Institute for Research in Cognitive Science

A Decidable Predicate
L ogic of Knowledge

Giorgi Japaridze

University of Pennsylvania
3401 Walnut Street, Suite 400C
Philadelphia, PA 19104-6228

May 1996

Site of the NSF Science and Technology Center for
Research in Cognitive Science

IRCS Report 96--06

A decidable predicate logic of knowledge
Giorgi Japaridze *

Department of Computer and Information Science
University of Pennsylvania
200 S. 33rd Street
Philadelphia, PA 19104-6389, USA

giorgi@saul.cis.upenn.edu

May 6, 1996

Abstract

The language we consider is that of classical first order logic aug-
mented with the unary modal operator O. Sentences of this language
are regarded as true or false in a knowledge-base K B, which is any
finite set of O-free formulas. Truth of Oa in K B is understood as
that « is true in all classical models of K B, and this interpretation is
intended to capture the intuition “we know that «” behind Oa.

The resulting logic is, in general, undecidable and not even semi-
decidable. However, there is a natural fragment of the above language,
called the constructive language, which yields a decidable logic. The
only syntactic constraint in the constructive language is that 3z should
always be followed by O. That is, we are not allowed to simply say
“there is z such that ...”, and we can only say “there is z for which
we know that ...”. Under this constraint, truth of Jza(2) will always
imply that an object & for which a(z) holds not only exists, but can

*The author is grateful for support from the University of Pennsylvania, the National
Science Foundation (on grants CCR-9403447 and CCR-9057570), and the the Institute for

Research in Cognitive Science at the University of Pennsylvania.

be effectively found. This is generally what we want of 3 in practical
applications: knowing that “there exists a combination ¢ that opens
safe 5”7 has no significance unless such a combination ¢ can actually
be found, which, in our semantics, will be equivalent to saying that
there is ¢ for which we know that ¢ opens 5. So, it is only truth
of the sentence 3cDOPEN S(c, 5) that really matters, and the latter,
unlike 3¢ OPEN S(¢, 9),is a perfectly legal formula of the constructive
language.

I introduce a decidable sequent system C' KN in the constructive
language and prove its soundness and completeness with respect to
the above semantics.

1 Introduction

The nonconstructive character of classical existential quantifier has many
times been criticized. Letting alone the philosophy on the right of “existence”
of the classical notion of existence, I will only point out that it has no practical
meaning. Consider the sentence

3cOPENS(c, S),

asserting that there is a combination ¢ that opens safe S. Knowing that this
sentence is true has little significance unless we can actually find a particular
combination which opens S. In other words, there must be a combination
C such that we know that OPENS(C,S) is true. This can be expressed by

the sentence

3cDOPENS(c, S),

where O is read as “we know that...”.

This consideration suggests an idea how to make classical first order logic
constructive and practically meaningful: first add to the language of the
latter a knowledge operator O, and then restrict the resulting language by
allowing usage of quantifiers only in combination with O as in the above
example. That is, we should not be allowed to simply say “there is & such
that ...”, and we can only say “there is « for which we know that ...”.

On the second thought, existential quantifier is nothing but a “big dis-
junction”, and one might ask the question why we don’t impose similar re-

strictions on the usage of V. The point is that the disjunction
OPENS(C1,S)VOPENS(C2,5),
although not as good as
DOPENS(C1,5)vVOOPENS(C2,5),

is still reasonably constructive as it envisages only a bounded number of (in
particular, two) possibilities; if this disjunction is true, all we need to do to
open S is to try both combinations C'1 and C2, whereas knowing the truth
of 3cOPENS(¢, S) doesn’t save our day unless dialing infinitely many, or,
say, 219 combinations, is feasible.

Our approach, on one hand, extends the expressive power of classical first
order logic by adding the knowledge operator to it and, on the other hand,
restricts some expressiveness of the latter by limiting the usage of quantifiers;
as I tried to convince the reader, however, this restriction can be viewed as
just cleansing classical logic of practically meaningless constructs.

Most importantly, as we will see later, our approach induces a decidable
predicate logic, which nicely contrasts with the undecidability of classical
logic, to say nothing about the non-semidecidability of the syntactic logics
of knowledge ([3]) or epistemic logics studied within the framework of non-
monotonic logics ([1], [2]).

2 The full language

We start by defining the syntax and semantics of the full language £ of the
predicate modal logic of knowledge.

L has an infinite set V of variables, a nonempty (finite or infinite) set
C of constants and a nonempty (finite or infinite) set R of predicate letters
together with a function that assigns to every R € R a natural number called
the arity of R. We also define the set of termsas V UC.

The set of formulas of L is the smallest set of expressions such that:

e R(ty,...,t,) is an (atomic) formula, for any n-ary relation symbol R €
R and any terms tq,...,%,;

e if o is a formula, then —(«) is a formula;

e if and /3 are formulas, then (a) V (/) is a formula;
e if o is a formula, then O(«) is a formula;
e if o is a formula and « is a variable, then Ja(«) is a formula.

When this does not lead to confusions, we will be omitting some paren-
theses in formulas.

We will be using A, —, <, V, & (where O = —07) as defined operators.

We also adopt the following standard notational convention: If (a1, ..., x,)
denotes a formula, where the x; are variables (which do not necessarily have
to have free occurrence in the formula, as well as not all free variables of the
formula have to be among w1,...,x,), then a(ty,...,t,), where the t; are
terms, denotes the result of substituting each (free occurrence of each) x; by
tiin a(ag, ..., x,).

Formulas without free variables will be called sentences, and formulas not
containing O will be said to be pure.

If a(aq,...,2,) is a formula with exactly x1,..., 2, free and ¢, ..., ¢, are
constants, then a(eq, ..., ¢,) is said to be an instance of a(xq,...,x,).

Definition 2.1 A world is a function w which assigns to each atomic sen-
tence R(C) one of the values {T'(rue), F'(alse)}. We write =, o for w(a) = T.

The relation |, is extended to all pure sentences in the following way:
o E, aifl £, o

o Ey,aV il &=, aor |, fF;

o |=, Jra(x) iff there is a constant ¢ such that =, «a(c).

Thus, a world w is nothing but a classical structure with the universe C
and, for a pure sentence o, =, « means nothing but that « is classically
true in this structure. Note the two simplifying assumptions we make vs
the traditional approach: First, we assume that every object of the universe
has a unique name in our language (a constant). Second, we identify these
objects with their names. These assumptions make life much easier.

Definition 2.2 A knowledge-base is a finite (possibly empty) set of pure
formulas.

Definition 2.3 A world w is said to be a possible world for a knowledge-base
K B iff for every instance o' of every a« € KB, [, /. This means nothing
but that w, as a classical structure, is a model of K'B.

A knowledge-base KB is said to be consistent iff it has at least one
possible world, and K B is complete iff it has at most one possible world.

Intuitively, the knowledge-base is all our knowledge of the world. This
knowledge is usually only partial unless the knowledge-base is complete. Dit-
ferent possible worlds correspond to different possible completions of the
missing information, and they are equal candidates to be the (real) world.

The reason why we don’t allow non-pure formulas in a knowledge-base
is simple: the definition of the exact semantics of O as a knowledge op-
erator is going to appeal to what is contained in our knowledge-base, and
including formulas containing O in the latter would make that kind of defi-
nition intuitively circular. Also, we want our knowledge-base to contain only
objective information — information about the outside world; such informa-
tion is stable and we can safely expand it by adding new true facts to the
knowledge-base, whereas, if we had, say, the formula -Oc« there, then adding,
at some point, the knowledge o would make the knowledge-base intuitively
inconsistent.

Definition 2.4 Let KB be a knowledge-base and w be a world. We say
that a sentence ¢ is true in KB with respect to w, — and write KB =, ¢,
iff one of the following conditions holds:

e ¢ is atomic and =, ¢;

o o =-aand KB |, a;

d6=aVpand KBE, aor KB,
e ¢ = Oa and for every possible world u for KB, KB |, «;
e ¢ = Jra(x) and, for some constant ¢ € C, KB =, a(c).

And we say that a sentence ¢ is (simply) true in KB, — and write KB = ¢,
iff for every possible world w for KB, KB =, ¢. In other words, ¢ is true
in KB iff KB =, O¢ for any (or some) w.

Thus, intuitively, O« is true if we know that «, where knowing o means
that the truth of « follows exclusively from our knowledge-base, so that it
doesn’t matter which of the possible worlds is the real world.

Note that if « is a pure sentence, then its truth in K'B with respect to w
does not depend on KB and KB |, «a iff =, a.

3 The constructive language

The constructive language L, whose formulas will be referred to as construc-
tive formulas, is the fragment of £ where formulas are allowed to contain Jx
only if it is immediately followed by O.

And a constructive knowledge-base is a knowledge-base consisting only of
constructive formulas.

For a philosophy on why this fragment is natural and what it is good for
see the Introduction.

Another way to present the constructive language is to take the full lan-
guage L without any syntactic constraints but change the semantics of it so
that dx is simply understood as dx0. This might look more impressive but
not quite fair, and we will not do that.

The above syntactic constraint may seem too inconvenient: nesting of
quantifiers induces nesting of modal operators, and the meaning of a formula
with deeply nested O’s becomes not very intuitive. However, one can show
that every such formula is logically equivalent to a formula without nested
modal operators. This is natural taking into account that our modal operator
is in fact an SH-modality which, as it is well known, allows to eliminate
nesting of O’s.

Also, theorem 3.1 below establishes that the constructive language has
the same expressive power as the much bigger language called the relazed
constructive language, L"¢, which is defined as the fragment of £ where,
whenever Jz is applied to a (sub)formula a(x), all free occurrences of x in
the latter should be in the scope of O.

We say that two formulas a(xq,...,2,) and f(xq,...,2,), whose all
free variables are among x1,...,x,, are (logically) equivalent, — and write
a(xy, ... x,) = B(ay, ..., x,), iff for every knowledge-base K B, world w and
tuple ¢1,..., ¢, of constants,

KBy, ale,...,cn) & KBy, Bler, ... cn).

For two sublanguages L1 and L2 of £ we read L1 < L2 as saying that
there is an effective function f : L1 — L2, called an interpreter, such that
for every formula o € L1, a = f(a).

And we say that L1 and L2 are equivalent (in expressive power), iff L1 <
L2 and L2 < L1.

Theorem 3.1 The languages L and L7 are equivalent.

(Proof is given in Section 8.)

In view of this theorem, it suffices to study only L£°, and we can safely
use the more relaxed formulas of £7¢; viewing them as shorthands for their
equivalent L£°formulas and entrusting their legalization to the interpreter.

Allowing only constructive knowledge-bases means that the knowledge-
bases (unlike queries) we consider cannot use quantifiers, because a con-
structive formula containing a quantifier should also contain a O, whereas a
knowledge-base should consist of only pure formulas. This, too, may seem
restrictive. However, the effect of external universal quantifiers in a construc-
tive knowledge-base can be achieved by using free variables (which, we know,

is legal), and most of the basic scientific or everyday knowledge, — whether
it be general rules or individual facts, — does not require any other sort of
quantification.

E.g., where A(x,y,z) means @ + y = z and S(x,y) means =’ = y (i.e.
z+1 = y), the recursive definition of addition in terms of successor: 0+y = y;
¥ +y = (x+y), — can be captured by the constructive knowledge-base
consisting of the following two formulas:

o A(0,y,y);
o S(xy,x9) N S(z1,22) N A1, y,21) — Alxs,y, 22).

To see possible applications of our logic in knowledge-base or database
systems, consider an example knowledge-base of a dating service, which con-
sists of the following constructive formulas:

. LIKES(Jon,z) < BLONDE(x) NGOODLOOKING(z) (a neces-
sary and sufficient condition for Jon to like someone is that the someone
is blonde and good-looking);

2. LIKES(Bob,z) — BLONDE(x) (Bob likes only blondes);

3. LIKES(Bob,z) — ASTAN(z) (Bob likes only Asians);

4. ASIAN(2) — =~BLONDE(x) (no Asian is blonde);

5. BLONDE(Ann);

6. GOODLOOK ING(Ann);

7. ASTAN(Suc);

8. BLONDE(Peg).

Is there an undoubted match for Jon? This query is expressedby
320LIKES(Jon,),

and a system based on our logic would answer “YES” to this question. Then,
as | promised that existential quantifier was going to be constructive in our
logic, we could confidently ask the system to find a particular = for which
OLIKES(Jon,x) holds, and we would get OLIK ES(Jon, Ann) (Jon will
definitely like Ann), so we would recommend Jon to meet Ann. We will also
infer OLIK ES(Jon, Peg) (Jon might like Peg), so that it makes sense for Jon
to try to find out more about Peg. And we will infer O-~LIK ES(Jon, Sue)
(Jon definitely will not like Sue), so Jon should not waste time on Sue. As
for Bob, he will never find a match unless he reconsiders his taste: we can
infer the (relaxed constructive) sentence Va—OLIK ES(Bob, x).

4 Logic CKN

We now describe a sequent calculus C' K B. The singularity of C K'N is that
it has two sorts, — positive and negative, — of sequents.

A sequent is a triple I' = A (positive sequent) or I' & A (negative
sequent), where I' is a constructive knowledge-base and A is a finite set of
constructive sentences.

The intended meaning of I' = A (resp. I' A A) is that the disjunction
of the elements of A is (resp. is not) true in the knowledge-base T'.

“Level-3 sequent” is a synonym of “sequent”.

A level-2 sequent is a sequent containing only pure formulas.

A level-1 sequent is a sequent containing only pure sentences.

Finally, a level-0 sequent is a sequent containing only atomic sentences.

By the standard abuse of notation, if © is a set of formulas and « is a
formula, we will write “©,a” or “a,®” for O U {a}.

Without loss of generality we may assume that C = {0,...,n} or C =
{0,1,2,...}. Then we say that a constant ¢ is active in a sequent S, if ¢
occurs in some formula of S or ¢ is the least constant not occurring in S.
And ¢ is strictly active, it ¢ occurs in S or there are no constants in S and
c=0.

The inference rules listed below have the form

St S
So

possibly n = 0, and possibly with some additional conditions on Sy, S, ..., S5,.
Sp 1s called the conclusion and Sy, ..., .S, the premises of the rule.

We say that a set Sq of sequents is closed under a set Rl of rules, if,
whenever

St S
So

is a rule of RI, S{,57,...,5] are sequents of the form Sy, Sy, ..., .5,, respec-
tively, and they satisfy all additional conditions (if any) stated in the rule,
and if n =0 or 57,...,5) € Sq, then 5; € Sq.

In the rules below, ~» is a variable ranging over {=-, %}, so that each
rule with ~» in fact represents two rules, one with = and the other with #-.
Also, all the sequents in a level-i rule (7 = 0,1,2,3) are assumed to be level-:
sequents.

The logic C KN is defined as the smallest set of sequents closed under the
following rules:

LEVEL-0 RULES (AXIOMS):

RO(=):
= A’
where I' N A is nonempty.
RO(#):
' A A’

where I' N A is empty.

LEVEL-1 RULES:

R1(~ —):
Ia~ A
'~ —a, A
R1(—~):
'~ a, A
I'—a~ A
R1(~ V):
'~ ap,az, A
I~ o Vag, A
R1(V =):
Fag=A Ta=A
F,Oé1VOé2:>A ’
R1(V #):
) F,Oé17$A b) F,O{Q#A
a ; .
F,Oé1VOé27é>A’ F,Oél\/Oé27é>A

10

LEVEL-2 RULES:

R2(~):
Ialer), ..., ale,) ~ A
I'a(z) ~ A ’
where ¢q,...,c, are all the strictly active constants of the conclusion.
LEVEL-3 RULES:
R3(~ ——):
'~ a, A
'~ ==, A
R3(~ V):
'~ ap,az, A
I~ o Vag, A
R3(= —V):
F:>—|Oé1,A F:>_'052,A
I'= (g Vag), A
R3(# —V):
a) I'# —a, A b) I'% —as, A
['#A —(ar Vaz), A’ ['#A —(a; Vaz), A
R3(= 0O):
a) I=a b) i
I'= Oa, A’ I'= Oa, A
R3(# 0O):
'Aa TI'AA
I' A Oa, A
R3(= —-0):
I' %A « I'= A
V= otar P Tooan

11

R3(7é> —|D): F e F#A

I' A -Oa, A

R3(= 3J):
I' = ale), A
['= Jza(z), A’

where ¢ is an active constant of the conclusion.

R3(# J):

I'#% aler),A -+ T'#ale), A
I' & Jea(x), A ’
where c1,...,c, are all the active constants of the conclusion.
R3(= —3):
I'= —ale),A - TI'=s =ale,), A
I'= —Jea(z), A ’
where c1,...,c, are all the active constants of the conclusion.
R3(# —3):
I' % —a(c), A

[—Jza(x), A’

where ¢ is an active constant of the conclusion.

5 The main results

The relation KB |E « is naturally extended to KB = A, where A is any
finite set of sentences, in the following way: Let VA be the disjunction of
all the elements of A. We may assume that we have an always-false atomic
sentence | in the language and, if A is empty, understand VA as 1. Then
we define KB = A as KB | VA. Our original relation KB |= « is thus a
special case of KB = A where A = {a}. Notice also that KB = L means

nothing but that A B is inconsistent.

As CK N is in fact a deductive system (with the conclusions of the level-0
rules as axioms and all the other rules as proper rules of inference), we will

write CKNFS for Sec CKN.

12

Lemma 5.1 (Dual soundness of CKN) For any sequent KB = A,
e a) fCKNFKB= A, then KB A.
e b) IfCKNF KB # A, then KB I A.

(Proof is given in Section 6.)

Lemma 5.2 (Syntactic completeness of CKN) For any sequent KB =T,
either CKNFKB=T or CKNFKB#T.

(Proof is given in Section 7.)
Theorem 5.3 C'KN s decidable.

Proof: This is an immediate consequence of the above two lemmas,
taking into account that the rules of C K'N are effective. End of proof.

Theorem 5.4 (Soundness and completeness of CKN) For any sequent
KB = A,
KBEA {ff CKNFKB= A.

Proof: The “if” part has been established in Lemma 5.1a. For the “only
it” part, suppose CKN I/ KB = A. Then, by Lemma 5.2, CKN - KB %
A, whence, by Lemma 5.1b, KB £ A. End of proof.

Fact 5.5 (Constructiveness of 3) There is an effective method which, for
any constructive knowledge-base KB and constructive sentence Jva(x) with
KB E Jza(a), finds a constant ¢ such that KB = a(c).

Proof: If KB | Jxa(x), then, by 5.4, CKN proves KB = Jxa(x).
The last rule in that proof can be only R3(= 3), which means that CK'N -
KB = a(c) for some constant ¢ active in KB = Jza(x). Check whether
CKN F KB = a(c) for each such constant ¢, and return a ¢ for which you
get a positive answer. In view of the decidability of C' K' N, this can be done
effectively. End of proof.

13

6 Proof of Lemma 5.1

We proceed by induction on the length of a 'K N-proof of the sequent.
KB = A or KB # A should be the conclusion of one of the 26 rules of
C KN, and, correspondingly, we need to consider 26 cases.

For better readability, we will identify A with VA.

Recall that when « is a pure sentence (and so are all the formulas in
level-0 and level-1 rules, as well as the instances of formulas in level-2 rules),
then KB E, aiff =, a.

Case RO(=): Let o € I'N A (since I'N A is nonempty in this rule, such
an « exists). Then, for every possible world w for I', we have |=,, «, which
implies that I' = A because « is a disjunct of A.

Case RO(#): Let w be the world such that, for every atomic sentence
a, we have =, a iff « € I'. Thus, w is a possible world for I'. On the other

hand, £, A because, since I'NA is empty, for no disjunct 5 of A do we have
E. 3. Thus, I' £ A.

Case R1(= —): Suppose I', a = A (the induction hypothesis). We need
to show that I' E —a, A. Let w be an arbitrary possible world for I'. It
suffices to show that |, —a, A. If |, -, we are done; otherwise we have
= @, which means that w is a possible world for I', v, whence (as I', o |= A)
E. A, and we are done again.

Case R1(# —): Suppose ', a £ A (the induction hypothesis). We need
to show that I' £ —a, A. Let w be a possible world for I', & such that (£, A.
But notice that (£, —a and, therefore, [, —a, A, which (as we deal with
pure sentences) means that I' f& —a, A.

Cases of the remaining level-1 rules are similar.

Case R2(=): It suffices to observe that every possible world for I', ()
is a possible world for I', a(eq), ..., a(cy).

Case R2(#): Suppose I';a(c1),...,a(c,) [A. We need to show that
I'Na(z) = A. Let w be a possible world for I',a(¢),...,a(e,) such that

14

K. A, For every formula 3, let 3* denote the result of replacing, in g,
every constant ¢ & {c1,...,¢,} by ¢1. Let u be the world such that for every
atomic sentence v, E, v iff |E,, 7v*. It is easy to verify, by induction on the
complexity of o, that for any (pure constructive) sentence o,

Fuo iff Fuwo” (1)

Therefore, since A* = A and [£,, A, we have [£, A. So, it remains to
show that u is a possible world for I', a(x).

First, consider an arbitrary v(z1,...,2,) € I, whose free variables are
exactly x1,...,2,,. Let dy,...,d,, be any constants. We need to show that
Eu v(di, ..., dy), ie., in view of (1), that =, v(d1,...,d,)". But notice
that y(d1,...,d,)" is an instance of y(x1,..., 2,), and since w is a possible

world for T', we, indeed, have |=,, y(d1,...,dy)".

Now it remains to consider instances of a(x). Suppose all the free vari-
ables of a(x) are among x,x1,..., 2, so that a(z) = a(x,21,...,2,). Let
d,dq,...,dy bearbitrary constants. We need to show that =, a(d,dy,...,d,),
i.e., in view of (1), that =, a(d,dy,...,d,)*. But notice that if d = ¢; for
some ¢; € {e1,...,¢,}, then a(d,dy,...,d,)* is an instance of a(¢;), and
otherwise it is an instance of a(¢1). In either case, since w is a possible world
for I';a(er), ..., a(c,), we have |=, afd, dq,...,dn)".

Cases R3(= =), R3(#% —--), R3(= V), R3(# V), R3(= -V),
R3(# V) are rather straightforward.

Case R3(=- 0O): The subcase (b) is straightforward and for the subcase
(a) it suffices to observe that I' = « implies I' | Oa.

Case R3(# 0): Suppose I' £ a and ' f£ A. Let w be a possible world
for I such that I' &, A. Observe that then I' f5,, Oa, A. Hence, I' £ Da, A.

Case R3(= —0): The subcase (b) is straightforward and for the subcase
(a) it suffices to observe that I' j£ o implies I' | ~Oa.

Case R3(# —0): Similar to case R3(# 0O).

Case R3(=- 3) is straightforward.

15

Case R3(# 3): Suppose I' [£ a(er), A and ... and T' [a(e,), A. Since
we deal with constructive sentences, a(x) must have the form OF(x). Thus,
we have

I'EA (2)
and
I'fEOB(er), ..o T OB(en). (3)
We claim that
For every constant ¢, T' f= Of(e). (4)

Indeed, if ¢ € {c1,...,¢,}, then T' £ OfF(¢) by (3). Suppose now ¢ ¢
{e1,...,¢,}. We may suppose that ¢, is the constant that does not ap-
pear in the conclusion of the rule. Let w be a possible world for I' such that
I' Few B(cn). By (3), such a world exists. Let then u be the world that evalu-
ates every atom just as w does, only with the roles of ¢ and ¢, interchanged.
Since neither ¢ nor ¢, appear in I or 3(x), it is clear that u, just as w, is a
possible world for I' and also (as I' &, ((c,)) we have I' &, 3(c). Hence,
I' = Op(¢) and (4) is thus proved.

Clearly (4) implies that for every world v, I' }&, J20p8(x), and this,
together with (2), implies that I' (&£ J208(x), A.

Case R3(= —3): As in the previous case, a(x) must have the form
Op(x). So, suppose I' E =03(¢1), A and ... and I' = -0p(c,), A. If I' E A,
then I' = Jx—05(2), A and we are done. Otherwise, let w be a world such
that I' £, A. Consider any ¢; € {¢1,...,¢,}. We have I' |, -00(¢;), A
and I' £, A. Hence, I' =, 705(¢;). Consequently, there is a possible world
u for I' such that I' [£, #(¢;), and this implies that ' = =0/3(¢;). Thus, we
have:

I' E-08(e1), ..., T'E-08(cn).
Using an argument similar to the one employed in the proof of (4), we get
that for every constant ¢, I' |= =03(¢). This implies that I' | =J205(x),
and thus I' | ~320p(x), A.
Case R3(# —3) is simple.

Lemma 5.1 is proved.

16

7 Proof of Lemma 5.2

Define the complexity of a formula o as the number of occurrences of logical
operators in a plus the number of distinct free variables of a. Next, define
the complexity of a sequent S as the infinite sequence (ag, ay,...), where each
a; is the number of formulas of S of complexity 2. Define the well-ordering
relation < on such complexities by: (ag,ay,...) < (bo,by,...) iff there is i
such that a; < b; and, for all j with j > ¢, a; = b;."

Now we can prove the lemma by induction on the complexity of KB = A.

Suppose KB = A is a level-0 sequent. KB N A is either empty or
nonempty. In the first case CKN = KB # A by RO(#), and in the second
case CKNF KB = A by RO(=).

Suppose now KB = A is a level-i sequent but not level-(¢ — 1) sequent
for some ¢ € {1,2,3}. Note that then it matches the conclusion of one of
the level-i rules with a positive sequent in the conclusion. There are thus
12 cases to consider: R1(= —), R1(- =), R1(= V), R1(V =), R2(=),
R3(= —--), R3(= V), R3(= —~V), R3(= 0), R3(= -0), R3(= 3),
R3(= —3). We will consider only one of them, R1(= —), as an example,
and all the other cases can be handled in a rather similar way.

So, suppose KB = A is a level-1 sequent of the form I' = —a, A’, where
(we may suppose) o & A'. If CKN does not prove this sequent, then, in
view of R1(= =), CKN I/ I'a = A’. Note that I';a = A’ has a strictly
lower complexity than I' = —a, A’. Therefore, by the induction hypothesis,
CKNFT,a# A But then, by R1(#%), CKN FT' % —a, A’

Lemma 5.2 is proved.

8 Proof of Theorem 3.1

Let us say that two formulas a and 3 are mutually safe it they have exactly
the same free variables, and for every such variable x, if all free occurrences
of x in a are in the scope of O, then so are they in 4, and vice versa.

We will say that a and 3 are safely equivalent, — and write o == £, if
a and § are mutually safe and o = 3.

!Thus, < is the standard ordering relation on ordinals less than w*, where each com-

plexity (ag, a1, as, . ..) is represented by the ordinal ...+ as w? + a1 -w! + ag-w°.

17

The following lemma can be verified by a routine analysis of the appro-
priate definitions, and we state it without a proof:

Lemma 8.1 Let a and B be any formulas of L and x be any variable.

1. If a« == 8 and the formula A(f3) is the resull of replacing o by 3 in
the formula A(a), then A(a) == A(fS).

2. If a & B is a classical propositional tautology, then o = 3; if, at the
same time, a and B are mutually safe, then a ==

. Je(a Vv p) == dea Vv 2.
. 1f a does not contain x free, then Jx(a A) == a A Ja 3.

. O(a A p)==0a A0g.

. O0-0Oa == ~Oa.

3
4
5
6. O0q == Oa.
7
§. O0dx0a == JzDa.
9

. O0-dz0q == —Jdx0a.

We now start proving Theorem 3.1. £° = £"° holds trivially, so we only
need to show that £ < L°.

Let ¢ be an arbitrary formula of £™°. Below we give an interpreter’s
strategy converting ¢ into a safely equivalent constructive formula. The
correctness of this strategy is verified by induction on the complexity of ¢.
We will be using 8.1.1 without explicitly referring to it.

It ¢ is atomic, return ¢ unchanged.

If @ = =, then convert « into a safely equivalent constructive formula
o' (which, by the induction hypothesis, can be done), and return —o’. By
8.1.1, ma == —«'.

Similarly if ¢ = a VvV § or ¢ = Oa.

Now, suppose ¢ = dra. First convert « into a safely equivalent construc-
tive formula «q. Next, convert a; into a formula a; such that o < a5 is a
tautology and

Oégzﬂlv...Vﬂn

18

where, for each 1 <1 < n,
Bi= Ao Ny NN LAGE

where each ’y;: is an atom with or without negation, and each 5; is of the
form 06, -06, dy0d or —~dyOs. That is, convert aq into a tautologically
equivalent disjunctive normal form, where formulas of the form 06 and dyOdé
are treated as propositional atoms. Naturally, we suppose that each such
“atom” actually has an occurrence in «; and that occurrence is not in the
scope of a non-Boolean operator (3 or O). In view of this, note that

no ’y;: contains x, (5)

for otherwise a7 would have an occurrence of x not in the scope of O and (as
oy and «a are mutually safe) so would have «, which would contradict our
assumption that dxa is a formula of L£7°.

Clearly a7 and «ay are mutually safe and therefore, by 8.1.2, ay == ay,
whence a; == «. Note also that, since «aq is constructive, so is every (’y;
and) ;.

For each 1 <17 < mn, let
o= A Ay ATTO(6 AL AS).
Thus, o; is constructive. We claim that
o; == Jaf. (6)

To show this, first note that, by (5) and 8.1.4,

==y A Ay AT(SALAE). (7)
By 8.1.6-9, | | | |
SN NS ==08A... ADS,
whence, by 8.1.5,
S A NG ==0(6 A A8).

Hence, ' ' ' '
Jr(oy AL N6,) ==3e0(6] AL A6

19

which, together with (7), implies that o; == Jaf3;. (6) is thus proved.

Let
¢ =o1V...Vo,.

In view of (6),

¢ ==3dxB V...V Izs,,
whence, by 8.1.3,

¢/ == Ell’(ﬂl V...V ﬂn)v

le. ¢ == dra,. But we know that ay == a. Hence, ¢’ == Jxa. And as
the o;’s are constructive, ¢ is constructive, too.
So, let the interpreter return ¢’ for our initial formula Jxa.

This completes the proof of Theorem 3.1.

References

[1] Dov M.Gabbay, C.J.Hogger, J.A.Robinson, D.Nute, eds. Handbook
of Logic in AI and Logic Programming, vol.3. Clarendon Press,
Oxford, 1994.

[2] K.Konolige, On the relation between default and autoepistemic logic, in:
Proceedings of the International Joint Conference on Artificial
Intelligence, Detroit, MI, 1989.

[3] L.Morgenstern, Foundations of a Logic of Knowledge, Action and Com-
munication. Dissertation. New York University, 1988.

20

