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ABSTRACT: 

 
Efficient cloth simulation is an important problem for interactive applications that 
involve virtual humans, such as computer games. A common aspect of many methods 
that have been developed to simulate cloth is a linear system of equations, which is 
commonly solved using conjugate gradient or multi-grid approaches. In this paper, we 
introduce to the computer gaming community a recently proposed preconditioner, the 
incomplete Poisson preconditioner, for conjugate gradient solvers. We show that the 
parallelized incomplete Poisson preconditioner (PIPP) performs as well as the current 
state-of-the-art preconditioners, while being much more amenable to standard thread-
level parallelism. We demonstrate our results on an 8-core Apple* Mac* Pro and a 32-
core code name Emerald Ridge system. 
 

PARALLELIZED INCOMPLETE POISSON PRECONDITIONER IN CLOTH SIMULATION: 

Simulating flexible materials, such as cloth, is an important task for applications 
involving virtual humans such as computer games and visual effects. High quality offline 
simulations are achieved by using implicit methods for simulating cloth [20–22]. Real-
time applications, on the other hand, use explicit or semi-explicit methods for cloth 
simulation in order to meet time constraints [5, 17]. Despite the decades of research on 
simulating flexible materials, the efficient simulation of cloth remains an important 
challenge for computer animation. A large amount of research exists that addresses 
algorithmic optimizations for speeding up implicit integration methods for simulating 
cloth. The use of preconditioners [4, 9, 13] has been shown to greatly reduce the 
number of iterations of the conjugate gradient method in an effort to achieve 
convergence. 

In this paper, we explore the use of a novel preconditioning scheme – the incomplete 
Poisson preconditioner – that has not been used before in clothing simulation. Using a 
variety of standard benchmarks, we first demonstrate that this preconditioner is just as 
good as, if not better, than currently used methods. A major advantage of this method is 
that it is extremely easy to parallelize and can take advantage of the processing power 
available in current and next generation multi-core hardware. Current state-of-the-art 



preconditioners [13] are not as suitable for parallelization and do not scale well with 
increase in computational resources. This paper makes the following contributions: 

1. To our knowledge, we propose for the first time the use of the incomplete Poisson 
preconditioner for clothing simulation.  
 
2. We compare the incomplete Poisson preconditioner to the most commonly used 
preconditioning methods in terms of efficiency, quality and ease of parallelization. 
 
3. We demonstrate that a parallel implementation of the incomplete Poisson 
preconditioner (PIPP) achieves significant performance improvement on multi-core 
computers. 
 
4. We demonstrate the scalability of the PIPP on a state-of-the-art, 32-core compute 
server and show that it is ready for the next generation of hardware resources. 
 
The rest of this document is organized as follows. We start by reviewing related work. 
Subsequently we present an overview of the method we use for simulating cloth. We 
describe the Jacobi preconditioner, the symmetric successive over-relaxation, and the 
incomplete Cholesky preconditioner which are commonly used to accelerate 
convergence. In addition, we propose the use of the incomplete Poisson preconditioner 
for cloth simulation. We compare the four preconditioning methods on four standard 
benchmarks and also demonstrate the effectiveness of parallelizing the incomplete 
Poisson preconditioning scheme. Finally, we conclude with a discussion of future work. 

Related Work 

Early work by [20–22] has applied techniques from mechanical engineering and finite 
element communities to cloth simulation. Since then, there has been an extensive 
amount of work by different research groups [5, 7, 10, 23] that have addressed several 
aspects of simulating cloth. An extensive overview of cloth simulation techniques can be 
found in two survey papers [8, 16]. Preconditioners play a very important part in implicit 
cloth simulation as they can greatly speed up convergence of numerical methods. The 
work in [3] used a simple diagonal preconditioner for the modified preconditioned 
conjugate gradient method (MPCG). The work in [9] demonstrated 20% speedup by 
using a 3×3 block diagonal preconditioner. This work was extended in [4] by proposing 
an approximation of the filter matrix A of the MPCG. The work in [13] demonstrates the 
effectiveness of the incomplete Cholesky and successive symmetric over-relaxation 
(SSOR) preconditioning schemes by reducing the number of iterations by 20%.  
 
Relation to Prior Work. In this paper, we first examine the fitness of three commonly 
used preconditioning schemes [3, 13] in comparison to the proposed incomplete 
Poisson preconditioner. Our simulation method is similar to the implicit simulation 
method described in [2,3]. We perform collision detection using distance fields [11]. 
Collision resolution is performed using the techniques described in [6] and [18].  
 



Cloth Simulation Overview  

There are many aspects to cloth simulation. A cloth simulator is required to solve a 
linear system of equations which is used to step the simulator forward by one time step. 
This system of equations is derived taking into account the specifics of the internal 
forces and their derivatives. Different soft and hard constraints are imposed on the 
simulation which must be met. Collision detection and resolution is another area of 
research that has many contributions. We refer the reader to excellent works in cloth 
simulation research [3, 12, 14, 15] for more information. In this paper, we focus on the 
methods of preconditioning that are used to accelerate the preconditioned conjugate 
gradient solver. In this section, we present an overview of the preconditioned conjugate 
gradient solver and describe the different methods of preconditioning for cloth 
simulation. 

Preconditioned Conjugate Gradient Solver 

An overview of the preconditioned conjugate gradient solver is shown in Algorithm 1. A 
detailed description of the algorithm can be found here [19]. The preconditioned 
conjugate gradient method takes as input the following: (a) a symmetric positive semi-
definite matrix A, (b) a symmetric positive definite preconditioning matrix P of the same 
dimension as A, and (c) a vector b. The algorithm iteratively solves the linear system of 
equations, Ax = b and the iterations stop when |b−Ax| < ε |b|, where ε is a user-defined 
tolerance value. The preconditioning matrix P, which must be easily invertible, speeds 
convergence to the extent that P−1 approximates A. 
 

 Preconditioning Methods 
 

We examine the performance of three commonly used preconditioning methods: (1) 
diagonal, (2) symmetric successive over-relaxation (SSOR), and (3) incomplete Cholesky 
against the unconditioned conjugate gradient method. We also examine a new 
preconditioning scheme, the incomplete Poisson preconditioner, proposed by Ament et 
al. [1] for the Poisson problem. Their motivation was to find an easily parallelizable 
preconditioner for simulations on multi-GPU systems. To the best of our knowledge, this 
is the first time this preconditioning scheme has been applied to cloth simulation. The 
mathematical formulation of these preconditioners is as follows: 
 
Diagonal (Jacobi) Preconditioner: 
 

      { }            
 

     
 

 

This simple preconditioning scheme approximates the inverse of a diagonal matrix. 
Although lacking in quality, it can be computed quickly and provides increase in 
performance in many cases. The computation of P−1 is relatively simple and this 
preconditioner can be subsequently applied using SpMV.  



 

 

Algorithm 1: Preconditioned Conjugate Gradient Solver 

 

Procedure Preconditioned Conjugate Gradient Solver(A, x, b,P, ε) 
Input: A: Left hand side of linear system of equations Ax = b. 
Input: x: Input constraint. 
Input: b: Right hand side of linear system of equations Ax = b. 
Input: P: Preconditioner 
Input: ε: Maximum tolerance 
Output: x: Result. 
// Initialization 
r = b − Ax; // residual 
d = P−1· r; 
dnew = r · d; 
while i < MAX ^ dnew > ε2 do 

q = A · d; 
c = d · q; // curvature 
if c < 0 then 
return FAIL; 
else if c == 0 then 

break; 
end 

α  
     

 
; 

x = x + α · d; 
r = r − α · q; 
s = P−1· r; 
dold = dnew; 
dnew = r · s; 
if dnew < 0 then 

break; 
end 

β =  
     

     
; 

d = s + β · d; 
i = i + 1; 

end 
if dnew < 0 ˅ i == MAX then 

return FAIL; 
else 

return SUCCESS; 
end 



Incomplete Cholesky Preconditioner: 

          

where L is the Cholesky factorization defined as follows: 
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with the additional constraint to keep the original sparsity pattern of A. The incomplete 
Cholesky is derived from the Cholesky decomposition method. A symmetric positive-
definite matrix can be decomposed into the product of a lower triangular matrix and its 
conjugate transpose. These triangular matrices can quickly be inverted in order to solve 
linear systems. In that sense, the incomplete Cholesky preconditioner approximates the 
full inverse of A without incurring the cost of actually inverting it. It should be noted that 
P−1 is calculated using expensive forward and backward substitutions, which are 
inherently serial processes because of the triangular structures of L and LT . 
 

Incomplete Poisson Preconditioner: 
 

      
 
Where 
 

          { }     
 
and L is the strictly lower triangular matrix of A. This novel preconditioner has a simple 
structure and is kind of an approximate inverse. As a result, no substitutions are 
required and this preconditioner can be applied efficiently with SpMV and thread-level 
parallelism. 
 
Symmetric Successive Over-Relaxation: 
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and L,U,D are the strictly lower triangular, the strictly upper triangular and the diagonal 
matrix of A respectively. Symmetric successive over-relaxation is a variant of the Gauss-
Seidel method but with improved convergence speed. As with incomplete Cholesky, a 
relatively expensive forward and backward substitution step occurs to calculate P−1. It 
should also be noted that the choice of ω influences convergence. We use the following 
ω: 
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Evaluation Results 
 
In this section we compare the proposed incomplete Poisson preconditioner to the most 
commonly used preconditioners. First, we describe the test cases we use for the 
comparison. Second, we evaluate the fitness of each of the preconditioning methods. 
Third, we provide the results of parallelizing the incomplete Poisson preconditioner on 
next-generation multi-core hardware. A visual comparison of using each of the 
preconditioners on the benchmarks can be seen in the accompanying video. All 
preconditioners seem to produce results of similar quality. 
 
Benchmarks 
 
We use four benchmarks for the purpose of exercising the preconditioners on a variety 
of challenging scenarios that are frequently encountered in simulating cloth. These four 
benchmarks are described below.  
 
1. Free Fall. This is more of a baseline case, where a piece of cloth falls under gravity and 
come to rest on a static sphere with no tangling (Figure 3(a)).   
 
2. Curtain. This case extends the previous benchmark by including fixed point 
constraints (Figure 3(b)).  
 
3. Moving Collider. Further extending the previous case, a cloth patch hung as a curtain 
interacts with a moving spherical collider (Figure 3(c)). This benchmark is used to test 
the behavior of the simulator in a dynamic environment.  
 
4. Tangling. Tangling is one of the toughest cases for cloth simulators to handle because 
of the complexities introduced by the multiple self-collisions (Figure 3(d)). As far as the 
conjugate gradient solver is concerned, for tangled states the number of nonzeros (thus 
the stiffness) of the matrix A(Ax = b) increases significantly. The increased matrix density 
can significantly affect performance. 



Preconditioner Evaluation 

We test the performance of the preconditioners by simulating 200 frames for each of 
the benchmarks described above. The parameters used for the cloth simulator are 
described in Table 1. The inter-particle forces were shear, bend and stretch. The 
evaluation results are illustrated in Figure 4. From the results, it is apparent that the 
incomplete Poisson preconditioner performs on par with incomplete Cholesky for cloth 
simulation. Table 2 and Figure 1 illustrate the performance results of all preconditioning 
schemes with increase in number of nodes on cloth patch. Here, we see that PIPP scales 
well with increase in resolution of cloth patch, but the incomplete Cholesky 
preconditioner does not. The main advantage of this novel preconditioner is that it can 
be easily parallelized, whereas incomplete Cholesky is inherently a serial algorithm. 

 

Simulation Parameter Value 

Grid Resolution 50 x 50 
Spring Constant 1000 

Inter-particle distance 0.005 
Damping Factor 2 

Time Step 0.01 
Error Threshold 10-15 
Mass of particle 1 

Table 1: Simulation Parameters. 

 

#Nodes 
Cholesky Poisson SSOR Jacobi None 

#iter Time(s) #iter Time(s) #iter Time(s) #iter Time(s) #iter Time(s) 

2500 10 0.079 11 0.032 11 0.035 18 0.062 13 0.028 
3600 10 0.099 11 0.046 11 0.046 18 0.080 13 0.049 
4900 10 0.160 11 0.054 11 0.064 18 0.090 13 0.058 
6400 10 0.133 11 0.062 11 0.078 18 0.101 13 0.064 
8100 9 0.150 11 0.076 11 0.096 18 0.121 13 0.083 

10000 9 0.151 11 0.084 11 0.110 18 0.138 13 0.091 
19600 9 0.241 11 0.157 11 0.217 18 0.241 13 0.182 
30625 9 0.482 12 0.326 11 0.359 18 0.388 13 0.337 
40000 9 1.649 12 0.396 11 0.490 18 0.567 14 0.542 

Table 2: Performance results (number of iterations and simulation time in seconds) for 

all preconditioning schemes with increase in number of nodes. 

 

 



 

Figure 1: Performance results (number of iterations and simulation time in seconds) for 
all preconditioning schemes with increase in number of nodes. 



Parallelization Results 

To evaluate parallelization options for the incomplete Poisson preconditioner, we 
implemented a parallel version using Pthreads. The columns of matrix A are equally 
distributed among the available threads, which means that each thread operates on 
No.Columns / No.threads columns of A. The input of the parallelization function is A and 
the output P = H*HT , where H = I – L*diag{A}−1. We tested for different numbers of 
threads and the times we report include construction of the threads as well as thread 
synchronization. Our tests were performed on an 8-core Apple* Mac* Pro running Mac* 
OS X* 10.6 with 12GBs of RAM (Figure 2(a)) and a 32-core code name Emerald Ridge 
server with Intel® Xeon® processors X7560 and 32GB of RAM running OpenSUSE* Linux* 
11.3 (Figure 2(b)). Both systems have Intel® Hyper-Threading Technology. To compute 
execution time, we used system-specific high-resolution timers: mach absolute time() 
on Mac OS X* and clock gettime() on Linux*. We further refer the reader to [1] for GPU 
parallel implementations of the incomplete Poisson preconditioner. Figure 2 shows that 
PIPP scales very well with the number of available cores. For both systems the 
performance of the PIPP increases significantly and reaches saturation after the number 
of threads equals the number of available hyper-cores. In the case of the 8-core system 
the performance of a single thread is about 2 seconds, while the performance of 16 
threads is about 0.5 seconds. Similarly, in the case of the 32-core system a single thread 
takes more than a second, while 64 threads run at about 0.06 seconds.  

  

(a)                      (b) 
 
Figure 2: Parallelization results on multi-core hardware. (a) 8-core machine. (b) 32-core 
machine. 
 

 Conclusion and Future Work 
 
We have presented a recently proposed preconditioner, the incomplete Poisson 
preconditioner, for conjugate gradient solvers. We have analyzed the fitness of the 
proposed preconditioning scheme on several benchmarks and compared its 



performance to commonly used methods. We have showed that PIPP performs as well 
as the current state-of-the-art preconditioners, while being much more amenable to 
standard thread-level parallelism. Our experiments on two multi-core systems show 
that PIPP scales very well with the number of available processing cores. 
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Figure 3: Benchmark Scenes. (a) Cloth falling on a sphere. (b) Cloth hanging as a curtain 
colliding with sphere. (c) Cloth patch colliding with moving spherical object. (d) Tangling 
cloth. In the middle frames the red color indicates edges under stress. 
 

 
(a)                       (b) 



 
(c)                      (d) 

 
(e)                      (f) 

 
(g)                      (h) 

Figure 4: Performance results of different preconditioning schemes on all benchmarks. 
(a),(b): Number of iterations and simulation time for Free fall benchmark. (c),(d): Curtain 
benchmark. (e),(f) Tangling benchmark. (g),(h) Moving collider benchmark. 
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