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Abstract— Decisions on how to best optimize energy systems
operations are becoming ever so complex and conflicting, that
model-based predictive control (MPC) algorithms must play
an important role. However, a key factor prohibiting the
widespread adoption of MPC in buildings, is the cost, time, and
effort associated with learning first-principles based dynamical
models of the underlying physical system. This paper introduces
an alternative approach for implementing finite-time receding
horizon control using control-oriented data-driven models. We
call this approach Data Predictive Control (DPC). Specifically,
by utilizing separation of variables, two novel algorithms for
implementing DPC using a single regression tree and with
regression trees ensembles (random forest) are presented. The
data predictive controller enables the building operator to trade
off energy consumption against thermal comfort without having
to learn white/grey box models of the systems dynamics. We
present a comprehensive numerical study which compares the
performance of DPC with an MPC based energy management
strategy, using a single zone building model. Our simulations
demonstrate that performance of DPC is comparable to an
MPC controller, with only 3.8% additional cost in terms of
optimal objective function and within 95% in terms of R2 score,
thereby making it an alluring alternative to MPC, whenever the
associated cost of learning the model is high.

I. INTRODUCTION

Control-oriented predictive models of an energy system’s
dynamics and energy consumption, are needed for under-
standing and improving the overall energy efficiency and
operating costs. With a reasonably accurate forecast of future
weather and building operating conditions, dynamical models
can be used to predict the energy needs of the building over
a prediction horizon, as is the case with Model Predictive
Control (MPC) [11]. However, a major challenge with MPC
is in accurately modeling the dynamics of the underlying
physical system. The task is much more complicated and
time consuming in case of a large building and often times,
it can be even more complex and involved than the con-
troller design itself. After several years of work on using
first principles based models for peak power reduction, and
energy optimization for buildings, multiple authors [11], [13]
have concluded that the biggest hurdle to mass adoption of
intelligent building control is the cost and effort required
to capture accurate dynamical models of the buildings. The
user expertise, time, and associated sensor costs required to
develop a model of a single building is very high. This is
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because a building modeling domain expert typically uses
a software tool to create the geometry of a building from
the building design and equipment layout plans, add detailed
information about material properties, about equipment and
operational schedules. There is always a gap between the
modeled and the real building and the domain expert must
then manually tune the model to match the measured data
from the building [10]. Moreover, the modeling process also
varies from building to building with the construction and
types of installed equipment. Another major downside with
physics-based modeling is that enough data is not easily
available and guesses for parameter values have to be made,
which also requires expert know how.

The alternative is to use black-box, or completely data-
driven modeling approaches, to obtain a realization of the
system’s input-output behavior. The primary advantage of
using data-driven methods is that it has the potential to elim-
inate the time and effort required to build white and grey box
building models. Listening to real-time data, from existing
systems and interfaces, is far cheaper than unleashing hoards
of on-site engineers to physically measure and model the
building. Improved building technology and better sensing
is fundamentally redefining the opportunities around smart
buildings. Unprecedented amounts of data from millions of
smart meters and thermostats installed in recent years has
opened the door for systems engineers and data scientists to
analyze and use the insights that data can provide, about the
dynamics and power consumption patterns of these systems.

The challenge now, with using data-driven approaches, is
to close the loop for real-time control and decision making
for both small and large scale buildings. We address these
challenges by introducing an alternative approach (to grey-
box MPC) for finite receding horizon control of building
energy systems using data-driven control oriented models.
We call this Data Predictive Control. While still being model
based, DPC involves using scalable and interpretable models
for the building’s dynamics. In particular, we utilize modified
regression trees and regression trees ensembles to implement
such control.

In our previous work [7], we developed and evaluated DPC
using multi-output regression trees as predictive models. In
this paper, we present two new approaches with significant
improvements. This work has the following contributions:

1) We address the limitations of our previous work, and
present a data predictive control with single-output
regression trees (DPC-RT) algorithm for finite receding
horizon control. DPC-RT bypasses the cost and time
prohibitive process of building high fidelity models of
buildings that use grey and white box modeling ap-



proaches while still being suitable for receding horizon
control design (like MPC).

2) While DPC-RT provides comparable performance to a
MPC controller, we extend the algorithm to work with
an ensemble of regression trees. The ensemble data
predictive control, (DPC-En) is the first such method
to bridge the gap between ensemble predictive models
(such as random forests) and receding horizon control.

We present a comprehensive case study to demonstrate
how DPC can achieve comparable performance as MPC
but without utilizing a dynamical model of the system. We
begin with description of a realistic building model used
for our case study in Sec. II. Sec. III defines the finite
receding horizon control problem with MPC framework.
Sec. IV describes the training and control algorithms for
DPC with regression trees and random forests along with
model validation. We compare the performance of DPCRT
to MPC and discuss the challenges associated with DPC in
Sec. V. We conclude the paper with a summary of the results
and a brief discussion on the future work in Sec. VI.

II. MODELING

For testing our algorithms, we use a realistic model of
the building obtained from the HAMLab ISE tool [12].
HAMLab is an all-in-one collection of models and tools
suitable for MatLab and/or Simulink. It provides a library of
realistic building and equipment models. The model under
consideration is linear and uses a state-space representation.
It captures the essential dynamics governing the zone-level
operation while considering external and internal thermal
disturbances. The building in question is a single zone
building, the parameters of which are identified by finding
an equivalent RC network, the schematic of which is shown
in Fig. 1.

The model has 4 states: floor temperature Tfl, inter-
nal facade temperature Tif , external facade temperature
Tef and internal zone temperature Tin such that x :=
[Tfl,Tif ,Tef ,Tin]T , 1 control input in the form of heat (in
Watts) rejected/added in the zone Qin such that u := Qin, and
3 uncontrollable inputs or disturbances: external temperature
Tex, internal heat gain due to occupancy Qoc and solar
heat radiation Qsl such that d := [Tex,Qoc,Qsl]

T . The
mathematical model can be represented as

xk+1 = Axk +Buk +Bddk (1)
k = 0, . . . , T

where A, B and Bd are time-invariant state space matrices
calculated at sampling time Ts = 300 s. The input u is con-
strained between u = −500 W (where negative values denote
cooling) and ū = 1000 W and the states x between x =
−30 oC and x̄ = 50 oC. ISE also provides 30 years (1971-
2000) of hourly data for the atmospheric disturbances, which
is an estimate of disturbances using actual meteorological
data. It is assumed that the disturbance vector d is precisely
known for the purpose of simulations in Sec. V. In our
future work, we will also address the problem of disturbance

construction

glass

Fig. 1: RC network representation of the building model [12].
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Fig. 2: Finite-horizon moving window of MPC: at time k,
the MPC optimization problem is solved for a finite length
window of N steps and the first control input uk is applied;
the window then recedes one step forward and the process
is repeated at time k + 1.

uncertainty. For more details on physical modeling and value
of identified parameters that form A, B and Bd, we refer the
reader to [12].

The results in this paper are presented for this single zone,
however, the algorithms described next are easily scalable
to multiple zones. In [1], we have successfully modeled a
12 storey, 70 zone building with our data-driven algorithms.
The focus of this work is on comparing the performance
of DPC with MPC and using a single zone suffices for
that comparison as it eliminates any concomitants in the
performance comparison.

III. MODEL PREDICTIVE CONTROL

We use a finite receding horizon MPC controller as
a benchmark for comparison. The finite receding horizon
control (RHC) approach involves optimizing a cost function
subject to the dynamics of the system and the constraints,
over a finite horizon of time [9]. After an optimal sequence
of control inputs are computed, the first input is applied, then
at the next step the optimization is solved again as shown in
Fig. 2.

MPC for the same single zone model has been pre-
viously implemented in [4]. In this paper, we use MPC
for comparison against the DPC algorithm by defining the
following objective function. The objective of the controller



(supervisory) is to minimize the energy usage, i.e Qin while
maintaining a desired level of thermal comfort. Therefore, at
time step k, we want to determine the optimal sequence of
inputs [Qin,k, . . . ,Qin,k+N−1] that satisfies

minimize
N−1∑

j=0

Q2
in,k+j + λ

N∑

j=1

(Tin,k+j − Tref)
2

subject to xk+j = Axk+j−1 +Buk+j−1 +Bddk+j−1

Q
in
≤ Qin,k+j−1 ≤ Q̄in

Tin ≤ Tin,k+j ≤ T̄in

j = 1, . . . , N
(2)

where λ is a tuning parameter and Tref is the reference zone
temp that maintains thermal comfort. The parameter λ helps
trade-off energy savings against discomfort.

IV. DATA PREDICTIVE CONTROL

Our goal is to find data-driven functional models that re-
lates the value of the response variable (i.e. zone temperature,
in this case) to control inputs and disturbances. When the
data has lots of features, as is the case in large buildings,
which interact in complicated, nonlinear ways, assembling a
single global model, such as linear or polynomial regression,
can be difficult, and can lead to poor response predictions.
An approach to non-linear regression is to partition the
data space into smaller regions, where the interactions are
more manageable. We then partition the partitions again;
this is called recursive partitioning, until finally we get to
chunks of the data space which are so tame that we can fit
simple models to them. Therefore, the global model has two
parts: the recursive partition, and a simple model for each
cell of the partition. Regression trees is an example of an
algorithm which belongs to the class of recursive partitioning
algorithms. The seminal algorithm for learning regression
trees is CART as described in [3].

The primary reason for this modeling choice is that regres-
sion trees are highly interpretable, by design. Interpretability
is a fundamental desirable quality in any predictive model.
Complex predictive models like neural-networks, support
vector regression etc. go through a long calculation routine
and involve too many factors. It is not easy for a human
engineer to judge if the operation/decision is correct or not or
how it was generated in the first place. Building operators are
used to operating a system with fixed logic and rules. They
tend to prefer models that are more transparent, where it is
clear exactly which factors were used to make a particular
prediction. At each node in a regression tree a simple, if
this then that, human readable, plain text rule is applied
to generate a prediction at the leafs, which anyone can
easily understand and interpret. Making machine learning
algorithms more interpretable is an active area of research,
one that is essential for incorporating human centric models
for building energy management.

The central idea behind DPC is to obtain control-oriented
models using machine learning, and formulate the control

problem in a way that RHC can still be applied and the op-
timization problem (2) can be solved efficiently. In Sec. IV-B,
we describe our training algorithm where we use separation
of variables to fit models on controllable and uncontrollable
variables separately. In Sec. IV-C and IV-D, we present two
algorithms for implementation of DPC, namely DPC-RT
which utilizes a single regression tree, and DPC-En which
uses an ensemble of regression trees as the underlying model.

A. Training Data
We simulate the HAMLab model given by (1) with a

simple rule based strategy for a period of 3 months (May’99
- July’99) so that we obtain a rich enough training data set.
The forecast of disturbances Tex, Qoc and Qsl are obtained
from the ISE data base. Heat due to occupancy Qoc is a
discrete variable which is defined to be 500 W from 8 am
to 6 pm and 0 W otherwise. An example of disturbances is
shown in Fig. 6(a).

In order to build regression trees we need to train on time-
stamped historical data. The following feature variables are
used for training the model:

1) Weather Data W: This includes measurements of the
outside air temperature Tex, solar radiation Qsl. Since
we are interested in predicting the power consumption
for a finite horizon, we include the weather forecast of
the complete horizon in the training features.

2) Building Data B: The state of the building is given
by the zone air temperature Tin. This is typically
known from temperature sensors in the building. We
use autoregressive (lagged) terms of Tin as features
and the future prediction(s) of Tin as the response
variable(s). The heat gain into a zone due to occupancy
Qoc is also recorded and used for model training.

3) Controller Data C: This includes current and future
control actions Qin.

We learn a model f which predicts future zone air
temperature given current and future weather predictions,
occupancy heat gain, and past zone air temperature:



Tin,k+1

Tin,k+2

...
Tin,k+N


 = f (Wk, . . . ,Wk+N−1,Tin,k, . . . ,Tin,k−δ,

Ck, . . . ,Ck+N−1), (3)

where δ is the order of autoregression, or in shorthand
notation Y = f

(
X1, . . . ,Xn

)
with n being the number of

features. Note that Tin,k, and Ck in (3) are same as 4th

component of xk and uk in (2), respectively. It is assumed
that perfect forecasts of disturbances for the entire length of
the horizon is available to both MPC and DPC. In reality, the
forecasts also have an associated uncertainty but analyzing
its effect of control performance is a future research direction
and not the focus of this work.

B. Training Algorithm
Even though it is possible to directly learn a model based

on (3) using algorithms like regression trees, random forests



or neural networks, the resulting models are not suitable
for optimization in (2) because of multiple reasons. First,
the gradient is not defined for such models so we may
have to settle with sub-optimal solution using evolutionary
algorithms [8]. Second, because of autoregression, it will lead
to state space explosion.

The next step is to modify the regression trees and make
them suitable for synthesizing the optimal values of the con-
trol variables in real-time. Given building data (X,Y), we can
separate the controllable (or manipulated) variables Xc and
uncontrollable (or non-manipulated / disturbance) variables
Xd in the feature set such that Xc ∪ Xd ≡ X. Applying this
separation of variables, the regression trees are learned only
on the non-manipulated variables or disturbances (Xd,Y).
We obtain a model in the following form:

Y = ftree

(
X1
d, . . . ,X

n
d

)
. (4)

In the leaf Ri of the trees, we fit a linear parametric model
which is a function only of the controllable/manipulated
variables:

YRi
= βTi [1,Xc]

T
. (5)

Any parametric regression model is valid in the leaves. We
choose linear models because they simplify the optimization
problem when added as constraints in (7). We validate this
assumption in Sec. IV-E.

In this manner, we train the regression trees using only
Xd, and then in each leaf we fit a parametric (linear) model
which is a function only of Xc. At run time, to solve
the control problem when only Xd is known, we navigate
to an appropriate leaf Ri and use the linear constraint
in the optimization problem. In the following section, we
demonstrate how to define this optimization problem when
we have a separate regression tree for each prediction step
k+ 1 to k+N . In Sec. IV-D we extend this to an ensemble
of regression trees (random forest) to decrease the variance
in predictions.

C. DPC-RT: DPC with Regression Trees

To replace dynamics constraints (1) in (2), we build N
trees to predict the states of the system, i.e. Tj is used to
predict Yj := Tin,k+j where j = {1, . . . , N}. While each
tree is trained only on Xd, in the ith leaf of the jth tree we
fit a linear model:

YjRi
= βTi

[
1,Xkc , . . . ,X

k+j−1
c

]T
. (6)

Eq. (6) implies that the prediction of zone temperature at
time k + j is an affine combination of control inputs from
time k to k+j−1. Each tree contributes to a linear constraint
in the optimization problem. Thus, the DPC-RT counterpart

Algorithm 1 Data Predictive Control with Regression Trees

DESIGN TIME
procedure MODEL TRAINING USING SEPARATION OF
VARIABLES

Set Xc ← manipulated features
Set Xd ← non-manipulated features
Build N predictive trees Tj with (Yj ,Xd) using (4)
for all trees Tj do

for all regions Ri at the leaves of Tj do
Fit YjRi

= βTi
[
1,Xkc , . . . ,X

k+j−1
c

]T
end for

end for
end procedure
RUN TIME
procedure PREDICTIVE CONTROL

while t < tstop do
Determine the leaf and region Ri(k) using Xd(k)
Obtain the linear model at Ri(k)
Solve optimization in (7) to determine optimal
control action [X∗

c(k), . . . ,X∗
c(k +N − 1)]

T

Apply the first input X∗
c(k)

end while
end procedure

of (2) becomes

minimize
N−1∑

j=0

Q2
in,k+j + λ

N∑

j=1

(Tin,k+j − Tref)
2

subject to Tin,k+j = βTi [1,Qin,k, . . . ,Qin,k+j−1]
T

Q
in
≤ Qin,k+j−1 ≤ Q̄in

Tin ≤ Tin,k+j ≤ T̄in

j = 1, . . . , N.

(7)

We solve this optimization in the same manner as finite re-
ceding horizon control to determine [Qin,k, . . . ,Qin,k+N−1],
choose the first control input Qin,k and proceed to the next
time step k + 1.

Our algorithm for DPC with regression trees is summa-
rized in Algo. 1 and a schematic is shown in Fig. 3(a). During
training process, trees are trained only on uncontrollable
variables with linear models in the leaves which are a
function only of controllable variables. During control step,
at time k, the uncontrollable features Xd(k) are known and
thus the leaf Ri(k) of each tree is known. The linear models
in Ri(k) act as constraints in optimization problem. From the
control action [X∗

c(k), . . . ,X∗
c(k +N − 1)]

T , the first input
X∗
c(k) is applied to the system. The resulting output Y(k)

which is a feature for the next time step is fed back to
determine Xd(k + 1).

D. DPC-En: DPC with Ensemble Models

Regression trees obtain good predictive accuracy in many
domains. However, the simple models used in their leaves
have some limitations regarding the kind of functions they
are able to approximate. The problem with trees is their high



variance and that they can over fit the data. It is the price
to be paid for estimating a simple, tree-based structure from
the data. Often a small change in the data can result in a
different series of splits. The main reason behind this is the
hierarchical nature of the process: the effect of an error in
the top split is propagated down to all of the splits below
it. While pruning and cross validation can help reduce over
fitting, we use ensemble methods for growing more accurate
trees.

The goal of ensemble methods is to combine the predic-
tions of several base estimators built with a given learning
algorithm in order to improve generalizability and robustness
over a single estimator. Random forests or tree-bagging are
a type of ensemble method which makes predictions by
averaging over the predictions of several independent base
models. The essential idea is to average many noisy but
approximately unbiased trees, and hence reduce the variance.
Injecting randomness into the tree construction can happen in
many ways. The choice of which dimensions to use as split
candidates at each leaf can be randomized, as well as the
choice of coefficients for random combinations of features.
Another common method for introducing randomness is to
build each tree using a bootstrapped or sub-sampled data
set. In this way, each tree in the forest is trained on slightly
different data, which introduces differences between the
trees. More explicitly, training features Xp with p < n and
the data itself (in-bag samples) are different for each tree in
the forest. Not all estimators can be improved by shaking
up the data like this. However, highly nonlinear estimators,
such as trees, benefit the most. For a more comprehensive
review we refer the reader to [5].

The main idea here is to replace each tree in Algo. 1 by
a forest

Y = fforest

(
X1
d, . . . ,X

n
d

)
(8)

which, again, is trained only on Xd, and then fit a linear
regression model using Xc in every leaf of every tree of
every forest. We build N forests for N prediction steps such
that the forest Rj uses a linear model

YjRi
= ΘT

i

[
1,Xkc , . . . ,X

k+j−1
c

]T
(9)

in the leaf Ri of every tree, where j = {1, . . . , N}. With a
slight abuse of notation, here (Xc,Y) correspond to the in-
bag samples (in-bag samples correspond to the data samples
on which the tree was trained) for the trees.

While the offline training burden in DPC-En is slightly
increased compared to DPC-RT, in the control step we
exploit the better accuracy, and lower variance properties of
the random forest. If a forest has t number of trees, given the
forecast of disturbances, we have t set of linear coefficients.
We simply average out all the coefficients from all the trees to
get one linear model represented by Θ̂i for each forest. Note
that the averaging step can only be done in run-time because
the leaf of each tree can be narrowed down only when Xd is
known. Thus, for N forests, we again have exactly N linear

Algorithm 2 Data Predictive Control with Random Forests

RUN TIME
procedure PREDICTIVE CONTROL

while t < tstop do
for all forests do

Determine the leaves Ri(k) using Xd(k)
Obtain all linear models at Ri(k)
Average out the linear coefficients Θ̂i

end for
Solve optimization in (10) to determine optimal
control action [X∗

c(k), . . . ,X∗
c(k +N − 1)]

T

Apply the first input X∗
c(k)

end while
end procedure

equality constraints in the optimization problem below.

minimize
N−1∑

j=0

Q2
in,k+j + λ

N∑

j=1

(Tin,k+j − Tref)
2

subject to Tin,k+j = Θ̂T
i [1,Qin,k, . . . ,Qin,k+j−1]

T

Q
in
≤ Qin,k+j−1 ≤ Q̄in

Tin ≤ Tin,k+j ≤ T̄in

j = 1, . . . , N.

(10)

Algo. 2 summarises the control step. The ensemble data
predictive control, (DPC-En) is the first such method to
bridge the gap between ensemble predictive models (such
as random forests) and receding horizon control.

E. Validation

For horizon length N = 6 and order of autoregression
δ = 6, we run a simulation on June 1, 2000 using a random
sequence of inputs. Since all disturbances as well as control
inputs are known, we can predict the zone temperature
Tin,k+1 to Tin,k+6 at every time k using both trees and
ensembles. We have shown these 6 predictions at different
times in the simulation in Fig. 4. At time k1, we make
next 6 predictions of zone temperature and compare it to
the actual zone temperature that is obtained by applying
the same control input. We repeat this process at k2 to k6.
The normalized root mean-squared error (NRMSE) obtained
with single regression trees and regression tree ensembles are
shown in top and bottom, respectively. Both achieve close to
99% accuracy, but on an average, predictions with ensembles
are more accurate and have a lower variance.

The absolute residual error in the predictions of Tin,k+1

for full day is shown in Fig. 5 which again shows that random
forest are more accurate. The absolute error for ensembles
is bounded by ±0.4 oC while for single trees it is ±0.8 oC.

V. COMPARATIVE STUDY

We now run DPC and MPC controller in a closed-loop
simulation with the HAMLab plant model. The objective
function and the box constraints on input and states are



minimize

N−1∑

j=0

Q2
in,k+j + λ

N∑

j=1

(Tin,k+j − Tref)
2

subject to Tin,k+j = βT
i [1,Qin,k, . . . ,Qin,k+j−1]

T

Q
in
≤ Qin,k+j−1 ≤ Q̄in

Tin ≤ Tin,k+j ≤ T̄in

j = 1, . . . , N

· · ·

Y1
Ri

= βT
i

[
1,Xk

c

]T

Tree
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i
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]T

Tree
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i
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c
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(a) DPC-RT: At time k, the algorithm uses the forecast of disturbances Xd(k) to select linear models βi in the leaves
of each tree. Each linear model is added as a constraint in the optimization problem which calculates optimal sequence
[X∗

c(k), . . . ,X∗
c(k +N − 1)]T , of which the first one is applied, and Xd(k + 1) is calculated to proceed to k + 1.
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T

Q
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(b) DPC-En: At time k, the algorithm uses the forecast of disturbances Xd(k) to select linear models Θ1 to Θt in the
leaves of each ensemble. The linear models in each ensemble are averaged to calculate a single model represented by
Θ̂j which act as constraints in the optimization problem. Again, the optimal sequence [X∗

c(k), . . . ,X∗
c(k +N − 1)]T ,

of which the first one is applied, and Xd(k + 1) is calculated to proceed to k + 1.

Fig. 3: Run-time algorithm for data predictive control with regression trees and tree ensembles.



Fig. 4: Accuracy of predictions with snapshots in time: at
time k1, we make 6 predictions for time k1 to k1 + 5. The
numbers represent mean accuracy in predictions for these
steps for trees (top) and ensembles (bottom). This process is
repeated at time k2, . . . , k5.
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Fig. 5: Residual error for the tree T1 and the forest R1 that
predict Tin,k+1 shows that the residuals for the forest are
more concentrated around 0, while tree predictions have a
much higher variance.

exactly same in both cases. Only difference in the optimiza-
tion problem is due to system dynamics. In particular, MPC
solves (2), DPC-RT solves (7) and DPC-En (10). Tref in the
optimization problems is set to 18 oC.

A. Simulation Settings

We test the performance of DPC controller against MPC
controller on June 1, 2000. The choice of this day is arbitrary,
and does not fall in the training period. For the HAMLab
simulation model under consideration, the hourly weather
predictions are only available from 1971-2000, however, the
choice of the year does not influence the comparison. Heat
gain due to occupancy Qoc is discrete variable which is
defined to be 500 W from 8 am to 6 pm and 0 W otherwise.
The disturbances on June 1, 2000 are shown in Fig. 6(a).
The sampling time Ts in MPC and model training for DPC
is 5 min, while the weather data is available after every 1 h,
so these disturbances are kept constant for 12 time steps.
N and δ are again chosen to be 6. For solving optimization

TABLE I: Quantitative comparison of R2 score, mean value
of objective function, energy consumption and mean de-
viance from the reference temperature.

R2 score objective value energy mean deviance
[−] (% change) [−] [kWh] [oC]

MPC − 59.70 (−) 3.72 0.23
DPC-En 95.3% 62.01 (3.8%) 3.50 0.24
DPC-RT 83.9% 64.53 (8.1%) 2.55 0.27

numerically, we use Gurobi Optimizer [6].

B. Results

Optimal control strategies for all 3 methods are shown
in Fig. 6(b). The chosen reference temperature and exter-
nal disturbances require both heating and cooling at some
point during the day. The solution obtained from MPC
sets the benchmark that we compare to. Note that the
MPC implementation uses the exact knowledge of the plant
dynamics. Therefore, the associated control strategy is indeed
the optimal strategy for the plant. In reality the quality of
data, and modeling errors also affect the performance of
the MPC controller [2]. Qualitatively, the DPC-En control
input is not much different from that of MPC. Until 8 am,
when the disturbances are not changing to a great extent,
MPC and DPC-En are very close. Slightly after 8 am, when
solar heat, external temperature and heat due to occupancy
all increase abruptly, we observe that DPC-En cools less and
differs slightly from the benchmark. Although DPC-RT also
maintains the trend in the control input when the disturbances
increase or decrease, the control strategy is quite different
from that of MPC. Due to high variance in the predictions,
DPC-RT also results in non-smooth inputs, which are not
good for practical reasons of switching constraints on heating
and cooling equipment in buildings.

Fig. 6(c) shows the plot for the zone air temperature.
Again, DPC-RT shows a bigger deviation from the optimal
solution while DPC-En is near-optimal. This is attributed to
linear model averaging in ensemble learning which improves
the model prediction. This improvement comes at the cost
of reduced interpretability.

The quantitative results from the simulations are tabulated
in Tab. I. We are interested in evaluating how close DPC
performs in comparison to optimal benchmark set by MPC.
The coefficient of determination or the R2 score shows that
95.3% variability in MPC has been accounted for by DPC-
En, while DPC-RT captures only 83.9% variability. In other
words, DPC-En and MPC control inputs are 95.3% close.
Fig. 6(d) shows the cumulative sum of the objective function
as a function of time. At the end of the day, the cumulative
sum for DPC-En is 3.8% more than MPC, and for DPC-RT
it is 8.1% more than MPC. While both DPC-En and DPC-RT
are near-optimal, the value of the objective function validates
that DPC-En is more closer to the optimal solution. In the
considered scenario, MPC tracks the reference temperature
more closely offering better thermal comfort than DPC-RT
or DPC-En by spending more energy.
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Fig. 6: Comparison of optimal performance obtained with
MPC, DPCRT and DPC-En on June 1, 2000. All 3 controllers
start from the same state of the model.

VI. CONCLUSION & DISCUSSION

We present two data predictive control algorithms for
finite receding horizon control using regression trees and
regression trees ensembles. While DPC-RT uses a single
regression tree for each step of the control horizon, DPC-
En uses a random forest at each interval of the control
horizon. By separating the controllable and uncontrollable
features during training, and fitting a linear model on just

the controllable features, the optimization is reduced to
a simple convex program. The ensemble data predictive
control, (DPC-En) is the first such method to bridge the
gap between ensemble predictive models (such as random
forests) and receding horizon control.

We implement DPC controller for energy management on
a single zone building model and compare its performance
with a MPC controller that uses the accurate dynamic
model. We demonstrate that DPC can achieve comparable
performance to MPC, with only 3.8% additional cost in
terms of optimal objective function and within 95% in terms
of R2 score, while avoiding the cost and effort associated
with learning a grey box/white box model of the system;
and effect which magnifies at larger scale (hundreds of
zones in a large building). Our current and future work is
focused on demonstrating the capability of DPC on much
larger and realistic building models, and using real building
data and test-beds. We are also addressing the question of
learning reliable data-driven models with limited functional
testing of the plant, and providing stability guarantees for
DPC for model switching. DPC has applications which go
beyond buildings and energy systems, to industrial process
control, and controlling large critical infrastructures like wa-
ter networks, district heating & cooling. DPC is immensely
valuable in situations where first principles based modeling
cost is extremely high.
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