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ABSTRACT 

 

Background 

18F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-

PET/CT) is used in the clinical management of oncologic and inflammatory pathologies. 

It may have utility in detecting radiotherapy (RT)-induced damage of oral tissues. Thus, 

the aim of the present study was to use FDG-PET/CT to evaluate parotid gland 

inflammation following RT in patients with head and neck cancer (HNC). 

Methods 

This retrospective study included patients with HNC treated with photon, proton, or 

combined photon/proton RT, in addition to chemotherapy. All patients received FDG-

PET/CT imaging pre-treatment and 3 months post-treatment. The average mean 

standardized uptake value (Avg SUVmean) and the average maximum standardized 

uptake value (Avg SUVmax) of the left and right parotid glands were determined by 

global assessment of FDG activity using OsiriX MD software. A two-tailed paired t-test 

was used to compare Avg SUVmean and Avg SUVmax pre- and post-RT. 

Results 

Forty-seven HNC patients were included in the study. Parotid gland Avg SUVmean was 

significantly higher at 3 months post-treatment than pre-treatment (p<0.05) in patients 

treated with photon RT, but no significant differences were found between pre- and 

post-treatment Avg SUVmean in patients treated with proton RT or combined 

photon/proton RT. 
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Conclusion 

Our results suggest that photon RT may cause radiation-induced inflammation of the 

parotid gland, and that proton RT, which distributes less off-target radiation, is a safer 

treatment alternative.  

Keywords: PET/CT, 18F-FDG, Radiation therapy, Parotid gland, Parotid gland 

inflammation, Head and neck cancer 
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INTRODUCTION 

Head and neck cancers (HNC) represent about 4% of all cancers in the United States 

[1]. This group of malignancies affect a variety of anatomic structures, including the oral 

cavity, oropharynx, nasopharynx, hypopharynx, larynx, paranasal sinuses, and salivary 

glands [2]. Along with surgical resection and/or chemotherapy, HNC may be treated 

with radiation therapy (RT) as either definitive or adjuvant treatment [2]. 

 

The majority of radiation treatment modalities for HNC consist of external beam photon 

therapy, which has been associated with many systemic sequelae including 

pneumonitis and vasculitis [3,4]. Oral complications of RT have proven to be very 

common in cancer patients, especially those with HNC [5].Critical anatomical structures 

in close proximity to the irradiated area are often affected during treatment resulting in 

complications including fibrosis, taste changes, dental caries, periodontal disease, and 

oral mucositis [2,6].  Because these alterations can have adverse effects on the lifestyle 

and health outcomes of HNC patients, it is critical to establish an understanding of the 

off-target effects of RT on the oral region which contains tissues that are particularly 

susceptible to radiation-induced damage. 

 

The parotid gland is the largest of the salivary glands and produces 60% to 65% of the 

total saliva in the oral cavity. It is wrapped around the ramus of the mandible in humans 

and may be an unintentional target in RT for HNC. Inflammation of the parotid gland has 

been demonstrated to induce xerostomia resulting in dryness of the oral cavity [7,8]. Of 

https://www.zotero.org/google-docs/?Cmmf3h
https://www.zotero.org/google-docs/?uAJZYw
https://www.zotero.org/google-docs/?6eUmc5
https://www.zotero.org/google-docs/?bl2WEz
https://www.zotero.org/google-docs/?ODwC3e
https://www.zotero.org/google-docs/?ja3kzD
https://www.zotero.org/google-docs/?Zdw07j
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note, radiation-induced xerostomia is the most frequently reported complications of RT 

for HNC and significantly affects HNC patients’ quality of life [9].  

  

Traditional imaging modalities such as computed tomography (CT) and magnetic 

resonance imaging (MRI) have been used for staging and monitoring structural 

changes. In contrast, positron emission tomography (PET) is frequently used to 

visualize physiological and molecular changes [10]. 18F-fluorodeoxyglucose (FDG) is the 

most commonly used tracer for PET scanning. It is a radiolabeled glucose analog, taken 

up by cells that rapidly consume and metabolize glucose, such as cancer and 

inflammatory cells [11–13]. The fused FDG-PET/CT allows for detection and 

quantification of glucose metabolism on the molecular level leading to a more accurate 

detection of malignancies and inflammatory changes in the head and neck [14,15] .  

 
 

LITERATURE REVIEW 

Proton Radiotherapy is a specialized technique that is not available to a large number of 

patients. As proton radiotherapy becomes more accessible, studies reporting clinical 

outcomes are becoming steadily important. The maximum dose of photons are near the 

surface followed by a continuous reduction in dose with depth. This physical advantage 

of protons over photons is highly important. On the other hand, proton beam energies 

can produce a spread out that covers the tumor accurately and delivers a lower dose to 

normal tissues beyond the tumor. These features allow for better target dose delivery 

than photon techniques. 

https://www.zotero.org/google-docs/?Q4ZnaR
https://www.zotero.org/google-docs/?WHiCQk
https://www.zotero.org/google-docs/?Tvcxwn
https://www.zotero.org/google-docs/?9MiSI9
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In a nonrandomized retrospective study by Baumann et al. they compared the 

effectiveness of proton versus photon in HNC patients. The study included 1483 adult 

patients with locally HNC advanced cancer treated with chemoradiotherapy and 

received proton or photon therapy. The objective was to assess whether proton therapy 

is associated with fewer unplanned hospitalizations or other adverse events and similar 

disease-free and overall survival compared with photon therapy. In this analysis, they 

concluded that proton chemoradiotherapy was associated with significantly reduced 

acute adverse events that caused unplanned hospitalizations, with similar disease-free 

and overall survival.[16] 

As our main focus is salivary glands, this study conducted by Grant et al. is the only 

study reporting on outcomes for salivary gland tumors but in the pediatric population 

comparing proton versus photon radiotherapy. They retrospectively analyzed 24 cases 

of pediatric salivary gland tumors and found that proton therapy was associated with a 

favorable acute toxicity. When they compared proton to conventional radiotherapy, they 

detected that patients who received proton therapy experienced significantly less acute 

mucositis and a trend toward significantly less dysphagia and weight loss. Also, proton 

therapy was associated with reduced dose to several surrounding normal structures 

relative to photon therapy. In this study of pediatric salivary tumors, they revealed that 

proton therapy is associated with favorable outcomes. This finding highlights the 

advantage of proton therapy, which is in reduced exit but not entrance dose.[17] 

  

A systematic review was performed to retrieve evidence on late treatment toxicity for 

carbon-ion, proton and photon radiotherapy. They included eight comparative studies 

https://www.zotero.org/google-docs/?R3cEVc
https://www.zotero.org/google-docs/?hGJEzq
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and 86 observational studies. Although poorly reported, toxicity tended to be less 

frequent in carbon-ion and proton studies compared to photons. No late xerostomia or 

dysphagia were observed in proton radiotherapy related results. Protons can be used to 

deliver a lower normal tissue dose while keeping the target dose similar, so the control 

of the tumor is anticipated to be similar to the results of photon radiotherapy. There is a 

strong depended relation between the severity of radiation-induced side effects and the 

dose and volume of the radiation area, where it will likely be less in proton 

radiotherapy.[18] 

  

Much of the existing literature on the clinical application of FDG has focused on the 

radiotracer’s utility in diagnosing malignancies due to the typically increased glucose 

metabolism of cancer cells, but FDG has also been used for decades to detect 

inflammatory processes. Therefore, we predict that FDG-PET/CT will show potential in 

the evaluation of radiation-induced inflammation in the parotid gland that predisposes 

patients to xerostomia. 

 
A retrospective study by Roach et al. in patients with head and neck squamous cell 

carcinoma (HNSCC) aimed to identify the relationship of radiation dose response of 

parotid gland glucose metabolism. They used the same technique we are proposing in 

our present study, but the pretreatment and post treatment scans varied between 3 and 

6 months. They aimed to identify a threshold radiation dose where the parotid gland 

activity declined. The mean dose threshold in this study was 32 Gray.[19] 

  

https://www.zotero.org/google-docs/?tSl9oH
https://www.zotero.org/google-docs/?Q6XAzs
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As we discussed previously, most of the existing literature aims to identify the radiation 

dose– response relationship of parotid gland in head and neck cancer patients using 

FDG-PET imaging. In our study we predict that FDG-PET/CT will show potential in the 

evaluation of radiation-induced inflammation in the parotid gland that predisposes 

patients to xerostomia regardless of the radiation dose because we are focusing on the 

type of radiotherapy. 

  

18F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-

PET/CT) is used in the clinical management of oncology and inflammatory pathologies. 

It may have utility in detecting RT-induced damage of oral tissues. In effort to confirm 

the correlation between FDG uptake, parotid gland inflammation, and saliva production. 

The aim of the present study is to demonstrate the feasibility of FDG-PET/CT in the 

detection and quantification of the inflammatory effect of RT on the parotid gland in 

HNC patients. 

 
 

MATERIALS AND METHODS 

Patient Population 

Between 02/09/2010 and 11/27/2018, 64 patients with HNC treated with photon, proton, 

or combined photon/proton RT, in addition to chemotherapy with either cisplatin or 

cetuximab at the University of Pennsylvania. All patients were imaged pre- and 3 

months post-treatment with FDG-PET/CT. Of the 64 patients, 17 were not included in 

the study due to technical issues associated with their FDG-PET/CT scans, inferior 

imaging quality in the head and neck region and/or mismatch between PET and CT 
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images. The collected clinical data included age, sex, and primary tumor location. The 

primary tumor locations were tongue, larynx, oropharynx, nasopharynx and 

hypopharynx. PET/CT scans used for the study were free from background noise, 

scatter, and metal artifacts. The study was approved by the Institutional Review Board.  

It was conducted in compliance with the Health Insurance Portability and Accountability 

Act (HIPAA). 

  

FDG-PET/CT Image Acquisition 

All subjects were injected intravenously with 5.0 MBq/kg FDG. After approximately 60 

minutes FDG-PET/CT images were obtained using the same standardized protocol. 

Imaging was performed on hybrid PET/CT scanners with comparable spatial resolution 

(Siemens Biograph 64 mCT (Siemens Healthineers AG, Chicago, IL, USA) and Philips 

Gemini TF 16 (Philips Medical Systems, Andover, MA, USA)).  The images were 

acquired in accordance with international guidelines[33,34] and the institutional PET/CT 

protocol, including quality control, calibration and harmonization of PET/CT scanners 

and validation of standardized uptake value (SUV) measurements.  Patients fasted for 

at least 6 hours prior to scanning and serum glucose levels were immediately measured 

prior to FDG injection. Three acquisition protocols were used: one for body mass index 

(BMI) under 30, another for BMI between 30 and 35, and the third BMI over 35; the CT 

settings were 50, 100 and 150 mAs, respectively and all at 120 kVp. For the PET 

acquisitions, the time per bed was 1.5, 2, and 3 minutes, respectively. Low-dose CT 

imaging was performed for anatomic localization and attenuation correction. PET 

https://www.zotero.org/google-docs/?yGTLtS


 10 

images were corrected for scattering, attenuation, scanner dead time, and random 

coincidences. 

  

FDG-PET/CT Image Analysis 

FDG-PET/CT scans were analyzed using OsiriX MD software v.10.0.2 (DICOM viewer 

and image-analysis program, Pixmeo SARL; Bernex, Switzerland). Sequential axial 

PET/CT slices were used to draw regions of interest (ROI) manually around the right 

and left parotid glands using a closed polygon (Figure 1). The reader was blinded to the 

paired PET scans (pre- and post-treatment scans). Parotid gland ROIs were drawn 

beginning superiorly at the level of condyle down to the angle of the mandible inferiorly. 

The skin and external ear were defined as the lateral borders, the styloid process of the 

temporal bone was the medial border, and the mastoid process of the temporal bone 

was the posterior border.  

 

The SUVmean was calculated as the average value of all voxels in the ROI. To 

determine the global activity of the parotid gland, the SUVmean as well as area (mm2) 

of each ROI at each transverse slice, was measured and recorded. The SUVmean was 

multiplied by the area, and the products were summed, the result of which was divided 

by the sum of the total area of the ROIs (Sum (SUVmean*Area))/(Sum Area). This 

resulted in the average SUVmean (Avg SUVmean) representative of a global 

inflammation burden of the parotid gland. The SUVmax was defined as the hottest voxel 

within the ROI. The average SUVmax (Avg SUVmax) represented the average value 
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from all trans-axial slices which include both right and left parotid glands. Statistical 

comparison was completed by using the Avg SUVmean and Avg SUVmax of all slices. 

  

Statistical Analysis 

For each subject, pre- and post-treatment Avg SUVmean and Avg SUVmax was 

calculated. A two-tailed paired t-test in STATA software (Stata/IC Version 10.1, 

StataCorp, College Station, TX) was used to compare the Avg SUVmean and Avg 

SUVmax in the pre- and post-treatment scans. The level of significance was defined as 

a p-value of less than 0.05. The average mean increases in SUVmean and SUVmax 

were calculated by subtracting pre-treatment from post-treatment Avg SUVmean and 

Avg SUVmax values for each patient. 

  

RESULTS 

The data collected from a total of 47 HNC patients (25 males, 22 females), mean age 

59.7 years (range 42-78) with pre and post-treatment FDG-PET/CT were included. 

Thirty-three patients were in the photon RT group, while seven patients were in each of 

the proton RT and combined photon/proton RT groups. Primary tumor location, age, 

gender, and race are summarized in Table 1. 

  

Statistical data are summarized in Table 2 and 3. The parotid gland Avg SUVmean in 

patients treated with photon RT was significantly higher in post-treatment scans (1.50, 

p<0.05) relative to those done pre-treatment (1.38, p<0.05) (Figure 2). The Avg 
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SUVmax was higher in post-treatment scans (2.06) compared to those done pre-

treatment (1.96), but the difference was not statistically significant. 

  

In patients treated with proton RT, the parotid gland Avg SUVmean was not significantly 

different in post-treatment scans (1.32, p>0.05) when compared to pre-treatment scans 

(1.25, p>0.05) (Figure 3). Evaluation of pre- and post-treatment scans for Avg SUVmax 

yielded a similar finding (post-treatment [1.73, p>0.05] and pre-treatment [1.72, 

p>0.05]). 

  

Analysis of the parotid gland Avg SUVmean in patients treated with combined 

photon/proton RT was not significantly different in post-treatment scans (1.32, p>0.05) 

when compared to pre-treatment scans (1.25, p>0.05) (Figure 4). Similar findings were 

presented for Avg SUVmax (post-treatment [2.12, p>0.05] and pre-treatment [1.90, 

p>0.05]). 

 

DISCUSSION 

Our study demonstrates a significant increase in FDG uptake in the parotid glands of 

HNC patients following photon RT and chemotherapy treatments. Investigating the 

impact of these treatments on the parotid gland is critical, not only because of its role in 

saliva production but also due to the fact that cranial nerve VII (facial nerve) lies in close 

proximity to and innervates the gland. This nerve also innervates numerous muscles of 

facial expression, as well as the stylohyoid and posterior belly of the digastric muscles, 

which play a critical role in swallowing [20].  The glossopharyngeal nerve provides 

https://www.zotero.org/google-docs/?6cziql
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parasympathetic innervation to the parotid gland, as well as sensory innervation to the 

posterior one-third of the tongue and pharynx. Photon RT and/or chemotherapy induced 

damage of the parotid gland can therefore impact glossopharyngeal nerve function and 

indirectly lead to deleterious effects on adjacent structures in the head and neck region 

[21]. Thus, determining the FDG uptake in the parotid gland is of clinical 

interest/importance in investigating potential previously underappreciated side effects of 

radiotherapy in head and neck cancer patients. 

 

In our study, we found that Avg SUVmean was significantly higher in the parotid gland 

following photon RT, but not in patients who underwent proton RT or combined 

proton/photon RT. Although Avg SUVmean was significantly increased in patients 

receiving photon RT, SUVmax values were not significantly different in pre-treatment 

versus post-treatment scans of patients receiving any form of RT. SUVmax is the 

maximum voxel value of SUV in the target structure/ROI. SUVmax is simple and 

observer independent, hence SUVmax is the most commonly used parameter in clinical 

practice. However, SUVmax does not represent an entire structure`s metabolic burden 

because the value is from only one voxel. Furthermore, SUVmax is sensitive to image 

noise, and is therefore impacted by various patient characteristics and imaging 

parameters. On the other hand, Avg SUVmean accounts for all uptake within the ROIs 

and is more reflective of the total pathological changes in glucose metabolism, which 

suggests that Avg SUVmean is a more accurate value to use in this data collection. 

Since we suspect that radiation-induced parotid injury is a diffuse pathology that has the 

potential to elicit an inflammatory response across the entire gland, we used the Avg 

https://www.zotero.org/google-docs/?l3erIt
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SUVmean as it is likely to be a more accurate indicator of the extent of the global 

inflammation. 

  

There are several artifacts encountered in PET/CT imaging including attenuation 

correction artifacts commonly associated with the use of CT. Attenuation correction 

algorithms work well for most applications in the majority of patients. However, these 

algorithms tend to overcorrect objects that have higher density but are not true bone 

pixels. Dental implants or fillings can cause such an attenuation correction artifact and 

can confound image interpretation and effect the quantification in the head and neck 

region.  In the present study, of the 64 patients, 17 were not included in the study due to 

technical issues including the presence of artifacts related to metallic based 

restorations, orthodontic appliances, and other dental procedures which are the main 

cause of beam hardening. This confirms the lack of beam hardening artifact effect on 

our measurements.   

   

We assert that the increased FDG uptake observed in this study was a result of RT-

induced inflammation in the parotid gland. Cellular uptake of FDG is a marker for 

inflammation, and these results confirm its utility in identifying parotid gland pathology 

following RT in head and neck cancer patients. In classic parotitis, this inflammation is 

most often the result of a localized infection or cellular damage, though the irritation can 

be caused by a myriad of factors, including pathogenic microbes derived from the oral 

cavity, metabolic imbalances, and autoimmune disorders [22]. Initiation of inflammatory 

processes in the gland can lead to a decrease in salivary production, causing 

https://www.zotero.org/google-docs/?3Zt662
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dehydration of the gland as well as a distortion of the parotid duct and metaplasia of the 

ductal epithelium [23]. Uptake of FDG may begin to increase subsequent to the 

preliminary irritation and continue to increase as the inflammatory response progresses 

[23]. Since RT has been shown to increase systemic inflammation, patients experience 

a significant risk in the perturbation of the parotid gland, since it is particularly 

susceptible to irritation [24,25]. 

 

It is critical to acknowledge the limitations of our study. This was a retrospective 

analysis with a relatively small sample size of patients. Thus, future evaluation of the 

use of FDG-PET/CT as a surrogate measurement of inflammatory activity in the parotid 

gland after RT treatment should be directed towards prospective studies using large 

numbers of patients. Information regarding full tumor stage, type of radiation field, the 

exact dosage of radiotherapy administered to patients, and oral complications were not 

available for the current study, which limited the description of our patient cohort. A 

survey reported that 64% of at least 3 years survivors after RT suffered from moderate 

to severe xerostomia [26]. Thus, future studies must include detailed information 

regarding the occurrence of xerostomia in order to determine whether increased 

parotid-uptake of FDG can be used to predict the onset of this condition. Partial volume 

effect, which accounts for signal overlap from neighboring anatomical structures and 

potential movement of the patients during scan acquisition, may have altered the data 

used in these analyses. Therefore, the regions used as borders in determining the 

extent of the ROIs may have been ambiguous, depending on the quality of the scan. 

The influence of partial volume effect is due to the limited resolution of the technology 

https://www.zotero.org/google-docs/?ELlkNa
https://www.zotero.org/google-docs/?GeCWk8
https://www.zotero.org/google-docs/?oGmbKY
https://www.zotero.org/google-docs/?g27rqp
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used in obtaining these scans [27,28].  This could account for the single outlier 

observed in the data, which might have introduced further uncertainty into the results 

(Figure 2). In addition, because the patients who participated in the study received both 

chemotherapy and photon RT, it is not possible to differentiate between the 

inflammatory effects of each treatment individually. Finally, there were only two-time 

points assessed in this study, pre-treatment and 3 months post-treatment, which 

prevented the evaluation of FDG uptake throughout the entire post-treatment period. 

 

The present study suggests that an increase beyond normal physiological glucose 

uptake in the parotid gland occurs as a manifestation of RT-induced inflammation. 

Given that inflammation is followed by cell damage and fibrosis of some of the glandular 

tissue [29], we predict that additional follow-up scans will demonstrate a decrease in the 

parotid gland uptake due to lack of normal gland activity and function. It would be 

helpful to direct future studies towards more longitudinal assessments of FDG uptake in 

the parotid gland to better track changes in signaling over time to determine the time 

frame of cell damage and fibrosis manifesting as a decline in parotid gland function 

compared to pre-treatment. 

 

Protocols utilizing photon beams are currently the most common form of RT for HNC 

while less than 1% of patients are treated with proton therapy [30]. When comparing 

proton to photon therapy, proton therapy reveals an added advantage of lower dose and 

smaller number of beams [31]. In the present study, no significant differences were 

found between pre- and post-treatment parotid FDG uptake in patients treated with 

https://www.zotero.org/google-docs/?NULNqv
https://www.zotero.org/google-docs/?hKlly9
https://www.zotero.org/google-docs/?8CZuwx
https://www.zotero.org/google-docs/?IijgpS
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proton RT. This observation might be indicative of there being less radiation delivered to 

normal tissues in close proximity to actual tumors thereby minimizing collateral toxicity 

and limiting the extent of side effects traditionally associated with photon-based RT 

[30,32].  

 

The present study demonstrated significantly higher FDG uptake in the parotid glands of 

patients undergoing photon-based RT for treatment of HNC. This increase in glucose 

metabolism may be indicative of radiation-induced inflammation, which subsequently 

can progress result in decreased functionality of the parotid gland. Future studies 

should include a larger sample to allow comparison of the effect of photon RT for 

treatment of HNC to other modalities of RT in order to assess the differential impact on 

parotid gland function. Confirmation of the correlation between FDG uptake and saliva 

production might enable clinicians to choose alternative RT regimens and/or intervene 

at an earlier stage and prevent the sequela of xerostomia. 

 

CONCLUSION 

FDG-PET/CT has the potential to be used to measure the metabolic activity associated 

with RT-induced inflammation and predictor of parotid gland dysfunction. 

 

LIST OF ABBREVIATIONS 

• FDG-PET/CT: 18F-fluorodeoxyglucose-positron emission tomography/computed 

tomography. 

• RT: radiotherapy.  

https://www.zotero.org/google-docs/?i7ZKlW
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• HNC: head and neck cancer.  

• CT: computed tomography. 

• MRI: magnetic resonance imaging. 

• PET: positron emission tomography. 

• FDG: 18F-fluorodeoxyglucose.  

• HIPAA: Health Insurance Portability and Accountability Act. 

• SUV: standardized uptake value.  

• Avg SUVmean: average mean standardized uptake value. 

• Avg SUVmax: average maximum standardized uptake value. 

• ROI: region of interest.  

• BMI: body mass index. 
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Table 1. Primary tumor location, age, gender, and race.  

 

Primary Tumor 

Location 

Number of Patients  

Average Age 

(Years) 

Race  

Males Females White African 
American 

Other 

Tongue 14 3 61.97 15 2 0 

Larynx 3 2 54.66 4 0 1 

Oropharynx 3 14 58.70 13 3 1 

Nasopharynx 3 2 58.25 3 1 1 

Hypopharynx 2 1 62.73 2 0 1 
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Table 2.  Parotid gland average mean standardized uptake value (Avg SUVmean) and 

in head-and-neck cancer patients pre- and post-treatment scans. 

  

Avg SUVmean 
(g/mL) 

Pre-treatment Post-treatment P-value 

Photon Therapy 1.38 1.50 0.03 

Proton Therapy 1.25 1.32 0.31 

Combined Therapy 1.51 1.46 0.40 
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Table 3. Parotid gland average maximum standardized uptake value (Avg SUVmax) 

and in head-and-neck cancer patients pre- and post-treatment scans. 

  

Avg SUVmax 
 (g/mL) 

Pre-treatment Post-treatment P-value 

Photon Therapy 1.96 2.06 0.18 

Proton Therapy 1.72 1.73 0.50 

Combined Therapy 1.90 2.12 0.21 
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Figure 1. 18F-fluorodeoxyglucose positron emission tomography/computed tomography 

(FDG-PET/CT) images of the parotid gland. Left: Fused FDG PET/CT, right: CT. The 

delineation of the region of interest (ROI) is highlighted for the right and left parotid 

glands. 
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Figure 2. Changes in average standardized uptake value mean (Avg SUVmean) of the 

parotid gland before and 3 months after treatment in patients treated with photon RT.  
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Figure 3. Changes in average standardized uptake value mean (Avg SUVmean) of the 

parotid gland before and 3 months after treatment in patients treated with proton RT. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30 

Figure 4. Changes in average standardized uptake value mean (Avg SUVmean) of the 

parotid gland before and 3 months after treatment in patients treated with combined 

photon/proton RT. 

 


	Traditional imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) have been used for staging and monitoring structural changes. In contrast, positron emission tomography (PET) is frequently used to visualize physiolo...

