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Series approach to the randomly diluted elastic network
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Series expansions in powers of the concentration p for elastic and other susceptibilities of randomly di-

luted elastic networks have been generated for a bond-bending model on a honeycomb lattice up to 13th
order, and for the central-force model on a triangular lattice up to 22nd order, in p. Critical exponents
for both models and the critical threshold of the central-force problem have been estimated by Pade-
approximant-analysis techniques. We obtain exponent estimates that are consistent with scaling rela-
tions and other calculations. For the bond-bending model, the effective splay elastic constant scales like

/v
L ' with $,~=1.20+0.015. For central-force elastic percolation, we find P+y=1.9+0.2 and
v= 1.1+0.2.

I. INTRODUCTION

Recently, much effort has been expended to further our
knowledge of randomly diluted elastic networks. This
type of problem has been discussed by de Gennes. ' He
argued that the elastic properties of gels could be
modeled by an isotropic elastic potential energy iso-
morphic to that used to describe resistive properties of
the analogous resistor networks. Thus these two systems
belong to the same universality class. Feng and Sen
pointed out later that for the randomly diluted elastic
network consisting of central-force springs between
nearest neighbors, the threshold concentration, p„;z,
above which the bulk modulus is nonzero, is significantly
larger than the usual percolation threshold, p, . That

p„;zis larger than p, reflects the fact that connections
via a single bond are not rigid if only central forces are
considered. Furthermore, their calculations of the bulk
modulus indicated that this model belongs to a different
universality class from that of the random resistor net-
work. Since then, various people have studied various
additional models, including the bond-bending model, '

the granular-disk model, ' and the Swiss Cheese model.
Claims have been made that these systems belong to four
different universality classes. Recent calculations seem
to indicate a trend towards reunification of these classes,
but the situation is still under debate.

Here we confine our attention to the model described
by the following Hamiltonian:

l
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where ub =u, —u, is the displacement associated with a
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g(p)-Ip —p„„&l', (2e)

where y(p) is the mean number of bonds in a totally rigid
cluster, p(p) is the probability that a bond be in an

bond b (connecting points s, and s2), R~ is a unit vector
along the direction of bond b, eb is an indicator variable:
Eb = 1 if bond b is occupied and eb =0 otherwise, and
( b, b') indicates a sum over pairs of nearest-neighboring
bonds. Here kcF and k» are spring constants such that
when k»=0, the model describes central-force springs
and when kc„=0one has only bond-bending forces. In
contrast to the isotropic case treated by de Gennes, the
model of Eq. (1) is rotationally invariant for all values of
kcF and k». As we have mentioned, for the central-
force model (k» =0) the rigidity threshold at

p„giz=p&F is significantly larger than the percolation
threshold, p, . For the bond-bending model ' (k»%0) in

two dimensions, all bonds in a given cluster are rigid with
respect to one another and thus p„g;~=p,. However,

p„g,& is greater than p, in three or higher dimensions for
the bond-bending model, "unless higher-order torsion-
al interactions are included.

For these elastic models one defines the critical ex-
ponents associated with the rigidity transition at the
threshold concentration p„g;~in close analogy to those of
percolation and the random resistor network. ' In terms
of the bulk elastic constants and the properties of rigid
clusters we ~rite
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infinite totally rigid cluster, g(p) is the correlation length
associated with total rigidity, and B(p) and p(p) are re-
spectively the bulk and shear modulus. We will later in-
troduce similar definitions with respect to a type of par-
tial rigidity known as splay rigidity. ' As we shall see, for
the bond-bending model the quantities in Eqs. (2a), (2b),
and (2e) reduce to those of percolation (with p„;d=p, ) in
which case the exponents p, y, and v are identical to
those of percolation. For the model with only central
forces, where the rigidity threshold no longer coincides
with p„the critical exponents may be expected to differ
from those of percolation. Accordingly, where confusion
may arise, we will indicate exponents for the central-force
model by subscriPts CF, as in Pc„.

The exponents fs and f„have been studied for quite

some time. It is believed that fs=f„,although this
equality has not yet been derived analytically from a mi-
croscopic theory. Also, it has been suggested ' ' '
that, for the bond-bending model, one has the relation y, =y+0 y, =y (4)

determination of the critical exponents. Our results, al-
though not very precise, support the idea that these two
models have different exponents, p, y, and v. We do not
address the question of how the transport exponents fs
and f„ofthe two models coinpare with one another. In-
stead we concentrate on the nature of the corrections to
scaling in these models, the location of the critical thresh-
old for the central force model, and the nature of elastic
correlations for p &prIgId.

Our analysis utilizes series expansions which have
proved so useful' ' for the study of critical exponents
for the usual percolation and random resistor network
models. The series expansion approach to the resistor
network problem is based on the definition of the resistive
and conductive susceptibilities g„andy, . These diverge
at p, with exponents y„and y„given by

fs =t+2v, (3) where P is a crossover exponent for resistance. For resis-
tor networks it has been known for some time' that

where t is the exponent for the conductivity of the analo-
gous random resistor network defined by o (p)-o 0~p

—p, ~

', where cr 0 is the conductance of an occupied
bond (which occurs with probability p) and the vacant
bonds occurring with probability 1 —p have zero conduc-
tance. However, the justification for the relation Eq. (3)
is inadequate and there is still some argument concerning
a scaling picture which encompasses the exponents fs,f„,and v. We have made a systematic study of these ex-
ponents in an attempt to throw further light on the scal-
ing picture.

At present there is disagreement in the literature as to
whether fa is the same for both the central-force model
and the bond-bending model. Although most calcula-
tions' ' suggest that exponents are different for the two
models, a recent one suggests that they are the same.
The disagreement may be due to anomalous corrections
to scaling, the treatment of which, in turn influences the
exact location of the critical threshold, and thereby the

t=(d —2)v+P .

Thus, a series determination of y„(ory, ) is equivalent to
a determination of t, since y and v are known rather ac-
curately.

The derivation of this relation will be discussed in de-
tail in Sec. II, where we will also define various "elastic
susceptibilities" and discuss relations [analogous to Eq
(5)] between the exponents governing their divergences.
In Sec. III we describe the generation of series expansions
for these susceptibilities, and present these expansions in
Tables I and II. We also give some details of previous re-
sults for these models. The analysis of the expansions is
described in Sec. IV. Some comparisons between the
series results, the scaling relations, and the results of
simulations are given in Sec. V.

TABLE I. Coefficients for the bond-bending model for the honeycomb lattice.

1

2
3
4
5
6
7
8

9
10
11
12
13

3
12
24
48
96

162
300
546
984

1482
2952
4716
7968

a,("(n)

3
6

12
24
48
75

144
261
468
663

1419
2166
3663

a(3)(n)

9
36

114
324
864

1935
4464
9873

212 34
410 13
88047

170 130
329 877

a((", (n)

3.0000
18.0000
66.0000

198.0000
534.0000

1314.0000
3078.0000
6876.0000

14 886.0000
30 795.0000
63 927.0000

127 002.0000
250 689.5300

a,&(n)

3.0000
10.5000
32.9286

100.0714
290.4775
602.9286

1576.3828
3805.2981
8916.4618

16 570.8697
42 338.7244
82 381.4444

175 893.5441

0.0000
6.0000

22.0000
64.0000

168.0000
337.4987
785.2938

1661.4468
3434.4906
5715.0242

13408.5268
22 400.3594
45 389.1441
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TABLE II. Coefficients for the central-force model for the triangular lattice.

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

a' '(n)

3

0
12
0

24
0

48
0

96
0

420
—324

1284
—1116

3216
—3000
154 20

—286 62
583 68

—847 20
214 788

—436 230

ab"(n)

3
0

48
0

216
0

720
0

2112
0

9360
—5484
349 92

—270 36
113520

—997 20
536 904

—876 090
224 9154

—3362544
929 625 6

—178 739 10

ab'4'(n)

3

0
156

0
1392

0
7392

0
30912

0
160980

—76212
728 340

—507 348
289 833 6

—240 528 0
147 242 28

—216 658 50
686 966 56

—102 662 112
316 890 112

—587 620 352

a &b'(n)

0
0
6
0

42
0

162
0

498
0

2052
—948
8502

—612
282 54

—237 66
129 276

—198492
561 030

—834828
230417 4

—424 287 0

II. ELASTIC SUSCEPTIBILITIES AND CROSSOVER
EXPONENTS

We define two elastic susceptibilities, y, &
and y,p

which
are analogous to the resistive susceptibility y„for the ran-
domly diluted resistor network. ' Here g, ~

describes the
response to extension and y, the response to splay distor-
tion.

In the case of resistor networks, for p &p„when there
are only finite clusters, g„is defined by' '

X,= g'IR~)1,
J

Here [R;J ]p is the configurationally averaged resistance
between sites i and j, and the prime indicates that the
terms when R,J

= ~ (i.e., those from configurations where
site i and j are not connected) are to be omitted. The
configurational average [R;.] is found by summing R;J
over all clusters, weighing each term by the probability
that the given cluster occur. The crossover exponent for
resistivity P is then defined by the relation for the resis-
tance, R,-J, between typical points i and j in the same clus-
ter,

Eel g'[ ij /Fr& ]p
J

where the prime again denotes omission of terms from
configurations with no restoring force. The analog of Eq.
(7) is

u;, /F, , —~r,
—r, ~

'

from which it follows that

(9)

the translational part (u, +u ) or the rotational part
[r;J X (u; —uj ) ] of the displacements, one sets
u; = —u. =u; r;, where r;. is a unit vector from site i to
site j. Likewise, the induced forces can produce no net
force or net torque, so that F' Fj Fj'r'j In Fig. 1

we illustrate these forces for an arbitrary pair of points i
and j on an arbitrary cluster. Thus we are led to define
the elastic susceptibility g, &

via

using which one can derive Eq. (4) via a scaling argu-
ment.

Inasmuch as the elastic analogs of V and I for resistors
are respectively the displacement u and the force F, one
defines y, &

——[u/F] as follows. One assigns fixed dis-
placements to sites i and j in an arbitrary cluster and al-
lows the other sites to relax to their new equilibrium posi-
tions. One then obtains the forces F; and F needed to
maintain u; and u . Since F; and F- do not depend on

FIG. 1. Forces F; and F on an arbitrary cluster where sites i

and j have fixed displacements along the axis joining the two
sites. Since the net force on the cluster must be zero, F, = —F;.
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Xei (p rigid (10)

X»-(p gs
—p) (13)

In writing Eqs. (10) and (13) we have assumed that
both splay and total rigidity have the same threshold for
rigidity. This is obviously the case for systems (in two di-
mensions) having both central forces and bond-bending
forces. In the absence of bond-bending forces the situa-
tion is less clear. ' Although it is possible to construct
models for which the two thresholds differ, most re-
sults' ' seem to indicate that for the model of Eq. (1)
with only central forces, the two thresholds do coincide.
On the other hand, a recent study finds two distinct
thresh olds.

We now use scaling arguments' ' to relate P,i and P»
to fs, the elastic bulk modulus exponent. For re-
sistor networks, one has the spatial Fourier transform of
the voltage-voltage correlation function [denoted
( V(q) V(0) ) ] at p (p, :

The splay elastic susceptibility y, and crossover ex-
ponent P, are defined similarly as follows. One rotates
bond b about its center through angle 0b and bond b'
about its center by the angle 0&.. Since we require that
there be no net rotation, we take 0& = —

0&
=—0& &.. In or-

der to maintain the system in equilibrium with these dis-

placements, one must apply forces to the system as illus-
trated in Fig. 2, and in particular let ~& and ~& be the
torques applied to the bonds b and O'. Since we take the
total torque on the system to be zero, we set
~I, = —

~I, =~I, &. Then we defined', as

X» X [~b,b'~rb, b']
b

where the prime on the summation has the same meaning
as Eq. (8). For the splay response one can also write the
analog of Eq. (9), namely,

p, /v
eb, b'~~b, b' I rb I (12)

in which case we have

&(p)-
q'f(qk, ~ale, p I'—)

Since X(p) is proportional to o 0, we then have

g2
i i

y+ 2P+ P

p ~y+2P+P —2
Oo Pc

(17)

(18)

and using the scaling relation y+2P=a=2 and the
hyperscaling relation d v=2 —a we obtain Eq. (3).

For the bond-bending model of elastic networks, we
consider the angle-angle correlation function' '

(5850) —((VXu)(VXu) ) (19a)

-lp, pl 'g(q—k, k .Ip, pl "),—
pp

where g is a scaling function, iu(p) is the shear modulus.
We get

[P p ] Ip, pl y+v+0„
g(qg, kbblp, -pI' )

So assuming B and p to have the same critical behavior,
we have

fs =dv+y„. (21)

If we consider the (uu ) correlation function, we ob-
tain another relation

fs = (d —2)v+ P,i, (22)

where P,&
is the exponent characterizing the central-force

spring constant kcF.

III. SERIES EXPANSIONS

( V(q)V(0)) = P(p)'
&(p)q'

where P(p) is the fraction of sites in the infinite cluster
and X(p) is the bulk conductivity. We assume that the
form of Eq. (14) also holds for p )p„in which case it as-
sumes the form written explicitly in Eq. (15). Then it fol-
lows that

( V(q) V(0) ) = [p, —p I f(qg, o'olp, —p l~), (14)

where f is some scaling function. For p )p, we have

+b'

FIG. 2. Torques, ~& and ~&, on an arbitrary cluster when two
bonds are given equal and opposite angular (splay) displace-
ments. Since the net torque on the cluster must be zero,
7b 7b

In this section we present the series. In resistor net-
works or for usual percolation, two topologically
equivalent diagrams give the same resistance R; or the
same contribution to quantities such as the mean cluster
size. In elastic networks, however, we need to keep track
of the shape of the diagram because topologically identi-
cal diagrams {ofdifferent shape) can give different values
fory,

&
andy, .

The series up to order p' for the bond-bending model
on the honeycomb lattice are presented in Table I. To do
this we generated all diagrams on this lattice with up to
13 bonds. We have constructed series for the elastic sus-
ceptibility and for several quantities that are equivalent
to those for the usual bond percolation on this lattice.
The quantities we have studied are defined as follows.
First we have the mean number of bonds in a cluster
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defined by

yb
' ——g P(I „)[nb(I,)] = gai', '(n)p", (23a)

RIC IDITV PERCOLATION

where the sum is over all rigid clusters I „,P(l „)is the
associated probability per site that the cluster I „occur,
and nb(1 „)is the number of bonds in the cluster I „.
Here a rigid cluster is one which has a nonzero elastic en-
ergy under any system of displacements other than a uni-
form translation or an overall rotation. %'e refer to such
a cluster as being "totally" rigid. Furthermore, we define
moments of the cluster size by

p 2p +p

p 3p

p 10p + 45p' —120p' + 210p'

p' —12p' + 66p

q,"'= y P(1 „)[n,(l „)]'—= 1+ y a,"'(n)p", (23b)

y,' '—:QP(I „)[n,(l „)]=1+ pa, ' '(n)p", (23c)

where n, (I „)is the number of sites in the rigid cluster
I„.Finally we write

g y,' '= QP(I „)g r,, = gag'(n)p", (23d)

g PcF(1 ~ )[nb(I ~ )] = g ab (n)p (23e)

where Pc&(I ) is the probability (within the central-force
model) that the cluster I be totally rigid. For the
central-force model it is essential to consider clusters of
bonds because a decomposition into clusters is only possi-
ble with respect to bonds and not to sites. ' Note that for
the central-force model, Pc„(1) is different from P(I )

for percolation, because adding a dangling bond to a rigid
cluster, for instance, does not change the size of the rigid
cluster. This is illustrated in Fig. 3, where we contrast
the probabilities of clusters in percolation and in the
central-force problem. In contrast to the case for per-
colation, since rigidity is nonlocal, there is no closed-
form expression for Pc&(I ). Because for the central-

where r,. is the vector displacement between sites i and j.
The mean cluster size has a dominant critical exponent of
y, y', ' has the exponent 2y+P=y =9, and g y,' ' the ex-
ponent 2v+y. The series for yz

' are two terms shorter
than the honeycomb bond series for usual isotropic per-
colation quoted by Essam, but the new series agree as
far as they go with the old series. This gives a necessary
and satisfying check on the reliability of our diagram
enumerations and of the algorithm to calculate the
coefficients. We have therefore obtained the higher mo-
ment series and that involving the correlation length. In
addition we have generated two additional series for the
elastic susceptibilities y, &

and y, that were defined above
for the bond-bending model. For the bond-bending mod-
el, we know that the percolation threshold is the same as
that for usual bond percolation on the honeycomb lattice,

pc =0.6S27
For the central-force model, on the triangular lattice,

we have generated four additional series through to order
p. Here we have generated series for moments of the
cluster size as defined through

FIG. 3. Probabilities for rigid clusters in the central-force
model (left) and for percolation (right). Note that for percola-
tion the probability of having a specified cluster can be ex-
pressed in closed form. For rigidity percolation (which is non-
local) we give the probabilities (which cannot be expressed in
closed form) only up to order p'.

force model we are dealing with bond clusters, we define
the correlation length via

g',„q~,'~=y P,„(r„)
b, b'eI

„

—:ga&b'(n)p", (23f)

where the sum is over bonds and rb b is the distance be-
tween the centers of the bonds b and O'. The series
coefficients for the central-force model on a triangular
lattice are presented in Table II. The exponents associat-
ed with these series are defined as for the bond-bending
problem, but they may assume different values. Whether
or not the exponents are the same for the central-force
and bond-bending models is a question that we are trying
to settle in this calculation. There are a few previous cal-
culations that are relevant to this question. For instance,
Lemieux et al. ' obtained vc„=1.05+0. 1S, which is
significantly different from that (4/3) of ordinary percola-
tion. Marshall and Harris' find exponents different
from those of usual percolation, e.g., vc„=1.14+0.1,
yc„=1.6+0.3, and Pc„=0.46+0.4. (For percola-
tion, y =43/18 and @=5/14. ) Roux and Hansen find

that the ratio between the transport exponent, f, and v

for the central-force problem is the same as that for the
bond-bending problem. This would seem to suggest that
the other exponents should also be the same but is cer-
tainly no proof of this.

The critical threshold pc& for this model has been vari-

ously estimated by Lemieux et al. ' and Day et al. ,
'

who find pc„=0.6S+0.005, by Marshall and Harris, '
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who find pcF=0.64+0.002, by Roux and Hansen, who
find pcF 0.642+0.002, and by Burton and Lambert,
who find pc& =0.6375+0.0025.

IV. ANALYSIS

A. Methods

We have analyzed the individual series presented above
with two different methods, ' one based on the assurnp-
tion that there are nonanalytic confluent corrections to
scaling and another based on the assumption that there
are logarithmic confluent corrections. Nonanalytic
confluent corrections to scaling have several origins, in-
cluding irrelevant operators. They are definitely present
in both isotropic and directed two-dimensional percola-
tion, and thus must be allowed for in the series dis-
cussed in this paper. The possibility of logarithmic
corrections to scaling in percolation has been raised by
Andelrnan and Berker. This conjecture was based on
their presence in the four-state Potts model, and was pro-
posed in order to explain discrepancies between series ex-
pansion estimates of percolation critical exponents and
the exact results. Stauffer showed from a reanalysis of
simulation data that the logarithmic corrections are very
small and Adler and Privrnan ' showed that they are ab-
sent or extremely small in percolation series for static
quantities. As summarized in Ref. 28, the discrepancies
between series expansion estimates of percolation critical
exponents and the exact result are in fact caused by the
nonanalytic corrections to scaling. There is, however,
evidence from some Monte Carlo calculations for a
bond-bending model that there may be logarithmic
corrections to the elastic critical behavior in two dimen-
sions. Logarithmic corrections may also be present in
resistor network series.

In addition to the individual analyses we have studied
various combinations of the series for the central-force
model. These combinations eliminate the need for prior
knowledge of the exact percolation threshold, and were
studied using both methods of analysis. Given the prob-
lems with the determination of the threshold for this
model this type of analysis is potentially extremely useful.

The analyses based on the assumption of nonanalytic
corrections to scaling assume that the series being stud-
ied, denoted by y(p) in general, has the form

y(p)-a(p, —p) "[I+a(p,—p) '+. . . ], p &p, ,

(24)

where h is the critical exponent that we wish to deter-
mine, and p, is the critical threshold. In the first method
of analysis, denoted below as M1, we study the logarith-
mic derivative of

dimensional p„h&,and h space where all Pade approxi-
mants give as closely as possible the same residue. In the
second method, denoted below as M2, we first trans-
form the series in p into series in the variable y, where

y=l —(I —pip, ) ', (26)

and then take Pade approximants to

G(y) =&&(y —I )»(y),d
dp

(27)

which should converge to —h. Here we plot graphs of h

versus the input 6, for different values of p, and again
choose p, and 5& such that all Fade approximants give as
closely as possible the same values of h. Both those
methods have proven very useful for many problems, 35

but in general require the simultaneous determination of
three critical quantities. For cases such as bond bending,
where the threshold is exactly known we carry out the
analyses at the exact p, only. If b,

&
in Eq. (26) is fixed to

be unity, the second method reduces to the usual d log
Pade method.

In addition to these analyses of individual series we
have used a method given in Ref. 36 and recently ela-
borated by Meir. This method involves term by term di-
viding two series with the same critical threshold and
then studying the divided series. This divided series
should have critical behavior with a threshold at p =1
and a dominant critical exponent equal to the difference
between the exponents of the two original series plus 1.
The division is expected to introduce an analytic correc-
tion to scaling (i.e., b

&

= I ). If this correction has a large
enough amplitude, it could provide a convergence region
for the evaluation of the dominant exponent. It is to be
hoped that the amplitude of the introduced analytic
correction is sufficient to swamp the nonanalytic correc-
tion of the individual series which is still present. This
method avoids the problems associated with uncertainties
in p, and is ideal for the central-force series.

The assumption of logarithmic corrections entails
fitting to the form

x (p. p) li«p. p)l p &p. (28)

We can show that the limit of g(p) as p~p, is 8. We
take Pade approxirnants to g at the exact or most reliable
estimate ofp, to obtain graphs of 0 as a function of h.

We fitted this form with the method of Adler and Priv-
man. The analysis of the logarithmic form involves tak-
ing Fade approxirnants to the series

g(p) = —(p, —p) l»(p, —p) I [(x'ix) —[~ i(p, —p)]} .

(29)

~(p) =~x+(p, —p)
dp

(25)
B. Results for the bond-bending model

which has a pole at p, with residue —h +5,. For a given
value of p, we obtain graphs of 6, versus input h for all
Pade approximants. %'e select the point in the three-

For this problem we know the critical threshold exact-
ly. Therefore we have carried out the M1 and M2 analy-
ses directly on the six bond-bending series of Table I. We
expect that the first four series will have a behavior of the
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FIG. 4. Graph of Pade approximants to 2v+y as a function

of 6& and p, for the g g', ' series using M2.
FIG. 5. Graph of Pade approximants to p, +y+ 1 as a func-

tion of 6& at p, for the y,'~ series using M2.

form of Eq. (24) and the last two either this behavior or
that of Eq. (28). The exponent h is defined to be y, y,
2y+P, 2v+y, P,&+y, and P, +y, respectively. We have
concentrated on the analysis of y, &

and g,~, since the y
and P values are those of usual percolation and are
known exactly. Some selected plots of the Pade approxi-
mants that give 5& as a function of input h value from
M1, h as a function of input 6, from M2, and h as a
function of input 8 from the logarithmic analysis are
given in the figures.

From the g'b ' series we found y =2.35-2.38 from M1
and y=2. 2—2.6 from M2. When we add an additional
two terms to this series we find a much tighter estimate of
y =2.35—2.48 with a correction exponent of
6,=1.05+0.3. We cannot reliably distinguish this from
an analytic correction. These values are consistent with
the exact value of 2. 388, and give an idea of the error es-
timates for series of this length on the honeycomb lattice.

The new moment series also give exponents in good
agreement with the exact values and as a sample of these
results we present the graph from M2 for g yI

' in Fig. 4.
We obtain 2v+y =5.0+0.2 and 5,=1.0+0.3, consistent
with the exact exponent of 5.055.

For g, &
and y,

„

the analysis is rather 1ess straightfor-
ward. Analysis with the usual D log Pade method [which
is equivalent to assuming b, , =l in Eq. (24)] gave esti-
mates of about 8.0 and 3.6 for the exponents P„+yand

P, +y, respectively. The first of these is considerably
above any other estimate that could be deduced for
P,&+ y from scaling arguments and other calculations.

For these series we are less certain that the behavior is
that of Eq. (24), as discussed above. Therefore we have
tested for behavior both as in Eq. (24) and with logarith-
mic corrections, as in eq. (28). As a control, we also test-
ed gb, y„and y, as well as the longer version of yb that
is in Ref. 25 for logarithmic corrections. As expected, we
found no evidence for their presence, and no significant
improvement in convergence was obtained by a11owing 0
to be nonzero.

For the y, series the initial constant is zero and hence
we have studied both g,

' and g, /p. The results of our
analysis are presented in Table III. An overa11 estimate
of P, +y =3.45+0. 15 and b, , =3.2+ 1.2 can be quoted if
there is no logarithmic correction, although the g,

' series
are slightly better converged, thereby favoring the higher
end of these ranges. If we assume no logarithmic correc-
tion (this assumption gives values close to the exact re-
sults for the other series), we obtain P,~+ y =3.6+0. 1 for
the y,'~ series and P,„+y =3.45+0.3 for the y,~/p series.
For the g, series we found that convergence in the loga-
rithmic test was similar to that for the yI

' series. (8 esti-

mates resembled those the g, /p series but with a poorer
convergence. ) We therefore may conclude that there is
no significant logarithmic behavior in the g„series. This
conclusion is not surprising in view of the similarity be-

tween splay and resistive correlations. A graph of Fade
approxirnants from M2 from the y„'„seriesis given in

Fig. 5.
For the g, &

series the convergence is in general far
poorer than for the other five series. Despite their ab-

TABLE III. Values of the critical exponents for the bond-bending model on the honeycomb lattice

as deduced from the series coef6cients of Table I.

Method

M1
M2
M1
M2
"best value"

Series

I

ESP
I

Xsp

x„/p
x.p/P

Dominant exponent

Q,p+ y =3.5+0. 1

$,p+ y =3.5+0. 1

P,p+ y =3.4+0. 1

$,p+y =3.2+0.2
P,p=1.20+0. 15

Correction exponent

Al & 2.0
hl = 3.8+0.6
5, =2.6+0.6

2.0
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2b —
y =2P+y =d v, (30)

which we may test with our data. We carried out inten-
sive analyses for trial threshold choices in the range
0.61~p ~0.65. Our initial calculations involved study-

sence in the other cases we decided that in view of the
Monte Carlo results, it is still possible that logarithmic
corrections do inhuence g,&. Therefore we have fitted
these series to the forms of both Eqs. (24) and (28). There
is no indication of any convergence to the logarithmic
form; enforcing a zero logarithmic correction would give
an exponent P„+y of 5.5+0.2. A logarithmic correction
of 8= —0.6 gives P,&=y=6.4+1.0. We note here that
the form of correction of Eq. (28) is much simpler than
that of Ref. 34. In Ref. 34 excellent fits were found with
three adjustable parameters, and therefore our estimate
may correspond to some effective fit with the more com-
plex form. The results of the analysis via M2 are given in
Fig. 6. We find that P &+y =4.7+0. 15 and b, t =4.4+0.4
from this analysis. From the figure one can observe that
the usual D log Pade analysis which is equivalent to
6& = 1.0 is indeed consistent with an exponent estimate of
about 8. The M1 analysis gives a similar 5& estimate but
a P,&

=y =5.2+0. 1. We have also considered a derivative
of this series. From M1 we find h&=4. 8+0.8 and

P,&+y =5.2+0.2. From M2 we obtain b, t
=4.8+0.8 and

P,i+ y =4.8+0.2.
For this model we conclude that our results for P, y,

and v are consistent with those of ordinary percolation.
We quote the overall results for the bond-bending splay
elasticity exponent as P,~+y=3.50+0. 15, or $,„=1.11
+0. 15. We find that the estimate for P,&+y is strongly
dependent on the form assumed for the corrections to
scaling.

C. Results for the central-force model

For the central-force problem we analyzed the four
series whose coe%cients are given in Table II. These
series should have the critical behavior —

~p,
—

p~
where h is 'VcF 'VCF+~cF XcF+2hcF and TcF+2vcF re
spectively. For most critical phenomena one has the scal-
ing relation.

10.0

9.0-

8.0-

7.Q-

+

6 Q

5.0-

4.0-

3.0
0

I

0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4

FIG. 6. Graph of Pade approximants to P,~+ y as a function
of 6& at p, for the y, &

series using M2.

ing the four y series with both M1 and M2 at intervals of
0.005 throughout the above range. These calculations are
summarized in Table IV. In these analyses superior con-
vergence was definitely seen for the middle to lower end
of the p&F range. An example of the convergence for M2
at pcF =0.63 is given in Fig. 7.

There is a notable lack of dependence of the critical ex-
ponents on the value of the correction term exponent, 6„
relative to the amount of dependence on the pcF choice,
throughout the pcF range. We analyzed both the series
themselves and their first derivatives. These gave similar
results in all cases thus minimizing the possibility that
analytic parts are interfering with the Pade analyses.

We also carried out analyses of the term-by-term divid-
ed series. Here we do not have to make an initial trial
choice of pcF and thus we should be able to make quite a
tight choice of exponent and perhaps determine an accu-
rate critical threshold. The results of the analyses of the
divided series are given in Table V. We note that since
many of the terms in these series are zero, we were faced
with dividing zero by itself. We set this equal to both 0
and 1 and found to our relief that this choice had no real

TABLE IV. Summary of critical exponents for the central-force model on a triangular lattice.

pe 2y+Pb P' 3y+ 2P' 2v+ p 2r'

0.61
0.62
0.625
0.63
0.635
0.64
0.645
0.65

0.5
0.65
0.7
0.8
0.975
1.05
1.10
1.14

1.9
2.04
2.20
2.44
2.6
2.75
2.8
2.9

1.4
1.39
1.50
1.64
1.625
1.65
1.7
1.8

0.9
0.74
0.8
0.84
0.65
0.6
0.6
0.7

3.25
3.475
3.725
3.87
3.9
4.2
4.45
4.525

1.3S
1.435
1.525
1.43
1.4
1.5
1.65
1.6

1.4
1.4
1.51
1.5
1.46
1.56
1.7
1.5

1.95
2.3
2.4
2.5
2.55
2.88
3.15
3.25

1.45
1.65
1.7
1.7
1.575
1.75
2.05
2.15

'Source: yq 'r.
Source: yb '.

'Third column minus second column.
Fourth column minus second column.

'Source: gq '.

Sixth column minus third column.
g{Sixth column minus second column)/2.
"Source: j y'b".
'Ninth column minus first column.
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TABLE V. Estimates of central-force critical exponents from divided series. All estimates are from
term-by-term division of the indicated series by g'b '. Derivatives are taken after division.

Series Exponent "0/0 =0" "0/0 = 1"
without derivative

"0/0 =0" "0/0= 1"
first derivative

C CQ/Q

second derivative

6+1
26+1
2v+ 1

2.8
4.65

2.8—3. 1

4.6—4.8

2.9—3.0

3.0
4.7

3.0
4.8
3.0—3.2 3.25

effect on our results. We quote ECF= 1.9+0.2 and
vc„=1.1+0.2. These values correspond to the exponents
seen right at the top of the range of pc„values that gives
indications of convergence.

V. CONCLUSIONS

P,p
=f~

—d v = 1.29+0.04 . (31)

This value is slightly higher than our value

$,~=1.11+0.15. Better agreement can be obtained if a
logarithmic correction of the form of Eq. (28) is allowed.
Good agreement with Eq. (31) is obtained for
0= —0.6+0.6. These results are a little ambiguous but
seem to support the presence of a small, negative loga-
rithmic correction. This comparison also indicates that
the scaling relation of Eq (21) pr. obably holds for this sys-
tem.

One would also predict from Eq. (22) that

P,i=f~ =3.96+0.04 . (32)

The values obtained from the regions of best convergence

4.8

40-

3.2

2.4

1.6

0.8
I

n—'L

p I

0 05 10 15 20 2.5 3.0 3.5 4.0

FIG. 7. Graph of Pade approximants to ycF as a function of
5, CF at pc„=0.63 for the gb series using M2.

For the bond-bending model our main interest has
been in finding numerical evidence to support the scaling
relations developed in Sec. II. From the scaling relations
Eqs. (19) and (20) and the result of Ref. 31 that

f~ =3.96+0.04 one can predict that for the bond-

bending model

of the confluent analyses for P,~+y(P,&+y = 5.5+0.2)
are not consistent with this prediction. The scaling rela-
tion predicts an exponent that is midway between the
Fade result and the best convergence, and if we impose
the logarithmic correction seen in the g, case we do ob-
tain something close to 6.35 for the central value but
there is an error of +1.0. A value of P,&

close to the scal-

ing result has also been found for a logarithmic correc-
tion of 0= —0.6. The fact that this value produces good
results for both elastic crossover exponents lends support
to the hypothesis that the scaling relation of Eq. (22) is
also correct.

The overall conclusion for the bond-bending model is
that the values predicted by the scaling relations for P„
and P,~

are consistent with a logarithmic correction of
0= —0.6 or with a nonanalytic confluent correction of
6,=2.5. The fact that there is consistency with two
different types of behaviors could suggest that one is giv-

ing effective correction exponent estimates or that a third
type of behavior is actually present. Further efforts in
the direction of studying different types of complicated
correction behavior would be most desirable. However,
it is unlikely that we could obtain a consistent set of ex-
ponents if the scaling relations were incorrect.

For the central-force model we were mainly concerned
to determine the location of pcF and whether or not the
exponents are those of usual percolation. We find results
that are not completely internally consistent. From our
threshold-biased analyses (Table IV) we find indications
of a pc„estimate of about 0.63, which is below that of
other calculations. The threshold-independent analysis
(Table V) gives exponent estimates that correspond best
to those at the upper range of the threshold range. The
values of the exponents given in Table IV from the upper
range clearly differ from those of usual percolation and
are barely consistent with the extreme of the range of
Marshall and Harris. ' The threshold-independent esti-
mates are, however, in reasonable agreement with those
of Ref. 18.

This numerical evidence suggests that the static ex-
ponents of the central-force problem do differ from those
of usual or bond-bending percolation, e.g. , 6=1.9 and
v=1.05. On the other hand, Roux and Hansen find a
dynamic exponent that is the same for bond-bending and
central-force percolation. It should be noted that we find

exponents that differ from the usual ones for all thresh-
olds within any range ever cited for the problem. Then
we would naturally expect the values fz and f„for the
central-force model not to coincide with those of the
bond-bending model. Although most numerical studies
show that these models have different dynamical ex-
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ponents, Roux and Hanson obtain the same critical ex-
ponents for the two models. The relatively large range of
threshold estimates over which some convergence is seen
seems to suggest that there could be a crossover between
different behaviors and the series are too short to discrim-
inate between them and decide which is the correct one.
In this case there could be two fixed points in the phase
space, one corresponding to the short-range behavior and
one to the larger scale behavior that is the same as that of
usual percolation. The P estimates are larger than those
of usual percolation, suggesting that the finite series are
trying to describe a cluster structure that is more com-
pact than usual percolation.
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