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Abstract 2 A THEORY FOR INDUCTION 

Many induction programs use decision trees Formalizing the induction problem, we will examine 
both as the basis for their search, and as a collections of production rules that best model the 
representation of their classifier solution. In function (concept) represented by the training data. 
this paper we propose a new structure, called Rules provide a common denominator for decision 
SE-tree, as a more general alternative. trees on one hand, and SE-trees on the other, since 

there is an obvious one-to-one mapping between rules 

1 INTRODUCTION 

Many learning algorithms use decision trees as an un- 
derlying framework for search and as a representation 
of their classifier solutions (e.g. ID3 [Quinlan, 861, 
CART [Breiman el al., 841). This framework, how- 
ever, is known to  mix search bias (introduced when 
the algorithm decides on the order in which attributes 
are to be used in splitting) with hypotheses-space 
bias. To avoid being trapped by this bias, several re- 
searchers have suggested averaging over multiple trees 
(e.g. [Buntine, 911). In this paper, still within a re- 
cursive partitioning framework, we propose using an 
alternative data  structure called SE-tree [Rymon, 921. 
On one hand, since the new framework shares many 
of the features of decision tree-based algorithms. we " 
should be able to  adopt many sub-techniques devel- 
oped for the latter. On the other hand, an SE-tree 
embeds a large number of decision trees, thereby pro- 
viding a more expressive, more flexible, representation 
for classifiers. Importantly, SE-tree-based algorithms 
can eliminate almost completely the search bias, ad- 
mitting instead a user-specified hypotheses-space pref- 
erence criterion. 

Section 2 outlines a formal theory of induction where 
classifiers take the form of collections of rules. Sec- 
tions 3 and 4 present the SE-tree, and render it use- 
ful in searching and representing such collections (the 
learning phase), and in subsequently using them for 
classzfication. Incorporation of user-specified bias in 
either stage, or in both, is described in Sections 4 
and 5. Section 6 presents general results relating the 
SE-tree t o  decision trees, with some algorithmic impli- 
cations. 

and leaves of such trees. 

Let us introduce a few useful definitions first: Let 
ATTRS dgf {Ai)F=+e a set of attributes (also called 
features or variables), where each attribute A; can take 
values from a finite unordered discrete domain denoted 
Dom(Ai). A partial description is a subset of ATTRS, 
each instantiated from its own domain. An object is a 
complete partial instantiation, i.e. one in which all at- 
tributes are instantiated. By UNIVERSE we refer to 
the collection of all objects. Consider, for example, a 
space of 3 binary attributes (A,B,C), hereafter called 
3BIN. In SBIN, {A=O,C=l) is a partial description. 
{A=O,B=O,C=l) is an object. UNIVERSE is 3BIN 
itself; it is made of a total of 8 objects. A training set 
(TSET), consisting of objects labeled by their correct 
class (T), makes an induction problem instance. 

Example 2.1 (The Checkers Problem) 

Consider a universe defined by two 3-valued attributes 
(A,B), and a set of four classes ( a ,  P, y , 6 ) .  The follow- 
ing figure depicts a training data,  and an illustration 
of UNIVERSE. 

Having defined a problem instance, we shall try to 
characterize a solution. Conceptually, we assume the 
existence of a function (target) from UNIVERSE to 
the set of classes, and that the training data agree 
with this function. Our goal is to approximate target 



over the complete universe, using conjunctive rules as 
our elementary building blocks. 

A rule, R,  is simply a partial description such that 
all objects in TSET which agree with it are equally 
classified, i.e. for every t , t '€TSET, if RCt, t '  then 
a( t )  = a(ti). To avoid irrelevant rules, we add the 
additional requirement that an object matched by a 
rule is provided in TSET. As a partial description, a 
rule defines an equivalence class within the universe, 

namely [R] def { t  €UNIVERSE / RCt}. Moreover, 
since all objects in TSETn[R] agree on their class, we 
can define .rr([R]) to  be that class, and write a produc- 
tion rule of the form R .rr([R]). Thus, from here 
on, we shall interchangeably talk about a rule as a set 
of instantiated attributes, as a region in UNIVERSE, 
and as a conjunction of antecedents. To model a tar- 
get function, we use collections of rules, interpreted 
disjunctively for each class. In general, there may pos- 
sibly be many such collections. The Checkers problem, 
for instance, admits 8 rules and thus 2' collections. 
The purpose of an inductive theory is to character- 
ize desirable features of candidate collections. Bias, 
or preference, expresses the relative desirability of one 
collection versus another. 

Our theory has a single bias: for the most part, we will 
prefer rules that are syntactically simpler. By kernel 
rules we refer to  rules that are most-general (minimal 
set-wise). Other bias, necessary t o  distinguish equally 
simple hypotheses, is deliberately left out of the the- 
ory. Our algorithms will modularly implement a user- 
specified preference criterion. Consider the Check- 
ers problem again. Only four of the eight rules are 
also kernel rules: (1) ( A = l ) a  a ,  (2) (B=l)+ P ,  (3) 
(B=3)* 7 ,  and (4) (A=3)+ 6. All other rules, e.g. 
(A=l)A(B=2)3 a,  are subsumed by one or more of 
the kernel rules. 

Let C be a collection of rules for a problem instance 
P, we use Kernel(C) to  denote the collection of kernel 
rules for P that  subsume rules in C. The collection of 
all kernel rules, denoted KRULES, is the target of our 
induction algorithms. Doing so, we avoid overfi2tin.g of 
the training data. We propose that over-generalization 
be dealt with in the classification phase via resolution 
methods based on the user's  reference criterion. In- 
tuitively, while learning, we adopt most-general prin- 
ciples. Rules that are too general will be in conflict 
with others, and will then be resolved. 

Defini t ion 2.2 Completeness 

A collection of rules C is said to  be complete w.r.t. 
TCUNIVERSE if for every tET,  there exists a rule 
REC such that RCt .  

Proposition 2.3 

1. Let C be a collection of rules that is complete 
w.r.t. some TCUNIVERSE, then Kernel(C) is 

also complete w.r.t. T ;  

2. KRULES is complete w.r.t. TSET, but is not 
necessarily complete w.r.t. UNIVERSE. 

Thus, in the Checkers problem, {A=2,B=2) is not cov- 
ered by any rule (including non-kernel!). In contrast, 
any decision tree is  complete w.r.t. UNIVERSE. But 
is completeness desired at all? One may argue that 
incompleteness of KRULES is often a direct result of 
important incompleteness of the training data. SE- 
tree-based classification algorithms can, however, ex- 
tend their coverage by relaxing the rule matching pro- 
cedure. 

Defini t ion 2.4 Consistency 

A collection of rules C is said to  be consistent w.r.t. 
TCUNIVERSE, if for every t € T ,  and rules R,R7€C, if 
R ,R ' c t ,  then x([R]) = x([Ri]). 

Propos i t ion  2.5 

1. Every collection of rules is consistent w.r.t. TSET 
(by definition), but KRULES may be inconsistent 
w.r.t. UNIVERSE; 

2. Every collection of rules contains a consistent sub- 
collection. 

Thus, in the Checkers problem, each of the "cor- 
ner" objects is covered by two contradicting kernel 
rules (e.g. {A=l ,B=l )  is covered by ( A = l ) j  a and 
(B=l)+ P) .  As per Proposition 2.5(2), KRULES may 
have (possibly several) sub-collections, the latter may 
have lesser coverage than KRULES. In contrast, any 
decision tree zs consistent w.r.t. UNIVERSE. But is 
consistency desirable at all? KRULES is inconsistent 
when two rules are over-general to the point in which 
they contradict one another on as yet unseen parts of 
UNIVERSE. While ideally, one or both rules need be 
specialized or removed, the training data  alone does 
not provide us with any suitable preference criterion. 
An external preference criteria, or bias [Mitchell, 801, 
must be applied. 

Bias can be defined as the set of all factors that 
collectively influence hypothesis selection [Utgoff, 861. 
[Buntine, 901 divides such criteria into three separate 
classes: hypothesis space bias are those criteria which 
specify a preference for one classifier over another; 
search bias consists of criteria used to  guide the ac- 
tual search for such; and finally, bias may have an ap- 
plication specific component. Adopting Buntine's di- 
chotomy, we believe that an ideal learning system must 
eliminate search bias. Put differently, bias should be 
stated by the user, independently from the particular 
algorithm used. 

We believe SE-trees represent a step in that direction. 
So far, we have introduced a single bias - a prefer- 



ence for kernel rules. Next, when presenting the SE- 
Learn family of learning algorithms, we defer the in- 
troduction of bias to  the latest possible. A variety of 
user-defined preference criteria can be plugged into the 
learning and/or classification algorithms. 

3 A LEARNING ALGORITHM 

3.1 SET ENUMERATION TREES 

Many problems in Computer Science were formalized 
to  admit solutions in the form of sets, or in the form of 
partial instantiations of a set of variables. Typically, 
such sets are required to  satisfy some problem-specific 
criterion which designates them as solutions. In ad- " 
dition, where multiple solutions may exist, they are 
often ranked by their plausibility, likelihood, or desir- 
ability. Regularly, such preference involves a minimal- 
ity (or maximality) criterion, e.g. minimal entropy, 
maximum probability or utility, etc. Set Enumerution 
(SE) trees [Rymon, 921 were shown to be useful as the 
basis for a unifying search-based framework for such 
domains. SE-trees support complete, irredundant, and 
prioritized search; their special structure allows for ef- 
ficient pruning and other optimizations. 

Let ATTRS%~ {Ai}:=l be a set of attributes with do- 
mains Dom(A;) respectively, and let ind:ATTRS+W 
be an indexing of the set of attributes. We define the 
SE-tree View of a partial description S as follows: 

Definition 3.1 Extended Set Enumeration Tree 

The extended SE-tree for a set of attributes ATTRS is 
defined as follows: 

1. At its root is a node labeled with the empty set; 

2. Recursively, let S be a node's label, It has children 
labeled as  follows: 

Example 3.2 Figure 1 depicts an extended SE-tree 
for the complete 3BIN space. Note that restricting a 
node's expansion to its View, ensures that every mem- 
ber of 3BIN is uniquely explored within the tree. O 

Representing all elements of a power-set, the complete 
SE-tree is clearly exponential in size. However, in a 
large class of problems, especially where solutions are 
monotonic with respect t o  set inclusion, the SE-tree 
can be used t o  induce a complete and yet often effi- 
cient search because it allows for systematic pruning 
[Rymon, 921. 

Figure 1: Complete SE-tree for 3 Binary Variables 

3.2 SE-TREE-BASED LEARNING 

Aimed at all kernel rules, SE-Learn (Algorithm 3.4) 
explores top-down an imaginary SE-tree. Nodes are 
explored by some predetermined priority function. In 
Sections 4 and 5, we show this prioritization useful 
in implementing various biases. In expanding open 
nodes, SE-Learn exploits the SE-tree structure to 
prune away nodes that cannot lead to  kernel rules. SE- 
Learn's output is an SE-tree which leaves are labeled 
with kernel rules. 

Definition 3.3 Cundzdate and Impotent Expansions 

Let S be a node, TSET(S) dgf { t  ETSET I S C t ) .  We 
def 

say that S' = SU{A=v) is a candidate expansion of S 
if A€View(S), v ~ D o m ( A ) .  However, S' is impotent if 
either 

1. TSET(S') is empty; or 

3. all objects in TSET(S') agree on their assignment 
to attributes in V i e w ( S 1 ) ,  but there is not a com- 
plete agreement on the class (i.e. S' is not a rule). 



Algor i t hm 3.4 

Program SE-Learn 

1. OPEN-NODES + ( 4 ) ;  

2. Until OPEN-NODES is empty do 

3. Expand (Extract-Min(0PEN-NODES)) 

Procedure Expand(S) 

1. For every candidate expansion R zf SU{A=v) 
that is not impotent and that is not subsumed 
by a previously discovered rule do 

2. If R is a rule then mark it as such; 
otherwise add it to  OPEN-NODES. 

The algorithm works by exploring nodes along the SE- 
tree's current fringe (OPEN-NODES) in a best,-first 
fashion. For that purpose, nodes are cached in a pri- 
ority queue and accessed via an Extract-Min operation. 
Candidate expansions that are not subsumed by pre- 
viously discovered rules (step 1) are marked as rules 
if they satisfy the definition or otherwise marked for 
expansion and added to the queue for further consid- 
eration (step 2). 

3.3 E X P L O R A T I O N  P O L I C I E S  

An exploration policy is simply the priority function 
used in Algorithm 3.4 to determine the order in which - 
nodes are explored. I t  is easy to  verify that if nodes 
are explored by their cardinality (breadth-first explo- 
ration of the tree) then the algorithm is correct, i.e. it 
com~u te s  all andonlv kernel rules. As so far described. 
any monotonic function +, i.e. such that SCS' implies 
$(S )  5 +(S1)), results in Algorithm 3.4 being cor- 
rect. A large class of interesting functions are mono- 
tonic, e.g. ones that are based on probability, utility, 
or information-gain measures. However, at  some corn- 
~u t a t i ona l  exDense. SELearn can be modified to  ad- 
mit non-monotonic exploration policies as well. The 
sole purpose of the monotonicity restriction is to avoid 
recording non-minimal solutions; therefore, to remove 
it. we need t o  also check whether new rules subsume 
old ones. 

Note however that ,  as so far presented, a l l  exploration 
policies will result in the same tree structure. The vari- 
ety of exploration policies allowed will become impor- 
tant next, in specifying and implementing preference 
criteria. 

4 CLASSIFICATION ALGORITHMS 

Given an SE-tree acquired as above, we want to be 
able to  use it  t o  classify new objects. As in decision 

tree-based classification algorithms, this is done by fol- 
lowing matching paths from the root to class-labeled 
leaves (rules). 

Recall however that in the SE-tree representation 

1. there may be no such leaf (rule) (we called this 
incompleteness); or 

2. there may be multiple rules (and thus leaves) 
matching a given object, and they may not always 
be equally labeled (we called this inconsistency). 

The SE-tree incompleteness, we argued, is due to  the 
incompleteness of the training data. One way to "com- 
plete" the SE-tree is to  perform partial matching in 
cases where there are no perfectly matching rules. 

The inconsistency property, on the other hand, gives 
the SE-tree its main power. Roughly, inconsistency re- 
flects a variety of perspectives that could be adopted to  
logically partition the training data.  In a decision tree, 
a single such perspective is decided upon at the learn- 
ing phase in the choice of attribute for each branching 
point,. Repre~ent~ing multiple perspectives is more ex- 
pressive and allows more principled resolution. In par- 
ticular, hypotheses-space preference, explicitly speci- 
fied by the user, can be used to resolve conflicts. 

Algorithnl 4.1 uses such preferences directly: by 
searching the SE-tree best-first with respect to the 
specified preference, it picks the leaf which maximizes 
the specified preference from all those matching the 
object at  hand. 

Algor i thm 4.1 Classification via SE-tree Search 

Inpn t :  (1) an object; (2) an SE-tree; and (3) an 
exploration policy 4 (bias). 

Procedure :  Search SE-tree best-first (according 
to $), along paths matching the object. Stop 
when the first leaf is hit, or when the tree is ex- 
hausted. 

O u t p u t :  If a leaf was hit, predict its class label. 
Otherwise, either respond "don't know", or guess, 
or re-search the tree allowing for partial matching. 

A illore general approach involves specifying a resolu- 
tion criterion, e.g. weighted averaging or voting, which 
takes into account al l  rules matching a given object. 
The two approaches can, of course, be combined by ap- 
plying the resolution criterion to a subset of the rules 
- those which rank highest by the preference criterion. 

The following experiment, using the Monks benchmark 
[Thrun el  al., 911, demonstrates the importance of the 
particular choice of resolution criterion. In general, a 
preference and/or a resolution criterion should reflect 
some domain knowledge. However, given the artifi- 
cial nature of the Monks problems, we experimented 



with three generic weight functions: simple voting; 
quadratic (in the rule's size) weight voting, favoring 
more specific rules; and inverse quadratic, favoring 
more general rules. In the learning phase, we sim- 
ply learned all kernel rules. In classification, when 
the rules were incomplete, we used partial matching. 
Conflicts were resolved using each of the three weight 
functions. Figure 2 compares accuracy obtained using 
each of the resolution criteria to  each other; to the av- 
erage reported for other decision tree-based programs 
and to the overall average reported for all methods. 
Note that SELearn's performance is crucially depen- 
dent on the resolution criterion used. 

Figure 2: Various Resolution Criteria 

5 BIAS IN THE LEARNING PHASE 

5.1 PARTIALLY E X P L O R E D  SE-TREES 

It may often be intractable, or practically impossible, 
to  explore all kernel rules. Exploration policies can 
then be used as early as the learning phase to  prune 
away less promising parts of the SE-tree. Even when 
all kernel rules can be explored, added complexity may 
not pay in the margin. Worse, as with many other 
learning frameworks, more complex SE-trees can even 
have lower accuracy than their simpler subsets. In 
such instances, i t  is standard to use hill-climbing pro- 
cedures and/or anytime algorithms which explore as 
time/space permit and return the best classifier seen 
so far. In SELearn, the SE-tree can be constructed 
gradually while testing to  make sure that the added 
complexity of new rules is worth the marginal improve- 
ment in accuracy. When interrupted, or when it runs 
out of resources (particularly space) this procedure will 
return the best classifier it has seen so far. The partic- 
ular exploration policy used plays an important role in 
this procedure since it determines the order in which 
rule nodes are seen. Using again the Monks problems, 
we ran an experiment in which an SE-tree was explored 
level by level. The change in complexity (measured by 
the number of rules) and in accuracy (using the inverse 
quadratic resolution criterion) is depicted in Figure 3. 

5.2 S P E C I A L  C O L L E C T I O N S  OF R U L E S  

In what follows, we briefly describe variations of SE- 
Learn that compute SE-trees corresponding to collec- 
tions of rules with special features. Here too, the par- 

Accuracy 

Figure 3: Complexity vs. Accuracy 

ticular collection computed is determined by the ex- 
ploration policy. 

Cons is ten t  Sub-Collect ions of K R U L E S  

A collection of kernel rules is inconsistent w .r.t. 
UNIVERSE iff it has rules R1, Rz such that 
x ( [R~] )#x ( [R~] )  and no attribute appears in both R1- 
Rs, and R2-Rl. Thus, SE-Learn could be modified 
not to retain rules which are inconsistent with vrevi- 
ously discovered rules. Since the order in which Lodes 
are explored determines which rules are retained, the 
particular exploration policy used defines a bias. 

Mininlal  Sub-Collections of K R U L E S  

For TSET-completeness purposes, a rule R is redun- 
dant if every object in TSET that R matches is also 
matched by another rule R'. As before, one can modify 
SE-Learn so as not to retain rules deemed redundant 
by previously discovered rules. Another alternative is 
to  restrict redundancy to n rules per training instance, 
or to rules that satisfy some other acceptance criterion 
such as statistical significance. Again, the particular 
exploration policy defines a bias. 

Cons is ten t  a n d  Comple t e  Collections of Rules  

The down side of discarding inconsistent rules, as sug- 
gested above, is that the collection of rules obtained 
may be incomplete even w.r.t. TSET. To avoid this, 
rather than discarding such rules, SE-Learn can be 
modified to  further expand them. The collection of 
rules so obtained are guaranteed to  be complete. How- 
ever, individual rules may no longer be kernel. 

Mini lnal  a n d  Cons is ten t  Collect ions 

By removing both inconsistent and redundant rules, 
one may get a minimal collection of rules that is both 
complete and consistent. 



6 SE-TREE AND DECISION TREES 

A number of decision tree based algorithms have had 
an impact on machine learning research. Part of our 
purpose here is t o  convince researchers to look at the 
SE-tree as a more general alternative to  decision trees. 
We devote this section to  a broader comparison of the 
two data  structures. 

6.1 A FOREST OF DECISION TREES 

One wav to view a decision tree is as an SE-tree in 
which every possible object has exactly one path along 
which it can be classified, i.e. an SE-tree that is con- 
sistent and complete w.r.t. UNIVERSE1. Conversely, 
one way to view an SEt ree  is as a collection, or forest, 
of decision trees. A single SE-tree can be shown to 
embed a large number of decision trees. In particular, 
let D be a decision tree in which attributes were cho- 
sen monotonically w.r.t. some indexing function. Let 
S be an SEt ree  constructed in accordance to  same in- 
dexing function, then S embeds D ,  i.e. there exists a 
subset of S's edges which forms a tree that is topo- 
logically and semantically equivalent to  D,  and that 
is rooted at S's root. One  articular decision tree is 
the SE-tree's primary decision tree: the one in which 
each internal node is expanded with the first attribute 
in that node's SE-tree View that does not result in 
impotent expansions. 

This result can be strengthened to make the SE-tree 
embed any single decision tree2. In particular, let D 
be a decision tree that  is constructed by any ID3-like 
procedure. To create an SE-tree that embeds D we 
may have to  slightly alter the definition of an SE-tree 
to  allow for dynamic re-indexing. In particular, we will 
develop an indexing as we create the tree: 

1. At first, we will choose an initial indexing indrOot 
in which the first Sttribute used in D appears first; 

2. Then, while at a node labeled S, let i ~ . d ~ ~ ~ ~ ~ ~ ( ~ )  
be the indexing used in expanding S's parent. 
In S, we use an indexing which coincides with 
ind,,,,,,t(s) on all attributes not in View(S), but 
may re-order attributes in View(S) as we wish. In 
particular, if a node corresponding to S appears in 
D ,  we will re-order attributes in Vietu(S) so that 
the first attribute used in D to split that node 
appears first. 

By construction, D will be embedded in an SE-tree 
created as above as its primary decision tree. It is 
fairly easy t o  verify that the SE-tree remains complete 
and irredundant, and that SE-Learn remains correct. 

'An SE-tree, however, can be consistent and coniplete 
without being a decision tree. 

' N o t  all of them at once; rather a collection that in- 
cludes a specific decision tree. 

6.2 IMPROVING UPON A GIVEN 
DECISION TREE 

An important corollary of the result above is that 
one can construct an exploration policy under which 
SE-Learn will start off with one's favorite decision 
tree, and then try to  improve it  by adding more 
rule nodes. (This exploration policy may be non- 
monotonic though.) Of course, rule nodes will only 
be added to the extent in which accuracy (as tested 
empirically on a separate training set) is improved. 

We have tested this approach on the Monks bench- 
mark. In each of the three problenls, we started with a 
decision tree constructed by the information-gain cri- 
terion. Then, the rest of the SE-tree was explored 
breadth-first. Accuracy and complexity were recorded 
for the primary decision tree, and for each level of the 
tree in which rules were added (Figure 4). 

Accuracy 

Size 

Figure 4: Starting from a Decision Tree 

Note that in all three problems, the accuracy of the pri- 
mary decision tree could be improved by adding SE- 
tree nodes, although this improvement is not mono- 
tonic. Also note that in Monkl, adding the SE-tree's 
first level has not only improved the accuracy, but has 
also reduced the number of rule nodes (some decision 
tree rules were pruned because they were subsumed by 
newly discovered rules). 

6.3 HYPOTHESES EXPRESSIBILITY 

Consider the following problem instance: 

- 
[ A I B I Class 1 
l O l O l  0 I A 
1 1 1 1 1  1 I 

While four different hypotheses are consistent with 
this training data, there are only two 1 ~ 3 - s t ~ l e ~  de- 

3 ~ h e r e  are rnore decision trees, but only these can be 
generated by an ID3-like procedure. 



cision trees (Figure 5). The corresponding SE-tree 
contains (as subset of its arcs) both trees, and can 
be used to  represent all four hypotheses depending on 
the particular exploration policy (bias) used in a given 
classification session. 

(a) Decision Trees 

(b) SE-Tree 

Figure 5: SE-tree versus Decision Trees 

Consider, for example, an OR function (not modeled 
by either decision trees). In SE-Learn, if a search- 
based approach to classification is adopted (Algo- 
rithm 4.1), an O R  function can be implemented using 
an exploration policy that  assigns high priority to the 
arcs A = l  and B=l.  Generalizing this problem to n 
attributes, each taking its values from (0 . . . n - 1)'  we 
are given a training set with the n cases in which all 
attributes, and the class, are equally labeled. Now, we 
consider a function that takes the most frequent value 
among its attributes, with bias towards higher values 
in case of equality (for n = 2, we get the OR function). 
Such function cannot be modeled by any of the ID3- 
style decision trees4, but can easily be modeled using 
an SE-tree with a resolution criterion based on simple 
voting. 

6.4 COMPUTING KERNEL RULES 

Considering the goal of computing all kernel rules, 
three problems may arise in a decision tree-based 
search framework: 

1. The minimality problem - rules will often not be 
discovered in their minimal (kernel) form; 

2. The multiplicity problem - each kernel rule may 
be discovered multiply, disguised in a number of 
its non-minimal supersets; and 

3. The incompleteness problem - some kernel rules 
may not be discovered at all. 

Both the minimality problem and the multiplicity phe- 
nomenon result from the fact that attributes used high 

41n fact, a decision tree modeling this function is neces- 
sarily exponential. 

in the tree are necessary for some, but not all, the 
rules. The minimality problem is often addressed by 
subsequently pruning the rules extracted from the de- 
cision tree (e.g. [Quinlan, 871). The replication prob- 
lem, a special case of multiplicity in which whole sub- 
trees are replicated, has been addressed by several re- 
searchers (e.g. [Rivest, 87, Pagallo & Haussler, 901). 
Inco~npleteness, which is only a problem if one is re- 
ally interested in all kernel rules, results from the in- 
sisted mutual exclusivity of any decision tree's leaves 
(see [Weiss & Indurkhya, 911). None of these problems 
occurs in the SE-tree-based framework: 

1. Rules are always discovered in their kernel form; 

2. Kernel rules are always discovered uniquely; and 

3. All kernel rules are discovered. 

6.5 COMPLEXITY 

The SE-tree's exhaustiveness and large initial branch- 
ing may be deceiving. Let us first compare its worst- 
case complexity to  that of a decision tree, indepen- 
dently of their use. 

Proposi t iol l  6.1 If all attributes are b-valued, then 
the number of nodes in a conlplete decision tree is 
bn + bn-I  + . . .  b +  1 > bn. The size of a complete 
SE-tree is ( b  + l )n .  In sharp contrast, the size of a 
super-tree containing all decision trees is significantly 
larger: bn . n!. 

Within an induction framework, however, one rarely 
explores a complete decision tree (nor a complete SE- 
tree for that matter). In an ID3-like framework, the 
size of a decision tree is linear in the size of the train- 
ing data. This is not true of SE-Learn! Kernel rules 
are close relatives of prime-implicants, and as such we 
know of pathological examples in which the number of 
kernel rules is exponential in the size of the training 
data. On the other hand, as just explained, one does 
not have to  ex~ lo re  the entire SE-tree and one can al- 
ways have th i f i r s t  nodes explored be those of one's 
favorite decision tree. 

7 CONCLUSION AND FUTURE 
RESEARCH DIRECTIONS 

We have proposed an inductive learning framework 
which uses an SE-tree as a basis for search and classi- 
fier representation and have presented a family of al- 
gorith~ns for SE-tree induction and for SE-tree-based 
classification. We have shown that as a representa- 
tion for classifiers, SE-trees generalize decision trees in 
two ways: first, a decision tree is a special case of an 
SE-tree, and second, an SE-tree contains many deci- 
sion trees. An SE-tree can also be built by improving 
upon one's favorite decision tree. However, unlike de- 
cision trees, nlost of the search bias can be eliminated 



in SEtree-based algorithms; an independently speci- 
fied hypothesis-space bias can be used instead. 

Importantly, the SEtree-based framework can borrow 
from techniques developed for decision trees. In par- 
ticular 

1. More expressive representation languages can be 
adopted, e.g. ordered and hierarchical variables, 
multi-variable tests, class probability trees, etc. 
Discretization techniques, and criteria developed 
for selecting a splitting test can be used to han- 
dle ordered variables; averaging and smoothing 
techniques can be used in conjunction with class 
probabilities representation. 

2. Pruning techniques developed for decision trees, 
e.g. using statistical significance tests, can also 
be used in SE-trees. 

3. Entropy-minimization and other criteria devel- 
oped for selecting the next splitting attribute in 
decision trees will likely be useful in selecting an 
indexing function for an SE-tree which will min- 
imize the number of nodes that have to be ex- 
plored. 

More research, however, is needed to figure ways in 
which these techniques can be deployed effectively. 

Other areas of future research include general and 
domain-specific exploration policies and resolution cri- 
teria, termination criteria suitable for various tradeoffs 
between accuracy and time/space, and an incremental 
version of SE-Learn. 

Recent advances in search algorithms lend them- 
selves to improved implementation of the SE-tree- 
based framework, e.g. linear-space best-first search 
algorithms [Korf, 92, Russell, 921 and a SIMD version 
of IDA* [Powley et al., 931. 
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