
Introduction to the Special Issue on Runtime

Verification

Oleg Sokolsky
University of Pennsylvania

Philadelphia, USA

Grigore Roşu
University of Illinois,

Urbana-Champaign, USA

Runtime verification is a research area that is concerned with monitoring
and dynamic analysis of evolving executions with respect to precisely specified
properties. The primary motivation for this field of study, at its inception over a
decade ago, was to overcome the scalability limitations of exhaustive design-time
formal verification. Traditionally, model checking techniques suffer from state
explosion that limits the size of systems that can be verified. Moreover, model
checkers operate on models and thus introduce additional proof obligations on
the correctness of abstraction or model creation. On the other hand, verifica-
tion based on theorem proving usually involves significant amount of manual
effort that, effectively, limits the size of the system that can be verified. By con-
centrating on the current execution of the actual system, runtime verification
techniques allow us to have automatic analysis that is less dependent on the size
of the system and, at the same time, does not require as much abstraction.

Early efforts in the runtime verification community focused on characterizing
properties suitable for checking at run time [2], on the generation of efficient
monitors for properties specified in a variety of formal languages [7, 8] and on
improving efficiency of monitoring by static analysis [3]. These efforts led to
the development of mature tools, such as the MOP framework [9], within less
than one decade of runtime verification research. A somewhat separate line
of research was concerned with “specification-less” monitoring, which targets
runtime checking algorithms for a set of common and well-defined problems.
Typically, these algorithms are related to concurrency within the system, such
as freedom from race conditions [5], atomicity [11], serializability [4], etc.

The runtime verification domain has seen an increased interest over the
recent years, generating enough traction for the community to form its own
international conference. This special issue contains selected revised papers
presented at the First International Conference on Runtime Verification, held
in St. Julians, Malta, on November 1–4, 2010. Collectively, the papers repre-
sent some of the most relevant current research directions within the runtime
verification area.

Reduction of monitoring overhead remains an active research area. In con-
trast to the general-purpose techniques studied in the initial runtime verification

1



research, current research concentrates on approaches specific to a particular ap-
plication domain. Techniques applicable to low-level monitoring of embedded
systems [10] and by necessity very different compared to techniques that can be
used for the monitoring of web services [6]. This issue includes the paper “Opti-
mized Temporal Monitors for SystemC” by Deian Tabakov, Kristin Rozier, and
Moshe Vardi. The authors compare several ways to encode monitors embedded
in SystemC designs and identify the most efficient ones in different scenarios
through extensive evaluation. This paper will serve as a useful guide to imple-
mentors of efficient monitors in resource-constrained software systems.

An important question that remains when a monitoring approach to verifi-
cation is used, is what happens when a problem is discovered by the checker.
Runtime verification systems typically involve the capability of invoking recov-
ery actions in response to property violations. Effectiveness of such recovery ac-
tions often depends on the assumption that system execution does not progress
beyond the point of violation. That is, that checking is synchronous and the
system is effectively stopped while checking is performed. This assumption may
have a serious impact on the response time of the system and would be too
restrictive in some cases. This issue contains the paper “Safer Asynchronous
Runtime Monitoring Using Compensations,” by Christian Colombo, Gordon
Pace, and Patrick Abela, which relaxes the synchronous checking assumption
and aims to impose transaction-like semantics on system executions and ex-
plores the means of unrolling the execution back once a violation is discovered.
The authors also propose means of switching between synchronous and asyn-
chronous monitoring modes as means of a trade-off between performance and
the level of assurance.

Another important direction of research in the runtime verification are is
the generation of a trace from the execution of a system. In some cases, traces
can be obtained by passive observation; for example, monitoring of bus traffic.
However, in the cases when we are checking an execution of a software system,
some kind of instrumentation is needed to extract observations. An important
observation made in [1] was that construction of a monitor, which has to observe
all accesses to an object of interest throughout a system execution, corresponds
to an aspect in terms of aspect-oriented programming. This observation has
led to significant advances in state of the art. A variety of tools for program
instrumentation using aspect-oriented techniques has been proposed, becoming
a dominant approach in runtime verification of software systems. This issue
includes the paper “InterAspect: Aspect-Oriented Instrumentation with GCC”
by Justin Seyster, Ketan Dixit, Xiaowan Huang, Radu Grosu, Klaus Havelund,
Scott A. Smolka, Scott D. Stoller, and Erez Zadok, which builds upon a pow-
erful and widely used compiler infrastructure. An important advantage of the
framework is the access to static analysis modules within GCC, which can help
to reduce overhead of the instrumentation. Combined with the large number of
language front-ends supported by GCC, InterAspect provides an instrumenta-
tion framework that rivals most of the common instrumentation approaches for
high-level languages.

One of the most pervasive research topics in specification-less monitoring is

2



to devise specialized and efficient algorithms to dynamically detect very specific
types of concurrency errors. Data-races remain one of the major types of con-
currency errors, which can have catastrophic consequences. For example, they
were among the flaws of the Therac-25 radiation therapy machine, which led
to the death and serious injuries of several patients. Also, the North American
Blackout of 2003 was caused by a race condition. There are many race detector
systems developed by the runtime verification and testing communities, but in
order to make their use widespread and an integral part of software development
cycles, they need to be efficient. In this context, efficiency means low runtime
overhead. This issue includes the paper “Efficient Data Race Detection for
Async-Finish Parallelism” by Raghavan Raman, Jisheng Zhao, Vivek Sarkar,
Martin Vechev, and Eran Yahav, which shows that various kinds of data-races
can be detected with an average slowdown of about 3 times. This number is
a significant improvement over the current state-of-the art dynamic race detec-
tors, which often add an order of magnitude or more slowdown to the running
system.

We hope that this special issue gives a quick, yet technical snapshot of the
current research in runtime verification, and that it will encourage the reader
to investigate and to contribute to this dynamic and growing field.

References

[1] C. Allan, P. Avgustinov, S. Kuzins, O. de Moor, D. Sereni, G. Sittampalam,
J. Tibble, A. S. Christensen, L. Hendren, and O. Lhoták. Adding trace
matching with free variables to AspectJ. In Proceedings of the 20th ACM
SIGPLAN conference on Object-oriented programming, systems, languages,
and applications (OOPSLA’05), pages 345–364, October 2005.

[2] A. Bauer, M. Leucker, and C. Schallhart. Comparing ltl semantics for
runtime verification. Journal of Logic and Computation, 20(3):651–674,
2010.

[3] E. Bodden, L. Hendren, and O. Lhoták. A staged static program analysis
to improve the performance of runtime monitoring. In Proceedings of the
21st European Conference on Object-Oriented Programming (ECOOP’07),
volume 4609 of LNCS, pages 525–549, July 2007.

[4] K. Chen, S. Malik, and P. Patra. Runtime validation of transactional mem-
ory systems. In International Symposium on Quality Electronic Design,
pages 750–756, 2008.

[5] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: Efficiently computing the
happens-before relation using locksets. In Proceedings of the Workshop on
Formal Approaches to Testing and Runtime Verification (FATES/RV’06),
August 2006.

3



[6] S. Hallé, T. Bultan, G. Hughes, M. Alkhalaf, and R. Villemaire. Runtime
verification of web service interface contracts. IEEE Computer, pages 59–
66, March 2010.

[7] K. Havelund and G. Roşu. Synthesizing monitors for safety properties.
In Proceedings of Tools and Algorithms for Construction and Analysis of
Systems (TACAS’02), volume 2280 of LNCS, pages 342–356, April 2002.

[8] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-
MaC: a run-time assurance approach for Java programs. Formal Methods
in Systems Design, 24(2):129–155, March 2004.

[9] P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of
the MOP runtime verification framework. Software Tools for Technology
Transfer, Special Section on Runtime Verification, 14(3):249–289, 2011.

[10] L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: A hard real-time
runtime monitor. In International Conference on Runtime Verification (RV
2010), volume 6418 of LNCS, November 2010.

[11] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-threaded
programs. IEEE Transactions on Software Engineering, 32:93–110, Febru-
ary 2006.

4


