
An SE-tree based Characterization
of the Induction Problem

MS-CIS-93-42
LINC LAB 248

Ron Rymon

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

April 1993

An SE-tree based Characterization
of the Induction Problem

Ron R y m o n
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

rymon@linc.cis.upenn.edu

(Proceedings Machine Learning Conference, Amherst MA, 1993)

Abstract 2 A THEORY FOR INDUCTION

Many induction programs use decision trees Formalizing the induction problem, we will examine
both as the basis for their search, and as a collections of production rules that best model the
representation of their classifier solution. In function (concept) represented by the training data.
this paper we propose a new structure, called Rules provide a common denominator for decision
SE-tree, as a more general alternative. trees on one hand, and SE-trees on the other, since

there is an obvious one-to-one mapping between rules

1 INTRODUCTION

Many learning algorithms use decision trees as an un-
derlying framework for search and as a representation
of their classifier solutions (e.g. ID3 [Quinlan, 861,
CART [Breiman el al., 841). This framework, how-
ever, is known to mix search bias (introduced when
the algorithm decides on the order in which attributes
are to be used in splitting) with hypotheses-space
bias. To avoid being trapped by this bias, several re-
searchers have suggested averaging over multiple trees
(e.g. [Buntine, 911). In this paper, still within a re-
cursive partitioning framework, we propose using an
alternative data structure called SE-tree [Rymon, 921.
On one hand, since the new framework shares many
of the features of decision tree-based algorithms. we "
should be able to adopt many sub-techniques devel-
oped for the latter. On the other hand, an SE-tree
embeds a large number of decision trees, thereby pro-
viding a more expressive, more flexible, representation
for classifiers. Importantly, SE-tree-based algorithms
can eliminate almost completely the search bias, ad-
mitting instead a user-specified hypotheses-space pref-
erence criterion.

Section 2 outlines a formal theory of induction where
classifiers take the form of collections of rules. Sec-
tions 3 and 4 present the SE-tree, and render it use-
ful in searching and representing such collections (the
learning phase), and in subsequently using them for
classzfication. Incorporation of user-specified bias in
either stage, or in both, is described in Sections 4
and 5. Section 6 presents general results relating the
SE-tree t o decision trees, with some algorithmic impli-
cations.

and leaves of such trees.

Let us introduce a few useful definitions first: Let
ATTRS dgf {Ai)F=+e a set of attributes (also called
features or variables), where each attribute A; can take
values from a finite unordered discrete domain denoted
Dom(Ai). A partial description is a subset of ATTRS,
each instantiated from its own domain. An object is a
complete partial instantiation, i.e. one in which all at-
tributes are instantiated. By UNIVERSE we refer to
the collection of all objects. Consider, for example, a
space of 3 binary attributes (A,B,C), hereafter called
3BIN. In SBIN, {A=O,C=l) is a partial description.
{A=O,B=O,C=l) is an object. UNIVERSE is 3BIN
itself; it is made of a total of 8 objects. A training set
(TSET), consisting of objects labeled by their correct
class (T), makes an induction problem instance.

Example 2.1 (The Checkers Problem)

Consider a universe defined by two 3-valued attributes
(A,B), and a set of four classes (a , P, y , 6) . The follow-
ing figure depicts a training data, and an illustration
of UNIVERSE.

Having defined a problem instance, we shall try to
characterize a solution. Conceptually, we assume the
existence of a function (target) from UNIVERSE to
the set of classes, and that the training data agree
with this function. Our goal is to approximate target

over the complete universe, using conjunctive rules as
our elementary building blocks.

A rule, R, is simply a partial description such that
all objects in TSET which agree with it are equally
classified, i.e. for every t , t '€TSET, if RCt, t ' then
a(t) = a(ti). To avoid irrelevant rules, we add the
additional requirement that an object matched by a
rule is provided in TSET. As a partial description, a
rule defines an equivalence class within the universe,

namely [R] def { t €UNIVERSE / RCt}. Moreover,
since all objects in TSETn[R] agree on their class, we
can define .rr([R]) to be that class, and write a produc-
tion rule of the form R .rr([R]). Thus, from here
on, we shall interchangeably talk about a rule as a set
of instantiated attributes, as a region in UNIVERSE,
and as a conjunction of antecedents. To model a tar-
get function, we use collections of rules, interpreted
disjunctively for each class. In general, there may pos-
sibly be many such collections. The Checkers problem,
for instance, admits 8 rules and thus 2' collections.
The purpose of an inductive theory is to character-
ize desirable features of candidate collections. Bias,
or preference, expresses the relative desirability of one
collection versus another.

Our theory has a single bias: for the most part, we will
prefer rules that are syntactically simpler. By kernel
rules we refer to rules that are most-general (minimal
set-wise). Other bias, necessary t o distinguish equally
simple hypotheses, is deliberately left out of the the-
ory. Our algorithms will modularly implement a user-
specified preference criterion. Consider the Check-
ers problem again. Only four of the eight rules are
also kernel rules: (1) (A = l) a a , (2) (B=l)+ P , (3)
(B=3)* 7 , and (4) (A=3)+ 6. All other rules, e.g.
(A=l)A(B=2)3 a, are subsumed by one or more of
the kernel rules.

Let C be a collection of rules for a problem instance
P, we use Kernel(C) to denote the collection of kernel
rules for P that subsume rules in C. The collection of
all kernel rules, denoted KRULES, is the target of our
induction algorithms. Doing so, we avoid overfi2tin.g of
the training data. We propose that over-generalization
be dealt with in the classification phase via resolution
methods based on the user's reference criterion. In-
tuitively, while learning, we adopt most-general prin-
ciples. Rules that are too general will be in conflict
with others, and will then be resolved.

Defini t ion 2.2 Completeness

A collection of rules C is said to be complete w.r.t.
TCUNIVERSE if for every tET, there exists a rule
REC such that RCt .

Proposition 2.3

1. Let C be a collection of rules that is complete
w.r.t. some TCUNIVERSE, then Kernel(C) is

also complete w.r.t. T ;

2. KRULES is complete w.r.t. TSET, but is not
necessarily complete w.r.t. UNIVERSE.

Thus, in the Checkers problem, {A=2,B=2) is not cov-
ered by any rule (including non-kernel!). In contrast,
any decision tree is complete w.r.t. UNIVERSE. But
is completeness desired at all? One may argue that
incompleteness of KRULES is often a direct result of
important incompleteness of the training data. SE-
tree-based classification algorithms can, however, ex-
tend their coverage by relaxing the rule matching pro-
cedure.

Defini t ion 2.4 Consistency

A collection of rules C is said to be consistent w.r.t.
TCUNIVERSE, if for every t € T , and rules R,R7€C, if
R ,R ' c t , then x([R]) = x([Ri]).

Propos i t ion 2.5

1. Every collection of rules is consistent w.r.t. TSET
(by definition), but KRULES may be inconsistent
w.r.t. UNIVERSE;

2. Every collection of rules contains a consistent sub-
collection.

Thus, in the Checkers problem, each of the "cor-
ner" objects is covered by two contradicting kernel
rules (e.g. {A=l ,B=l) is covered by (A = l) j a and
(B=l)+ P) . As per Proposition 2.5(2), KRULES may
have (possibly several) sub-collections, the latter may
have lesser coverage than KRULES. In contrast, any
decision tree zs consistent w.r.t. UNIVERSE. But is
consistency desirable at all? KRULES is inconsistent
when two rules are over-general to the point in which
they contradict one another on as yet unseen parts of
UNIVERSE. While ideally, one or both rules need be
specialized or removed, the training data alone does
not provide us with any suitable preference criterion.
An external preference criteria, or bias [Mitchell, 801,
must be applied.

Bias can be defined as the set of all factors that
collectively influence hypothesis selection [Utgoff, 861.
[Buntine, 901 divides such criteria into three separate
classes: hypothesis space bias are those criteria which
specify a preference for one classifier over another;
search bias consists of criteria used to guide the ac-
tual search for such; and finally, bias may have an ap-
plication specific component. Adopting Buntine's di-
chotomy, we believe that an ideal learning system must
eliminate search bias. Put differently, bias should be
stated by the user, independently from the particular
algorithm used.

We believe SE-trees represent a step in that direction.
So far, we have introduced a single bias - a prefer-

ence for kernel rules. Next, when presenting the SE-
Learn family of learning algorithms, we defer the in-
troduction of bias to the latest possible. A variety of
user-defined preference criteria can be plugged into the
learning and/or classification algorithms.

3 A LEARNING ALGORITHM

3.1 SET ENUMERATION TREES

Many problems in Computer Science were formalized
to admit solutions in the form of sets, or in the form of
partial instantiations of a set of variables. Typically,
such sets are required to satisfy some problem-specific
criterion which designates them as solutions. In ad- "
dition, where multiple solutions may exist, they are
often ranked by their plausibility, likelihood, or desir-
ability. Regularly, such preference involves a minimal-
ity (or maximality) criterion, e.g. minimal entropy,
maximum probability or utility, etc. Set Enumerution
(SE) trees [Rymon, 921 were shown to be useful as the
basis for a unifying search-based framework for such
domains. SE-trees support complete, irredundant, and
prioritized search; their special structure allows for ef-
ficient pruning and other optimizations.

Let ATTRS%~ {Ai}:=l be a set of attributes with do-
mains Dom(A;) respectively, and let ind:ATTRS+W
be an indexing of the set of attributes. We define the
SE-tree View of a partial description S as follows:

Definition 3.1 Extended Set Enumeration Tree

The extended SE-tree for a set of attributes ATTRS is
defined as follows:

1. At its root is a node labeled with the empty set;

2. Recursively, let S be a node's label, It has children
labeled as follows:

Example 3.2 Figure 1 depicts an extended SE-tree
for the complete 3BIN space. Note that restricting a
node's expansion to its View, ensures that every mem-
ber of 3BIN is uniquely explored within the tree. O

Representing all elements of a power-set, the complete
SE-tree is clearly exponential in size. However, in a
large class of problems, especially where solutions are
monotonic with respect t o set inclusion, the SE-tree
can be used t o induce a complete and yet often effi-
cient search because it allows for systematic pruning
[Rymon, 921.

Figure 1: Complete SE-tree for 3 Binary Variables

3.2 SE-TREE-BASED LEARNING

Aimed at all kernel rules, SE-Learn (Algorithm 3.4)
explores top-down an imaginary SE-tree. Nodes are
explored by some predetermined priority function. In
Sections 4 and 5, we show this prioritization useful
in implementing various biases. In expanding open
nodes, SE-Learn exploits the SE-tree structure to
prune away nodes that cannot lead to kernel rules. SE-
Learn's output is an SE-tree which leaves are labeled
with kernel rules.

Definition 3.3 Cundzdate and Impotent Expansions

Let S be a node, TSET(S) dgf { t ETSET I S C t) . We
def

say that S' = SU{A=v) is a candidate expansion of S
if A€View(S), v ~ D o m (A) . However, S' is impotent if
either

1. TSET(S') is empty; or

3. all objects in TSET(S') agree on their assignment
to attributes in V i e w (S 1) , but there is not a com-
plete agreement on the class (i.e. S' is not a rule).

Algor i t hm 3.4

Program SE-Learn

1. OPEN-NODES + (4) ;

2. Until OPEN-NODES is empty do

3. Expand (Extract-Min(0PEN-NODES))

Procedure Expand(S)

1. For every candidate expansion R zf SU{A=v)
that is not impotent and that is not subsumed
by a previously discovered rule do

2. If R is a rule then mark it as such;
otherwise add it to OPEN-NODES.

The algorithm works by exploring nodes along the SE-
tree's current fringe (OPEN-NODES) in a best,-first
fashion. For that purpose, nodes are cached in a pri-
ority queue and accessed via an Extract-Min operation.
Candidate expansions that are not subsumed by pre-
viously discovered rules (step 1) are marked as rules
if they satisfy the definition or otherwise marked for
expansion and added to the queue for further consid-
eration (step 2).

3.3 E X P L O R A T I O N P O L I C I E S

An exploration policy is simply the priority function
used in Algorithm 3.4 to determine the order in which -
nodes are explored. I t is easy to verify that if nodes
are explored by their cardinality (breadth-first explo-
ration of the tree) then the algorithm is correct, i.e. it
com~u te s all andonlv kernel rules. As so far described.
any monotonic function +, i.e. such that SCS' implies
$(S) 5 +(S1)), results in Algorithm 3.4 being cor-
rect. A large class of interesting functions are mono-
tonic, e.g. ones that are based on probability, utility,
or information-gain measures. However, at some corn-
~u t a t i ona l exDense. SELearn can be modified to ad-
mit non-monotonic exploration policies as well. The
sole purpose of the monotonicity restriction is to avoid
recording non-minimal solutions; therefore, to remove
it. we need t o also check whether new rules subsume
old ones.

Note however that , as so far presented, a l l exploration
policies will result in the same tree structure. The vari-
ety of exploration policies allowed will become impor-
tant next, in specifying and implementing preference
criteria.

4 CLASSIFICATION ALGORITHMS

Given an SE-tree acquired as above, we want to be
able to use it t o classify new objects. As in decision

tree-based classification algorithms, this is done by fol-
lowing matching paths from the root to class-labeled
leaves (rules).

Recall however that in the SE-tree representation

1. there may be no such leaf (rule) (we called this
incompleteness); or

2. there may be multiple rules (and thus leaves)
matching a given object, and they may not always
be equally labeled (we called this inconsistency).

The SE-tree incompleteness, we argued, is due to the
incompleteness of the training data. One way to "com-
plete" the SE-tree is to perform partial matching in
cases where there are no perfectly matching rules.

The inconsistency property, on the other hand, gives
the SE-tree its main power. Roughly, inconsistency re-
flects a variety of perspectives that could be adopted to
logically partition the training data. In a decision tree,
a single such perspective is decided upon at the learn-
ing phase in the choice of attribute for each branching
point,. Repre~ent~ing multiple perspectives is more ex-
pressive and allows more principled resolution. In par-
ticular, hypotheses-space preference, explicitly speci-
fied by the user, can be used to resolve conflicts.

Algorithnl 4.1 uses such preferences directly: by
searching the SE-tree best-first with respect to the
specified preference, it picks the leaf which maximizes
the specified preference from all those matching the
object at hand.

Algor i thm 4.1 Classification via SE-tree Search

Inpn t : (1) an object; (2) an SE-tree; and (3) an
exploration policy 4 (bias).

Procedure : Search SE-tree best-first (according
to $), along paths matching the object. Stop
when the first leaf is hit, or when the tree is ex-
hausted.

O u t p u t : If a leaf was hit, predict its class label.
Otherwise, either respond "don't know", or guess,
or re-search the tree allowing for partial matching.

A illore general approach involves specifying a resolu-
tion criterion, e.g. weighted averaging or voting, which
takes into account al l rules matching a given object.
The two approaches can, of course, be combined by ap-
plying the resolution criterion to a subset of the rules
- those which rank highest by the preference criterion.

The following experiment, using the Monks benchmark
[Thrun el al., 911, demonstrates the importance of the
particular choice of resolution criterion. In general, a
preference and/or a resolution criterion should reflect
some domain knowledge. However, given the artifi-
cial nature of the Monks problems, we experimented

with three generic weight functions: simple voting;
quadratic (in the rule's size) weight voting, favoring
more specific rules; and inverse quadratic, favoring
more general rules. In the learning phase, we sim-
ply learned all kernel rules. In classification, when
the rules were incomplete, we used partial matching.
Conflicts were resolved using each of the three weight
functions. Figure 2 compares accuracy obtained using
each of the resolution criteria to each other; to the av-
erage reported for other decision tree-based programs
and to the overall average reported for all methods.
Note that SELearn's performance is crucially depen-
dent on the resolution criterion used.

Figure 2: Various Resolution Criteria

5 BIAS IN THE LEARNING PHASE

5.1 PARTIALLY E X P L O R E D SE-TREES

It may often be intractable, or practically impossible,
to explore all kernel rules. Exploration policies can
then be used as early as the learning phase to prune
away less promising parts of the SE-tree. Even when
all kernel rules can be explored, added complexity may
not pay in the margin. Worse, as with many other
learning frameworks, more complex SE-trees can even
have lower accuracy than their simpler subsets. In
such instances, i t is standard to use hill-climbing pro-
cedures and/or anytime algorithms which explore as
time/space permit and return the best classifier seen
so far. In SELearn, the SE-tree can be constructed
gradually while testing to make sure that the added
complexity of new rules is worth the marginal improve-
ment in accuracy. When interrupted, or when it runs
out of resources (particularly space) this procedure will
return the best classifier it has seen so far. The partic-
ular exploration policy used plays an important role in
this procedure since it determines the order in which
rule nodes are seen. Using again the Monks problems,
we ran an experiment in which an SE-tree was explored
level by level. The change in complexity (measured by
the number of rules) and in accuracy (using the inverse
quadratic resolution criterion) is depicted in Figure 3.

5.2 S P E C I A L C O L L E C T I O N S OF R U L E S

In what follows, we briefly describe variations of SE-
Learn that compute SE-trees corresponding to collec-
tions of rules with special features. Here too, the par-

Accuracy

Figure 3: Complexity vs. Accuracy

ticular collection computed is determined by the ex-
ploration policy.

Cons is ten t Sub-Collect ions of K R U L E S

A collection of kernel rules is inconsistent w .r.t.
UNIVERSE iff it has rules R1, Rz such that
x ([R~])#x ([R~]) and no attribute appears in both R1-
Rs, and R2-Rl. Thus, SE-Learn could be modified
not to retain rules which are inconsistent with vrevi-
ously discovered rules. Since the order in which Lodes
are explored determines which rules are retained, the
particular exploration policy used defines a bias.

Mininlal Sub-Collections of K R U L E S

For TSET-completeness purposes, a rule R is redun-
dant if every object in TSET that R matches is also
matched by another rule R'. As before, one can modify
SE-Learn so as not to retain rules deemed redundant
by previously discovered rules. Another alternative is
to restrict redundancy to n rules per training instance,
or to rules that satisfy some other acceptance criterion
such as statistical significance. Again, the particular
exploration policy defines a bias.

Cons is ten t a n d Comple t e Collections of Rules

The down side of discarding inconsistent rules, as sug-
gested above, is that the collection of rules obtained
may be incomplete even w.r.t. TSET. To avoid this,
rather than discarding such rules, SE-Learn can be
modified to further expand them. The collection of
rules so obtained are guaranteed to be complete. How-
ever, individual rules may no longer be kernel.

Mini lnal a n d Cons is ten t Collect ions

By removing both inconsistent and redundant rules,
one may get a minimal collection of rules that is both
complete and consistent.

6 SE-TREE AND DECISION TREES

A number of decision tree based algorithms have had
an impact on machine learning research. Part of our
purpose here is t o convince researchers to look at the
SE-tree as a more general alternative to decision trees.
We devote this section to a broader comparison of the
two data structures.

6.1 A FOREST OF DECISION TREES

One wav to view a decision tree is as an SE-tree in
which every possible object has exactly one path along
which it can be classified, i.e. an SE-tree that is con-
sistent and complete w.r.t. UNIVERSE1. Conversely,
one way to view an SEt ree is as a collection, or forest,
of decision trees. A single SE-tree can be shown to
embed a large number of decision trees. In particular,
let D be a decision tree in which attributes were cho-
sen monotonically w.r.t. some indexing function. Let
S be an SEt ree constructed in accordance to same in-
dexing function, then S embeds D , i.e. there exists a
subset of S's edges which forms a tree that is topo-
logically and semantically equivalent to D, and that
is rooted at S's root. One articular decision tree is
the SE-tree's primary decision tree: the one in which
each internal node is expanded with the first attribute
in that node's SE-tree View that does not result in
impotent expansions.

This result can be strengthened to make the SE-tree
embed any single decision tree2. In particular, let D
be a decision tree that is constructed by any ID3-like
procedure. To create an SE-tree that embeds D we
may have to slightly alter the definition of an SE-tree
to allow for dynamic re-indexing. In particular, we will
develop an indexing as we create the tree:

1. At first, we will choose an initial indexing indrOot
in which the first Sttribute used in D appears first;

2. Then, while at a node labeled S, let i ~ . d ~ ~ ~ ~ ~ ~ (~)
be the indexing used in expanding S's parent.
In S, we use an indexing which coincides with
ind,,,,,,t(s) on all attributes not in View(S), but
may re-order attributes in View(S) as we wish. In
particular, if a node corresponding to S appears in
D , we will re-order attributes in Vietu(S) so that
the first attribute used in D to split that node
appears first.

By construction, D will be embedded in an SE-tree
created as above as its primary decision tree. It is
fairly easy t o verify that the SE-tree remains complete
and irredundant, and that SE-Learn remains correct.

'An SE-tree, however, can be consistent and coniplete
without being a decision tree.

' N o t all of them at once; rather a collection that in-
cludes a specific decision tree.

6.2 IMPROVING UPON A GIVEN
DECISION TREE

An important corollary of the result above is that
one can construct an exploration policy under which
SE-Learn will start off with one's favorite decision
tree, and then try to improve it by adding more
rule nodes. (This exploration policy may be non-
monotonic though.) Of course, rule nodes will only
be added to the extent in which accuracy (as tested
empirically on a separate training set) is improved.

We have tested this approach on the Monks bench-
mark. In each of the three problenls, we started with a
decision tree constructed by the information-gain cri-
terion. Then, the rest of the SE-tree was explored
breadth-first. Accuracy and complexity were recorded
for the primary decision tree, and for each level of the
tree in which rules were added (Figure 4).

Accuracy

Size

Figure 4: Starting from a Decision Tree

Note that in all three problems, the accuracy of the pri-
mary decision tree could be improved by adding SE-
tree nodes, although this improvement is not mono-
tonic. Also note that in Monkl, adding the SE-tree's
first level has not only improved the accuracy, but has
also reduced the number of rule nodes (some decision
tree rules were pruned because they were subsumed by
newly discovered rules).

6.3 HYPOTHESES EXPRESSIBILITY

Consider the following problem instance:

-
[A I B I Class 1
l O l O l 0 I A
1 1 1 1 1 1 I

While four different hypotheses are consistent with
this training data, there are only two 1 ~ 3 - s t ~ l e ~ de-

3 ~ h e r e are rnore decision trees, but only these can be
generated by an ID3-like procedure.

cision trees (Figure 5). The corresponding SE-tree
contains (as subset of its arcs) both trees, and can
be used to represent all four hypotheses depending on
the particular exploration policy (bias) used in a given
classification session.

(a) Decision Trees

(b) SE-Tree

Figure 5: SE-tree versus Decision Trees

Consider, for example, an OR function (not modeled
by either decision trees). In SE-Learn, if a search-
based approach to classification is adopted (Algo-
rithm 4.1), an O R function can be implemented using
an exploration policy that assigns high priority to the
arcs A = l and B=l. Generalizing this problem to n
attributes, each taking its values from (0 . . . n - 1)' we
are given a training set with the n cases in which all
attributes, and the class, are equally labeled. Now, we
consider a function that takes the most frequent value
among its attributes, with bias towards higher values
in case of equality (for n = 2, we get the OR function).
Such function cannot be modeled by any of the ID3-
style decision trees4, but can easily be modeled using
an SE-tree with a resolution criterion based on simple
voting.

6.4 COMPUTING KERNEL RULES

Considering the goal of computing all kernel rules,
three problems may arise in a decision tree-based
search framework:

1. The minimality problem - rules will often not be
discovered in their minimal (kernel) form;

2. The multiplicity problem - each kernel rule may
be discovered multiply, disguised in a number of
its non-minimal supersets; and

3. The incompleteness problem - some kernel rules
may not be discovered at all.

Both the minimality problem and the multiplicity phe-
nomenon result from the fact that attributes used high

41n fact, a decision tree modeling this function is neces-
sarily exponential.

in the tree are necessary for some, but not all, the
rules. The minimality problem is often addressed by
subsequently pruning the rules extracted from the de-
cision tree (e.g. [Quinlan, 871). The replication prob-
lem, a special case of multiplicity in which whole sub-
trees are replicated, has been addressed by several re-
searchers (e.g. [Rivest, 87, Pagallo & Haussler, 901).
Inco~npleteness, which is only a problem if one is re-
ally interested in all kernel rules, results from the in-
sisted mutual exclusivity of any decision tree's leaves
(see [Weiss & Indurkhya, 911). None of these problems
occurs in the SE-tree-based framework:

1. Rules are always discovered in their kernel form;

2. Kernel rules are always discovered uniquely; and

3. All kernel rules are discovered.

6.5 COMPLEXITY

The SE-tree's exhaustiveness and large initial branch-
ing may be deceiving. Let us first compare its worst-
case complexity to that of a decision tree, indepen-
dently of their use.

Proposi t iol l 6.1 If all attributes are b-valued, then
the number of nodes in a conlplete decision tree is
bn + bn-I + . . . b + 1 > bn. The size of a complete
SE-tree is (b + l)n . In sharp contrast, the size of a
super-tree containing all decision trees is significantly
larger: bn . n!.

Within an induction framework, however, one rarely
explores a complete decision tree (nor a complete SE-
tree for that matter). In an ID3-like framework, the
size of a decision tree is linear in the size of the train-
ing data. This is not true of SE-Learn! Kernel rules
are close relatives of prime-implicants, and as such we
know of pathological examples in which the number of
kernel rules is exponential in the size of the training
data. On the other hand, as just explained, one does
not have to ex~ lo re the entire SE-tree and one can al-
ways have th i f i r s t nodes explored be those of one's
favorite decision tree.

7 CONCLUSION AND FUTURE
RESEARCH DIRECTIONS

We have proposed an inductive learning framework
which uses an SE-tree as a basis for search and classi-
fier representation and have presented a family of al-
gorith~ns for SE-tree induction and for SE-tree-based
classification. We have shown that as a representa-
tion for classifiers, SE-trees generalize decision trees in
two ways: first, a decision tree is a special case of an
SE-tree, and second, an SE-tree contains many deci-
sion trees. An SE-tree can also be built by improving
upon one's favorite decision tree. However, unlike de-
cision trees, nlost of the search bias can be eliminated

in SEtree-based algorithms; an independently speci-
fied hypothesis-space bias can be used instead.

Importantly, the SEtree-based framework can borrow
from techniques developed for decision trees. In par-
ticular

1. More expressive representation languages can be
adopted, e.g. ordered and hierarchical variables,
multi-variable tests, class probability trees, etc.
Discretization techniques, and criteria developed
for selecting a splitting test can be used to han-
dle ordered variables; averaging and smoothing
techniques can be used in conjunction with class
probabilities representation.

2. Pruning techniques developed for decision trees,
e.g. using statistical significance tests, can also
be used in SE-trees.

3. Entropy-minimization and other criteria devel-
oped for selecting the next splitting attribute in
decision trees will likely be useful in selecting an
indexing function for an SE-tree which will min-
imize the number of nodes that have to be ex-
plored.

More research, however, is needed to figure ways in
which these techniques can be deployed effectively.

Other areas of future research include general and
domain-specific exploration policies and resolution cri-
teria, termination criteria suitable for various tradeoffs
between accuracy and time/space, and an incremental
version of SE-Learn.

Recent advances in search algorithms lend them-
selves to improved implementation of the SE-tree-
based framework, e.g. linear-space best-first search
algorithms [Korf, 92, Russell, 921 and a SIMD version
of IDA* [Powley et al., 931.

Acknowledgements

The idea of using the SE-trees to learn rules originated
at a talk by Tom Mitchell - I thank him for that,
as well as for later suggestions. I also thank Kevin
Atteson, Russ Greiner, Haym Hirsh, Alon Luss, Teow-
Hin Ngair, Michael Niv, Greg Provan, Philip Resnik,
Nick Short, Scott Weinstein, and anonymous reviewers
for commenting on previous drafts. This work was
supported in part by a graduate fellowship ARO grant
DAAL03-89-C0031PRI.

References

[Buntine, 911 Buntine, W., Learning Classification
Trees. Technical Report, NASA Ames Research
Center, 1991.

[Korf, 921 Korf, R. E., Linear-Space Best-First Search:
Summary of Results. Proc. AAAI-92, San Jose
CA, 1992.

[Mitchell, 801 Mitchell, T . M. , The Need for Biases in
Learning Generalizations. Technical Report 5-110,
Rutgers University, 1980.

[Pagallo & Haussler, 901 Pagallo, G., and Haussler,
D . , Boolean Feature Discovery in Empirical
Learning. Machine Learning, 5, pp. 71-99, 1990.

[Powley et al., 931 Powley, C., Ferguson, C., and Korf,
R . E. , Depth-First Heuristic Search on a SIMD
Machine. Artificzal Intelligence, 60, 1993, pp. 199-
242.

[Quinlan, 861 Quinlan, J . R., Induction of Decision
Trees. Machine Learning, 1 (1):81-106, 1986.

[Quinlan, 871 Quinlan, J . R., Generating Production
Rules from Decision Trees. Proc. IJCAI-87, pp.
304-307, 1987.

[Rivest, 871 Rivest, R. , Learning Decision Lists. Ma-
chine Let~rning, 2, pp. 229-246, 1987.

[Russell, 921 Russell, S., Efficient Memory-Bounded
Search Algorithms. Proc. ECAI-92, Vienna, Aus-
tria, 1992.

[Rymon, 921 Rymon, R., Search through Systematic
Set Enumeration. Proc. KR-92, Cambridge MA,
1992.

[Thrun et al., 911 Thrun, S. B., Bala, J . , Bloedron, E.,
Bratko, I . , Cestnik, B., Cheng, J . , De Jong, K. ,
Dzeroski, S., Fahlman, S. E., Fisher, D., Ham-
mann, R . , Kaufman, K., Keller, s . , Kononenko,
I . , Kreuzinger, J . , Michalski, R. S., Mitchell, T.,
Pachowicz, P . , Reich, Y., Vafaie, H., Van de
Welde, W., Wenzel, W., Wnek, J . , Zhang, J. , The
MONIi's Problen~s - A Performance Comparison
of Different Learning Algorithms. Technical Re-
port CMU-CS-91-197, December 1991.

[Utgoff, 861 Utgoff, P. E., Machine Learnzng of Induc-
tive Bias. Kluwer Academic, Boston MA, 1986.

[Weiss & Indurkhya, 911 Weiss, S. M., and Indurkhya,
N . , Reduced Co~nplexity Rule Induction. Proc.
IJCAI-91, pp. 678-684, Sydney, Australia, 1991.

[Breiman e l al., 841 Breiman, L., Friedman, J ., 01-
slien, R., and Stone, C., Classification and Re-
gression Trees. Wadsworth, Belmont, 1984.

[Buntine, 901 Buntine, W., Myths and Legends in
Learning Classification Rules. Proc. A A AI- 90,
Boston, MA, pp. 736-742, 1990.

