpredictable.

One of the most frequently used operation in PeerReview is the access and
modification of the tamper-evident log. [7] introduces tree-based tamper-evident
logs to improve the efficiency of appending and querying log entries.

6.2 Evaluation

Strengths:

• Unlike Pip and Friday which handle faults derived from software errors,
PeerReview targets on general Byzantine faults including those resulting
from malicious behavior by compromised nodes. PeerReview provides a
approach to make strong guarantees on eventual Byzantine fault detection.

• PeerReview provides general and practical accountability. Most of the
assumptions made in PeerReview are realistic and easy to met. With
little presumption on the target system, it is generally applicable to a
wide range of protocols, e.g., network filesystems, peer-to-peer system
and overlay multicast systems.

Limitations:

• PeerReview assumes the availability of the reference implementation of
all other nodes, which may not be necessarily true. In addition, as a
performance optimization (See Section 6.1.3), PeerReview also assumes
reference implementations can be initialized to an arbitrary intermediate
snapshot of system state. As discussed in Section 5.2, this process is non-
trivial or may not be feasible for all target systems.

• As described in Section 6.1.1, to prevent inconsistent logs, when a node
i receives a message from another node j, each of the i’s witness needs
to forward the message to all the witnesses of j. The complexity of this
process is roughly O(W 2), where W is the average size of the witness sets.
This may limit the scalability of PeerReview. We note that PeerReview
has introduced probabilistic guarantees to mitigate this problem, which
proves to be notably effective.

7 TrInc: Trusted Hardware against Equivoca-
tion

Performed in an untrusted environment, PeerReview employs several mech-
anisms to ensure the integrity of logs. One of them (the consistency protocol)
is used to prevent nodes sending inconsistent logs to other nodes. In general,
making inconsistent statements (e.g. logs in the case of PeerReview) to others
is known as equivocation. Consisting fundamentally of only a non-decreasing
counter and a key, TrInc (trusted incrementer) provides a new primitive –
unique, once-in-a-lifetime attestations to combating equivocations.
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7.1 Overview

Equivocation: Equivocation is a necessary property for Byzantine faults and
many other forms of fraud is equivocation. A common approach to prevent
equivocation requires communication with each other or with a third party [12,
13], so they can learn about all the distinct statements. However, this additional
communication can become bottleneck for P2P systems, as we discussed in
Section 6.1.1. TrInc minimizes both communication overhead and the number
of non-faulty nodes required. In addition, it is designed to be small, simple and
cheap for deployment in distributed systems.
Architectural Overview: TrInc introduces trinket a trusted hardware to gen-
erate and verify attestations. For each data m, an attestation is attached, which
binds m to a certain value of a counter, and ensures no other data will be bound
to the same value.

7.1.1 TrInc State

Figure 9 describes the state of a trinket. Each trinket is bound to a unique
identifier I and a public/private key pair (Kpub,Kpriv), which are configured by
its manufacturer. An attestation A is also provided to prove the validity of the
trinket. These four state are permanently maintain in the trinket.

A trinket may include several counters; a meta-variable M maintains the
number of the counters. Another global state is Q, a limited-size FIFO queue
that contains the most recently generated counter attestations. When encoun-
tered a power failure, a trinket uses Q to recover its state.

A final part of a trinket’s state is an array of counters, each of which main-
tains three state, i.e. the identifier of the counter i, the current value of the
counter c, and the key to use for attestations K.
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vastly improves its performance over using asymmetric
cryptography or even secure hashes. To ensure that par-
ticipants cannot generate arbitrary attestations, the sym-
metric key is stored in trusted memory, so that users can-
not read it directly. Symmetric keys are shared among
trinkets using a mechanism that ensures they will not be
exposed to untrusted parties.

3.3 Notation
We use the notation xK to mean an attestation of x

that could only be produced by an entity knowing K. If
K is a symmetric key, then this attestation can be verified
only by entities that know K; if K is a private key, then
this attestation can be verified by anyone, or more accu-
rately anyone who knows the corresponding public key.
We use the notation {x}K to mean the value x encrypted
with public key K, so that it can only be decrypted by
entities knowing the corresponding private key.

3.4 TrInc state
Figure 1 describes the full internal state of a trinket,

which we describe in more detail here. Each trinket is
endowed by its manufacturer with a unique identity I and
a public/private key pair (Kpub, Kpriv). Typically, I will
be the hash of Kpub. The manufacturer also includes in
the trinket an attestation A that proves the values I and
Kpub belong to a valid trusted trinket, and therefore that
the corresponding private key is unknown to untrusted
parties.

We leave open the question of what form A will take.
This attestation is meant to be evaluated by users, not by
trinkets, and so can be of various forms. For instance,
it might be a certificate chain leading to a well-known
authority trusted to oversee trinket production and ensure
their secrets are well kept.

Another element of the trinket’s state is the meta-
counter M . Whenever the trinket creates a new counter,
it increments M and gives the new counter identity M .
This allows users to create new counters at will, with-
out sacrificing the non-monotonicity of any particular
counter. Because M only goes up, once a counter has
been created it can never be recreated by a malicious user
attempting to reset it.

Yet another element is Q, a limited-size FIFO queue
containing the most recent few counter attestations gen-
erated by the trinket. It is useful for allowing users to
recover from power failures, as we will describe later.

The final part of a trinket’s state is an array of counters,
not all of which have to be in use at a time. For each in-
use counter, the state includes the counter’s identity i, its
current value c, and its associated key K. The identity
i is, as described before, the value of the meta-counter
when the counter was created. The value c is initialized
to 0 at creation time and cannot go down. The key K
contains a symmetric key to use for attestations of this
counter; if K = 0, attestations will use the private key
Kpriv instead.

Global state:
Notation Meaning
Kpriv Unique private key of this trinket
Kpub Public key corresponding to Kpriv

I ID of this trinket, the hash of Kpub

A Attestation of this trinket’s validity
M Meta-counter: the number of counters

this trinket has created so far
Q Limited-size FIFO queue containing the

most recent few counter attestations gen-
erated by this trinket

Per-counter state:
Notation Meaning
i Identity of this counter, i.e., the value of

M when it was created
c Current value of the counter (starts at 0,

monotonically non-decreasing)
K Key to use for attestations, or 0 if Kpriv

should be used instead

Figure 1: State of a trinket

3.5 TrInc API
Figure 2 shows the full API of a trinket, described in

more detail in this subsection.
3.5.1 Generating attestations

The core of TrInc’s API is Attest. Attest takes
three parameters: i, c, and h. Here, i is the identity of
a counter to use, c is the requested new value for that
counter, and h is a hash of the message m to which the
user wishes to bind the counter value. Attest works as
follows:

Algorithm 1 Attest(i, c, h, n)
1. Assert that i is the identity of a valid counter.
2. Let c be the value of that counter, and K be the key.
3. Assert no roll-over: c ≤ c.
4. If K = 0, then let a ← I, i, c, c, hK ; otherwise

let a ← I, i, c, c, hKpriv .
5. Insert a into Q, kicking out oldest value.
6. Update c ← c.
7. Return a.

Note that Attest allows calls with c = c. This is
crucial to allowing peers to attest to what their current
counter value is without incrementing it. To allow for
this while still keeping peers from equivocating, TrInc
includes both the prior counter value and the new one.
One can easily differentiate attestations intended to learn
a trinket’s current counter value (c = c) from attesta-
tions that bind new messages (c < c).
3.5.2 Verifying attestations

Suppose a user Alice with trinket A wants to send a
message to user Bob with trinket B. She first invokes

Figure 9: State of a trinket
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7.1.2 TrInc Operations

Generating Attestation: The core of TrInc’s operations is Attest, which
takes three parameters: i, c′, and h. Here i is the identifier of the counter; c′ is
the requested new value for that counter; and h is a hash of the message m to
which the user wishes to bind the counter value.

Since the counter is meant to be non-decreasing, Attest first examines the
validity of the requested new value, by check whether it is not smaller than
the current value of the counter, i.e. c ≤ c′. If the new value is valid, the
attestation a is generated as a ← 〈I, i, c, c′, h〉K , where 〈X〉K indicates using
key K to encrypt the content X. Then the value of the counter is updated to
c′. Attest finishes by returning the generated attestation a.
Verifying Attestation: To verify an attestation a = 〈I, i, c, c′, h〉K , a trinket
verifies the authenticity of a with the corresponding key. If the attestation is
signed using asymmetric cryptographic scheme, the corresponding public key
is used; otherwise, for symmetric cryptographic scheme, the symmetric key K
should be exchanged aprioi and is used to verify the authenticity of a.

7.2 Applications

Trusted Logs with TrInc: A trusted log are maintained by augmenting an
append-only list of logs with an attestation attached to each of the log entries.
When a log entry e with a sequence number s is to be appended, an attestation
a is generated as a = Attest(i, s, h(e)), where i is the identifier of the trinket.
The triplet (s, e, a) is appended to the end of the log. Given a trusted log, any
trinket can check whether it is tampered, by verifying the attestations attached
to the log entries. Without knowing the key of the counter, it is practically
impossible for a malicious user/node to tamper log entries without being noticed.
In addition, when users lookup for the log entry with a particular sequence
number s, only one log entry may match s, thus equivocation is protected.
Simplifying PeerReview with TrInc: As described above, TrInc can easily
supply a trust log without the assistance of a witness set. TrInc-augmented
PeerReview includes such trusted logs. Whenever a message is sent or received,
the node should log that message with an attestation from its trinket. On the
receiving end, a node only processes a received message if it is accompanied by
an attestation that the message has been logged by the sender’s trinket.

Enabled with TrInc, PeerReview nodes no longer need to verify a hash chain
of log entries. The fact that TrInc signs the messages is sufficient. Further-
more, the expensive consistency protocol for preventing equivocations can also
be removed. In PeerReview, if a node i sends an authenticator to another node
j, then j’s witnesses should forward it to i’s witnesses. This is not necessary
in TrInc-augmented PeerReview, because equivocation is make impossible by
using the TrInc-enabled trusted log. Therefore, the communication overhead is
significantly reduced.

7.3 Evaluation

Strengths:

• Fundamentally, TrInc consists only of a non-decreasing counter and a key.
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The small size and simple semantics make it easy to deploy, as demon-
strated by implementing it on currently available trusted hardware.

• With TrInc eliminating equivocations, a wide range of applications can
be significantly simplified. For instance, the heavy consistency protocol
used in PeerReview is avoided, which results in a significant reduction in
communication overhead. Without the power of equivocation, the number
of participants to tolerate f Byzantine faults is reduced from 3f + 1 to
2f + 1.

Limitations:

• There lacks a suitable trusted hardware to deploy TrInc. Though the
core functional elements of TrInc are included in the Trusted Platform
Module (TPM), it proves TPM is not a good option for deploying TrInc.
TrInc uses the trusted hardware in a fundamentally different way than
what these hardware are designed for. While the trusted hardware are de-
signed to perform few operations during a machine’s boot cycle, TrInc uses
them much more frequently during operation. The limited performance
of trusted hardware results in significant overhead.

8 Discussion

In this section, we conclude our survey paper with comparisons of the differ-
ent techniques proposed for fault management of distributed systems, followed
by a discussion of the challenges.

8.1 Comparison

In previous sections, we have discussed representative mechanisms and sys-
tems for fault management of distributed systems, including Pip in Section 4,
Friday in Section 5, PeerReview in Section 6 and TrInc in Section 7. These
systems, together with the taxonomy presented in Section 3, show that pro-
grammers indeed have a variety of options for fault detection, fault diagnosis,
and evidence generation.

Incorporated with the evaluations of individual systems presented in previous
sections, we present a comparison of the different techniques for fault detection
and fault diagnosis. We omit the comparison of the techniques proposed for
evidence generation, as these techniques are applied to disjoining application
domains, rendering the comparison less interesting.

8.1.1 Comparison of Fault Detection Techniques

• Invariant Checking: For invariant checking, programmers are allowed
to specify the system state to be exposed, thus they have the ability to
control of the size of logs. On the other hand, due to this configuration
is performed aprioi, prior knowledge of the target system is presumed. In
addition, improper settings may leads to false positives and false negatives.

Though Pip is not suitable for checking high-level distributed properties,
invariant checking, in general, is a promising technique for this purpose.
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• Reference Implementation: Fault detection with reference implemen-
tation is straightforward and easy to use. However, this approach is limited
to detecting faults resulting from malicious behaviors. For software error,
it might be difficult to obtain a reference implementation that operates
fully correct.

• Model Checking: Invariant checking and reference implementation only
detect faults existed in running executions, yet cannot guarantee the cor-
rectness of a system in all possible execution paths. Model checking per-
forms more comprehensive detections using exhaustive search. In addition,
leveraged by heuristic random walk, model checking is applicable to detect
liveness faults with high confidence.

State explosion problem, though may be mitigated by adopting optimiza-
tions and random walk, is a daunting problem of model checking. In
addition, the difficulty in developing the state machine of a given system
raises barrier to the wide application of model checking.

8.1.2 Comparison of Fault Diagnosis Techniques

• Log-based Causality Analysis: While log-based causality analysis
requires less comprehensive logs than deterministic replay, the flexibility
of diagnosis is limited by the comprehensiveness of the logs. If a certain
system state needed for diagnosis is not logged, it can only be acquired
by refining the specification of the state to be exposed and rerunning the
target system.

• Deterministic Replay: Unlike log-based causality analysis, program-
mers are essentially able to acquire any system state during the replay.
Thus programmers can refine checks after repeated replays without re-
compilation and refresh log extraction.

The drawback of deterministic replay is also obvious. The logs for en-
abling deterministic replay are usually significantly large. Therefore, it
is expensive in terms of CPU, memory and storage resources to maintain
logs and perform replays.

• Statistical Inference: Based on machine learning techniques such as
clustering, statistical inference inevitably encounters false positive and
false negatives. Thus, careful balancing between them is required.

8.2 Challenges

• Usability: The first challenge involves improving the usability of fault
management, specifically, in the following three aspects: (1) allowing
mechanisms to be applied to application written in arbitrary language
(unlike MaceMC, WiDS and P2Monitor that require target system to be
based on Mace, WiDS and NDlog respectively); (2) enabling fault manage-
ment without manual modification of source code (unlike Pip and XTrace
that inject annotations to source code); and (3) allowing users to specify
expectation of system behavior in more approachable means.
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• Reasoning about Time: The second challenge resides in improving the
ability of system operators to reason about time, e.g. optimizing virtual
clocks to trace real time more closely even when the distributed clocks
are poorly synchronized. This could be helpful to reason about properties
related concurrency and race conditions.

• Utilization of Distributed Resources: Most detection and diagnosis
mechanisms adopt centralized approaches. For instance, Pip gathers trace
files to a central location, where the reconciled path instances are main-
tained at a centralized database; Friday performs replay at a centralized
node; model checking systems, MaceMC and MODIST, steer systems lo-
cally. To leverage better utilization of distributed resources, programmers
may face a series of challenges, including consistency maintenance and
failure handling in parallel analysis (e.g. DS3) and distributed replay.

• Impact Analysis and Repair: Given detected faults, and their root
causes, a challenging research topic is how to accurately estimate their
impact on the current system, and how to repair the system online without
recompilation and rerun. As an alternative approach to minimize the
impact of faults on a running system, a recent work [26] explores model
checking techniques to predict possible system state in the future and steer
systems to avoid faults.

• Trusted Hardware Design: A2M [6] and TrInc [16] explore a novel
direction to implement Byzantine fault tolerance or detection system, by
adopting the support of trusted hardware. However, today’s trusted hard-
ware is designed mainly for bootstraping software, which has few perfor-
mance requirements. Developing high-performance trusted hardware that
are more suitable for distributed systems is a valuable area for future work.
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