
TITLE: PARALLELIZED INCOMPLETE

POISSON PRECONDITIONER IN CLOTH

SIMULATION

ABSTRACT:

Efficient cloth simulation is an important problem for interactive applications that
involve virtual humans, such as computer games. A common aspect of many methods
that have been developed to simulate cloth is a linear system of equations, which is
commonly solved using conjugate gradient or multi-grid approaches. In this paper, we
introduce to the computer gaming community a recently proposed preconditioner, the
incomplete Poisson preconditioner, for conjugate gradient solvers. We show that the
parallelized incomplete Poisson preconditioner (PIPP) performs as well as the current
state-of-the-art preconditioners, while being much more amenable to standard thread-
level parallelism. We demonstrate our results on an 8-core Apple* Mac* Pro and a 32-
core code name Emerald Ridge system.

PARALLELIZED INCOMPLETE POISSON PRECONDITIONER IN CLOTH SIMULATION:

Simulating flexible materials, such as cloth, is an important task for applications
involving virtual humans such as computer games and visual effects. High quality offline
simulations are achieved by using implicit methods for simulating cloth [20–22]. Real-
time applications, on the other hand, use explicit or semi-explicit methods for cloth
simulation in order to meet time constraints [5, 17]. Despite the decades of research on
simulating flexible materials, the efficient simulation of cloth remains an important
challenge for computer animation. A large amount of research exists that addresses
algorithmic optimizations for speeding up implicit integration methods for simulating
cloth. The use of preconditioners [4, 9, 13] has been shown to greatly reduce the
number of iterations of the conjugate gradient method in an effort to achieve
convergence.

In this paper, we explore the use of a novel preconditioning scheme – the incomplete
Poisson preconditioner – that has not been used before in clothing simulation. Using a
variety of standard benchmarks, we first demonstrate that this preconditioner is just as
good as, if not better, than currently used methods. A major advantage of this method is
that it is extremely easy to parallelize and can take advantage of the processing power
available in current and next generation multi-core hardware. Current state-of-the-art

preconditioners [13] are not as suitable for parallelization and do not scale well with
increase in computational resources. This paper makes the following contributions:

1. To our knowledge, we propose for the first time the use of the incomplete Poisson
preconditioner for clothing simulation.

2. We compare the incomplete Poisson preconditioner to the most commonly used
preconditioning methods in terms of efficiency, quality and ease of parallelization.

3. We demonstrate that a parallel implementation of the incomplete Poisson
preconditioner (PIPP) achieves significant performance improvement on multi-core
computers.

4. We demonstrate the scalability of the PIPP on a state-of-the-art, 32-core compute
server and show that it is ready for the next generation of hardware resources.

The rest of this document is organized as follows. We start by reviewing related work.
Subsequently we present an overview of the method we use for simulating cloth. We
describe the Jacobi preconditioner, the symmetric successive over-relaxation, and the
incomplete Cholesky preconditioner which are commonly used to accelerate
convergence. In addition, we propose the use of the incomplete Poisson preconditioner
for cloth simulation. We compare the four preconditioning methods on four standard
benchmarks and also demonstrate the effectiveness of parallelizing the incomplete
Poisson preconditioning scheme. Finally, we conclude with a discussion of future work.

Related Work

Early work by [20–22] has applied techniques from mechanical engineering and finite
element communities to cloth simulation. Since then, there has been an extensive
amount of work by different research groups [5, 7, 10, 23] that have addressed several
aspects of simulating cloth. An extensive overview of cloth simulation techniques can be
found in two survey papers [8, 16]. Preconditioners play a very important part in implicit
cloth simulation as they can greatly speed up convergence of numerical methods. The
work in [3] used a simple diagonal preconditioner for the modified preconditioned
conjugate gradient method (MPCG). The work in [9] demonstrated 20% speedup by
using a 3×3 block diagonal preconditioner. This work was extended in [4] by proposing
an approximation of the filter matrix A of the MPCG. The work in [13] demonstrates the
effectiveness of the incomplete Cholesky and successive symmetric over-relaxation
(SSOR) preconditioning schemes by reducing the number of iterations by 20%.

Relation to Prior Work. In this paper, we first examine the fitness of three commonly
used preconditioning schemes [3, 13] in comparison to the proposed incomplete
Poisson preconditioner. Our simulation method is similar to the implicit simulation
method described in [2,3]. We perform collision detection using distance fields [11].
Collision resolution is performed using the techniques described in [6] and [18].

Cloth Simulation Overview

There are many aspects to cloth simulation. A cloth simulator is required to solve a
linear system of equations which is used to step the simulator forward by one time step.
This system of equations is derived taking into account the specifics of the internal
forces and their derivatives. Different soft and hard constraints are imposed on the
simulation which must be met. Collision detection and resolution is another area of
research that has many contributions. We refer the reader to excellent works in cloth
simulation research [3, 12, 14, 15] for more information. In this paper, we focus on the
methods of preconditioning that are used to accelerate the preconditioned conjugate
gradient solver. In this section, we present an overview of the preconditioned conjugate
gradient solver and describe the different methods of preconditioning for cloth
simulation.

Preconditioned Conjugate Gradient Solver

An overview of the preconditioned conjugate gradient solver is shown in Algorithm 1. A
detailed description of the algorithm can be found here [19]. The preconditioned
conjugate gradient method takes as input the following: (a) a symmetric positive semi-
definite matrix A, (b) a symmetric positive definite preconditioning matrix P of the same
dimension as A, and (c) a vector b. The algorithm iteratively solves the linear system of
equations, Ax = b and the iterations stop when |b−Ax| < ε |b|, where ε is a user-defined
tolerance value. The preconditioning matrix P, which must be easily invertible, speeds
convergence to the extent that P−1 approximates A.

 Preconditioning Methods

We examine the performance of three commonly used preconditioning methods: (1)
diagonal, (2) symmetric successive over-relaxation (SSOR), and (3) incomplete Cholesky
against the unconditioned conjugate gradient method. We also examine a new
preconditioning scheme, the incomplete Poisson preconditioner, proposed by Ament et
al. [1] for the Poisson problem. Their motivation was to find an easily parallelizable
preconditioner for simulations on multi-GPU systems. To the best of our knowledge, this
is the first time this preconditioning scheme has been applied to cloth simulation. The
mathematical formulation of these preconditioners is as follows:

Diagonal (Jacobi) Preconditioner:

 { }

This simple preconditioning scheme approximates the inverse of a diagonal matrix.
Although lacking in quality, it can be computed quickly and provides increase in
performance in many cases. The computation of P−1 is relatively simple and this
preconditioner can be subsequently applied using SpMV.

Algorithm 1: Preconditioned Conjugate Gradient Solver

Procedure Preconditioned Conjugate Gradient Solver(A, x, b,P, ε)
Input: A: Left hand side of linear system of equations Ax = b.
Input: x: Input constraint.
Input: b: Right hand side of linear system of equations Ax = b.
Input: P: Preconditioner
Input: ε: Maximum tolerance
Output: x: Result.
// Initialization
r = b − Ax; // residual
d = P−1· r;
dnew = r · d;
while i < MAX ^ dnew > ε2 do

q = A · d;
c = d · q; // curvature
if c < 0 then
return FAIL;
else if c == 0 then

break;
end

α

;

x = x + α · d;
r = r − α · q;
s = P−1· r;
dold = dnew;
dnew = r · s;
if dnew < 0 then

break;
end

β =

;

d = s + β · d;
i = i + 1;

end
if dnew < 0 ˅ i == MAX then

return FAIL;
else

return SUCCESS;
end

Incomplete Cholesky Preconditioner:

where L is the Cholesky factorization defined as follows:

 √ ∑

 ∑

with the additional constraint to keep the original sparsity pattern of A. The incomplete
Cholesky is derived from the Cholesky decomposition method. A symmetric positive-
definite matrix can be decomposed into the product of a lower triangular matrix and its
conjugate transpose. These triangular matrices can quickly be inverted in order to solve
linear systems. In that sense, the incomplete Cholesky preconditioner approximates the
full inverse of A without incurring the cost of actually inverting it. It should be noted that
P−1 is calculated using expensive forward and backward substitutions, which are
inherently serial processes because of the triangular structures of L and LT .

Incomplete Poisson Preconditioner:

Where

 { }

and L is the strictly lower triangular matrix of A. This novel preconditioner has a simple
structure and is kind of an approximate inverse. As a result, no substitutions are
required and this preconditioner can be applied efficiently with SpMV and thread-level
parallelism.

Symmetric Successive Over-Relaxation:

Where

and L,U,D are the strictly lower triangular, the strictly upper triangular and the diagonal
matrix of A respectively. Symmetric successive over-relaxation is a variant of the Gauss-
Seidel method but with improved convergence speed. As with incomplete Cholesky, a
relatively expensive forward and backward substitution step occurs to calculate P−1. It
should also be noted that the choice of ω influences convergence. We use the following
ω:

 []

Evaluation Results

In this section we compare the proposed incomplete Poisson preconditioner to the most
commonly used preconditioners. First, we describe the test cases we use for the
comparison. Second, we evaluate the fitness of each of the preconditioning methods.
Third, we provide the results of parallelizing the incomplete Poisson preconditioner on
next-generation multi-core hardware. A visual comparison of using each of the
preconditioners on the benchmarks can be seen in the accompanying video. All
preconditioners seem to produce results of similar quality.

Benchmarks

We use four benchmarks for the purpose of exercising the preconditioners on a variety
of challenging scenarios that are frequently encountered in simulating cloth. These four
benchmarks are described below.

1. Free Fall. This is more of a baseline case, where a piece of cloth falls under gravity and
come to rest on a static sphere with no tangling (Figure 3(a)).

2. Curtain. This case extends the previous benchmark by including fixed point
constraints (Figure 3(b)).

3. Moving Collider. Further extending the previous case, a cloth patch hung as a curtain
interacts with a moving spherical collider (Figure 3(c)). This benchmark is used to test
the behavior of the simulator in a dynamic environment.

4. Tangling. Tangling is one of the toughest cases for cloth simulators to handle because
of the complexities introduced by the multiple self-collisions (Figure 3(d)). As far as the
conjugate gradient solver is concerned, for tangled states the number of nonzeros (thus
the stiffness) of the matrix A(Ax = b) increases significantly. The increased matrix density
can significantly affect performance.

Preconditioner Evaluation

We test the performance of the preconditioners by simulating 200 frames for each of
the benchmarks described above. The parameters used for the cloth simulator are
described in Table 1. The inter-particle forces were shear, bend and stretch. The
evaluation results are illustrated in Figure 4. From the results, it is apparent that the
incomplete Poisson preconditioner performs on par with incomplete Cholesky for cloth
simulation. Table 2 and Figure 1 illustrate the performance results of all preconditioning
schemes with increase in number of nodes on cloth patch. Here, we see that PIPP scales
well with increase in resolution of cloth patch, but the incomplete Cholesky
preconditioner does not. The main advantage of this novel preconditioner is that it can
be easily parallelized, whereas incomplete Cholesky is inherently a serial algorithm.

Simulation Parameter Value

Grid Resolution 50 x 50
Spring Constant 1000

Inter-particle distance 0.005
Damping Factor 2

Time Step 0.01
Error Threshold 10-15
Mass of particle 1

Table 1: Simulation Parameters.

#Nodes
Cholesky Poisson SSOR Jacobi None

#iter Time(s) #iter Time(s) #iter Time(s) #iter Time(s) #iter Time(s)

2500 10 0.079 11 0.032 11 0.035 18 0.062 13 0.028
3600 10 0.099 11 0.046 11 0.046 18 0.080 13 0.049
4900 10 0.160 11 0.054 11 0.064 18 0.090 13 0.058
6400 10 0.133 11 0.062 11 0.078 18 0.101 13 0.064
8100 9 0.150 11 0.076 11 0.096 18 0.121 13 0.083

10000 9 0.151 11 0.084 11 0.110 18 0.138 13 0.091
19600 9 0.241 11 0.157 11 0.217 18 0.241 13 0.182
30625 9 0.482 12 0.326 11 0.359 18 0.388 13 0.337
40000 9 1.649 12 0.396 11 0.490 18 0.567 14 0.542

Table 2: Performance results (number of iterations and simulation time in seconds) for

all preconditioning schemes with increase in number of nodes.

Figure 1: Performance results (number of iterations and simulation time in seconds) for
all preconditioning schemes with increase in number of nodes.

Parallelization Results

To evaluate parallelization options for the incomplete Poisson preconditioner, we
implemented a parallel version using Pthreads. The columns of matrix A are equally
distributed among the available threads, which means that each thread operates on
No.Columns / No.threads columns of A. The input of the parallelization function is A and
the output P = H*HT , where H = I – L*diag{A}−1. We tested for different numbers of
threads and the times we report include construction of the threads as well as thread
synchronization. Our tests were performed on an 8-core Apple* Mac* Pro running Mac*
OS X* 10.6 with 12GBs of RAM (Figure 2(a)) and a 32-core code name Emerald Ridge
server with Intel® Xeon® processors X7560 and 32GB of RAM running OpenSUSE* Linux*
11.3 (Figure 2(b)). Both systems have Intel® Hyper-Threading Technology. To compute
execution time, we used system-specific high-resolution timers: mach absolute time()
on Mac OS X* and clock gettime() on Linux*. We further refer the reader to [1] for GPU
parallel implementations of the incomplete Poisson preconditioner. Figure 2 shows that
PIPP scales very well with the number of available cores. For both systems the
performance of the PIPP increases significantly and reaches saturation after the number
of threads equals the number of available hyper-cores. In the case of the 8-core system
the performance of a single thread is about 2 seconds, while the performance of 16
threads is about 0.5 seconds. Similarly, in the case of the 32-core system a single thread
takes more than a second, while 64 threads run at about 0.06 seconds.

(a) (b)

Figure 2: Parallelization results on multi-core hardware. (a) 8-core machine. (b) 32-core
machine.

 Conclusion and Future Work

We have presented a recently proposed preconditioner, the incomplete Poisson
preconditioner, for conjugate gradient solvers. We have analyzed the fitness of the
proposed preconditioning scheme on several benchmarks and compared its

performance to commonly used methods. We have showed that PIPP performs as well
as the current state-of-the-art preconditioners, while being much more amenable to
standard thread-level parallelism. Our experiments on two multi-core systems show
that PIPP scales very well with the number of available processing cores.

 Acknowledgements

The work in this paper was partially supported by Intel through a Visual Computing
grant and the donation of the 32-core code name Emerald Ridge system with Intel®
Xeon® processors X7560. In particular we would like to thank Randi Rost and Scott Buck
from Intel for their support. We would like to thank Rhythm & Hues Studios and in
particular Peter Huang and Tae-Yong Kim for their support through grants and software
donations. We would also like to extend our gratitude to Thanasis Vogiannou for
providing an open source cloth simulation engine which was used in part to generate
the results for this paper.

(a)

(b)

(c)

(d)

Figure 3: Benchmark Scenes. (a) Cloth falling on a sphere. (b) Cloth hanging as a curtain
colliding with sphere. (c) Cloth patch colliding with moving spherical object. (d) Tangling
cloth. In the middle frames the red color indicates edges under stress.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Performance results of different preconditioning schemes on all benchmarks.
(a),(b): Number of iterations and simulation time for Free fall benchmark. (c),(d): Curtain
benchmark. (e),(f) Tangling benchmark. (g),(h) Moving collider benchmark.

AUTHORS:

Costas Sideris is a PhD student in the UCLA Computer Science

Department, advised by Professor Petros Faloutsos. Costas

received a Bachelor’s degree in Computer & Electrical

Engineering from the National Technical University of Athens,

Greece in 2010. Costas is a member of the Modeling,

Animation, and Graphics Lab at UCLA. His research focuses on

physical simulations and animation, as well as vision subjects

including 3D reconstruction and perceptual interfaces. For

more information, please visit: www.cs.ucla.edu/~costas

 Mubbasir Kapadia is the assistant director and a postdoctoral

researcher at the SIG Center for Computer Graphics at the

University of Pennsylvania. His research interests include

applying automated planning and machine learning to

simulate autonomous virtual humans. Kapadia has a PhD in

computer science from the University of California, Los

Angeles. For more information, please visit:

http://www.seas.upenn.edu/~mubbasir/

REFERENCES:

 [1]. Ament, M., Knittel, G., Weiskopf, D., Strasser, W.: A parallel preconditioned
conjugate gradient solver for the Poisson problem on a multi-GPU platform. In:
Proceedings of the 2010 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing. pp. 583–592. PDP ’10, IEEE Computer Society (2010)

[2]. Ascher, U., Boxerman, E.: On the modified conjugate gradient method in cloth
simulation. The Visual Computer 19, 526–531 (2003)

[3]. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of ACM
SIGGRAPH. pp. 43–54 (1998)

[4]. Boxerman, E.: Speeding up cloth simulation. Ph.D. thesis, The University of British
Columbia, BC, Canada (2003)

[5]. Breen, D.E., House, D.H., Wozny, M.J., Breen, D.E.: Predicting the drape of woven
cloth using interacting particles (1994)

http://www.cs.ucla.edu/~costas
http://www.seas.upenn.edu/~mubbasir/

[6]. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and
friction for cloth animation. In: ACM SIGGRAPH 2005 Courses. SIGGRAPH ’05, ACM, New
York, NY, USA (2005)

[7]. Carignan, M., Yang, Y., Thalmann, N.M., Thalmann, D.: Dressing animated synthetic
actors with complex deformable clothes. In: Computer Graphics (Proc. SIGGRAPH. pp.
99–104 (1992)

[8]. Choi, K., Ko, H.: Research problems in clothing simulation. Computer-Aided Design
37(6), 585–592 (2005)

[9]. Choi, K.J., Ko, H.S.: Stable but responsive cloth. In: Proceedings of ACM SIGGRAPH.
pp. 604–611 (2002)

[10]. Eberhardt, B., Weber, A., Strasser, W.: A fast, flexible, particle-system model for
cloth draping. IEEE Comput. Graph. Appl. 16, 52–59 (September 1996)

[11]. Fuhrmann, A., Sobottka, G., Grob, C.: Distance fields for rapid collision detection in
physically based modeling. In: GRAPHICON (2003)

[12]. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient
Simulation of Inextensible Cloth. SIGGRAPH (ACM Transactions on Graphics) 26(3)
(2007)

[13]. Hauth, M., Etzmuss, O., Strasser, W.: Analysis of numerical methods for the
simulation of deformable models. The Visual Computer 19, 581–600 (2003)

 [14]. Muller, M.: Hierarchical position based dynamics. In: Proceedings of Virtual Reality
Interactions and Physical Simulations (VRIPhys2008). pp. 13–14 (2008)

[15]. Muller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J.Vis.
Comun. Image Represent. 18, 109–118 (April 2007)

[16]. Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based
deformable models in computer graphics. Computer Graphics Forum 25, 809–836
(2006)

[17]. Okabe, H., Imaoka, H., Tomiha, T., Niwaya, H.: Three dimensional apparel cad
system. In: Proceedings of the 19th annual conference on Computer graphics and
interactive techniques. pp. 105–110. SIGGRAPH ’92, ACM, New York, NY, USA (1992)

[18]. Selle, A., Su, J., Irving, G., Fedkiw, R.: Robust high-resolution cloth using parallelism,
history-based collisions, and accurate friction. IEEE Transactions on Visualization and
Computer Graphics 15, 339–350 (March 2009)

[19]. Shewchuk, J.R.: An introduction to the conjugate gradient method without the
agonizing pain. Tech. rep. (1994)

[20]. Terzopoulos, D., Fleischer, K.: Deformable models. The Visual Computer 4(6), 306–
331 (1988)

[21]. Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: Viscoelasticity,
plasticity, fracture. Computer Graphics (Proc. SIGGRAPH’88) 22(4), 269–278 (1988)

[22]. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models.

ADVISOR: PETROS FALOUTSOS

 Petros Faloutsos is an assistant professor at the Department
of Computer Science and Engineering at York University.
Before joining York, he was a faculty member at the
Computer Science Department at the University of California
at Los Angeles, where in 2002 he founded the first computer
graphics lab at UCLA, called M.A.Gix. He served as the lab's
director until 2011. Faloutsos received his PhD degree (2002)
and his MSc degree in Computer Science from the University
of Toronto, Canada and his BEng degree in Electrical
Engineering from the National Technical University of Athens,
Greece. Faloutsos’ research interests focus on digital media,

computer graphics, virtual humans, hardware accelerators for graphics, health
informatics and surgical robotics. Professor Faloutsos is also interested in computer
networks, and he has co-authored a highly cited paper on the topology of the Internet
that received an ACM SIGCOMM Test of Time Award in 2010. Faloutsos is a member of
the Editorial Board of the Journal of The Visual Computer, and has served as a Program
Co-Chair for the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
2005 and for the Motion In Games Conference 2011. He is a member of the ACM and
the Technical Chamber of Greece.

FURTHER RESOURCES:

UCLA MAGiX lab: http://magix.ucla.edu/

http://magix.ucla.edu/

