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We study the scattering of noncommutative vortices, based on the noncommutative field theory

developed in [A. P. Balachandran, T. R. Govindarajan, G. Mangano, A. Pinzul, B. A. Qureshi, and

S. Vaidya, Phys. Rev. D 75, 045009 (2007).], as a way to understand the interaction of cosmic strings.

In the center-of-mass frame, the effects of noncommutativity vanish, and therefore the reconnection of

cosmic strings occurs in an identical manner to the commutative case. However, when scattering occurs in

a frame other than the center-of-mass frame, strings still reconnect but the well-known 90� scattering no

longer need correspond to the head-on collision of the strings, due to the breakdown of Lorentz invariance

in the underlying noncommutative field theory.
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I. INTRODUCTION

Topological defects such as magnetic monopoles, cos-
mic strings, and domain walls, arise in a large class of
spontaneously broken field theories. More recently, cosmic
strings have also been shown to arise within string theory,
providing a potential indirect way to search for observa-
tional signatures of the theory. The existence of defects
often yields tight cosmological constraints, since they have
the potential to overclose the Universe, to yield nontrivial
gravitational wave signatures, or to have nontrivial micro-
physical interactions. To balance this, there are a number of
approaches to standard cosmological problems in which
topological defects may play an important role.

Cosmic strings are of particular interest, since their self
interactions allow a potentially catastrophic string network
to lose energy in an orderly fashion, leading to a scaling
solution which need not dominate the Universe, and thus
may contribute to cosmology in interesting ways. For
example, while cosmic strings cannot play the central
role in seeding structure formation in the Universe, some
contribution is still allowed [1] by WMAP and SDSS data,
as long as the defects account for no more than 14% of the
temperature fluctuations in the cosmic microwave back-
ground radiation.

Central to an understanding of the cosmological impli-
cations of cosmic strings is therefore a detailed under-
standing of their self interactions. The evolution of
cosmic string networks has been thoroughly investigated
both numerically and analytically [2–7]. The scattering of
cosmic strings exhibits a crucial feature—they reconnect
(intercommute or exchange end points) with a probability
close to 1, after they collide with each other. This property
allows large cosmic strings to break down into smaller
strings and loops of strings. The loops themselves are
(assuming they are nonsuperconducting) entirely unstable,

and shrink to zero size by emitting energy in the form of
gravitational radiation and/or Goldstone bosons [8,9].
In this paper we investigate the possibility of the recon-

nection of cosmic strings when the spacetime is noncom-
mutative. It has been suggested that quantum gravity and
string theory contain hints that spacetime may be non-
commutative at a length scale close to the Planck scale.
Given this possibility, it is natural to wonder whether it is
possible for noncommutative cosmic strings to reconnect
after they collide with each other.
There exists [10–17] a variety of approaches to con-

structing and studying the properties of noncommutative
solitons. In [10] classical stable solitons were constructed
for noncommutative scalar field theories, and noncommu-
tative vortex solitons were constructed and studied in [11–
14]. The moduli space dynamics of noncommutative vor-
tices were analyzed in [15], and the scattering of non-
commutative solitons was studied in [16,17].
The approaches mentioned above use the dictionary of

translating noncommutative fields into operators to study
the Abelian Higgs model on noncommutative spaces.
These approaches are applicable only for a finite but non-
zero noncommutativity parameter � (except [17], where
the analysis is performed in the infinite noncommutativity
parameter limit). The noncommutative results obtained
this way do not have smooth commutative limits. For
example, the noncommutative expression for the multi-
soliton static energy in [11] diverges in the �! 0 limit.
The method we use in the present paper applies for the case
of small noncommutativity parameter �. Here the non-
commutative expressions have smooth commutative limits.
In this paper we approach the question of the scattering,

and hence reconnection, of cosmic strings by considering
the noncommutative Abelian Higgs model based on the
twisted Poincaré symmetry with deformed statistics devel-
oped in [18]. (See [19–25] for more details and develop-

PHYSICAL REVIEW D 81, 043536 (2010)

1550-7998=2010=81(4)=043536(8) 043536-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.043536


ments.) We demonstrate that the nonlocal and Lorentz
noninvariant nature of the noncommutative field theory
plays a crucial role in the scattering of noncommutative
vortices in 2þ 1 dimensions, but do not find a significant
modification of the behavior of the related cosmic strings
in 3þ 1 dimensions. The paper is organized as follows. In
Sec. II we briefly review the Abelian Higgs model in the
commutative case. In Sec. III we then review the particular
formulation of the noncommutative field theory that we
study, providing a description that we hopewill be useful to
readers not familiar with this construction. In Sec. IV we
construct the noncommutative Abelian Higgs model, and
in Sec. V we then discuss the low energy dynamics of
noncommutative vortices and describe how their scattering
is qualitatively and quantitatively different from that of
their commutative counterparts, before concluding.
Throughout this paper we use the mostly negative
signature.

II. VORTICES IN THE ABELIAN HIGGS MODEL

The commutative Abelian Higgs model in d spacetime
dimensions has Lagrangian density

L ¼ �1
4F��F

�� þD��ðD��Þy � Vð�Þ; (1)

where� is a complex scalar field (� ¼ �1 þ i�2), A� is a

gauge field charged under the Uð1Þ symmetry and �; � ¼
0; 1; 2; . . . ; d. Here, the field strength tensor is defined as
F�� ¼ @�A� � @�A�, the covariant derivative D� acts as

D�� ¼ ð@� � igA�Þ�; (2)

and the Higgs potential is

Vð�Þ ¼ �

4
ð��y � v2Þ2; (3)

with � a coupling and v the vacuum expectation value of�
(note that the mass dimensions of the parameters of the
theory depend on the total number of dimensions).

Once the local Uð1Þ symmetry is spontaneously broken

in the vacuum, the field � acquires a mass m� ¼
ffiffiffiffi
�
p

v and

the gauge field A� acquires a mass mA ¼
ffiffiffi
2
p

gv.

The equations of motion are

D�D�� ¼ �

2
ð��y � v2Þ�; (4)

@�F
�� ¼ �ig½�ðD��Þy � ðD��Þ�y�: (5)

It is convenient to work in the temporal gauge A0 ¼ 0, in
which the equation of motion associated with A0 must be
imposed as a constraint (Gauss’s law), as

@i _Ai þ ig½� _�y � _��y� ¼ 0: (6)

If we now focus on the behavior of vortices in 2þ 1
dimensions, and define kinetic and potential energies T and
V respectively by

T ¼
Z

d2x
1

2
_Ai
_Ai þ _� _�y; (7)

V ¼
Z

d2xDi�ðDi�Þy þ 1

2
F2
12 þ

�

4
ð��y � v2Þ2; (8)

then the Lagrangian is L ¼ T � V, and the total energy
E ¼ T þ V is a conserved quantity. Its finiteness implies
the boundary conditions for the field � at spatial infinity;

j�j ! v; Di�! 0; (9)

as jxj ! 1.
When the fields are static, that is, when _Ai ¼ 0, _� ¼ 0,

the kinetic energy T vanishes, and we may then pose the
cylindrically symmetric ansatz

�ðx̂Þ ¼ �ðrÞeim#; (10)

Aiðx̂Þ ¼ �ðrÞ#̂; (11)

characterizing a vortex of winding number m. Our criteria
of finite energy per unit length and regularity at the origin
then yield the boundary conditions �ðrÞ ! v and �ðrÞ !
1=gv as r! 1; and �ðrÞ ! 0, �ðrÞ ! 0 as r! 0. The
corresponding solution is the commutative Abelian Higgs
vortex, and if we add in an extra spatial dimension, along
which the configuration is translationally invariant, then
the solution describes the 3þ 1 dimensional cosmic string.
For simplicity, in this paper, we focus on vortices at the

Bogomol’nyi self-dual point, for which the coupling takes
the critical value � ¼ 2g2. In this case, the masses are
equal, m� ¼ mA, the forces between the vortices vanish,

and it is possible to find stable static multivortex
configurations.

III. NONCOMMUTATIVE SPACETIME AND
DEFORMED POINCARÉ SYMMETRY

In the next section we will construct the noncommuta-
tive analogue to the Abelian Higgs model. In order to do so,
we will need to lay out precisely what we mean by a
noncommutative spacetime. We will work on the Moyal
spacetime defined by the algebra [26–28]

½x̂�; x̂�� ¼ i���I; (12)

where the coordinate operators x̂� yield the Cartesian

coordinates x� of (flat) spacetime via x̂�ðxÞ ¼ x�, and

��� ¼ ���� are constants. In the limit ��� ! 0, one

recovers ordinary commutative spacetime.
Operator valued functions on the Moyal spacetime form

a noncommutative algebraA�, the elements of which can
be identified with ordinary functions on R4, with the
product of two functions, f and g say, given by the
Moyal product (? product)
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f ? gðxÞ ¼ exp

�
i

2
�ij

@

@xi1

@

@xi2

�
fðx1Þgðx2Þjx1¼x2¼x: (13)

The commutation relations (12) are not invariant under
the usual Lorentz transformations, and so the Lorentz
symmetry is broken. However, it is possible to impose
invariance under a deformed Lorentz symmetry [18–21]
as we briefly explain in Appendix A.

The noncommutative field ’� differs from its commu-
tative counterpart ’ in two ways: (i) It belongs to the
noncommutative algebra of functions on Minkowski
spacetime M4 and (ii) it obeys deformed statistics. The
deformed statistics can be accounted for by writing

’� ¼ ’eð1=2Þ@
 ^P (14)

where @
 ^ P � @

 
��

��P� and P� is the total momentum

operator for all the fields.
From this it follows that the ? product of an arbitrary

number of fields ’ðiÞ� (i ¼ 1; 2; 3; . . . ) is

’ð1Þ� ? ’ð2Þ� ? . . . ¼ ð’ð1Þ’ð2Þ . . .Þeð1=2Þ@
 ^P: (15)

Although the rule (14) is for a massive scalar field, it also
applies to all bosonic and Grassmann-valued matter fields.

Matter fields on A�ðR4Þ must be transported by the
connection compatibly with (14), and therefore a natural
choice for the covariant derivative is [22]

D�’� ¼ ðDc
�’Þeð1=2Þ@

 ^P; (16)

where

Dc
�’ ¼ @�’� igA�’; (17)

and we define A�’ðxÞ � A�ðxÞ’ðxÞ to mean pointwise

multiplication. This can also be written using the ? product
as

D�’� ¼ ðDc
�e
ð1=2Þ@ ^PÞ ? ð’eð1=2Þ@

 ^PÞ: (18)

This choice of D� preserves statistics, Poincaré and

gauge invariance, and the requirement that D� is associ-

ated with the commutative algebra AðRNÞ [22]

½D�;D��’� ¼ ð½Dc
�;D

c
��’Þeð1=2Þ@

 ^P; (19)

¼ ðFc
��’Þeð1=2Þ@

 ^P: (20)

As Fc
�� is the standard ��� ¼ 0 field strength tensor, our

gauge field is associated with AðRNÞ. This lays out the
components of the Moyal spacetime necessary for our
analysis. A complete description of the gauge theory for-
mulation we adopt here can be found in [22–24].

IV. THE NONCOMMUTATIVE ABELIAN HIGGS
MODEL

The noncommutative Abelian Higgs model is con-
structed by replacing the ordinary pointwise multiplication
between the fields by a Moyal product and identifying the
noncommutative fields as statistics-deformed fields. The
Lagrangian density is

L ¼ �1
4F�� ? F�� þD��� ? ðD���Þy � V?ð��Þ;

(21)

with F�� � Fc
�� and D� � Dc

� ¼ @� � igA�.

The Higgs potential term takes the following form in
terms of the associated commutative field:

V?ð��Þ ¼ �

4
ð�� ? �y� � v2Þ2? ¼ �

4
ð�y�� v2Þeð1=2Þ@

 ^P:

(22)

As in the commutative case, it is convenient to work in
the temporal gauge A0 ¼ 0, in which the Gauss law con-
straint becomes

ð@i _Ai þ ig½� _�y � _��y�Þeð1=2Þ@
 ^P ¼ 0: (23)

The Lagrangian can then once again be written in the form
L ¼ T � V, where T and V are the kinetic and potential
energies, given by

T ¼
Z

d2x
1

2
_Ai ? _Ai þ _�� ? _�y� ; (24)

V ¼
Z

d2xðDi��Þy ? Di�� þ 1

2
F12 ? F12

þ �

4
ð�y� ? �� � v2Þ2?: (25)

Here we have used ? multiplication even between the
terms involving the gauge fields, since the spontaneous
breakdown of the Uð1Þ symmetry makes the gauge field
a massive gauge boson.
Without loss of generality we choose the third spatial

direction to commute with the other two spatial directions.
Then, representing the Moyal product in terms of the
commutative fields and the exponential involving the mo-
mentum operator, we note that the spatial integration re-
moves the spatial part of the derivative in the exponential,
which appears as a surface term. Thus the kinetic and
potential energies take the form

T ¼
Z

d2x

�
1

2
_Ai
_Ai þ _� _�y

�
eð1=2Þ@

 
0�

0iPi ; (26)

V ¼
Z

d2x

�
ðDi�ÞyDi�þ 1

2
F12F12 þ �

4
ð�y�� v2Þ2

�

� eð1=2Þ@
 
0�

0iPi : (27)
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One result is then immediately clear. In the static case,
the effect of the noncommutativity entirely vanishes, since
Pi ¼ 0. Thus, in the static case, the analysis follows the
commutative case, and the structure of noncommutative
vortices is the same as their commutative counterparts.
However, as we shall see, in the case of moving vortices
it is necessary to include the effect of noncommutativity,

and the factor eð1=2Þ@
 
0�

0iPi becomes relevant.

V. LOW ENERGY DYNAMICS: THE GEODESIC
APPROXIMATION

A. Commutative case

The Abelian Higgs model at the Bogomol’nyi self-dual
point saturates a topological lower bound on the field
energy and admits static multivortex configurations. The
low energy dynamics of multivortex solutions may then be
approximated by motion on the space of corresponding
static solutions [29].

If C is the space of field configurations of the theory, then
the n-vortex solutions form a submanifold Mn, called the
moduli space, of C on which the potential energy V takes
its absolute minimum. Imparting a small kinetic energy to
the field configuration corresponds to a slow motion tan-
gent to Mn. In the subsequent evolution of the field con-
figuration, the trajectory of the system will be constrained
by V to lie close to Mn. Thus, V remains approximately
constant, and the field evolution is described by geodesic
motion on Mn, the metric being induced by the kinetic
energy Lagrangian T. The problem of describing the vortex
dynamics is thus reduced to finding the metric and solving
the ordinary differential geodesic equations on Mn. For a
detailed description of the low energy vortex dynamics and
scattering in the geodesic approximation for the commu-
tative case, we refer the reader to [30–32].

We now focus on two slowly moving identical vortices,
for which the moduli space isM2. Since the vortex dynam-
ics is happening on the plane R2, it is useful to make the
identification R2 ’ C and write the position of a point (x1,
x2) on R2 as z ¼ x1 þ ix2. We also use the complex
notation A ¼ 1

2 ðA1 þ iA2Þ. The kinetic energy

Lagrangian, in terms of A and �, is

T ¼
Z

d2xð2 _A _�Aþ _� _��Þ: (28)

For the case of two vortices this can be reduced to the
following form [31]:

T ¼ �v2
X2
r;s¼1

�
	rs þ 2

@ �hs
@zr

�
_zr _�zs; (29)

in which �v2 is the static energy of a single vortex, zk
represent the locations of vortices (zeros of the Higgs field)
on the plane, and hs is a complex valued function.

The above expression for the kinetic energy leads to the
metric

ds2 ¼ X2
r;s¼1

�
	rs þ 2

@ �hs
@zr

�
dzrd�zs (30)

appropriate for use in the geodesic approximation. Here we
have chosen to normalize the metric relative to T by
dividing by the single vortex energy �v2.
Since the parent field theory (1) is invariant under trans-

lations and rotations on the planeR2, the vortex metric also
inherits that property. And since translational invariance
implies the conservation of linear momentum P ¼ P1 þ
iP2 ¼ �v2

P
2
r¼1 _zr, an immediate consequence is that we

may analyze the two-vortex system in the center-of-mass
coordinates.
On using the center-of-mass and relative coordinates

Z ¼ 1
2 ðz1 þ z2Þ, 
1 ¼ �
2 ¼ 
 � 1

2 ðz1 � z2Þ, respec-

tively, the metric (30) takes the form

ds2 ¼ 2dZd �Zþ X2
r;s¼1

�
	rs þ 2

@ �hs
@zr

�
d
rd �
s: (31)

Since the parent theory is symmetric under �! ��, this
implies the constraint h1 ¼ �h2. Thus the expression for
the metric (31) then reduces to

ds2 ¼ 2dZd �Zþ
�
1þ 2

@ �h1
@


�
d
d �
: (32)

We introduce polar coordinates (�, #) defined by


 ¼ �ei# (33)

where the ranges of � and # are: 0 � � <1 and � �
2 �

# � �
2 . For a fixed Z, 
 and �
 label the same point in

moduli space and should be identified. That is, we should
identify # ¼ ��=2 and # ¼ �=2.
Since the center-of-mass system is symmetric under

rotations and reflections, we may write h1 ¼ hð�Þe�i# ,
with hð�Þ real, so that the metric describing the relative
motion is [31]

ds2rel ¼ 1
2F

2ð�Þðd�2 þ �2d#2Þ: (34)

This reduction to just a single unknown function Fð�Þ is a
consequence of the Hermiticity of the metric, which itself
is inherited from the reality of the kinetic energy T which,
in units of the static vortex energy �v2, reduces to

Tð�; #Þ ¼ 1
2Fð�Þð _�2 þ �2 _#2Þ: (35)

The function Fð�Þ depends only on the relative separa-
tion of the vortices, and should go to zero as the two
vortices begin to overlap. Samols has calculated Fð�Þ
numerically [31] and we display his results in Fig. 1.
Using the two conserved quantities of the system—the

energy E and the angular momentum l—one may derive an
equation for d�=d# and integrate to obtain the scattering
angle as a function of the impact parameter b. This yields
[32]
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#scðbÞ ¼
Z 1
�0

2bd�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2F2ð�Þ � b2

p ; (36)

where �0 is the turning point, given by the solution to
�0Fð�0Þ ¼ b.

B. The noncommutative case

We now extend this analysis to the noncommutative
case. For two identical vortices the kinetic term (26) can
be written as

Tð�Þ ¼
Z

d2x
1

2
_Ai
_Aie
ð1=2Þ@ ðAÞ0 �0iPi þ _� _�yeð1=2Þ@

 ð�Þ
0 �0iPi :

(37)

In the commutative case the expression for T is manifestly
real [31], and so we consider only the real part of (37),
yielding

Tð�Þ ¼
Z

d2x
1

2
_Ai
_Ai cos

�
1

2
P
 ðAÞ
0 �0iPi

�

þ _� _�y cos
�
1

2
P
 ð�Þ
0 �0iPi

�
: (38)

As we are dealing with two identical vortices, the initial
configuration is given by the ansatz

AiðxÞ ¼ A1
i ðxÞ þ A2

i ðxÞ; �ðxÞ ¼ �1ðxÞ�2ðxÞ; (39)

where the superscripts refer to the two vortices. This ansatz
is an excellent approximation when the vortices are sepa-
rated by distances well in excess of their finite size cores
[32].

It is clear from the expression (38) that the effect of

noncommutativity depends on the combination ~�0 � ~P,
where ~�0 ¼ ð�01; �02; �03Þ and ~P ¼ ~Pinc is the total inci-

dent momentum of the scattering vortices. In particular, the

phase factors contain mA
~�0 � ~Pinc and m�

~�0 � ~Pinc for the

(massive) gauge boson A� and scalar field � respectively.

At the Bogomol’nyi self-dual point � ¼ 2g2, at which

mA ¼ m� ¼
ffiffiffi
2
p

gv, the kinetic Lagrangian takes the form

Tð�Þ ¼
Z

d2x

�
1

2
_Ai
_Ai þ _�y _�

�
cos

�
1

2
ð ffiffiffi

2
p

gvÞ ~�0 � ~Pinc

�
:

(40)

Working again in the polar coordinates ð�; #Þ, the sim-
ple noncommutative extension of the kinetic Lagrangian
(35) is then

Tð�Þð�; #Þ ¼ 1
2F
ð�Þð�Þð _�2 þ �2 _#2Þ; (41)

where

Fð�Þð�Þ ¼ Fð�Þ cos
�
1

2
ð ffiffiffi

2
p

gvÞ ~�0 � ~Pinc

�
;

Fð�Þ � Fð�¼0Þð�Þ:
(42)

Notice that this expression has a smooth commutative
limit, and the effect of noncommutativity vanishes for the

cases (i) when the vectors ~�0 and ~Pinc are perpendicular to

each other or (ii) when ~Pinc vanishes (i.e. when the vortices

are in the center-of-mass frame) or (iii) when 1
2 ð

ffiffiffi
2
p

gvÞ ~�0 �
~Pinc ¼ 2n�, n 2 Z. It should be noted that in this third

case one obtains Fð�Þð�Þ ! �Fð�Þ due to the oscillatory
nature of the cosine function. Since we are focusing only
on the low energy dynamics, where the total momentum is
close to zero and the geodesic approximation is valid, we
ignore the case in which the sign of Fð�Þ is negative.
However, it is important to realize that this scattering

analysis is done in the center-of-mass frame. This implies

that ~Pinc ¼ 0 and consequently there is no effect due to
noncommutativity in the scattering process. In the commu-
tative case, it has been shown that vortices scatter at a 90�
angle at the zero impact parameter (head-on collision). The
corresponding three-dimensional picture is that of two
colliding cosmic strings. Also in the commutative case,
two colliding cosmic strings reconnect (exchange end
points) after the collision. Reconnection of the colliding
cosmic strings can be understood as a collection of collid-
ing vortices in two dimensions with various impact pa-
rameters. Thus at the spatial slice with impact parameter
b ¼ 0, the vortex string reconnection is equivalent to the
right-angle scattering of the vortices.
The simple conclusion we can draw here, consistent

with our earlier results, is that two colliding cosmic strings
reconnect after the collision in the center-of-mass frame
even in the noncommutative Moyal spacetime. In Fig. 2 the
scattering angle � is plotted as a function of impact

 0
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FIG. 1. The profile of Fð�Þ in the commutative case [31].
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parameter b for the commutative case. The vortices scatter
at right angles at zero impact parameter in this case.

Moving away from the center-of-mass frame, we now
see that the effect of noncommutativity appears in the

scattering analysis through the term ~�0 � ~Pinc. From (29)
and (40), in a non–center-of-mass frame the noncommu-
tative kinetic Lagrangian takes the form

Tð�Þ ¼
�
�v2

X2
r;s¼1

�
	rs þ 2

@ �hs
@zr

�
_zr _�zs

�

� cos

�
1

2
ð ffiffiffi

2
p

gvÞ ~�0 � ~Pinc

�
: (43)

In this case it is not possible to reduce (43) to a form
involving a single function of the relative coordinates as
we did in (35), since the rotation and reflection symmetries
are absent in a non–center-of mass system.

Nevertheless, we can still conclude that two vortices
intercommute in a non–center-of mass system, as the in-
tercommutation property of vortices is frame independent.
What is different here is that the scattering angle of 90�
(this corresponds to a 180� scattering in a lab frame, which
is a non–center-of-mass frame) may not correspond to the
case of zero impact parameter, due to the presence of
noncommutativity. Thus the scattering properties of non-
commutative vortices are different from those of commu-
tative vortices. This striking feature of noncommutative
votex scattering is due to the inherent Lorentz noninvar-
iance of noncommutative field theories.

Assuming that the antisymmetric matrix ��� is non-

degenerate, the commutation relations given in (12) imply
that ��� defines two distinguished 2-planes that are or-

thogonal to each other in spacetime. For simplicity we have
taken these planes to be the x1 � x2 plane and the x0 � x3
plane, and have studied the scattering of vortices on the
x1 � x2 plane. We have shown that vortices scatter at 90�
during a collision process on the x1 � x2 plane. In the

decomposition of ��� employed above, the x3 direction

always commutes with the x1 and x2 directions. Thus, there
is no noncommutativity effect on scattering on the x1 � x3
or the x2 � x3 planes. Thus 90� scattering for vortices
occurs for any scattering plane we choose. This idea can
be extended to the three-dimensional case, in which we can
conclude that cosmic strings intercommute upon collision
even though the underlying noncommutative spacetime is
rotationally noninvariant.

VI. CONCLUSIONS

In this paper we have investigated the scattering of
noncommutative vortices, and hence the interaction be-
tween noncommutative cosmic strings, with the goal of
understanding how these may differ from their commuta-
tive counterparts. We have worked in the Moyal spacetime,
have implemented the effects of noncommutativity by
using the star product and by rewriting the ordinary fields
as statistics-deformed fields, and have focused on the non-
commutative version of the Abelian Higgs model. We have
also used the geodesic approximation to probe the low
energy dynamics of vortices, which allows us to express
the relevant quantities in terms of the kinetic Lagrangian.
We have demonstrated several results, the first of which

is that noncommutative cosmic strings reconnect after a
collision, just like their commutative relatives. The effects
of noncommutativity in the Moyal spacetime can be cap-
tured through operators involving the total momentum
operator. This allows us to show, within the geodesic
approximation, in which we can phrase the relevant ques-
tions in terms of the kinetic Lagrangian, that in the center-
of-mass frame the scattering of noncommutative cosmic
strings is the same as in of the commutative case.
In non–center-of-mass frames, however, our formalism

allows us to easily see that the scattering of noncommuta-
tive vortices can be somewhat different than in the com-
mutative limit. While it is clear that cosmic strings will still
reconnect after collision, unlike in the commutative case
the well-known 90� scattering may not correspond to a
zero impact parameter collision. Thus, the scattering of
noncommutative vortices in 2þ 1 dimensions can be seen
to be quantitatively different from the commutative case,
but the overall behavior of cosmic strings in 3þ 1 dimen-
sions remains essentially unchanged by the addition of
noncommutativity.
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APPENDIX: THE MOYAL SPACETIME WITH
TWISTED POINCARÉ SYMMETRYAND

DEFORMED STATISTICS

Here we briefly discuss the implementation of the
twisted Poincaré group action compatible with the non-
commutative spacetime relations given in (12) and how
this gives rise to deformed statistics of the fields.

1. Twisted Poincaré symmetry

The Lie algebra P of the Poincaré group has generators
(basis) M�� and P�. The Abelian subalgebra of infinitesi-

mal generators P� can be used to construct a twist element

[33–35]

F � ¼ exp

�
� i

2
���P� 	 P�

�
; P� ¼ �i@�: (A1)

[The Minkowski metric with signature (þ;�;�;�) is
used to raise and lower the indices.] This twist element
can be used to deform the coproduct, a symmetric map
from the universal enveloping algebra UðP Þ of the
Poincaré algebra to UðP Þ 	UðP Þ, in such a way that it
is compatible with the above commutation relations.

The coproduct �0 appropriate for ��� ¼ 0 defines the

action of P on the tensor product of representations. In the
case of the generators X of P , this standard coproduct is

�0ðXÞ ¼ 1 	 Xþ X 	 1: (A2)

In the presence of the twist, the coproduct�0 is modified
to �� where

�� ¼ F�1� �0F �: (A3)

The algebra A0 of functions on Minkowski space M4

is commutative with the commutative multiplication m0:

m0ðf 	 gÞðxÞ ¼ fðxÞgðxÞ: (A4)

The Poincaré algebra acts on A0 in a well-known way

P�fðxÞ ¼ �i@�fðxÞ; (A5)

M��fðxÞ ¼ �iðx�@� � x�@�ÞfðxÞ; (A6)

and acts on tensor products f 	 g using the coproduct
�0ðXÞ.

In the Moyal algebraA�, commutative multiplication is
changed from m0 to m�, in terms of which the Moyal ?
product can be recast as

f ? gðxÞ ¼ m�ðf 	 gÞðxÞ ¼ m0ðF �ðf 	 gÞÞðxÞ: (A7)

This ? multiplication precisely implements noncommu-
tativity, since it can be shown that it implies (12):

½x̂�; x̂��? ¼ m�ðx̂�x̂� � x̂�x̂�Þ ¼ i���I: (A8)

Thus, the Poincaré algebra acts on functions f 2A� in
the usual way while it acts on tensor products f 	 g 2
A� 	A� using the coproduct ��ðXÞ [19,36].

2. Deformed statistics

It can be shown immediately that the action of the
deformed coproduct is not compatible with standard sta-
tistics [18,21]. In the commutative case, ��� ¼ 0, for two
scalar fields �0 and �00 the exchange operation

’0 	 ’00 ! ’00 	 ’0 (A9)

must not be affected by the Lorentz group action. If we
denote the exchange operation by �0, we have

�0�0ð�Þ ¼ �0ð�Þ�0; (A10)

where � 2 P "þ, the connected component of the Poincaré
group.
Now since �0F � ¼ F�1� �0, we have

�0��ð�Þ � ��ð�Þ�0; (A11)

showing that the use of the usual exchange operation
(statistics) is not compatible with the deformed coproduct.
However, if we replace �0 by a deformed version, ��,

given by

�� � F�1� �0F �; �2� ¼ 1 	 1; (A12)

then the exchange operation is compatible with the de-
formed coproduct of the Poincaré group.
Thus noncommutative fields have deformed statistics.

They obey deformed symmetrization (antisymmetriza-
tion), defined by

�0 	S�;A�
�00 �

�
1� ��

2

�
ð�0 	�00Þ; (A13)

where the ‘‘þ’’ sign is for bosonic fields and ‘‘�’’ sign is
for Grassman-valued spinor fields.
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