
Qualitative modeling of hybrid systems�

Oleg Sokolsky and Hyoung Seok Hong

Department of Computer and Information Science

University of Pennsylvania

fsokolsky,hshongg@saul.cis.upenn.edu

Abstract

The paper discusses an approach to construct discrete abstractions of hybrid systems by means of qualitative

reasoning. The work is performed in the context of a modeling language for hybrid systems Charon. We introduce

a qualitative version of the language and describe the abstraction technique using a motivational example. The

resulting abstract model is conservative and can be used to analyze properties of the original hybrid system.

Keywords: hybrid systems, abstraction, qualitative reasoning.

1 Introduction

Distributed embedded control systems usually consist of multiple components that exhibit both continuous and
discrete behavior. Hybrid systems is a widely-used mathematical model for such systems. Since many embedded
systems are safety-critical, it is important to analyze hybrid systems for correctness. The combination of discrete and
continuous state changes makes analysis of hybrid systems an extremely challenging task. Algorithmic veri�cation
techniques require that we work with a �nite representation of the state space of a system. Abstractions and
approximations are necessary to make algorithmic analysis possible. In this paper, we consider the construction of
discrete approximations of hybrid systems by means of qualitative reasoning.

Qualitative reasoning [12, 7, 9] is a well-established technique in the Arti�cial Intelligence community. It allows
researchers to model physical systems using incomplete information. Often, there is not enough information about
the system to represent it by means of di�erential equations. However, the basic relations between the variables in
the system are known. In this situation, qualitative models can be used to capture the incomplete knowledge in a
model, which can be simulated to obtain a rough outline of the system behavior. Furthermore, as more information
about the system becomes available, the qualitative model can be re�ned to provide a more accurate description.

An alternative role for qualitative reasoning has received much less attention. Qualitative models can be seen as
discrete abstractions of continuous and hybrid systems. They provide a conservative approximation of the system
behavior. That is, every possible behavior of a system is captured by some qualitative behavior, but not all qualitative
behaviors necessarily correspond to a real system behavior. Qualitative models, which exhibit �nite-state behavior,
can be fully explored by a veri�cation tool and thus provide a means of conservative analysis of hybrid systems.

We explore qualitative abstractions of hybrid systems in the context of Charon [1], a recently introduced novel
language for hybrid system modeling. The language supports speci�cation of multi-threaded (parallel or distributed)
systems as a hierarchy of concurrent agents and complex behaviors within one thread as a hierarchy of modes.
Charon has a number of high-level language features such as data encapsulation and scoping, exception handling,
and instantiation of parameterized objects. Charon has been given formal compositional semantics [2] that makes
modular reasoning about hybrid systems possible. In this paper, we describe a qualitative variant of the Charon
language that will allow us to construct conservative qualitative approximations of Charon models and analyze
them using state-space exploration techniques.

�This work is supported in part by the NSF grant CCR-9988409, ARO DAAG55-98-1-0393, ARO DAAG55-98-1-0466, DARPA ITO
MOBIES F33615-00-C-1707, and ONR N00014-97-1-0505 (MURI).

Related work. Qualitative reasoning has emerged in the past decade as a mature technique for approximate
reasoning. Qualitative abstractions are primarily targeted at continuous systems expressed as di�erential equations.
However, tools such as QSIM [12] are capable of modeling discrete transitions and are thus applicable to general
hybrid systems. An application of qualitative reasoning to hybrid systems in the context of controller synthesis
is discussed in [5]. Similar in spirit but di�erent technically is recent work on veri�cation of safety properties in
continuous systems via qualitative abstractions [14, 13]. There, conservativeness of qualitative abstractions is used
to prove that violations of safety properties is impossible in the concrete model. Analysis is based on reasoning
about individual trajectories, while we are concentrating on more traditional in the veri�cation are state-machine
representations.

It is well-known that formal veri�cation techniques such as reachability analysis and model checking are unde-
cidable for hybrid systems in general [11]. Research has concentrated on decidable subclasses of hybrid systems, or
on �nding conservative approximations for hybrid systems. See [3] for a survey of state-of-the-art techniques.

The need to construct �nite abstractions of in�nite-state systems is not limited to the hybrid systems domain.
Predicate abstraction [10] is a promising technique for reducing the range of a variable to a �nite set of \important"
values. E�ectively, predicate abstraction determines appropriate landmark values for each variable in the program.
The proposed approach can be seen as an extension of the predicate abstraction techniques for hybrid systems.

The paper is organized as follows: in Section 2 we introduce the language Charon and informally describe its
semantics. In Section 3, we present a framework for qualitative description of systems. Our approach follows the
treatment of [12], which describes the simulation of qualitative models using a tool QSIM. Our approach is not based
on simulation, however. We construct a qualitative model as a hierarchical state machine and explore its state space
to determine its properties. The bene�ts of this approach are discussed in Section 5. Then, in Section 4 we present
the qualitative variant of Charon and its semantics. The semantics is compositional in the sense that behaviors of
composite objects are computed from their components. A simple example is presented in Section 5 to illustrate the
approach.

2 Charon modeling language

Charon is a high-level language for modular, hierarchical description of hybrid systems. Charon describes a hybrid
system as a collection of concurrent agents that interact with each other through shared variables and bounded-
capacity channels1. Agents have well-de�ned interfaces, consisting of its input and output variables and channels.
Sequential behavior is described in Charon by means of modes. Modes also have interfaces, consisting of entry and
exit control points, through which a thread of control enters and leaves the mode.

Intuitively, an execution of a Charon speci�cation is an alternating sequence of discrete and continuous steps.
Discrete steps are instantaneous mode switches, while continuous steps take a �nite amount of time when no control
changes occur.

The hierarchy in Charon is twofold. The architectural hierarchy describes how the agents in the system interact
with each other, hiding the details of interaction between sub-agents. The behavioral hierarchy describes behavior
of each agent as a collection of modes, hiding the low-level behavioral details. At the leaves of the architectural
hierarchy are primitive agents that do not have concurrent sub-agents. Behaviors of primitive agents are captured
by modes, described below.

Agents and modes operate on sets of typed variables. In each agent or mode, variables are partitioned into global
and local variables. Global variables are further categorized into input and output variables. Also, variables can be
either analog or discrete. Discrete variables are updated by discrete steps during the execution; analog variables are
updated in a continuous fashion, but may also be reset by discrete steps. During a continuous step, analog variables
follow a
ow, a smooth continuous function of time. We assume that analog variables have type real.

A mode is a hierarchical hybrid state machine equipped with analog and discrete variables. While a mode stays
in a state, its analog variables are updated continuously according to a set of constraints, which take the form of
di�erential and algebraic equalities and inequalities. Taking transitions from one state to another, the mode updates
its discrete variables. States of the mode are submodes that can have their own behavior. A mode has a number
of control points, through which control enters and exits the mode. That is, to perform a computation in one of its
submodes, a mode takes a transition to an entry point of that submode. When the computation in the submode
is complete, a transition from an exit point of the submode is taken. The mode also has entry transitions, from

1Channels are not considered in this paper.

an entry point of the mode to an entry point of one of its submodes, and exit transitions, from an exit point of a
submode to an exit point of the mode. Entry transitions specify initial states of a mode and may give initial values
to the variables of the mode.

Primitive modes, which do not have any submodes, can have multiple entry points but only the default exit
point. Since there are no internal control points in a primitive mode, every entry transition is also an exit transition.
Intuitively, a primitive mode stays during its execution in its default exit point.

Transitions are labeled with guards and actions. A guard is a predicate on the values of the mode variables. A
transition is enabled when its guard is true. An action is a partial state transformer: when a transition is taken,
variables of the mode are updated according to the action of the transition.

Before the computation of a mode is completed, it may be interrupted by a group transition, originating from
a default exit point of the mode. After an interrupt, control is restored to the mode via a default entry point. We
use invariants to force one of the outgoing transitions. Control can reside in a mode only as long as its invariant is
satis�ed. As soon as an invariant is violated, control has to leave the mode by taking one of the enabled outgoing
transitions.

Each primitive agent has an associated top-level mode that speci�es its behavior. A top-level mode has a single
non-default entry point init, which is used to initialize the mode before execution. Since agents never terminate,
their top-level modes do not have non-default exit points.

An object-oriented feature of Charon is that declarations of modes and agents act as classes. A parameterized
declaration of a mode or an agent can be instantiated in a model multiple times with di�erent values of parameters.

Semantics. Charon is given formal compositional trace semantics. Each agent or mode is characterized by its
interface and the set of traces it allows. Traces of a mode are formed by the
ows de�ned by the mode constraints,
interleaved with discrete steps of the mode, in which a mode transition is taken, updating local and output variables,
and discrete environment steps that change the values of input variables. The set of traces of a composite mode can
be computed from the traces of the submodes. While executing in one of the submodes, the mode follows a trace of
the active submode that complies with the constraints of the mode.

A primitive agents has as its traces the traces of its top-level mode, restricted to the global variables of the agent.
A trace of a composite agent is such that, when projected on the global variables of a sub-agent, it yields a trace of
the sub-agent. Semantics of agents is also compositional. The set of traces of an agent can be computed from the
sets of traces of the sub-agents.

A motivational example. We use a simple example throughout the paper to illustrate the facilities of Charon.
It represents a swimming pool equipped with a pump that controls the water level, and a sign that tells whether the
water is deep enough to swim. The architecture of the model is shown in Figure 1. It consists of three agents, Pool,
Pump and Sign. The �rst agent represents the water in the pool and its behavior is given by a single di�erential
equation relating the
ow of water and its level. Two other agents are instantiations of parameterized agents
WaterPump and Switch. Their top-level modes are presented in Figure 2. The agent WaterPump controls the water

ow. The pump can be turned on or o�, maintaining constant
ow: when the pump is on, water
ows into the
pool, when it is o�, the water
ows out of the pool. Modes On and Off are instances of the mode SteadyMode with
di�erent values of parameters. In addition, the pump has two transient modes, TurnOn and TurnOff. These modes
are instances of the mode TransientMode, when the water
ow smoothly changes from one steady-mode level to the
other. Entry transitions of the primitive modes in the example are trivial and we omit them in the �gures. Initially,
the pump starts in the On or TurnOff submode depending on the water level, as prescribed by the entry transitions.
Then, the pump cycles through on and o� phases.

3 Fundamentals of qualitative reasoning

3.1 Qualitative variables

A qualitative variable has an associated type, or quantity space. A quantity space consists of a �nite set of landmarks.
A landmark represents an \interesting" value of the variable and may be a symbolic or integer constant. We assume
that landmarks of a variable are completely ordered. That is, when we consider a variable v with the quantity space
fv1; v2; :::; vng, we will always assume v1 < v2 < ::: < vn.

Sign

Pool

Pump

WaterPump(2,10)

level’ == flow

Switch(5)

le
ve

l

fl
ow

Figure 1: A swimming pool in Charon

Switch(s)

SteadyMode(rate,low,high)WaterPump(low,high) TransientMode(rate)

OffOff

On

OnTurnOn

TransientMode(-2)

TurnOff

{level s}

timer 2

timer 2

≤

TransientMode(1)SteadyMode(1,0,high)

level low≤

≥

8

level high flow == rate
timer’ == 0

≥

level<s

level>s
≥{level s}

init

init

timer := 0

timer := 0

≤≥{ level low & level high }
level high

flow == rate * (1-timer/2)
timer’ == 1

≤{ timer 2 }

SteadyMode(-2,low,)

level<high ≥

≥

swim:=true

swim:=false

Figure 2: Declarations for the swimming pool

During an execution, we track not only the values of the qualitative variables, but also the directions of their
change. It allows us to increase accuracy of qualitative behaviors. A valuation of a qualitative variable v is a pair
(l; d), where l is a qualitative value of v and d 2 f�; �;+g. The meaning of a valuation (l; d) for v is that the value
of v is l and the �rst derivative with respect to time is negative if d = �, is zero if d = �, and is positive if d = +.
For discrete qualitative variables the only possible value of d is their valuations is �.

During an execution, an increasing qualitative variable may either reach the next larger value or stop increasing.
Similarly, a decreasing variable may reach the next smaller value or stop decreasing. A stationary variable may turn
into either increasing or a decreasing one without changing its qualitative value. When the variable assumes its
smallest landmark value, it cannot be decreasing; similarly, when it assumes the largest landmark value, it cannot
be increasing. As an example, consider the possible evolutions of a single unconstrained qualitative variable with the
quantity space fl1; l2; l3g, represented as a state machine in Figure 3.

1

1l *

l + 1

1

1

2

2

2

l *

l -

l +2

l *

l -

2

2

(l ,l)+

(l ,l)*

(l ,l)- (l ,l)-

(l ,l)*

(l ,l)+2 3

2 3

2 3 3

3

Figure 3: State machine for a single variable

3.2 Qualitative Constraints

Multiple variables in the same execution can evolve independently of each other. If variables are to evolve in a
coordinated fashion, we need to introduce constraints.

Constraints over qualitative variables take the form v � Eq , where � 2 f<;�;=; 6=; >;�g and Eq is a qualitative
expression. Qualitative expressions are constructed from qualitative variables and constants by means of qualitative
operators described below. The quantity spaces of the left-hand and right-hand sides of a constraint must be the
same.

Functional operators. A functional operator represents an underspeci�ed function from a tuple of quantity spaces
into a quantity space. An example of a functional operator is a monotonic function M+(v) for a qualitative variable
v. A constraint of the form v1 =M+(v2) speci�es that in every state of the execution, the directions of change in the
valuations of v1 and v2 agree. In addition, the relation between some elements of the quantity spaces of v1 and v2
may be known. In this case, the valuations also have to agree on those elements. For example, consider a model with
variables v1 with the quantity space fl11; l12; l13g and v2 with the quantity space fl21; l22; l23g. Let the constraint be
v1 = M+(v2) with the set of related values f(l11; l21); (l13; l23)g. The \increasing" part of the state machine shown
below. Symmetric \stable" and \decreasing" parts are omitted.

(l ,l)+,(l ,l)+

l +,(l ,l)+

12(l ,l)+,l +

11 12l +,l +11

11

(l ,l)+,(l ,l)+

l +,l + (l ,l)+,(l ,l)+

13

12 22 13

12

12

(l ,l)+,(l ,l)+ l +,(l ,l)+2111

(l ,l)+,l +13

21 21 22

21 22

22

12

1211 21 22 22

21 22 12 22

22 23 l *,l *2313

Arithmetic qualitative operators. Arithmetic qualitative operators are special cases of functional operators. An
arithmetic qualitative operator is a mapping from a pair of quantity spaces to a quantity space. When components
of the quantity spaces are integer constants, the natural rules can be used to de�ne the arithmetic operators.
For symbolic constants, the user must specify the mapping explicitly. For example, an addition operator from
f0;On, Infg2 to f0;On1,On2,Infg may be given as f((On; 0);On1); ((0;On);On1); ((On,On);On2)g. Addition and
multiplication operators are always commutative and monotonic in both arguments; the landmark value 0 is always
used naturally in all arithmetic operators. If quantity spaces are signed (that is, 0 is an element of the quantity
space), multiplication of positive values yields a positive value, etc. Other properties of the arithmetic operators
(such as associativity) may not be satis�ed.

Qualitative di�erential constraints. In addition to constraints on variables, qualitative constraints can apply
to �rst derivatives of variables. Remember that a valuation of a qualitative variable includes a three-valued com-
ponent representing the direction of its change. A qualitative di�erential constraint constrains this component of
the valuation. Values of the right-hand side expression are taken in relation to 0, which must be contained in the
quantity space of the expression. For example, constraint v0 = 1 means that the direction-of-change component of
the valuation for v is always +; that is, v monotonically increases.

4 Qualitative Charon

In this section, we describe QCharon, that replaces real variables of Charon with qualitative variables. The
change a�ects only the modes. The agent hierarchy and interfaces of agents are una�ected (except that types of
agent variables change to qualitative types).

We introduce the following quantity spaces for the variables used in the swimming pool example:

level f 0, Lo, Swim, Hi, Owf g

ow f mInf, Out, 0, In, Inf g
timer f 0, Ready, Inf g

Switch

SteadyMode(rate,low,high)WaterPump TransientMode(rate)

TurnOn

TurnOff

init

init
SteadyMode(In,0,Hi)

On Off

On

TransientMode(Out)

Off

TransientMode(In)

SteadyMode(Out,Lo,Inf)

level Hi

timer’ == 1
flow == rate≥level Hi

{level Swim}

level<Swim

level>Swim
swim:=false

swim:=true
{level Swim}≥

≥

flow == rate * M-(timer)[(0,1),(Ready,0)]
timer’ == 1

{ level low & level high }

≤

≥timer Ready

≤level Lo

≥ ≤{ timer Ready }

timer := 0

timer := 0

level<Hi ≥timer Ready

≤

Figure 4: Declarations of qualitative agents and modes

Sign

Pump

Pool

level’ == flow

le
ve

l

fl
ow

WaterPump

Switch

Figure 5: Architecture of the qualitative model

The landmarks for each variable are as follows: water level is at Lo when the pump has to be turned on, at level
High the pump needs to be turned o�, and it is safe to swim when the level is above Swim. When the
ow of water
is enough to make water level rise, the value of the
ow is In, if the level is decreasing, the value is Out. The value 0
means that the level is constant. These landmark values for
ow are chosen to be used in the di�erential constraint
of the Pool agent. Finally, the timer has only one interesting value: duration of the interval that the pump spends
in a transient state, denoted Ready. Note that all these values are either constants or parameters in the Charon
model.

We also need to turn the expressions of the Charon model into qualitative expressions. Consider the di�erential
equation of mode TransientMode, expression rate � (1� timer=2) becomes rate � (M�(timer)[(0; 1)(Ready ; 0)]). It
represents a monotonically decreasing function of timer, which has value 1 when timer is 0, and 0 when timer has the
qualitative value Ready. We do not need to specially de�ne the multiplication operator in this expression, because
we are interested only in the sign of the expression. All other expressions in the example are transformed into the
qualitative form by replacing concrete constants and parameters with qualitative constants.

Figure 4 shows the qualitative version of the swimming pool example. Figure 5, which represents the architecture
of the qualitative model is the same as Figure 1 with the parameters removed. The agents WaterPump and Switch

are no longer parameterized, because their parameters are used in a qualitative way, and are now captured as types
of qualitative variables. However, not all parameters in the model are removed. Submodes of WaterPump are still
parameterized, since they are instantiated multiple times with di�erent values of parameters.

Semantics. Following the setup of Charon, semantics of a QCharon speci�cation is given by the interface of the
mode (its control points and global variables), and set of traces that the speci�cation can produce. We will de�ne
set of traces in a bottom-up fashion, starting from the leaves of a behavioral hierarchy. For each mode, we will �rst
capture the set of its executions as a state machine. It is important to notice that this state machine is a semantic
object and does not have to be constructed explicitly during analysis of a QCharon speci�cation. Executions are
projected onto the global variables of the mode to yield the set of traces of the mode.

First, a state of a mode with variables v1; :::; vn is a tuple of valuations for the variables of the mode. A mode

In*
0*0*0*

In*
0*

In*
0*

In*
0*

(0,Lo)-
In*

Hi-(Swim,Hi)-Swim-(Lo,Swim)-Lo-
In*

0*

Lo*

0*
In*

Hi*Swim*
In*

0* 0*
In*
0*

In*
0*

In*In*
(Swim,Hi)*

In*
(Lo,Swim)*(0,Lo)*0*

0*

State machine for On

0+
In*
0*

In*
0*

In*
0*

(0,Lo)+ Lo+
In*
0*

In*
0*

Swim+
In*
0*

Hi+
In*
0*

(Swim,Hi)+(Lo,Swim)+

(a)

(Lo,Swim)-

(0,Ready)+
(Out,0)-

Lo-

(0,Ready)+
(Out,0)-

(0,Lo)-

(0,Ready)+
(Out,0)-

Swim-

(0,Ready)+
(Out,0)-

(Swim,Hi)-

(0,Ready)+
(Out,0)-

Hi-

(0,Ready)+
(Out,0)-(0,In)-

(0,Ready)+

(Hi,Owf)+
0-

(Hi,Owf)*

(0,Ready)+

(Hi,Owf)-
(Out,0)-

(0,Ready)+

Hi+
In-
0+

(0,In)-
(0,Ready)+

0-
(0,Ready)+

(Hi,Owf)- Hi- (Swim,Hi)- Swim- (Lo,Swim)- Lo- (0,Lo)-Owf+ Owf*
Out-

Ready+
Out-

Ready+
Out-

Ready+
Out-

Ready+
Out-

Ready+
Out-

Ready+
Out-

Ready+
Out-

Ready+

 State machine for TurnOff

(0,Ready)+
(Out,0)-

0*

0*

(b)

Figure 6: Runs of the submodes of WaterPump

variable can be updated either in a discrete or in a continuous fashion. Discrete variables are changed by the
transitions of the mode. Discrete variables can assume only landmark values during an execution. A continuous
variable follows a
ow, i.e. a di�erentiable function, during an execution and thus can assume as values its landmarks
and the intervals between adjacent landmarks.

Executions of a primitive mode are represented as a state machine, where each state corresponds to a state of
the mode. Transitions represent possible changes in variable valuations, such that valuations in the states connected
by a transition agree with all the constraints of the mode. A run of a state machine is a sequence of states such that
every two consecutive states in a sequence are connected by a transition. To represent executions, we extend the
state machine with special nodes that do not correspond to a state of the mode, but capture entry and exit points
of the mode. Each entry point is connected by a transition to every state in which the values of variables agree with
the guard and the action of the entry transition attached to the entry point. Every state is connected by a transition
to the exit point node, since an execution can be interrupted at any time.

We show the state machine for SteadyMode (instantiated as On) in Figure 6(a). In the mode On, variables
ow
and timer are constant and variable level is an input variable whose value is constrained by the invariant of the mode
and the direction of change is unconstrained. Figure 6(b) shows a fragment of the state machine for TransientMode
(instantiated as TurnOff). In this mode, timer increases,
ow decreases, and level is unconstrained. The fragment is
chosen to comply with the constraint on level from the agent Pool, which will be applied when behaviors of individual
components are composed into behaviors of the whole system. Since the entry transitions of the modes are trivial,
the entry node of each state machine is connected to every state and we do not show them to avoid cluttering the
�gure.

We can now give semantics to composite modes by �rst extending the mode hierarchy at the leaves, replacing the
primitive modes with their respective state machines. The state machine representing the executions of a composite
mode m is obtained by \
attening" this hierarchical state machine into an ordinary state machine. To construct the

attened state machine of a mode from the
attened state machines of submodes, we perform the following steps.

1. Connect by transitions the states in the state machines of the submodes according to the transitions of the
mode. Consider a mode m with submodes m1 and m2. Let m1 have an exit point x and m2 have an entry

On

TurnOff

TurnOn

Off

Figure 7: Qualitative runs of the swimming pool model

point e. Let t be a transition of m from x to e. Consider a state s1 in the state machine of m1 that is connected
by a transition to the node corresponding to x, such that s1 satis�es the guard of t. The state s1 is connected
by a transition to every state s2 that agrees with the action of t. This operation is repeated for every s1 in m1

and for every t in m.

2. Next, we introduce the nodes for the control points of the mode and introduce transitions similarly way to the
regular transitions: for each entry transition from an entry point e to an entry point e1 of a submode m1, we
add a transition from the node for e to every state in the state machine of m1 that is connected to e1 and
agrees with the guard and action of the entry transition.

3. After all transitions have been introduced, the nodes for the submode control points are removed.

Behaviors of a primitive agent are the same as the behaviors of its top-level mode. For a composite agent, we
can compute the
attened state machine by taking a product of the state machines for the sub-agents, in which a
transition is possible if and only if it is allowed by constraints in all the agents. In the swimming pool example,
when we compose agents WaterPump and Pool, traces of WaterPump now have to satisfy the relationship between the
variables
ow and level prescribed by the Pool. In particular, this restriction e�ectively reduces the state machine
of Figure 6(a) to the bottom row of states. We show the
attened state machine for the swimming pool example in
Figure 7. To avoid cluttering the �gure, we omit the labels of the states, but group together the states corresponding
to executions within the same submode of WaterPump.

In the same way as Charon, the semantics of QCharon is compositional, making the construction of the

attened state machine unnecessary. The set of traces permitted by the state machine of a mode can be computed
from the transitions and constraints of the mode and the sets of traces of the submodes.

5 Conclusions and Discussion

We have presented preliminary results on the construction of conservative approximations of Charon speci�cations
by means of qualitative reasoning. The approach di�ers both from the existing abstraction techniques for hybrid
systems analysis and from traditional uses of qualitative reasoning. A lot remains to be done to turn this approach
into an abstraction methodology for hybrid systems, but the �rst impression is encouraging.

Comparing our approach with that of qualitative simulation [12], we note that the hierarchical state machine
yields a much more compact representation of the set of execution traces, in general, than an explicit representation.
For comparison, we modeled our swimming pool example in QSIM, the foremost tool for qualitative simulation.
Much to our surprise, the problem turned out to be intractable for QSIM. It exceeded the limit of 500 traces that

we set for the simulation, and ran out of memory with the trace limit removed. The reason for this explosion of
behaviors seems to lie in the way QSIM introduces dynamic landmarks into execution traces. When the mechanism
of dynamic landmarks is turned o�, QSIM produces an envisionment (a tree view of the state machine) which is
similar in the number of states to our state machine. At the same time, dynamic introduction of landmarks may
allow us to improve the accuracy of our qualitative models (see below), as long as we keep them from exploding the
state space.

Comparing the proposed technique to the abstraction techniques for hybrid systems described in [3], it is clear
that qualitative reasoning yields coarser abstractions than other existing techniques. This has its advantages and
disadvantages. On the one hand, qualitative abstractions are much easier to compute and manipulate. This allows
us to handle larger speci�cations. On the other hand, qualitative abstract models are much less precise than state-
of-the-art techniques. They admit many behaviors that the original system cannot exhibit. In the discussion below,
we consider ways to improve precision of the abstraction without incurring too much overhead.

Our future work on this topic will concentrate on the following aspects:

� Improving accuracy of abstractions. A qualitative description of a mode or an agent represents all possible
values parameters and constants in the model, because they are now assume qualitative values. This makes
it more di�cult to check properties of concrete systems. In e�ect, the question \does model A have property
B?" in qualitative analysis becomes \can we select the values for parameters and constants in A such that the
resulting model has property B?" As a result, a qualitative model will allow more qualitative behaviors than
the original hybrid model, instantiated with a �xed set of parameters, would.

In terms of our swimming pool example, the question whether the pool can over
ow is answered positively.
Indeed, if we choose the value of High too close to Owf, an over
ow is possible in the TurnOff mode, while
the water level is still rising above High. At the same time, parameters in the original swimming pool example
were chosen so that over
ow cannot occur. In order to get a more precise answer, we need to constrain the
model further to express the relative values of qualitative landmarks. The problem can be addressed from two
directions. On the one hand, semi-quantitative reasoning [4] extends purely qualitative reasoning with partial
numerical information. The second approach involves model re�nement techniques such as proposed in [6].
These two approaches will be the main direction of our future research in this area.

� Local landmarks. We observe that not every landmark value of a variable needs to be considered in every
mode. For example, the value Swim of the variable level is used only in the agent Switch, and values Low and
High are used only in the agent WaterPump. We can use this fact to reduce the sizes of mode state machines,
and re�ne them as needed during analysis.

� More complex functions. Functions used in our example are very simple, which makes the qualitative
abstraction easy to perform. In general, providing accurate qualitative representations for a complex function
may be di�cult. The problem has been studied in the context of qualitative simulation previously [8]. We
will explore mode splitting to make construction of qualitative representations simpler. With this technique,
we partition the ranges of variables in a Charon model in such a way that in each block of the partition the
function can be simpli�ed or approximated di�erently, yielding expressions with simpler qualitative form in
each case. Then, we introduce a separate mode for each block of the partition, with additional invariants to
ensure that the values of variables are within the block. Transitions between the new modes will correspond to
the execution moving from one block of the partition to another. In this way, a mode in a Charon model will
correspond to a number of modes in QCharon, but each mode will provide a more precise approximation.

References

[1] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular speci�cations of hybrid systems in Charon. In
Proceedings of Hybrid Systems: Computation and Control, Third International Workshop, volume 1790 of LNCS,
pages 6{19. Springer-Verlag, 2000.

[2] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional re�nement for hierarchical hybrid systems. In
Proceedings of Hybrid Systems: Computation and Control, Fourth International Workshop, March 2001.

[3] R. Alur, T.A. Henzinger, G. La�erriere, and G. Pappas. Discrete abstractions of hybrid systems. Proceedings
of the IEEE, 2000.

[4] D. Berleant and B. Kuipers. Qualitative and quantitative simulation: Bridging the gap. Arti�cial Intelligence
Journal, 95(2):215{255, 1997.

[5] G. Brajnik and D.J. Clancy. Control of hybrid systems using qualitative simulation. In Working notes from the
11th International Workshop on Qualitative Reasoning about Physical Systems (QR-97), June 1997.

[6] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction re�nement. In
Proceedings of CAV '00, July 2000.

[7] J. De Kleer and J.S. Brown. A qualitative physics based on con
uences. Arti�cial Intelligence, 24:7{83, 1984.

[8] A. Farquhar and G. Brajnik. A semi-quantitative physics compiler. In Working Papers of the International
Workshop on Qualitative Reasoning (QR-94), 1994.

[9] K.D. Forbus. Qualitative process theory. Arti�cial Intelligence, 24:85{168, 1984.

[10] S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In Proceedings of CAV '97, pages 72{83.
Springer-Verlag, July 1997. introduced predicate abstraction.

[11] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable about hybrid automata. Journal of
Computer and System Sciences, 57:94{124, 1998.

[12] B. Kuipers. Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge. MIT Press, 1994.

[13] T. Loeser, Y. Iwasaki, and R. Fikes. Safety veri�cation proofs for physical systems. In 12th International
Workshop on Qualitative Reasoning, pages 88{95. AAAI Press, May 1998.

[14] B. Schults and B. Kuipers. Proving properties of continuous systems: Qualitative simulation and temporal logic.
AI Journal, 92:91{129, 1997.

