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ABSTRACT 
 

STRATEGIES FOR IMPROVING EPISTASIS DETECTION AND REPLICATION 

Elizabeth Rachel Piette 

Jason H. Moore 

 

Genome-wide association studies (GWAS) have been extensively critiqued for their perceived 

inability to adequately elucidate the genetic underpinnings of complex human phenotypes. Of 

particular concern is “missing heritability,” or the difference between the total estimated heritability 

of a phenotype and that explained by GWAS-identified loci. There are numerous proposed 

explanations for this missing heritability, but a frequently ignored and potentially vastly informative 

alternative explanation is the contribution of epistatic interactions underlying complex phenotypes. 

 

Given our understanding of how biomolecules interact in networks and pathways, it is not 

unreasonable to conclude that the effect of variation at individual genetic loci may non-additively 

depend on and should be analyzed in the context of their interacting partners.  It has been 

recognized for over a century that deviation from expected Mendelian proportions can be 

explained by the interaction of multiple loci, and the epistatic underpinnings of phenotypes in 

model organisms have been extensively experimentally quantified. Therefore, the dearth of 

inspiring single locus GWAS hits for complex human phenotypes (and the inconsistent replication 

of these between populations) should not be surprising, as one might expect the joint effect of 

multiple perturbations to interacting partners within a functional biological module to be more 

impactful than individual main effects. 

 

Current methods for analyzing GWAS data are not well-equipped to detect epistasis or replicate 

significant interactions. The multiple testing burden associated with testing each pairwise 

interaction quickly becomes nearly insurmountable with increasing numbers of loci. Statistical and 
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machine learning approaches that have worked well for other types of high-dimensional data are 

appealing and may be useful for detecting epistasis, but potentially require adaptations to suit 

interaction analyses. Biological knowledge may also be leveraged to guide the search for 

epistasis candidates, but requires context-appropriate application (as, for example, two loci with 

significant main effects may not have a significant interaction, and vice versa). 

 

Rather than renouncing GWAS and the wealth of associated data that has been accumulated as 

a failure, I propose the development of new techniques and incorporation of diverse data sources 

to analyze GWAS data in an epistasis-centric framework. 
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ENHANCING THE REPRODUCIBILITY OF MACHINE LEARNING ANALYSES OF 
GENOMIC DATA 

 

Introduction 

As the falling cost of DNA sequencing continues to outpace Moore’s Law, and new parallel and 

distributed computing paradigms and technologies arise to manage the rapid accumulation of big 

data, biomedical scientists are faced with new practical and analytical challenges including data 

storage, merging heterogeneous data types from diverse sources, handling differentially missing 

data, and more [87, 138].  The increasingly high-throughput nature of complex biomedical studies 

pairs well with analysis via machine learning methods, which in general aim to automatically 

improve performance of a task through experience [57, 71]. Machine learning has gained 

incredible traction in the biomedical sciences and adjacent fields, evidenced by numerous fruitful 

applications to diverse issues in genetics and genomics such as identifying binding sites from 

sequences, functionally annotating hierarchical gene ontologies, building gene expression 

networks for regulatory context, and more [78].  However, as machine learning methods continue 

to increase in popularity and accessibility, it is critical to emphasize the importance of thoughtfully 

considering how choices at each stage can impact a given analysis in the context of the unique 

data challenges associated with big biomedical data. This review discusses reproducibility and 

replicability in general before providing overviews of current issues in and methods for enhancing 

reproducibility in the contexts of genome-wide association studies (GWAS) and machine learning, 

both individually and in conjunction. Analyzing GWAS data beyond the traditional interrogation of 

single-locus main effects to consider interactions or incorporate additional complementary data 

sources may facilitate the discovery of new insights from pre-existing data. Finally, this review 

concludes with a discussion of future directions for the field and suggestions for challenging 

current paradigms in both genomics and machine learning to better integrate the two to promote 

high-quality, reproducible science. 
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Reproducibility vs. replicability 

Variations on the terms “reproducibility” and “replicability” are used, sometimes interchangeably, 

to broadly refer to the ability to achieve the same experimental results or arrive upon the same 

conclusions given repetition of the same or similar experiment or analysis. This reproducibility is 

generally accepted to be the defining property of robust scientific research and provides the basis 

upon which future research depends.  Despite the collective emphasis on the importance of 

reproducibility/replicability in conducting research, which has been particularly acute in the 

biomedical sciences in recent years given the explosion of data and the need to perform analyses 

across bench lab conditions and computing environments, distinct scientific traditions have 

proposed and embraced varying definitions over time of what these terms refer to and the relative 

importance of the concepts they describe [53, 94, 107-9, 119].  An early definition of 

reproducibility in the era of computational analyses orients us to an example of a major desired 

quality of reproducible analysis, the ability to redraw a figure from the data and software provided 

with a paper: 

 
“A revolution in education and technology transfer follows from the marriage of word processing 
and software command scripts. In this marriage an author attaches to every figure caption a 
pushbutton or a name tag usable to recalculate the figure from all its data, parameters, and 
programs. This provides a concrete definition of reproducibility in computationally oriented 
research.” [38] 
 

Over time, the definition of reproducibility has expanded and become more nuanced.  The 

following semantic distinctions can help contextualize these terms. However in common usage 

these distinctions may be ignored, either term may refer to the same overarching concept, their 

definitions may be flipped, or “reproducibility” may generally be preferred in computational 

analyses and “replicability” in biological and other traditional experimental sciences [44, 95]. 

 

Reproducibility: Research may be considered reproducible if the data collected by the original 

researcher and the analyses applied to that data (such as the software code used for data 
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cleaning, statistical analyses, and figure generation) can be re-run by another individual to 

produce the same numerical results, figures, etc. as in the original analysis. 

 

Replicability: Research may be considered replicable if independently-performed data collection 

and analyses lead to the same overall conclusion as the original research. 

 

Therefore, replicability may be considered to be more robust than reproducibility in lending 

support to a scientific finding, as it refers to independent confirmation from differing experimental 

conditions.  However, improving both replicability and reproducibility is necessary and desirable 

for distinct reasons that feed into each other, especially in the current computational research 

environment. For example, reproducing a certain experiment may be infeasible due to lack of 

adequate computational resources; however, adhering to the principles of reproducible research 

by sharing the code used in this analysis may allow an external researcher to analyze a different 

data set with the same software to replicate the original finding. 

 

Regardless of distinctions in definitions, in recent years the scientific communities across a 

number of fields have acknowledged and struggled to address the reproducibility/replicability 

crisis.  Large-scale efforts to replicate prior experiments, analyses of experiments that have had 

follow-up studies, and surveys of attempts to reproduce previously-conducted research have 

found high rates of failure to replicate even one’s own experiments [4, 99, 110]. Explanations for 

the reproducibility crisis are distributed across many steps and agents in the scientific process 

with suggestions for improvements ranging from addressing the ways in which grants are 

reviewed to how results are disseminated, but generally agreed upon top contributing factors 

include “failure to adhere to good scientific practice and the desperation to publish or perish” [12]. 

 The latter concern requires institutional changes outside the scope of this paper, although 

advances in scientific data dissemination such as with journals that publish data descriptions and 

negative results are an improvement. The era of high-throughput experiments has produced 
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unprecedented volumes of data which may be analyzed in widely varying computational 

environments, necessitating new definitions of “good scientific practice” for this research 

landscape.  In order to improve the reproducibility and replicability of machine learning analyses 

of genomic data, it will be necessary to acknowledge contributing factors of failure to 

reproduce/replicate in both of these fields and develop novel, integrative solutions. 

Replicability of genome-wide association studies (GWAS) 

GWAS aim to identify genetic variants associated with a phenotype, such as single nucleotide 

polymorphisms that differ in frequency between cases and controls.  Replication of a genotype-

phenotype association in another cohort is considered necessary to substantiate GWAS findings, 

but there are numerous reasons why findings may fail to replicate despite a true association [33, 

54]. The significance threshold for GWAS is Bonferonni-corrected for the estimated number of 

independent tests of association being performed based on linkage disequilibrium, generally 5 x 

10-8 for individuals of European descent and lower for other populations with greater genetic 

diversity [70, 104].  Kraft et al. provide a helpful description of a Bayesian framework for 

considering evidence of replicability, most importantly highlighting that “the probability that an 

observed association truly exists in the sampled population depends not only on the observed p-

value for association, but also the power to detect the association (a function of minor allele 

frequency, effect size and sample size), the prior probability that the tested variant is associated 

with the trait under study, and the anticipated effect size” [74]. Therefore, at the widely-accepted 

GWAS significance threshold, differences in minor allele frequency, effect size, and sample size 

between the populations used in the discovery and replication cohorts may all contribute to failure 

to replicate, but these factors are often not used to adjust the significance threshold accordingly.  

Replicating GWAS findings of gene-gene interactions is even more difficult than for single 

variants due to the increased multiple testing burden associated with naively testing each 

combination of loci, but analyses that move beyond single variants are likely to become more 

important in light of the growing disappointment in the amount of phenotypic heritability explained 
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by individual loci and the acknowledgement of the distribution of risk across the genome [90, 96]. 

 In addition to these statistical concerns, differences in genetic architecture and environmental 

exposures between populations, differences in unmeasurable confounders between studies, or 

technical sources of failure to replicate such as differences between genotyping platforms or 

quality control protocols may all diminish the replicability of GWAS findings. 

Methods for improving GWAS replicability 

GWAS replication may be improved at the design stage when planning initial data collection and 

analysis, or increasingly commonly in conducting secondary analyses that may combine pre-

existing GWAS data with other data sources.  In the design stage, choosing a replication cohort 

of a sufficient size that is of the same ancestry as the discovery cohort is generally recommended 

to avoid the effects of population stratification, although effects that are replicated across different 

populations may be considered more robust [91, 111].  Care should also be taken to ensure 

consistent and accurate phenotyping between cohorts, as lack of phenotype harmonizing can 

result in perceived poor replication due to making comparisons of associations with two 

overlapping but distinct phenotypes; this is likewise a concern in performing meta-analysis of a 

GWAS phenotype [13].   

 

Methods for improving GWAS replication may be most fruitful if they aim to replicate network- or 

pathway-based findings rather than single variant main effects [47, 67-9, 92, 105, 147]. Given the 

complexity of the genome and of many common diseases/phenotypes, analysis of the cumulative 

effects of numerous perturbations to a pathway may be more informative and replicable than the 

effects of individual variants.  These may also benefit from integration of additional data types 

such as methylation or expression data, or incorporation of expert knowledge, to provide prior 

knowledge or to use for dimensionality reduction to minimize the number of hypotheses being 

tested [39, 61, 130].  Collecting and analyzing multiple sources of data in conjunction is becoming 

increasingly feasible, and seems a logical next step for attempting to explain more of the genetic 
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variation of a trait than GWAS alone. Performing secondary analyses that repurpose data from 

multiple sources, which has been both maligned and praised as “research parasitism”, is likely to 

become increasingly popular given the modern emphasis on data sharing and decreasing 

financial barriers to accessing adequate computational resources [9, 85, 118]. Improving the 

methods by which diverse data types are consolidated, the ways in which machine learning 

methods and parameters are chosen to suit the data and shape the analytic pipeline, and good 

software and computational environment sharing practices will shape the future of genomic 

analyses, and thoughtful guidelines surrounding each choice will be necessary to prevent the 

propagation of errors. 

Reproducibility of machine learning analyses 

As lack of replicability across many traditional scientific fields has reached the point of crisis, 

improving the reproducibility of computational analyses has concurrently emerged as a solution 

for minimizing or eliminating many of the preventable inconsistencies that hinder replicable 

research [43, 125]. Version control repositories and code hosting platforms such as GitHub 

enable sharing exact code and data sets used for analyses, reducing the need for re-

implementation of algorithms to solve problems that have already been well-realized and 

improving the ability to suggest and disseminate new versions [84]. Using tools such as Docker 

that consolidate entire computational environments, or sharing a cloud instance between 

collaborators at multiple research sites rather than performing multiple individual analyses with 

different high performance clusters, removes concerns regarding software versioning and 

inconsistent analytic pipelines or quality control steps between sites [32, 45, 64, 93].  These are 

particularly relevant to GWAS analyses because seemingly minor differences in data pre-

processing or model training may result in different top hits.  

Methods for improving machine learning analysis reproducibility 

Reproducibility of computational analyses is largely thought of in terms of implementing the same 

exact analysis on the same data in the same computational environment, but if improving 
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replicability of GWAS findings is the goal, it may be as important to consider how a machine 

learning analysis of one data set may need to be altered to replicate a finding in another cohort, 

which requires understanding how the choices made in a given analysis can impact the result. 

For example, a discovery data set may have observations missing at random, and a replication 

data set may have observations missing not at random in a modelable way, which could warrant 

applying different imputation techniques. In this sense, reproducibility may be seen as a way to 

help facilitate future replication. The following section documents how choices the researcher 

may make at each stage of a typical machine learning analysis may impact the ultimate analytic 

conclusion.  Figure 1 provides an overview of a generic supervised machine learning workflow.  

Although accompanied by examples of applications to GWAS analysis or the biomedical sciences 

more broadly, these concerns are overarching and may be translatable across many research 

domains wherever large, complex data is analyzed.  

  

 

Figure 1. A generic supervised machine learning analysis. Machine learning workflows are often 
iterative with interrelated stages, so comprehensive or rigid definitions are unsuitable. For 
example, the researcher may already have a particular algorithm in mind and perform imputation 
to ensure the data is in a suitable format free of missingness prior to feature selection. 
Alternatively, the researcher may perform feature selection prior to data pre-processing if 
unimputed variables with low missingness are considered higher quality or more potentially 
informative. 
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Choosing between algorithms  

Algorithm choice may be driven by a combination of the overarching goals of the analysis, 

number and structure of predictors, presence of interactions or non-linearity, time and 

computational constraints, and perhaps at the most basic level the availability of labeled data. 

Machine learning approaches are typically classified as either supervised or unsupervised 

depending upon whether the learner uses labeled training data, although there also exist semi-

supervised approaches in which a subset of the data is labeled and the rest remains unlabeled 

and reinforcement learning approaches in which [146].  In a typical supervised analysis, an 

algorithm is applied to a portion of a data set designated for use in the “training” stage of a 

classification or regression task, after which the model derived from this training is applied to held 

out data in the “testing” stage and performance is evaluated. Ideally the model will be 

generalizable enough that it reasonably captures underlying trends in the data and will perform 

well for data that it has not encountered during training, avoiding the “overfitting” that results from 

overly complex models or irrelevant predictors that pick up on the noise inherent in the training 

data [50]. Some classes of algorithms have become largely acknowledged as being particularly 

well-suited to certain applications based on complimentary characteristics of the algorithm and 

data, such as support vector machines for functional classification of genes from gene expression 

data [25]. Unsupervised analyses attempt to uncover structure in data lacking labels, for example 

k-means clustering of gene expression data to identify novel tumor subtypes with clinical 

significance [128]. A number of helpful sources exist that provide guidance regarding algorithm 

selection considering the analytic goal, computational burden, number of features, data 

sparseness, etc. [48, 121]. 

 

Ensemble approaches 

Considering the “no free lunch” theorem that essentially posits no single algorithm will be optimal 

for all applications, ensemble approaches in machine learning that aggregate the decisions of 
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multiple predictors are appealing [42, 139]. Early forays into model combination in the statistical 

and especially economics fields laid the basis for the development of Bayesian model averaging, 

in which the posterior distribution of each potential model is weighted by its posterior model 

probability [6, 8, 63, 77]. Although this is an appealing way to circumvent the uncertainty 

associated with model specification, it may be computationally expensive or infeasible to 

implement as the number of models increases, and estimating the posterior probability can also 

be a challenge. See Yeung et al. for an implementation of Bayesian model averaging in the 

context of gene selection and classification of microarray data [143]. Bagging, short for bootstrap 

aggregating, is a popular ensemble approach in which new training sets are generated via draws 

with replacement from the original training set and models are fitted to each of these then 

subsequently aggregated via averaging or voting [22]. Dudoit and Fridlyand describe a combined 

bagged clustering procedure for identifying tumor subtypes from gene expression profiles [46]. 

Boosting is another popular ensemble approach in which many weak classifiers are iteratively 

learned and weighted relative to their performance to create a single strong one, for example via 

their linear combination [21, 120]. Niu et al apply AdaBoost, one of the most popular boosting 

algorithms, to a protein structural class prediction problem [101]. 

 

Hyperparameter optimization 

The performance of machine learning methods that require hyperparameters, which are 

parameters of the algorithm itself assigned before any training takes place (such as number of 

trees in a random forest or layers in a neural network), may be largely impacted by their choice 

[17, 127].  Popular hyperparameter optimization algorithms include grid search and Bayesian 

optimization. A grid search, or parameter sweep, is an exhaustive search of the combinations of 

hyperparameter values within user-defined bounds. The hyperparameter combination that best 

optimizes a user-specified loss function, for example prediction accuracy on held-out testing data, 

is chosen.  Grid search may be computationally expensive due to its exhaustiveness, which 
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random search circumvents via instead sampling a subset of the hyperparameter combination 

space, but may be readily parallelized [17].  Grid search may be particularly relevant to GWAS 

simulation applications that aim to characterize and compare performances with machine learning 

methods across a range of scenarios in which factors such as minor allele frequency, heritability, 

prevalence, etc. are varied. Bayesian optimization assigns a (generally Gaussian) prior to the loss 

function, uses an acquisition function to determine where to sample from in the loss function, then 

updates the posterior to determine the next sampling location [124, 23]. The researcher may 

alternatively define more meaningful prior distributions that incorporate additional meta-data 

about the experiments or data sets.  Since Bayesian optimization does not require searching the 

entire hyperparameter space, it also reduces the computational resources required.  

 

Data pre-processing 

Multiple iterations of pre-processing may be necessary prior to conducting a machine learning 

analysis in order to render the data into an appropriate format for the algorithm of interest, reduce 

dimensionality, combine multiple disparate sources of data, etc. Algorithms often require data 

sets to be free of missingness in order to run, in which case the researcher must consider the 

type of missingness and decide upon a strategy for addressing missing observations. Little and 

Rubin provide a definitive guide to handling missing data [81]. Even if the algorithm 

implementation in question includes an embedded approach to produce a complete data set, or 

alternatively the researcher has decided to choose an approach that allows for missingness and 

avoids imputation, it is important to consider the pattern and mechanism of the missingness and 

the biases specific to the experimental conditions that produced said data. Pre-processing in 

GWAS requires multiple steps of quality control to remove poor quality samples, SNPs, and batch 

effects, and different threshold choices at each step and even the order in which the steps are 

performed may all impact the resulting top hits and may be difficult to coordinate even between 

sites working on the same data set [129]. A Jupyter notebook that allows users to execute and 
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supervise an automated cloud-based quality control pipeline can both allow for quality control 

harmonization between sites, and for the alteration and sharing of pipelines to better suit 

individual analytic needs.  Data pre-processing to incorporate multiple heterogeneous data 

sources may be an even greater challenge, requiring pre-processing not only of each data source 

individually, but in consideration of whether and how data will be merged and analyzed [114]. 

 

Feature selection 

Feature selection is often a critical component of analyses of data sets containing large numbers 

of variables, and can help improve predictions by utilizing the most informative features, reduce 

the time and computational resources needed to run an algorithm, enhance interpretability and 

visualization, and avoid the “curse of dimensionality” [14].  Many commonly-used methods are 

based on either filters that rank variables based on intrinsic data qualities such as correlation with 

other variables, wrappers that assess groups of variables as they optimize accuracy in a 

predictive model, or combined and embedded methods [55, 65, 117].  Feature selection may be 

impacted by pre-processing so it may be beneficial to consider how the two may play in to each 

other, for example by weighting variable rankings according to a data quality score reflective of 

missingness. Feature selection is incredibly pertinent to GWAS analyses in order to circumvent 

the high multiple testing burden. SNPinfo is an example of a SNP selection tool that incorporates 

functional predictions, linkage disequilibrium, and GWAS results to select relatively small 

numbers of SNPs for GWAS [140]. Cantor et al. provide a review of how meta-analysis, epistasis 

testing, and pathway analysis can be used to prioritize GWAS results [28]. 

 

Cross validation 

Implementing a supervised machine learning analysis generally constitutes training on a subset 

of the data and evaluating performance on a held-out test set, which allows for unbiased 

evaluation of a model’s performance and helps avoid overfitting [112]. The simple hold-out 
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method is a popular way to choose training and testing partitions by randomly dividing the data 

into two non-overlapping sets. Also popular are the number of variations on k-fold cross 

validation, in which the data is divided into k subsets, rounds of training are performed on each 

subset and tested on all remaining data, and performance is estimated by averaging across all 

rounds . In addition to choices regarding how to partition the data and how many folds and/or 

repetitions should be used, the cross validation method chosen should be appropriate for the data 

and application particularly regarding desires to minimize bias or variance [133].  For example the 

repeated k-fold cross validation method is biased by overlap between training and testing sets. 

Additionally, bias is introduced by performing feature selection or other classifier training or 

parameter selection outside of the cross validation procedure; these must be performed 

separately within each round. Cross validation can be affected by class imbalance with regard to 

the dependent or independent variables, and re-weighting and re-sampling methods have been 

developed to address the inconsistencies that may arise because of this [5, 24]. In GWAS 

analyses, consistent cross validation results from any number of supervised algorithms may be 

used to select subsets of SNPs or interaction models [11, 60]. 

 

Interpretation 

The choice of algorithm and its associated assumptions can greatly impact interpretability of 

results from machine learning analyses.  The enduring popularity of linear models despite the 

potential accuracy improvement that may be gained from applying more complicated “black box” 

models may be partially ascribed to their ease of interpretation.  Therefore, the researcher should 

consider whether the aim of an analysis is solely to maximize accuracy or some other 

performance measure, or if meaningful knowledge concerning the model features is desired.  The 

gap in our current ability to apply some machine learning methods very accurately yet fail to be 

able to adequately interpret them may be reduced by improvements in the intersection of 

dimensionality reduction and visualization techniques [135]. 
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Conclusion and future directions 
 

Improving the reproducibility of machine learning analyses of genomic data will require thorough, 

rigorous interrogation of how decisions at each stage of a machine learning analysis impacts 

results across a range of data types with varying biases to ensure that analyses are paired with 

the most appropriate choices of algorithm, hyperparameters, meaningful features, etc.  Large 

benchmarking efforts that explore which machine learning methods are best suited to data sets of 

varying complexity, size, numbers of features, and feature types are already under way [103]. 

Extending this paradigm to benchmark as many publicly available genomics data sets as possible 

can improve the basis upon which artificial intelligence methods can suggest data analysis 

pairings [102]. Improved standardization of data collection tools to feed directly into analysis may 

help further streamline the process overall and help reduce careless errors related to data entry 

or transfer.  The future of genomic data analysis is likely to be increasingly integrative, with 

GWAS as one of many data sources that must be processed and linked to be used in machine 

learning analyses.  
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IMPROVING THE REPRODUCIBILITY OF GENETIC ASSOCIATION RESULTS USING 
GENOTYPE RESAMPLING METHODS 

 

Introduction 

Replication is the gold standard for substantiating the validity of results across the spectrum of 

biological sciences, and is a cornerstone of rigorous hypothesis-driven research. In this era of big 

data and complex, computationally-intensive research, true replication may be impossible or 

infeasible, and reproducibility of analyses is a proximate concern [107]. Both replication and 

reproducibility are beset with challenges associated with a diversity of issues ranging from data 

access and storage, to availability of requisite computational resources, to thoughtfully 

implemented, high-quality code, all in the context of a constantly shifting field with high software, 

hardware, and ideological turnover. While advances such as portable, versioned workflows for 

computational environments and proposed statistical frameworks for defining replication and 

reproducibility themselves are addressing some of these issues, certain roadblocks to replication 

and reproducibility have yet to be resolved and may continue to remain impractical and 

inaccessible to the average researcher, such as for the analysis of data sets involving millions of 

parameters, multiple processers, and finite time [19, 75, 106, 116]. 

In the context of genome-wide association studies, failure to replicate previously-observed 

findings in a second population may be attributable to a combination of statistical and biological 

factors. Investigating the genetic underpinnings of complex diseases presents a special challenge 

given the evidence for multi-locus or network-based models of disease and the increased 

multiple-testing burden associated with fitting interaction models over single-locus models [90]. 

This is in addition to considerations of the heterogeneity of disease etiology, underlying genetic 

architecture, and other confounding factors that vary across populations. In this study, we explore 

epistatic interactions as a case study of a phenomenon that may be inherently difficult to 

replicate, and attempt to recapitulate the power to detect epistatic interactions between single 



15 

 

nucleotide polymorphisms (SNPs) in two populations with differing minor allele frequencies 

(MAFs). 

Epistasis, briefly defined as interactions between genetic loci that non-additively contribute to 

phenotype, is suspected to be both ubiquitously implicated in susceptibility to non-Mendelian 

disease and difficult to detect and replicate [96]. Resampling populations so that they appear 

more similar for the genotypes of interest may allow us to compare them in a more meaningful 

way. In this study, we propose a method for improving detection of epistatic SNP-SNP 

interactions between genome-wide association study (GWAS) data sets with differing minor allele 

frequencies for the SNPs of interest via resampling by genotype such that genotypes that are 

underrepresented in the replication population relative to the discovery population are 

oversampled, and genotypes that are overrepresented are undersampled. We substantiate the 

efficacy of this method via simulations. Application of this method may help inform scenarios in 

which findings of interest with potential functional significance from a discovery population sample 

fail to reach statistical significance in a replication population sample. 

Data sets and methods 

The following subsections describe our methods workflow (refer to Fig. 1 for accompanying 

graphical abstract). Briefly, we begin with data set simulation for a selection of models with 

varying penetrance functions, minor allele frequencies for two SNPs, heritabilities, and 

prevalences. Then, we use the discovery penetrance tables to generate replication data with the 

same underlying penetrances but differing minor allele frequencies. Next, we analyze the SNP-

SNP interactions for all discovery scenarios by calculating the p-value for the likelihood ratio test 

comparing the logistic regression models with and without the interaction between the two SNPs, 

and estimate power to detect the interaction over 1000 simulations. Replication data sets are 

resampled to match the genotype proportions of their relative discovery data sets, and interaction 

analysis and power estimation is performed again post-resampling. We also test negative 

simulations to address the possibility of erroneously significant interactions – sample data sets 
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with significant p-values for the interaction, despite being drawn from an underlying population 

without a significant interaction. 

 

Figure 3. Graphical abstract (a) A SNP-SNP interaction results in 9 genotypes (b) In Population 
A, the SNP1 minor allele frequency is 0.5, and the SNP2 minor allele frequency is also 0.5. A 
GWAS of Population A reveals a significant association between the ‘11’ genotype and disease 
status. (c) Replication of this interaction is sought in Population B, and another GWAS is 
performed. However, in Population B, the SNP1 minor allele frequency is 0.1, and the SNP2 
minor allele frequency is 0.5, so the relative distribution of genotypes is different. A GWAS of 
Population B does not reveal a significant association between the ‘11’ genotype and disease 
status, despite the same penetrance for genotype ‘11’ in Population B and in Population A, due to 
the low minor allele frequency of SNP1/low prevalence of genotype ‘11’ in Population B. (d) 
Resampling by genotype allows us to observe what our Population B sample would look like if the 
minor allele frequencies for SNP1 and SNP2 were the same as in Population A. Performing 
resampling numerous times allows for an empirical estimation of power to detect a significant 
interaction. 
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Discovery data set simulation 

Penetrance functions and data sets for eight discovery scenarios were generated using 

GAMETES, an algorithm and software package that facilitates generation of complex epistatic 

models and data sets based upon these models [131]. Our test parameters (Table 1) included 

minor allele frequencies of 0.5 and 0.5 or 0.1 and 0.1 for two SNPs, heritabilities of 0.05 or 0.005, 

and prevalences of 0.5 or 0.1. Case-control data sets of size 2,000 and 4,000 were tested, and all 

simulation scenarios were replicated 1,000 times. 

Replication data set simulation 

Replication data sets were generated using the discovery penetrance tables to create data sets 

with the same underlying penetrances but differing minor allele frequencies. First, each simulated 

individual is assigned a value of 0, 1, or 2 for SNP 1 genotypes, with probabilities corresponding 

to genotype frequencies in Hardy-Weinberg equilibrium. This is repeated for SNP 2. Then, each 

simulated individual is assigned their case-control status based on their assigned values for 

SNP1 and SNP2 and the corresponding penetrance for that genotype from the discovery 

penetrance function. All discovery scenarios had corresponding replication scenarios with all two-

SNP minor allele frequency combinations of {0.5, 0.4, 0.3, 0.2, 0.1}. We also include a finer 

resolution version replicating the discovery scenario with minor allele frequencies of 0.5 and 0.5, 

heritability of 0.005, and prevalence of 0.5 (Model 1 from Table 1) with replication SNP1 minor 

allele frequency fixed at 0.5, and SNP2 minor allele frequency from 0.5 to 0.01 by 0.01. 1,000 

data sets of sizes 2,000 and 4,000 were generated for each replication scenario. 
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Table 4. Discovery data set simulation parameters: minor allele frequencies, heritabililties, 
prevalences, and penetrance tables used to generate discovery data 

 Model 1 Model 2 

SNP1 MAF: 0.5 0.5 

SNP2 MAF: 0.5 0.5 

Heritability: 0.005 0.05 

Prevalence: 0.5 0.5 

Penetrance: 

0.475 0.469 0.586 0.495 0.646 0.214 

0.524 0.516 0.443 0.449 0.451 0.649 

0.476 0.498 0.528 0.608 0.451 0.498 

 Model 3 Model 4 

SNP1 MAF: 0.5 0.5 

SNP2 MAF: 0.5 0.5 

Heritability: 0.005 0.05 

Prevalence: 0.1 0.1 

Penetrance: 

0.145 0.092 0.071 0.130 0.105 0.061 

0.065 0.110 0.115 0.081 0.145 0.029 

0.125 0.088 0.098 0.108 0.006 0.281 

 Model 5 Model 6 

SNP1 MAF: 0.1 0.1 

SNP2 MAF: 0.1 0.1 

Heritability: 0.005 0.05 

Prevalence: 0.5 0.5 

Penetrance: 

0.507 0.475 0.407 0.524 0.395 0.458 

0.467 0.624 0.906 0.387 0.999 0.689 

0.548 0.274 0.692 0.604 0.033 0.462 

 Model 7 Model 8 

SNP1 MAF: 0.1 0.1 

SNP2 MAF: 0.1 0.1 

Heritability: 0.005 0.05 

Prevalence: 0.1 0.1 

Penetrance: 

0.097 0.113 0.102 0.115 0.036 0.029 

0.117 0.024 0.093 0.031 0.394 0.417 

0.035 0.391 0.092 0.118 0.017 0.128 
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Interaction analysis 

For all replicates of all discovery scenarios, we calculated p-values for the likelihood ratio test 

comparing the logistic regression models with and without the interaction term for the two SNPs 

of interest, where the two models being compared are: 

  (1) 

 

And 

  (2) 

 

Where P(case) is a binary indicator of disease status, SNP1 and SNP2 are categorical variables 

with values of 0, 1, or 2 corresponding to homozygous dominant, heterozygous, or homozygous 

recessive genotypes, and SNP1*SNP2={00, 01, 02, 10, 11, 12, 20, 21, 22} is the Cartesian 

product of SNP1 and SNP2. 

Power estimation 

For the purpose of our power calculations we define power not in the traditional statistical sense, 

but rather as an empirical measure of the number of successes (where success is defined as a p-

value of less than 0.05 for the likelihood ratio test comparing the two models above) out of the 

total number of simulated replication data sets for each scenario. 

Replication data set resampling 

All replication data sets were resampled to match the genotype proportions of their corresponding 

discovery data sets by taking a random sample with replacement of the desired number of 

observations for each genotype, as follows. First, calculate desired genotype proportions from the 

crossproduct of discovery SNP1 proportions and discovery SNP2 proportions. Then, multiply 

desired genotype proportions by data set size to obtain the desired number of observations per 
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genotype (if the discovery and replication data sets are the same size, there are simply equal 

numbers of individuals per SNP-SNP genotype combination, otherwise, they are proportionate). 

Next, ensure that there is at least one case and one control per genotype, and if not, add single 

pseudo-observations to ensure non-zero case and control sampling probabilities. Finally, for each 

genotype, take a random sample with replacement to the desired number of observations. The 

resampled replication data set is the composite of these samples by genotype. The following 

pseudocode outlines the resampling method. 

 

INITIALIZE data frame to store resampled data set 

 

FOR each SNP-SNP genotype 

SUBSET all observations of the genotype from the replication data set  

 IF there are no case observations in this subset THEN 

  APPEND a single case pseudo observation 

 IF there are no control observations in this subset THEN 

  APPEND a single control pseudo observation 

SAMPLE with replacement to size proportionate to discovery genotype 

 APPEND sample to resampled data set 

 

Negative simulation methods 

Negative simulation data sets were generated such that the SNP-SNP interaction is significant in 

the underlying discovery population but not the replication population. We generated 1000 

discovery data sets of size 4000 with minor allele frequencies of 0.5 and 0.5 for the interacting 

SNPs with penetrances of 0.5 for 8 of the 9 SNP-SNP genotypes and a penetrance of 0.9 for the 

SNP-SNP genotype where both SNPs have two doses of the minor allele. We next generated 

15,000 replication data sets, 1000 each of the 15 two-SNP minor allele frequency combinations of 

{0.5, 0.4, 0.3, 0.2, 0.1}. All replication data sets were generated with a penetrance of 0.5 for all 

SNP-SNP genotypes, that is, none of the interacting SNP-SNP genotype combinations are 

significant. All power calculations for the discovery and replication data sets are estimated as 

described above in the “Power Estimation” section, and resampling of the replication data sets 

that were false positives was performed as described in “Replication Data set Resampling”.  
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Results 

Positive simulation results 

We found that performing resampling of the replication data sets generally resulted in better or 

comparable power to detect the interaction between SNP1 and SNP2 compared to the power to 

detect the interaction using the unadjusted replication data sets. Figure 2 illustrates a scenario in 

which the minor allele frequencies of both SNP1 and SNP2 are 0.5 in the discovery data set, and 

in the replication data sets the SNP1 MAF is held constant at 0.5 and only SNP2 is varied from 

0.5 to 0.01 by 0.01 increments. There is increasing divergence of the unadjusted replication 

power to detect the interaction as the minor allele frequency of SNP2 decreases. Resampling 

results in better power to detect the interaction, with the worst performance observed for 

scenarios with the greatest difference between discovery and replication SNP2 minor allele 

frequency. 

 

Figure 4. Detection of a SNP-SNP interaction in unadjusted versus resampled replication data 
sets. Model 1: discovery SNP1 MAF = 0.5, SNP2 MAF = 0.5. Replication SNP1 MAF = 0.05, 
SNP2 MAF from 0.5 to 0.01 by 0.01. Heritability = 0.005 and prevalence = 0.5 for all discovery 
and replication data sets. 
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Likewise, Figure 3 illustrates a comparable trend when both replication SNP1 and SNP2 minor 

allele frequencies are varied, with increasingly poor power to detect the interaction for unadjusted 

replication data sets with SNP1 and SNP2 minor allele frequencies that are more distant from 

those of the discovery data set. Once again, we estimate replication powers to detect the 

interaction that are much improved after performing resampling. Table 2 tabulates the pre- and 

post-resampling powers for the interaction for the remainder of our test models. 

  

Figure 5. Detection of a SNP-SNP interaction in unadjusted versus resampled replication data 
sets. Model 1: discovery SNP1 MAF = 0.5, SNP2 MAF = 0.5.  Replication SNP1 MAF and SNP2 
MAF combinations from 0.5 to 0.1 by 0.1. Heritability = 0.005 and prevalence = 0.5 for all 
discovery and replication data sets. 

Negative simulation results 

We developed a negative simulation in order to both establish that our simulated data sets have a 

realistic false positive rate, and to investigate the factors that contribute to why data sets may fail 

to recapitulate the true underlying population significance of an interaction following application of 

our resampling method. In the vast majority of cases, if a SNP-SNP interaction is significant in a 
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discovery population and not significant in a replication population, we will indeed observe 

respectively significant and non-significant p-values for the likelihood ratio test comparing the 

logistic regression models with and without the interaction in samples taken from these 

populations. However, samples do not always provide good representations of the underlying 

population. For a p-value cutoff of 0.05, we expect a 5% false positive rate, and indeed, 747 of 

the 15,000 simulated replication data sets (4.98%) yielded false positives (e.g. the data set 

yielded a significant p-value for the likelihood ratio test, even though the interaction was truly non-

significant). We also expect the majority of these false positives to be unsuitable candidates for 

application of our resampling method because erroneous significance is driven by genotypes with 

so few observations that the sample penetrance is not representative of that of the underlying 

population, which is what we observe - 694 of the 747 false positives (92.9%) remain false 

positives after resampling. 
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Table 5. Pre- and post-resampling power (successes per 1000 simulated data sets) summary for 
all SNP-SNP minor allele frequency combinations for all models. See Table 1 for data set 
parameters by model number. 

  Model # 
  (Pre-resampling power, 

  Post-resampling power) 

SNP1 

MAF 

SNP2 

MAF 
1 2 3 4 5 6 7 8 

0.5 

0.5 
962 1000 969 1000 1000 1000 938 1000 

932 1000 944 1000 1000 1000 1000 1000 

0.4 
893 1000 989 1000 1000 1000 934 1000 

921 1000 967 1000 1000 1000 1000 1000 

0.3 
684 1000 984 1000 1000 1000 951 1000 

916 1000 966 1000 1000 999 1000 1000 

0.2 
375 1000 988 1000 1000 1000 946 1000 

890 1000 977 1000 1000 1000 1000 1000 

0.1 
136 1000 857 999 1000 1000 944 1000 

917 1000 958 1000 1000 1000 1000 1000 

0.4 

0.4 
923 1000 993 1000 1000 1000 941 1000 

935 1000 971 1000 1000 1000 1000 1000 

0.3 
753 1000 994 1000 1000 1000 950 1000 

929 1000 965 1000 1000 999 1000 1000 

0.2 
439 1000 976 1000 1000 1000 953 1000 

908 1000 984 1000 1000 1000 1000 1000 

0.1 
141 998 850 999 1000 1000 952 1000 

922 1000 973 1000 1000 1000 999 1000 

0.3 

0.3 
774 1000 991 1000 1000 1000 942 1000 

937 1000 975 1000 1000 1000 1000 1000 

0.2 
451 1000 978 1000 1000 1000 967 1000 

947 1000 971 1000 1000 1000 1000 1000 

0.1 
117 999 807 967 1000 1000 947 1000 

948 1000 991 1000 1000 1000 999 1000 

0.2 

0.2 
377 1000 958 971 1000 1000 941 999 

959 1000 988 1000 1000 1000 1000 1000 

0.1 
105 989 729 746 998 1000 950 1000 

928 1000 997 1000 1000 1000 999 1000 

0.1 0.1 
106 903 520 315 964 1000 934 999 

965 1000 998 1000 1000 1000 920 1000 

 



25 

 

 

Figure 6. Distributions of penetrances by SNP-SNP genotype. Note that 48 of the data sets that 
did not successfully resample had zero observations for the 22 genotype (Part I), so the density 
reflects only those data sets for which we can calculate penetrances. 

Comparing the penetrances and number of observations by SNP-SNP genotype provides insight 

into the factors that render our resampling method inappropriate. In Figure 4 one may observe 

that, while the mean penetrances for each genotype are comparable and centered around the 

expected value of 0.5 for those that do and do not successfully recapitulate the initial significance 

of the interaction following resampling, the variances differ significantly, particularly for the rarer 

genotypes. Table 3 provides a summary of the penetrance distributions and the number of 

observations by genotype.  Recall that the minor allele frequencies of the two SNPs in the 

replication data sets are both 0.1, so the SNP-SNP genotype where both SNPs have two doses 

of the minor allele is quite rare, and in some cases, replication data sets completely lacked 

observations for this genotype. Looking at this genotype in particular (Figure 4, part I), the 
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“unsuccessful” density is quite broad and flat, which stands to reason - since there are generally 

so few observations of this genotype, a population sample can be quite unrepresentative of the 

underlying population. Small perturbations in the observed number of cases per genotype can 

greatly skew the perceived significance of an interaction when the number of observations per 

genotype is quite low. In order to make reasonable inferences on the significance of an 

interaction, we recommend ensuring an adequate number of observations for the lowest 

frequency genotypes. This resampling method is only applicable if the underlying penetrances by 

genotype are reasonable approximations of the true population penetrances; our method simply 

provides a power boost for situations where we don't have enough observations of certain 

genotypes relative to others, but the observations we do have must be representative draws from 

the underlying population. 

Table 3. Penetrance distribution summary statistics and number of observations, by SNP-SNP 
genotype, for data sets that successfully versus unsuccessfully resample 

 Successfully resampled 

(n=53) 

Unsuccessfully resampled 

(n=694) 

SNP-SNP 

genotype 

Mean 

penetrance 

(SD) 

Median 

observations 

(min, max) 

Mean 

penetrance 

(SD) 

Median 

observations 

(min, max) 

00 
0.502 

(0.036) 

489 

(232, 1244) 

0.499 

(0.023) 

904 

(223, 2679) 

01 
0.498 

(0.038) 

489 

(179, 817) 

0.502 

(0.034) 

478 

(154, 917) 

02 
0.496 

(0.063) 

162 

(9, 269) 

0.500 

(0.122) 

78 

(5, 284) 

10 
0.497 

(0.025) 

733 

(460, 1610) 

0.502 

(0.020) 

996 

(454, 1684) 

11 
0.495 

(0.023) 

920 

(348, 1022) 

0.498 

(0.033) 

618 

(115, 1047) 

12 
0.503 

(0.037) 

290 

(20, 534) 

0.498 

(0.123) 

77 

(4, 547) 

20 
0.495 

(0.036) 

330 

(180, 815) 

0.500 

(0.046) 

309 

(21, 850) 

21 
0.512 

(0.045) 

42 

(106, 537) 

0.505 

(0.095) 

189 

(2, 548) 

22 
0.496 

(0.053) 

108 

(9, 263) 

0.501 

(0.194) 

25 

(0, 281) 

 



27 

 

Discussion 

This study critiques the validity of replication as the gold standard for substantiating GWAS hits, 

and proposes the exploration of alternative approaches that consider how differences in factors 

such as minor allele frequency can modulate the observed significance of SNP-SNP interactions. 

This may expand the usefulness of data that is already collected, which can in turn better direct 

our resources to future studies that will be most fruitful. 

For the purposes of our positive simulations, we tested an exploratory range of heritabilities, 

prevalences, and sample sizes, but did not explore a wide range of differences in these 

parameters between populations. Small differences in minor allele frequency between discovery 

and replication data sets can greatly reduce the power to detect main effects, and the ability to 

detect this may differ by heritability, so it seems plausible that the ability to detect interactions 

may follow similar and possibly even more pronounced trends [54]. Future investigation into the 

potential joint effects of these parameters may yield further insight into the factors that affect our 

ability to detect and assess interactions in diverse populations, and subsequently direct study 

design to better control for these differences. Similarly, more negative simulations should be 

performed that systematically cover a range of scenarios to illuminate the conditions under which 

we can reliably regain power to detect interactions in replication studies; our negative simulations 

do not establish guidelines for across the entire space of observable population parameters. 

Additional future analyses may also aim to demonstrate that shifts in interaction significance 

following resampling can alter which ones are selected for model inclusion, thereby modulating 

our ability to predict case-control status. Investigating shifts in variable inclusion following 

resampling is likely to yield interesting biological insight. Indeed, the future of extracting 

meaningful findings from GWAS is likely to be driven by investigating SNPs that are initially 

identified either based on expert knowledge or via bioinformatics methods incorporating prior 

assumptions, including hierarchical models that consider groups of SNPs and their functional 

relationships and interactions, in order to bypass the extreme prejudice of multiple testing burden 
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[27, 97, 141]. Furthermore, the genome-wide significance level is unlikely to be an appropriate 

one-size-fits-all cutoff for multiple reasons, including evidence for the successful replication of 

borderline statistically significant genotype-phenotype associations [104]. It also stands to reason 

that diverse populations with different genetic architectures may require variable significance 

cutoffs that better reflect their patterns of linkage disequilibrium; hopefully, the increasing quantity 

of genotyped diverse populations will result in more pertinent high-quality reference genomes that 

will better enable identifying and replicating genetic associations between populations, enabling 

more accurate comparison of populations in the context of structural differences between diverse 

genomes [36, 115]. 

As new computational methods for GWAS present solutions to the various challenges associated 

with the accumulation of vast amounts of ever denser genetic data, and is mutually reinforced 

with increasing integration with clinical and epidemiological data, it is important to keep sight of 

the end goal of practical application of this knowledge to the betterment of both population health 

and personalized medicine. As such, the ultimate takeaway from this study should be that the 

purpose of resampling is to identify potential candidates for further biological validation, with the 

intention of using these findings to reduce structural inequalities in health and medicine. 
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IMPROVING MACHINE LEARNING REPRODUCIBILITY IN GENETIC ASSOCIATION 
STUDIES WITH PROPORTIONAL INSTANCE CROSS VALIDATION (PICV) 

 

Background 

Genome-wide association studies (GWAS) have been frequently critiqued for failing to explain the 

“missing heritability” of complex disease in terms of single-locus main effects [89, 137]. In addition 

to interrogating the contributions of rare variants, non-coding regions, structural variation, etc., a 

logical reactionary paradigm to embrace involves revisiting heritability estimates to consider the 

effect of interactions and developing approaches that acknowledge that loci do not exist in 

isolation but rather act in complex networks of interacting partners in the dynamic, three-

dimensional genome and in tissue-specific and environmental context [39, 40, 79, 148]. Utilizing 

pre-existing GWAS data to test a curated set of potentially biologically-relevant interactions, such 

as those identified as being plausible via expert knowledge, integrating data from gene set 

enrichment analyses, chromatin capture experiments, co-expression data sets, etc. provides a 

way to overcome the multiple testing burden of naively testing every possible interaction and 

motivates future bench science experimentation [26, 114]. Accordingly, machine learning 

methods are appealing for the analysis of this big, complex data, and have been applied to 

diverse problems and data types across the biological sciences [76, 78]. However, machine 

learning should not be viewed as a panacea that can be readily applied to all genomics problems. 

Beyond concerns regarding model choice and interpretability, there are numerous reasons why 

valid biological interactions may fail to appear statistically significant and vice versa [54, 97-8]. 

Therefore, typical machine learning tools, techniques, and standards from other fields may need 

tweaking to be appropriate for use in genomics considering the unique biases in generating 

genomic data sets, the structure of the genome, the validity of model assumptions, etc.  

Improving the reproducibility of machine learning analyses of genomic data will require 

methodological and analytic advances from not only both the computational and wet laboratory 

sides, but also their consideration in conjunction with each other as a greater whole.  Sharing 
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data publicly for secondary analyses, writing open-source code in executable notebook format, 

and using container and cloud services all contribute to a culture of reproducibility that enhances 

the capacity for integrative and innovative computational analyses [10, 72, 85, 93].  Likewise, 

thoughtfully interrogating methodological, environmental, and other determinants of 

inconsistencies in bench experimentation results lends robustness to findings, and this greater 

understanding of sources of variation can in itself lead to worthwhile new hypotheses [62]. Ideally, 

technological supports such as mobile applications for data collection will increasingly allow for 

recording more complete and consistent data in a format that can be seamlessly analyzed with 

software tools developed or modified to consider the unique intricacies of the data at hand [110].  

Epistasis, or the non-additive interaction between genotypes to produce phenotype, is difficult to 

detect statistically but is of biological interest in light of a multifactorial view of disease [29, 90, 

96]. This study is motivated by poor cross-validation performance observed for epistasis data sets 

with an interaction between two single nucleotide polymorphisms (SNPs). Cross validation is a 

widely-used standard for evaluating the performance of a machine learning analysis in which the 

data is split into training and testing partitions, a model is fit using the training set, and its 

performance is evaluated on predicting the classes of the held out test set observations [3]. 

Typically the overall data set is split such that the resultant training and testing partitions are 

random, independent draws from the same probability distribution, although there are also 

methods that consider the data structure, generally in terms of maintaining outcome class 

proportions between the training and testing data sets [49, 59, 132]. In this study, we propose a 

new cross validation method, proportional instance cross validation (PICV), that preserves the 

relative distribution of an independent variable (in our example application, SNP-SNP interaction 

genotypes) when dividing the overall data set into train and test partitions. We demonstrate 

significantly improved sensitivity and positive predictive value across all tested scenarios with 

application of PICV relative to a traditional cross validation implementation. We additionally apply 

PICV to primary open-angle glaucoma GWAS data to investigate an interaction previously 

reported to be significant in two independent data sets.  Although this interaction is not observed 
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to be significant in our analysis, PICV produced more consistent estimates than a traditional cross 

validation implementation. This approach is not only appropriate for epistasis data but may be 

readily applied to comparable imbalanced variable problems.  

Methods 

Data set generation 

All data sets were generated using GAMETES, a tool that produces epistatic models between 

SNPs and creates data sets based off these models [131]. Penetrance functions were generated 

for SNP-SNP interaction scenarios for all 15 combinations of minor allele frequencies (MAFs) of 

{0.5, 0.4, 0.3, 0.2, and 0.1}, with SNP heritability kept constant at 0.005 and population 

prevalences of 0.5, 0.1, and 0.02 (Table 1, Supplemental tables 1-2). Although a prevalence of 

0.5 may seem high for a given disease, numerous risk factors for chronic and complex diseases 

in the United States population that may be phenotypes of interest are as or more prevalent, 

including being overweight or obese, lack of physical activity, excessive sodium consumption, 

lack of fruit and vegetable consumption, etc [30]. The simulated data with prevalence of 0.1 is 

intended to reflect the US prevalence of common complex diseases such as diabetes or 

cardiovascular disease [100]. The simulated data sets of 0.02 prevalence approximately reflect 

the US prevalence of primary open-angle glaucoma, which is investigated in the real data 

application [51]. Balanced case-control ratio data sets of size 2,000 and 10,000 were generated 

for the 0.5 prevalence scenario and of size 10,000 for the 0.1 and 0.02 prevalence scenarios. 
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 Scenario 1 Scenario 2 Scenario 3 

SNP1 MAF: 0.1 0.2 0.2 

SNP2 MAF: 0.1 0.1 0.2 

Penetrance: 
0.493 0.531 0.522 0.507 0.480 0.556 0.514 0.481 0.425 
0.526 0.387 0.410 0.471 0.590 0.249 0.467 0.544 0.674 
0.611 0.008 0.358 0.485 0.532 0.482 0.539 0.447 0.304 

  
Scenario 4 

 
Scenario 5 

 
Scenario 6 

SNP1 MAF: 0.3 0.3 0.3 

SNP2 MAF: 0.1 0.2 0.3 

Penetrance: 
0.513 0.494 0.456 0.488 0.525 0.450 0.481 0.533 0.446 
0.438 0.530 0.696 0.527 0.455 0.562 0.525 0.468 0.513 
0.520 0.475 0.506 0.478 0.458 0.814 0.483 0.470 0.734 

  
Scenario 7 

 
Scenario 8 

 
Scenario 9 

SNP1 MAF: 0.4 0.4 0.4 

SNP2 MAF: 0.1 0.2 0.3 

Penetrance: 
0.484 0.501 0.535 0.490 0.523 0.455 0.502 0.523 0.425 
0.570 0.494 0.359 0.512 0.468 0.568 0.499 0.472 0.588 
0.545 0.551 0.245 0.565 0.395 0.668 0.495 0.503 0.501 

  
Scenario 10 

 
Scenario 11 

 
Scenario 12 

SNP1 MAF: 0.4 0.5 0.5 

SNP2 MAF: 0.4 0.1 0.2 

Penetrance: 
0.476 0.535 0.449 0.306 0.333 0.341 0.476 0.521 0.482 
0.506 0.473 0.568 0.428 0.314 0.256 0.521 0.472 0.536 
0.536 0.503 0.410 0.322 0.198 0.595 0.715 0.392 0.502 

  
Scenario 13 

 
Scenario 14 

 
Scenario 15 

SNP1 MAF: 0.5 0.5 0.5 

SNP2 MAF: 0.3 0.4 0.5 

Penetrance: 
0.500 0.520 0.459 0.422 0.515 0.547 0.440 0.560 0.440 
0.477 0.480 0.563 0.548 0.491 0.470 0.522 0.484 0.509 
0.608 0.482 0.429 0.531 0.492 0.485 0.515 0.472 0.542 

Table 6. Data set simulation parameters. Minor allele frequencies and penetrance tables used to 
generate balanced case-control ratio data sets of size 2,000 and 10,000. Heritability = 0.005 and 
prevalence = 0.5 constant across all simulations. 

 

Implementation and evaluation of traditional cross validation 

For each of the 15 scenarios for each investigated prevalence and sample size 

combination, we perform 1000 replicates of a standard cross validation procedure in which 

two-thirds of observations are randomly allocated to be used for training and the remaining 
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third is used for testing. The training data is then used to fit the following logistic regression 

models with and without the SNP-SNP interaction: 

   (1) 

  (2) 

Where P(case) is a binary indicator of case-control status, SNP1 and SNP2 are categorical 

variables in which 0 corresponds to the homozygous dominant genotype, 1 to the heterozygous, 

and 2 to the homozygous recessive, and SNP1*SNP2 corresponds to the Cartesian product of 

the two {00, 01, 02, 10, 11, 12, 20, 21, 22}. 

These models fit to the training data are then used to predict case-control status for the 

held-out testing data, using a cutoff of 0.5 for case versus control prediction assignment 

from the fitted values. These predictions are then used to calculate the sensitivity, 

specificity, positive predictive value, and negative predictive value for the testing data. 

Implementation and evaluation of proportional instance cross validation (PICV) 

For the proportional instance cross validation procedure, rather than randomly allocating 

each observation to be included in the training or testing set, observations are allocated in a 

genotype-specific fashion (Figure 1). Two-thirds of the observations of each SNP-SNP 

genotype are randomly allocated to be used for training and the remaining third is used for 

testing. Therefore the same total proportion of individuals used for training versus testing is 

maintained as in the traditional cross validation procedure, and additionally, the relative 

proportions of each genotype are preserved between the overall data set and the training 

and testing partitions. Model fitting with the training data, testing data predictions, and 

performance measure calculations are conducted as for the traditional cross validation. 
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Figure 1. Comparing traditional cross validation and proportional instance cross validation 
(PICV). A) The overall distribution of 9 SNP-SNP interaction genotypes in a population of 
individuals. B) Traditional cross validation in which 2/3 of observations are randomly 
allocated to the training set and the remaining 1/3 are allocated to the testing set can result 
in draws with imbalanced genotype proportions. C) PICV randomly allocates 2/3 of 
observations of each genotype to the training set and the remaining 1/3 to the testing set, 
ensuring that the relative proportions of genotypes are maintained. 

Comparison of traditional cross validation and proportional instance cross validation 

(PICV) 

For both traditional cross validation and PICV, we calculate the absolute value of the 

difference between training and testing for each of four performance measures (sensitivity, 

specificity, positive predictive value, and negative predictive value) over 1,000 trials for each 

of the 15 scenarios. We calculate p-values for the two-sample Kolmogorov-Smirnov test 

with the null hypothesis that there is no difference between the traditional cross validation 

implementation and PICV distributions of the difference between training and testing for 

each performance measure, with the one-sided alternative that the PICV distribution is 

smaller, with a significance threshold of α = 0.05. 

Results 

Implementing PICV for our simulated epistasis examples (that is, performing cross validation data 

set splitting such that observations are allocated to maintain the same relative proportions of each 

SNP-SNP genotype in the training and testing sets as in the data set overall) significantly 
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improved the consistency between training and testing sensitivities and positive predictive values. 

Figure 2 illustrates comparisons of training/testing consistencies for PICV versus a traditional 

cross validation procedure in which observations are allocated to the training and testing sets 

without regard to genotype (see Supplemental Figures 1-60 for all minor allele frequency, 

prevalence, and cohort size combinations). P-values listed are for the two-sample Kolmogorov-

Smirnov test of the distributions of the absolute values of the differences between the training and 

testing performance measure (e.g. sensitivity) over 1,000 trials per scenario for these two cross 

validation approaches, with a one-sided alternative hypothesis that the split-by-genotype 

distribution is smaller. Table 2 summarizes these performance measures across all 15 SNP-SNP 

genotype MAF combination scenarios for the 0.5 prevalence simulations of size 2,000 (see 

Supplemental Table 3 for prevalence = 0.5 and n = 10,000, Supplemental Table 4 for prevalence 

= 0.1, Supplemental Table 5 for prevalence = 0.02). Sensitivity and positive predictive value were 

significantly more consistent between test and train for PICV than for traditional cross validation 

across all 15 scenarios tested for both n=2,000 and n=10,000. Although the specificity and 

negative predictive value comparisons mostly did not meet statistical significance, smaller 

medians and maximum values for the differences in these performance measures between 

training and testing were observed for the PICV approach for the majority of scenarios (Table 3). 
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Figure 2. Consistency of training and testing performance measures for models with and without 
the interaction term, comparing a traditional cross validation procedure to PICV. Experimental 
scenario in which both SNPs have a MAF of 0.5, prevalence = 0.5, n=2,000. 
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Table 2. Summary of performance measures across minor allele frequency combinations, 
prevalence = 0.5, n = 2,000. 
 

Measure, 
Model 

Scenario 

Sens, 
without 

int 

Sens, 
with int 

Spec, 
without 

int 

Spec, 
with int 

PPV, 
without 

int 

PPV, 
with int 

NPV, 
without 

int 

NPV, 
with 
int 

SNP1 MAF: 0.1 
SNP2 MAF: 0.1 

3.06e-17 9.89e-08 N.S. N.S. 1.90e-18 7.67e-08 N.S. N.S. 

SNP1 MAF: 0.2 
SNP2 MAF: 0.1 

7.04e-20 4.54e-05 3.88e-02 N.S. 3.68e-11 5.56e-06 4.35e-02 1.89e-02 

SNP1 MAF: 0.2 
SNP2 MAF: 0.2 

1.69e-10 1.69e-10 N.S. 6.87e-03 4.06e-09 4.06e-09 N.S. N.S. 

SNP1 MAF: 0.3 
SNP2 MAF: 0.1 

1.59e-08 2.47e-05 4.35e-02 N.S. 9.27e-09 2.47e-05 3.46e-02 N.S. 

SNP1 MAF: 0.3 
SNP2 MAF: 0.2 

6.14e-04 5.02e-11 N.S. N.S. 3.07e-16 1.22e-14 N.S. N.S. 

SNP1 MAF: 0.3 
SNP2 MAF: 0.3 

5.16e-04 4.33e-04 N.S. N.S. 1.75e-04 1.75e-04 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.1 

9.94e-05 7.67e-08 N.S. N.S. 3.52e-08 5.53e-10 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.2 

6.65e-17 1.45e-04 N.S. N.S. 5.36e-09 2.42e-02 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.3 

2.71e-08 4.54e-05 N.S. N.S. 8.97e-07 4.46e-06 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.4 

1.63e-05 1.41e-03 N.S. N.S. 2.66e-03 8.62e-04 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.1 

8.97e-07 7.06e-09 N.S. N.S. 2.27e-06 1.27e-07 4.85e-03 N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.2 

9.42e-18 6.75e-05 1.28e-02 N.S. 4.00e-12 8.60e-06 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.3 

4.38e-07 2.47e-05 N.S. N.S. 7.67e-08 4.12e-10 N.S. 1.46e-02 

SNP1 MAF: 0.5 
SNP2 MAF: 0.4 

2.69e-07 5.54e-05 N.S. N.S. 7.06e-09 8.62e-04 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.5 

1.27e-07 6.92e-06 N.S. 1.54e-02 2.89e-12 9.27e-09 N.S. N.S. 

 

Table 3. Number of scenarios for which PICV yielded smaller median, maximum differences 
between training and testing, n = 10,000 

Measure, Model 

PICV median less than 
traditional CV median (out of 15) 

PICV maximum less than 
traditional CV maximum (out of 15) 

Prevalence Prevalence 
0.02 0.1 0.5 0.02 0.1 0.5 

Specificity, without 
interaction 

15 15 12 15 15 15 

Specificity, with 
interaction 

15 15 15 15 15 15 

NPV, without 
interaction 

14 9 9 11 8 8 

NPV, with 
interaction 

8 9 10 8 9 9 
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Primary open-angle glaucoma interaction analysis 

Prior interaction analyses of primary open-angle glaucoma identified several pairs of replicating 

interactions using the eMERGE and NEIGHBOR data [136].  We attempted to replicate the most 

significant interaction (between ALX4 and RBFOX1) in the GLAUGEN data set (dbGaP Study 

Accession: phs000308.v1.p1, available at https://www.ncbi.nlm.nih.gov/gap), which is 

harmonized with NEIGHBOR.  The GLAUGEN model is adjusted for age, sex, site, and the first 6 

principal components to reflect the eMERGE and NEIGHBOR models (the eMERGE and 

NEIGHBOR models additionally adjusted for platform, but all GLAUGEN samples were assessed 

on the same platform).  Our analysis did not find a significant interaction between the two variants 

(Table 4).  However, application of PICV to this data did yield training and testing p-values (0.376 

and 0.323, respectively) more consistent with the overall LRT p-value (0.327) than a traditional 

cross validation procedure (0.442 and 0.470, respectively). 

Table 4. Comparison of interaction significance across data sets 

Data set ALX4 variant RBFOX1 variant LRT p-value 

eMERGE rs10838251 rs653127 7.29E-06 
NEIGHBOR rs7126447 rs11077011 1.62E-06 
GLAUGEN rs7126447 rs11077011 0.327 

 

Discussion 

Implementing a cross validation splitting procedure that maintains the relative proportions of each 

SNP-SNP genotype when dividing the overall data set significantly improved the sensitivity and 

positive predictive value consistencies between the training and testing partitions in each of the 

experimental scenarios tested. Although specificity and negative predictive value improvement 

did not meet statistical significance in most cases, application of the PICV approach did yield 

smaller median and maximum absolute differences between training and testing in the majority of 

scenarios.  The interaction analysis did not replicate the prior finding between ALX4 and 

RBFOX1, however PICV still produced more consistent estimates than a traditional cross 

validation procedure for this data.  Verma et al note that RBFOX1 has been previously shown to 
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be associated with myopia, and that eMERGE primary open-angle glaucoma cases had not been 

screened for myopia; GLAUGEN excluded individuals with more than 8 diopters of myopia.  This 

inconsistent finding highlights the importance of considering epidemiological confounders and co-

morbidities of complex phenotypes in genetic analyses.  

Class imbalance is a well-recognized issue in machine learning analyses, particularly for the 

analysis of high-dimensional data sets as in genomics and other biomedical applications [80]. If 

the main objective of a machine learning analysis is maximizing accuracy, and the minority class 

is very small, simply predicting the majority class for each observation may yield high overall 

accuracy, as in the spam filtering problem [56]. Clearly, adoption of a balanced accuracy measure 

or a cost-sensitivity analysis that weighs the relative importance of avoiding false positives versus 

false negatives is critical for such problems, and numerous methods have been developed to 

address this issue including novel fitness functions, sampling-based approaches, and ensemble 

methods, including for epistasis modeling [52, 83, 86, 134]. The present study, though 

thematically similar to the class imbalance problem, instead addresses imbalance in observations 

of classes of an independent variable, e.g. the SNP-SNP interaction genotype. This is also 

adjacent to the covariate and data set shift problems, in which the training and testing 

distributions differ (for example due to model training using clean data from consistent laboratory 

conditions to produce models that then fail to hold for experimentally gathered data with 

unanticipated environmental differences), but for internal cross validation [1, 123, 126]. Solutions 

to problems of both of these genres include re-weighting and –sampling techniques, whereas the 

present study circumvents the need for either via splitting the data to ensure balanced proportions 

by genotype between training and testing sets. The example application of imbalanced SNP-SNP 

genotypes considers a categorical variable, but the underlying idea of preserving the distribution 

of instances between training and testing with regard to an independent variable could be 

extended to continuous variables or combinations of variables via binning, propensity scores, etc.  
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Conclusions 

Although the contribution of epistatic interactions may help explain the “missing heritability” of 

complex disease, statistical detection of epistasis remains challenging and can require 

adjustment of general machine learning protocols. With decreasing minor allele frequencies, the 

number of observations for rare SNP-SNP interaction genotypes becomes quite small in a GWAS 

of typical size, and a standard cross validation procedure may result in training/testing data set 

splits that poorly represent the data as a whole. This diminishes the ability to identify interactions 

of potential interest for experimental follow-up, and underscores the need to perform interaction 

analyses in an interaction-specific framework.  A potentially overlooked element of performing 

reproducible analyses includes the imperative to develop and modify methods considering how 

intrinsic characteristics of the data and its structure may contribute to statistical failure to replicate 

despite biological (or other scientific) validity. Genomics and the biomedical sciences in general 

benefit from their increasingly multidisciplinary nature by incorporating methodology and theory 

from adjacent computational fields, but thoughtful contextualization of the data in view of the 

underlying biology is necessary to reap the potential benefits of applied machine learning 

methods and to successfully reproduce them. 
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IDENTIFICATION OF EPISTATIC INTERACTIONS BETWEEN THE HUMAN RNA 
DEMETHYLASES FTO AND ALKBH5 WITH GENE SET ENRICHMENT ANALYSIS 

INFORMED BY DIFFERENTIAL METHYLATION 

Introduction 

The Genetic Analysis Workshop (GAW) is a forum for investigators to develop and critique new 

analytical methods for complex traits on a shared data set. The GAW20 data provide simulated 

replications based on the Genetics of Lipid-lowering Drugs and Diet Network (GOLDN) clinical 

trial, had participants been subject to treatment with a fictitious drug with a pharmaco-epigenetic 

effect on triglyceride response [66]. These data present a unique analysis opportunity as all 

phenotypes, subject covariates, genotypes, pre-treatment methylation levels, etc. are real data 

from the trial, but are accompanied by simulated post-treatment methylation and triglyceride 

levels. GAW participants choose to analyze the data with or without knowing the simulation 

methods; the simulated data analysis was performed prior to attending GAW, without knowledge 

of the simulation methods. Analysis of the real data was performed following GAW attendance, as 

it was revealed that the data simulation methods did not consider interactions, and therefore 

analysis of interactions in the simulated data was not appropriate. 

Despite evidence for multi-locus underpinnings of phenotype-genotype association, the multiple-

testing burden associated with fitting interaction models is stringent due to the high dimensionality 

of genomic data [90]. Strategies for better detecting these interactions can aim to avoid 

exhaustively testing each potential interaction via data reduction methods, integrating expert 

knowledge, and/or consolidating multiple sources of evidence to narrow the search space [26, 97, 

113].  

In this study, we hypothesize that CpG sites that are differentially methylated with respect to 

treatment are associated with the pharmaco-epigenetic mechanism of the fictitious drug. 

Considering the evidence for multi-locus models of complex disease etiology, we hypothesize 

that the drug response is better evaluated by gene set enrichment analyses than single locus 
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models. By integrating results from Gene Ontology (GO), drug-disease association, and 

microRNA (miRNA) target analyses we find evidence implicating the relevance of adenosine and 

miRNAs with known epigenetic regulation and roles in lipid metabolism.  From this, we infer the 

potential importance of the N6-methyladenosine modification in the pharmaco-epigenetic 

response on triglycerides, and consider how miRNA adenosine methylation rather than CpG 

methylation may impact the phenotype. Lacking direct data for miRNA adenosine methylation, we 

perform a targeted epistasis search between loci on the two RNA demethylases FTO and 

ALKBH5, and find evidence for statistical epistasis between one variant within each respective 

gene.  Repeating the analysis with the real data revealed four significant interactions between 

variants across these genes. Overall, we present an example workflow (Figure 1) in which 

integration of multiple sources of information can help uncover biological meaning in the absence 

of significant main effects.     

CpG site filtering 
 

Paired t-tests for pre- and post-
treatment methylation levels 

α = 0.05 
463,995 hypotheses 
Bonferroni cutoff 1.08 x 10-7 
 
212,018 pass 
 

Modeling relationship 
between phenotype and 
CpG site methylation 

Linear models:  
log ratio of post-treatment to pre-
treatment TG level ~ log ratio of post-
treatment to pre-treatment methylation 

α = 0.05 
212,018 hypotheses 
Bonferroni cutoff 2.36 x 10-6 
 
NONE pass 
 
4433 gene list constructed from all CpG 
sites with p-values ≤ 0.05 
 

Gene set enrichment 
analyses 

WebGestalt enrichment analyses Gene ontology 
Drug association 
MicroRNA targets 
 
Top drug: Adenosine (8 x 10-21) 
Top miRNA: miR-124a (1.70 x 10-42) 
 

Targeted epistasis search Likelihood ratio test comparing models 
with and without the interaction 
 
Only interactions of SNPs between the 
two genes FTO and ALKBH5, not within 

α = 0.05 
340 hypotheses (simulated) 
255 hypotheses (real) 
Bonferroni cutoff 0.00015 (simulated) 
Bonferroni cutoff 0.000196 (real) 
 
One significant interaction (simulated) 
Four significant interactions (real) 

Figure 1. Workflow overview and results summary 
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Data set and methods 

Data set 

The GOLDN data and companion simulations for GAW20 are previously described [66]. Relevant 

to this analysis, subject data includes fasting lipid profiles prior to and post-treatment, methylation 

at > 450,000 CpG sites prior to and post-treatment, GWAS of > 700,000 autosomal SNPs, and 

covariates including age, center, metabolic syndrome-related traits, and smoking status. This 

analysis is of the pre-defined single representative replicate (n=680) of the post-treatment 

methylation and triglyceride levels. 

Phenotype definition 

We define the phenotype of interest as the log ratio of the average post-treatment triglyceride 

level to the average pre-treatment triglyceride level. Due to the high correlations between 

triglyceride levels at pre-treatment time points 1 and 2 and post-treatment time points 3 and 4 

(0.90 and 0.91, respectively), and presence of a value for at least one of time point 1 or 2 and 3 

or 4 for each individual, we singly impute missing values via linear regression. 

CpG site filtering 

Significantly differentially methylated CpG sites are identified via paired t-tests for pre- and post-

treatment methylation levels (α = 0.05 for 463,995 hypotheses yields Bonferroni cutoff of 1.08 x 

10-7). 

Modeling the relationship between phenotype and CpG site methylation 

Linear models are fit to test the relationships between the phenotype and methylation status of 

the significant CpG sites identified above, characterized as a single predictor: the log ratio of 

post-treatment to pre-treatment methylation (α = 0.05 for 212,018 hypotheses yields Bonferroni 

cutoff of 2.36 x 10-6). 
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Gene set enrichment analyses 

All CpG sites that pass the initial t-test filter and have a p-value ≤ 0.05 for the phenotype ~ 

methylation predictor model are used to curate a list of corresponding genes with evidence for 

both differential methylation and association with the phenotype. This gene list is used for Gene 

Ontology, drug association, and microRNA target enrichment analyses using the WEB-based 

GEne SeT AnaLysis Toolkit (WebGestalt, http://www.webgestalt.org/) [144]. 

Targeted epistasis search 

We investigate potential epistasis between the two RNA demethylases FTO and ALKBH5 by 

calculating p-values for the likelihood ratio tests comparing the linear models containing each 

FTO SNP – ALKBH5 SNP pair, with and without their interaction term (α = 0.05 for 340 

hypotheses yields Bonferroni cutoff of 0.00015 for the simulated data, 255 hypotheses yields a 

cutoff of 0.000196 for the real data). 

Results 

CpG site filtering 

We tested 463,995 CpG sites for differential methylation prior to versus post-treatment. 212,018 

CpG sites passed the Bonferroni threshold of 1.08 x 10-7. 

Modeling the relationship between phenotype and CpG site methylation 

None of the 212,018 CpG sites that are significantly differentially methylated reached genome-

wide significance for association with the phenotype (Figure 2). 
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Figure 2. Manhattan plot of triglyceride phenotype ~ CpG site methylation log ratio 

 

Gene set enrichment analyses 

Our gene set is constructed from all CpG sites with p-values ≤ 0.05 for the models above for 

which corresponding gene annotations are available (5413 of the 212,018 differentially 

methylated sites). Some CpGs have more than one corresponding gene listed, and many genes 

have multiple CpGs, for a total gene list length of 4443. The top result from the drug association 

analysis is adenosine (number of reference genes in the category = 477, number of genes in the 

gene set and also in the category = 126, expected number in the category = 49.14, ratio of 

enrichment = 2.56, raw p value from hypergeometric test = 1.31 x 10-23, p value adjusted by 

multiple test adjustment = 8 x 10-21). The top result from the miRNA target analysis is miR-124a 

(number of reference genes in the category = 542, number of genes in the gene set and also in 

the category = 175, expected number in the category = 55.84, ratio of enrichment = 3.13, raw p 
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value from hypergeometric test = 7.82 x 10-45, p value adjusted by multiple test adjustment = 1.70 

x 10-42). 

Targeted epistasis search 

The GAW20 GWAS data with the simulated phenotype include complete observations for 68 

SNPs on FTO and 5 SNPs on ALKBH5 for the 680 subjects. We only test for epistatic interactions 

between SNPs across the two genes (and do not test for interactions between SNPs on the same 

gene), for a total of 340 tested interactions and therefore a Bonferroni threshold of 0.00015. One 

pair of SNPs, rs2192872 from FTO and rs8068517 from ALKBH5 have a significant p-value for 

the likelihood ratio test comparing the models with and without the interaction (p = 2.01 x 10-5). 

The analysis of the real phenotype and GWAS data was performed in the same manner for 778 

subjects for 51 SNPs on FTO and 5 SNPs on ALKBH5 (Bonferroni threshold of 0.000196). Four 

pairs of SNPs have significant p-values for the likelihood ratio test comparing the models with and 

without the interaction (Table 1). Figure 3 visually summarizes the distribution of phenotype by 

genotype for the two SNPs involved in the most significant identified interaction.   

Table 1. Summary of significant interactions. Variant annotations are from Ensembl [142]. Base 
model covariate selection is based on significance at the 0.05 level and includes average pre-
treatment triglyceride level, age, center, current smoker status, and sex. 

SNP Alleles MAF Location Gene Consequence Type LRT p-value 

rs1362571 G/T 0.34 (G) 16:53877858 FTO Intron variant 

2.76 x 10-6 

rs11655588 A/G 0.18 (G) 17:18204137 ALKBH5 Intron variant 

rs10521304 T/C 0.41 (C) 16:53874745 FTO Intron variant 

8.80 x 10-6 

rs11655588 A/G 0.18 (G) 17:18204137 ALKBH5 Intron variant 

rs1421090 A/G 0.29 (G) 16:53816258 FTO Intron variant 

0.000158 

rs8071834 T/C 0.45 (C) 17:18196677 ALKBH5 Intron variant 

rs17820875 A/G 0.12 (G) 16:53892878 FTO Intron variant 

0.000177 

rs8068517 G/A 0.24 (G) 17:18192664 ALKBH5 Intron variant 
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Figure 3. Phenotype distributions by genotype. A. Phenotype distributions for individuals with 0, 
1, or 2 copies of the minor allele for rs1362571. B. Phenotype distributions for individuals with 0, 
1, or 2 copies of the minor allele for rs11655588 amongst those with 0 copies of the minor allele 
for rs1362571 [left]; 1 copy [center]; 2 copies [right]. C. Phenotype distributions for individuals with 
0, 1, or 2 copies of the minor allele for rs11655588. D. Phenotype distributions for individuals with 
0, 1, or 2 copies of the minor allele for rs1362571 amongst those with 0 copies of the minor allele 
for rs11655588 [left]; 1 copy [center]; 2 copies [right]. 

The significant pair of SNPs identified from the simulated analysis did not reach significance in 

the analysis of the real data, although one of the SNPs (rs8068517) was a member of one of the 

significant interactions. Upon interrogating the phenotype distributions by genotype for the 

simulated data (Supplemental Figure 1), the real data (Supplemental Figure 2), and those 

individuals from the real data who were not included in the simulated data (Supplemental Figure 

3), this appears to be driven by the 98 individuals who differ between the simulated and real data 

analyses.  Although the differences in phenotype values by genotype between the real and 

simulated data may not appear extreme, the inclusion or exclusion of a small number of 

individuals may in fact significantly perturb the observed interaction.  For example, there are 4 

total individuals with 2 copies of the minor allele for rs2192872 and 0 copy of the minor allele for 

rs8068517 in the real data with a mean phenotype value of 0.900 (Supplemental Table 1).  The 

simulated data includes only 2 of these individuals, for a mean phenotype value of 0.874, which 

makes this interaction appear much more protective compared to other interaction genotypes 
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(particularly when considering the phenotype is defined as the log ratio of the average post-

treatment triglyceride level to the average pre-treatment triglyceride level). 

Discussion 

Our gene set enrichment analyses were motivated by the goal of making inferences about the 

mechanism of action of the fictitious drug, assuming that differential methylation could reveal a 

set of genes associated with a drug that is functionally similar to the fictitious one in question. 

Upon attending GAW, it became apparent that interaction analysis of the simulated data was not 

appropriate given the nature of the simulation, and the interaction identified can therefore be 

considered a false positive. However, re-implementing the same analytic pipeline using the real 

data produced largely comparable results and identified four pairs of loci between FTO and 

ALKBH5 with significant interactions.  The joint evidence implicating adenosine as the top result 

from the drug association gene set enrichment analysis and numerous miRNAs involved in 

metabolic traits from the miRNA target analysis, taken with the assumption that the drug has 

some unknown epigenetic mechanism, lead us to consider that mRNA or miRNA adenosine 

methylation, rather than CpG methylation, may be associated with drug response. MiRNAs in 

general are known important regulators of lipid metabolism [31, 50, 88]. The top miRNA hit, miR-

124a, has evidence for both its role in metabolic traits [7, 37, 73, 122], and for its epigenetic 

regulation in the context of risk of diverse diseases [2, 15, 20, 35, 41]. N6-Methyladenosine (m6A) 

is a reversible, dynamic post-transcriptional modification that is regulated by miRNAs, and its 

demethylation has been shown to regulate adipogenesis [18, 34, 82]. Recent work has 

demonstrated that RNA conformational changes induced by m6A determine substrate specificity 

for the two RNA demethylases, FTO and ALKBH5 [145]. If miRNA adenosine methylation rather 

than CpG methylation affects the phenotype, although the available data lacks observations on 

miRNA adenosine methylation, interactions between the two genes that demethylate miRNAs 

may be biologically relevant and can be assessed with the GOLDN SNP data. Given the 

evidence for physical interactions between RNA with the m6A mark and these demethylases, we 
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were motivated to check for epistasis between SNPs on these genes. Although we did find four 

pairs of loci with statistically significant interactions, the small sample size means that some SNP-

SNP genotypes have few observations, warranting investigation of this interaction in a larger 

study and further molecular clarification of the distinct and mutual roles of FTO and ALKBH5. 

Rather than attempting to explain complex phenotypes solely in terms of single locus main 

effects, we posit that interaction models better represent the underlying regulatory nature of the 

genome, and that the joint effect of perturbations to multiple interacting partners can help better 

explain complex phenotypes. This analysis of epistatic interactions between loci on two genes 

serves as an illustrative example of how interactions can be significant in the absence of 

significant main effects, and highlights the need for analyses that integrate multiple sources of 

data to narrow the search space for plausible interactions. 
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CONCLUSIONS 

Summary of the present work 

The present work arises from the need to integrate and analyze large amounts of genomic data 

with a focus on challenges to the ability to detect and replicate epistatic interactions. Epistatis, or 

deviations from additivity in the interaction of genotypes to produce the resultant phenotype, may 

help explain the “missing heritability” of complex disease, but can be difficult to detect statistically 

due to the multiple testing burden associated with naively testing all pairwise combinations of loci. 

Furthermore, the potential for significant interactions in the complete absence of single locus 

main effects of the interacting partners and vice versa complicates prioritization of loci to test 

based on filtering via presence of significant main effects. Narrowing the search space to alleviate 

the multiple testing burden requires either the development of methods that consider qualities 

intrinsic to the data that may affect the power to potentially detect an interaction (such as low 

minor allele frequencies of the SNPs being investigated), or integration with supplemental 

sources of information that can provide additional context to be used for filtering or other feature 

selection. Beyond the difficulty associated with detecting an interaction, replication of an 

interaction may be hindered by population-level differences in allele frequency, heritability, 

prevalence, or other demographic, clinical, or environmental variables. Furthermore, differences 

in the computational pipeline used to analyze this data (including the ordering of workflow steps, 

quality control cutoffs, versions of dependent software, etc.) may determine whether an 

interaction is tested in the first place or thereafter ascertained to be significant. This necessitates 

the consideration of how standard statistical analyses, quality control and data cleaning 

procedures, or parameter tuning choices in machine learning analyses can be modified to 

improve the ability to detect and replicate epistasis. 

 

I begin with a review on improving the reproducibility of machine learning analyses of genomic 

data, in which I discuss the distinctions between reproducibility and replicability, highlight potential 
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barriers to performing analyses of genomic data, emphasize and the difficulty of detecting and 

replicating interactions, and consider how choices at each stage of a machine learning analysis 

may impact its results. This review highlights impediments to genomic big data analyses and 

suggests topics of open interest to contextualize the present work. The following two chapters 

describe methods for improving the reproducibility of interaction analyses of genomic data: 

implementing a resampling technique to recapitulate the power to detect interactions across 

populations with differences in minor allele frequencies, and implementing a cross validation 

technique that preserves relative genotype proportions to allow for improved detection of 

interactions for internal feature selection. These methods address barriers to replication of 

epistatic interactions between populations and reproducibility of interaction detection within a data 

set, respectively. The final chapter presents an example of an analysis that leverages a 

secondary data source with no significant association between methylation and the phenotype at 

any site to narrow the search space for further gene set enrichment and interaction analyses to 

find statistically significant interactions between the two RNA demethylases FTO and ALKBH5. 

This serves to emphasize that even “negative” data may be useful for contextualizing or 

supplementing other data sources, and by extension underscores the utility of GWAS data as one 

of many informative data sources that can be consolidated to produce a comprehensive, 

integrated personalized health risk assessment. 

 

Overall, this work highlights and addresses some of the concerns emerging from the rapid 

coalescence of genomics and data science, and how experimental and analytical design choices 

in both domains and their fusion can greatly impact results. Understanding the downstream 

consequences of these choices and how they may feed in to each other demands in-depth 

interrogation of many small perturbations to the entire experimental process from the wet lab or 

clinic to the cloud. The future of high-quality, reproducible biomedical science will increasingly 

require the engagement of experts from diverse domains, underscoring the importance of 

harmonizing technical or analytical advances from other fields to suit the unique structure and 
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biases of new data sources. The combination of technological and computational improvements 

that allow for the unprecedented rate of biomedical data accumulation, and the increasing 

emphasis on the importance of reproducible, interdisciplinary, and translational research can 

converge to enable an era of unprecedented scientific productivity and advancement through the 

cooperation of many agents. The following passages describe potential extensions of the present 

work and considerations for future research that arise from the present work. 

 

Future directions 

A logical extension of the present work is interrogating how the proposed resampling, cross 

validation, and data integration techniques may differentially influence findings across machine 

learning methods and how they may need modification to appropriately suit the particularities of 

each method. This work has investigated how factors such as minor allele frequency, prevalence, 

heritability, sample size, etc. impact results in the context of logistic regression models and uses 

the likelihood ratio test of the models with and without the interaction to quantify the significance 

of an interaction, as per standard analyses of GWAS data. However, we should consider other 

methods for detecting interactions and quantifying evidence of significance, how consistent these 

methods are with each other, and whether some are particularly suited for certain classes of 

problems.  This may become increasingly important especially as analyses of GWAS data include 

integration or supplementation with external data sources that heighten the computational, 

storage-related, and interpretive demands.  The choice of algorithm and its relevant parameters 

or hyperparameters, the ordering of steps in an analytic workflow, and the potential propagation 

of errors associated with integrating multiple methods and data types and sources must all be 

investigated to determine their relative contributions to failure to replicate across a range of 

population parameters. 
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Relatedly, the emphasis on statistical significance and p-values alone does a disservice to 

improving replication of both main effects and interactions.  As data becomes sufficiently large, 

researchers are essentially guaranteed to find significant results, but the practical interpretation of 

these may be lacking.  Re-analyzing existing GWAS data considering consistency in the direction 

and magnitude of effects for findings that fail to reach statistical significance and supplementing 

analyses with orthogonal data sources may provide additional informative clues regarding the 

underlying genetic architecture.  A new GWAS analysis paradigm may be the automated meta-

analysis of all new studies in the context of relevant evidence from prior studies. Such a system 

could also be used to prioritize which variants would be most informative to focus on in 

subsequent work, for example variants of large effect size that fail to reach statistical significance 

or variants at very different frequencies between populations.  However, the results of meta-

analyses may unfortunately obscure true relationships due to differences in bias between data 

sources, inconsistent phenotyping, unmeasured epidemiological confounding, or opposite 

directions of effect between populations.  This highlights the adjacent importance of performing 

smaller, very well-controlled and precisely-defined studies across multiple homogeneous 

populations to better define and understand common versus subgroup-specific factors in the 

genetic architecture underlying traits to enable identification of barriers to replication.  For 

example, it may be necessary to perform separate analyses of men and women in order to 

identify determinants of risk that differ by sex such as variants or interactions with variants on the 

X or Y. Sex-specific analysis may be especially worth consideration in light of non-genomic 

differences in exposures that may modify risk, such as behavioral or hormonal factors. Simulation 

studies that aim to characterize the ability to detect and replicate interactions across differentially 

confounded studies with the same true causal interaction may provide insight in interpreting real 

data with unknown sources of confounding. 

 

The interactions explored in the application of PICV to primary open-angle glaucoma data and in 

the GAW analysis provide additional opportunities for follow-up in confounder analyses and data 
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integration methods.  Both of these interaction analyses may be improved via integration of 

additional sources of data such as tissue-specific gene expression data.  The potential 

confounding by myopia identified in the PICV analysis suggests a need to better integrate 

genomic and traditional epidemiologic data and to design studies and develop analytic methods 

that can better facilitate exploration of gene-by-environmental and higher order combinations of 

genetic and environmental effects, perhaps with combined genomic and environmental matching 

and weighting techniques.  The PICV analysis may for example be supplemented by data from 

genomic analyses of myopia, particularly with known glaucoma status and measured diopters of 

correction. 

 

Towards greater reproducibility in the biomedical sciences 

Although numerous fields grapple with concerns raised by the reproducibility crisis, this anxiety 

can be embraced as an opportunity to critique and radically reconsider how current scientific 

traditions and practices contribute to a culture of irreproducibility and the measures that can be 

taken towards creating structures and systems to enable more reproducible science. Improving 

reproducibility in genomics and the biomedical sciences more broadly will, besides technical 

advances in both the experimental and analytical branches, require improved integration of data 

collection and analysis, particularly in linking and jointly analyzing many heterogeneous data 

sources. Streamlining experimental workflows to autonomously and consistently collect and clean 

data in the format appropriate for analysis can reduce the potential for accidental input errors. 

Expanding this paradigm to facilitate the linking or integration of multiple data types in a 

standardized way can further promote reproducible analysis. Studies may reasonably need to 

synthesize data of diverse types and formats in order to consider patient demographics and 

personal history, family history, doctor’s notes, lab results, personal genome testing results, 

wearable device tracking output, etc. Analyzing this data in a reproducible framework that 

considers their intrinsic biases, levels of missingness, and relationships to each other suggests 
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the need for a standardized personalized medicine hierarchy or ontology. Formalizing the 

hierarchical structures of the relationships between concepts could facilitate the exploration of risk 

attributable to perturbing exposures individually and in the context of confounders or effect 

measure modifiers. Such a structure could also improve the ability to compare findings between 

populations with different exposures and genetic architectures and provide a framework for 

modeling these differences or using them for weighting predictions. 

 

Efforts to synthesize this data will likely require the expertise of individuals from numerous fields 

including the clinical sciences, basic sciences, computer sciences, informatics, statistics, etc. as 

the depth and breadth of necessary knowledge and skills is beyond an individual traditional 

academic domain. In addition to enhancing interdisciplinary exposures in the classroom or 

providing more workshop opportunities to develop working knowledge of important concepts in 

adjacent fields, the increasing need for scientists of diverse backgrounds to work together can be 

facilitated by creating more interdisciplinary programs to train scientists who can straddle these 

fields and serve as liaisons. Current training programs may also offer greater opportunities for 

trainees to interact between departments, perhaps via course offerings that may benefit diverse 

types of trainees (such as introductory programming and statistics courses) or research lecture 

series to promote current interdisciplinary expertise needs to solicit desired collaborators from 

other departments. This effort could be expanded to be independent of home institution via a 

research matchmaking web service, which would further foster relationships between scientists of 

varying experience and expertise around the world by connecting potential collaborators, 

mentors, or trainees. Seeking multiple mentors of differing expertise can provide a student with a 

well-rounded training experience that enhances interdisciplinary skills, while supporting trainees 

with a diverse range of research interests can help more established scientists stay connected to 

current interdisciplinary advances. Promoting overlap in domain expertise, as opposed to more 

rigidly defining specialization, is critical to the advancement of reproducibility in interdisciplinary 

academia. Scientists from more diverse training programs and with more diverse networks of 
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collaborators can help mitigate the potential for misunderstandings that may arise from field-

specific differences in vocabulary, conceptual false friends, etc. They may also be particularly 

poised to recognize how standards, practices, or tools from one traditional field may be 

superimposed upon or modified to suit analogous problems in another. Educating a new 

generation of creative scientists encouraged to dismiss traditional barriers and synthesize ideas 

from a multidisciplinary perspective will serve to enhance research across academia. 

 

Academia may also benefit from increased collaboration with external partners such as the tech 

industry, or simply take inspiration from tech practices. Adopting practices that promote 

productivity and collaboration may improve cooperation of scientists from diverse fields, while 

versioning, issue tracking, automation, and backup tools may improve analytic reproducibility. De-

centralizing data storage, accessibility, and analytic tools so that they are no longer siloed in 

individual institutions or even departments can also contribute to a culture of reproducibility by 

enabling the re-analysis or integrative analysis of data. Data parasitism, despite the negative 

connotation, serves to improve research efficiency, reduce waste, and lead to new discovery. 

Consolidating thematically similar sources of data and interrogating why they do or do not support 

the same hypotheses, re-analyzing negative data in the context of other negative data or 

secondary sources, assessing the most impactful data collection that can be performed to 

maximize the utility of existent data sources, and other secondary and integrative data analysis 

modalities may improve replicability of biomedical research findings via contextualization and 

meta-analyses. 

 

The emergent recognition of and debate over data parasitism highlights an adjacent concern, 

traditional standards for publication and the increasing recognition of the utility of reporting 

“unsuccessful” experimental results and data descriptions. Reporting all results, even ones that 

are not novel or exciting, is a necessary part of improving reproducibility. This saves time, money, 

and effort on unnecessarily conducting analyses that other researchers have already performed, 
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while also presenting the data for other researchers to critique and consider the impact of 

applying different data cleaning or analytic methods. Traditional publication of even successful 

results may also contribute to irreproducibility if page length and upload size limits preclude 

descriptions that are in-depth enough to re-run the experiment and analysis to arrive upon the 

same findings. A solution could be an entirely open-access journal with standardized data upload 

and reporting formats tailored to experiment type that performs exploratory data analysis, 

visualization, etc. automatically in an executable notebook. This would enable centralized data 

access and straightforward comparison, and all analyses performed beyond or in modification of 

the standard could automatically raise flags that demand an accompanying justification for each 

change. 

 

The importance of epistasis and interaction-centric research 

Pathway and network-based analyses of genomic data are increasingly appealing ways to 

represent the molecular interactions, hierarchies, and cascades that give rise to human 

phenotypes as we recognize that individual variants may be less important than the joint effects 

of many variants distributed across the genome. This implicitly acknowledges the importance of 

epistasis in explaining the “missing heritability” of complex disease, and also emphasizes the 

need to revisit heritability estimates to acknowledge the contribution of interactions between loci. 

It also stresses the adjacent needs to consider higher-order interactions between variants and 

gene-environmental interactions in risk prediction; the genome does not exist in isolation, and like 

interactions between variants, interactions between genes and the environment may also be non-

additive and exist in the absence of main effects. Studying epistasis and adopting a more 

interaction-centric approach to research in general is emblematic of embracing rather than 

ignoring or rejecting the inherently interdependent, hierarchical, and complex nature of biology. 

Considering the contribution of interactions may additionally produce more reproducible research 

via substantiating the importance of higher-order relationships over individual variants; where 
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single variant hits or the interactions between them may fail to replicate, quantifying the 

cumulative risk or protection conferred by many variants may be more stable within and across 

populations. Updating risk predictions for interactions between genetic and environmental 

determinants of disease in a probabilistic way based on observations from many studies can 

additionally allow for models that attempt to quantify uncertainty around individual and joint 

parameter combinations for a more full understanding of the structure of the relationship between 

variants and other risk factors. 

 

Studying variants in terms of their greater genomic and environmental context is also necessary 

for ensuring equitable access to the benefits of personalized medicine in the future. In order for 

personalized medicine to be both maximally impactful and socially just, genomic science must 

address its diversity problem and focus heavily on the importance and challenges of studying 

non-Caucasian populations, especially considering the inequitable distribution of research 

resources across populations and the impact of globalization and the increasingly multiracial 

world. However, the current standard of substantiating GWAS findings in a replication cohort of 

the same ancestral background may hamper the ability to request funding or justify performing 

research in other populations and thereby serve to perpetuate the currently unjust state of 

research. Thoroughly exploring how differences in risk associated with variants or their 

interactions may be dependent upon population-specific genetic architecture or environmental 

exposures is necessary for truly quantifying the effect of variation at a given locus, and will 

require complementary work across many populations, particularly those with greater admixture. 

Estimates of variant risk derived in one population cannot be used to predict risk in another, 

although performing analyses across many populations can of course lend robustness to findings 

that replicate, and provide informative contextual clues as to why others may not. Analyses of 

interactions, networks, and pathways rather than individual loci may become the new paradigm 

for exploring genomic data in a future that embraces population differences as informative rather 

than inconvenient. 
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Conclusions 

The increasing interconnectedness of the biomedical sciences, both in terms of the 

multidisciplinary expertise required for conducting modern research and the imperative to 

consider joint effects at multiple levels of complexity, can facilitate a more robust, cooperative, 

and translational research future. It is possible that all the necessary computational and 

methodological advances necessary to truly understand human genetic variation have already 

been made across diverse fields, and that we are on the cusp of substantial and immediate 

benefit to human health and personalized medicine upon context-specific translation of these 

tools and ideas. The rapid influx of genomic and other biomedical data should be welcomed as 

resources that will enable and empower researchers to explore complex systems in 

unprecedented depth to truly impact health and medicine. Although there remain many serious 

barriers to improving the reproducibility of interaction analyses and scientific reproducibility in 

general, we should be inspired rather than daunted by this complexity and the exciting research 

opportunities it provides. 
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APPENDIX 

Supplemental Tables and Figures, Chapter 3 
 

Supplemental table 1. Data set simulation parameters. Minor allele frequencies and penetrance 
tables used to generate balanced case-control ratio data sets of size 10,000. Heritability = 0.005 
and prevalence = 0.1 constant across all simulations. 

 
 Scenario 1 Scenario 2 Scenario 3 

SNP1 MAF: 0.1 0.2 0.2 

SNP2 MAF: 0.1 0.1 0.2 

Penetrance: 
0.205 0.182 0.102 0.208 0.190 0.148 0.189 0.213 0.273 
0.176 0.282 0.640 0.164 0.244 0.433 0.225 0.166 0.066 
0.219 0.110 0.248 0.202 0.198 0.192 0.173 0.266 0.094 

  
Scenario 4 

 
Scenario 5 

 
Scenario 6 

SNP1 MAF: 0.3 0.3 0.3 

SNP2 MAF: 0.1 0.2 0.3 

Penetrance: 
0.211 0.194 0.166 0.201 0.203 0.182 0.220 0.172 0.223 
0.153 0.227 0.334 0.203 0.201 0.181 0.191 0.220 0.157 
0.151 0.186 0.532 0.166 0.146 0.639 0.134 0.260 0.276 

  
Scenario 7 

 
Scenario 8 

 
Scenario 9 

SNP1 MAF: 0.4 0.4 0.4 

SNP2 MAF: 0.1 0.2 0.3 

Penetrance: 
0.188 0.199 0.228 0.221 0.191 0.180 0.202 0.218 0.143 
0.253 0.203 0.072 0.157 0.212 0.260 0.204 0.175 0.267 
0.180 0.212 0.208 0.206 0.248 0.040 0.172 0.221 0.198 

  
Scenario 10 

 
Scenario 11 

 
Scenario 12 

SNP1 MAF: 0.4 0.5 0.5 

SNP2 MAF: 0.4 0.1 0.2 

Penetrance: 
0.159 0.228 0.209 0.205 0.207 0.180 0.190 0.192 0.225 
0.211 0.186 0.217 0.170 0.177 0.277 0.216 0.224 0.136 
0.259 0.179 0.130 0.296 0.026 0.452 0.229 0.130 0.310 

  
Scenario 13 

 
Scenario 14 

 
Scenario 15 

SNP1 MAF: 0.5 0.5 0.5 

SNP2 MAF: 0.3 0.4 0.5 

Penetrance: 
0.185 0.188 0.239 0.154 0.204 0.238 0.224 0.279 0.219 
0.233 0.207 0.152 0.246 0.195 0.164 0.220 0.187 0.205 
0.124 0.234 0.208 0.167 0.205 0.222 0.236 0.247 0.170 
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Supplemental table 2. Data set simulation parameters. Minor allele frequencies and penetrance 
tables used to generate balanced case-control ratio data sets of size 10,000. Heritability = 0.005 
and prevalence = 0.02 constant across all simulations. 

 
 Scenario 1 Scenario 2 Scenario 3 

SNP1 MAF: 0.1 0.2 0.2 

SNP2 MAF: 0.1 0.1 0.2 

Penetrance: 
0.022 0.013 0.008 0.023 0.016 0.002 0.016 0.027 0.019 
0.013 0.052 0.035 0.007 0.036 0.010 0.028 0.006 0.006 
0.016 0.008 0.709 0.022 0.016 0.029 0.012 0.016 0.183 

  
Scenario 4 

 
Scenario 5 

 
Scenario 6 

SNP1 MAF: 0.3 0.3 0.3 

SNP2 MAF: 0.1 0.2 0.3 

Penetrance: 
0.024 0.017 0.009 0.017 0.027 0.002 0.017 0.027 0.003 
0.001 0.031 0.069 0.025 0.007 0.056 0.027 0.008 0.039 
0.022 0.021 0.005 0.023 0.017 0.016 0.003 0.039 0.023 

  
Scenario 7 

 
Scenario 8 

 
Scenario 9 

SNP1 MAF: 0.4 0.4 0.4 

SNP2 MAF: 0.1 0.2 0.3 

Penetrance: 
0.018 0.024 0.011 0.019 0.025 0.006 0.031 0.012 0.009 
0.028 0.009 0.058 0.025 0.008 0.047 0.010 0.028 0.023 
0.026 0.010 0.034 0.003 0.031 0.023 0.010 0.012 0.067 

  
Scenario 10 

 
Scenario 11 

 
Scenario 12 

SNP1 MAF: 0.4 0.5 0.5 

SNP2 MAF: 0.4 0.1 0.2 

Penetrance: 
0.005 0.028 0.029 0.022 0.023 0.012 0.025 0.024 0.008 
0.027 0.019 0.007 0.012 0.006 0.056 0.010 0.013 0.045 
0.031 0.005 0.039 0.023 0.014 0.030 0.025 0.020 0.017 

  
Scenario 13 

 
Scenario 14 

 
Scenario 15 

SNP1 MAF: 0.5 0.5 0.5 

SNP2 MAF: 0.3 0.4 0.5 

Penetrance: 
0.006 0.023 0.029 0.041 0.012 0.014 0.045 0.004 0.026 
0.036 0.019 0.006 0.010 0.026 0.019 0.013 0.026 0.016 
0.022 0.010 0.040 0.004 0.020 0.036 0.009 0.025 0.021 
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Supplemental Table 3. Summary of performance measures across minor allele frequency 
combinations, prevalence = 0.5, n = 10000. 

 

Measure, 
Model 

Scenario 

Sens, 
without 

int 

Sens, 
with int 

Spec, 
without 

int 

Spec, 
with int 

PPV, 
without 

int 

PPV, 
with int 

NPV, 
without 

int 

NPV, 
with 
int 

SNP1 MAF: 0.1 
SNP2 MAF: 0.1 

8.60e-06 1.75e-04 N.S. N.S. 4.12e-10 4.06e-09 N.S. N.S. 

SNP1 MAF: 0.2 
SNP2 MAF: 0.1 

6.92e-06 2.47e-05 N.S. 2.68e-02 3.03e-20 9.55e-22 4.35e-02 N.S. 

SNP1 MAF: 0.2 
SNP2 MAF: 0.2 

9.27e-09 3.03e-05 N.S. N.S. 5.01e-14 5.92e-15 2.73e-02 N.S. 

SNP1 MAF: 0.3 
SNP2 MAF: 0.1 

2.27e-06 1.20e-03 N.S. N.S. 1.74e-14 2.81e-13 N.S. N.S. 

SNP1 MAF: 0.3 
SNP2 MAF: 0.2 

6.65e-17 4.12e-10 N.S. N.S. 1.48e-21 1.07e-19 N.S. 1.46e-02 

SNP1 MAF: 0.3 
SNP2 MAF: 0.3 

5.56e-06 2.10e-07 N.S. N.S. 1.75e-09 3.07e-16 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.1 

8.97e-07 4.54e-05 N.S. N.S. 7.73e-13 1.00e-13 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.2 

2.66e-03 5.54e-05 N.S. N.S. 2.86e-15 2.07e-17 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.3 

4.38e-07 4.06e-09 N.S. N.S. 1.44e-11 1.75e-09 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.4 

3.63e-04 2.11e-04 N.S. N.S. 1.97e-11 1.63e-05 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.1 

5.57e-07 7.08e-07 N.S. N.S. 1.43e-16 6.65e-17 N.S. 7.45e-03 

SNP1 MAF: 0.5 
SNP2 MAF: 0.2 

4.06e-09 5.93e-08 N.S. N.S. 3.95e-22 1.62e-19 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.3 

1.27e-07 2.32e-09 N.S. N.S. 4.00e-12 1.69e-10 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.4 

8.97e-07 1.13e-06 N.S. N.S. 1.43e-16 1.37e-15 3.08e-02 N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.5 

4.06e-09 3.71e-05 N.S. N.S. 5.53e-13 2.89e-12 N.S. N.S. 
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Supplemental Table 4. Summary of performance measures across minor allele frequency 
combinations, prevalence = 0.1, n = 10000. 

 

Measure, 
Model 

Scenario 

Sens, 
without 

int 

Sens, 
with int 

Spec, 
without 

int 

Spec, 
with int 

PPV, 
without 

int 

PPV, 
with int 

NPV, 
without 

int 

NPV, 
with 
int 

SNP1 MAF: 0.1 
SNP2 MAF: 0.1 

6.75e-05 2.10e-07 N.S. N.S. 1.74e-14 1.97e-11 N.S. N.S. 

SNP1 MAF: 0.2 
SNP2 MAF: 0.1 

2.08e-08 1.22e-08 4.86e-02 N.S. 1.97e-11 6.50e-16 N.S. N.S. 

SNP1 MAF: 0.2 
SNP2 MAF: 0.2 

1.07e-05 1.32e-05 N.S. N.S. 1.97e-11 3.07e-16 N.S. N.S. 

SNP1 MAF: 0.3 
SNP2 MAF: 0.1 

3.07e-09 1.74e-14 N.S. N.S. 3.07e-16 1.40e-17 N.S. N.S. 

SNP1 MAF: 0.3 
SNP2 MAF: 0.2 

5.57e-07 5.53e-10 N.S. N.S. 4.47e-16 1.22e-14 N.S. 4.35e-02 

SNP1 MAF: 0.3 
SNP2 MAF: 0.3 

1.07e-05 8.20e-05 5.21e-03 N.S. 6.15e-22 9.25e-11 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.1 

2.71e-08 2.47e-05 N.S. N.S. 1.22e-14 1.37e-15 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.2 

8.60e-06 1.07e-05 N.S. N.S. 5.92e-15 5.53e-13 N.S. 3.88e-02 

SNP1 MAF: 0.4 
SNP2 MAF: 0.3 

9.87e-10 9.87e-10 N.S. N.S. 5.53e-13 6.33e-18 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.4 

3.71e-05 5.53e-10 N.S. N.S. 5.02e-11 9.42e-18 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.1 

9.25e-11 5.53e-10 N.S. N.S. 7.73e-13 4.52e-17 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.2 

5.54e-05 2.27e-06 N.S. N.S. 1.22e-14 3.03e-20 1.46e-02 N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.3 

1.32e-05 3.07e-10 N.S. N.S. 2.27e-06 1.22e-08 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.4 

6.75e-05 5.57e-07 N.S. N.S. 9.25e-11 2.08e-08 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.5 

1.22e-14 5.53e-12 N.S. N.S. 6.50e-16 7.10e-14 N.S. N.S. 
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Supplemental Table 5. Summary of performance measures across minor allele frequency 
combinations, prevalence = 0.02, n = 10000. 

 

Measure, 
Model 

Scenario 

Sens, 
without 

int 

Sens, 
with int 

Spec, 
without 

int 

Spec, 
with int 

PPV, 
without 

int 

PPV, 
with int 

NPV, 
without 

int 

NPV, 
with 
int 

SNP1 MAF: 0.1 
SNP2 MAF: 0.1 

2.28e-10 9.25e-11 4.20e-03 1.12e-02 1.40e-17 1.98e-20 1.46e-02 1.46e-02 

SNP1 MAF: 0.2 
SNP2 MAF: 0.1 

1.80e-06 1.75e-09 1.03e-02 N.S. 1.25e-10 4.21e-24 N.S. N.S. 

SNP1 MAF: 0.2 
SNP2 MAF: 0.2 

7.10e-14 1.05e-11 N.S. 1.70e-02 9.27e-09 3.72e-19 N.S. N.S. 

SNP1 MAF: 0.3 
SNP2 MAF: 0.1 

3.07e-09 9.27e-09 N.S. 5.58e-03 9.25e-11 1.98e-20 N.S. 4.35e-02 

SNP1 MAF: 0.3 
SNP2 MAF: 0.2 

1.13e-06 3.07e-09 4.09e-03 N.S. 2.32e-09 1.66e-24 N.S. N.S. 

SNP1 MAF: 0.3 
SNP2 MAF: 0.3 

1.32e-09 5.53e-12 3.16e-02 N.S. 1.25e-10 2.10e-16 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.1 

1.08e-12 4.12e-10 N.S. 3.73e-02 3.52e-08 3.19e-27 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.2 

4.12e-10 7.40e-10 1.80e-02 N.S. 8.49e-15 1.98e-15 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.3 

7.73e-13 1.43e-16 1.07e-02 4.93e-03 7.67e-08 3.95e-22 N.S. N.S. 

SNP1 MAF: 0.4 
SNP2 MAF: 0.4 

5.46e-21 1.08e-12 N.S. N.S. 2.89e-12 1.22e-14 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.1 

5.36e-09 6.14e-04 N.S. N.S. 6.82e-11 1.97e-11 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.2 

4.38e-07 4.06e-09 N.S. N.S. 2.69e-07 4.52e-17 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.3 

7.06e-09 4.58e-08 N.S. N.S. 7.73e-13 8.44e-19 N.S. N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.4 

1.43e-06 5.36e-09 N.S. N.S. 1.44e-11 5.46e-21 4.35e-02 N.S. 

SNP1 MAF: 0.5 
SNP2 MAF: 0.5 

5.02e-11 5.57e-07 N.S. 2.75e-05 3.44e-07 1.62e-19 N.S. N.S. 
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Supplemental Figure 1. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 1, prevalence = 0.5, n = 2000 
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Supplemental Figure 2. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 2, prevalence = 0.5, n = 2000 
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Supplemental Figure 3. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 3, prevalence = 0.5, n = 2000 



68 

 

 

Supplemental Figure 4. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 4, prevalence = 0.5, n = 2000 
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Supplemental Figure 5. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 5, prevalence = 0.5, n = 2000 
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Supplemental Figure 6. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 6, prevalence = 0.5, n = 2000 
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Supplemental Figure 7. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 7, prevalence = 0.5, n = 2000 
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Supplemental Figure 8. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 8, prevalence = 0.5, n = 2000 
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Supplemental Figure 9. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 9, prevalence = 0.5, n = 2000 
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Supplemental Figure 10. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 10, prevalence = 0.5, n = 2000 
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Supplemental Figure 11. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 11, prevalence = 0.5, n = 2000 
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Supplemental Figure 12. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 12, prevalence = 0.5, n = 2000 
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Supplemental Figure 13. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 13, prevalence = 0.5, n = 2000 
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Supplemental Figure 14. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 14, prevalence = 0.5, n = 2000 
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Supplemental Figure 15. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 15, prevalence = 0.5, n = 2000 
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Supplemental Figure 16. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 1, prevalence = 0.5, n = 10000 
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Supplemental Figure 17. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 2, prevalence = 0.5, n = 10000 
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Supplemental Figure 18. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 3, prevalence = 0.5, n = 10000 
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Supplemental Figure 19. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 4, prevalence = 0.5, n = 10000 
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Supplemental Figure 20. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 5, prevalence = 0.5, n = 10000 
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Supplemental Figure 21. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 6, prevalence = 0.5, n = 10000 
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Supplemental Figure 22. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 7, prevalence = 0.5, n = 10000 
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Supplemental Figure 23. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 8, prevalence = 0.5, n = 10000 
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Supplemental Figure 24. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 9, prevalence = 0.5, n = 10000 
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Supplemental Figure 25. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 10, prevalence = 0.5, n = 10000 
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Supplemental Figure 26. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 11, prevalence = 0.5, n = 10000 
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Supplemental Figure 27. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 12, prevalence = 0.5, n = 10000 
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Supplemental Figure 28. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 13, prevalence = 0.5, n = 10000 
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Supplemental Figure 29. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 14, prevalence = 0.5, n = 10000 



94 

 

 

Supplemental Figure 30. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 15, prevalence = 0.5, n = 10000 
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Supplemental Figure 31. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 1, prevalence = 0.1, n = 10000 
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Supplemental Figure 32. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 2, prevalence = 0.1, n = 10000 
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Supplemental Figure 33. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 3, prevalence = 0.1, n = 10000 
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Supplemental Figure 34. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 4, prevalence = 0.1, n = 10000 
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Supplemental Figure 35. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 5, prevalence = 0.1, n = 10000 
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Supplemental Figure 36. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 6, prevalence = 0.1, n = 10000 
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Supplemental Figure 37. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 7, prevalence = 0.1, n = 10000 
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Supplemental Figure 38. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 8, prevalence = 0.1, n = 10000 
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Supplemental Figure 39. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 9, prevalence = 0.1, n = 10000 
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Supplemental Figure 40. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 10, prevalence = 0.1, n = 10000 
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Supplemental Figure 41. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 11, prevalence = 0.1, n = 10000 
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Supplemental Figure 42. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 12, prevalence = 0.1, n = 10000 
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Supplemental Figure 43. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 13, prevalence = 0.1, n = 10000 
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Supplemental Figure 44. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 14, prevalence = 0.1, n = 10000 
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Supplemental Figure 45. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 15, prevalence = 0.1, n = 10000 
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Supplemental Figure 46. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 1, prevalence = 0.02, n = 10000 



111 

 

 

 

Supplemental Figure 47. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 2, prevalence = 0.02, n = 10000 
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Supplemental Figure 48. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 3, prevalence = 0.02, n = 10000 
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Supplemental Figure 49. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 4, prevalence = 0.02, n = 10000 
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Supplemental Figure 50. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 5, prevalence = 0.02, n = 10000 
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Supplemental Figure 51. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 6, prevalence = 0.02, n = 10000 
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Supplemental Figure 52. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 7, prevalence = 0.02, n = 10000 
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Supplemental Figure 53. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 8, prevalence = 0.02, n = 10000 
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Supplemental Figure 54. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 9, prevalence = 0.02, n = 10000 
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Supplemental Figure 55. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 10, prevalence = 0.02, n = 10000 
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Supplemental Figure 56. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 11, prevalence = 0.02, n = 10000 
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Supplemental Figure 57. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 12, prevalence = 0.02, n = 10000 
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Supplemental Figure 58. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 13, prevalence = 0.02, n = 10000 
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Supplemental Figure 59. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 14, prevalence = 0.02, n = 10000 
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Supplemental Figure 60. Consistency of training and testing performance measures for models 
with and without the interaction term, comparing a traditional cross validation procedure to PICV. 
Experimental scenario 15, prevalence = 0.02, n = 10000 
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Supplemental Tables and Figures, Chapter 4 
 

Supplemental table 1. Counts and mean values of the phenotype by interaction genotype 
among individuals included in the simulated analysis, the real analysis, and exclusively in the real 
analysis but not the simulated analysis. Interaction genotypes listed refer to minor allele counts 
for rs2192872 and rs8068517, respectively (e.g. 01 refers to the interaction genotype of 
individuals with 0 copies of the minor allele for rs2192872 and 1 copy of the minor allele for 
rs8068517). 

rs2192872: 

rs8068517 

interaction 

genotype 

00 01 02 10 11 12 20 21 22 

Simulated  

(n = 680) 

0.942 

(1) 

0.922 

(19) 

0.909 

(76) 

0.938 

(5) 

0.910 

(42) 

0.916 

(238) 

0.874 

(2) 

0.916 

(57) 

0.909 

(240) 

Real 

(n = 778) 

0.942 

(1) 

0.927 

(24) 

0.910 

(83) 

0.938 

(5) 

0.907 

(49) 

0.914 

(273) 

0.900 

(4) 

0.912 

(67) 

0.908 

(272) 

Exclusively 

real 

(n = 98) 

N/A 

(0) 

0.946 

(5) 

0.924 

(7) 

N/A 

(0) 

0.887 

(7) 

0.903 

(35) 

0.927 

(2) 

0.885 

(10) 

0.898 

(32) 
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Supplemental figure 1. Phenotype distributions by genotype for the 680 subjects included in the 
analysis of the simulated data. A. Phenotype distributions for individuals with 0, 1, or 2 copies of 
the minor allele for rs2192872. B. Phenotype distributions for individuals with 0, 1, or 2 copies of 
the minor allele for rs8068517 amongst those with 0 copies of the minor allele for rs2192872 [left]; 
1 copy [center]; 2 copies [right]. C. Phenotype distributions for individuals with 0, 1, or 2 copies of 
the minor allele for rs8068517. D. Phenotype distributions for individuals with 0, 1, or 2 copies of 
the minor allele for rs8068517 [left]; 1 copy [center]; 2 copies [right]. 
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Supplemental figure 2. Phenotype distributions by genotype for the 778 subjects included in the 
analysis of the real data. A. Phenotype distributions for individuals with 0, 1, or 2 copies of the 
minor allele for rs2192872. B. Phenotype distributions for individuals with 0, 1, or 2 copies of the 
minor allele for rs8068517 amongst those with 0 copies of the minor allele for rs2192872 [left]; 1 
copy [center]; 2 copies [right]. C. Phenotype distributions for individuals with 0, 1, or 2 copies of 
the minor allele for rs8068517. D. Phenotype distributions for individuals with 0, 1, or 2 copies of 
the minor allele for rs2192872 amongst those with 0 copies of the minor allele for rs8068517 [left]; 
1 copy [center]; 2 copies [right]. 
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Supplemental figure 3. Phenotype distributions by genotype for the 98 subjects exclusively 
included in the analysis of the real data and not included in the analysis of the simulated data. A. 
Phenotype distributions for individuals with 0, 1, or 2 copies of the minor allele for rs2192872. B. 
Phenotype distributions for individuals with 0, 1, or 2 copies of the minor allele for rs8068517 
amongst those with 0 copies of the minor allele for rs2192872 [left]; 1 copy [center]; 2 copies 
[right]. C. Phenotype distributions for individuals with 0, 1, or 2 copies of the minor allele for 
rs8068517. D. Phenotype distributions for individuals with 0, 1, or 2 copies of the minor allele for 
rs2192872 amongst those with 0 copies of the minor allele for rs8068517 [left]; 1 copy [center]; 2 
copies [right]. 
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