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ABSTRACT

COMPUTATIONAL METHODS FOR ANALYSIS OF RESTING STATE FUNCTIONAL

CONNECTIVITY AND THEIR APPLICATION TO STUDY OF AGING

Harini Eavani

Christos Davatzikos

The functional organization of the brain and its variability over the life-span can

be studied using resting state functional MRI (rsfMRI). It can be used to define a

“macro-connectome” describing functional interactions in the brain at the scale of

major brain regions, facilitating the description of large-scale functional systems

and their change over the lifespan. The connectome typically consists of thousands

of links between hundreds of brain regions, making subsequent group-level analyses

difficult. Furthermore, existing methods for group-level analyses are not equipped

to identify heterogeneity in patient or otherwise affected populations.

In this thesis, we incorporated recent advances in sparse representations for

modeling spatial patterns of functional connectivity. We show that the resulting

Sparse Connectivity Patterns (SCPs) are reproducible and capture major directions

of variance in the data. Each SCP is associated with a scalar value that is propor-

tional to the average connectivity within all the regions of that SCP. Thus, the SCP

framework provides an interpretable basis for subsequent group-level analyses.

Traditional univariate approaches are limited in their ability to detect hetero-

geneity in diseased/aging populations in a two-group comparison framework. To

address this issue, we developed a Mixture-Of-Experts (MOE) method that com-

bines unsupervised modeling of mixtures of distributions with supervised learning

of classifiers, allowing discovery of multiple disease/aging phenotypes and the af-

fected individuals associated with each pattern.
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We applied our methods to the Baltimore Longitudinal Study of Aging (BLSA),

to find multiple advanced aging phenotypes. We built normative trajectories of

functional and structural brain aging, which were used to identify individuals who

seem resilient to aging, as well as individuals who show advanced signs of aging.

Using MOE, we discovered five distinct patterns of advanced aging. Combined with

neuro-cognitive data, we were able to further characterize one group as consisting

of individuals with early-stage dementia. Another group had focal hippocampal

atrophy, yet had higher levels of connectivity and somewhat higher cognitive per-

formance, suggesting these individuals were recruiting their cognitive reserve to

compensate for structural losses. These results demonstrate the utility of the devel-

oped methods, and pave the way for a broader understanding of the complexity of

brain aging.
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Chapter 1

Introduction

1.1 Overview

Magnetic Resonance Imaging (MRI) provides a non-invasive, in-vivo method of

studying the human brain. In the clinic, these three-dimensional images of the brain

are used to identify gross abnormalities visible to the naked eye (lesions, tumours,

abscesses). In research applications, MRI is acquired from many research partici-

pants, in order to understand the subtle effects of development, aging or illness on

brain function and structure which cannot be observed by visual inspection.

Resting state functional MRI (rsfMRI) (Biswal et al., 1995; Raichle et al., 2001)

is acquired when the individual is at rest inside the scanner. It measures the blood

oxygenation level in different regions of the brain. Higher oxygen levels imply

higher neural activity, therefore fMRI is assumed to be a surrogate measure of brain

function. Multiple 3-D images are acquired, typically once every couple of seconds.

In this manner, we can obtain a time-series of varying blood oxygenation level at ev-

ery location in the brain. This “spontaneous” brain activity can be used to measure

the amount of co-activation, or functional connectivity, between any two regions
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Figure 1.1: Figure illustrating computation of the functional connectome

in the brain by quantifying the amount of synchrony between corresponding activ-

ity. This synchrony is popularly quantified by computing the Pearson correlation

coefficient between the corresponding time-series, as illustrated in Figure 1.1. In

this manner, one can build build a whole-brain functional connectome that captures

a time-averaged picture of the functional interactions between all brain regions.

Figure 1.2 shows the various ways in which the functional connectome is visually

represented.

A growing number of projects (Satterthwaite et al., 2014; Van Essen et al., 2012;

Shock et al., 1984) are acquiring rsfMRI data for a large number of individuals with

the aim of investigating normal inter-subject variability and variation over the lifes-

pan. To keep pace with the scale of such projects, there is an urgent need to develop

novel methodology that can capture complex, whole-brain normative patterns of

age-related changes in a data-driven manner, while ensuring interpretability.

1.2 Aims of this thesis

The functional connectome of each individual is very high dimensional, however,

this data is acquired on far fewer number of subjects. This entails the need for a di-
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Figure 1.2: Visualization of the functional connectome as a correlation matrix (left), an
abstract graph representation (middle) and mapped to corresponding regions in the brain
(right)

mensionality reduction method that is based on functional connectivity data. Exist-

ing approaches for dimensionality reduction divide the brain into spatially smaller

patterns, varyingly referred to as components, sub-graphs or sub-networks. Some

of these existing approaches use the rsfMRI time-series as input, which is not ideal

for connectome data. Others assume spatial or temporal separation of the patterns,

which is not suited to describe functional systems in the brain. As we describe in

the following chapter, we exploited recent advances in the mathematics of sparse

modeling to develop a methodological framework that decomposes the complex

functional connectome into parsimonious Sparse Connectivity Patterns (SCPs). The

description of our Sparse Learning method and resulting SCPs is provided in Chapter

2 of this thesis.

In rsfMRI studies, univariate statistical approaches or multi-variate classification

methods are often employed to identify connections that can predict diseased state

of an individual or are strongly correlated with age. Such linear models inherently

assume that there is a single pattern of change that linearly scales with disease

severity or age in all individuals. However many of the conditions under study

manifest in a heterogeneous manner across individuals, forming a spectrum that is

3



composed of a variety of external symptoms and cognitive changes. In Chapter 3

of this thesis, we present a Mixture-Of-Experts (MOE) method that explicitly models

and captures heterogeneous patterns of change in the affected group relative to a

reference group of controls.

Increased life expectancy has resulted in a growing proportion of older people

across the globe. This has led to a greater prevalence of aging related mental ill-

nesses. In order to better understand functional disruptions of such disorders, it

is crucial to gain insight into how the functional organization in the brain changes

during the normal aging process. Although, on average, cognitive abilities decrease

with age, some individuals age well, while other decline faster. Some of these in-

dividuals could be at a greater risk for developing clinical pathology later in life.

Therefore, in addition to understanding the effect of aging on function, it is im-

portant to identify these high-risk individuals, as well as potentially heterogeneous

patterns of aging. Towards this goal, we applied the methodological approaches

developed and tested in chapters 2 and 3 to rsfMRI data acquired as a part of the

Baltimore Longitudinal Study of Aging (BLSA). Multiple patterns of aging related

changes in connectivity are reported and discussed in Chapter 4.

These aims are summarized below:

1. Develop and test a method based on sparse representations for the identifica-

tion of resting-state connectivity networks

2. Develop and test a mixture of experts method for identification of heterogene-

ity in affected populations

3. Apply the developed methods to the BLSA dataset (normal adults of age 50-96

years) to find heterogeneous effects of aging on brain structure and function

4



1.3 Significance

In order to make rsfMRI applicable to large heterogeneous populations, we require

automated data-driven analysis approaches that can capture the complexity of func-

tional connectivity patterns within the data. We summarize the significance of our

work vis-a-vis existing methods below, and discuss them in greater detail in individ-

ual chapters.

In Aim one, we proposed a sparsity-based dimensionality reduction algorithm

that is complementary to existing graph-based or time-series based methods. The

significance of this aim is described below:

1. Seed-based correlation approaches require prior knowledge of a stable seed

location and do not directly quantify inter-subject variability.

2. Graph-based approaches (Power et al., 2011) that identify networks based on

correlation strengths limit their analysis to strong positive correlations based

on an ad-hoc thresholding operation, ignoring the positive-semi-definite prop-

erty of the correlation matrix. Negative and weak edges correlations could

be informative, especially if considered collectively as part of a distributed

pattern.

3. Graph-based methods are limited to identifying patterns in a group-averaged

manner (Power et al., 2011), thereby losing valuable information about inter-

individual variability.

4. Time-series based approaches, such as spatial (Beckmann et al., 2005) and

temporal ICA (Smith et al., 2012) have been successful in producing stable

and reproducible spatial components (especially spatial ICA). However (1)

these approaches are not directly applicable to connectome data and (2) do

5



not directly encode inter-individual variability in connectivity. This entails

novel methods that can directly explain the variance in connectivity data.

Aim two proposed a mixture of experts framework to address the drawbacks

of linear and non-linear supervised learning approaches, which are enumerated

below:

4. Multi-variate classification methods are needed to find subtle, distributed pat-

terns of aging related changes in the connectome. However, linear methods

assume a single pattern of aging or disease-related change, which is unrealis-

tic.

5. While kernel based methods can be used to model non-linear effects, the pat-

tern of change itself is not explicitly computed; kernel approaches do not

provide any information about the features that contribute to classification.

This motivates the need for developing methods that model heterogeneity in

the data explicitly.

As a part of the third aim, we applied the methods developed in Aims 1 and

2 to understand the effects of aging on functional connectivity. Previous studies

that investigated aging effects used traditional analysis approaches, whose major

limitations are described below:

6. Past studies investigating the effects of aging used mass-univariate approaches

to identify functional connections that significantly correlated with age. How-

ever, traditional analysis approaches make it difficult to gauge the extent and

severity of aging for each individual.

7. In prior studies of aging, small sample sizes limited researchers to assume ag-

ing to be a homogeneous process that affects all older individuals uniformly.
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Using mass-univariate methods, an overall decrease in functional connectivity,

especially in the default mode and motor regions, has been found consistently.

However, a single pattern of change does not explain the wide variation in

cognitive abilities seen among the elderly. These studies did not stratify older

populations in terms of their patterns of change in brain structure and func-

tion.

1.4 Innovation

The major contributions of this thesis are summarized as follows:

1. The developed Sparse Learning method for the analysis of correlation matrices

does not require the removal of weak and negative correlation values. This

model represents the data as a combination of Sparse Connectivity Patterns,

while retaining the positive semi-definite nature of correlation matrices in the

representation. The P.S.D assumption constrains the degrees of freedom in

the model resulting in more stable, reliable networks.

2. We incorporated inter-individual variability in the strength of SCPs in our

modeling strategy. Such a model allocates a scalar value per pattern in each

individual that reflects the average connectivity of all the regions within that

particular pattern. This is a clear advancement over seed-based correlation

approaches, which do not consider individual level variations.

3. Sparse decompositions are being greatly favored in the signal processing com-

munity, as evidence of parsimony in nature as well as in the functioning of the

brain is abundant. We used spatial sparsity as the driving assumption for the

definition of underlying sub-networks. We incorporate recent advances made
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in sparse representations of covariance matrices (Sivalingam et al., 2011; Sra

and Cherian, 2011; Soufiani and Airoldi, 2012) in our modeling strategy.

4. The MOE framework for identification of heterogeneous patterns of change

explicitly models two crucial pieces of information that we would like to dis-

cover in the data - (1) multiple patterns that differentiate two groups and (2)

sub-groups of individuals associated with each pattern of change. The MOE

method has a complexity level that is in-between that of linear and non-linear

methods. Thus, it can capture more information than a linear method, while

at the same time is not as complex as the kernel-based method, and by design,

has better interpretability.

5. With data from the BLSA study, we used multi-variate methods to pool infor-

mation across all connections to predict each individual’s age. Using multi-

variate techniques, we identified those connections that highly contribute to

the prediction, similar to uni-variate techniques. More importantly, we built

aging trajectories of functional connectivity, similar to growth charts that are

used for children at the pediatrician’s office. Each individual is assigned a

Brain Aging Index (BAI), that measures the functional age of that individual.

We then identified a subset of individuals whose BAI is higher than their ex-

pected BAI. These advanced agers could be at a higher risk for developing signs

of dementia as they grow older.

6. We applied the MOE method to the advanced aging individuals (with resilient

agers as a reference) and identified sub-groups of advanced agers with het-

erogeneous patterns of functional and structural change. To the best of our

knowledge, we are the first to identify advanced aging patterns and under-

stand the heterogeneity present in advanced aging from a purely data-driven
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perspective.

1.5 rsfMRI data

1.5.1 Datasets

MRI data used in this thesis was acquired as a part of two major studies. Details of

the study participants and MR acquisition parameters are described in the following

section. Appendix A details the pre-processing pipeline that was used to prepare

rsfMRI data prior to generation of functional connectivity matrices.

1.5.1.1 Baltimore Longitudinal Study of Aging (BLSA)

The Baltimore Longitudinal Study on Aging (BLSA) (Shock et al., 1984) is the

longest running study on aging at the National Institute on Aging (NIA). It is a lon-

gitudinal study that acquires comprehensive cognitive assessments and MR brain

imaging measurements (and many others for physical health), from research vol-

unteers.

A subset of the data from this study was used for methodology testing in Chapters

2 and 3. A more extensive analysis of this data is described in Chapter 4.

Participants

As of February 1, 2015, BLSA had acquired 780 rsfMRI scans from 567 participants.

For this thesis, we considered only baseline (first visit) scans of participants selected

based on the following criteria: (1) participant was older than 50 years at time of

scan (2) had low head motion during the acquisition, measured using Mean Relative

Displacement - MRD < 0.2mm (Satterthwaite et al., 2012) and (3) participants
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were “normal” at time of scan; i.e., did not meet criteria for onset of Mild Cognitive

Impairment or Alzheimer’s disease. This resulted in 400 subjects in the age range

50− 96 years (72.5± 9.4 years).

MRI Acquisition

Images were acquired at the NIA clinical research facility on a Philips Achieva 3T

MRI scanner, with an in plane resolution of 3 × 3mm, slice thickness of 4 mm,

TR/TE=2000/30s and total scan duration of 6 minutes.

1.5.1.2 Philadelphia Neuro-developmental Cohort (PNC)

The Philadelphia Neuro-developmental Cohort (PNC) is a large scale study to un-

derstand the normal and abnormal developmental processes in the human brain.

In addition to neuroimaging, participants also received cognitive and psychiatric

assesments.

Subsets of this dataset were used for methodological testing in Chapter 2.

Participants

MRI data was acquired on 1445 participants as a part of this study. Of these, rsfMRI

was acquired on 1275 participants. We excluded 426 subjects based on bad data

quality or abnormal cognitive and/or psychiatric assessments, resulting in a final

tally of 849 rsfMRI scans.

MRI Acquisition

All data were acquired on the same scanner (Siemens Tim Trio 3 Tesla; 32 chan-

nel head coil) using the same imaging sequences. Blood oxygen level dependent
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(BOLD) fMRI was acquired with the following parameters: 124 volumes, TR 3000

ms, TE 32 ms, flip angle 90◦, FOV 192x192 mm, matrix 64X64, slice thickness/gap

3mm/0mm, effective voxel resolution 3.0x3.0x3.0mm. During the resting-state

scan, a fixation cross was displayed as images were acquired. Subjects were in-

structed to stay awake, keep their eyes open, fixate on the displayed crosshair, and

remain still.

1.5.2 Node definition

A crucial aspect of SCP estimation is node definition. The high spatial dimension-

ality of fMRI data makes voxel-wise correlation matrices computationally infeasible

for many approaches, hence most studies resort to dimensionality reduction, often

through the use of apriori defined ROIs or through functional parcellation schemes.

In this thesis, we used two sets of node definitions; a set of ROIs defined from a

meta-analysis of fMRI studies (Power et al., 2011), and a data-driven rsfMRI par-

cellation defined by running the GraSP method (Honnorat et al., 2015) on each

dataset. Details are given below.

1.5.2.1 Spherical ROI Definition (Areal Graph)

We used 264 node locations defined in (Power et al., 2011) (“Areal Graph”) for some

of our methodology validation experiments in Chapter 2. These nodes were defined

exclusively based on fMRI. Of these nodes, 151 were non-overlapping 10mm diam-

eter spheres identified based on a meta-analysis of task-fMRI based studies (Dosen-

bach et al., 2006). The remaining 193 were cortical patches obtained by functional

connectivity mapping using resting state fMRI (Cohen et al., 2008). Figure 1.3 (left)

shows the spatial extent of Areal Graph nodes in one axial plane.
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Figure 1.3: Left: Areal Graph nodes, as defined in Power et al. (2011). Right: Common
group-parcellation of GM regions obtained by running GraSP (Honnorat et al., 2015) on
BLSA data

1.5.2.2 Data-driven Parcellation (GraSP Parcels)

Using the Areal Graph described in the previous section limits the analysis to well-

established functional foci of activity. Alternately, one could use widely available

anatomical cortical atlases (Desikan et al., 2006; Van Essen, 2005) that delineate

region boundaries based on cortical macro-structure, i.e., sulci and gyri, and av-

erage data within anatomical regions. While this approach incorporates informa-

tion from all regions of the cortex, averaging observations within these anatomical

boundaries might cause averaging across functional boundaries, which is not ideal.

It is therefore important that we define a parcellation based on the same rsfMRI

dataset that is being analyzed. Therefore, we used GRaSP (Honnorat et al., 2015),

which is a data-driven method used for parcellating the grey matter based on local

functional connectivity of the voxels. Run independently on the PNC and the BLSA

datasets, GraSP provided a study-based parcellation of 583 and 744 parcels respec-

tively. An example of the parcellation result on the BLSA data with 583 parcels can

be seen in Figure 1.3 (right), in one axial plane.
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1.5.3 Computing the functional connectome

After the nodes are defined in a common anatomical space, for each individual, the

average time-series xi within each node i is computed. In this thesis, we define

functional connectivity rij between any pair of nodes to be the Pearson’s correlation

coefficient between the corresponding time-series, as defined below:

rij =
(xi − x̄i)

T (xj − x̄j)

||xi − x̄i||2 ||xj − x̄j||2
(1.1)

where x̄ denotes mean of the time-series.

The functional connectivity value rij lies between −1 and 1. If two nodes have

a negative correlation value, they are said to be anti-correlated. The functional

connectivity between all pairs of nodes can be represented in a correlation matrix

Σi for each individual i. This matrix is symmetric and positive-semi-definite.

1.6 Organization of this thesis

The two main methodological contributions of this thesis are described in chapters 2

and 3. Chapter 2 details the Sparse Learning method, its performance on simulated

data, and SCPs found using real data. In Chapter 3, we describe the MOE approach

and its performance using synthetic data. Chapter 4 describes the main application

of this thesis to aging, with detailed analysis of the BLSA dataset, including identi-

fication of heterogeneous sub-types of advanced aging. Chapter 5 summarizes all

the contributions of this thesis, and discusses future work.
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Chapter 2

Identifying Sparse Connectivity

Patterns

2.1 Introduction

The functional connectome provides a rich source of information on the func-

tional organization of the human brain. It has also been demonstrated that func-

tional connectivity is altered in psychiatric and neurodegenerative illnesses such as

schizophrenia (Venkataraman et al., 2012) and Alzheimer’s (Greicius et al., 2004).

An accurate description of the brain’s functional connectome, and its variability

across individuals, is a critical prerequisite for understanding both normal brain

function and its aberrations in disease.

A multi-variate dimensionality reduction algorithm can be used to address both

issues - (a) it can provide a parsimonious representation of the functional connec-

tome in terms of a set of spatial patterns and (b) differential presence of these

patterns explains inter-subject variability, i.e., each individual’s connectome can be

reduced to a set of scalar values with these patterns as the common reference.
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We exploit recent advances in the mathematics of sparse modeling to develop a

methodological framework aiming to understand complex resting-state fMRI con-

nectivity data. By favoring patterns that explain the data via a relatively small

number of participating brain regions, we obtain a parsimonious representation of

brain function in terms of multiple “Sparse Connectivity Patterns” (SCPs), such that

differential presence of these SCPs explains inter-subject variability.

2.2 Literature review

rs-fMRI connectivity has been used to delineate major functional brain systems

(Biswal et al., 1995; Fox et al., 2006; Vincent et al., 2008), based on prior knowl-

edge of a “seed” region of interest. Given a seed region, the average time-series of

the seed is correlated with the time-series of every other voxel in the brain. The re-

sulting significant correlations form a correlation map with respect to that seed. For

example, using the Posterior Cingulate Cortex (PCC) as the seed region results in

a correlation map which delineates regions belonging to the default mode, as well

as regions of the Dorsal Attention (DA) system that are known to be anti-correlated

with it. However, this method cannot be applied in a data-driven manner as it

requires prior knowledge of a stable seed location. It does not directly quantify

inter-subject variability.

Data-driven approaches have been developed to identify such functional pat-

terns. They can be divided into two major categories - (a) graph partitioning ap-

proaches, which use correlation matrices as input, and (b) time-series based ap-

proaches, which are applied directly to time-series data. Although time-series ap-

proaches do not directly describe connectome data, we describe them here, as prior

studies have used patterns computed from time-series for subsequent analysis of
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connectivity information.

Graph partitioning approaches, such as InfoMap (Rosvall and Bergstrom, 2008)

assume that any region of the brain can belong to only one brain network. This

approach was applied to rsfMRI in Power et al. (2011). Retaining only high positive

correlation values, the authors identified multiple spatially separated networks, or

“sub-graphs”, whose regions are strongly correlated, on average, across individuals.

However, InfoMap limits its analysis to strong positive correlations, while removing

negative and weak edges from the graph that could be informative (Fox et al.,

2005; Keller et al., 2013). In Yeo et al. (2011), a node’s functional connectivity to

all other nodes was used as input to a clustering algorithm. Similar to InfoMap, this

approach also provided spatially segregated networks.

Alternative approaches addressing some of these issues have been proposed in

other fields. The notion of “link communities” introduced in Ahn et al. (2010) is

elegantly able to handle overlaps by assigning unique membership to edges rather

than nodes, naturally resulting in multiple assignments per node. Approaches like

correlation clustering (Bansal et al., 2004) and the Potts model based approach

proposed in Traag and Bruggeman (2009) are partitioning approaches which allow

negative values. Since most of these methods are used to analyze social networks,

they interpret negative edge links as repulsion, and hence attempt to assign nega-

tively connected groups to different communities. While this may be appropriate

for social networks, in resting state fMRI, highly negative edges imply strong anti-

correlation - meaning that despite opposing phase information, these nodes express

the same information, since they are strongly statistically dependent. Allocating

anti-correlated regions to the same network can provide interesting new insights

into the functional organization of the brain.

Alternately, time-series based approaches such as spatial or temporal Indepen-
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dent Component Analysis (ICA) are applied directly to the time-series to obtain a

set of basis, where each vector is a set of weights, one for each node. ICA incor-

porates higher-order moments to reveal patterns that are maximally independent.

However, time-series based approaches do not directly explain the variance in con-

nectome data. Spatial ICA is widely applied to rsfMRI data to obtain spatially in-

dependent components, commonly referred to as “Intrinsic Connectivity Networks

(ICNs)” (Calhoun et al., 2003). In practice, ICNs found using spatial ICA are usu-

ally non-overlapping. To address this issue of non-overlap, the study by Smith et al.

(2012) applied temporal ICA to rsfMRI data and found multiple functional brain

networks, or “Temporal Functional Modes (TFMs)”. Although this is a significant

advancement, these networks have been identified on the basis of independent tem-

poral behavior, i.e., lacking between-network interactions, which is contrary to the

notion that brain systems often act in concert during complex cognitive functioning.

A major disadvantage of connectivity based approaches is their inability to di-

rectly quantify inter-individual variability in functional connectivity, requiring ad-

ditional post-processing and analysis. An important source of variation across indi-

viduals is the average strength of patterns. This could possibly be due to the extent

to which (how much and for how long) that functional unit is recruited in each

individual, or as an indicator of life span changes or disease state. There are studies

that have found strong relationships between the clinical variable of interest and

the strength of such intrinsic rsfMRI networks (von dem Hagen et al., 2012; Mayer

et al., 2011; He et al., 2007a). It is important to build a model that can capture

these inter-individual variations.
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2.3 The Sparse Learning approach

Motivated by models of neuronal activity (Vinje and Gallant, 2000), we propose

the use of spatial sparsity to drive identification of patterns of connectivity. In a

neuronal sparse coding system, information is encoded by a small number of syn-

chronous neurons that are selective to a particular property of the stimulus (e.g.

edges of a particular orientation within a visual stimulus). Multiple such spatial

patterns of neurons constitute a sparse neural basis which acts in concert in re-

sponse to the stimulus. A nearly infinite number of stimuli can be parsimoniously

encoded by varying the proportion in which these patterns are combined.

Extending this idea to rsfMRI, we assume that the observed spontaneous activity

arises from the concerted activity of multiple “Sparse Connectivity Patterns (SCPs)”

that encode system-level function, similar to sparse codes that are present at the

level of neurons. Each SCP consists of a small set of spatially distributed, function-

ally synchronous brain regions, forming a basic pattern of co-activation. These SCPs

capture the range of resting functional connectivity patterns in the brain, although

they do not necessarily need to be present in each individual or subsets of indi-

viduals. Using spatial sparsity as a constraint, we learn the identity of these SCPs

and the strength of their presence in each individual, revealing the variability in the

dataset.

2.3.1 Model formulation

The objective of our method is to find SCPs consisting of functionally synchronous

regions whose connectivity values co-vary across individuals, and are smaller than

the whole-brain connectome. The information content within any one of these SCPs

is relatively low, since all the nodes within an SCP are correlated, and express the
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Figure 2.1: Schematic 1 illustrating our method. Each subject specific correlation matrix
Σn is approximated by a non-negative sum of sparse rank one matrices bkb

T
k , or Sparse

Connectivity Patterns (SCPs).

same information. Furthermore, we assume that if a set of ROIs belong to such a

pattern, then, in a set of normal subjects, inter subject variability is introduced by

the extent to which each system is recruited in a subject. Thus, nodes are assigned

to an SCP if the strength of the edges between them co-vary across subjects. To sum-

marize, SCPs would have the following properties - (1) large number of edges with

zero weights, or sparsity (2) low information content - or rank deficiency and (3)

an associated scalar SCP coefficient, whose value is variable across individuals. Our

method takes as input correlation matrices and finds SCPs that satisfy all properties.

A schematic diagram illustrating our method is shown in Figure 2.1. The input

to our method is size P × P correlation matrices Σn � 0, one for each subject n,

n = 1, 2, . . . , N . We would like to find smaller SCPs common to all the subjects, such

that a non-negative combination of these SCPs approximates the full-correlation

matrix Σn, for each subject n. Each of these K SCPs can be represented by a vector

of node-weights bk, where −1 � bk � 1, bk ∈ RP . Each vector bk reflects the

membership of the nodes to the sub-network k. If |bk(i)| > 0, node i belongs to the

sub-network k, and if bk(i) = 0 it does not. If two nodes in bk have the same sign,

then they are positively correlated and opposing sign reflects anti-correlation. Thus,

the rank-one matrix bkb
T
k reflects the correlation behavior of SCP k. In addition, we
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Figure 2.2: Schematic 2 illustrating our method. Each subject specific correlation matrix
Σn is approximated by a product of three factors - the group-common matrix B, subject
specific matrix Cn and BT .

constrain these SCPs to be much smaller than the whole-brain network by restricting

the l1-norm of bk to not exceed a constant value λ.

We would like to approximate each matrix {Σn}Nn=1 by a non-negative combina-

tion of SCPs B = [b1,b2, . . . ,bK ], as shown in Figure 2.2. Thus, we want

Σn ≈
K∑
k=1

cn(k)bkb
T
k = B diag(cn) BT , Σ̂n

||bk||1 ≤ λ, −1 ≤ bk(i) ≤ 1, cn ≥ 0 (2.1)

where diag(cn) denotes a diagonal matrix with values cn ∈ RK
+ along the diagonal.

Thus, each subject n is associated with a vector of K subject-specific measures cn

which are non-negative and reflect the relative contribution of each SCP to the

whole-brain functional network in the n-th subject.

We quantify the approximation between Σn and Σ̂n using the frobenius norm.

Note that there is an ambiguity in amplitude between the two factors - if bk and

cn(k) is a solution, αbk and cn(k)/α2 is also a solution for any scalar α. To prevent
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this, we fix the maximum value in each SCP to unity; i.e., maxi |bk(i)| = 1.

Bringing the objective and the constraints together, we have the following opti-

mization problem w.r.t the unknowns B and C = [c1, c2, . . . , cn]:

minimize
B,C

N∑
n=1

∣∣∣∣Σn −B diag(cn) BT
∣∣∣∣2
F

subject to

||bk||1 ≤ λ, k = 1, . . . , K,

− 1 ≤ bk(i) ≤ 1, max
i
|bk(i)| = 1, i = 1, . . . , P

cn ≥ 0, n = 1, . . . , N

(2.2)

2.3.2 Optimization strategy

The objective function in the proposed model is non-convex w.r.t both unknown

variables B and C. We use the method of alternating minimization to solve for

B and C. At each iteration a local minimum is obtained using projected gradi-

ent descent (Batmanghelich et al., 2012). Such a procedure converges to a local

minimum.

2.3.3 Model selection

The free parameters of the model are the number of SCPsK and the sparsity level of

each SCP λ. As values ofK and λ are increased, the approximation error is reduced;

however beyond a certain value of K it is likely that the model is over-fit to the

data; i.e., the SCPs computed by the algorithm are possibly used to explain noisy

(unwanted) variations in individual subjects. Hence we resort to cross-validation

in order to avoid over-fitting. Using a grid search, for each value of the parameters

K and λ repeated two-fold cross-validation is performed, and the value at which
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(a) Node-based volumetric rendering of bk. Overlay color in-
dicates the membership value of each region in bk. (b) Edge-based rendering of bkbT

k .
Size of nodes indicate value in bk.

Figure 2.3: Visualization of SCPs. Opposing colors reflect anti-correlation between regions.

there is no gain in generalizability (drop in error) is chosen to be the operating

point. This provides us with SCPs that might generalize better across data. The

cross-validation measure is the error computed on the test dataset relative to the

variance in the test data, defined as follows:

Test Error =

Ntest∑
n=1

∣∣∣∣∣∣Σtest
n −Btraindiag(ctest

n )
(
Btrain

)T ∣∣∣∣∣∣2
F

Ntest∑
n=1

∣∣∣∣Σtest
n − Σ̄test

∣∣∣∣2
F

(2.3)

where Σ̄test is the subject-averaged correlation matrix of the test dataset.

2.3.4 SCP visualization

Node-based visualization

Recall that each SCP bk is of size P , where P is the number of nodes, defined

either using the Areal Graph node definition or GraSP parcellation. For visualiza-

tion purposes, SCPs bk with large spatial extent are mapped to the voxels in the

template space. In the case of the Areal Graph node definition, we performed dual-
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regression, similar to the procedure described in Smith et al. (2012) to map the

SCPs from nodes to voxels. For nodes defined using GraSP, the membership val-

ues of each parcel within an SCP is directly mapped to the spatial extent of that

parcel. These voxel-wise maps can be visualized using overlays in volumetric space

in FSLView (Jenkinson et al., 2012), as shown in Figure 2.3a or projected onto the

cortical surface using Caret Visualization software (Van Essen et al., 2001).

Edge-based visualization

Smaller SCPs can be mapped to the brain using their edge-based representation

bkb
T
k , rendered using BrainNet Viewer (Xia et al., 2013) as shown in Figure 2.3b.

2.4 Experiments on simulated data

2.4.1 Generation of simulated data

In order to illustrate the behaviour of our method, we generated a synthetic dataset

with forty instances (or individuals). Our connectome design is illustrated in Figure

2.4. Each subject is associated with a underlying connectome configuration consist-

ing of fifty nodes, as shown in Figure 2.4a. This connectome is designed in such

a way that it has eight SCPs, with SCP size varying between three and ten nodes.

Some of these SCPs are overlapping, with overlap size varying between one and

three nodes. The strength of each SCP varies across subjects in a binary fashion, i.e,

in each individual, SCPs are either “active/on” or “inactive/off”. In other words, an

SCP is inactive in a individual when all the edges/correlation strengths of that SCP

are close to zero for that particular individual. Furthermore, individuals are cate-

gorized into three groups based on whether SCPs are active or inactive, simulating
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inter-individual variability.

We input this connectome design into the simulation software NetSim (Smith

et al., 2011), which simulates BOLD time-series at each node. Each time-series has

120 time-points and a TR value of 3 seconds, making each dataset 6 minutes long,

similar to standard clinical rsfMRI acquisitions. In addition to inter-individual vari-

ability introduced by differential activation of SCPs we also include small random

perturbation of edge strength for all edges. Random external inputs are input to

some of the nodes. Thermal (white) noise is added to the output time-series at

each node.

Correlation matrices are computed from the simulated time-series for all forty

individuals, which form the input to our method. The average correlation matrix is

shown in Figure 2.4b. The matrices shown in Figure 2.4c correspond to the corre-

lation values computed from the time-series for five randomly chosen individuals.

The average correlation matrix, thresholded to obtain varying levels of edge density

was used as input to InfoMap. Absolute values of correlation were used as input to

InfoMap. The clustering assignments output by InfoMap are converted into a set of

binary basis vectors, one for each sub-graph. Concatenated time-series data were

used as input for Temporal ICA as well as Spatial ICA. In case of ICA, dimensional-

ity reduction was performed by running PCA first, as is routinely done in fMRI-ICA

literature (Smith et al., 2012).

2.4.2 Performance on simulated data

The output of the cross-validation experiments are shown in the plots in Figures

2.5, which shows the variation of the cross-validated mean square error as the free

parameters, K and λ, are varied. It is clear that the MSE saturates beyond λ = 0.2.

Choice of K is somewhat unclear. Using K = 8, λ = 0.2 as the operating point, we

24



Fi
gu

re
2.

4:
Si

m
ul

at
ed

co
nn

ec
to

m
e

de
si

gn
co

ns
is

ti
ng

of
50

no
de

s.
(a

)
A

ll
no

de
s

an
d

ed
ge

s.
N

od
es

ar
e

co
m

m
on

to
al

li
nd

iv
id

ua
ls

,
di

ff
er

en
t

se
ts

of
ed

ge
s

ar
e

in
ac

ti
ve

in
di

ff
er

en
t

in
di

vi
du

al
s.

Ed
ge

s
in

bl
ue

in
di

ca
te

an
ti

-c
or

re
la

ti
on

.
(b

)
A

ve
ra

ge
co

rr
el

at
io

n
m

at
ri

x
ac

ro
ss

al
li

nd
iv

id
ua

ls
.

(c
)

C
or

re
la

ti
on

m
at

ri
ce

s
of

fiv
e

ra
nd

om
ly

ch
os

en
in

di
vi

du
al

s.

25



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of SCPs K

C
ro

s
s
−

v
a
li
d
a
ti
o
n
 e

rr
o
r

 λ = 0.1 P

 λ = 0.2 P
 ... 

 λ = 1.0 P 

(a) Variation with K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Sparsity Level λ / P

C
ro

s
s
−

v
a
lid

a
ti
o
n
 e

rr
o
r

 K = 1

 K = 2

 K = 3
 ... 

 K = 15 

(b) Variation with λ

Figure 2.5: Cross-validation results for simulated data: Plots of the mean square error (Eqn.
2.3) vs. number of SCPs K (left), and sparsity level λ (right).

computed the basis vectors for the simulated data using all four methods. (Note:

For the sampling of edge-densities used to compute results for InfoMap, we were

able to obtain K = 7 communities followed by K = 9. As K = 7 has greater

accuracy, we display those results.)

The first image in Figure 2.6 shows the simulated ground-truth as a vector of

node-weights. The results from the four methods are shown next to the ground-

truth. Each column displays a basis vector bk. It is easy to see that SCPs computed

using Sparse Learning are closest to the ground-truth.

In order to quantify the performance of the algorithm on simulated data, we

compare the set of SCPs output by Sparse Learning B with the ground truth Btrue.

Before the comparison we first perform a one-to-one matching between the two sets

of vectors using the Hungarian Algorithm (Munkres, 1957). The sign of some of the

vectors in B is reversed, if necessary. We use the normalized inner product (cosine

of the angle between vectors) to compare these paired set of vectors.

Figure 2.7 shows the accuracy of SCPs, sub-graphs, ICNs and TFMs for vary-
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Figure 2.6: Performance on simulated data. The basis vectors identified by the Sparse Learn-
ing approach, InfoMap, Spatial and Temporal ICA, shown as node-weights (bk), compared
against the ground-truth.

ing K. When compared with the ground-truth, SCPs show slightly higher accuracy

than the three other methods, for all values of K (p< 0.05, compared at K=8,

using a two-sided t-test for Sparse Learning vs. all other methods). Temporal

ICA comes a close second, as it is able to capture many of the positive/negative

correlations but results in a denser basis. Both Spatial ICA and InfoMap produce

non-overlapping ICNs/sub-graphs - and as the value of K is increased, these com-

ponents get smaller/more fragmented, leading to a drop in accuracy, as seen in the

graph.

Finally, Figure 2.8 displays the individual level coefficients estimated by Sparse

Learning, along with the ground truth. This result shows that Sparse Learning is

able to capture the heterogeneity at the level of individuals, since the clustering of

the three groups is retained to a large extent in the estimation.
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Figure 2.7: Performance on simulated data. Accuracy, measured using normalized inner-
product.
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Figure 2.8: Individual-level coefficients estimated by Sparse Learning, projected down to
2-D space, shown along with the ground truth.

2.5 SCPs computed from rsfMRI data

2.5.1 Areal graph nodes

Having shown that Sparse Learning performs better on synthetic data that has spa-

tial and temporal overlaps, we next compared performance of the three methods

using resting state data from 130 healthy, young adults between the ages 19 to 22

years, acquired as a part of the Philadelphia Neuro-developmental Cohort (PNC)

(Satterthwaite et al., 2014). We used the Areal Graph nodes to define one correla-

tion matrix for each individual, as described in Chapter 1.

Figure 2.9 plots the variation of the cross-validated error as K and λ is varied.

From these figures, it is clear that the MSE saturates around λ = 0.3. However, the

“knee” of the graph plotting variation with K is unclear.

Sparse Learning was run on the entire sample of 130 individuals with the values
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Figure 2.9: Cross-validation results for PNC data: Plots of the mean square error (Eqn. 2.3)
vs. number of SCPs K (left), and sparsity level λ (right).

K = 10, λ = 0.3. These ten SCPs are shown in Figure 2.10. We describe them in

detail below, and compare to existing knowledge of the spatial extent and behavior

of known task-processing, attention and control systems.

Dorsal Attention SCP Figure 2.10 shows the first SCP defined by the anterior mid-

dle temporal area (aMT), superior parietal lobule (SPL), intra parietal sulcus (IPS)

and the frontal eye fields (FEF)(shown in red), which are known to be part of

the Dorsal Attention (DA) system (Corbetta and Shulman, 2002). These regions

are anti-correlated with the middle temporal gyrus (MTG), inferior parietal lobule

(IPL), medial pre-frontal cortex(mPFC), posterior cingulate cortex (PCC) and ante-

rior frontal operculum, which are part of the default-mode (DM) system (Raichle

et al., 2001)(shown in blue).

Executive Control SCPs SCPs 2, 3 and 4 predominantly show executive task-control

system (red) anti-correlated with different aspects of the DM system (blue). SCP 4

shows the Salience system (Seeley et al., 2007) consisting of dorsal anterior cingu-

late cortex (dACC) along with anterior insula and the anterior pre-frontal cortex.
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Figure 2.10: Ten SCPs computed in the Areal Graph node space.
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The anti-correlated DM regions include the IPL, PCC and vmPFC. Regions from the

operculum, insula, temporal-parietal junction (TPJ), inferior frontal gyrus (IFG)

and the dACC dominate SCP 5, with anti-correlations to PCC and dmPFC. This SCP

consists of the Cingulo-Opercular (COP) system (Dosenbach et al., 2007) which is

known to de-activate the DM. SCP 6 consists of the aPFC, aI, IPL, and MT, which

form the Fronto Parietal task-control system, anti-correlating with the inferior MTG,

IPL, PCC, mPFC and PHC.

Motor SCPs SCPs 5 and 6 exhibit contributions from the sensori-motor, auditory

and visual areas. Both SCPs show the pre central (prCG) and post central gyrus

(poCG). In SCP 5 the motor areas positively correlate with the superior temporal

gyrus (STG) and posterior insula. The positive correlations in SCP 6 are more ante-

rior within the insula, and a large extent of the cingulum. Anti-correlated regions

include the FP system (aPFC, IPL, aI, ACC) in SCP 5 and aspects of the DM system

in SCP 6.

Visual SCPs SCPs 7, 8, 9 and 10 show four types of connectivity patterns involving

the visual areas. SCP 7 covers the entire visual system, including the medial visual,

lateral visual and higher visual (dorsal attention) areas. SCP 8 shows the higher

visual areas alone. The visual areas are anti-correlated with the DM system in both

the SCPs. SCPs 9 and 10 shows contributions from areas in the lower levels of the

visual hierarchy; the FEF and the prCS are less dominant, while including the lateral

visual areas, which are involved in higher level visual task-processing. Concomitant

with moving down along the hierarchy, we observe changes to the anti-correlated

regions - the involvement of the mPFC is greatly reduced, but the anti-correlation

the posterior cingulate is retained.

Overlap between SCPs The SCPs described above are clearly overlapping, mainly

enabling the description of multiple relationships between a functional system and

32



Subject Index

S
C

P
 I
n
d
e
x

 

 

20 40 60 80 100 120

2

4

6

8

10 0

0.2

0.4

Figure 2.11: Figure illustrating the heterogeneity of the data sample captured by SCPs. The
color indicates the extent to which each SCP is present in a individual.

other systems. We note that the PCC and the IPL contribute to most of the SCPs,

which were identified by a prior study as one of the central hubs of connectivity in

the brain (Buckner et al., 2009).

Inter-individual variability Differential presence of the SCPs explains inter individ-

ual variability in functional connectivity. Figure 2.11 shows the strength of presence

of each SCP in every individual. The Sparse Learning approach exploits this vari-

ability; a heterogeneous distribution of the samples in this lower-dimensional space

allows robust identification of the SCPs.

Reproducibility

We evaluate the performance of our algorithm as well as Infomap and ICA based

on repeated split-sample reproducibility. Reproducibility was evaluated for K =

2, 4, . . . , 30. In the case of InfoMap, the edge-density was varied between 2% and

40%. This provided sub-graphs varying in number from 4 upto 60, although not

equally spaced. Similar to our earlier experiments involving simulated data, we

quantify the comparison between sub-samples using the normalized inner product,

averaged across basis vectors.

The reproducibility of the results is shown in Figure 2.12a, computed for values

of K ∈ 2, 4, . . . , 30. For K = 10, the reproducibility of our results is 0.80 ± 0.09,
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(b) Correlation data-fit (Error)
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(c) Time-series data-fit (Error)
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(d) Spatial Overlap
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Figure 2.12: Reproducibility, data-fit, spatial overlap and temporal correlation measured
for SCPs obtained from Areal Graph nodes.
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compared to 0.86± 0.15 for InfoMap, 0.79± 0.07 for Spatial ICA and 0.60± 0.12 for

Temporal ICA. InfoMap shows comparable reproducibility with sparse learning (p <

0.4, computed using two-group t-test). Spatial ICA components are as reproducible

as Sparse Learning (p < 0.8), while Temporal ICA performs significantly worse

(p < 10−4) in terms of reproducibility.

Data fit

In addition to reproducibility, the data fit (approximation error) of all the methods

to the data was also compared. Given that Sparse Learning and InfoMap use cor-

relation values as input, and ICA methods use time-series as input, we evaluated

the approximation error for both types of input. Let B denote the set of basis vec-

tors output by any of the four methods. Let Yn ∈ RP×T and Xn ∈ RK×T be the

time-series of the nth individual and basis respectively. In the case of Sparse Learn-

ing and InfoMap, the basis-specific time-series Xn can be computed by regressing

the basis B against the individual-specific time-series Yn. Using these values, the

correlation data-fit measure is computed as follows:

Correlation data fit (Error) =
N∑

n=1

∣∣∣∣∣∣Σn − Σ̂n

∣∣∣∣∣∣2
F

(2.4)

where

Σ̂n = B diag(cn) BT for Sparse Learning (2.5)

= B Xn XT
n BT for InfoMap, Spatial and Temporal ICA
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Similarly the time-series data fit for all four methods is defined as

Time-series data fit (Error) =
N∑

n=1

||Yn −B Xn||2F (2.6)

The correlation data-fit measure is the same as the objective function that is opti-

mized in the Sparse Learning method. Obviously, Sparse Learning is expected to

have the best correlation data-fit (lowest error). Similarly, as the ICA methods op-

erate on the time-series as input, they are likely to outperform Sparse Learning and

InfoMap with respect to time-series data fit. It is more interesting to note how the

correlation methods compare with respect to time-series data fit, and vice versa.

Figure 2.12b and 2.12c show the correlation data-fit and the time-series data-

fit of all the methods for varying values of K. InfoMap performs poorly in terms

of data-fit for both correlation as well as time-series data. As expected, Sparse

Learning has the best correlation data-fit, while the ICA methods provide the best

time-series data fit. This is one of the primary reasons why Sparse Learning is a

better choice for describing connectome data, as it explains a greater amount of

variance in the connectivity data.

Spatial Overlap and Temporal Correlation

Finally, to further understand the behavior of the methods under consideration, we

computed the degree to which the estimated basis vectors are spatially overlapping

and temporally correlated. These values are computed as follows:

Spatial Overlap =
K∑

i,j=1,i 6=j

|bi|T |bj|
||bi||2 ||bj||2

(2.7)

Temporal Correlation =
N∑

n=1

K∑
i,j=1,i 6=j

xT
nixnj

||xni||2 ||xnj||2
(2.8)
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where xni denotes the time-series associated with the ith basis in the nth individual.

As expected, InfoMap has no spatial overlap in its basis. Spatial ICA shows de-

creasing overlap with increasing K, as shown in Figure 2.12d. Sparse Learning has

the highest spatial overlap. Figure 2.12e shows the variation of the average tempo-

ral correlation with K. Temporal ICA has no temporal correlation while Spatial ICA

has the highest temporal correlation. Of the four methods, only Sparse Learning

has non zero spatial overlap as well as temporal correlation.

Reproducibility across datasets

To further evaluate the reproducibility of the presented results, we used two alter-

nate datasets - (1) 131 scans pooled together from the pilot data of the Human

Connectome Project (HCP) (Smith et al., 2012) and the BrainScape datasets from

the functional Biomedical Informatics Research Network (fBIRN) (Fox et al., 2005,

2007) and (2) 400 scans from the BLSA dataset, described in chapter 1. All the

scans were pre-processed using the same pipeline that was used for the PNC dataset,

as detailed above.

We found that the SCPs are reasonably reproduced in the alternate datasets, with

an average inner-product 0.65 ± 0.07 for HCP+fBIRN and 0.62 ± 0.10 for BLSA. A

side-by-side comparison of four SCPs computed from the PNC and alternate datasets

is shown in Figure 2.13.

2.5.2 GraSP parcels

In addition to the SCPs computed using Areal Graph nodes, we also generated SCPs

for nodes defined by GraSP parcels, for both the PNC and BLSA datasets. Recall

that GraSP parcels have full GM coverage, as opposed to Areal Graph nodes which
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Figure 2.13: SCPs 1, 2, 5, and 9 computed from the PNC dataset(left), HCP+fBIRN dataset
(middle) and BLSA dataset (right) using Areal Graph nodes. The inner product value (com-
puted in the Areal Graph node space) for each comparison is also shown.

span only major functional activity peaks in the cortex, and sample some areas

more densely than others. The SCPs for the PNC and BLSA datasets are shown

side-by-side in Figures 2.14 and 2.15.

Visual inspection of Figures 2.14 and 2.15 shows that the two sets of SCPs are

remarkably similar despite vast differences in scanner acquisition protocols, demo-

graphics and parcellation definition.

2.6 Extensions

2.6.1 Hierarchical Sparse Learning

Sparse Learning can be extended to a hierarchical framework with multiple levels,

where each SCP is split into multiple smaller SCPs. This provides greater spatial

specificity at the lower levels, and more SCP coefficients which can be used as
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Figure 2.14: SCPs 1-5 generated from the PNC data (left) and BLSA data (right) using
GraSP parcels.
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Figure 2.15: SCPs 6-10 generated from the PNC data (left) and BLSA data (right) using
GraSP parcels. Note that SCPs 9 and 10 do not match between the two datasets.
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Figure 2.16: A primary SCP and some of its associated secondary SCPs computed from the
PNC dataset using GraSP parcels.
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Figure 2.17: Split-sample error and reproducibility for secondary SCPs computed from the
PNC dataset.

features for group-level analyses. For our experiments, we considered two levels. In

the first level, “primary SCPs” are defined by using the original correlation matrices

as input. In the second level, “secondary SCPs” are defined by re-applying the

method to each primary SCP; i.e., only the rows and columns of the correlation

matrix belonging to the primary SCP are used. At the secondary level, we used the

maximum permissible sparsity value of λ = 2 (atleast two regions in each SCP). An

example is shown in Figure 2.16.

Split-sample error and Reproducibility of Secondary SCPs

Similar to the evaluations performed for primary SCPs in Section 2.5.1, for a fixed

set of primary SCPs, we computed the split-sample error and reproducibility as

the number of secondary SCPs was varied. Figure 2.17 plots both measures. The

reproducibility increases as as the number of SCPs is increased, and peaks between

K = 40 − 60. The split-sample error reduces as the number of SCPs is increased;
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Figure 2.18: SVM weight vector for l2-SVM (left) and l1-SVM (right) for discriminating
children from young adults using the PNC dataset.

however the graph does not have a clear “knee”.

2.6.2 Discriminative Sparse Learning

Many studies that examine changes in pair-wise connectivity use multi-variate meth-

ods, such as SVMs, with the vectorized correlation matrices as features (Satterth-

waite et al., 2013). Applied to classification, SVM returns a list of connections

or edges that are discriminative of the two groups. For example, the hyperplane

weights for classification between 91 children (10.38 ± 1.01 yrs.) vs. 84 younger

adults (20.21 ± 0.84 yrs.) from the PNC dataset are shown in Figure 2.18. Clearly,

these high-dimensional patterns are very difficult to parse and interpret, requir-

ing additional post-processing, such as thresholding. To address this issue, l1-

regularized SVM can be used, which produces a sparse discriminative pattern (Fig-

ure 2.18, right). However, it is known to ignore features that are highly correlated

(and therefore redundant for classification), which could be neuro-biologically rel-

evant.

The Sparse Learning framework described in the previous sections can be used
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to reduce dimensionality prior to the classification task. However a purely gener-

ative method seeks to represent functional activity in general, and does not aim

specifically to find networks that relate to the classification task. To directly obtain

patterns that are affected by the condition being studied, i.e., the classification task,

we provide an extension of the current Sparse Learning framework to incorporate

two-group classification, resulting in functionally meaningful SCPs that are discrim-

inative of the two groups. Our method is akin to previous work in structural MRI

(Batmanghelich et al., 2012), presenting a joint generative-discriminative formula-

tion. Thus, this method reduces the high dimensionality of the connectivity data

to small sets of regions, whose average correlation contributes to the classification

task.

A schematic diagram illustrating our method is shown in Figure 2.19. As before,

the input to the method is size P × P correlation matrices Σn � 0. In addition,

for the classification task, we know the associated binary group membership yn,

for each individual n, n = 1, 2, . . . , N . We would like to find SCPs common to all

the individuals, such that the total connectivity within each network contributes to

the two-group classification. Our formulation jointly optimizes two objectives: (1)

Identification of SCPs (2) Learning discriminative SCPs.

The Sparse Learning objective function defined in Eqn. 2.2 is the generative term

that identifies SCPs given the correlation data. We will call this generative objective

function G(B,C). Given an SCP bk, the scalar value bT
k Σnbk measures the total

absolute correlation between all the regions within the SCP for a given individual

n. Computed for all SCPs, the K-dimensional vector diag(BTΣnB) serves as the

individual-specific measure that can be used in a multi-variate SVM framework.

We use the squared hinge loss and l2 regularization for the K-dimensional SVM

44



Figure 2.19: Schematic illustrating the discriminative Sparse Learning framework. Panel to
the left describes the SCP identification term, which factorizes connectivity matrices Σn of
each individual n into a set of common SCPs B = [b1,b2, . . . ,bK ] and its associated coeffi-
cients. Panel to the right illustrates a linear SVM, which uses the total absolute connectivity
values diag(BTΣnB) of all SCPs as input features to classify two groups, resulting in the
hyperplane w.

hyperplane w. The cost function for the discriminative term is:

D(B,w) =
N∑

n=1

(
1− ynwT diag

(
BTΣnB

))2
+

(2.9)

where yn is the binary group label for individual n, and the subscript + denotes the

positive part of the argument.

Bringing the terms in Eqns. 2.2 and 2.9 together, along with the l2 regularizer

for w, we have the optimization problem

minimize
B,C,w

(1− µ)G(B,C) + µD(B,w) + ||w||22

subject to

− 1 ≤ bk ≤ 1, ||bk||1 ≤ λ, k = 1, . . . , K

cn ≥ 0, n = 1, . . . , N

(2.10)

where µ is the relative weighting fraction between the two terms. A value of µ = 0

produces purely generative SCPs. We use alternating minimization to iteratively

solve for B, C and w. As before, we use a projected gradient method (Batmanghe-
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lich et al., 2012) for B and C and the libSVM solver for w (Chang and Lin, 2011).

The parameter µ, which controls the trade-off between the two terms, will be lin-

early increased from a value of 0 to 1 during the iterative process. This ensures that

the SCPs generated during the first few iterations are mainly generative, which tend

to be more stable.

The free parameters of the proposed method are the number of SCPs K, and the

sparsity level λ. Using grid search, for every pair of values in K ∈ {10, 20, . . .} and

λ ∈ {0.01, 0.02, . . . , 0.1} ∗ P , we will use repeated five-fold cross-validation to find

the optimal set of parameters.

For the children vs. younger adults classification task, the results of the cross-

validation provided an operating point of K = 50, λ = 0.03P (roughly 10 nodes

per SCP). The cross-validation accuracy saturates at higher values of K. For these

values, the proposed method gave an average classification accuracy of 76.3±7.08%

between children vs. young adults. The two most discriminative SCPs are shown in

Figure 2.20, using edge based rendering Xia et al. (2013).

We compared our method with four alternate approaches: (1) l2-regularized

l2-loss linear SVM (Chang and Lin, 2011) with pair-wise correlation values (2) l1-

regularized l2-loss linear SVM (3) Principal Component Analysis (PCA), followed

by classification (4) Independent Component Analysis (ICA), followed by classifi-

cation. The first and second methods are purely discriminative, as they do not

perform dimensionality reduction. The third and fourth methods use unsupervised

network identification methods, followed by classification using the total absolute

connectivity values as features. The number of components K (in PCA and ICA)

and the cost parameter for the SVM was chosen using cross-validation.

The classification performance for all the methods is reported in Table 2.1. The

un-supervised PCA and ICA methods perform poorly. Of the three methods, l2-SVM
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Figure 2.20: Top two SCPs that contribute to classification, based on their hyperplane
weight. Corresponding graphs (bottom) plot total connectivity within SCP for each indi-
vidual vs. individual age. Uni-variate p-value scores comparing total connectivity between
two groups are also shown.

provides a slightly better performance compared to the proposed method, although

the difference in accuracies between the two methods is insignificant (p = 0.0625).

The marginally higher accuracy provided by the SVM is due to the 1000-fold in-

crease in the number of features used, leading to a complete loss of interpretability

as illustrated in Figure 2.18. The weight vector for l1-SVM is also shown in the

same figure. While the l1 penalty does dramatically reduce the number of features

used, it does not necessarily alleviate the issue of non-interpretability. As explained

earlier, strongly correlated features (connections) that are redundant to the classifi-

cation are dropped. In contrast, the generative term G within the proposed method

tends to retain these features by allocating them to the same SCP. Thus, a whole-
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Method Acc (%) AUC #
fea-
tures

Disriminative Sparse Learning 76.3± 7.08 0.85± 0.06 50
l2-SVM 79± 1.45 0.87± 0.01 34716
l1-SVM 74± 2.25 0.81± 0.01 139
PCA+SVM 65.2± 2.30 0.67± 0.01 180
ICA+SVM 64.8± 1.42 0.71± 0.03 210

Table 2.1: Accuracy and AUC values for disriminative Sparse Learning, and other methods

brain discriminative pattern is split into multiple SCPs based on the dependencies

between the connection strengths.

2.7 Discussion

The findings presented in this chapter are obtained from a connectivity-based mod-

eling approach that identifies SCPs based on important observations - (1) Not all

brain regions participate in a given SCP; (2) SCPs consist of those regions which are

functionally correlated (or anti-correlated); and (3) SCPs consist of those regions

whose connections co-vary across individuals, i.e., in other words, SCP coefficients

capture inter-individual variability. Furthermore, the Sparse Learning framework

can be extended to provide SCPs with greater spatial specificity using a hierarchi-

cal decomposition, or, with an additional discriminative term, capture only those

patterns of connections relevant to a classification task.

Observations based on simulated experiments

Based on the simulated ground truth experiments described in Section 2.4, com-

pared to Sparse Learning, both InfoMap and ICA are also able to capture many of

the correlated/anti-correlated relationships between regions. However, as the sim-
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ulation results show, their inherent methodological constraints result in networks

with lower accuracy (for InfoMap and Spatial ICA). InfoMap and Spatial ICA are

able to identify strongly correlated sets of nodes, while avoiding the points of over-

lap.

The results shown in Figure 2.6 also illustrate a potential limitation of the pro-

posed method; when the network sizes are unbalanced, such as in the simulation

design used here, using the same sparsity level λ is inappropriate. Picking a value

of λ less than size of the largest SCP leads to those SCP getting truncated, and is

sub-optimal. On the other hand, picking a value equal to the size of the largest

community (= 20% in the simulated case) leads to noisy assignments in the small-

est community, i.e, SCP 1, as seen in Figure 2.6. This limitation is similar to that

of the edge density parameter used in InfoMap, where lower edge density leads to

smaller communities. In practice, however, these false (noisy) assignments that are

incorporated in the basis are generally very weak (have low absolute values).

Observations from SCPs computed using rsfMRI

SCPs are computed in a data-driven manner, without requiring knowledge of a

“seed” region of interest. For example, SCP 1 in Figure 2.10 (from Areal Graph)

and SCP 7 in Figure 2.15 (from GraSP parcels) show anti-correlation between the

Dorsal Attention system and the Default Mode. This anti-correlation is a well-known

finding (Fox et al., 2005), found using seed-based correlation. SCPs also capture

other functional systems such as the visual system (SCP 7 in Figure 2.10 and SCP

1 in Figure 2.14), Fronto-parietal (SCP 4 in Figure 2.10 and SCP 3 in Figure 2.14)

and Cingulo-Opercular (SCP 3 in Figure 2.10 and SCP 5 in Figure 2.14), along with

their anti-correlations.

Not surprisingly, the SCPs computed using Areal Graph and using GraSP par-

49



cellation are not entirely similar. Node definition and density plays a major role in

delineating whole-brain distributed patterns. The Areal graph nodes are based on a-

priori knowledge of foci of functional activity. Nodes are not uniformly distributed

across the cortex, there is greater nodal density in areas which are known to ac-

tivate for certain tasks with visual and auditory inputs (Dosenbach et al., 2006).

Therefore, it is likely that patterns computed using the Areal Graph reinforce our a-

priori knowledge of functional systems. The GraSP method is data-driven, meaning

that parcels are defined solely based on the underlying rsfMRI-based geodesic dis-

tances. This means that GraSP is agnostic to location, size and shape of the parcels

(nodes). Due to different node definitions, some of the resulting SCPs computed

using GraSP parcels (Figure 2.14, 2.15) are different from the Areal Graph SCPs

(Figure 2.10). For example, SCP 2 (Figure 2.14) spans the medial temporal areas

and SCP 8 (Figure 2.15) spans the medial dorsal frontal areas. These SCPs were

not found using the Areal Graph nodes. Nevertheless, for both types of node defini-

tion, reproducibility of the SCPs is reasonably high, both within and across datasets

(Figures 2.10, 2.13, 2.14 and 2.15).

Note that the SCPs presented in this chapter were computed from data generated

using a pre-processing pipeline that included global signal regression. This pre-

processing step is contentious, as it has been known to increase the number of

negatively correlated nodes (Saad et al., 2012). We re-ran sparse learning on data

that retained the global signal; however, visual inspection showed that delineation

of major functional systems was poor. These results are summarized in Appendix

A.4.
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SCPs for group-level analyses

As the results from simulated data (Figure 2.8) and rsfMRI data (Figure 2.11) show,

SCP coefficients can quantify the strength of presence of an SCP at the level of in-

dividuals. This ability provides us with a framework for group-level analyses. This

advantage cannot be found in seed-based correlation methods or graph-partitioning

approaches. SCP coefficient values ci are comparable across individuals within the

same SCP. Univariate SCP-wise analyses can be performed to look for differences

between healthy and patient groups. SCP coefficients can be used to cluster indi-

viduals into latent sub-groups, based on connectivity strength. The joint generative-

discriminative framework can also be used to find connectivity patterns that are

changed in patients with a specific diagnosis, or normal development/aging-related

effects.

Thus, performing dimensionality reduction by exploiting inter-individual vari-

ability facilitates group-level analyses. In addition, the availability of fairly large

datasets allows investigation of more complex hypotheses - for example, aging is

a highly heterogeneous process that co-exists with the onset of multiple patholog-

ical processes causing neuro-degeneration. This is accompanied by wide variation

in cognitive performance in the elderly. Lower dimensional SCP coefficients along

with large sample sizes allows the investigation of such a hypothesis in a data-

driven manner. In the next chapter, we will describe a Mixture of Experts (MOE)

method that models multiple patterns of change within a classification framework.

The Sparse Learning framework as well as MOE was used to investigate aging using

the BLSA dataset; this is described in Chapter 4.
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Chapter 3

Capturing Heterogeneity using

Mixture of Experts

3.1 Introduction

A growing number of projects (Shock et al., 1984; Satterthwaite et al., 2014; Van Es-

sen et al., 2012; Biswal et al., 2010) and consortia (Di Martino et al., 2014) are

collecting MR-based neuroimaging data from a large number of individuals to in-

vestigate the complex patterns of brain change associated with non-pathological

and pathological processes, such as effects of development, aging, injury or disease.

While MRI has been successfully used to understand functional and structural dis-

ruptions, in many studies, the main objective is to compare two groups of subjects,

i.e. between normal controls and patients, or younger and older, with the assump-

tion that the specific condition affects all subjects in a uniform fashion. In other

words, each affected subject is assumed to possess the same pattern of abnormality,

because only a common denominator consistently present across subjects is found.

This approach conflicts with what is observed in clinical assessments, which point to
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inherently multi-dimensional symptoms or cognitive changes (Ylikoski et al., 1999)

that reflect a broad “spectrum” of changes associated with disease or developmen-

tal and maturational processes. Machine learning tools provide a great opportunity

for investigating the heterogeneity of patterns of brain change associated with var-

ious diseases and processes, which have been for the most part ignored in previous

studies.

In this chapter, we extend the analytical framework of two-group comparisons,

where a diseased or otherwise affected group is compared to a relatively more nor-

mal reference group. We propose the application of a method that combines unsu-

pervised clustering and supervised learning of classifiers to identify heterogeneity of

brain changes in the affected group. Our main assumption is that the affected group

was subjected to a heterogeneous underlying pathological or non-pathological pro-

cess. Thus, the affected group consists of multiple subgroups, each of which has a

different pattern of group differences, relative to the reference group. We assume

that normal variation in the brain in the reference group evolves into potentially

multiple patterns of abnormality or differences in the affected group, which are

presumably caused by a variety of underlying potential pathological processes. As

illustrated in Figure 3.1, in the space of multi-dimensional MRI data, the affected

group “deviates” from the reference group along many different directions. We are

interested in (1) capturing these heterogeneous patterns of group differences and,

(2) identifying subgroups within the affected group that are associated with each

pattern of group difference.

We propose the use of a Mixture-of-Experts (MOE) framework (Jacobs et al.,

1991) to capture heterogeneous patterns of brain change. The MOE framework

was initially proposed for vowel discrimination within speech recognition (Jacobs

et al., 1991) and later, as a fast and efficient alternative to “kernel” SVMs (Ladicky
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and Torr, 2011; Fu et al., 2010). The MOE method combines unsupervised clus-

tering with supervised classification to approximate the non-linear boundary that

separates the two classes with a piece-wise linear separating boundary. Thus, it

provides us the identification of the subgroups as well as the multivariate patterns

that discriminate each subgroup from the reference group. The data is modeled

using a mixture of distributions, by assigning a soft subgroup membership to each

subject in the affected group. The linear boundary between each affected subgroup

and the reference group can be found using a linear classifier, such as a linear Sup-

port Vector Machine (linear-SVM). We describe the MOE method in detail in the

methods section. We thoroughly validate the MOE method using multiple simu-

lation cases and four validation measures used to quantify its performance; these

results follow the methods section.

In the following section we describe the MOE formulation, the optimization

strategy and the model validation steps. The validation of the performance of the

method using simulated data is described in Section 3.4. We discuss the advantages

and limitations of our method in Section 3.5.

3.2 Literature review

Prior to the application of MOE in this study, there were few studies that aimed

to capture heterogeneity using machine learning tools. For example, in Song et al.

(2010), the authors first propose clustering the subjects within each group, fol-

lowed by supervised learning. In Sabuncu et al. (2009), the authors propose a joint

clustering-coregistration algorithm, which can compute data-driven templates that

summarize the different modes in the population. It may be possible to identify

heterogeneity in the affected group by applying such a purely unsupervised cluster-

54



Figure 3.1: An illustration that shows heterogeneity in the affected group, relative to a
reference group. Non-linear classifiers can implicitly model non-linearity but estimating
the boundary (dashed lines) in high dimensional spaces is difficult. Mixture-of-Experts can
approximate the non-linear curve with a piece-wise linear boundary (red and green lines)
and find subgroups associated with each line (red and green points).
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ing method to the affected group alone. However, in medical imaging data, two-

group differences are often small and subtle, and can be nearly orthogonal to the

dominant direction of variance. Running a purely unsupervised clustering method

produces clusters along this direction, which may not be relevant to the problem we

are attempting to solve - to find heterogeneity in the discriminating boundary that

reflects the underlying pathologic process. Hence our attempt to solve this problem

involves using the reference group as an “anchor”. In other words, we assume that

the reference group is transformed by an underlying process which affects the ref-

erence group in multiple different ways. We would like to identify these multiple

directions of deviation from the reference group. In our proposed method, allow-

ing the reference group to be equally shared amongst all sub-groups is an indirect

manner of modeling this deviation from the reference group.

While kernel SVMs can also successfully model non-linear separation bound-

aries between groups, such as the one shown in Figure 1, they suffer from a major

limitation in neuroimaging applications, namely the lack of interpretability of the

results. In a kernel-based method, the data is implicitly projected into a higher di-

mensional space prior to being classified and the non-linear separating boundary

in the original feature space is not explicitly computed. This limitation was tackled

in multiple papers (Golland, 2001; Fan et al., 2007; Rasmussen et al., 2011). Gol-

land (2001) find reflections of each support vector of the fitted kernel-SVM on the

other side of the separating boundary. The difference between the support vector

and its reflection is the local discriminant direction in the feature space, which is

interpreted in terms of the changes to the input data. Similarly, in COMPARE (Fan

et al., 2007), Fan et. al average these local discriminant directions across all support

vectors, resulting in a single group difference map. In Rasmussen et al. (2011), the

importance of each feature for the classifier is estimated by computing the average
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extent to which predictions get perturbed when the data points are perturbed. This

results in a single sensitivity map for the non-linear classifier. However, none of

these approaches targeted the identification of subgroups in the population based

on the discriminant direction of change in comparison to the reference group. An

easily interpretable and not overly complex way of representing this heterogeneity

is necessary for the clinical adoption of such methods.

Concurrently with MOE, other methods were proposed for the same objective,

but had different approaches. In Dong et al. (2015), the authors proposed the use

of a purely generative method where the reference and affected groups are modeled

as distributions in a high-dimensional space, such that the multiple disease effects

are different point cloud transformations from the reference to the affected groups.

In Varol et al. (2015), authors proposed the use of a maximum margin polytope

method to identify variations in disease using T1-structural data. This formulation

uses maximal margin classification objectives only, and hence is purely discrimina-

tive; it relies on the distance to the hyperplane to determine the grouping of the

subjects. The proposed MOE approach is a well-established approach which com-

bines both - an expert (classifier/regressor) with a mixture model (clustering), and

hence falls under the umbrella of generative-discriminative methods. Thus, MOE

not only models the distance from the hyperplane but also the natural clustering

that may be present within the affected group, for identification of heterogeneity.

3.3 Mixture-of-Experts: Formulation and optimization

Consider a binary classification problem with data xi ∈ RD obtained from i =

1, 2, . . . N subjects. Each subject is associated with a binary label yi ∈ {−1, 1}, −1

for the reference group and +1 for the affected group. We assume that the dis-
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criminative direction is not constant across the feature space. In other words, the

group difference is heterogeneous due to multiple processes that might affect brain

structure and function in different ways. This heterogeneity can be modeled us-

ing multiple piece-wise linear hyperplanes. Our objective is to learn the multiple

discriminant patterns of abnormality along with subgroups of affected subjects cor-

responding to each pattern. We propose to model this heterogeneity with a piece-

wise linear boundary with K segments. Each segment is a hyperplane wk, which is

interpretable in terms of the discriminative/affected features in each subgroup k.

3.3.1 The expert model

Let mi =
[
m1

i ,m
2
i , . . . ,m

K
i

]
, mi ∈ [0, 1] ,

∑K
k=1m

k
i = 1 indicate the relative member-

ship of subject i to group k. Recall that along the discriminative direction, subjects

deviate in multiple different directions due to underlying process, away from the

reference group. Therefore we associate the reference subjects with all K hyper-

planes, i.e., if yi = −1, mk
i = 1/K ∀ k. If the membership values were known for

all subjects, the kth linear-SVM hyperplane wk ∈ RD can be learned by solving the

following optimization problem (Bishop et al., 2006):

minimize
wk

1

2

∣∣∣∣wk
∣∣∣∣
2

+ C
N∑
i=1

mk
i

(
1− yi(wk)Txi

)
+

(3.1)

where x+ = max(0, x).

The above optimization problem is the standard formulation of the `1-loss, `2-

regularized SVM in its primal form, with the membership values mk
i acting as sam-

ple weights. The user-defined SVM cost parameter C controls the extent to which

misclassified points are penalized. Note that the intercept of the SVM hyperplane

has been subsumed into the variable wk by appending a constant value to all data
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points.

3.3.2 The mixture model

The unknown group membership values mi can be obtained by jointly optimizing

the SVM objective function (above) with a data clustering objective. In this paper,

we learn these subgroups using Fuzzy-C-Means (Bezdek et al., 1984). Each one of

K subgroups is associated with a centroid dk. The mixture model is formulated as

an optimization problem, as follows:

minimize
{dk}

k
,{mk

i }i,k

K∑
k=1

N∑
i=1

(mk
i )a
∣∣∣∣xi − dk

∣∣∣∣2
F

subject to
K∑
k=1

mk
i = 1, mk

i ∈ [0, 1] n = 1, . . . , N

(3.2)

As explained in (Bezdek et al., 1984), the “fuzzyness ” coefficient m controls the

“softness” of the membership assignments. When m = 1, the memberships are

binary. As m→∞, the membership values tend to 1/K, where K is the number of

sub-groups.

In our model, we set the “fuzziness” coefficient a to a value of 2. We make

this choice because when the cluster centroids (and other variables) are known,

for a = 2, the minimization problem becomes a quadratic programming problem,

which is convex.
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3.3.3 The joint model

Bringing the optimization problems 3.1 and 3.2 together, we get

minimize
{wk}

k
,{mk

i }i,k

K∑
k=1

{
1

2

∣∣∣∣wk
∣∣∣∣

2
+ C

N∑
i=1

mk
i

(
1− yi(wk)Txi

)
+

+ λ

N∑
i=1

(mk
i )a
∣∣∣∣xi − dk

∣∣∣∣2
F

}

subject to
K∑
k=1

mk
i = 1, mk

i ∈ [0, 1] n = 1, . . . , N

(3.3)

where λ is a user-defined value that controls the trade-off between the cost of clas-

sification and clustering. The other user-defined parameters are the number of

groups K, and the SVM cost-value C.

3.3.4 Optimization strategy

We use alternating minimization to solve for the cluster centroids dk, membership

values mk
i and the SVM hyperplanes wk. Note that, from the joint optimization

problem in Eq. 3.3, only the membership values mk
i are common to both the clas-

sification and the clustering problems. Knowing these values would allow us to

decompose the joint optimization problem into K + 1 smaller problems, which are

all convex: K weighted-SVM objectives with weighted samples, and solving for

cluster centroids. We use libSVM with weighted samples (Fan et al., 2008) to solve

each of the K SVM objectives, and the cluster centroids can be updated as follows:

dk =

∑N
i=1(m

k
i )axi∑N

i=1(m
k
i )a

(3.4)

When the values of variables wk and dk are known, the joint problem can be de-

composed into N optimization problems, one for each subject. Each of these N
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problem can be solved for the membership values m1
i ,m

2
i , . . . ,m

K
i of subject i, as

follows:

minimize
{mk

i }k

K∑
k=1

{
Cekim

k
i + λ

∣∣∣∣xi − dk
∣∣∣∣2

F
(mk

i )a
}

subject to
K∑
k=1

mk
i = 1, mk

i ∈ [0, 1]

(3.5)

where eki is the slack value (= 1 − yi(wk)Txi) for the ith individual in the kth SVM.

When a = 2, the objective function is quadratic and convex, and the constraints are

linear.

The optimization strategy alternately solves for dk, mk
i and wk until conver-

gence. Convexity of each of the sub-problems guarantees its convergence to a local

minimum.

3.3.5 Prediction of test cases

We use ten-fold cross-validation to evaluate the fit of the model to the data. Given a

test subject x∗ with an unknown label y∗, first the unknown membership values m∗

are obtained by solving the clustering objective alone with x∗ as the data. Then the

label y∗ is determined as the sign of the weighted combination of individual SVM

predictions as follows:

y∗ = sign

(
K∑
k=1

m∗k sign
(
(wk)Tx∗

))
(3.6)

3.3.6 Model selection

We use four summary measures to quantify the performance of the method:
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1. Cross-validated accuracy: Estimated labels are compared with the known la-

bels of the left out fold. This testing is repeated for all folds for multiple runs

to obtain an averaged cross-validation accuracy.

2. Maximum pair-wise inner product: For K > 1, we compute the maximum

normalized inner product between all pairs of hyperplanes, as follows:

rw = max

{
(wk)Twl

||wk||2 ||wl||2
, ∀ k, l ∈ {1, 2, . . . , K}

}
(3.7)

This value measures the minimum extent to which the hyperplanes have ro-

tated away from each other.

3. Cluster Reproducibility: For K > 1, we evaluate the reproducibility of the sub-

groups across repeated runs of the proposed method. We use the Adjusted-

Rand Index (ARI) for fuzzy cluster assignments, as defined in Brouwer (2009).

The ARI is a scalar value between [−1, 1] which measures the extent to which

two fuzzy cluster assignments are similar, after adjusting for chance. An ARI

value of +1 denotes perfect reproducibility, 0 indicates that some subjects have

the same fuzzy membership solely due to chance and −1 indicates disagree-

ment among all pairs of memberships.

4. Cluster Separation Index: For K > 1, we evaluate the extent to which the

K clusters are separated across repeated runs of the proposed method. We

use the Bezdek Partition Coefficient (BPC) (Bezdek, 1981; Dave, 1996) which

provides a scalar value between [0, 1] for each fuzzy clustering assignment. A

value of 1 indicates full cluster separation, i.e., cluster assignments for all sub-

jects are binary. A value of 0 indicates no separation, i.e., cluster assignments

for all subjects are equal to 1/K, where K is the number of clusters.
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The user-defined parameters of the MOE method are the number of subgroups

K, the SVM cost value C and the classification-clustering trade-off parameter λ.

We use a grid-based search to find those parameters for which the four above men-

tioned measures (accuracy, maximum inner-product, cluster reproducibility, cluster

separation) are optimal.

3.4 Experiments on simulated data

3.4.1 Simulated data

We evaluated the ability of the proposed method in revealing underlying subgroups

using four two-dimensional simulated datasets. These datasets reflected different

heterogeneity patterns in the affected subgroups, defined as the subgroups deviat-

ing from the reference group:

Case 1: One affected subgroup with a single pattern of change relative to a refer-

ence group. Each group is modeled by an isotropic Gaussian distribution.

Case 2: Two affected subgroups, with heterogeneous patterns of change relative to

a reference group. Each subgroup is modeled by an isotropic Gaussian distribution.

Case 3: Multiple affected subgroups, with heterogeneous patterns of change rela-

tive to a reference group. This is modeled using concentric circles

Case 4: Multiple affected subgroups, with heterogeneous patterns of change rela-

tive to a reference group. This is modeled using arcs of concentric circles

For each case, 200 points were simulated, with 100 affected and 100 reference sub-

jects. In each of the four cases above, 20% of the data points were deliberately

mis-labeled.
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Figure 3.2: Four 2-D simulated cases used to evaluate the performance of the method.
Hyper-planes and sub-groups obtained using MOE are also shown using a different color
for each hyper-plane and associated subgroup.
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3.4.2 MOE choice of parameters and results

We measured (1) ten-fold cross-validation accuracy (2) maximum normalized inner-

product between the resulting
(
K
2

)
pairs of hyperplanes (3) reproducibility of the

resulting affected subgroups, measured using ARI and (4) separation of the result-

ing affected subgroups, measured using BPC. These results are shown in Figures

3.3 and 3.4. We expect a good model to provide high cross-validated accuracy,

low inner-product (large angle between hyperplanes), high reproducibility of the

resulting subgroups across runs, and high separability between subgroups.

From Figure 3.3, we observe that highest accuracy values are obtained for K

values of 2, 3, and 2 for the cases 2, 3, and 4 respectively. For the same three values,

the inner-product between the hyper-planes is at a minimum, suggesting that the

hyperplanes have rotated to their maximum extent. Cluster reproducibility and

separation are also high. Note that in the absence of heterogeneity, as simulated in

Case 1, the fuzziness of the clustering algorithm prevents the creation of spurious

noise-based clusters; the membership value of each affected subject will be close to

1/K and consequently, the resulting hyperplanes are almost identical, and cluster

separation is low, as seen in Case 1.

For Case 3, and for K = 3, we used a grid-based search to evaluate the three

measures for C = {2−3, 2−2, . . . , 210} and λ = {2−3, 2−2, . . . , 210}. In all four plots,

the parameter space is clearly split into two: C ≥ λ − 3 and C < λ − 3. When

C ≥ λ−3, the inner-product measure is low and the accuracy, cluster reproducibility

and separation indices are high. Considering all these observations together, the

values K = 2, C = 210 and λ = 2−3 seem reasonable, with ten-fold cross-validation

accuracy at 78±0.8%, normalized inner-product at 0.5±0.01, ARI at 0.75±0.08 and

BPC at 1.
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Figure 3.3: Variation in four performance measures for K = {1, 2, . . . , 5}, for each of the
four simulated cases. From top-left, clockwise: Accuracy, Maximum inner-product, cluster
separation and cluster reproducibility. Results from each case is plotted in a different color.
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Figure 3.4: Variation in four performance measures for K = 3, C, λ =
{
2−3, 2−2, . . . , 210

}
,

for Case 3. From top-left, clockwise: Accuracy, Maximum inner-product, cluster separation
and cluster reproducibility.
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Simulation Case 1 2 3 4
Gaussian-kernel SVM 79.0± 0.54 75.4± 1.08 86± 0.01 85.3± 0.27
MOE 79.0± 0.22 74.1± 0.74 77.9± 0.80 82.5± 1.35

Table 3.1: Table comparing ten-fold cross-validation accuracy for MOE method vs.
Gaussian-kernel SVM, for four 2-D simulated cases.

Table 3.1 shows the ten-fold cross-validation accuracy of MOE model compared

with that of an RBF-kernel SVM for each of the four simulated cases. In Cases 2-4,

the accuracy of the MOE model is slightly lower than the non-linear model. This

difference in accuracy is highest for Case 3, where the non-linearity is the greatest

among all four cases. This decrease is expected, as a piece-wise linear model is used

to approximate the non-linearity. The MOE model performed with a small drop in

accuracy, when compared to non-linear models, while providing interpretable re-

sults and explicit assignment into a small number of subgroups. Such interpretabil-

ity is very important for adoption of such methods in clinical environments.

3.5 Discussion

In this chapter, we proposed the use of a Mixture-of-Experts framework to capture

diverse disease or degeneration patterns. This is a general framework that can be

applied to any type of data (structural or functional MR data) using any expert

(classification or regression-based) and any mixture model (K-Means, fully Gaus-

sian mixtures and others). We used a linear-SVM along with fuzzy c-means clus-

tering to identify multiple subgroups in the heterogeneous population, along with

the associated abnormal connectivity pattern for each subgroup. We evaluated the

resulting models based on four performance measures - cross-validated accuracy,

maximum hyperplane inner-product, cluster reproducibility and cluster separation.

We tested the performance of the method using multiple 2-D simulation cases.
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As we stated earlier, multiple linear SVMs are used to approximate the non-linear

boundary between the two groups, hence there is some loss of accuracy. This loss in

accuracy is traded for a richer description of the data in terms of multiple subgroups

and linear hyperplanes associated with each subgroup, that are interpretable in

terms of changes to the underlying features. Furthermore, as fuzzy membership

values are used, in the absence of heterogeneity in the data, the fuzziness of the

model prevents the generation of noisy clusters.

A methodological limitation to consider is that as the MOE model combines

classification with a clustering objective, it inherits the drawbacks of clustering as

well. High dimensional data, such as vectorized correlation matrices, is difficult to

cluster due to the well known “curse of dimensionality” (Steinbach et al., 2004).

The effectiveness of applying our method for high dimensional data needs to be

investigated further. The Sparse Learning method used in this paper provides an

interpretable connectivity-based set of SCP bases, while reducing data dimension,

making it applicable for MOE analysis.

Another limitation to consider is the trade-off between higher accuracy and bet-

ter interpretability. The MOE classifier can only approximate a non-linear boundary.

Therefore, in terms of accuracy, it can only perform as well as the non-linear classi-

fier, and no more. In fact, in both simulated and real rsfMRI data, the MOE classifier

slightly under performs the non-linear classifier. Our motivation behind proposing

the MOE classifier as an alternative is for the sake of interpretability, to discover

heterogeneous two-group differences.

Our method primarily looks for variation in discriminating direction, and may

not directly relate to disease/aging severity. Individuals that are further away from

the hyperplane have greater magnitude of changes relative to the reference group,

therefore has a more severe disease/aging effect. Thus severity can be estimated by
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calculating the distance of each subject from the discriminating hyperplane. Such

an approach has been been used in prior studies to quantify severity of the disorder,

such as Alzhiemers’ and Mild Cognitive Impairment (Davatzikos et al., 2009; Clark

et al., 2012) and Autism Spectrum Disorder (Ingalhalikar et al., 2011). Currently,

MOE provides information about heterogeneity alone. In addition to the sub-group

memberships, severity along each heterogenous aging direction is also potentially

very useful; this will be investigated in the future.

A possible extension of this method is to incorporate heterogeneity in the refer-

ence group as well, considering that the variability in a typical reference “normal”

group can be quite high. Using such an extension, each estimated affected group

is associated with its closest set of reference subjects. This is advantageous, as the

associated hyperplane weights and associated two-group p-values are more specific

to the disease/aging heterogeneity. On the other hand, the hyperplanes are no

longer comparable across sub-groups, as the reference group is different for each

affected sub-group. The advantages and trade-offs of such an extension need to be

investigated further.

In the next chapter we apply MOE to rsfMRI data acquired from normal older

adults as a part of the BLSA study. Using SCP coefficients as well as estimates of GM

density within each parcel, we define functional and structural brain aging trajecto-

ries. We use these trajectories to identify individuals whose imaging data suggests

that their brain age is higher than expected; i.e., they are advanced agers. Similarly

we identify individuals whose brain age is lower than expected; we refer to them

as resilient agers. Using resilient agers as a reference, we apply the MOE method to

identify heterogeneous patterns of advanced aging. Combined with cognitive data,

we further characterize these sub-groups of advanced agers.
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Chapter 4

Analyzing the effect of aging on

functional connectivity

4.1 Introduction

The number of older people in the United States, who currently constitute nearly

15% of the population, is projected to increase dramatically over the next two

decades. Normal aging is associated with increased risk of physical sickness and

injury, declining mental health and greater risk of developing dementia. It reduces

the quality of life and normal day-to-day functioning in older people. Therefore, it

is imperative that we understand the effects of normal aging on brain structure and

function.

Age is known to be significant factor that determines inter-individual variability

in functional connectivity (Biswal et al., 2010). This makes rsfMRI an appealing

non-invasive method to understand functional disruptions due to aging. To this end,

we used MRI data from 400 cognitively normal participants of the BLSA study to

obtain functional correlates of aging. In addition, we used multi-variate regression
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to build a normative brain aging trajectory that captures an average snapshot of

aging related changes. Using this trajectory, we computed a personalized Brain

Aging Index (BAI) of functional brain health for each individual in the study.

It is also important to note that aging is probably a heterogeneous process, given

the large amount of variance present in cognitive performance of older individuals,

even though they are cognitively normal. As Rowe and Kahn (1987) observed in

their paper, using the term “normal” to describe these individuals connotes lack of

risk towards aging-related pathology. Although normal, it is possible that multiple

pathologic processes could have initiated a diverse set of functional and structural

changes in the brain, without showing external signs or symptoms of cognitive de-

cline. As we describe in the second half of this chapter, we used both functional and

structural MRI data from the BLSA to identify individuals who show advanced signs

of aging, as well as those that seem resilient to it (“successful” aging). Furthermore,

we identify heterogeneous patterns of functional and structural change in advanced

aging relative to resilient aging. We think that some of these advanced agers are at

a greater risk for dementia in the future.

The following section reviews results obtained from prior imaging studies of

aging. Subsequent sections report and discuss results from our analysis of the BLSA

dataset.

4.2 Literature review

There is a large body of literature investigating aging effects on resting state func-

tional connectivity (Ferreira and Busatto, 2013) using univariate statistics. Of these,

reduced connectivity between regions of the Default Mode (DM) has been most

consistently reported. In (Wu et al., 2011) and Andrews-Hanna et al. (2007), the
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authors used the Posterior Cingulate Cortex (PCC) as seed to delineate other re-

gions of the Default Mode, and investigate changes in its connectivity with age.

Reduced connectivity was also observed in Dorsal Attention (DA) system, which is

anti-correlated with the DM (Tomasi and Volkow, 2012), as well as in the motor

cortex (Langan et al., 2010). When comparing older adults with younger adults,

the authors in (Wu et al., 2007) found that the functional connectivity of the motor

network is reduced in the rest state. Significant differences were also observed in

functional connectivity of the visual cortex between young and older individuals

(Yan et al., 2011).

There are far fewer studies that apply multi-variate machine learning based ap-

proaches to understand functional disruptions due to aging. In Meier et al. (2012),

the authors used vectorized correlation matrices as input to a Support Vector Ma-

chine (SVM), which was used to classify young adults from older adults. The au-

thors applied a significant amount of post-processing to the resulting hyperplane

weights to discover that connections within the motor and cingulo-opercular areas

played a large role in classification. Similarly, in Vergun et al. (2013), the authors

applied Support Vector Regression (SVR) to vectorized correlation matrices to pre-

dict age of individuals in the age range 19-85 years.

In this study, we investigated the effect of aging on functional connectivity by

looking for significant correlations between SCP coefficients computed from the

data and age. We used imaging features from both functional and structural MRI as

input to multivariate regression in order to build brain aging trajectories. By com-

paring an individual’s expected brain age from their predicted age, we can identify

individuals who are advanced agers relative to their chronological age. (A simi-

lar approach was used in Franke et al. (2012) for individuals with Mild Cognitive

Impairment (MCI) in order to identify those who are most at risk to progress to
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Alzheimer’s disease.) In the following sections, we describe the structural and func-

tional brain phenotypes associated with normal and advanced aging.

4.3 Effect of aging on functional connectivity

Figure 4.1: Age distribution for the subjects
used in this study. For each age bin, counts
for male and female participants are shown
in different colors.

We used BLSA first-visit data from 400

participants; their age and sex distribu-

tion is shown in Figure 4.1. Age is not sig-

nificantly correlated with motion in this

study, see Figure 4.2. For details about

rsfMRI pre-processing, see Appendix A.

Using the Sparse Learning framework

we computed SCPs in a hierarchical man-

ner with 10 primary SCPs and 10×50 sec-

ondary SCPs. These measurements were

used as features for all subsequent rsfMRI analyses.

Figure 4.2: Scatter plot showing the re-
lationship between age and motion (mea-
sured using MRD), which is statistically in-
significant. The color indicates the num-
ber of time-points that were removed dur-
ing the scrubbing procedure.

Recall that SCP coefficients are subject-

specific; they are proportional to the av-

erage connectivity between the regions

that belong to the SCP for a particular

subject. For each of the primary and sec-

ondary SCPs, we evaluated the correla-

tion and associated p-value between each

of the coefficients and individual ages.

P-values are corrected for multiple com-

parisons using Benjamini-Hochberg False
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Figure 4.3: (Above) Connectivity within the DM vs. DA SCP is significantly decreased with
age. (Below) Connectivity within the medial temporal areas is significantly increased with
age
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Figure 4.4: Connectivity within the visual vs. DM areas (above) and motor areas (below) is
significantly decreased with age.
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Discovery Rate (FDR) correction method

(Benjamini and Hochberg, 1995).

We found that four of the ten primary SCPs showed significant correlation with

age (p < 0.05, corrected). Figure 4.3 shows the DM vs. DA SCP, whose average

connectivity is significantly reduced with age. We found that connectivity within

the motor region, as well as the visual areas is reduced (Figure 4.4). The only

primary SCP to show increased connectivity with age involves mainly the medial

temporal regions (with weak anti-correlation in the frontal and parietal areas).

Associated secondary SCPs reflect the trends in the primary SCP, but provide

greater spatial specificity. For example, eight of the secondary SCPs associated with

the primary motor SCP (shown in Figure 4.4) show significant negative correlation

with age. Each of these SCPs is bilateral, spanning from the operculum to the most

superior motor regions. Many other secondary SCPs are also significantly correlated

with age.
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Figure 4.5: Eight secondary SCPs of the motor SCP, correlation between corresponding
coefficients and age, and associated p-value.
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4.4 Functional brain aging trajectory

Figure 4.6: Brain Age Index of each individ-
ual plotted against their age. The Mean Ab-
solute Error (MAE) of prediction, as well as
the correlation coefficient between the BAI
and age is provided.

For each participant, the SCP coefficients

for all 510 SCPs form a feature “vec-

tor” which was input to the Support Vec-

tor Regression (SVR) method. SVR is

a widely used supervised learning al-

gorithm that generalizes Support Vec-

tor Machines (SVM) to continuous out-

come variables. Within a ten-fold cross-

validation framework, we used SVR to

predict an individual’s age using the SCP

coefficient vector. The SVR predicted age

of each individual summarizes the SCP

data into one value, while preserving the

variance contributed by age. We call this

value the “Brain Aging Index”(BAI) which

tracks the changes in functional connec-

tivity with age. The BAI of all 400 partici-

pants is plotted against their age in Figure

4.6. Individuals that are above the trajectory are those whose patterns of functional

connectivity changes are worse than normal. Similarly, individuals who are below

the trajectory are aging better than expected, with respect to their brain function.

We ran permutation tests to find the SCPs that significantly contribute to the

SVR model. In each of 1000 tests, we randomly permuted the ages of all 400

individuals. An SVR was trained with the permuted ages as input along with the
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original SCP features. In this manner we obtained a distribution for the SVR weight

of each feature under the null hypothesis that the features are not predictive of

age. By comparing the observed SVR weight with the distribution under the null

hypothesis, we computed a p-value for each feature. Figure 4.7 shows all SCPs that

were found to be significant. The medial temporal and motor primary SCPs play a

major role in predicting the functional BAI.

4.5 Resilient and advanced aging

It is widely known that clinical dementia in the elderly is often the end stage of

a long process of pathological brain changes (Morris, 2004). Onset of pathology

is believed to occur perhaps decades before individuals start to present a decline

in their cognitive faculties, at which point therapies become ineffective. However,

brain changes with aging are complex and highly heterogeneous throughout the

population, potentially reflecting the heterogeneity of the underlying pathologic

processes and individuals resilience to them. Elucidating this heterogeneity, and

ultimately relating it to cognitive resilience and vulnerability, is of central interest

in studies of aging and early dementia (Jack et al., 2010). It is also important from

the perspective of constructing bio-markers that identify older individuals at risk for

clinical progression.

To be able to identify individuals who are aging better or worse than average, we

used other MR-based features in addition to functional connectivity. From rsfMRI

data, we used Regional Homogeneity (Zang et al., 2004) which measures the aver-

age local functional coherence within each parcel of the parcellation. Furthermore,

we also incorporated average GM density values computed from corresponding T1-

MRI data for each individual, for each of the parcels. Local GM density was re-
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Figure 4.7: Primary and associated secondary SCPs that were found to be significant after
permutation testing. Although not all primary SCPs are significant (faded images are not),
they are shown for reference.
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Figure 4.8: Functional and structural Brain Age Indices (BAIs) plotted against each in-
dividual’s age. Functional BAI was computed from SCP coefficients and local functional
coherence measures; structural BAI was computed from average GM density values. The
aging trajectories (solid lines) show the expected brain age. The BAI Residual for each indi-
vidual in each modality can be computed by subtracting their expected brain age from their
BAI.

Figure 4.9: The DM vs. DA SCP alone shows significantly decreased connectivity in the
advanced agers relative to the resilient agers after correcting for age.
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Figure 4.10: Univariate differences in local functional coherence and GM density between
resilient and advanced agers.

gressed out of the local coherence estimates.

Since aging-related structural and functional brain changes might not occur con-

currently (Jack et al., 2009), we applied SVR (as described in the previous sec-

tion) separately for functional and structural MRI features. Both the functional and

structural aging trajectories are shown in Figure 4.8. Note that local functional

coherence provides information that is complementary to that of functional con-

nectivity, therefore the functional BAI prediction is better with both sets of features

(R = 0.68,MAE = 5.54, Figure 4.8), when compared to prediction with SCP fea-

tures alone (R = 0.55,MAE = 6.32, Figure 4.8). Features generated from T1-MRI

predict age with greater accuracy (R = 0.80,MAE = 4.41) than features from

rsfMRI.

Using both these BAI values, we identified individuals who were aging very well,

or Resilient agers, as those whose predicted BAI was lower than their expected BAI,
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for both functional and structural data. We considered all other individuals to be

advanced agers, as atleast one of their aging patterns was worse than normal. In

order to understand effects of advanced aging beyond the population-based aging

effect (which was reported in the previous section), age was regressed out from all

our MRI measurements.

Unlike aging effects which were observed in many of the primary and secondary

SCPs, significant reduction in functional connectivity was only found in the DM vs.

DA primary SCP (Figure 4.9) for the advanced group, relative to the resilient group.

Other age-related reductions in connectivity, such as in the visual regions, were not

reduced further in advanced aging. Aging-related patterns and two-group differ-

ences (resilient vs. advanced) for the local functional coherence and GM density

features are summarized in Figure 4.10. Unlike aging effects in GM density, which

are global, advanced agers showed spatially localized GM atrophy in the bilateral

thalamus, hippocampus, amygdala, fronto-orbital cortex, precuneus and insula. Bi-

lateral caudate, thalamus and anterior insula also showed significant decreases in

coherence in advanced individuals relative to resilient individuals.

4.6 Discovering heterogeneity in advanced aging

Age-regressed data was also used as input to MOE for identifying subsets of ad-

vanced agers with diverse aging patterns. MOE with five groups of advanced agers

had the highest ten-fold cross-validation accuracy (74.0±5%). These five associated

groups are reproducible (Adjusted Rand: 0.49 ± 0.20) and well separated (Bezdek

Partition Coefficient: 0.76± 0.21).

There were no significant age or sex differences between individuals in the five

groups. We found significant patterns of functional and structural change (p < 0.05,
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Figure 4.11: Summary of significant differences in GM density, functional coherence and
connectivity for all five groups of advanced agers relative to resilient agers. As before,
changes to GM density and coherence at the level of ROIs are shown using p-value maps
overlaid on a template image (first two columns on right). SCPs whose coefficients were
significantly different between groups are shown in the last column. The color overlay for
SCPs indicates patterns of correlated (or anti-correlated) regions.
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corrected for multiple comparisons) in the five groups relative to the resilient agers.

These changes are summarized in Figure 4.11. Note that these changes are in

addition to the normal aging effect that was observed across all the individuals

(Figures 4.3,4.4,4.5,4.10).

The first and largest group consist of 71 advanced agers who show significant

GM atrophy in the medial temporal lobe (MTL), including the hippocampus, para-

hippocampal gyrus, amygdalae bilaterally. Thalamus, caudate, superior temporal

gyrus, inferior frontal GM, superior pre-central gyrus and cerebellum also showed

significant atrophy. Coherence was significant reduced in the Hippocampus, thala-

mus and anterior insula. Functional connectivity was reduced in the DM and DA

regions.

With 39 individuals, group 2 had GM atrophy in the occipital fusiform and

fronto-orbital regions but not in the MTL or mid-brain. It showed increased co-

herence in left temporal fusiform gyrus and increased connectivity in the bilateral

supramarginal gyrus.

Group 3 comprised 62 individuals and has a remarkable pattern of decreases

and increases: it had focused bilateral atrophy in the hippocampus, thalamus and

superior temporal gyrus. Decreased coherence was found in the in the precuneus

and left hippocampus. More importantly, it showed significantly increased connec-

tivity in the MTL relative to the resilient group.

Group 4 included 51 individuals had GM atrophy in the entire mid brain and

MTL, but not beyond these regions. Interestingly, it showed significantly increased

coherence in the bilateral temporal poles, bilateral fronto-orbital regions and brain

stem. Connectivity was significantly decreased between the bilateral opercular re-

gions.

Group 5 with 38 individuals had the least amount of differences among all five
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Figure 4.12: Functional and structural BAI Residual (= Expected Brain age - BAI) plotted in
a two-dimensional grid. The group membership of each individual is reflected in the color,
resilient agers are shown as white points.

groups. It showed thalamus, precuneus and hippocampal atrophy , decreased co-

herence in the posterior cerebellar regions and decreased connectivity in the cere-

bellum, motor and insula regions.

To further investigate if the patterns of change in each group differed only by a

scale factor, we plotted the BAI residuals of all individuals in a two-dimensional plot,

as shown in Figure 4.12. Clearly, the five groups are randomly distributed in this

plot. Clear lack of clustering along either BAI direction suggests that these groups

do not reflect different severity levels in advanced aging, but rather, present het-

erogeneous patterns of change, which were only revealed by the full multi-variate

MOE analysis.

We compared the concurrent cognitive performance and cognitive rates of change

between the six groups (five advanced + resilient) using data 10 years prior to
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Figure 4.13: Differences in cognitive performance between advanced group 1 and resilient
agers, for eight cognitive domains. Mean and 95% confidence intervals of the difference
estimates are shown as errorbars. CVLT: California Verbal Learning Task. BVRT: Benton
Visual Retention Test. CRDROT: Card Rotation Test. FLULET: Letter Fluency. FLUCAT:
Category Fluency. TRATS: Trail Making Test Part A. TRBTS: Trail Making Test Part B. DSST:
Digit Symbol Test.
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the imaging visits. We considered participants’ performance in eight cognitive do-

mains (for details please see Appendix B). There were no significant differences

between resilient and advanced agers (all five groups combined); but both the con-

current performance and rate of change was significantly lower for advanced group

1, compared to the resilient agers, in domains measuring verbal fluency and visual

processing (p < 0.05, uncorrected). These estimates are shown in Figure 4.13.

We also observed that only one out of five advanced groups - group 3 showed

somewhat better concurrent cognitive performance relative to resilient group (p >

0.05). Although insignificant (p > 0.1), individuals in group 3 also had higher

educational levels on average (17.6±0.38 years) compared to all others in the study

(16.99± 0.150 years).

4.7 Discussion

A variety of unknown genetic and environmental factors may be associated with

disease onset in older adults, leading to a decades-long process that may result in

cognitive decline and dementia. Preclinical variants of age-related brain diseases,

such as Alzheimers disease (AD), Lewy body disease and cerebro-vascular disease,

are superimposed on the normal aging process. Separating normal from patho-

logical aging in the preclinical phases of these disease states is a challenging task.

Yet, it is of vital importance that we gain a better understanding of variations in

brain aging so that we may identify distinct disease processes underlying acceler-

ated brain changes to aid in development and application of potential therapeutic

interventions.

In this chapter, we showed the application of the sparse learning framework to

a population study of aging. Similar to other cross-sectional imaging studies, using
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uni-variate analysis, we determined the effects of aging in a group of 400 adults

in the age range of 50-96 years, all of whom were cognitively performing within

the normal testing limits at the time of scan. We found that connectivity within

the DM and DA regions is reduced with aging, consistent with earlier reports (Wu

et al., 2011; Andrews-Hanna et al., 2007). More recently, increased hippocampal

connectivity with aging was also reported (Salami et al., 2014), a finding we were

able to replicate - the SCP coefficient associated with the MTL SCP showed a positive

correlation with age (Figure 4.3). We also found that connectivity in the motor and

visual areas degraded with age.

Note that the structural and functional effects of aging that we presented in

Figures 4.3,4.4, may be overestimated, because some of the individuals in the

study are likely to be in the preclinical stages of various neurodegenerative dis-

eases (Burgmans et al., 2009). Individuals in preclinical stages of disease may show

greater structural and functional brain changes (Pacheco et al., 2015; Beason-Held

et al., 2013). Thus, our analyses present a typical view of aging, which is an average

picture that combines resilient and advanced agers. In this study, we sought to iden-

tify heterogeneous subgroups of advanced agers whose patterns of brain structure

and function is more advanced than the age-specific average.

Two group comparison of advanced vs. resilient aging revealed that in addition

to the degeneration seen in normal aging, advanced agers were found to have spa-

tially localized atrophy in the mid brain and medial temporal areas. Furthermore,

advanced aging seemed to be preferentially affecting the connectivity between DM

and DA regions. Other age-related reductions in connectivity, such as in the visual

regions, were not reduced further in advanced aging.

Using MOE, we identified five distinct groups with heterogeneous patterns of

functional and structural changes associated with advanced aging. All five groups
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showed varying extent and severity of structural atrophy. Two groups had decreased

functional connectivity and coherence alongside the atrophy, while others showed

opposing effects in functional changes.

Combining all evidence, group 1 had the most dominant pattern, with signifi-

cant GM atrophy, reduced functional coherence as well as connectivity. Results from

neuro-cognitive data show that this group has significantly advanced cognitive de-

cline in many domains. Preferential degeneration in the MTL, decreased coherence

and significant losses in connectivity in the DM regions, are generally consistent

with changes that have been previously reported in aging and AD studies. Although

normal aging itself may lead to global GM atrophy and functional decline, prefer-

ential loss of mid-brain and hippocampal GM density and reduced DM connectivity

is uniquely observed in Alzhiemer’s like dementia (Seeley et al., 2009).

Group 3 was very interesting, in that it displayed imaging characteristics consis-

tent with very early AD, including focal hippocampal GM atrophy, reduced posterior

cingulate/precuneus coherence, and relatively increased functional connectivity of

the MTL. Similar patterns have been previously reported in individuals with early

stages of Mild Cognitive Impairment Bai et al. (2008); Sperling (2011); Dickerson

et al. (2005). The increased cognitive performance and education level in this group

suggest that their functional hyperconnectivity could be a result of compensatory

mechanisms that initiate as pathological processes set in Sperling (2011), and/or

of higher levels of cognitive reserve(Rentz et al., 2010).

Group 4 shows significant increases in bilateral orbito-frontal and temporal pole

regions. Increased coherence has been reported in studies investigating early stages

of Alzheimer’s, but in other regions in the brain (He et al., 2007b). Reduced motor

and cerebellar function was limited to individuals in group 5, which also showed

signs of advanced mid brain and precuneus atrophy. Reduced brain function in
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these regions could possible indicate impaired motor ability, which is prevalent

among the elderly.

In this study, we sought to identify advanced agers with patterns of brain struc-

ture and function that are worse than age-specific averages. The results show that

there are several distinct patterns associated with advanced brain aging in cogni-

tively normal individuals. The groups of advanced agers are not significantly differ-

ent in terms of age or sex distribution, indicating individual differences in patterns

of brain aging. Moreover, our findings suggest that pathological changes do not uni-

versally manifest after a certain age. Instead, differences may be due to unknown

underlying biological and genetic mechanisms, some of which are independent of

age (Ritchie and Kildea, 1995; Nelson et al., 2011). The most striking findings of

this study are that three of the five advanced aging groups demonstrate atrophy

and altered functional integrity in regions that show similar characteristics in age-

related disease, particularly AD. Continued follow-up of these individuals will help

to further separate the effects of age from disease.

This is the first exploratory study that attempts to understand the heterogene-

ity present in normal aging. We used advanced multivariate techniques to identify

advanced aging individuals who are beginning to show signs of structural and func-

tional brain disruption, possibly due to the development of pathological processes.

Such an analysis was made possible due to the large sample size of the BLSA dataset

and recent advances in machine learning and pattern recognition technology.

The patterns of brain aging that we report here provide preclinical imaging-

based biomarkers of neuro-degeneration that may be relevant to a variety of dis-

ease processes. With continued follow-up we will determine whether the subgroups

identified here show different long-term cognitive outcomes. With validation in

other cohorts, we hope that the use of these types of imaging biomarkers will fa-
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cilitate selection of individuals for therapeutic interventions to delay onset or slow

progression of neurodegenerative disease. The presented results significantly en-

hance our understanding of aging, and hopefully serve as a milestone for future

studies.
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Chapter 5

Final Remarks and Future Work

The novel computational methods presented in this thesis complement existing an-

alytical approaches for functional connectivity research. The methodological con-

tributions of this thesis are two fold. First, we developed a sparsity-based matrix

factorization approach to find patterns of connectivity that co-vary across individ-

uals. In addition to SCPs, Sparse Learning provides individual-level estimates of

connectivity that can be used for comparing connectomes.

Second, we extended the popular two-group SVM classification framework to

work with heterogeneity in the affected group relative to a reference group. The

MOE method finds sub-groups in the affected group based on (1) distinct patterns

of change between the affected sub-groups relative to the reference group and (2)

underlying clustering patterns within the affected group. Thus, MOE combines

supervised and unsupervised machine learning, to fill a major methodological gap

in MR imaging studies for identification of not one, but multiple distinct disease

or aging patterns. These methods can be applied to any rsfMRI study to elucidate

complex and heterogeneous changes in the functional connectome.

Sparse Learning was applied to rsfMRI data acquired as a part of the BLSA to
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find effects of aging on brain function. Using a purely data-driven analysis pipeline,

we discovered a negative association between age and connections between the

DM vs. DA, visual and motor regions; and a positive association for connections be-

tween regions within the medial temporal lobe. The advantage of a dimensionality

reduction method was evident in the results; SCPs provided an interpretable basis

using which aging effects on connectivity could be better understood.

We used both methods to disentangle the heterogeneity seen in advanced ag-

ing. To discover this heterogeneity, we used features extracted from sMRI, along

with SCP Coefficients, to build normative brain aging trajectories of structure and

function. Using these trajectories as a reference, we were able to identify individu-

als who showed signs of advanced aging. Using MOE, we were able to discover a

remarkable amount of diversity among the advanced agers. A subset of advanced

agers showed significantly reduced GM density and functional connectivity, along

with cognitive decline. Another subset had focal hippocampal GM atrophy, but

showed signs of functional compensation, by increased recruitment of the bilat-

eral medial temporal lobe. This is the first study that has identified imaging based

bio-markers that capture precursors to the multitude of pathologic processes that

develop with aging. Our research paves the way to developing translational diag-

nostic tools that can provide personalized indices of brain health in the elderly.

5.1 Future work

The methods described in this paper, along with pre-processing and parcellation

performed prior to it, constitute a complete, data-driven analytical framework for

resting state connectivity research. These contributions lay the groundwork for in-

vestigating open questions in rsfMRI connectivity research and its clinical applica-
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tions in disease, development and aging. We propose three specific future objectives

that can be accomplished using this framework below:

1. Functional Connectivity Dynamics

In this thesis, we assumed that the extent of coupling between any two regions

in the brain was static; a single correlation matrix was computed for every in-

dividual, which was used as input for all subsequent analysis. In recent years,

multiple studies have found evidence for variations in connectivity over time

within a recording session; since then, dynamics of functional connectivity

has emerged as a very active research area (Chang and Glover, 2010; Sakoğlu

et al., 2010; Kiviniemi et al., 2011).

A popular technique to investigate changes in functional connectivity is to use

sliding time windows within a recording period (scan) and compute multiple

correlation matrices for each individual. This provides a “time-series” of cor-

relations which can then be explored to characterize distinct “brain-states”.

Using sliding-time windows increases the number of correlations to be ana-

lyzed by a factor of ten, therefore dimensionality reduction is necessary to

parse this type of data. Earlier studies have used PCA or K-Means to char-

acterize these brain-states (Leonardi et al., 2013; Allen et al., 2012). As we

demonstrated SCPLearn’s successful use in analyzing average correlation ma-

trices, applying the same to sliding window correlation matrices might lead

to potentially informative results. Such an analysis would provide SCPs that

capture sets of correlated regions whose connections covary not only across

individuals, but also in time; this variation with time is quantified in the SCP

coefficients. It might be interesting to note how temporally-delineated SCPs

differ from static SCPs reported in this thesis.
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However, sliding window analysis suffers from some limitations. Apart from

issues pertaining to contribution of non-stationary noise and effect of win-

dow length, a primary concern is that it cannot distinguish between dynamic

amplitude (first-order), and dynamic correlation (second-order) (Hutchison

et al., 2013). In an exploratory paper, we proposed the use of Hidden Markov

Models (HMMs) combined with Sparse Learning to model rsfMRI time-series

(Eavani et al., 2013). The HMM is a state-space model that assumes that each

individual’s rsfMRI time-series is composed of latent discrete “brain states”

such that each state is defined by a distinct mean vector (amplitude) and

covariance matrix (connectivity). We can test for the presence of dynamics

in connectivity by checking if the data supports modeling of more than one

brain-state, using a split-sample validation framework. Using this approach,

we were able to find evidence for six brain states based on data-fit; however,

further experiments are needed to check for reproducibility within and across

studies.

2. Heterogeneity for continuous outcomes

In Chapter 3, we demonstrated that by combining an SVM classifier with clus-

tering, we can capture heterogeneity in an affected group relative to a ref-

erence group. This idea can be easily extended to a regression framework

that uses Support Vector Regression (SVR), in order to model non-linear or

multiple regression curves. In the non-linear case, one can build a piece-wise

linear aging trajectory, with each linear segment associated with a different

age range, where the change-points are determined automatically by the al-

gorithm. Alternately, it can be used to build not one but multiple aging trajec-

tories spanning the entire age range (for example, slow-aging and rapid-aging

trajectories) and identify individuals associated with each.
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3. Functional connectivity changes over the lifespan

Correlation values are limited in range [−1, 1] and are comparable across stud-

ies irrespective of acquisition protocols (barring systematic biases such as mo-

tion effects). This advantage facilitates the study of connectome changes

across the lifespan, by combining data across studies such as the PNC and

BLSA. SCPs and coefficients learned from the entire age range provide can

compact representations of these changes. MOE-regression can be applied to

SCP coefficients to capture non-linear connectivity changes with age - for ex-

ample, increased connectivity during maturation and decline during aging. In

this regard, the remarkable reproducibility seen between SCPs obtained for

the PNC and the BLSA dataset (Figures 2.14,2.15) is encouraging.

5.2 Software

SCPLearn is open-source software, implemented primarily in MATLAB, with a com-

mand line interface. For argument parsing and nifti I/O operations, python wrapper

code is used. For ease of use, the software takes as input either rsfMRI voxel time-

series data in NIFTI file format, or ROI time-series data in MATLAB’s “mat” file

format. The list of NIFTI or mat files is provided as input using a text file. It also

takes as required input, the node definitions as an atlas in NIFTI space. This atlas

must have the ROI regions numbered sequentially and must be in the same space

as the individual data. SCPLearn outputs SCPs mapped to the atlas space in NIFTI

file format, along with SCP coefficients indexed against individual filenames as a

comma separated values (csv) file. A snapshot of the SCPLearn command-line is

shown in 5.1.

MOE is also available as open-source software. It is written entirely in Python

98



Figure 5.1: Command-line interface of SCPLearn

language. The command line interface provides options for an input csv file, which

contains ROI-level data, and other user-defined parameters. A snapshot is shown

in 5.2. It outputs a separate csv file for the hyperplane weights and membership

values, which are indexed against ROI labels and individual IDs respectively.
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Figure 5.2: Command-line interface of MOE
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Appendix A

rsfMRI data pre-processing

A.1 Time-series pre-processing

The first few volumes of the functional time-series were removed to allow signal

stabilization. Functional images were slice-time corrected and re-aligned using

MCFLIRT (Jenkinson et al., 2002). Structural images were skull-stripped using

BET (Smith, 2002) and segmented using FAST (Zhang et al., 2001); mean white

matter (WM) and cerebro-spinal fluid (CSF) signals were extracted from the tissue

segments generated for each subject. Confound regression (Satterthwaite et al.,

2012) included these 6 standard motion parameters, the WM signal, the CSF signal,

and the global signal (i.e., 9 parameters total), as well as the temporal derivative,

quadratic term, and temporal derivative of the quadratic of each (36 regressors to-

tal). Notably, in order to a avoid a mismatch in the frequency domain (Hallquist

et al., 2013), both the confound matrix and the time-series data was simultaneously

band-pass filtered to retain signals between 0.01-0.08 Hz using AFNI’s 3dBandpass

utility (Cox, 1996).
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A.2 Spatial Alignment

Subject-level BOLD images were co-registered to the T1 image using FLIRT (Jenk-

inson et al., 2012). Whole-head T1 images were registered to the Montreal Neu-

rologic Institute 152 template using DRAMMS deformable registration (Ou et al.,

2011) for the BLSA dataset, and ANTs diffeomorphic SyN registration (Avants et al.,

2008) for the PNC dataset.

A.3 Controlling for motion confound

Head motion during acquisition of rsfMRI scans is known to affect functional con-

nectivity in a systematic manner (Power et al., 2012). This is problematic in studies

of development and aging, as younger children and older adults generally move

more, making motion a nuisance confounder (Mowinckel et al., 2012). In this

study, in order to mitigate the effects of motion, we incorporated three corrective

steps in various stages of the pre-processing pipeline. First, we restricted our analy-

sis to only those subjects with a summary motion value of less than 0.2mm. Second,

for the BLSA study, we performed a “scrubbing” procedure that discards all vol-

umes whose summary motion and BOLD signal variance values are higher than a

selected threshold (Power et al., 2012). Third, the global signal was regressed out

of the voxel-wise data, as it is known to be a good surrogate measure for the ef-

fect of motion and other physiological effects on BOLD signal (Satterthwaite et al.,

2012).
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A.4 Global Signal Regression

SCPs presented in this thesis were obtained after removing the baseline global signal

from each subject’s data, which facilitates the delineation of functional systems

by removing the confounding effects of motion and other non-neuronal sources of

noise (Fox et al., 2009). On the other hand, many researchers argue that performing

Global Signal Regression (GSR) on rsfMRI data removes relevant signal and tends to

increase the number of negatively correlated nodes (Saad et al., 2012). It is unclear

if the high reproducibility of our results reflects true signal, or a systematic artifact

induced due to global signal regression. Hence we re-ran Sparse Learning on the

PNC dataset for the Areal Graph nodes, but with the global signal retained. SCPs

continued to be reproducible, however they were substantively different. Of the ten

SCPs computed, only one SCP had a significant areas of negative correlation - the

Dorsal Attention vs. Default mode anti-correlation pattern. The other nine SCPs

showed only positive correlations. Of these, the familiar SCP patterns were the

sensori-motor, visual and cingulo-opercular networks (see Figure A.1, and compare

to Figure 2.10).
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Figure A.1: SCPs computed without global signal regression, from the PNC dataset, using
the Areal Graph nodes. Only SCP 1 has a significant area of negative correlation - the
Dorsal Attention vs. Default mode anti-correlation pattern. The other nine SCPs showed
only positive correlation. Of these, the familiar patterns were the sensori-motor (8, 9 and
10), visual (4, 7) and cingulo-opercular networks (2).
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Appendix B

BLSA: Cognitive Data

BLSA participants receive a battery of cognitive tests at every visit. Participants are

assessed in eight cognitive domains, listed below:

1. California Verbal Learning Task (CVLT) was used to assess verbal learning and

memory. Higher values indicate better performance.

2. Benton Visual Retention Test (BVRT) quantifies figural memory and visuo-

constructional ability. Lower values indicate better performance.

3. CARD Rotation Test (CRT) measure the ability to mentally manipulate figures.

Higher values indicate better performance.

4. Letter Fluency (FLULET) measures phonemic fluency. Higher values indicate

better performance.

5. Category Fluency (FLUCAT) measures semantic fluency. Higher values indi-

cate better performance.

6. Trail Making Test Part A (TRATS) was used as an indicator of visual attention

and processing speed. Lower values indicate better performance.

106



7. Trail Making Test Part B (TRBTS) was used to evaluate executive function.

Lower values indicate better performance.

8. Digit Symbol Test (DSST). Higher values indicate better performance.

As BLSA is an ongoing longitudinal study, we have cognitive data from multiple

cognitive assessments for each participant over up to a 19 year period prior to, and

concurrent with, the time of scan. However, participants have varying numbers

of visits and cognitive assessments. Therefore, every participant’s cognitive perfor-

mance in each of the eight domains is summarized using three measurements. For

each of the 3 ∗ 8 = 24 measurements, we evaluate whether the subgroups obtained

using the MOE model (using the SCP data alone) showed differences.

For comparing sub-groups of advanced agers reported in Chapter 4, Section 4.6,

we used linear mixed models to compare among groups - (1) the concurrent (cross-

sectional) cognitive performance and (2) cognitive rates of change (slope) using 10

year data prior to the imaging visits. The time of follow up is coded reversely, that

is using the time of imaging visit as origin (interval = 0), and all the visits prior

have the negative interval (-1, -2, -3 years, etc.). Coding in this manner allows us

to compare the concurrent cognitive performance and cognitive rates of change in

one single model. We additionally adjusted for sex. (Age is not adjusted, since it is

balanced across groups.) The predictors include sex, group, interval and interaction

terms - sex*group, and group*interval. F-tests were used to test the null hypothesis

that all the groups are equal.
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