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ABSTRACT 
 

DEFINING MECHANISMS OF AUTOIMMUNITY IN PEMPHIGUS VULGARIS 

Michael Jeffrey Tejada Cho 

Aimee Payne 

 

A prominent question in the field of autoimmunity is how these diseases arise. Currently, 

the etiologies of many autoimmune diseases remain unclear. The work described here 

provides insight into this question in the context of pemphigus vulgaris (PV), a prototypic 

autoimmune disease characterized by serum autoantibodies to desmoglein (Dsg) 3. We 

utilize a combination of both antibody phage display and heterohybridoma to probe the 

anti-Dsg3 antibody repertoires of patients with PV. We first address whether a cohort of 

four patients with active disease demonstrate any shared characteristics in their anti-

Dsg3 antibody repertoires (Chapter 2), and if so, why. We find shared utilization of VH1-

46 in at least anti-Dsg3 antibody across all four patients, and that these VH1-46 

autoantibodies require few to zero somatic mutations to bind Dsg3, which may explain 

their presence in all four patients studied. Based on this, we propose a “shared VH gene 

usage” theory in the development of PV and investigate rotavirus as a potential viral 

trigger of this autoimmune disease, as VH1-46 has also been observed in the antibody 

response to the rotavirus intermediate capsid protein VP6 (Chapter 3). We determine 

that, while uncommon, it is possible for a VH1-46 antibody to cross-react to both Dsg3 

and VP6, and this can occur through either V(D)J recombination or somatic 

hypermutation. In addition, a subset of these cross-reactive antibodies can both inhibit 

rotavirus replication and Dsg3 adhesion in vitro, indicating that these cross-reactive 

antibodies may have a role in the context of both rotavirus infection and PV. Our findings 
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indicate that VH1-46 may persist in the anti-Dsg3 antibody repertoires of certain people 

due to the ability of some of these antibodies to cross-react to a foreign antigen and thus 

provide protection during infection. Ultimately, the data presented here provide a better 

understanding of the pathophysiology of this disease as well as potential etiologies of 

Dsg3 antibody reactivity. 
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CHAPTER 1: INTRODUCTION  

 

Canonically, one typically thinks of an immunologist as one who studies the 

immune response to a foreign insult, such as a virus or bacterium. I am particularly 

interested in the other side of that coin; instead of trying to understand how the body 

reacts to a foreign antigen, I am interested in how the body prevents itself from reacting 

to self-antigens. The focus of my thesis has been to define the developmental events 

that lead to an autoimmune response, which if better understood, would allow 

investigators to design better treatment strategies for the 24 million people in the United 

States that currently suffer from an autoimmune disease1. 

 

1.1 Overview of B cell Development 

1.1.1 B cell Receptor Development 

The adaptive immune system provides the humoral immunity needed to protect 

an organism from past infections by conferring immunological memory to the specific 

insult. Antigen-experienced B and T cells can interact with various foreign insults in an 

antigen-specific manner to clear secondary infections at a much faster rate than primary 

infections. This antigen specificity in both B and T cells arises from the B cell receptors 

(BCRs) and T cell receptors (TCRs). Both of these antigen-binding surface molecules 

are generated by a process called V(D)J recombination, which will now be described 

from the perspective of a B cell. 

Common lymphoid progenitors give rise to pro-B cells via the induction of E2A 

and early B cell factor (EBF), which are two transcription factors unique to the B cell 
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lineage2, 3. Pro-B cells express a pro-BCR and have yet to initiate DNA rearrangements 

at the immunoglobulin (Ig) heavy chain loci4 that will ultimately generate the heavy chain 

of the BCR. E2A and EBF induce the expression of recombinase-activating genes 

(RAG) 1 and 2 alongside other B cell-related proteins such as paired box transcription 

factor 5 (Pax5)5, 6, which upregulates expression of CD19, a B cell co-receptor for the 

BCR7. Expression of RAG1/2 allows the pro-B cell to undergo VDJ recombination8, 9, 

which, in an error-prone manner, will bring together a DH and JH segment together via a 

DH-JH join. Subsequently, a V segment will also be attached to the DH-JH join, forming 

a complete heavy chain (Figure 1-1), which is then tested for the ability to signal 

downstream when paired with the surrogate light chain proteins lambda 5 and VpreB; 

termed the pre-BCR10. If this pre-BCR is unable to transduce signals downstream 

through the other components of the BCR complex such as Igα and Igβ10, 11, as is the 

case for two thirds of the rearrangements that are out of frame, further heavy chain 

rearrangements can occur at the rearranged locus, and if that locus has exhausted all 

VH segments, heavy chain rearrangements can also occur on the second chromosome. 

It has been shown that ~45% of pro-B cells are lost at this stage of development. Allelic 

exclusion is also enforced at this stage to prevent the expression of two distinct heavy 

chains on the surface of a single B cell12, 13, and occurs post-pre-BCR signaling by 

limiting the number of functional heavy chains to one per B cell14, likely through both 

regulated and unregulated mechanisms. 

With the expression of a functional heavy chain, the cell becomes a pre-B cell, 

and VJ rearrangement then occurs at the light chain loci, where VL and JL segments are 

rearranged to form a light chain; the final portion of the complete BCR. Non-productive 

rearrangements at the light locus are mitigated in a similar fashion as the heavy locus15-



3 
 

18. This newly formed, productive light chain can then pair with the functional heavy 

chain, and again in association with Ig-α and Ig-β, is further subjected to test its 

functionality in inducing downstream signaling after BCR engagement. Allelic exclusion, 

as observed at the heavy chain locus, is also enforced at this stage of BCR 

development. In addition, isotypic exclusion of the light chain prevents the expression of 

both a κ and a λ light chain simultaneously14, 19. There does exist a small population of B 

cells in both mouse and man that demonstrate allelic inclusion; that is, surface 

expression of both a κ and a λ light chain20-22, but this is beyond the scope of this thesis.   

V(D)J recombination can utilize any one of the functional 38-46 VH segments, 23 

DH segments, and 6 JH segments to form a heavy chain. At the light chain locus, there 

are 29-33 VL segments, 4-5 JL segments, 31-36 VK segments, and 5 JK segments23-27. 

The large number of gene segments, paired with the error-prone polymerase η and the 

addition of non-templated nucleotides via terminal deoxynucleotidyl transferase, gives 

this stochastic process of DNA rearrangement the ability to generate the diversity 

observed in the human adaptive immune system, where there are upwards of 1011 

number of antigen specificities within a single individual28, 29. This large diversity is 

primarily due to the random pairing of heavy and light chains, and the hypervariable 

complementarity-determining region (CDR) 3, which spans the VDJ junction on the 

heavy chain (Figure 1-2). CDRs are responsible for the main contact between the BCR 

and its cognate antigen, and are surrounded by framework regions (FWRs), that are 

primarily responsible for structure and stability of the BCR. The CDR1 and CDR2 on the 

heavy chain are encoded entirely by the VH gene segment. Interestingly, it has been 

described that the heavy chain CDR3 the most important in determining 

antibody:antigen specificity; transgenic mice expressing a single VH gene segment 
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coupled with the full diversity of DH and JH gene segments were fully capable of 

generating high affinity clones for several different types of antigens30. 

  However, the process of V(D)J recombination, which can provide the varied 

range of antigen specificity needed over the course of a lifetime, is a double-edged 

sword, as it is certain to confer reactivity to self. Therefore, the immune system has 

several tolerance checkpoints in place to prevent these self-reactive clones from 

developing into cells that could cause autoimmunity. It is at the immature B cell stage 

when the nascent BCR is first tested for autoreactivity to antigens present in the 

surrounding environment of the bone marrow niche31. 

It has been shown previously that upon high affinity interactions with self-antigen 

in the bone marrow, B cells undergo several mechanisms of central tolerance to prevent 

autoimmunity. This first of these mechanisms is receptor editing, which occurs after 

functional rearrangements at either the light and heavy chain loci. Given that a single B 

cell clone has multiple light chain loci in its genome, a self-reactive pre-B cell clone can 

arrest at this stage and reactivate RAG 1 and 2 to undergo further rearrangements at the 

light locus in an attempt to abolish self-reactivity32. This process first occurs at the kappa 

locus, and then proceeds to the lambda locus, as described in both mouse and man33-38. 

This editing process can also take place at the heavy chain, termed heavy chain 

replacement39, 40, and results in breaks within the CDR3, ultimately leaving a VH 

replacement fingerprint, and lengthening the overall HC CDR3 due to utilization of 

cryptic recombination signal sequences41.  

 If receptor editing is unsuccessful, these high affinity, self-reactive clones are 

deleted from the repertoire during the early immature to immature B cell stage via an 
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arrest in development and eventual apoptosis after 2-3 days42-44. These central tolerance 

mechanisms occur before these cells enter circulation. In contrast, lower affinity self-

reactive clones do not induce apoptosis, however, the clones do exhibit a shorter 

lifespan upon entering circulation compared to a non-self-reactive clone45. 

Upon emigration into the periphery, there is an additional tolerance checkpoint 

between the new emigrant stage and the mature naïve stage46, presumably due to the 

interaction of B cell clones with circulating antigen, which in the absence of T cell help, 

leads to anergy and eventual deletion. Peripheral tolerance checkpoints will be 

discussed in more detail in a subsequent section of this chapter.  

 

1.1.2  Germinal Center and Extrafollicular Responses to Antigen 

There are several pathways by which a B cell that has interacted with antigen 

can develop into an antibody-secreting cell: the extrafollicular response, and the 

germinal center response. While there exists several antigen models utilizing influenza47, 

48, dextran49 and others50, 51, highlighting detailed analyses in mice injected with B cells 

specific for the antigen hen egg lysozyme (HEL)52, we have a much clearer 

understanding of the secondary lymphoid processes that arise in the six days after a T 

cell-dependent immune response. First, there is a large burst of B cell proliferation within 

the follicle approximately day (D) 1-3 after immunization. Furthermore, it has been 

shown that on ~D3.5, there begins a shift of follicular HEL-specific B cells into the 

extrafolllicular splenic bridging channels, as well as in the follicle; the latter being 

suggestive of nascent germinal center formation. This shift into either extrafollicular sites 

or the germinal center is complete at ~D4.  The extrafollicular response peaks at ~D5 
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and diminishes at ~D6, whereas the germinal center response persists beyond that time 

point. 

Canonically, the germinal center (GC) is the site in which immunological memory 

is born. Circulating naïve B cells as well as antigen-experienced B cells home to 

secondary lymphoid organs via the afferent lymph system53. From there, antigen-

inexperienced B cells can encounter antigen at the T:B cell border, and potentially enter 

the GC54-56. Most importantly, antigen-experienced B cells present peptide on its surface 

via major histocompatibility (MHC) molecules, which can then interact with the TCR on a 

cognate T cell, leading to the activation of both of these cells.  Upon entering the GC 

post-antigen interaction, a B cell can acquire signals from both follicular dendritic cells 

(FDCs) and follicular T helper (TFH) cells, namely antigen and B-cell activating factor 

(BAFF) from FDCs, and costimulation of surface receptors and IL-21 from TFH cells57. In 

addition to the peptide-MHC (pMHC):TCR interaction, other interactions include receptor 

engagements such as CD40:CD40L, CD80/86:CD28 and, cytokines such as IL-4 and IL-

10. These cell:cell interactions induce expression of activation-induced cytidine 

deaminase (AID), which promotes somatic hypermutation (SHM) and isotype class 

switching58. Upon differentiation into plasmablasts (PBs), these cells downregulate 

CXCR5, the receptor for CXCL1359 60, and exit the secondary lymphoid organ via the 

efferent lymph system which is mediated by expression of CXCR4 and the chemokine 

CXCL1261, 62. Subsequently, these cells home to their niches located in the spleen and 

bone marrow63. In addition, GC B cells can give rise to memory B cells, which provide 

long-lasting memory to the organism and can react rapidly in the context of future 

infection with that same pathogen. 
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AID promotes SHM by deaminating cytidines with the Ig loci58. This occurs in the 

context of single-strand DNA alone, and induces a single-strand nick that promotes 

nucleotide substitution, increasing diversity of BCR sequence and through selection 

processes, leads to an increase in overall affinity for antigen. Mechanistically, AID 

functions by converting a cytidine to a uracil, which is then targeted by uracil-DNA 

glycosylase, which removes the uracil, leaving an abasic site which is then excised by 

apurinic/apyrimidinic endonuclease 1 to create the single strand nick, ultimately leading 

to transversion or transition mutations that alter the germline sequence of that BCR64. 

SHM, while in theory targets all cytosine residues, preferentially targets certain 

sequence hotspots, namely RGYW/DGYW65, 66. These AID mutation hotspots are 

concentrated in the CDRs of antibodies, and thus promote somatic mutation in the 

regions of the Ab directly involved in binding antigen to further diversify the B cell 

repertoire toward an antigen of interest67.  

 In addition to SHM, expression of AID in B cells can also lead to class switch 

recombination (CSR). The IgM constant region in naïve B cells, for example, can be 

replaced with a downstream constant region (Figure 1-3) via a series of coordinated 

AID-mediated double-strand breaks located in switch regions upstream of each constant 

region68, 69. As a result, the intervening DNA between the two constant regions is 

deleted, and thus, CSR can only occur in a single direction along the chromosome. Ig 

isotypes differ in their characteristics related to the immune response. For example, 

IgG4 does not activate the classical complement pathway70-72, while IgM, IgG1, and IgG3 

can73, and possess a myriad of roles within the context of an immune response. IgM and 

IgA Abs can form polymers that increase overall avidity for antigen; tetramers and 

dimers, respectively74, 75. In addition, IgG antibodies effectively cross the placenta, which 
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can provide protection of the fetus via maternal Abs, but can also induce complications 

in the context of Rh factor-positive fetus and an Rh factor-negative mother76, as well as 

other examples.  

The signals that govern which isotype the B cell switches to are multi-faceted. 

The cytokine environment plays a large role in mediating class switch to the various Ig 

isotypes, likely involving an interplay between IL-4 and IL-10, and others77, 78. CD40-

stimulated B cells class switch first to IgG4, then IgE in the presence of IL-4 and IL-1379-

82. IL-10 has been shown to induce both class switch and antibody secretion in CD40-

stimulated B cells83, 84, particularly of the IgG4 subclass85-87. In addition class switch may 

also be regulated by cell division, and has been described to occur during the third cell 

division in both mice and man84, 88-90.  

The qualities of the antigen:B cell interaction that define the differentiation path B 

cells enter are extremely complex. It is thought that the B cells that participate in the 

extrafollicular response are defined by abundance of antigen and affinity for that 

antigen91. In addition, the magnitude of the extrafollicular response is affinity-dependent, 

despite the observation of similar kinetics up to D5 post-immunization52. The kinetics of 

the extrafollicular response likely exist to produce a rapid production of high affinity 

antibodies that can mediate clearance in the short-term period post-infection. 

Meanwhile, additional high affinity clones can develop via the germinal center, and 

contribute to the longer-term protection of an individual after the extrafollicular response 

wanes.  

The extrafollicular response has been canonically defined as a T cell-

independent (TI) process; that is, the B cell does not require T cell interactions and/or 
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signals to differentiate into an antibody secreting cell. This has been very well described 

in the context of the marginal zone, wherein blood-borne particulate antigens first come 

into contact with B cells92. TI antigens are able to induce B cell differentiation due to 

antigen binding of both the BCR and Toll-like receptor (TLR). The fact that TI antibody 

responses occurs in the marginal zone is not surprising, as blood-borne bacteria that are 

brought to the spleen by circulating cells such as granulocytes and immature dendritic 

cells93 would be capable of binding TLRs, thus circumventing the requirements of T cell 

help in inducing antibody secretion.  

A challenge in the field is the understanding of the development events that leads 

to an immune response during infection and whether it is comprised of an antibody 

response derived from a TI B cell population or T cell-dependent (TD) population. The 

external signals required to induce B cells to secrete antibody has been demonstrated in 

vitro, as incubation of B cells with either anti-CD40 antibody with IL-4, or 

lipopolysaccharide (LPS) alone can induce proliferation and IgG94. Interestingly, in the 

absence of T cell interactions, such as in a mouse where Bcl6 has been conditionally 

ablated or even where CD40 has been knocked out, there is a population of low affinity, 

unmutated IgG against the immunizing antigen95. Patients with hyper IgM syndrome 

offer a unique view into the signals required in both the TI and TD immune response. 

Hyper IgM patients demonstrate unusually high levels of serum IgM and a complete lack 

of class-switched Ig.  These patients subset into two main categories: one with defects in 

CD40 and others with deficiencies in AID. Interestingly, those patients with defects in 

CD40 harbor an IgM+IgD+CD27+ population that demonstrates evidence of somatic 

mutation, which suggests that the TI developmental pathway of B cell differentiation can 

still lead to somatic mutation. In contrast, patients with deficiencies in AID exhibit GC 
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formation, but harbor an unmutated IgM+IgD+CD27+ B cell population92. Therefore, one 

cannot outright conclude the origin of an antibody-secreting cell (ASC) based on solely 

Ig isotype and/or somatic mutation level. However, there does exist some surface 

markers that differentiate between a B cell that has entered the germinal center versus 

one that has not. CD7396-98 and peanut agglutinin (PNA)91, 99, for example, are thought to 

be expressed on the surface of B cells that have a germinal center origin. 

 

1.1.3 Peripheral B cell Tolerance 

In the previous sections, I have described two mechanisms of tolerance that 

occur in the bone marrow: receptor editing and deletion. In the periphery, as circulating 

B cells are exposed to a new set of antigens, additional mechanisms of peripheral 

tolerance prevent autoimmunity to these self-antigens, including anergy, somatic 

mutation, and even modification of BCRs via glycosylation100. 

 In order to persist in the repertoire, a B cell must be able to compete for limiting 

survival factors such as BAFF, which is produced by stromal cells101, as well as FDC, 

and binds to the BAFF receptor on the surface of B cells. BAFF interaction induces the 

expression of Bcl2102, an anti-apoptotic molecule which counteracts Bcl6 interacting 

mediator of cell death (Bim) as well as BAD via the induction of PIM2 expression103, 104. B 

cell survival is therefore a balance in maintaining sufficient levels of anti-apoptotic factors 

and pro-apoptotic factors, wherein an excess in the latter direction leads to deletion. 

Peripheral tolerance helps to ensure that this imbalance in favor of pro-apoptotic 

molecules eliminates those cells that have the potential to react to self. 
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 Tolerance mediated by a B cell-intrinsic pathway arises after peripheral antigen 

stimulation in the absence of T cell help105. Increased internalization of surface receptors 

and the inhibition of BCR transport out of the endoplasmic reticulum results in the overall 

downregulation of surface Ig expression106, which has been observed in ~2.5% of 

circulating B cells107. Not surprisingly, these anergized cells are less able to induce 

signals downstream of the BCR, and thus require a larger threshold to overcome the 

constitutive, pro-apoptotic signaling by Bim103. Defects in the phosphatase pathways 

mediated by SHP1 (SH2-domain-containing protein tyrosine phosphatase 1) and SHIP 

(SH2-domain-containing inositol-5-phosphatase) result in increased susceptibility to 

producing autoAb108, 109, highlighting the roles of these proteins in maintaining peripheral 

B cell tolerance.  

 Interestingly, studies probing these anergized cells have shown that this 

population, when subjected to IL-4 and CD40L or LPS in vitro, sill possessed the ability 

to become activated and differentiate into IgG secreting ASCs94. This suggests that in 

the context of a polyclonal B cell repertoire, these anergized B cells cannot compete for 

survival factors compared to other B cell populations. Localization of these anergized B 

cells may be playing a role in peripheral tolerance as well, as these cells are localized to 

the T/B cell border within the spleen94, which may help sequester TLR ligands from this 

population, preventing activation in vivo. 

 The process of SHM allows for the generation of high-affinity memory B cell 

clones that provide long-lasting memory to the infected individual. However, this error-

prone process, which occurs in the periphery, is likely to produce B cells that can bind 

self, as has been described in the context of polyreactive clones against charged 

antigens such as DNA and LPS110.  
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 Genetically, the VH4-34 gene segment offers two unique sequence 

characteristics that are relevant in the understanding peripheral selection. First, the 

germline VH4-34, due to an Ala–Val–Tyr motif located in the FWR1 of the VH4-34 gene 

segment, can mediate self-erythrocyte agglutination at low temperatures111-114. Mutations 

of this motif in human Abs has been observed to be more frequently mutated than what 

would be expected by chance100, 112. This suggests that the process of SHM may 

serendipitously select against HCs that maintain motifs promoting autoreactivity. 

 Secondly, the VH4-34 HC encodes a germline Asn–X–Ser/Thr sequon that 

promotes N-linked glycosylation of its CDR2. Glycosylation at this site precludes antigen 

binding, and has been in observed in the modulation of binding self-proteins100, 115. Thus, 

amino acid residues, arising from germline or even somatic mutation, that could promote 

glycosylation offer another means to abolish reactivity to self in addition to the canonical 

pathways of anergy and deletion. 

While the VH4-34 heavy chain studies have shown that events in the germinal 

center can abolish self-reactivity, whether this selection process is active or passive is 

not clear. Robert Brink’s group, as well as others116, have developed elegant systems in 

which to test whether there is evidence of negative selection that prevents nascent 

autoreactive clones formed in the GC from contributing to the Ab repertoire117. This 

system required that:  

1) a foreign antigen but not a self-antigen has the ability to bind a population of 

naïve B cells, and  

2) the process of SHM permits a GC B cell to acquire cross-reactivity to both 

foreign and self.  
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Brink’s system took advantage of HEL point mutants and the HEL-specific HyHEL10 

heavy chain expressed as a transgene on SWHEL B cells. The foreign antigen was a 

HEL3x point mutant that was of intermediate affinity, and the self-antigen was a HEL4x 

point mutant that was of such a low affinity that it did not induce activation of these 

SWHEL B cells. However, a specific Y53D mutation increases the affinity of the transgenic 

BCR expressed SWHEL B cells such that either HEL3x or HEL4x can activate this 

population. 

Ubiquitous expression of HEL4x prevents the development of Y53D mutated 

SWHEL B cells upon challenge with HEL3x. This effect was less pronounced when the 

level of self-antigen was reduced, and suggests that concentration of self-antigen in 

secondary lymphoid tissues can influence the level of negative selection imposed upon 

autoreactive clones. This is further supported by observations under high concentration 

of self-antigens, wherein FDCs presenting self-antigen can promote the deletion of GC B 

cells through Bim105, 118. 

In addition, by varying the promoter on which HEL4x was expressed, Brink’s 

group observed that in cases where the self-antigen is expressed in a tissue-specific 

manner, such as the liver or the kidney, self-reactive Y53D mutant SWHEL B cells were 

able to persist, suggesting that for tissue-specific antigens, there is no tolerance 

checkpoint in the GC to prevent autoreactive clones from exiting the GC (Figure 1-4). 

Thus, there must be other means to promote tolerance to tissue-specific antigens, such 

as those described above. This lack of germinal center tolerance to tissue-specific 

antigen is especially relevant in the context of PV, where Dsg3 expression is extremely 

restricted to stratified squamous epithelia and the thymus, and will be a small focus of 

my thesis. 
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1.1.4 Plasma Cells 

The plasma cell (PC) is the terminal stage of B cell differentiation, and is the 

point at which this non-dividing B cell can secrete large amounts of soluble, antigen-

specific Ab. As B cells differentiate into plasmablasts (PBs), and subsequently PCs, the 

transcription factors Irf4, Xbp1, and Blimp1 are upregulated, with a concomitant 

reduction in the expression of Pax5 and Bcl6119, which are canonical transcription in 

mature naive B cells. Given the role of the plasmablast and plasma cells as sources of 

soluble antibody, which is on the order of 10,000 molecules per second per cell120, 121, 

expression of Xbp1 allows for the induction of the unfolded protein response122-124 to 

support the endoplasmic reticulum-based stress resulting from the production of large 

amounts of secreted antibody protein. PCs reside in the bone marrow niche, but can 

also be found in the spleen and inflamed tissues. In regards to the spleen, this migration 

is mediated by the migration towards CXCL9, 10 and 11 via surface expression of 

CXCR362, 125, and is thought to provide the maximal amount of antibody at the site(s) of 

infection. A similar form of trafficking has also been observed in the skin, mediated by 

the CCR6 ligand CCL20126. Upon resolution of infection, which will lead to the cessation 

of the production of survival signals, these tissue-resident PCs will die119 due to loss of 

this niche. 

Soluble antibodies have a half-life of approximately two weeks in the mouse127 

and ~twenty-five days in humans128, 129. Given this relatively short life of soluble Abs, this 

suggests one, if not more, of the following theories on how humoral immunity is 

maintained over a lifetime119:  

1.) Homing and residence of LLPCs to survival niches 
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2.) Reconstitution of the LLPC pool with SLPCs that have undergone bystander 

activation 

3.) Chronic antigenic stimulation offer constant regeneration of LLPC pool  

It is unclear whether any of the above theories fully explain the maintenance of 

long-term serological memory, or whether reality is an amalgamation of all three. Studies 

conducted in humans after boost with tetanus toxoid have uncovered a slight rise in 

unrelated Abs130. Whether this is due to bystander activation of memory B cell clones, 

egress of ASCs from the bone marrow into circulation, or a combination of both, is not 

clear. However, what is clear is that the plasma cell niche cannot be infinite, and thus 

there must be some turnover within this niche to incorporate new antigen specificities 

while maintaining humoral immunity for the lifetime of the organism.  

There are two main subsets of ASCs that are defined based on their ability to be 

long-lived. Short-lived plasma cells (SLPCs) are a rapidly renewing population that have 

a half-life of less than ten days131, while it is thought that long-lived plasma cells (LLPCs) 

have a half-life of more than one hundred days and are thought to persist for the lifetime 

of the organism132, 133. SLPCs have approximately one week to migrate to a survival 

niche119, which may be due to the gradual loss of the ability of this cell population to 

migrate toward CXCR3 and CXCR4 ligands over time, underscoring the tissue-resident 

characteristics of terminally-differentiated LLPCs134-136. Within the niche, various survival 

factors such as BAFF and A proliferation-inducing ligand (APRIL) likely contribute to the 

ability of these cells to persist. This is further supported by surface expression of BCMA 

and CD138 on PCs, both of which are receptors for APRIL137, 138; the former is also a 

receptor for BAFF. IL-6 can also extend the life of PCs in vitro, but whether this cytokine 
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plays a role in vivo is not as clear, as IL-6 deficient mice do not demonstrate defects in 

humoral immunity139, 140. 

Given the presence of both short-lived and long-lived plasma cells, the 

underlying cell populations that give rise to these two populations are still unclear. PBs 

can arise from any activated B cell: naïve, marginal zone, memory etc. However, the 

path to becoming a LLPC is not as straightforward as one may think, as not all SLPCs 

become LLPCs141. Transfer studies of bone marrow-resident B cell populations in mice 

suggest that both CD44+CD138+ and CD44-CD138- B cells give rise to short-lived 

plasma cells, while the CD44+CD138- and CD44-CD138+ B cell populations give rise to 

long-lived populations131. However, whether these bone-marrow resident cells are 

descendent from an extrafollicular or a germinal center B cell is still not clear. 

 Regardless of the source, ASCs contribute a very important role in ameliorating 

infection through the secretion for Ab.  However, if these ASCs produce self-Abs, 

controlling this autoimmune reaction could be challenging, and my thesis research aims 

to understand the developmental events that lead to this unintended attack against self 

by using pemphigus vulgaris as a model disease to answer these questions. 

 

1.2 Overview of Pemphigus Vulgaris 

To answer the fundamental question of how autoimmunity develops, one must 

first find a suitable model disease to study. Pemphigus vulgaris (PV) is an autoimmune 

disease of the skin and oral cavity characterized by circulating serum antibodies (Abs) to 

the adhesion protein desmoglein 3 (Dsg3). While the association of autoantibodies in PV 

was first described in 1986142, the autoantigen was first described five years later by 
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John Stanley’s group143. PV is the most common form of pemphigus, which is a group of 

autoimmune diseases of the skin and oral mucosa characterized by intra-epidermal 

blistering, also known as acantholysis.  

 

1.2.1 Distinguishing Pemphigus Vulgaris from other Pemphigus Subtypes 

PV is subtype of the larger pemphigus group of autoimmune diseases. The 

different types of pemphigus are distinguished from each other largely based on clinical 

presentation and the self-antigen targeted in each subtype144, 145. In this regard, 

pemphigus vulgaris is diagnosed based on suprabasal blistering, or acantholysis, of the 

skin and/or oropharynx or a positive enzyme-linked immunoabsorption assay (ELISA) 

test against Dsg3, while pemphigus foliaceus (PF) is characterized by superficial 

blistering of the skin or a positive ELISA against Dsg1. Clinically, PV presents with 

blistering of the oral cavity and serum Ab titers against Dsg3, and in later disease, 

autoAbs against Dsg1 are also observed, and coincide with skin involvement. The 

underlying reasons behind this will be made clear later in this section. 

In order to understand the different forms of pemphigus, one must first 

understand the function of Dsg in the epidermis. Dsg functions within the desmosome, 

which is a multi-molecular complex that connects keratinocytes to each other in stratified 

squamous epithelia; namely the epidermis and the oral mucosa. Similar to all cadherins, 

the extracellular (EC) region of Dsg is divided into five regions, termed EC1-5146 (Figure 

1-5 A). EC1 and EC2 being the most distal from the keratinocyte surface, have been 

shown to mediate both trans and cis interactions with neighboring keratinocytes, wherein 

trans interactions are with neighboring keratinocytes and cis interactions are with 
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desmosomal molecules on the same keratinocyte cell surface (Figure 1-5 B)147, 148. 

Trans interactions are calcium-dependent149, 150, relying on Dsg binding to three calcium 

ions in pockets between the EC domains151, 152. This dependence on calcium for rigidity 

and cadherin interactions is a characteristic of all cadherin family members153. The  

extracellular trans interactions on one end and interactions with intracellular keratin 

filaments on the other provides the desmosome with the ability to resist to mechanical 

stresses typically encountered within the context of stratified squamous epithelia. Within 

the context of PV, the presence of Dsg3-specific autoAb are thought to interfere with 

these adhesion properties of Dsg3, ultimately leading to acantholysis.  

Dsg1, the self-antigen in PF, is a close family member to Dsg3 and is also a 

component of the desmosome. There is evidence of homology between Dsg1 and Dsg3, 

roughly 73% identity within EC1, and this homology decreases with each subsequent EC 

domain143. It has been shown that Dsg3 and Dsg1 expression within the epidermis is 

inversely related; Dsg3 expression decreases with further differentiation of keratinocytes, 

while Dsg1 expression increases with further differentiation154-156. As keratinocytes 

become fully differentiated in the superficial layers of epidermis, the compensation 

theory was born to explain the differences in the clinical presentation of PF and PV 

patients157, 158 in terms of blister occurrence within the epidermis. The compensation 

theory posits that while there exists antibody against Dsg3, if Dsg1 is concomitantly 

expressed within that same layer of epidermis, the loss of Dsg3-mediated adhesion is 

rescued by the presence of Dsg1 (Figure 1-6). Therefore, only in layers of epidermis 

where there is no Dsg1 to compensate would we observe a blister, and vice versa for 

autoAb against Dsg1. This is supported by data in Dsg3-deficient mice that demonstrate 

a more severe blistering phenotype when injected with anti-Dsg1 serum from a PF 
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patient158. This compensation theory has been proven in transgenic mouse models 

where Dsg3 or Dsg1 was expressed throughout the epidermis and protected against 

both blister formation159, 160 and telogen hair loss161, the latter of which was observed in 

an early mouse model of PV162. 

 

1.2.2 Mechanisms of Disease Pathogenesis 

Direct binding of autoAb to the EC1 and EC2 domains of Dsg3 can directly 

interfere with calcium-sensitive trans interactions between two keratinocytes via steric 

hindrance163, 164. There have also been several descriptions of autoAb binding to 

domains such as EC4 165-167, which are not known to be responsible in mediating the 

trans interactions, suggesting additional mechanisms of autoAb-mediated inhibition of 

Dsg3 adhesion. These differences in Dsg3-epitope binding distinguish pathogenic Abs 

from non-pathogenic; that is, monoclonal Abs that can cause a blister in various assays, 

versus those that cannot. Interestingly, it has been shown that incubation of multiple 

non-pathogenic Abs can induce acantholytic blisters168, suggesting that these non-

pathogenic Abs still play important roles in disease pathogenesis. In addition, whether 

anti-Dsg3 Abs are pathogenic or non-pathogenic is irrelevant given that the fact remains 

that these Abs still react against self, and that I ultimately want to understand tolerance 

towards self-antigens as a whole. 

Other than direct inhibition of Dsg3 adhesion, an additional mechanism of auto-

Ab mediated interference is the induction of Dsg3 internalization, which is thought to be 

caused by initiation of various signaling pathways downstream of autoAb binding to 

Dsg3169-171. This internalization is specific, as desmocollin 3, another desmosomal 
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protein, is not internalized upon incubation with anti-Dsg3 Ab172. Time lapse electron 

microscopy experiments have also demonstrated that autoAb binding inhibits the ability 

of Dsg3 to enter simple clusters that occur before Dsg3 enters the desmosome due to 

internalization of Dsg3 into endosomes172, 173. These interferences mediated by Dsg3 

autoAb on both Dsg3 formation and function then leads to the characteristic separation 

of the suprabasal layers of epidermis, otherwise known as acantholysis.  

There does exist evidence detailing the role of apoptosis in PV; although it is 

unclear whether this is a primary or secondary response in disease pathogenesis. It has 

been shown that some acantholytic blisters contain apoptotic keratinocytes. In 

accordance with this observation, expression of molecules involved in the apoptosis 

death pathway, such as Fas ligand and its receptor FasR, p53, and Annexin V, are also 

observed within an acantholytic blister174. Incubation of keratinocytes with PV-IgG 

induced the cleavage of caspase 1, 3, and 8, further supporting a potential role for 

apoptotic cell death in acantholysis. Interestingly, treatment with either PV-IgG or anti-

FasR antibodies both result in the formation of the death-induced signaling complex. 

Despite evidence suggesting that acantholysis is not completely apoptosis-dependent, 

as acantholysis was observed even in the presence of caspase 8 inhibitors175, 

collectively, the studies described above underscore a potential role for apoptosis in the 

clinical presentation of this tissue-specific autoimmune disease.   

 

1.2.3 Detailing the role of IgG isotype in Pemphigus Vulgaris 

 Looking at the autoAbs more closely, it has been described that there is a 

correlation of serum IgG4 Ab titers and disease severity176-179. Interestingly, healthy 
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relatives of patients with PV demonstrate non-pathogenic Dsg3-specific IgG1 that does 

not induce blistering, while active patients demonstrate both Dsg3-specific IgG1 and 

IgG4180. IgG4 is typically observed in patients undergoing desensitization therapy for 

chronic allergies181, 182, as well as in beekeepers183. The latter observation is thought to 

arise from chronic injections of bee venom due to work-related risk factors. The IgG4 

constant region is inhibitory; that is, IgG4 cannot induce complement activation, crosslink 

antigen, or form immune complexes70-72, and thus IgG4 can act in an anti-inflammatory 

role. Given the context of IgG4 development during the immune response, it is likely that 

IgG4 results as a consequence of chronic antigen interactions, perhaps acting in a 

protective pathway to inhibit further activation of other immune cells in the future.  

 

1.2.4 Interleukin 10’s Role in Pemphigus Vulgaris 

Interleukin (IL)-10’s ability to induce IgG4 class switch85-87 suggests a pathogenic 

role for this cytokine in PV, but various studies have reported both protective and 

detrimental effects of IL-10184. IL-10, as well as IL-4, is expressed at a higher level in 

pathogenic versus non-pathogenic anti-Dsg3 T cell clones. However, exogenous IL-10 

administration to primed B cells in vitro does not induce anti-Dsg3 secretion, nor does in 

vivo blockade of IL-10 affect disease incidence in the murine model of PV185. In contrast, 

mice deficient in IL-10 demonstrate increased susceptibility to acantholysis after passive 

transfer of PV patient sera, which can be prevented upon IL-10 administration after 

passive transfer of PV patient sera in wildtype mice186. It has been shown that IL-10 can 

also inhibit the p38/MAPKAP-kinase 2 pathway187, which can protect against 

acantholysis by regulating the endocytosis of Dsg3 upon anti-Dsg3 antibody 

interactions188-191. Taken as a whole, these data in murine systems underscore a role for 
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IL-10 post Dsg3:antibody interactions rather than a role for IL-10 in the development of 

these anti-Dsg3 antibodies. 

In humans, IL-10 in the context of active PV seems to promote disease, perhaps 

through the differentiation of Dsg3-reactive B cells preferentially into IgG4 ASCs due to 

the lack of Dsg3-reactive Tregs192, whose role will be discussed in further detail below. In 

addition, an increased level of IL-10+ B regulatory cells after treatment with rituximab to 

ablate the B cell repertoire in these patients is associated with complete remission193, 

and may suggest an inhibitory role for IL-10.  

Overall, the myriad roles of IL-10 in the immune response may point to context-

dependent roles for IL-10 in PV based on disease stage. In addition, studies in systemic 

lupus erythematosus and rheumatoid arthritis have also revealed disparate roles for IL-

10184, suggesting that a context-dependent role of IL-10 may also occur in other 

autoimmune disorders in addition to PV. 

 

1.2.5 The Role of the T cell in Pemphigus Vulgaris 

Canonically, T cells are required for B cells to become ASCs. Thus, the role of 

the T cell in PV cannot be ignored. It has been shown that Dsg3 is expressed under the 

Aire promoter by medullary thymic epithelial cells194, which suggests that Dsg3-reactive 

T cells should be eliminated from the repertoire. In addition, Dsg3 was not shown to be 

expressed in extrathymic Aire-expressing cells195, which are thought to mediate negative 

selection of autoreactive B cells in the periphery. 
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Previous reported have described strong associations of certain MHC haplotypes 

in PV, namely HLA-DRB*0402 in Jewish populations196, 197 and HLA-DQB*0503 in non-

Jewish populations198, 199, the former of which is rare in the general population, 

suggesting a role for MHC and antigen presentation in disease. Structural studies 

detailing these PV susceptibility alleles demonstrate interactions between a positively 

charged Dsg3 peptide with a negative charge in the P4 pocket of the MHC molecule200, 

underscoring the reason for their overrepresentation in patients with PV. 

Genome-wide association studies (GWAS) have uncovered differentially-

expressed gene (DEG) “signatures” for various stages of disease, such as “control”, 

“activity” and “disease”201, although these GWAS do not discern between whether these 

DEGs arise as a causative or secondary effect of disease pathogenesis. In addition to 

the HLA susceptibility alleles, there is an association of PV and increased expression of 

the ST18 gene, which has a role in the regulation of apoptosis and inflammation202. It 

should be noted that this same gene is also upregulated in the context of psoriasis, and 

thus it is unclear whether this upregulation of ST18 expression precedes disease or 

whether ST18 is simply a marker for skin inflammation as a whole. 

Recently, an increase in the number of circulating follicular helper T (TFH) cells 

has been observed in PV patients compared to healthy individuals and patients with 

myasthenia gravis, a distinct neurological autoAb-mediated autoimmune disease203. This 

increased frequency of TFH appears to be non-specific to PV, as similar observations 

have also been described in systemic lupus erythematosus204 and rheumatoid 

arthritis205. However, it is possible that increased numbers of TFH in PV patients could be 

mediating the ability of these Dsg3-reactive B cells to become ASC. 
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A highly intriguing observation in PV patients, as well as healthy individuals 

expressing the PV HLA susceptibility alleles, is that both of these populations 

demonstrate a low but statistically significant population of circulating Dsg3-reactive T 

cells compared to HLA-unmatched controls206-208, suggesting that T cell tolerance in the 

population may be suboptimal, perhaps due to presentation of certain epitopes in the 

context of the aforementioned MHC molecules that associate with PV. Somewhat 

unsurprisingly, the detection of an anti-Dsg3 Ab-secreting B cell population by ELISPOT 

requires the presence of T cells209 further supporting a loss of tolerance in the T cell 

compartment that contributes to disease pathogenesis. Interestingly, this loss of T cell 

tolerance can occur in a single T cell clone, as a single potent Dsg3-reactive T cell can 

induce a polyclonal Ab response in the murine model of PV210. Clearly, the immune 

system, if relaxed, perhaps in the context of a rampant infection, could provoke a 

formidable autoimmune response to Dsg3 if kept unchecked. 

Michael Hertl’s group also characterized a population of Dsg3-reactive Tregs in 

healthy relatives of patients with PV, as defined by expression of CD25, glucocorticoid-

induced TNFR family-related receptor, and the presence of FoxP3 mRNA192, 211. These 

Tregs were able to suppress T helper cells through a contact-independent manner, 

utilizing soluble anti-inflammatory cytokines including IL-10 and TGFβ. Strikingly, this 

Treg population was severely reduced in the PV patients studied compared to healthy, 

HLA-matched controls. Inhibition of FoxP3 via antisense oligonucleotides converts the 

Dsg3-specific Tregs into Th2 cells that can no longer suppress, but can proliferate and 

secrete cytokine in response to incubation with Dsg3 protein212. The lack of a 

suppressive T cell population to cull the anti-Dsg3 autoimmune response leads me to 

suggest an active mechanism of suppression through the secretion of the 
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immunosuppressive cytokines IL-10 and TGFβ by Dsg3-specific Tregs, which will be 

discussed in Chapter 4. 

 A fascinating observation in PV is the fact that anti-Dsg3 autoAbs are necessary 

and sufficient to confer the blistering phenotype observed in patients in both neonatal 

mice and ex vivo human skin 213-215, 215. In addition, this phenotype is independent of the 

constant region of the autoAb216, 217, suggesting that is the direct binding of these 

autoAbs to Dsg3 that results in acantholysis. Because of the very clear role for autoAb in 

PV, I wanted to better understand how the B cells that secrete these autoAb arise, and 

why they persist within a patient to induce disease. This is the focus of my thesis, and 

will be discussed in subsequent chapters. 

 

1.3 Overview of Rotavirus 

Rotavirus is a segmented dsRNA virus of the Reoviridae family218. It is the most 

common cause of diarrhea in the world219, and is 95% penetrant by age 5220. It is 

responsible for 2 million hospitalizations and over 600,000 deaths annually across the 

globe221, the majority occurring on the Indian subcontinent.  

Rotavirus infections peak during the winter season221. Rotavirus is transmitted 

through the fecal-oral route, and potentially through respiratory droplets222, as it can 

infect cells of both the gastrointestinal and respiratory tract223-225. A high prevalence of 

anti-rotavirus antibodies throughout life suggests re-infection, and in some cases, are 

likely subclinical, as a percentage of rotavirus-infected adults can be asymptomatic226, 

227. 
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The eleven segments of the rotavirus genome are encapsulated by a triple-

layered icosahedral virion. The eleven segments encode six structural proteins (VP1 

through VP4, VP6, and VP7), and six nonstructural proteins (NSP 1 through NSP6)228.  

The outermost layer is comprised of VP4 and VP7, while the intermediate layer is 

comprised of 260 VP6 trimers229-231. Lastly, the innermost layer is comprised of VP2, 

which surrounds the transcriptional machinery, namely VP1 and VP3, the former being 

the RNA-dependent RNA polymerase232, 233.  As a triple layered particle (TLP), rotavirus 

is transcriptionally inactive. Upon internalization of the TLP into the host cell via VP7 

binding to the host cell surface, the outermost layer is shed, allowing the double-layered 

particle (DLP) to become transcriptionally active229, 234, 235. Mechanistically, the DLP 

extrudes RNA through a central pore formed by a VP6 trimer for translation by the host 

cell. There are twelve of these egress points, termed Type I channels, on the surface of 

the DLP232. 

 

1.3.1 Detailing the antibody response to rotavirus 

While antibodies to VP4 and VP7 are neutralizing, levels of neutralizing Ab 

against VP4 and VP7 do not always correlate with protection236, 237. In contrast, 

antibodies to VP6, which is the most antigenic protein in the virion238, 239, are non-

neutralizing in that they cannot prevent endocytosis of the rotavirus virion240. In addition, 

the VP6 protein is both the most antigenic and the most conserved across all strains of 

rotavirus241 (Figure 1-7). In fact, it determines which group each rotavirus strain belongs 

to; Group A rotaviruses are the main cause of gastroenteritis in humans233.  
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Given, the non-neutralizing properties of anti-VP6 antibodies, it is thought that 

anti-VP6 IgA Abs function during transcytosis of the molecules across the intestinal 

membrane242-245, interfering with virion replication through several distinct mechanisms. 

This includes steric hindrance of the RNA extrusion pore within the Type 1 channel, as 

well as altering the conformation of the Type I channel, both of which can inhibit RNA 

extrusion from the DLP and therefore, replication of the rotavirus particle within the host 

cell245-247. However, not all anti-VP6 Abs are able to inhibit rotavirus transcription246-248, 

and the functional roles of these non-inhibiting anti-VP6 Abs are not fully understood. 

Anti-VP6 IgG as a whole may function to promote opsonization, however, the role of 

anti-VP6 IgG in viral clearance has not been fully characterized. It has been shown that 

mucosal immunization of mice, either intranasally or orally, induced serum anti-VP6 IgG 

responses249. In addition, immunization with VP6 induces protection against rotavirus in 

several different animal models250-254, and that this protection post-VP6 immunization 

can be achieved in the absence of IgA255 and even B cells249. Thus, the role of VP6 in 

promoting an immune response seems to be complex and not restricted to a purely B 

cell response. 

It has been shown that rotavirus infection induces polyclonal activation of mature 

naïve B cells256 within the secondary lymph nodes and Peyer’s patches, leading to the 

production of rotavirus-specific IgM as early as three days post-infection. Interestingly, 

this early polyclonal activation is independent of T cells, as a T cell-deficient mouse 

exhibits a similar phenotype, suggesting a potential TI pathway of IgM production. The 

rotavirus protein NSP4, which acts as an enterotoxin257, 258, has been shown to be able 

to induce the activation of macrophages and subsequent secretion of proinflammatory 

cytokines through TLR2259, and perhaps this same mechanism of cell activation holds 
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true in the B cell compartment as well. This would not be surprising, as strong signals 

from TLRs binding cognate ligands can bypass the antigen specificity requirement to 

activate B cells via the BCR260-262. 

In characterizing this polyclonal B cell activation more closely, it was discovered 

that only TLPs were able to induce polyclonal activation, and this activation was 

achieved through the VP7 protein expressed on the surface of the TLP263. How VP7 

initiates this polyclonal response is uncertain, but the contribution of plasmacytoid 

dendritic cells (pDCs) in rotavirus infection likely plays a role, as loss of this population in 

mice increases viral titers with a concomitant decrease in serum rotavirus antibody 

titers264. Polyclonal B cell activation could arise from bystander activation mediated by 

the secretion of type I interferon from pDCs activated via TLR7265, which occurs after the 

decapsidation of the TLP within the endosome to expose viral dsRNA after 

internalization of the virion. 

Genetic characterization of the circulating B cell response to the VP6 protein was 

first reported in 2003, where James Crowe’s group compared the anti- VP6 immune 

response in infants and adults, showing a bias towards the VH1-46 gene segment in 

both patient populations. This was in contrast to randomly selected B cells, which 

demonstrated a VH3 family bias266. The level of somatic mutations in VP6-specific Abs 

markedly differed between these two patient populations by four-fold, yet half of the 

mutations observed were located in AID hotspot motifs267.  

Poor Ab responses to rotavirus in infants may also be related to the passive 

transfer of maternal IgG or IgA to the fetus, which occurs through the placenta and 

breast milk, respectively268. Indeed, studies in pigs269 have recapitulated the 
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phenomenon that the presence of anti-rotavirus maternal IgG reduces rotavirus-related 

symptoms, but also impairs the ASC response post-infection. This is not specific to 

rotavirus either; protection in infants administered a trivalent inactivated influenza 

vaccine was markedly lower when maternal Abs were present270, and thus may play 

some role, along with lower rates of somatic mutation, in the less than ideal protection 

rate of ~80% for the current rotavirus vaccines271-273.  

The VH1-46 restriction observed in the systemic anti-VP6 Ab repertoires of both 

infants and adults is striking, as it suggests that VH1-46 Abs may have an inherent 

advantage within the context of a rotavirus VP6 response due to their germline BCR 

sequences.  This was further supported by studies analyzing the gut-specific, α4β7-

expressing IgD- population of VP6-specific clones, where VH1-46 was again dominant, 

and demonstrated a markedly lower somatic mutation frequency compared to randomly 

selected, α4β7
+ IgD- memory B cells (0.3 versus 5.7%, p= 0.002)274.  

This VH1-46 bias in infants was further attributed to the CD5- B cell population, 

as the CD5+ subset of rotavirus-specific B cells was dominated by VH3-23275, which is 

thought to be more prevalent in infants276, 277. Both populations, however, demonstrated 

low somatic mutation frequencies, suggesting that a lack of somatic mutation is a facet 

of all B cell subsets in infants. 

Extensive studies have characterized the anti-VP6 B cell response in adults 

based on subset. This strong VH1-46 gene restriction in the anti-VP6 Ab repertoire of 

acutely infected rotavirus patients is most apparent in the IgD+CD27- subset, and shrinks 

with the upregulation of surface CD27 and reduction of surface IgD, resulting in a 

decrease from >25% of the repertoire in the IgD+CD27- subset, to roughly 8% of both the 
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IgD+CD27+ and IgD-CD27+ anti-VP6 repertoire. Within the IgD-CD27+ population, VH1-02 

becomes the most represented VH gene segment at about 10%278. It should be noted 

that VH1-46 representation in the control populations in these subsets are significantly 

lower, but this diminishing utilization of VH1-46 is still apparent in the rotavirus-infected 

cohort, as it is not observed in randomly selected B cells. This may be due to efforts 

within the GC in regard to affinity maturation that likely diversifies the anti-VP6 response, 

resulting in VH1-46 being overtaken as the dominant VH gene utilized in the IgD-CD27+ 

population of B cells. However, the bias of VH1-46 observed in the IgD+CD27- alludes to 

VH1-46+ B cells acting as a primary population in the initial immune response to VP6 

early on during the course of infection, and may suggest a mechanism by which the 

body generates a full, diverse immune response against rotavirus. 

Detailed structure-function studies of the somatic mutations in two VP6-specific 

VH1-46 mAbs have described a dependence on mutations located both in and around 

the heavy chain CDR2 for binding to VP6266, 279 (Figure 1-8). Furthermore, this 

dependence on the heavy chain was still apparent in the context of a chimeric antibody 

lacking a heavy chain CDR3, nor the physiologic light chain that arose from that same B 

cell that exhibited only a 10-fold reduction in affinity for VP6279. Given the role of the 

CDRs in defining specificity, these findings are somewhat unsurprising, but the fact that 

these distinct VH1-46 mAbs have a particular reliance on the heavy chain CDR2 for 

antigen affinity, which is germline-encoded by the VH gene segment, underscores a 

reason for the inherent biases for VH1-46 representation within the anti-VP6 Ab 

repertoire.  

How these anti-VP6, VH1-46 Abs mediate protection have been described 

above. It should be emphasized that the two VH1-46 anti-VP6 mAbs that have been 
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thoroughly characterized show juxtaposing ability to inhibit transcription via steric 

hindrance of the RNA extrusion pore, in that one VH1-46 can245, 279, and the other 

cannot248, 279. Regardless of their ability to inhibit rotavirus replication, their role in 

rotavirus is still relevant, and may contribute to the VH1-46 Ab response in pemphigus 

vulgaris. This idea will be tested in Chapter 3. 
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1.4 Experimental Questions 

1. Does there exist any shared characteristics in the anti-Dsg3 Ab repertoires in 

unrelated patients, and if so, why? 

2. Can we identify a potential route of how anti-Dsg3 autoAb arise, perhaps through 

shared genetic characteristics in the antibody responses between a self-antigen and a 

foreign antigen? 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 



33 
 

1.5 Figures 
 

 

 

 

 

 

 

 

Simplified depiction of VDJ recombination at the immunoglobulin heavy chain locus. 
Recombinase-activating gene (RAG) 1 and 2 initiate a DNA recombination event, 
bringing together one of the 23 and one of the six DH and JH segments, respectively. A 
subsequent DNA recombination event joins one of the 38-46 functional VH gene 
segments to this DH-JH join. This nascent heavy chain is then subjected to functional 
testing upon pairing with a surrogate light chain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. Overview of VDJ recombination 



34 
 

 

 

 

 

 

 

 

 

Figure 1-2. Schematic of a rearranged immunoglobulin heavy chain 

 

Complementarity determining regions (CDRs) are highlighted in red. Framework regions 
are highlighted in yellow. The CDR1 and CDR2 are encoded entirely by the germline 
sequence of the VH gene segment; the CDR3 spans the VDJ junction. 
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Figure 1-3. Diagram of the immunoglobulin heavy chain constant regions 

 

A simplified schematic of the constant regions downstream of the immunoglobulin heavy 
chain locus. Switch regions are indicated by a grey oval, which mediates class switch by 
activation-induced cytidine deaminase. Due to deletion of intervening DNA between two 
switch regions, class switch can only occur in one direction; from left to right.  
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Figure 1-4.  The role of antigen in peripheral selection 

 

Robert Brink and colleagues determined that anatomical expression of self-antigen plays 
a role in negative selection within the germinal center, wherein expression of self-antigen 
within secondary lymphoid tissue promotes the deletion of self-reactive B cells (left). In 
contrast, B cells specific for self-antigens that are tissue-restricted, and thus not 
expressed in secondary lymphoid tissue, are not subject to deletion (right). 

 

Source: Chan,T.D. et al. Elimination of germinal-center-derived self-reactive B cells is 
governed by the location and concentration of self-antigen. Immunity. 37, 893-904 
(2012). 
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Figure 1-5. Structure of desmoglein, a member of the cadherin family 

(a) Schematic representation of the extracellular (EC) domains of desmoglein. 

Adapted from Ishii,K. Identification of desmoglein as a cadherin and analysis of 
desmoglein domain structure. J. Invest Dermatol. 127, E6-E7 (2007). 

(b) Crystal structures of C-cadherin, highlighting both trans and cis interactions that 
would occur between two neighboring cells. 

Source:  

Boggon,T.J. et al. C-cadherin ectodomain structure and implications for cell adhesion 
mechanisms. Science 296, 1308-1313 (2002). 
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Figure 1-6. Overview of the desmoglein compensation theory 

Expression of desmoglein (Dsg)1 and Dsg3 in the epithelium is inversely-related to one 
another (green and blue triangles, respectively). As a result, the layers in which blisters 
are apparent differ depending on disease stage. When anti-Dsg3 antibodies (Abs) are 
detected, pemphigus vulgaris (PV) patients present with blisters in the oral cavity, as 
Dsg1 is not fully expressed throughout the epidermis of the mucous membrane, and 
cannot compensate for the loss of Dsg3. This is in contrast to the skin, where Dsg1 can 
compensate for the loss of Dsg3, and thus patients do no present with blisters on the 
skin. As disease progresses to include anti-Dsg1 Abs, PV patients present with blisters 
of the skin and the oral cavity due to loss of both Dsg1- and Dsg3-mediated adhesion. 

 

Adapted from Wolff K, Goldsmith LA, Katz SI, Gilchrest BA, Paller AS, Leffell DJ: 
Fitzpatrick’s Dermatology in General Medicine, 7th Edition: 
http://www.accessmedicine.com 

Copyright © The McGraw-Hill Companies, Inc. All rights reserved. 
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Figure 1-7. Diversity of VP6 within the Reoviridae family 

 

Rotavirus belongs to the dsRNA virus family Reoviridae. VP6 amino acid sequences 
from selected genera of Reoviridae were aligned using ClustalW2. The three selected 
VP6 sequences, taken from three strains that have either been isolated from humans or 
been used to vaccinate humans, cluster away from other Reoviridae genera. 
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Residues important for VP6 reactivity 
          -----------FR1----------- --CDR1-- -------FR2------- --CDR2-- -----------------FR3------------------ 
VH1-46    QVQLVQSGAEVKKPGASVKVSCKAS GYTFTSYY MHWVRQAPGQGLEWMGI INPSGGST SYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYC  
RV6-25    QVQLQESGAEMRKPGASVRISCKTS GYTFTTYY IHWVRQAPGQGLEWLGV INPKGGYT TYAEKFQGRVTMTTDTSTSTIYIELRGLKSDDTAIYYC  
RV6-26    EVQLVESGAEVKKPGASVKVSCKAS GYSFTSYY VHWVREAPGEGLEWMGM INPSDGST YYAQRFQPRVTMTRDTSTTTVFMEMSGLRSEDTAVYYC   

 

 

Figure 1-8. Overview of amino acid residues relevant in two VH1-46 antibodies specific 
to VP6 

 
Residues that increase affinity for VP6 are highlighted in green, and residues that 
decrease affinity are highlighted in red. Green residues are enriched in and around the 
heavy chain complementarity determining region (CDR) 2. 
 
Sources:  
Weitkamp,J.H. et al. Infant and adult human B cell responses to rotavirus share common  
immunodominant variable gene repertoires. J Immunol. 171, 4680-4688 (2003). 
 
Kallewaard,N.L. et al. Functional maturation of the human antibody response to 
rotavirus. J  
Immunol. 180, 3980-3989 (2008)
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CHAPTER 2: COMMON HUMORAL RESPONSES TO DESMOGLEIN 3 AS 

EVIDENCED BY SHARED VH1-46 GENE USAGE 

 

2.1 Abstract 
 

Pemphigus vulgaris (PV) is a potentially fatal autoimmune disease in humans 

characterized by suprabasal blistering of the skin and oral mucosa due to autoantibodies 

(autoAb) against desmoglein 3 (Dsg3), a transmembrane desmosomal cadherin that 

mediates keratinocyte adhesion in the epidermis. AutoAb repertoire cloning from four PV 

patients with active disease using phage display and heterohybridoma technologies 

reveals shared VH gene usage among Dsg3 autoAbs, with pathogenic VH1-46 Abs 

identified from all four patients. Sequence analysis indicates a population of VH1-46 Abs 

demonstrating less replacement mutations than non-VH1-46 counterparts. To determine 

the role of somatic hypermutation in the development of Dsg3 autoreactivity, we reverted 

somatically mutated Abs to their germline sequences and tested these Abs for their 

ability to bind Dsg3. Three of five VH1-46 germline Abs bound to Dsg3, while zero of five 

non-VH1-46 germline Ab did not. Site-directed mutagenesis studies indicate that acidic 

amino acid residues in the VH1-46 CDRs are necessary and sufficient for Dsg3 

reactivity. Our data demonstrate that a subset of PV autoAb utilizing VH1-46 are able to 

bind Dsg3 without somatic mutation, suggesting that a population of naïve B cells in 

these patients were autoreactive upon entering circulation. In contrast, another subset of 

Abs require somatic mutations to become Dsg3 autoreactive, likely as a result of the 

germinal center reaction. This work suggests two separate development pathways 

leading to Dsg3 reactive autoAb that be shared across unrelated patients. 
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2.2 Introduction 
 

Antibody (Ab) repertoires in humans are diverse and can form as many as 100 

billion unique specificities28, 29. However, the process of forming the Ab repertoire is 

certain to create autoreactive B cells that must be deleted or remain dormant in order to 

prevent autoimmunity. Autoimmunity affects 8% of the U.S. population1, and is the third 

most prevalent category of disease. The relatively high prevalence of disease 

demonstrates the fallibility of the human immune system, with errors leading to 

potentially self-destructive consequences. In order to better understand and treat 

autoimmune diseases, we must first understand the mechanisms by which autoreactive 

clones are created and why the immune system allows these clones to persist and 

ultimately lead to autoimmunity. 

Pemphigus vulgaris (PV) is a tissue-specific autoimmune disease characterized 

by autoAbs to the epidermal protein desmoglein 3 (Dsg3). Dsg3 autoAbs are necessary 

and sufficient to cause pathognomonic blisters in several models of PV213-215. Prior 

studies have underscored the role of T cells in PV, wherein >95% of PV patients express 

the human leukocyte antigen (HLA) alleles DRB1*0402 and DQB1*0503197, 280, signifying 

a genetic predisposition to PV. However, the majority of individuals expressing these 

HLA alleles do not go on to develop PV280, indicating that HLA haplotype is not sufficient 

in the development of PV. Dsg3 is expressed under the Aire promoter in the thymus, 

which likely induces deletion of Dsg3-autoreactive T cells195. However, studies have 

shown that unaffected carriers of HLA-susceptibility alleles demonstrate a low frequency 

of circulating Dsg3-reactive T cells, similar to frequencies observed in PV patients208. In 
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addition, healthy carriers of HLA-susceptibility alleles demonstrate higher frequencies of 

regulatory T cells192 in comparison to patients with PV, suggesting that T effector and T 

regulatory cells may participate in the regulation of tolerance to Dsg3. 

Currently, while there are some descriptions of the B cell repertoire in PV 193, 281-

283, none are comprehensive and effectively probe into the tolerance checkpoints that 

are overtaken Dsg3-autoreactive B cells. To form a B cell receptor, a B cell clone will 

undergo V(D)J recombination rearranges VH, DH, and JH gene segments to encode a 

diverse repertoire of heavy chains, which pairs with functional light chains derived from a 

parallel mechanism8, 9. Upon interaction with its antigen in the periphery, a B cell can 

then undergo somatic mutation, a process by which activation-induced cytidine 

deaminase and DNA polymerase η introduce DNA mutations into the B cell receptor 

sequence to increase affinity for antigen284.  

In order to understand the mechanisms by which Dsg3 Abs arise, our lab has 

cloned the Dsg3-specific Ab repertoires of four PV patients with active disease. Across 

all four patients, we isolate anti-Dsg3 Abs that utilize the VH1-46 gene segment. 

Furthermore, we hypothesize that these VH1-46 Abs may be physiologically more fit to 

bind Dsg3 due to the requirement of zero to very few somatic mutations to bind Dsg3, 

which may explain their presence in the anti-Dsg3 Ab repertoires of four different 

patients. 

 

2.3 Results 
 

To determine whether there exists an equivalent B cell tolerance mechanism to 

eliminate Dsg3-reactive clones from the repertoire as described in Chapter 1, we 
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conducted qPCR to detect the presence of Dsg3 RNA in various pooled tissues from 

healthy human donors. In comparison to the control skin sample, we could not detect 

any Dsg3 RNA in the bone marrow, spleen, or PBMCs (Figure 2-1 A), despite the ability 

to detect other control RNAs (CD90, Stro-1) known to be expressed in these same 

samples (Figure 2-1 B). Interestingly, we were able to detect the presence of Dsg3 RNA 

in the thymus, which does express Dsg3 under the Aire promoter285 (Figure 2-1 A).  

In order to probe the Dsg3 autoAb repertoires from patients, we took a genetics-

based approach wherein we isolated B cell clones from the circulating blood of PV 

patients with active disease to create antibody phage display (APD) libraries. These 

APD libraries are comprised of upwards of 108 randomly-paired light and heavy chains 

from a single patient286, and allow us to conduct antigen-based enrichment to isolate 

clones of interest from the B cell repertoire. In addition, we are able to sequence these 

phage-expressing single chain variable fragments, or scFv, for genetic analyses. Lastly, 

by utilizing this approach, we are also equipped to produce monoclonal scFv for 

validation and functional studies. 

We created IgG APD libraries from two patients with active disease (Table 2-I, 

PV1 and PV2), and then subjected these libraries to Dsg3 ELISA-based panning to 

enrich for Dsg3-specific IgG clones. In addition to these two APD libraries, 

heterohybridoma panels were generated from two other patients with active disease 

(Table 2-I, PV3 and PV4) and clones were selected for Dsg3 specificity. A portion of 

mAbs isolated from patient 1 have been previously reported282, but in total, we isolated 

16 distinct heavy chains comprising six clonal lineages as defined by heavy chain CDR3. 

In patient 2, we isolated three heavy chain representing three clonal lineages. Patients 3 

and 4 antibody libraries generated one unique antibody each; the mAb from patient 3 
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was previously reported as PVMAB786287 . Of these clonal lineages, three bound to both 

Dsg 3 and Dsg1, while the remainder bound only to Dsg3, and was consistent across all 

unique heavy chain within each clonal lineage. Using a cutoff of 50% inhibition of Dsg3 

ELISA-based binding in the presence of EDTA, most mAbs demonstrated a dependence 

on the presence of calcium to maintain Dsg3 binding (Table 2-I). Immunoprecipitation of 

chimeric Dsg molecules shows that most mAbs bound the distal EC1 domain of Dsg3, 

with the exception of PVE4-8 from patient 1, as well as 3.2 and 4.2 from patient 2, which 

bound both the Dsg3 EC1 and EC3 domains. This domain recognition was recapitulated 

with serum from these same patients (Table 2-II). 

Interestingly, across twenty-two heavy chains comprising eleven clonal lineages, 

the only shared genetic characteristic common to these four patients’ anti-Dsg3 

repertoires was the utilization of the VH1-46 gene segment (Table 2-I). These VH1-46 

Abs were validated to bind Dsg3 by immunofluorescence (Figure 2-2 A), and BIACORE 

analysis to quantitate the affinity of these mAbs (Table 2-III). Based on epitope mapping 

(Table 2-II), most bound the proximal EC1 domain which is thought to play a major role 

in Dsg3 trans interactions. In accordance with the Dsg3 epitopes bound by these VH1-

46 autoAbs, all were able to induce an acantholytic blister upon injection into ex vivo 

human skin explants (Figure 2-2 B). Sequence analysis of AK23288, 289, a pathogenic Ab 

isolated from an active immune mouse model of PV, reveals that VH1-46 is the closest 

human VH gene segment for this particular mAb based on amino acid sequence (Figure 

2-3), further highlighting the utilization of VH1-46 in the autoimmune response to Dsg3 in 

both human and mouse. 

Interestingly, when we conducted somatic mutation analyses on these VH1-46 

Abs, they did not demonstrate high levels of somatic mutation in comparison to non-
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VH1-46 mAbs (median 4 versus 8, P≤0.01 via Wilcoxon rank-sum test, Table 2-IV). 

Furthermore, the VH1-46 Abs did not demonstrate evidence of positive selection in the 

germinal center using a Bayesian estimation (BASELINe) test290, 291 (Table 2-IV) due to a 

lower observed mutation frequency than expected under the null hypothesis of no 

selection. In contrast, one VH1-69 clonal lineage exhibited statistically significant 

evidence of positive antigen-driven selection, and another trended towards positive 

antigen-driven selection with several clones with a p-value from 0.05 to 0.10 (Table 2-IV, 

light gray). 

The low number of somatic mutations, coupled with the lack of positive selection 

based on mutational analyses, prompted us to determine whether these VH1-46 clones 

relied on somatic mutations to bind Dsg3, we reverted these clones to their germline 

(GL) sequence (Table 2-V) and expressed them as monoclonal scFv to test via ELISA 

and other in vitro assays for Dsg3 specificity. In case where there was more than one GL 

prediction due to D gene assignment, both predictions were made into monoclonal scFv. 

Dsg3 ELISAs showed that two VH1-46 GL Abs did not demonstrate Dsg3 reactivity 

(Figure 2-4 A-B), but three other VH1-46 GL Abs maintained the ability to bind Dsg3 

(Figure 2-4 C-E). This is contrast to zero of five non-VH1-46 GL Abs (Figure 2-4 F-J) 

isolated from these same patients. Immunofluorescence (IF) experiments conducted on 

those three GL Abs that maintained Dsg3 reactivity correlated in terms of IF staining 

intensity with OD values by ELISA (Figure 2-4 K).  BIACORE analyses revealed that in 

concordance with a lower OD value by ELISA, 3.2 GL bound Dsg3 with eighty-fold lower 

affinity than its SM counterpart. On the other hand, PVE4-8 GL and 4.2 GL1/2 had 

comparable affinities (approximately two-fold lower) for Dsg3 as their SM derivatives 

(Table 2-III). In addition, we tested these VH1-46 Abs for polyreactivity to nucleic acids 
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by both immunofluorescence and ELISA, and did not observe any reactivity to Hep2 

cells by either methodology (Figure 2-5). 

We conducted mutagenesis experiments focusing on the two of five VH1-46 GL 

Abs that required somatic mutation for Dsg3 reactivity (Figure 2-4 A-B). We observed 

that mutagenizing only two acidic residues in the CDRs to their polar analogs in the 

somatically-mutated F779 mAb abolished the ability of these mAbs to bind Dsg3 (Figure 

2-6 A-B). Conversely, insertion of these acidic residues into F779 GL1 and F706 GL2 

partially rescued the ability of these GL Abs to bind Dsg3. Parallel mutagenesis 

experiments of the somatically-mutated F706 mAb and F706 GL could not be carried out 

due to inefficient scFv production. Paradoxically, F779 GL2 did not reproduce this 

phenotype (Figure 2-6 A), suggesting that in addition to acidic residues, other mutations 

in the heavy chain CDR3 of F779 GL2 confer Dsg3 specificity. In addition, removal of 

acidic residues in the heavy chain CDR3 of PVE4-8 GL and 4.2 GL also abolished the 

ability of these Abs to bind Dsg3 (Figure 2-6 C-D), further demonstrating that acidic 

amino acid residues are necessary and sufficient to confer Dsg3 reactivity in VH1-46 

Abs.  

In addition, to define the residues mediating GL reactivity in these VH1-46 mAbs, 

we carried out mutagenesis experiments focusing on the VH1-46 heavy chain CDR2. 

We mutagenized, in a step-wise fashion, the eight residues in the heavy chain CDR2, as 

well as the single residue in the -1 and +1 position relative to the heavy chain CDR to 

the VH1-02 residue in that same position (Figure 2-7). ELISA showed that mutagenesis 

of only three residues in the VH1-46 CDR2 ameliorated binding to Dsg3 (Figure 2-7, 

VH1-02 CDR2 only). Reactivity to Dsg3 was not dependent on the +1 position, as there 

was no alteration in Dsg3 affinity by ELISA (Figure 2-7, PVE4-8 GL NYA). In contrast, 
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mutagenesis of the -1 position demonstrated a partial reduction in the ability to bind 

Dsg3 (Figure 2-7, PVE4-8 GL RIN/WIN). 

We also determined whether inherent polymorphisms of the VH1-46 locus could 

have contributed to acidic residues in the CDRs of these mAbs. There have been thirty-

five single nucleotide variants (SNVs) identified in the VH1-46 locus (Table 2-VI). 

Sequencing of IgM cDNA from each patient revealed that all patients matched to the 

most common VH1-46 allele, VH1-46*01. Of the thirty-five SNVs, eight do not alter the 

VH1-46 amino-acid sequence, nineteen SNVs encode a single amino-acid change in the 

FWRs, and eight encode a single amino-acid change in the CDR1 or 2. However, none 

of the thirty-five variants were observed in patients 1 and 2, while none of the eight CDR-

relevant SNVs were observed in patients 3 and 4, and thus genetic polymorphisms did 

not contribute to acidic residues present in the CDRs of these patients. 

One of the caveats of utilizing APD is the fact that the light and heavy chains 

from a patient are randomly paired together to form scFv. In order to determine the role 

for both the light and heavy chain in autoreactivity, we performed individual GL 

reversions of either the light or the heavy chain, and subjected these recombinant clones 

to ELISA to reactivity to Dsg3 and Dsg1. In all cases tested, reversion of the light chain 

was not sufficient to completely abolish binding, but did have some influence on the 

modulation of Dsg3 reactivity. However, reversion of heavy chain abolished Dsg3 

reactivity in all but one case (Figure 2-8), indicating that Dsg3 reactivity is predominantly 

encoded by the heavy chain, and not the light chain. 
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2.4 Discussion 
 

Overall, these data uncover shared VH1-46 gene usage in the anti-Dsg3 

autoimmune response across four distinct individuals with active disease, suggesting a 

common developmental mechanism of autoimmunity. This likely occurs through an 

increased physiological fitness of GL VH1-46 Abs in regards Dsg3 specificity and the 

relatively low reliance on somatic mutation to bind to Dsg3, increasing their likelihood of 

contributing in the early autoimmune response to self. 

The utilization of both phage display and heterohybridoma to clone the Ab 

repertoires of PV patients reduces the influence of both biases and artifacts resulting 

from the experimental technique. In support of the utilization of phage display, two 

separate studies, one using phage display and the other using single-cell PCR, identified 

the identical VH5-51 heavy chain and light chain pairings in the autoAb response to 

transglutaminase in patients with celiac disease 292, 293. The utilization of phage display 

as a technical approach likely results in the creation of nonphysiologic heavy light chain 

pairings. However, light chain shuffle experiments have resulted in generating the same 

pairings that were initially isolated through phage display294. While the role of the LC in 

conferring antigen specificity cannot be ignored completely, GL reversion experiments 

described above did highlight a predominant role for the heavy chain versus the light 

chain in conferring specificity (Figure 2-8), further validating the use of phage display in 

studying the Ab response towards any antigen of interest. 

The qPCR tissue studies (Figure 2-1) expand upon the theory of a lack of Dsg3 

expression in the bone marrow and secondary lymphoid organs. In addition, the fact that 

we were able to detect Dsg3 mRNA in both the skin and the thymus, wherein Dsg3 
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expression varies dramatically, underscores the broad range of RNA concentration that 

this assay can detect. This suggests that under normal conditions, Dsg3 is not 

expressed in the tissue sites where both central and peripheral tolerance mechanisms 

take place, and thus B cells specific for this self-antigen would not be deleted from the 

repertoire. Importantly the detection of CD90 and Stro-1 in the bone marrow sample 

confirms the presence of stromal cells295, which would be the population most likely to 

express Dsg3 in the bone marrow. However, as these tissue RNA samples were pooled 

from several different donors at a single timepoint, we can only make broad conclusions 

about the tissue-restricted expression of Dsg3 in the general population; perhaps in 

those expressing the PV HLA-susceptibility alleles there may be aberrant expression of 

Dsg3 in the periphery such that positive selection of Dsg3-binding B cells may be 

possible. Further experimental studies looking at this particular population may shed 

light on this idea. In addition, due to the nature of the experimental design, we cannot 

delineate between a large population of cells expressing a particular gene at low levels 

or vice versa. Lastly, it is not known whether Dsg3 may be trafficked to the secondary 

lymphoid organs via Langerhans cells upon tissue injury, as is the case for Leishmania 

antigens present in cutaneous tissue during infection99. However, based on these data 

describing the highly restricted expression of Dsg3, it is likely that the development of 

Dsg3-reactive B cell clones both in the bone marrow and the periphery occurs in the 

absence of tolerizing mechanisms. Thus, we wanted to determine at what stage Dsg3 

autoreactivity arises in the B cell compartment which could arise as a byproduct of V(D)J 

recombination, somatic hypermutation, or both. 

The only shared characteristic across the anti-Dsg3 Abs repertoires of these four 

patients was the presence of at least one mAb that utilized the VH1-46 gene segment. 
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This suggests that perhaps there may be something inherent to the VH1-46 gene 

sequence that might predispose Abs that utilize VH1-46 to be more physiologically fit to 

bind Dsg3 over other non-VH1-46 Abs, and thus may promote their detection early on in 

the autoimmune response. In support of an early role, these VH1-46s did not show 

evidence of positive selection (Table 2-IV), suggesting a lower reliance of somatic 

mutation for antigen affinity. It should be noted that the BASELINe test is underpowered 

to detect positive selection in a sequence with low numbers of somatic mutation. This 

observation had not been described in an earlier report utilizing the heterohybridoma 

approach283, however, none of the mAbs were validated to bind endogenous Dsg3 

expressed in human skin, and thus may not possess any biological relevance. A second 

study281 reported fifteen anti-Dsg3 mAbs, none of which utilized VH1-46, although the B 

cell enrichment strategy did not include plasma cells. In addition, one patient studied 

was under steroid therapy, which may also bias the observations within the autoAb 

repertoire of this patient. In contrast, the patients we studied were not on any systemic 

immunosuppressive therapy, and our selection strategies encompass all peripheral B 

cell subsets. 

The fact that these VH1-46 mAbs largely replicate the Dsg3 epitope binding 

patterns of patient serum (Table 2-II) underscore the relevance of these Abs in 

contributing to the serum Ab specificity. Within PV1, we did not observe serum binding to 

EC3, despite isolating PVE4-8 which binds both EC1 and EC3, and may suggest that 

PVE4-8 does not comprise a large portion of the serum Abs. In regards to PV2, we did 

not observe a complete overlap of epitopes between patient serum and the mAbs we 

isolated, and may be due to the inability to sample the complete B cell repertoire from a 

peripheral blood sample. 
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All mAbs that we isolated recognized an epitope located within the EC1 domain, 

which is thought to mediate both trans and cis Dsg3:Dsg3 interactions147, 148, and is likely 

responsible for the ability of these mAbs to induce a blister upon ex vivo human skin 

injection. Interestingly, three VH1-46 mAbs (PVE4-8, 3.2, and 4.2) also interacted 

strongly with EC3 of Dsg3. The nature of this interaction is unclear, as EC3 has not been 

described to mediate adhesion. It has been shown that combinations of “non-

pathogenic” mAbs can induce a blister168, potentially due to clustering of Dsg3 and/or 

activation of downstream signaling post-mAb binding296, 297. Whether this interaction with 

EC3 also contributes to pathogenicity in the context of PV is not known, but the 

relevance of these EC3-binding mAbs is still apparent as these are still interactions with 

a self-protein, and thus remain pathologic from the perspective of PV in that a vast 

majority of healthy individuals do not possess circulating anti-Dsg3 Abs. 

In addition, the VH1-46 mAbs isolated can also induce a suprabasal blister upon 

ex vivo human skin injection (Figure 2-2 B), highlighting their relevance in disease 

pathogenesis. Interestingly, restricted VH1-46 gene usage has not been observed in the 

autoAb response to antigens relevant in other autoimmune blistering diseases, such as 

Dsg1 in pemphigus foliaceus298, 299 , or the BP180300 and BP230300 antigens in bullous 

pemphigoid. Furthermore, a pathogenic murine mAb isolated from the active immune 

model uses murine VH1-53, which aligns most closely with VH1-46 based on amino acid 

sequence (Figure 2-3), and studies in paraneoplastic pemphigus, a related disease to 

PV, also isolated pathogenic VH1-46 mAbs301, demonstrating that this VH1-46 -

observation in the Dsg3 Ab response can be seen across different contexts and even 

across different species.  
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Upon reversion of Dsg3-specific Abs to their unmutated GL sequence, we 

observed a varying degree of GL reactivity, wherein three of five VH1-46 Abs bound 

Dsg3 upon reversion, as opposed to zero of five non-VH1-46 Abs (Figure 2-4). Looking 

at these three Dsg3-reactive GL Abs more closely, both GL revertants of 4.2 SM were 

strongly reactive, while 3.2 GL was lowly reactive by ELISA. Interestingly, this held true 

by immunofluorescence experiments, demonstrating that ELISA results correlate with 

intensity of binding by immunofluorescence as well as BIACORE analysis. Somatic 

mutation analyses in one GL-reactive VH1-46 clone demonstrated the specific 

dependence on amino acid residues in and around the heavy chain CDR2 (Figure 2-7), 

as residues from the VH1-02 gene segment which is most closely related to VH1-46, 

could not confer reactivity to Dsg3. Overall, the binding of three VH1-46 Abs is 

independent of somatic mutation, suggesting that the inherently stochastic process of 

V(D)J recombination can confer Dsg3-reactivity to a subset of VH1-46 B cell clones 

exiting the bone marrow. This phenomenon appears to be specific to VH1-46 Abs, as 

none of the five non-VH1-46 mAbs we tested (Figure 2-4 K), nor four others from a 

separate study281, bound Dsg3 upon reversion. Taken together, these data further 

supports a germline-encoded fitness for certain antigens based on VH gene segment 

utilized to form a functional heavy chain.  

Previous studies have described a large proportion of new emigrant B cell clones 

that demonstrate polyreactivity to nucleic acid, insulin, and lipopolysaccharide46. To 

ensure that these Dsg3-reactive GL Abs were not polyreactive, we tested these Abs for 

reactivity to nucleic acid by both immunofluorescence and ELISA, yet did not observe 

any reactivity to Hep2 cells (Figure 2-5), suggesting that the self-reactivity of these 

clones is specific to Dsg3, and likely not a result of polyreactivity. Whether there are 
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other self-Ag that these VH1-46 clones may bind is not as clear, and further studies 

utilizing a large panel of self-Ag would elucidate this point. 

Somatic mutation analyses reveal a lack of statistically-significant positive 

selection in the VH1-46 mAbs tested, pointing away from a clonal lineage that acquired 

somatic mutations that would increase affinity for Dsg3 in the germinal center. In 

addition, mutagenesis experiments suggest that even in the context where somatic 

mutations are required for Dsg3 reactivity, only a low number of somatic mutations are 

necessary, as removal or insertion of only two replacement mutations in F779 and F706 

were necessary and sufficient to confer Dsg3 binding (Figure 2-6). This was apparent in 

Dsg3-reactive GL Abs as well, further supporting the role of acidic amino acids in 

mediating binding of mAbs to Dsg3, which can come from germline V(D)J sequence or 

somatic mutation.  

In summary, these data suggests that a Dsg3-reactive B cell can arise from two 

developmental stages: V(D)J recombination in the bone marrow, or as a byproduct of 

somatic hypermutation in the periphery. Acidic amino residues, derived from either V(D)J 

recombination or somatic hypermutation, are necessary and sufficient to confer Dsg3 

reactivity. Furthermore, the shared utilization of VH1-46 in the Dsg3 Ab repertoires 

across four patients is likely due to the requirement of zero to a low number of somatic 

mutations to become Dsg3-specific, and may increase these Abs probability of initiating 

an autoimmune response to Dsg3, ultimately leading to PV. This study suggests that the 

potential for generating Dsg-3 reactive B cell clones in the bone marrow is likely, and 

thus there should exist an appropriate method of tolerance to prevent these clones from 

differentiating into antibody secreting cells.  
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A lack of Dsg3-reactive T cells due to negative selection in the thymus may be 

essential in maintaining tolerance against Dsg3 in the broader population. However, in 

some cases, Dsg3-reactive T cells escape negative selection and enter circulation, as 

has been described in both healthy people and PV patients that express the HLA 

susceptibility alleles for PV207, 302. Perhaps during infection, a relaxation of negative 

selection occurs such that Dsg3-reactive B cells interact with antigen, acquire T cell help 

from a Dsg3-reactive T cell, and thus initiate an autoimmune response against Dsg3. 

Future studies to understand B cell tolerance checkpoints in the context of Dsg3, as well 

as potential triggers of the anti-Dsg3 autoimmune response will further our 

understanding of this disease and autoimmunity as a whole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

2.5 Figures 
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Figure 2-1. Desmoglein 3 is not detected in the bone marrow or peripheral lymphoid 
organs 

Bulk RNA from human tissue samples was reverse-transcribed and subject to qPCR. 
Transcript quantities were quantitated after normalization to β-actin. A black line within a 
gel indicates splicing to include molecular weight marker within the same experiment. 
Data are representative of three independent experiments. Error bars indicate SEM. 
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Clone  
name(s) Variable region gene usage # unique 

clones Dsg3 Dsg1 Calcium-
sensitive 

PV1  V D J         

PVE4-8 VH1-46 
*01/03 DH3-22*01 JH6*02 1 + - + 

(D3)1d/2c  
et al. VH1-69*06 DH3-22*01 JH4*02 7 + - + 

(D31)2/29  VH1-69 
*06/09 DH6-19*01 JH4*02 1 + + + 

(D3)3c/9  
et al. VH3-07*03 DH2-15*01 JH4*02 3 + +/- + 

(D31)12b/6 
et al.  VH4-04*02 DH5-12*01 JH2*01 

3 + + - 

(D3)4/30 VH3-30*04 D3-22*01 JH4*02 1 + - ND 
PV2 V D J 

    

3.2 
VH1-46 
*01/03 DH5-12*01 JH4*02 1 + - + 

4.2 VH1-46 
*01/03 

DH6-25*01/ 
DH3-22*01 JH6*02 1 + - + 

VH5a VH5-a*01 DH3-22*01 JH3*02 1 + - ND 
PV3 V D J 

    
F706  VH1-46 

*01/03 DH2-21*02 JH4*02 1 + - + 

 
VK2-24*01 - JL1*01     PV4 V D J 

    
F779 VH1-46 

*01/03 DH6-19*01 JH4*02 
1 + - + 

  VK2-24*01 - JL2*01 
    

 

Table 2-I. Characteristics of anti-Dsg3 monoclonal antibodies isolated from four PV 
patients 
 

Unique clones within each clonal lineage are distinguished by distinct patterns of 
somatic mutation; in these lineages one representative clone is named with “et al.” to 
indicate the isolation of other mAbs with the same variable region gene usage and 
complementarity determining region (CDR) 3 but unique somatic mutations. ND, not 
determined. (D3) and (D31) Abs are listed as previously described282. 

 
 



58 
 

 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2-II. Epitope mapping of PV serum IgG and PV monoclonal antibodies  
 

Chimeric constructs containing a single Dsg3 extracellular (EC) domain in a Dsg2 
backbone were incubated with either serum or purified scFv and immunoprecipitated. 
The chimeric Dsg3-Dsg2 protein, if pulled down, was detected via Western blot. Data 
are representative of three biological replicates.  

 

  EC1 EC2 EC3 EC4 EC5 

PV1 serum X         

PVE4-8 X 
 

X 
  

(D3)1d/2c X* 
    

(D31)2/29 X 
    

(D3)3c/9 X 
    

(D31)12b/6 X 
    

PV2 serum X X X X   

3.2 X 
 

X 
  

4.2 X 
 

X 
  

VH5a X 
    

PV3 serum X         

F706 IgG4 X 
    

PV4 serum X         

F779 IgG1 X         

*Dsg3 amino acids 1-161 
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Figure 2-2. Anti-desmoglein 3 monoclonal antibodies induce an acantholytic phenotype  

(a) Sections of normal human skin were incubated with monoclonal antibodies (mAb) 
expressed as single chain variable fragment (scFv). The negative control is an scFv 
mAb against an irrelevant antigen. The positive control is a previously characterized anti-
Dsg3 mAb, (D31)2/29 282. Scale bar, 20 μM.  

(b) Ex vivo human skin was injected with 50 μg scFv, subjected to a Nikolosky test, and 
incubated overnight. The next day, the tissue was embedded and sections were taken 
for histology. Scale bar, 100 μM. 

Data are representative of three independent experiments. 
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Table 2-III. Kinetic data of VH1-46 anti-Dsg3 monoclonal antibodies as measured by 
surface plasmon resonance. 
 

Purified scFv were flowed over a CM5 biosensor chip coupled with recombinant Dsg3 
protein. Background was adjusted using a reference cell to subtract nonspecific shifts in 
refractive index. All curves were initially fit to a 1:1 Langmuir binding model. For those 
mAbs with considerable bulk change or χ2 values greater than 2, curves were also fitted 
to the heterogeneous ligand or conformational change models. Data represents 1-2 
experiments over multiple concentrations. 

 
 



61 
 

 
 
 
 
 

 
 
 

 

Figure 2-3. The pathogenic mouse anti-Dsg3 mAb AK23 utilizes mouse 
VH1-53, which is the closest homolog of VH1-46 in the mouse  

 

The human VH1-46 and murine VH1-53 germline amino acid sequences 
were aligned to the AK23 mAb sequence288, 289.  

 

A blue letter indicates a hydrophobic residue. 

A black letter indicates a hydrophilic residue. 

A red letter indicates a negatively charged residue. 

A green letter indicates a positively charged residue. 

 

The CDR1 and CDR2 sequences are boxed in blue and green, 
respectively. Asterisks indicate replacement mutations occurring in AK23 
relative to the murine VH1-53 germline sequence; only one replacement 
mutation is observed in CDR2 of AK23. 
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Table 2-IV. BASELINe test for antigen-driven selection in Dsg3-specific mAbs 
 

BASELINe sigma value quantitates the strength of negative or positive selection based 
on somatic mutation patterns and allows one to compare strength of selection across 
every Ab tested290, 291. Negative and positive selection are indicated by – and + symbols 
before the p values, respectively.  While two VH1-46 mAbs exhibit significant evidence 
of negative selection against replacement mutations in the FWRs (p<0.05, highlighted in 
dark gray), no VH1-46 mAb demonstrates statistically significant evidence of positive 
antigen-driven selection in the CDRs. Several non-VH1-46 clonal lineages demonstrate 
evidence of negative selection in the FWRs that is statistically significant. In terms of 
positive selection, VH1-69 clonal lineage 1 shows statistically significant evidence of 
positive antigen-driven selection in the CDRs, while VH1-69 clonal lineage 2 CDRs 
trends towards significance (0.05<p<0.1, highlighted in light gray). 
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Table 2-V. CDR 
sequences of anti-
Dsg3 mAbs 
 

mAbs that are 
somatically mutated  
are indicated with an 
SM. Those that are 
germline-reverted are 
indicated with a GL, 
and reverted germline 
residues are 
underlined. Point-
mutations are indicated 
with a blue, underlined 
residue. 
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Figure 2-4. VH1-46 mAbs 
require few to no somatic 
mutations to bind Dsg3 

(a-j) Purified scFv was tested 
for the ability to bind Dsg3 by 
ELISA at various 
concentrations. Black bar 
indicates somatically-mutated 
(SM). Black dashed lines 
indicates germline version 1 
(GL1). Gray dashed lines 
indicates germline version 2 
(GL2). Black long dash dot 
lines indicate a construct with 
a germline light chain and a 
somatically mutated heavy 
chain (LC GL/HC SM). Gray 
long dash dot lines indicate a 
construct with a somatically 
mutated light chain and a 
germline heavy chain (LC 
SM/HC GL). 

 

(k) Native human skin tissue 
was incubated with purified 
scFv and staining was 
detected by 
immunofluorescence. Scale 
bar, 20 μM. 

 

Error bars indicate SEM. Data 
are representative of three to 
five independent replicates. 
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Figure 2-5. Pemphigus vulgaris mAbs do not demonstrate Hep 2 polyreactivity 

Patient mAbs were tested for reactivity to Hep2 cells by both immunofluorescence (a) 
and ELISA (b). Commercial negative (Neg. Ctl.) and positive (Pos. Ctl.) controls are 
displayed. Secondary only control (Sec. Only) indicates staining of cells with anti-
hemagglutinin, horseradish peroxidase-conjugated antibody alone, which was used to 
detect scFv. Scale bar, 20 μM. Data are representative of 1-2 experiments tested at 
multiple concentrations. 
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Figure 2-6. Acidic amino acid residues in the CDRs confer Dsg3 binding 

 

(a-d) Selected acidic amino residues were mutated to their respective germline (GL) 
constructs, or mutated to their polar analogs in both somatically-mutated (SM) or GL 
constructs. Point mutants were expressed as scFv, purified, and tested for Dsg3 
specificity by ELISA and immunofluorescence where relevant. Scale bar, 20 μM. Error 
bars indicate SEM. Data are representative of three independent experiments. 
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Figure 2-7. Dependence on heavy chain CDR2 residues for VH1-46 germline reactivity 
to Dsg3 

 

Residues (black, underlined) in PVE4-8 GL were mutated to the corresponding residue 
in either VH1-02*01/VH1-02*05 or VH1-02*02/VH1-02*03/VH1-02*04 (blue, underlined). 
Point mutants were expressed as scFV and subjected to Dsg3 ELISA over multiple 
concentrations. Error bars indicate SEM. Data are representative of two independent 
replicates. 
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Table 2-VI. Single nucleotide variants (SNVs) of the VH1-46 gene in the human genome  
 

35 previously reported VH1-46 SNVs in the 1000 genome project 
(http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes) are listed along with their 
respective observed minor allele frequency. As a comparison, the predominant codon 
sequence, the variant sequence, and whether the resulting nucleotide variant is silent or 
non-silent, are also listed. CDR1 and CDR2 residues are boxed in blue and green, 
respectively. None of the CDR1 or CDR2 SNVs were found in the four PV patients 
studied. 

 

http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes
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Figure 2-8. Determinants of Dsg3 autoreactivity are predominantly encoded within the 
heavy chain 

 

(a-d) Light and heavy chains were individually reverted while maintaining the somatic 
mutations in the heavy and light chain (LC GL/HC SM, LC SM/HC GL respectively). 
Chimeric constructs were expressed as scFv and tested for Dsg3-binding by ELISA. 
Somatically mutated (SM) constructs are indicated with a solid black line.SM indicates 
somatically mutated. GL indicates germline reverted. 

 

(e) Acidic residues in either the light chain CDR1 and CDR2 or the heavy chain CDR3 
were mutated to their polar analogs (SM LC D/E→N/Q and SM HC D→N, respectively), 
expressed as scFv, and subjected to Dsg3 ELISA. 

 

Error bars indicate SEM across three independent experiments. 
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CHAPTER 3: DETERMINANTS OF VH1-46 ANTIBODY CROSS-REACTIVITY TO 

DESMOGLEIN 3 AND ROTAVIRUS VP6 

 

3.1 Abstract 

Evidence of shared VH1-46 gene usage in an antibody response to an antigen 

has only been primarily described in pemphigus vulgaris (PV) and in the immune 

response to the rotavirus VP6 antigen. This interesting connection between an 

autoimmune response to a self-antigen and an immune response to a foreign antigen 

prompted us to determine whether rotavirus may be a potential trigger for the 

development of PV and explain the tolerance of autoreactive clones. To evaluate 

whether desmoglein (Dsg) 3/VP6 cross-reactive heavy chains occur in humans, we 

produced combinatorial BCR phage display libraries from two PV patients with active 

disease, a PV patient in remission, and a normal individual. Across these four libraries, 

we identified six cross-reactive heavy chains in the repertoire of the PV patient in 

remission, and notably all cross-reactive heavy chains utilized VH1-46. Functional 

testing identified two of these cross-reactive VH1-46 heavy chains that both disrupt 

keratinocyte adhesion as well as inhibit rotavirus infection, indicating the potential for 

VH1-46 heavy chains to have both pathologic autoimmune and protective immune 

functions. In addition, we performed mutational analyses to determine what structural 

features are required for a VH1-46 BCR to react to these two antigens. Taken together, 

these studies suggest that certain VH1-46 B cell populations may be predisposed to 

Dsg3 and VP6 cross-reactivity, but multiple mechanisms prevent the onset of 

autoimmunity after rotavirus exposure. 
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3.2 Introduction 

 To combat the numerous foreign insults a typical human would encounter on a 

daily basis, there must be a diverse B cell repertoire of a similar magnitude to prevent 

infection. The heterogeneity of the human antibody (Ab) repertoire, which can be 

upwards of 1011 specificities per individual28, 29, arises from two distinct, largely stochastic 

processes of B cell receptor (BCR) diversification: V(D)J recombination and somatic 

hypermutation.  

 Given these immunological processes to vary the BCR repertoire, within the 

context of an immune response to an antigen, certain BCRs will have an inherent 

advantage over others simply due to its nucleotide sequence. Thus, any biases in 

representation would suggest advantageous characteristics of an optimal BCR for that 

particular antigen. These characteristics could be a specific amino acid motif, a certain 

heavy chain-light chain pairing, or an overrepresentation of a singular VH gene segment. 

A prominent example is in the human antibody response to influenza, wherein a 

phenylalanine within the heavy chain CDR2 that mediates interaction with hemagglutinin 

likely explains the overrepresentation of VH1-69 in several individuals303-305.  

 VH bias in an immune response to an antigen has been described not just in 

response to foreign antigen, but in the context of self-antigen as well. Dsg3 is a 

desomosomal cadherin responsible for mediating adhesion in stratified squamous 

epithelia. It is the autoantigen targeted in pemphigus vulgaris (PV), a blistering disease 

characterized by acantholysis, which a separation of the spinous layers of the epidermis 

and can occur both in the skin and the oral cavity143, 213. Passive transfer of purified anti-

Dsg3 immunoglobulin (Ig) from PV patients is necessary and sufficient to cause an 

acantholytic phenotype in several disease models 213-215. Furthermore, this phenotype is 
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independent of both complement and the constant region of the Ab217, 306, underscoring 

the role for specific autoAb binding to Dsg3 in mediating disease. 

 We have previously characterized the autoAb repertoires of four PV patients with 

active disease and discovered across these unrelated patients a common utilization of 

VH1-46 in their anti-Dsg3 repertoires, which is likely due to the reliance on zero to few 

somatic mutations to bind Dsg3 located predominantly in the heavy chain CDR2167. 

Interestingly, VH1-46 gene usage has also been observed in the immune response to 

the rotavirus VP6 protein266, 274, which has also been observed to exhibit binding in the 

absence of high levels of somatic mutation267, 274. In addition, two anti-VP6 VH1-46 mAbs 

depend on somatic mutations in and around the heavy chain CDR2279, similarly to the 

anti-Dsg3 VH1-46 mAbs we have described in PV. Therefore, we wanted to determine 

whether rotavirus may act as an immunological trigger in the autoimmune response to 

Dsg3 by permitting cross-reactive heavy chains to exist in the repertoire. 

 Directed ELISA testing of previously isolated VH1-46 IgG mAbs from PV patients 

reveal that one of five cross-react to VP6. Cross-screening three combinatorial IgM 

antibody phage display (APD) libraries from PV patients reveal VH1-46 heavy chains 

that cross-react to VP6 in one patient. Furthermore, two of these VH1-46 heavy chains 

are able to both inhibit rotavirus replication and keratinocyte adhesion in vitro, 

suggesting that Dsg3-reactive VH1-46 heavy chains may persist in the repertoire due to 

the ability to cross-react to VP6 in some individuals, indicating the potential for VH1-46 

Abs to have both pathologic autoimmune and protective immune functions. 
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3.3 Results 

 First, we utilized ELISA to determine whether previously isolated VH1-46 single 

chain variable fragments (scFv) from four patients with active disease167. In addition, two 

VH1-46 mAbs (RV6-25, RV6-26) isolated from a rotavirus-exposed individual307 were 

cloned and expressed as scFv. One of five somatically mutated (SM) PV-derived VH1-

46 heavy chain demonstrated cross-reactivity to VP6 (4.2), while neither RV6-25 nor 

RV6-26 demonstrated cross-reactivity to Dsg3 (Figure 3-1 A). These clones were then 

reverted to their germline (GL) VDJ sequence and expressed as scFv. PVE4-8 GL and 

4.2 GL1 exhibited borderline negative levels of cross-reactivity upon reversion, as the 

lower end of the standard deviation range fell below the cutoff value for VP6 reactivity. In 

addition, neither RV6-25 nor RV6-26 demonstrated cross-reactivity to Dsg3 upon 

reversion, but maintained reactivity to VP6 (Figure 3-1 B). 

 To determine whether we could isolate cross-reactive APD clones that bound 

both Dsg3 and VP6, we utilized two screening techniques: single and double antigen 

selection. The former technique was conducted as published286, and allowed us to 

examine the anti-Dsg3 or anti-VP6 repertoires independently. The latter technique, 

wherein we alternated between Dsg3- and VP6-based selection using recombinant 

human Dsg3 and rotavirus double-layered particles (DLPs) containing surface VP6 in its 

native state, enriches for the opportunity of isolating cross-reactive APD clones. These 

approaches were applied to several patient libraries at several stages of disease308 

(Table 3-I).  

 To expand upon the focused testing of previously isolated clones, we conducted 

a more thorough examination of the IgG repertoire via the above methods. A majority of 

the Dsg3-based selection data has been previously published167, 282, 308, and largely is 
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enriched in VH1-46 utilization. As expected due to Dsg3 ELISA values below the cutoff 

value for a diagnosis of PV (Table 3-I), the library that was isolated from a PV patient in 

remission did not generate Dsg3-reactive clones (data not shown). 

In contrast, VP6-based selection revealed strong utilization of the VH4 family in 

the IgG repertoires of these patients. We did not observe a predominance of VH1-46 

gene usage in any of the IgG APD libraries we screened by either VP6-based or double 

antigen selection. Interestingly, in one patient (PV3) where we were able to sample from 

distinct stages of disease, a new clone emerged that was not isolated in the previous 

timepoint (Table 3-II). These clones were expressed as scFv and validated to bind VP6 

but not Dsg3 by ELISA (Figure 3-2). Double antigen selection did not reveal any cross-

reactive clones in the single library we subjected to cross-panning (data not shown).  

 Given the rarity of cross-reactive clones in the IgG compartment, as well as the 

role for heavy chain CDR2 mutations in the VH1-46 response to both Dsg3 and VP6, we 

conducted mutagenesis experiments to characterize the heavy chain CDR2 somatic 

mutation patterns that could lead to cross-reactivity.  Somatic mutations that were found 

in either two VP6-reactive VH1-46 mAbs, RV6-25 and RV6-26, were mutagenized into 

various VH1-46 backbones that represented three different conditions (Figure 3-3): 

1.) A SM VH1-46 mAb that demonstrated cross-reactivity (4.2 SM) 

2.) A GL VH1-46 that did not demonstrate cross-reactivity (F779 GL2) 

3.) A GL VH1-46 mAb that demonstrated marginal cross-reactivity (PVE 4-8 GL) 

 

In total, we tested six permutations: RV6-25 or RV6-26 mutations in three distinct VH1-

46 backbones. Mutagenesis was carried out in a step-wise fashion, so to characterize 
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each region (-1 flank, CDR2, +1 flank) and its role in cross-reactivity within each 

backbone. These clones were then expressed as scFv and subjected to Dsg3 and VP6 

ELISAs.  

In the first condition (4.2 SM), mutagenesis of two amino acids in the heavy chain 

CDR2 to the respective RV6-25 residues led to a reduction in binding to Dsg3. 

Interestingly, these two residues abolished the ability of 4.2 SM to bind to VP6. 

Subsequent mutagenesis of the -1 and +1 positions relative to the heavy chain CDR2 

resulted in a complete loss of binding to Dsg3 without any alteration of VP6 reactivity 

(Figure 3-4 A). Mutagenesis of 4.2 SM with RV6-26 somatic mutations resulted in a 

similar loss of binding to VP6, but did not markedly affect Dsg3 reactivity (Figure 3-4 B). 

Insertion of RV6-25 or RV6-26 somatic mutations into F779 GL2 did not increase its 

affinity for either Dsg3 or VP6 above cutoff OD values (Figure 3-4 C,D). 

Similar to the first condition, when RV6-25 somatic mutations were inserted into 

PVE4-8GL, the ability of this mutant to bind Dsg3 was completely lost, without a 

concomitant increase in VP6 reactivity (Figure 3-4 E). Insertion of a single RV6-26 

somatic mutation within the CDR2 into PVE4-8 GL did not largely affect reactivity to 

either antigen (Figure 3-4 F, purple line). However, when the -1 residue, along with the 

single residue in the CDR2 were mutated to their respective RV6-26 residues, there was 

an increase in reactivity to both Dsg3 and VP6 (Figure 3-4 F, orange line). Upon 

subsequent mutagenesis of the +1 residue to the relevant RV6-26 residue, reactivity to 

VP6 was abolished without a marked change in Dsg3 reactivity (Figure 3-4 F, pink 

line). A summary of the mutagenesis studies is shown in Table 3-III. 
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Given that unmutated IgM B cell receptors (BCRs) are formed in the bone 

marrow and have not undergone antigen exposure, Dsg3/VP6 cross-reactive potential 

might occur in all individuals and not just those with PV. To enrich for a starting 

population that is inherently more polyreactive than the IgG compartment46, we took a 

more comprehensive approach and screened combinatorial IgM APD libraries from two 

patients with active disease (PV8 and PV16), one patient in remission (PV1c), and a 

healthy individual (CH) (Table 3-I). Dsg3-based selection revealed VH1-46 usage in all 

PV patient libraries tested. VH1-46 was not over-represented in the initial libraries 

tested; we observed only two VH1-46 heavy chains in a total of 104 clones analyzed 

across the four libraries (Table 3-IV). The anti-Dsg3 IgM repertoire from PV1c, the 

patient in remission, was heavily VH1-46-enriched, while PV8 and PV16, which are 

derived from patients in active disease, demonstrated much broader VH gene usage. 

Interestingly, the healthy individual demonstrated an anti-Dsg3 IgM repertoire that was 

enriched in VH3-23, and did not demonstrate any VH1-46 gene usage (Tables 3 V-VIII). 

IgM clones were then expressed as scFv and validated to bind various antigens by 

ELISA (Figure 3-5).  

 Double-antigen enrichment of these IgM APD libraries revealed VH1-46 clones in 

one (PV1c) of four libraries tested. VH1-46 was not enriched in the APD IgM library 

isolated from PV8, PV16, nor the healthy individual; in fact, the VH families utilized in 

these libraries were relatively diverse compared to PV1c. The healthy individual 

demonstrated the least amount of diversity from a much lower number of heavy chains 

compared to the other libraries tested (Tables 3 V-VIII). Five clones isolated from PV16 

during double-antigen enrichment were also isolated during Dsg3-based selection 

(Table 3-VII, gray). Four clones isolated from double-antigen enrichment in PV8, PV16, 
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and CH demonstrated polyreactivity to Dsg3, VP6, BSA, and/or Hep2 antigens by ELISA 

(Figure 3-5). However, immunofluorescence studies with these polyreactive clones did 

not demonstrate surface staining characteristic of a Dsg3-reactive mAb in human skin 

(Figure 3-6). 

In contrast to the other libraries, PV1c was VH1-46 predominant upon double-

antigen selection; we isolated seven distinct VH1-46 heavy chains from this patient. 

Interestingly, two of the seven VH1-46 clones from the cross-screen were also found 

during Dsg3-based selection (Table 3-V, gray). ELISA and immunofluorescence 

revealed that six of the nine VH1-46 clones from PV1c bound to Dsg3 and VP6, two 

VH1-46 clones bound only to Dsg3, and a single VH1-46 clone bound solely to VP6 

(Figure 3-7). While PV1c IgM DVDV-8 did not appear to stain the surface of 

keratinocytes in human skin (Figure 3-7 B), immunofluorescence on monkey 

esophagus, a more sensitive substrate than human skin309, 310, revealed distinct staining 

characteristic of Dsg3 specificity (Figure 3-7 C). 

 The evident cross-reactivity of these VH1-46 clones prompted us to determine 

whether this binding to VP6 would possess any level of antiviral function. To test this, we 

utilized a previously established in vitro assay that exploits the ability of some mAbs to 

neutralize DLPs within a host cell via lipid-mediated introduction of DLPs pre-incubated 

with scFv311. Of the seven VH1-46 tested in this assay, two demonstrated a marked 

reduction in the number of rotavirus foci compared to the control antibody at 25 ug/mL 

(Figure 3-8 A). This reduction in foci by the VH1-46 scFv derived from PV1c was 

comparable to RV6-26, which has been previously shown to inhibit rotavirus 

replication245, 279.   Titration of scFv revealed that PV1c VH1-46 IgM DVDV-7 and -8 were 
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able to inhibit replication at a concentration of 25 ug/mL and 6.25 ug/mL, respectively 

(Figure 3-8 B).  

Given these two VH1-46 heavy chains’ relevance in protection against rotavirus, 

we wanted to determine whether they could also play a role in acantholytic blister 

formation. Upon incubation with keratinocytes in vitro, PV1c IgM DVDV-7 and -8 

inhibited Dsg3-mediated adhesion at varying levels corresponding to their respective 

Dsg3 affinities based on ELISA (Figure 3-9), suggesting that these two cross-reactive 

VH1-46 clones demonstrate the ability to both inhibit rotavirus infection and promote 

keratinocyte dissociation within the skin. 

 

3.4 Discussion 

 In total, these data suggests that a VH1-46 heavy chain can exhibit cross-

reactivity to Dsg3 and VP6, but this is largely modulated by sequences in both the CDR2 

and CDR3 of the heavy chain. Evidence of cross-reactive Abs contributing to 

autoimmunity have been described by several groups in a myriad of different contexts. 

Certain anti-Streptococcus antibodies can interact with cardiac myosin312 along with 

other human proteins 313, and likely contribute to the symptoms of rheumatic heart 

disease. In regards to other bacterial triggers in autoimmunity, there has been a strong 

association of previous infection with C. jejuni and the development of Guillain-Barre 

syndrome in humans314. Interestingly, experiments in rabbits immunized with C. jejuni 

have demonstrated a much more rapid development of limb weakness than controls315. 

In fogo sevalgem, an endemic form of pemphigus, antibodies that cross-react with Dsg1 

and sand fly antigens316 have also been shown to protect against leishmaniasis317, a 
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disease that is also prevalent in the regions affected by fogo selvalgem. It is intriguing 

that in these studies, the induction of autoimmunity does not appear to be 100% 

penetrant; the C. jejuni study in rabbits, for example, resulted in only four of the ten 

animals demonstrating limb weakness318. A similar observation of <100% penetrance 

was also reported in the context of a rat model of rheumatic heart disease319. 

 A challenge in delineating the connection of rotavirus and PV is the lack of 

shared linear epitopes between Dsg3 and VP6. Because of the apparent lack of 

molecular mimicry, we came across this potential connection due to the shared VH gene 

usage across the two antibody responses. We term this association the “shared VH 

gene usage theory”. The utilization of certain VH genes in an antibody response may 

increase physiological fitness in the context of binding one antigen, but not others. 

Based on this concept, we posit that the “shared VH gene usage theory” states that due 

to a shared VH gene usage between an immune response to a foreign antigen and an 

autoimmune response to a self-antigen, there must be some cross-reactive Abs that 

overlap between these two responses at some point in time. This has also been 

described for VH4-34 9G4 anti-idiotype antibodies in systemic lupus erythematosus 

which bind sugar moieties on erythrocytes50, 51 and arise after acute infection with 

Mycoplasma pneumoniae and/or Epstein-Barr virus320, 321. However, Abs of these type 

seem to bind a plethora of different self-antigens in addition to the I/I sugar moieties, 

including ssDNA, dsDNA, apoptotic cells322, and could be considered polyreactive in 

comparison to the VH1-46 Abs we described which are cross-reactive only to VP6 and 

Dsg3. In addition, it is not clear whether these anti-idiotype antibodies are protective 

against Mycoplasma pneumoniae and/or Epstein-Barr virus, and contrasts what we 
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observe in two cross-reactive VH1-46 antibodies that demonstrate both pathologic and 

protective functions in PV and rotavirus, respectively. 

 To test this theory, we conducted directed testing of previously isolated VH1-46 

IgG clones, and observed that only one of five VH1-46 heavy chains derived from PV 

patients exhibited cross-reactivity to VP6 (Figure 3-1 A), suggesting a low level of cross-

reactivity. GL reversion experiments further underscored a low amount of cross-reactivity 

in these clones (Figure 3-1 B). This was not entirely unexpected, as these clones were 

isolated using single-antigen selection, and thus may have favored high affinity clones 

solely targeting Dsg3. 

To probe the IgG repertoire more extensively for cross-reactive clones, we 

subjected IgG APD libraries to both single and double antigen selection. VP6-based 

selection of the IgG APD libraries tested did not reveal strong utilization of the VH1-46 in 

the anti-VP6 IgG repertoire. This is not surprising, as the predominance of VH1-46 is 

markedly lower in the IgD-CD27+ B cell subset compared to the naïve IgD+CD27- 

subset278, and is likely due to the acquisition of somatic mutations in non-VH1-46 clones 

that increase affinity such that the VH1-46 predominance is diminished over time. 

However, we were unable to isolate VH1-46 clones from the VP6-based selection. This 

may be due to these clones being outcompeted by the extremely high affinity clones we 

did recover, which dominated the repertoire by the final round of selection (Table 3-II). 

Furthermore, results from the double antigen selection of an IgG library did not reveal 

any cross-reactive clones, suggesting that cross-reactivity in the IgG compartment is 

rare. Future studies potentially conducing deep sequencing analyses of the anti-Dsg3 

and anti-VP6 Ab repertoires may reveal shared lineages that would identify a common 

clonal ancestor that would otherwise be lost during double-antigen selection. 
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Somatic mutation analyses of the heavy chain CDR2 region suggest that the 

threshold to acquire cross-reactivity through the process of somatic mutation varies 

between VH1-46 mAbs. Cross-reactivity was observed in one permutation, but the 

majority of the mutagenesis experiments resulted in a loss of antigen reactivity (Figure 

3-4, Table 3-III). It is likely that there is a role of the light chain and/or CDR1/3 of the 

heavy chain in conferring cross-reactivity, but these remain to be tested. A previous 

report in rotavirus depicting the interactions between the VH1-46 mAb RV6-26 and VP6 

have shown that RV6-26 relies on positively-charged regions located in the heavy chain 

CDR2 to bind to a negatively-charged patch of residues on the VP6 surface245. In 

contrast, the VH1-46 response in PV seems to depend on negatively-charged acidic 

residues, both in the heavy chain CDR2 and elsewhere, for Dsg3 specificity which can 

arise through either V(D)J recombination or somatic mutation167. This stark difference in 

VH1-46 mutation characteristics between a VP6 and Dsg3 response may explain the 

dearth of cross-reactive VH1-46 clones, as it would be unlikely for a single VH1-46 clone 

to acquire somatic mutations that could increase affinity to both antigens concurrently. 

Given the nature of affinity maturation in these two antibody responses, perhaps 

by probing the antigen-experienced IgG compartment, there is a loss of cross-reactivity 

in favor of high affinity for a single antigen. We then generated IgM APD libraries from 

these same patients as well as a healthy individual in order to be able to probe the IgM 

heavy chain repertoire. 

Three IgM APD libraries, two from PV patients and one from a healthy individual, 

did not reveal any IgM heavy chains that were specific for both Dsg3 and VP6 (Tables 

3VI-VIII), and may point to the rarity of creating a cross-reactive clone through V(D)J 

recombination. We did isolate clones that demonstrated polyreactivity that utilized a 
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variety of VH3 family members as well as VH1-69 (Figure 3-5 E). Isolation of these 

clones is likely a result of panning the IgM repertoire, which has been shown to be 

inherently polyreactive46. IF studies reveal that the heavy chains do not bind Dsg3 on the 

surface of keratinocytes (Figure 3-6), and thus it is unclear of these heavy chains’ role in 

the development of PV, but the existence of these clones may point to an alternative 

etiology of autoreactive clones originating from a polyreactive ancestor in a subset of 

individuals. 

The fact that we did not isolate cross-reactive clones specific for Dsg3 and VP6 

from three of these IgM libraries suggests that the process of generating APD libraries 

does not create artificial cross-reactive clones. In addition, the lack of cross-reactive 

clones in these three APD individuals may allude to a viral trigger that is distinct from 

rotavirus and has yet to be discovered. High-throughput polyclonal Ab studies utilizing 

panels of human viral antigens may elucidate additional viral triggers of PV outside of 

rotavirus.  

It is intriguing that we did isolate a Dsg3-reactive heavy chain from a healthy 

individual, given that this individual does not have PV (Table 3-I). This further supports 

that V(D)J recombination is certain to produce autoreactive heavy chains. It is then the 

burden of tolerance to inhibit these autoreactive clones from proliferating, differentiating, 

and ultimately contributing to standing serum antibody titers and a diagnosis of PV. 

In contrast, we isolated nine VH1-46 heavy chains from a PV patient in 

remission, six of which were validated to be cross-reactive (Figure 3-7). This VH1-46 

enrichment is not an artifact of phage display, as we detected only two VH1-46 clones 

out of ninety from the three unpanned APD libraries we tested (Table 3-IV). VH1-46 



83 
 

utilization has also been described as representing only ~2% of the circulating 

repertoire323, and thus to recover six validated VH1-46 clones suggests strong 

enrichment of VH1-46 within the cross-reactive Ab response of this individual. 

Out of these six cross-reactive VH1-46 clones, two demonstrated the ability to 

inhibit rotavirus replication within a host cell (Figure 3-8). This ability to hamper the 

rotavirus life cycle points to a functional role for these VH1-46 cross-reactive heavy 

chains during an active rotavirus infection. Perhaps this clarifies why these heavy chains 

can persist in the repertoire despite being autoreactive, and in certain individuals, these 

may eventually mature into high affinity anti-Dsg3 antibody secreting cells that can 

cause PV. Furthermore, these two VH1-46 clones can also cause keratinocyte 

dissociation (Figure 3-9), underscoring their role in causing PV should they be 

expressed as soluble antibody. 

It is intriguing that we also isolated four cross-reactive VH1-46 heavy chains that 

do not inhibit rotavirus replication, because it is known that not all anti-VP6 Abs inhibit 

replication246-248. These cross-reactive VH1-46 heavy chains may not necessarily be 

protective, but their mere existence does suggest that the “shared VH gene usage 

theory”, at least within the context of rotavirus and PV, is theoretically possible, since we 

did observce Ab cross-reactivity to VP6 and Dsg3 to some extent. 

What differentiates the one IgM APD library wherein we isolated cross-reactive 

clones from the other two IgM APD PV patient libraries is the stage of disease; PV1c 

was taken from a patient in remission after rituximab, while the other libraries were from 

two patients with active disease. While short-term alterations in VH gene distribution 

have been observed in a two rheumatoid arthritis patients after treatment with rituximab, 
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one of these patients, while demonstrating a normal VH gene distribution before 

treatment, exhibited statistically significant modulations of VH gene distribution in both 

directions across certain VH gene families324. However, these same alterations in VH 

gene distribution were not observed in a larger, thirteen person cohort of patients with 

anti–myelin-associated glycoprotein neuropathy post-rituximab treatment325. Regardless, 

in the context of PV1, the ablation of the B cell compartment with rituximab may have 

promoted the overrepresentation of cross-reactive clones in the new B cell repertoire, 

perhaps in an effort to repopulate the B cell niche. Longitudinal studies of these patients’ 

B cell repertoires both before and after treatment would elucidate whether disease stage 

and/or rituximab plays any role(s) in the detection of cross-reactive heavy chains. 

The observation that a majority of VH1-46 IgM heavy chains demonstrate cross-

reactivity suggests that that inherently stochastic process of V(D)J recombination  

produces autoreactive clones. While this conclusion itself is not that surprising, the fact 

that more people do not have PV given these observations is interesting, and suggest 

that there are robust tolerance mechanisms in place prevent these clones from 

differentiating into antibody-secreting cells. Given the rarity of PV, as well as the distinct 

pattern of somatic mutations in the Dsg3 and VP6 IgG response, it is possible that these 

cross-reactive clones are initially activated based on reactivity toward a foreign antigen, 

but likely do not develop IgG reactivity toward Dsg3, as a large majority of the population 

do not demonstrate circulating Dsg3-reactive T cells302 to provide help to these cross-

reactive clones in becoming autoreactive ASCs. 

While VH1-46-based crossreactivity to Dsg3 and VP6 is rare in the class-

switched IgG compartment, our data demonstrate that there is a theoretical possibility 

that a class-switched VH1-46 B cell clone could become cross-reactive via somatic 
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hypermutation. In addition, unmutated VH1-46 heavy chains demonstrate 

preponderance towards being cross-reactive to VP6 and Dsg3; in some cases, even 

being able to both inhibit rotavirus replication and promote the dissociation of 

keratinocytes. The immune system is then tasked with inhibiting these cross-reactive 

clones from persisting and/or differentiating into antibody-secreting cells. In a large 

majority of the population, this is likely the case given the high prevalence of rotavirus 

infection. However, further studies need to be done to better understand why in the few 

people that do develop PV, what developmental event(s) occurred that led to this loss in 

tolerance.  
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3.5 Figures 
 

 
 
 
 
Figure 3-1. Cross-reactivity to VP6 is rare in previously isolated IgG Abs 

 
(a) Previously isolated, somatically mutated (SM) IgG Abs from patients with active 

PV167, 282, 287 or a rotavirus-exposed individual307 were tested for cross-reactivity to 
VP6 by ELISA. 

(b) These same Abs were reverted to germline (GL) and subjected to ELISA. 
 
Green bars indicate Dsg3 reactivity. Black bars indicate bovine serum albumin 
reactivity. Blue bars indicate VP6 reactivity. Blue dashed line indicates cutoff 
value of 0.263 for VP6 reactivity. Green dashed line indicates cutoff value of 
0.398 for Dsg3 reactivity. Dsg3 control is clone (D31)2/29. Error bars indicate 
SEM. Data are representative of two independent experiments.  
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Patient Libraries 
Produced 

Disease  
Stage 

Dsg3 ELISA  
INDEX 

Symptoms 

PV1 IgG Active 115 Mucocutaneous 

PV1c IgM, IgG Remission 5 None 

PV3 IgG Active 70 Mucocutaneous 

PV3a IgG Relapse 150 Mucocutaneous 

PV8 IgM Active 151 Mucocutaneous 

PV16 IgM Active 140 Mucocutaneous 

CH IgM Healthy ND None 

 
 

Table 3-I. Characteristics of patients studied 
 
Standard cutoff value for a positive diagnosis based on Dsg3 ELISA is 20 as per 
manufacturer’s indication. ND indicates not determined. PV3 in this study is listed as 
PV2 in Chapter 2 to maintain consistency with a collaborator’s recent manuscript308. 
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a 
 

Clone GL VH gene GL DH gene GL JH gene CDR1 CDR2 CDR3 Dsg3 VP6 BSA
PV1 IgG V4-2 IGHV4-34*01 IGHD6-19*01 IGHJ5*02 GGPFNIDQ INHAGGT ARGGRAVPDAGENWFDS - + -
PV1c IgG V4-9 IGHV1-2*02 IGHD5-12*01 IGHJ4*02 GYTFTGYY INPSSGGT ARAKDTWRPLSAYDL - + -
PV1c IgG V4-14 IGHV4-4*02 IGHD6-19*01 IGHJ6*02 GGSISSSDW IHHTGST ARARLSVGYGMDV - + -
PV3 IgG V4-1 IGHV4-39*01 IGHD7-27*01 IGHJ2*01 SISSSSYF VFYTGESN ARRPQLGIVSWYFDL - + -
PV3a IgG V3-1 IGHV4-39*01 IGHD3-22*01 IGHJ3*02 GGSVSSTNYY LFNSGKS ARHSFTDYNDAFDI - + -

ELISA Reactivity

 
 
b 

Clone GL VL gene GL JL gene CDR1 CDR2 CDR3 Dsg3 VP6 BSA
PV1 IgG V4-2 IGKV4-1*01 IGKJ3*01 QSVLYSSNNKNY WAS QQYFSPPFT - + -
PV1c IgG V4-9 IGKV4-1*01 IGLJ3*01 QSVLYSSNNKNY WAS HQYYSTPPT - + -
PV1c IgG V4-14 IGLV3-1*01 IGLJ3*01 KLGDKY QDS QAWDSSRVV - + -
PV3 IgG V4-1 IGKV3-20*01 IGKJ1*01 QSVSSSY GAS QQYGRSPWT - + -
PV3a IgG V3-1 IGLV1-47*01 IGLJ3*02 SSNIGSNY RNN ATWDDSLSGWV - + -

ELISA Reactivity

 
 

Table 3-II. IgG clones isolated from VP6-based selection 
 
APD libraries were subjected to four rounds of enrichment against VP6. Germline (GL) 
assignments are displayed, along with CDR sequences. V3/4 indicates isolation from 
rounds 3 or 4 of VP6-based selection, respectively. Reactivity to various antigens was 
also tested by ELISA. 
 

(a) Heavy chains 
(b) Light chains 
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Figure 3-2. IgG clones isolated by VP6-based selection are mono-specific for VP6 

 
IgG clones isolated from APD were tested for ELISA reactivity against Dsg3 (green), 
BSA (black), and VP6 (blue). Green dashed line indicates cutoff value of 0.225 for Dsg3 
reactivity. Dsg3 control is clone (D31)2/29. Neg. Control is a mAb against an irrelevant 
antigen. Error bars indicate SEM. Data are representative of two independent 
experiments.  
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a 

 
b 

 
 
Figure 3-3. Outline of CDR2 mutagenesis experiments 
 

(a) To test whether mutations in an around the CDR2 play a role in VH1-46 cross-
reactivity, we selected two germline (GL) constructs, PVE4-8 GL and F779GL2, 
and one somatically mutated (SM) construct, 4.2 SM. These three VH1-46 
backbones were then mutagenized in a step-wise fashion with somatic mutations 
from RV6-25 and RV6-26. 

(b) Amino acid sequences of the CDR2 mutants. Black underlined residues indicate 
mutations found in 4.2 SM. Blue underlined residues indicate mutations found in 
RV6-25.  Pink underlined residues indicate mutations found in RV6-26. 
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Figure 3-4. Somatic mutations in and around the VH1-46 CDR2 rarely confer cross-
reactivity 
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Figure 3-4. Somatic mutations in and around the VH1-46 CDR2 rarely confer cross-
reactivity 
 
(a-f) CDR2 mutants were subjected to Dsg3, VP6, and BSA ELISAs over multiple 
concentrations. Blue dashed line indicates VP6 cutoff value of 0.423. Green dashed line 
indicates Dsg3 cutoff value of 0.307. VP6 Ctl. is RV6-26. Neg Ctl. is an mAb against an 
irrelevant antigen. Error bars indicate SEM. Data are representative of two independent 
replicates.  
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VH1-46 
Antibody 

 Baseline Antigen 
Reactivity 

Mutations Added 
RV6-25 RV6-26 

4.2 SM 
Dsg3 + Reduction Reduction 

VP6 + Reduction Reduction 

F779 GL 
Dsg3 - No Change No Change 

VP6 - No Change No Change 

PVE4-8 GL 
Dsg3 + Reduction Increase 

VP6 +/- Reduction Increase 

 
 
 

Table 3-III. Summary of CDR mutagenesis experiments 
 
Alterations in reactivity to Dsg3 and VP6 are displayed for the CDR2 mutants tested. 
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Table 3-IV. Diversity in VH distribution across the IgM APD libraries before selection. 
 

A total of 40-60 clones were selected from the unpanned IgM APD libraries. Functional 
reads were analyzed for VH gene usage and clonality. 
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a 

Clone GL VH gene GL DH gene GL JH gene CDR1 CDR2 CDR3 Dsg3 VP6 BSA Hep2

PV1c IgM D3-2 IGHV1-46*03 IGHD1-1*01inv IGHJ4*02 GYTFTSYY INPSGGST ARDSSLAFDY + + - ND +
PV1c IgM D3-3 IGHV1-46*03 IGHD3-16*01 IGHJ4*02 GYTFTSYY INPSGGST AREERDLFLHY + + - ND +
PV1c IgM D3-4 IGHV3-30*18 IGHD1-20*01 IGHJ4*02 GFTFSSYG ISYDGSNK AKGNGAPLDY + - - ND ND
PV1c IgM D3-6 IGHV1-46*03 IGHD3-22*01 IGHJ3*02 GYTFTSYY INPSGGST ARDDGLSAFDI + - - ND +
PV1c IgM D3-12 IGHV1-46*03 IGHD2-2*01 IGHJ4*02 GYTFTSYY INPSGGST ARDMLPAVGDY + - - ND +
PV1c IgM D3-14 IGHV1-18*01 IGHD3-10*01 IGHJ6*02 GYTFTSYG ISAYNGNT ATHTGRYGMDV + - - ND ND
PV1c IgM D3-22 IGHV3-7*01 IGHD2-2*01inv IGHJ6*02 GFTFSSYW IKQDGSEK ARVGRGTGTIDYYYGMDV + - - ND ND
PV1c IgM D3-24 IGHV1-18*01 IGHD5-12*01 IGHJ6*02 GYTFTSYG ISAYNGNT ARGGDIVATIGYYYGMDV + - - ND ND
PV1c IgM DVD-1 IGHV3-64*01 IGHD3-10*01 IGHJ6*02 GFTFSSYA ISSNGGST ARGPVRGVIDQADYYYYYGTDV + + - ND -
PV1c IgM DVD-5 IGHV1-46*03 IGHD2-2*02 IGHJ4*02 GYTFTSYY INPSGGST ARESCSSTSCYFDY + + - ND +
PV1c IgM DVDV-1 IGHV1-46*03 IGHD1-26*01 IGHJ4*02 GYTFTSYY INPSGGST ARDSGSLSFDY + + - ND +
PV1c IgM DVDV-3 IGHV4-28*03 IGHD4-17*01 IGHJ4*02 GYTFTSYY INPSGGST ARIDYGIDY + - - ND ND
PV1c IgM DVDV-6 IGHV1-46*03 IGHD5-5*01 IGHJ4*02 GYTFTSYY INPSGGST ARDFGRGYSYGYPGHFDY - + - ND -
PV1c IgM DVDV-7 IGHV1-46*03 IGHD1-26*01 IGHJ4*02 GYTFTSYY INPSGGST ARDRELALDY + + - ND +
PV1c IgM DVDV-8 IGHV1-46*03 IGHD6-13*01 IGHJ4*02 GYTFTSYY INPSGGST ARDDSSSLDY + + - ND +

ELISA Reactivity Dsg3 IF 
Reactivity

PV1c

 
 
 
 

b 

Clone GL VL gene GL JL gene CDR1 CDR2 CDR3 Dsg3 VP6 BSA Hep2

PV1c IgM D3-2 IGLV2-8*01 IGLJ1*01 SSDVGGYNY EVS SSYAGSNKHV + + - ND +
PV1c IgM D3-3 IGLV2-8*01 IGLJ7*01 SSDVGSYNL EVT FSYAGDNNFV + + - ND +
PV1c IgM D3-4 IGLV6-57*01 IGLJ3*02 SGSIASNY EDN QSYDSSTWV + - - ND ND
PV1c IgM D3-6 IGLV2-23*01 IGLJ3*01 SGDVGRYNL EGS FSYSGHNTGI + - - ND +
PV1c IgM D3-12 IGLV2-8*01 IGLJ3*02 SSDIGGYNY EVT LSYAGNNNFI + - - ND +
PV1c IgM D3-14 IGLV7-43*01 IGLJ3*02 TGAVTSGYY STS LLYYGGAQLV + - - ND ND
PV1c IgM D3-22 IGLV3-1*01 IGLJ3*02 KLADKY QDD QAWDSTTVMV + - - ND ND
PV1c IgM D3-24 IGLV2-14*04 IGLJ3*01 SSDVGGYNY DVS SSYTSSSTVV + - - ND ND
PV1c IgM DVD-1 IGLV1-44*01 IGLJ3*02 SSNIGSNT SNN AAWDDSLNGRV + + - ND -
PV1c IgM DVD-5 IGLV3-21*02 IGLJ3*01 NIGSKS DDS QVWDSSSDVV + + - ND +
PV1c IgM DVDV-1 IGLV2-8*01 IGLJ3*01 SSDVGGYNY EVS SSYAGSNNFV + + - ND +
PV1c IgM DVDV-3 IGLV1-40*01 IGLJ3*02 SSNIGAGYD GNS QSYDSSLSARV + - - ND ND
PV1c IgM DVDV-6 IGKV3D-11*01 IGKJ4*01 QSVSSY DAS QQRSNWPLT - + - ND -
PV1c IgM DVDV-7 IGLV2-8*01 IGLJ7*01 SSDVGAYNY EVT SSYAGSNTVV + + - ND +
PV1c IgM DVDV-8 IGLV2-23*01 IGLJ3*02 SSDIGSYDL EDT FSYAGKSVFV + + - ND +

ELISA Reactivity Dsg3 IF 
Reactivity

PV1c

 

Table 3-V. PV1c IgM APD clones 
 
APD libraries were subjected to four rounds of either single- or double-antigen selection. 
Germline (GL) assignments are displayed, along with CDR sequences. D3/4 indicates 
isolation from rounds 3 or 4 Dsg3-based selection, respectively. DVD/DVDV indicates 
isolation from rounds 3 or 4 Dsg3/VP6-based selection, respectively. Reactivity to 
various antigens was also tested by ELISA and immunofluorescence (IF). ND indicates 
not determined. Clones highlighted in gray also were isolated from double-antigen 
selection.  
 

(a) Heavy chains 
(b) Light chains 
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a 

Clone GL VH gene GL DH gene GL JH gene CDR1 CDR2 CDR3 Dsg3 VP6 BSA Hep2

PV8 IgM D3-2 IGHV4-34*01 IGHD4-4*01 IGHJ3*02 GGSFSGYY INHSGST ARAGNYGNFDGFDI + - - ND ND
PV8 IgM D3-4 IGHV2-5*02 IGHD6-19*01 IGHJ4*02 GFSLTTTGVG IFWDDDK AHTGWLGFFDY + - - ND ND
PV8 IgM D3-6 IGHV3-33*01 IGHD4-17*01 IGHJ4*02 GFTFSSYG IRYDGSNK ANWRPTGPTYFDS + - - ND ND
PV8 IgM D3-13 IGHV1-46*03 IGHD1-26*01 IGHJ5*02 GYTFTSYY INPSGGST ARGGIVGATTGGNNWFDP + - - ND ND
PV8 IgM D3-19 IGHV5-51*01 IGHD4-17*01 IGHJ4*02 GYSFTSYW IYPGDSDT ARLRYGDYGGAFDY + - - ND ND
PV8 IgM D3-27 IGHV4-31*03 IGHD4-17*01 IGHJ3*02 GDSISSGGYS IYHSGNT AGYGIDDAFDI + - - ND ND
PV8 IgM D3-36 IGHV7-4-1*02 IGHD6-25*01 IGHJ3*02 GYTFTSYG INTNTGNP ARGRDAFDI + - - ND ND
PV8 IgM D4-11 IGHV5-51*01 IGHD5-5*01 IGHJ4*02 GYSFTSYW IYPGDSDI ARGPDTASFDY + - - ND ND
PV8 IgM DVD-7 IGHV1-69*06 IGHD1-1*01 IGHJ5*02 GYTFTSYG INPNSGGT ARNPPATGSFDP + + + - -
PV8 IgM DVDV-5 IGHV1-8*01 IGHD3-16*01 IGHJ5*02 GYTFTSYD MNPNSGNT ARGGWFDP ND ND ND ND ND

ELISA Reactivity Dsg3 IF 
Reactivity

PV8

 
 
b 

Clone GL VL gene GL JL gene CDR1 CDR2 CDR3 Dsg3 VP6 BSA Hep2

PV8 IgM D3-2 IGLV1-51*01 IGLJ3*01 SSNIGSSY DDS GTWDSSLSSVV + - - ND ND
PV8 IgM D3-4 IGLV3-21*02 IGLJ3*01 NIGSKS DDD QVWDTTSDRVL + - - ND ND
PV8 IgM D3-6 IGKV3-20*01 IGLJ3*01 QSVNSNS SAS QQYGGSPFT + - - ND ND
PV8 IgM D3-13 IGLV1-36*01 IGLJ3*01 SSNIGSNS YDD AAWDDSLSGVV + - - ND ND
PV8 IgM D3-19 IGLV2-14*02 IGLJ3*02 SSDVGTYNL EVS SSYAGNNNLL + - - ND ND
PV8 IgM D3-27 IGKV1-39*01 IGKJ4*01 QSISSY TAS QQSYSTPLT + - - ND ND
PV8 IgM D3-36 IGKV1-33*01 IGKJ5*01 QDIRNY DAS QQYDNLPIT + - - ND ND
PV8 IgM D4-11 IGLV7-43*01 IGLJ3*01 TGAVTSGYY STS LLYYGGHVV + - - ND ND
PV8 IgM DVD-7 IGKV1-39*01 IGKJ5*01 QSISSY AAS QQAYSFPIT + + + - -
PV8 IgM DVDV-5 IGLV7-46*01 IGLJ7*01 TGAVTSGHY DTT LLSYGAVEV ND ND ND ND ND

ELISA Reactivity Dsg3 IF 
Reactivity

PV8

 
 
 

 

Table 3-VI. PV8 IgM APD clones 
 
APD libraries were subjected to four rounds of either single- or double-antigen selection.  
Germline (GL) assignments are displayed, along with CDR sequences. D3/4 indicates 
isolation from rounds 3 or 4 Dsg3-based selection, respectively. DVD/DVDV indicates 
isolation from rounds 3 or 4 Dsg3/VP6-based selection, respectively.  Reactivity to 
various antigens was also tested by ELISA and immunofluorescence (IF). ND indicates 
not determined. One clone was unable to be produced as recombinant protein, and is 
listed as ND for all antigens. 
 

(a) Heavy chains 
(b) Light chains 
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Clone GL VH gene GL DH gene GL JH gene CDR1 CDR2 CDR3 Dsg3 VP6 BSA Hep2

PV16 IgM D3-1 IGHV4-39*01 IGHD1-26*01 IGHJ5*02 GGSISSSSYY IYYSGST ARQGRGYSGSYYEILWFDP + - - ND ND
PV16 IgM D3-5 IGHV3-7*01 IGHD3-3*02inv IGHJ4*02 GFTFSSYW IKQDGSEK ARSKRGFGY + + - + -
PV16 IgM D3-6 IGHV2-5*01 IGHD2-15*01 IGHJ1*01 GFSLSTSGVG IYWNDDK AHSSGYCSGGSCYPSFAEYFQH + - - ND ND
PV16 IgM D3-7 IGHV4-34*01 IGHD3-10*01 IGHJ5*02 GGSFSDYY INHRGST ARTRGTGSGSKKGFDP + - - ND ND
PV16 IgM D3-8 IGHV5-51*01 IGHD5-24*01inv IGHJ2*01 GYSFTSYW IYPGDSDT ARWAPSLGGRNWYFDL + - - ND ND
PV16 IgM D3-9 IGHV1-69*01 IGHD3-22*01 IGHJ5*02 GGTFSSYA IIPIFGTA AMDYYDSSGYREFVYWFDP ND ND ND ND ND
PV16 IgM D3-11 IGHV5-51*01 IGHD3-16*01 IGHJ3*02 GYSFTSYW IYPGDSDT ARVGHGGHFDI + - - ND ND
PV16 IgM D3-12 IGHV3-7*01 IGHD2-8*02 IGHJ5*02 GFTFSSYW IKQDGSEK AREPRYFDWFSGWFDP + - - ND ND
PV16 IgM D3-14 IGHV3-64*02 IGHD3-16*01 IGHJ4*03 FTFSNAW ISSNGGTT VKDFMFGVLTRGSHPPGI + - - ND ND
PV16 IgM D3-16 IGHV3-7*01 IGHD4-23*01 IGHJ4*02 GFTFSSYW IKQDGSEK AREGGFYYGDNFDY + - - ND ND
PV16 IgM D3-23 IGHV3-48*03 IGHD5-12*01 IGHJ6*02 GFTFSSYE ISSSGSTI AREATLEDYYYYGMDV + - - ND ND
PV16 IgM D4-1 IGHV3-66*01 IGHD3-10*01 IGHJ4*02 GFTVSSNY IYSGGST WARRLWNGIDY + - - ND ND
PV16 IgM D4-3 IGHV1-46*03 IGHD3-9*01 IGHJ4*02 GYTFTSYY INPSGGST ARDLGIVPGDY + - - ND +
PV16 IgM D4-19 IGHV3-23*01 IGHD3-9*01 IGHJ4*02 GFTFSSYA ISGSGGST AKPNIYYFDY + - - ND ND
PV16 IgM D4-24 IGHV1-46*03 IGHD6-19*01inv IGHJ4*02 GYTFTSYY INPSGGST ARDAIPATFDY + - - ND +
PV16 IgM DVD-4 IGHV3-30*18 IGHD3-22*01inv IGHJ3*02 GFTFSSYG ISYDGSNK ARDQGI ND ND ND ND ND
PV16 IgM DVD-8 IGHV3-11*01 IGHD1-26*01 IGHJ5*02 GFTFSDYY ISSSGSTI ASDSPGDYWGPGNPGHRLLR + + + - -
PV16 IgM DVD-16 IGHV5-51*01 IGHD2-2*01 IGHJ5*02 GYSFTSYW IYPGDSDT ARRRYCSSTSCYDWFDP - + - ND ND
PV16 IgM DVD-18 IGHV3-13*01 IGHD3-22*01 IGHJ5*02 GFTFSSYD IGTAGDT ARDAYDSSGYYYSDY ND ND ND ND ND
PV16 IgM DVDV-15 IGHV3-15*01 IGHD1-20*01  IGHJ3*01 GFTFSNAW IKCKTDGGTT TTADRRTGTTKALDV + + + + ND
PV16 IgM DVDV-16 IGHV3-23*01 IGHD1-26*01 IGHJ4*02 GFTFNSYG ISGSGGST ARSYSGSYAWGPGNPGHRLLR ND ND ND ND ND
PV16 IgM DVDV-23 IGHV3-30*18 IGHD3-10*02 IGHJ6*02 GFTFSSYG ISYDGSNK AKDRRRKGMDV + + + + -

ELISA Reactivity Dsg3 IF 
Reactivity

PV16

Clone GL VL gene GL JL gene CDR1 CDR2 CDR3 Dsg3 VP6 BSA Hep2

PV16 IgM D3-1 IGLV3-1*01 IGLJ3*01 KLGDKY QDS QAWDNSTVV + - - ND ND
PV16 IgM D3-5 IGLV6-57*01 IGLJ3*01 SGSIASNY EDN QSYDSSNPHVV + + - + -
PV16 IgM D3-6 IGLV1-40*01 IGLJ3*01 RSNIGASYD SNT QSYDNTLSGSSVV + - - ND ND
PV16 IgM D3-7 IGKV3-20*01 IGKJ3*01 QSFSRY GAS QQYGSVPFT + - - ND ND
PV16 IgM D3-8 IGLV3-1*01 IGLJ3*01 KLGDKY QDN QAWDSSTVV + - - ND ND
PV16 IgM D3-9 IGLV8-61*01 IGLJ3*02 SGSVSSQYY NTN VLYLGRSTWV ND ND ND ND ND
PV16 IgM D3-11 IGLV1-47*01 IGLJ7*01 SSNIGSNY RNN SAWDHSLNALL + - - ND ND
PV16 IgM D3-12 IGLV6-57*01 IGLJ3*01 SGDIASDY EDN QSYDDNTVV + - - ND ND
PV16 IgM D3-14 IGLV1-44*01 IGLJ3*02 SSNIGRNT SNN AAWDDSLNGWL + - - ND ND
PV16 IgM D3-16 IGLV3-21*03 IGLJ3*01 NIGSKS DDS QAWDSSTAV + - - ND ND
PV16 IgM D3-23 IGLV3-21*03 IGLJ3*01 NIGSKS DDS QVWDSSSAGVV + - - ND ND
PV16 IgM D4-1 IGLV1-51*01 IGLJ3*02 SSNIGNNY DNN GTWDSSLSAWV + - - ND ND
PV16 IgM D4-3 IGLV2-8*01 IGLJ3*01 SSDVGGYNY EVS SSYAGSNNLL + - - ND +
PV16 IgM D4-19 IGLV3-1*01 IGLJ1*01 KLGDKY QDS QAWDSSTYV + - - ND ND
PV16 IgM D4-24 IGLV2-8*01 IGLJ1*01 SSDVGGYNY EVS SSYAGSNNYV + - - ND +
PV16 IgM DVD-4 IGLV1-51*01 IGLJ3*01 SSNIGNNY DNN GTWDSSLSAVV ND ND ND ND ND
PV16 IgM DVD-8 IGKV2-28*01 IGKJ5*01 QSLLHSNGNNY LGS MQALQTPPT + + + - -
PV16 IgM DVD-16 IGLV2-14*01 IGLJ3*01 SSDVGGYNY EVS SSYTSSSTVV - + - ND ND
PV16 IgM DVD-18 IGKV1-39*01 IGKJ3*01 QDVNYY DAS QQFDNVPYT ND ND ND ND ND
PV16 IgM DVDV-15 IGLV1-44*01 IGLJ7*01 NSNIGSNT SNN AAWDDSLNGRV + + + + ND
PV16 IgM DVDV-16 IGLV2-14*04 IGLJ3*01 SSDVGSYSH DVS SSYTSSSTLVV ND ND ND ND ND
PV16 IgM DVDV-23 IGLV3-21*01 IGLJ3*02 NIGTKS QDD QAWDSGGV + + + + -

ELISA Reactivity Dsg3 IF 
Reactivity

PV16

a 

b 

Table 3-VII. PV16 IgM APD clones 
 

APD libraries were subjected to four rounds of either single- or double-antigen selection. 
Germline (GL) assignments are displayed, along with CDR sequences. D3/4 indicates isolation 
from rounds 3 or 4 Dsg3-based selection, respectively. DVD/DVDV indicates isolation from 
rounds 3 or 4 Dsg3/VP6-based selection, respectively.  Reactivity to various antigens was also 
tested by ELISA and immunofluorescence (IF). Clones highlighted in gray also were isolated from 
double-antigen selection. ND indicates not determined. Some clones were unable to be 
produced as recombinant protein, and are listed as ND for all antigens. 
(a) Heavy chains  (b)  Light chains 
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 a 
Clone GL VH gene GL DH gene GL JH gene CDR1 CDR2 CDR3 Dsg3 VP6 BSA Hep2

CH IgM D2-4 IGHV4-34*01 IGHD2-2*01 IGHJ4*02 GGSFSGYY INHSGST ARACLGRLGYCSSTGPPATGHFDY ND ND ND ND ND
CH IgM D3-1 IGHV3-23*01 IGHD4-23*01 IGHJ6*02 GFTFSSYG ISGSGGST ARDQNGGDYYGMDV + - - ND +
CH IgM D3-4 IGHV3-21*01 IGHD3-22*01 IGHJ3*02 GFTFSSYS ISSSSSYI ARAKNYYDSSGYYYPDAFDI + - - ND +
CH IgM D4-3 IGHV3-66*01 IGHD4-17*01 IGHJ4*02 GFTFSSYA IYSGGST ARAQYYGDYFDY + - - ND +
CH IgM DVDV-3 IGHV3-23*01 IGHD4-17*01 IGHJ3*02 GFTFSNAW ISGSGGST ARADGAAFDI + + + + -

CH

ELISA Reactivity Dsg3 IF 
Reactivity

 
 
 

b 

Clone GL VL gene GL JL gene CDR1 CDR2 CDR3 Dsg3 VP6 BSA Hep2

CH IgM D2-4 IGKV5-2*01 IGKJ1*01 QDIDDD EAT LQHDNFPLT ND ND ND ND ND
CH IgM D3-1 IGKV1-39*01 IGKJ4*01 QSISSY AAS QQSYSTPT + - - ND +
CH IgM D3-4 IGKV4-1*01 IGKJ1*01 QSVLYSSNNKNY WAS QQYGSSPWT + - - ND +
CH IgM D4-3 IGLV1-47*01 IGLJ3*01 SSNIGSNY RNN AAWDDSLSGVV + - - ND +
CH IgM DVDV-3 IGKV1-39*01 IGKJ5*01 QGISSY AAS QQSYSTPIA + + + + -

CH

ELISA Reactivity Dsg3 IF 
Reactivity

 
 
 
 

Table 3-VIII. CH IgM APD clones 
 
APD libraries were subjected to four rounds of either single- or double-antigen selection. 
Germline (GL) assignments are displayed, along with CDR sequences. D3/4 indicates 
isolation from rounds 3 or 4 Dsg3-based selection, respectively. DVD/DVDV indicates 
isolation from rounds 3 or 4 Dsg3/VP6-based selection, respectively. Reactivity to 
various antigens was also tested by ELISA and immunofluorescence (IF). ND indicates 
not determined. One clone was unable to be produced as recombinant protein, and is 
listed as ND for all antigens. 
 

(a) Heavy chains 
(b) Light chains 
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Figure 3-5. A majority of non-VH1-46 IgM heavy chains do not demonstrate cross-
reactivity 
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Figure 3-5. A majority of non-VH1-46 IgM heavy chains do not demonstrate cross-
reactivity 
 
(a-e) IgM APD libraries were single- and double-antigen screened. Clones were 
randomly isolated and validated for Dsg3 reactivity. Those that were positive were 
purified as scFv and subjected to ELISA against various antigens. In some cases, clones 
were unable to purified as soluble scFv, and are reported as not determined (ND). Green 
dashed line indicates Dsg3 cutoff value of 0.209.  Blue dashed line indicates VP6 cutoff 
value of 0.409. Gray dashed line indicates Hep2 cutoff value of 0.362. Dsg3 control is 
clone (D31)2/29. VP6 control is RV6-26. Neg. Control is a mAb against an irrelevant 
antigen. Commercial positive control is displayed in the HEp2 ELISA. Error bars indicate 
SEM. Data represent two independent experiments. 
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Figure 3-6. Polyreactive clones do not bind Dsg3 in human skin 

 
All polyreactive clones based on ELISA were subjected to immunofluorescence on 
human skin. Negative Control is a mAb against an irrelevant antigen. White dashed line 
indicates dermal-epidermal junction. White arrowhead indicates surface staining of 
human skin. Scale bar, 20 μM. Data are representative of 1-2 experiments tested at 
multiple concentrations. 
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Figure 3-7. Validation of PV1c VH1-46 clones 
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Figure 3-7. Validation of PV1c VH1-46 clones 
 

(a) VH1-46 PV1c IgM clones were tested by ELISA. Dsg3 control is clone (D31)2/29. 
VP6 control is RV6-26. Neg. Control is a mAb against an irrelevant antigen. 
Green dashed line indicates Dsg3 cutoff value of 0.268.  Blue dashed line 
indicates VP6 cutoff value of 0.358. Error bars indicate SEM. Data are 
representative of two or three independent experiments. 

(b) VH1-46 PV1c IgM clones were tested by immunofluorescence against human 
skin. White dashed line indicates dermal-epidermal junction. White arrowhead 
indicates surface staining of human skin. 

(c) PV1c IgM DVDV-8 subjected to immunofluorescence on monkey esophagus. 
Negative Control is a mAb against an irrelevant antigen. Scale bar, 20 μM. Data 
are representative of 1-2 experiments tested at multiple concentrations. 
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a 

b 

 
Figure 3.8. A subset of cross-reactive VH1-46 heavy chains inhibit rotavirus replication 
in vitro 

(a-b) scFv were incubated with rotavirus double-layered particles (DLPs). MA104 cells 
were then transfected with the mixture, incubated overnight, and subsequently stained 
for rotavirus foci after fixation. Foci were quantitated using ImageJ. Black dashed line 
indicates cutoff value of 19.88 for positive inhibition. 
(a) Each scFv was tested at a concentration of 25 ug/mL. Data are representative of 

three or four replicates. 
 
Neg. Ctl. is a mAb against an irrelevant antigen. Y axis indicates level of inhibition as a 
percent of the no antibody control. Error bars indicate SEM. Data are representative of 
two independent experiments. 



105 
 

    a 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
     b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-9. PV1c IgM VH1-46 DVDV-7 and DVDV-8 induce keratinocyte dissociation 

 
(a-b) Confluent primary human keratinocytes were incubated with scFv overnight and 
subjected to manual dissociation. Fragments were quantitated using ImageJ. Black 
dashed line indicates cutoff value of 6.75. Error bars indicate SEM. Data are 
representative of two independent experiments. 
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CHAPTER 4: DISCUSSION AND FUTURE DIRECTIONS 

 

4.1  Summary of findings 

 We have established that in the four patient cohort we studied, the single shared 

characteristic in their anti-Dsg3 mAb repertoire is the utilization of VH1-46 in the anti-

Dsg3 B cell repertoire. This is likely due to the ability of these VH1-46 mAbs to bind 

Dsg3 in their unmutated state, or with a very low number of somatic mutations leading to 

acidic amino acid residues (Chapter 2). Based on these findings, we hypothesized that 

due to shared VH1-46 gene usage in the autoimmune response to Dsg3 and the 

immune response to the rotavirus protein VP6, that these Ab responses may be 

connected to one another by a cross-reactive VH1-46 common ancestor. We show in 

Chapter 3 that cross-reactivity in the IgG compartment is rare due to a divergence in 

amino acid characteristics between the anti-Dsg3 and anti-VP6 VH1-46 responses. 

Evidence of cross-reactive VH1-46 IgM heavy chains was described in one PV patient in 

remission after rituximab, and this was not observed in three additional libraries; two 

from patients with active disease, and one healthy individual. Interestingly, two of these 

cross-reactive VH1-46 heavy chains are able to both inhibit the replication of rotavirus 

and keratinocyte adhesion in vitro, and may point to why these Dsg3-reactive heavy 

chains are able to contribute to the B cell repertoire despite being reactive to self in 

certain individuals. Thus, our work has established a potential reason why VH1-46 may 

be enriched in certain PV patients. 
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4.2 Key implications of this work 

 

4.2.1 VH1-46 utilization is observed in the Dsg3-reactive Ab repertoires across all 

patients analyzed. 

 

The study described in Chapter 2, while not the first to describe the autoAb repertoire in 

PV patients281, 283, is the most comprehensive in terms of encompassing all B cell 

subsets in the peripheral blood. In addition, the utilization of multiple methods of Ab 

repertoire cloning underscores the validity of the VH1-46 phenotype we observe in the 

anti-Dsg3 Ab repertoires of our four patient cohort. Lastly, we provide strong evidence of 

these VH1-46 Abs in contributing to the pathogenesis of PV via ex vivo human skin 

injection.  

 

4.2.2 A subset of VH1-46 mAbs are able to bind Dsg3 upon reversion of somatic 

mutations. 

 

Somatic mutation analyses revealed a relative dearth of somatic mutations in the VH1-

46 Abs compared to non-VH1-46 Abs, leading us to the hypothesis that perhaps these 

VH1-46 Abs do not largely depend on somatic mutation for Dsg3 reactivity. Germline 

(GL) reversion experiments confirmed that three of the five VH1-46 Abs maintained the 

ability to bind Dsg3 upon reversion, compared to zero of five non-VH1-46 Abs. This GL 

reactive phenotype is also in direct contrast to four non-VH1-46 Abs isolated from two 
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other PV patients281, wherein all four also required somatic mutations in the heavy chain 

for Dsg3 reactivity. 

 

4.2.3 Those VH1-46 mAbs that did require somatic mutations to bind depend on 

one or two somatic mutations that led to acidic amino residues. 

 

Given that two VH1-46 Abs lost the ability to bind Dsg3 upon reversion, we wanted to 

better understand why this was the case. We observed an enrichment of replacement 

somatic mutations leading to acidic amino acid residues, and upon reintroduction of 

these residues into the GL Ab, we observed a partial rescue of these two non-GL-

reactive Abs in terms of Dsg3 binding. Furthermore, removal of acidic residues in two 

GL-reactive Abs led to a complete loss of binding, suggesting that acidic residues are 

both necessary and partially sufficient to confer Dsg3 reactivity in the VH1-46 Abs we 

have tested, and can be generate by either V(D)J recombination, or somatic 

hypermutation. 
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4.2.4 Despite shared VH1-46 gene usage in the antibody responses to both Dsg3 

and VP6, cross-reactivity in the IgG compartment is rare due to disparate amino 

acid characteristics. 

 

The striking VH1-46 phenotype we observed in the autoAb response to Dsg3 led us 

to determine whether other VH1-46-biased Ab responses may play a role in the 

etiology of PV. The only other reported VH1-46-biased Ab response to an antigen is 

towards the rotavirus protein VP6. Both of the VH1-46 responses demonstrated 

lower levels of somatic mutations, as well as reactivity towards Dsg3 and VP6 in the 

absence of these somatic mutations, respectively. We hypothesized that PV could be 

initiated by a cross-reactive VH1-46 B cell clone. Focused testing of our Dsg3-

reactive VH1-46 Abs largely did not reveal strong levels of cross-reactivity, with one 

of seven IgG clones being cross-reactive. In addition, screening four IgG repertoires 

by antibody phage display did not identify cross-reactive clones. 

 

Further analyses of the amino acid characteristics in the Dsg3 and VP6 VH1-46 

responses pointed to distinct patterns of acidic and basic residues245, respectively. 

Indeed, a majority of the mutagenesis experiments conducted on the heavy chain 

CDR2 to introduce rotavirus-specific somatic mutations did not confer cross-reactivity 

to three VH1-46 clones isolated from PV patients. However, in one case, there was a 

moderate increase in cross-reactivity to both Dsg3 and VP6, suggesting that while 

rare, it is possible to heighten cross-reactivity of VH1-46 clones via somatic 

hypermutation. 
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4.2.5 A majority of VH1-46 heavy chains in the IgM compartment are cross-reactive 

in a PV patient in remission, but not in two patients with active disease or a 

healthy individual. 

 

In order to maximize the probability of isolating a cross-reactive clone, we screened the 

IgM repertoires of four individuals; three PV patients, and one healthy individual. We 

chose a diverse cohort of individuals because the hypothesis of a cross-reactive VH1-46 

clone alludes to a secondary assumption that perhaps everyone exhibits cross-reactive 

VH1-46 heavy chains, especially in their naïve IgM compartment. While we did isolate 

polyreactive clones from three IgM libraries, the only library wherein we isolated heavy 

chains reactive specifically to Dsg3 and VP6 was in a PV patient in remission after four 

rounds of rituximab, which may influence the B cell repertoire. Interestingly, all six cross-

reactive heavy chains were VH1-46.  

 

4.2.6 A subset of cross-reactive VH1-46 IgM heavy chains can both inhibit 

rotavirus replication and keratinocyte adhesion in vitro. 

 

Upon characterizing these cross-reactive VH1-46 heavy chains more closely, we 

observed that all stained the surface of keratinocytes by immunofluorescence, 

confirming their Dsg3 specificity. Secondly, two heavy chains were able to inhibit 

rotavirus replication in vitro. Interestingly, these same two VH1-46 heavy chains inhibited 

keratinocyte adhesion in vitro. This highlights that a VH1-46 heavy chain can possess 

the ability to both inhibit rotavirus and Dsg3 function in the skin, pointing to the possibility 
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of these cross-reactive heavy chains playing pivotal roles in both rotavirus infection and 

in PV. 

 

4.3 A model for the development of autoimmunity in pemphigus vulgaris 

In total, there are many hurdles that are needed to be cleared in order induce an 

autoimmune response to Dsg3: 

1.) A Dsg3-reactive B cell clone must be created 

2.) This Dsg3-reactive B cell must interact with its epitope  

3.) Dsg3-reactive T cells must provide help 

4.) Dsg3-reactive Tregs cannot be present 

5.) Tolerance must be relaxed or permissive to the differentiation of Dsg3-

specific antibody secreting cells 

 

4.3.1 A detailed description of the model 

Due to reductions in E2A expression and the ability to respond to IL-7 with age, 

there is a lower frequency of early B cell progenitors in the bone marrow326, 327, leading to 

a lower number of new B cells entering peripheral circulation. While there is no observed 

change in overall B cell numbers, the dearth of newly emigrant B cells in circulation 

results in a shift in how the B cell repertoire distributed across subsets; with a reduced 

contribution of naïve B cells, there is an increased representation and thus dependence 

on the memory B cell compartment328, 329. This reliance on antigen-experienced B cells 

may be ill-advised, as there is also a reduction in overall repertoire diversity in aged 

individuals compared to younger adults330, 331.  
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A similar alteration in frequencies across subsets is also observed in the T cell 

compartment, wherein there is a reduction in output of naïve T cells due to involution of 

the thymus332, and thus increased numbers of memory T cell clones within the circulating 

T cell repertoire333, 334. In addition, aged T cells are suboptimal in the ability to signal and 

proliferate in response to various stimuli335, and replenishment of the T cell pool is 

achieved solely through peripheral T cell division336, 337 which likely skews the diversity of 

the T cell repertoire. 

Reduced repertoire diversity in both the B and T cell compartments of aged 

individuals suggests that cross-reactive clones may have an advantage in this context 

and thus be overrepresented, and offers an opportunity for self-reactive clones to 

emerge due to age-related defects in tolerance. This may in fact be the case, as levels 

of serum autoantibodies also increase with age329, 338. It has also been shown that Dsg3-

reactive B cell clones can persist in PV patients after rituximab treatment308, and is likely 

due to incomplete ablation of tissue-resident B cells. Perhaps these persistent clones 

have the ability to differentiate and secrete antibody in certain immunological contexts, 

ultimately leading to relapse later in life. These certain contexts could be during infection, 

where there may be a relaxation of tolerance in order to generate high affinity clones that 

can ameliorate infection. Alterations in BAFF levels could be another context339, where it 

has been shown that increased BAFF levels promote the survival of autoreactive 

clones340, 341. BAFF levels have also been shown to be elevated in patients three to four 

months after rituximab342, 343. While this may be an effort of the immune system to 

restore the B cell population to pre-rituximab levels, perhaps within an aged individual 

with PV, this elevated BAFF environment may be an optimal timepoint in which to 

observe cross-reactive B cells. Given that we studied the IgM repertoire of only one 
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patient post-rituximab, further analyses with other similar patients would certainly clarify 

whether rituximab may be influencing the repertoire in PV patients. 

It is clear from the data in Chapters 2 and 3 that there will be a B cell clone that 

will be Dsg3-reactive upon exiting the bone marrow simply due to V(D)J recombination. 

It could be singly-reactive to Dsg3; it could also cross-react to VP6 and Dsg3. With age, 

perhaps the declining immune system permits these self-reactive B cells to persist and 

acquire T cell help, and thus tolerance against self-antigens is unable to be maintained. 

This idea, however, requires a population of Dsg3-reactive T cells to be present, as the 

experiments above demonstrate that cross-reactivity in the IgG compartment is rare. 

It has been shown that those that express the PV susceptibility alleles HLA-

DRB*0402 and HLA-DQB*0503 demonstrate circulating Dsg3-reactive T cells192, 207, 344. 

Thus, in the populations that express these rare HLA alleles, there exists the real 

possibility of an autoimmune response towards Dsg3, especially considering that a 

single Dsg3-reactive T cell can give rise to a polyclonal B cell response in mice210. What 

differentiates a PV patient from a healthy individual in this specific population is a 

marked reduction of Dsg3-reactive Tregs192, 212. In a normal individual, there appears to 

be an active repression of Dsg3 Th cells by Dsg3-specific Tregs, and loss of this latter 

population likely results in the inability of the person to maintain tolerance to Dsg3. It 

remains to be known whether this Dsg3-specific Treg population is lost with age, and 

may contribute to the development of PV in the elderly population. 

This also assumes that Dsg3 is shuttled into the secondary lymphoid organs. 

Given that Dsg3 is expressed in a tissue-specific manner, skin-resident Langerhans cells 

are the most plausible population to traffic and present Dsg3 in the secondary lymphoid 
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organs, as this population has been described to be essential in the immune response to 

cutaneous infection with Leishmania major99. While this is theoretically possible, it has 

never been tested, and further experiments are needed to determine whether this proves 

to be the case. 

It is clear that simply having a Dsg3-reactive B cell, whether it be singly-reactive 

or cross-reactive, is merely one step in the process of developing PV. The described 

studies in the IgM compartment demonstrate that it is theoretically possible to create a 

cross-reactive BCR during V(D)J recombination. However, within the context of a 

rotavirus infection, these cross-reactive VH1-46 B cells likely acquire help from a VP6-

reactive T cell, as a majority of the population lack of Dsg3-specific T cells. Thus, these 

cross-reactive B cells would likely undergo somatic mutations that increase affinity for 

VP6 over Dsg3. Only in a select subset of HLA-susceptible people that lack Dsg3-

specific Tregs would these cross-reactive B cells acquire T cell help from Dsg3-reactive 

T cells, and thus become anti-Dsg3 antibody secreting cells. 

Lastly, we arrived to our hypothesis that rotavirus is a potential trigger of PV due 

to the “shared VH gene usage theory”. Given that the phenotype does not appear to 

100% penetrant in the patient population, it remains to be determined whether additional 

environmental triggers that can lead to PV, perhaps by inducing a different VH gene 

bias, or through an independent mechanism. Further studies using VirScan345, a 

synthetic panel of antigens from the human virome, would allow for a high-throughput 

reactivity analysis of polyclonal anti-Dsg3 antibodies, and could reveal additional viral 

triggers that have yet to be identified using the “shared VH gene usage theory”. 
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4.3.2 Refuting the model 

Taken together, the data above reveal that a VH1-46-biased antibody response 

to VP6 may give rise to a similarly biased VH1-46 autoantibody response to Dsg3 in 

certain individuals. While this likely represents one of several routes to developing 

autoimmunity, a question that remains is why there are not more cases of pemphigus 

vulgaris (PV) given that rotavirus is an infection that is prevalent in virtually 100% of 

individuals220. 

 First, there is a disparity between the age at which a person would first encounter 

rotavirus and the typical age of onset in PV. The rotavirus vaccine is administered within 

the first two months of life233, whereas the average age PV is first diagnosed is about 50-

60346. Even in cases where the rotavirus vaccine is not administered, the penetrance of 

prior rotavirus infection by age five is 95%220. Due to this large period of time between 

initial encounter with rotavirus and PV, there have been no prospective epidemiological 

studies linking rotavirus infection with PV. Retrospective studies linking PV to any 

infection have also not been performed, likely due to the rarity of PV, which reduces the 

feasibility of these types of trials in being able to recruit enough subjects to have 

statistical power to observe any differences. It is also not known whether adults may 

experience subclinical rotavirus infection before exhibiting symptoms of PV. The fact that 

rotavirus testing is often not performed in the clinic347 may also result in underreporting 

of the true burden of rotavirus infection in adults. 

 In addition, there have been no documented cases of PV arising in children after 

vaccination or infection. Perhaps this may be due to fully intact tolerance checkpoints in 

this population, which may falter in older individuals. In support of this idea, the 
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prevalence of autoimmunity greatly increases with age348, which coincides with large 

changes in both the B and T cell compartment.  

 While this model is intriguing, there exists evidence of why this model may not be 

observed across all patients with PV. First, while we did observe at least one anti-Dsg3 

IgG clone in every patient studied in Chapter 2, the utilization of VH1-46 was not 

predominant. Furthermore, we did not observe VH1-46 utilization across the four IgM 

libraries analyzed in Chapter 3; only three demonstrate an anti-Dsg3 IgM clone that 

utilized VH1-46, and may point to incomplete sampling of the IgM compartment. 

Regardless, since we cannot isolate VH1-46 clones from every patient, that alone 

suggests that VH1-46 biases may not be observed in every PV patient, and thus may 

not explain the etiology of autoimmunity for the entirety of those with PV. Further studies 

probing the autoantibody repertoire, such as high-throughput deep sequencing, would 

likely answer whether the observation of VH1-46 utilization could be observed in all 

patients with PV and whether non-VH1-46 Abs may be playing a larger role than I have 

proposed. 

 We also did not observe a cross-reactive phenotype across all of the VH1-46 

antibodies that we did isolate from these patients. Therefore, utilization of VH1-46 is not 

sufficient to confer cross-reactivity. There are clearly roles for both the light chain and 

the heavy chain CDR3 in determining cross-reactivity. Structural studies pinpointing the 

key residues in binding both Dsg3 and VP6 in the cross-reactive antibodies would 

certainly reveal the role of the VH1-46 gene segment in cross-reactivity. The lack of 

cross-reactivity to VP6 suggests that this cannot be the only foreign antigen that could 

induce a cross-reactive response; other foreign candidates remain to be discovered. In 

addition, perhaps there is also a role for the polyreactive IgM clones we isolated from 
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three IgM libraries; polyreactivity and and cross-reactivity to foreign antigens could be 

two parallel avenues in the generation of anti-Dsg3 antibodies. 

Alternatively, given that we did isolate Dsg3-reactive heavy chains from the IgM 

compartment from every patient studied points to an IgM compartment that is poised to 

generate anti-Dsg3 ASCs, which could be independent of the observed cross-reactive 

phenomenon. As I hypothesized earlier in this chapter, there may be an active 

suppression of these autoreactive B cells in the majority of the population, and whether 

they cross-react to a foreign antigen may be irrelevant, as there likely exists a population 

of Dsg3-reactive IgM clones in everyone. In vivo studies using transgenic mouse models 

may reveal the cellular requirements, or lack thereof, to induce an anti-Dsg3 antibody 

response may replicate what may occur within individuals that succumb to this disease. 

 What is certain from these studies is that in certain subset of individuals, VH1-46 

utilization can influence the development of anti-Dsg3 autoAbs. Whether it be due to 

inherent reactivity solely to Dsg3, or the ability to cross-react to foreign antigens such as 

VP6 is not known; only future studies further characterizing this intriguing set of 

antibodies will reveal the true advantage of these VH1-46 Abs in the context of PV. 

 

4.4 Future directions 

 In the short term, it would be fascinating to determine whether the two VH1-46 

IgM heavy chains that protect against rotavirus in vitro would also be able to protect a 

mouse against rotavirus infection in vivo. In addition, methods to probe the B cell 

repertoire more thoroughly, such as deep sequencing, may reveal shared common 

ancestor(s) between the Dsg3- and VP6-specific VH1-46 response, as this common 
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ancestor may be non-reactive to both, or possess an affinity below the limit of detection 

that would preclude it from the selection technique we have utilized in the above studies. 

Overall, the results of my thesis research have led to the support of an interesting 

“shared VH gene usage” theory on how autoimmune diseases arise. Due to the 

inherently stochastic nature of V(D)J recombination, this process confers various 

affinities and specificities to every B cell clone based on the genes utilized to create its 

BCR. The utilization of certain VH genes, for example, may increase physiological 

fitness in the context of binding one antigen, but not another. This has been observed in 

the immune response to influenza, wherein there is restricted VH1-69 gene utilization 

across several patients303 due to the presence of a germline-encoded phenylalanine 

present in the second position of the heavy chain CDR2 that interacts with the stem of 

the hemagglutinin protein304, 305.  

 This theory suggests that if there is an observation of shared VH gene usage in 

an autoAb response to a self-antigen as well as in an immune response to a foreign 

antigen, this may be a logical foundation on which to build a connection between these 

two responses. This was the basis of the second part of my thesis, which aimed to 

connect the VH1-46 restricted Ab responses in both the autoimmune disease pemphigus 

vulgaris and the common rotavirus infection, and has also been observed in the context 

of anti-idiotype antibodies and Mycoplasma pneumoniae51, 320, 321. However, the latter 

example appears to be more of a description of polyreactivity, as these autoAbs can also 

react to ssDNA, dsDNA, apoptotic cells322. In addition, it is unclear whether these anti-

idiotype antibodies prevent Mycoplasma pneumoniae infection, which is in contrast what 

we observe in two cross-reactive VH1-46 antibodies that exhibit both protective and 

pathologic functions in the context of rotavirus and PV, respectively. 
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 Given that my overall research interests lie in understanding how autoimmune 

diseases develop, a long-term goal could be to utilize this “shared VH gene usage” 

theory is in the context of other autoimmune disorders. It would be fascinating to 

determine whether the observations I have uncovered in pemphigus vulgaris could be 

observed in other autoimmune antibody-mediated disorders, like type I diabetes or 

idiopathic thrombocytopenic purpura (ITP). For example, previous studies have 

described an extremely restricted VH3-30 usage in the autoAbs directed against 

platelets in two ITP patients294. If we could conduct thorough VH gene usage analyses in 

various viral infections, and identify a particular infection that also demonstrates 

restricted VH3-30 usage in the Ab response to this infection, that would justify a set of 

studies to try and connect these two Ab responses together, similarly to what I have 

described in Chapter 3. 

 However, this theory does have its limitations. In the context of an autoimmune 

disease where VH gene usage is more heterogeneous, such as multiple sclerosis349 or 

primary biliary cholangitis350, proper selection of the mAbs to study would be much more 

difficult, as it suggests that VH gene may play less of a role in defining antigen 

specificity. Furthermore, in cases such as systemic lupus erythematosus, wherein 

patients can present with anti-nuclear Abs for up to five years before the onset of 

symptoms351, 352, the role of autoAb in pathogenesis is much less clear and may not 

support this theory. 

 Broadly, an observation of shared VH gene usage across patients in response to 

any antigen, be it self or foreign, would suggest common epitope targeting in the 

antibody response to this antigen. The latter case would be extremely interesting from a 

vaccine perspective. For example, a better understanding of why shared VH gene usage 
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occurs across different patients in the context of a particular infection would likely help 

guide vaccine design, as it would be likely that these Abs bind similar epitopes on that 

foreign antigen. This theory would also imply that a similarly VH-restricted Ab response 

could be observed across unrelated people given a vaccine containing those epitopes, 

and thus upon vaccination, may observe similar protection rates in concordance with VH 

gene usage. 

 Ultimately, the studies described above provide a thorough characterization of a 

particular B cell response towards a self-antigen across multiple patients due to the 

common utilization of a particular VH gene segment, and offer a potential route for their 

etiologies in this human autoimmune disease model.  
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CHAPTER 5: METHODS 

 

qPCR 

cDNA was reverse transcribed from various human tissue RNA samples 

(Clontech) using the High Capacity RNA to cDNA kit (Applied Biosystems). qPCR 

studies were run and analyzed on a ViiA 7 Real-Time PCR system (Applied Biosystems) 

using the universal EXPRESS SYBR® GreenER™ qPCR Supermix (Thermo Fisher 

Scientific). Primer sets are as follows: Dsg3- 5’- TTCCTGATCACATGTCGGGC -3’, 5’-

CACCAGTGAGTTTGAGGCACT-3’, Stro-1-5’-TTGCCAGAGCCAACGTCAAG-3’ 5’-

CGGCGCTGATCAGGTTGTTT-3’, CD90-5’-AAGACCCCAGTCCAGATCCAG-3’ 5’-

TGCTGGTATTCTCATGGCGG-3’, β-actin353 5’-AGAGCTACGAGCTGCCTGAC-3’ 5’-

AGCACTGTGTTGGCGTACAG-3’. Transcript abundance in each tissue sample was 

quantitated by the change-in-cycling threshold (ddCt) method after normalization utilizing 

β-actin as a control gene. Biological replicates were run in triplicate, with three technical 

replicates per biological replicate.  

 

Peripheral blood collection 

All patients in the above work had active PV involving both the skin and oral 

cavity based on clinical presentation, histology, and immunofluorescence provided by 

the clinic laboratories at their respective hospitals. At the time of blood draw, patients 

were off systemic therapies and gave consent via protocol approved by the relevant 

Institutional Review Board. Subsequent blood draws at various stages of disease were 

also acquired through the above process. 
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Antibody phage display (APD) 

Peripheral blood mononuclear cells (PBMCs) were isolated from approximately 

50 mL of blood via Ficoll (Sigma). RNA was isolated from PBMCs using the RNEasy 

Midi Kit (Qiagen). cDNA amplification was carried out using the Superscript First Strand 

System (Thermo Fisher Scientific). The primers sets used to amplify all expressed heavy 

and light chains were generated as described286. Eighteen, sixteen, and six reactions 

were set up for amplification of lambda, kappa, and heavy chains, respectively. PCR 

reactions were gel electrophoresed on a 2% Agarose NuSieve® 3:1 gel (Lonza), and 

bands were imaged using SYBR Safe DNA Gel Stain (Thermo Fisher Scientific). Bands 

were purified using a Wizard SV Gel and PCR Clean-Up System (Promega) and DNA 

concentrations were quantitated using Low Mass DNA Ladder (Thermo Fisher 

Scientific). Light and heavy chains were linked together via overlap PCRs, digested with 

SfiI (Promega) and bulk-ligated into the pComb3x vector286 to generate the APD library. 

APD libraries were electroporated into the XL1-Blue bacterial strain (Stratagene) and 

quantitated to determine library diversity. 

 

To enrich for antigen-specific clones, phage were panned using ELISA. ≥1012 

phage were bound to ELISA wells blocked with TBS- calcium (Ca) + 3% milk (Sigma) for 

two hours at room temperature. Wells were washed a total of ten times for five minutes 

each using TBS-Ca + 1% Tween-20 (Sigma), and phage were eluted with 76 mM citric 

acid. Phage were amplified and allowed to infect XL1 blue competent cells (Stratagene). 

In some experiments, the panning procedure took place at 4°C, and in other, the wash 
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time was reduced to two minutes. An aliquot of the phage-bacterial culture was plated 

onto carbenicillin-LB plates, and colonies were picked for sequence analysis and protein 

production. The phage-bacterial culture was amplified in the presence of M13 helper 

phage, and re-panned, increasing wash steps to ten. Total pans equaled four in all 

experiments. In cross-panning experiments, the second and fourth antigen was 

alternated to enrich for cross-reactive clones against both antigens of interest. Individual 

colonies were selected at random and analyzed for sequence. 

 

Heterohybridoma production and screening 

B cells were enriched from peripheral blood by RosetteSep (Stem Cell 

Technologies) using negative selection against CD2, CD3, CD16, CD56, CD66b and 

glycophorin A. B cell stimulation was carried out for 48 hours using either Epstein-Barr 

virus or inactivated Staphylococcus aureus Cowan 1 strain plus IL-2. Fusion to the 

HMMA 2.5 myeloma or heteromyeloma cells was carried as previously described287, 354, 

and aliquoted into 96-well plates for culturing. Screening of supernatants was carried out 

on Dsg3 ELISA plates. Positive wells were cloned by limiting dilution, and validated for 

IgG as described previously355. 

 

Immunoglobulin subcloning, expression, and purification 

F706, F779, RV6-25 and RV6-26 IgGs were cloned into the pComb3x vector for 

expression as recombinant single-chain variable fragments (scFv) in Top10F’ cells 

(Thermo Fisher Scientific) transformed with plasmid. Top10F’ cells transformed with 
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various pComb3x plasmids were shaken at 200 rpm in a 37°C incubator until an OD600 

value of 1.0.1mM Isopropyl-β-D-thiogalactoside (Denville Scientific) was added, and the 

culture was shaken at 200 rpm for 6-16 hours at 30°C. Bacterial cultures were pelleted 

at 6000 rpm for 15 minutes, and pellets were lysed in FastBreak lysis reagent 

(Promega). Supernatants containing scFv were incubated with cobalt affinity Talon 

beads (Clontech) and rotated at room temperature for 1 hour. scFv were purified using 

column chromatography, and  concentrated into PBS. Protein concentrations were 

validated with NanoDrop (Thermo Fisher Scientific) and Coomassie gels. 

 

Sequence analyses 

To determine somatic mutations and V(D)J segments utilized by each antibody, 

sequences were run through IMGT/V-QUEST27, 356, Vbase2357, and in some cases, 

SoDA358. Statistical analyses using the BASELINe test290, 291 utilized differences in 

expected versus observed somatic mutation frequencies as a read out for positive or 

negative selection. Expected mutations were calculated based on somatic mutation hot 

spots and substitution biases within each monoclonal Ab (mAbs). P values<0.05 were 

considered significant.   

 

Antibody mutation experiments 

Somatic mutations identified in each mAb were reverted to the corresponding 

germline nucleotide based on IMGT/V-QUEST, Vbase2, and in some cases, SoDA. In 

cases where there was more than one GL heavy chain (HC) CDR3 identified, both were 
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synthesized. GL light chain (LC) and HCs were synthesized as minigenes (Integrated 

DNA Technologies). The following primer sets were used both amplify and append SfiI 

sites to the 5’ and 3’ ends of the LC: LC- 5’-GGGCCCAGGCGGCCGAGCTC-3’ and 

those listed in Cho et al. The HCs were amplified in a two step-process. The primer sets 

are as following: 1st round: 5’-

GGTGGTTCCTCTAGATCTTCCTCCTCTGGTGGCGGTGGCTCGGGCGGTGGTGGGC

AGGTGCAGCTGGTGCAGTCTGG-3’, 5’-ACGCGCACAGTAATACACGGCCGTGTC-3’, 

2nd round: 5’-GACACGGCCGTGT ATTACTGTGC-3’, 5’- -

GGGCCGGCCTGGCCACTAGTGACCGATGGGCCCTTGGTGGAAGCTGAGGAGACG

GTGACC-3’. The LC and HC were amplified and overlapped using Platinum Pfx DNA 

polymerase (Thermo Fisher Scientific). Overlapped LC and HCs were ligated into the 

pComb3x vector using the Gibson Assembly Cloning Kit (New England Biolabs). For 

some GL mAbs, the entire sequence was synthesized as a geneBlock (Thermo Fisher 

Scientific), amplified via Platinum Pfx DNA polymerase (Thermo Fisher Scientific) with 

the following primer set: 5’- GGGCCCAGGCGGCCGAGCTC-3’, 5’-

GGGCCGGCCTGGCCACTAGTGACCGATGGGCCCTTGGTGGAAGCTGAGGAGACG

GTGACC-3’  and digested with SfiI (Roche). Digested DNA was purified using the 

Wizard SV Gel and PCR Clean-Up System (Promega) and ligated into the pComb3x 

vector using T4 DNA ligase (Thermo Fisher Scientific). Point mutations in various mAbs 

were carried out using the Quikchange Lightning Multi Site-Directed Mutagenesis Kit 

(Agilent).  
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Enzyme-linked Immunosorbent Assays (ELISAs) 

Dsg3 (MBL International, Euroimmun) and Hep2 (IBL International) ELISAs were 

performed according to manufacturers’ directions, except in cases where mAb binding 

took place at 4°C overnight. Some mAbs were tested as unpurified bacterial lysates in 

cases of inefficient production. To make VP6 and BSA ELISA plates, 5 ug/mL of each 

protein (DLPs or purified BSA) was diluted in PBS-Ca (Thermo Fisher Scientific) and 

incubated in 96 well plates (Corning) at 4° overnight. VP6 plates are made using 

rotavirus DLPs. Plates were washed with TBS-Ca with 1% Tween-20 (Biorad) before 

blocking with TBS-Ca + 3% milk (Biorad, Sigma) for 1 hr at room temperature. VP6/BSA 

ELISAs were then carried out according to the standard protocol. In some cases, plates 

were developed with high sensitivity TMB (Biolegend, Thermo Fisher Scientific). Cutoff 

values were determined by calculating three standard deviations above the mean of the 

negative controls. 

 

Immunofluorescence (IF) microscopy 

Hep2 IF slides (Euroimmun) were developed according to manufacturer’s 

directions. Normal human skin was acquired through the Penn Skin Disease Research 

Center (SDRC), and sectioned onto glass slides (Thermo Fisher Scientific). Monkey 

esophagus slides were purchased from SciMedX. Slides were blocked with TBS-Ca 

+1% BSA (Biorad, Sigma) at room temperature for 30 minutes. Slides were washed with 

TBS-Ca three times, and incubated with scFv diluted in TBS-Ca +1% BSA at room 

temperature for 1 hour.   Slides were washed as above, and incubated with 1:100 rat 

anti-HA Ab (Roche) diluted in TBS-Ca + 1% BSA for 1 hr at RT. Slides were washed as 
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above, and incubated with 1:200 Alexa Fluor 594 donkey anti-rat IgG mAb (Thermo 

Fisher Scientific) for 30 minutes at room temperature. Slides were washed as above, 

fixed with 95% ethanol, and mounted with mounting medium (KBL). 

Immunofluorescence was visualized with an Olympus BX61 microscope and images 

acquired using Slidebook 4.2 software (Olympus) and a Hamamatsu Orca ER camera. 

 

Pathogenicity assays 

Normal human skin biopsies obtained by the Penn SDRC were injected with 50 

ug of mAb at the dermal-epidermal junction, and incubated in defined keratinocyte (DK)-

SFM media supplemented with 1.2mM calcium (Thermo Fisher Scientific). 0.8 μg of 

exfoliative toxin A (Toxin Technology) was added as necessary to injection mixtures. 

After an overnight incubation at 37°C, skin samples were subjected to a Nikolsky test, 

and bisected. Half was embedded in phosphate-buffered formalin (Sigma), and the other 

embedded in OCT (Electron Microscopy Sciences) for histology or IF, respectively.  

 

Human primary keratinocytes were derived from the Penn SDRC from neonatal 

foreskin using Institutional Review Board-reviewed protocols and seeded into 12-well 

tissue culture plates with DK-SFM media (Thermo Fisher Scientific).  Confluent wells 

were incubated with mAbs diluted in DK-SFM media supplemented with 1.2 mM calcium 

for 6 hours at 37°C. 100 ng exfoliative toxin A (Toxin Techonology) was added as 

necessary to mAb mixtures during the last 2 hours of the incubation. Wells were washed 

with PBS-Ca and incubated with dispase (Roche) at 37° C for 30 minutes. Cell 

monolayers were washed with PBS-Ca and subjected to 5 rounds of pipetting with a 1 
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mL pipettor (Rainin). Cell monolayers were stained with Crystal Violet (Sigma), and cell 

fragments were counted using Image J. Cutoff values were determined by calculating 

three standard deviations above the mean of the negative controls. 

 

Epitope mapping 

300 uL of baculoviral supernatant containing Dsg1 molecules with domain-

swapped Dsg3 EC domains359 (gift of Dr. Masayuki Amagai) were incubated with mAb 

for 30 minutes at RT. mAbs were immunoprecipitated with anti-HA agarose (Sigma) 

overnight at 4°C. Reactions were run on SDS-PAGE gels (Biorad) and transferred to 

nitrocellulose (Biorad) for development with anti-E tag-horseradish peroxidase antibody 

(GE Healthcare) via Western blot. 

 

Surface plasmon resonance 

Mouse anti-human IgG mAb (Biacore) was amine-coupled to a CM5 biosensor 

chip using N-hydroxysuccinimide/N-ethyl-N0-[3-(dimethylamino) propyl]carbodiimine 

hydrochloride (Pierce). The chip was blocked with 1M ethanolamine, pH 8.5 for 7 

minutes. Baculoviral Dsg3-Fc protein was flowed over one cell; a second cell was used 

as a reference cell and did not contain Dsg3-Fc. Assays took place at 25° in HBS-EP 

buffer (Biacore). Each mAb was run at least three times over several concentrations. To 

adjust for nonspecific background, the reference cell was used to subtract changes in 

refractive index leading to a bulk shift from the overall mAb binding signal in each 

condition. After each condition, the chip was regenerated using 3M MgCl2. An average of 
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500 response units was reproducibly achieved for Dsg3-Fc binding to the biosensor chip 

across all replicates. All data were fit to 1:1 Langmuir binding model and analyzed with 

the BIAevaluation 3.0 software (Biacore). Any mAbs with χ2 values greater than 2 or 

considerable bulk change added to the model were also tested using the heterogeneous 

ligand or conformational change models. 

 

Rotavirus spreading infection assay 

Lipofectin (Thermo Fisher Scientific) was incubated 15% v/v with serum-free 

EMEM media (ATCC) at RT for thirty minutes. Rotavirus DLPs were added to the 

lipofectin-treated media at 2 μg/mL and incubated for 40 minutes at RT. Abs were diluted 

1:4 starting at 25 μg/mL in serum-free EMEM, added 1:1 to the DLP-lipofectin mixture, 

and incubated at 37°C for 1 hour. 40uL of DLP-Ab mixture was added to 100% confluent 

monkey renal MA104 cells (ATCC) in a 96-well plate (Corning) and incubated at 37°C for 

four hours.  40 μL of 20% fetal bovine serum (FBS) and 2% penicillin streptomycin 

(Thermo Fisher Scientific) was added to wells and incubated at 37°C overnight.  

 

Cells were washed with PBS-Ca (Thermo Fisher Scientific) and fixed with ice-

cold methanol for 15 minutes at -20°C. 50 μL of 1:500 polyclonal goat anti-rotavirus Ab 

(Fitzgerald) was added and incubated at 37°C for 1 hour. Cells were washed with PBS-

Ca and incubated with 50 μL donkey anti-Goat-HRP secondary antibody (Abcam) at 

1:1000 for 1hour at 37°C. Cells were washed with PBS-Ca and stained with the Pierce 

DAB Substrate Kit (Thermo Fisher Scientific). Cells were washed with PBS-Ca and wells 

were imaged on an EVOS FL Auto Cell Imaging System (Thermo Fisher Scientific). 
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Rotavirus foci were quantitated using ImageJ and the Immunohistochemistry Image 

Analysis Toolbox. Percent reduction was calculated based on the difference in number 

of foci in each Ab condition compared to the no antibody control. Antibody conditions 

were run in duplicate and imaged at least once per well. Error bars indicate SEM. Cutoff 

values were determined by calculating three standard deviations above the mean of the 

negative controls. 
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