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Compensating Financial Experts

We propose a model in which financial firms compete for skilled workers who can be assigned to
over-the-counter trading or to more socially productive activities. Because of negative externalities
they impose on rival firms, traders earn more than the profits they generate for their employer and
more than what other workers with similar skills earn. However, when firms can easily interchange
workers across tasks, high trader compensation indirectly drives up the compensation of other
skilled workers in finance above their marginal product. We also discuss the impact of restricting
compensation on the efficiency of the allocation of workers.
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Compensation in the financial sector has generated a lot of controversy in recent years. One

particular topic that receives frequent media coverage is the high level of pay that Wall Street

traders routinely collect from their employers. For instance, before the recent crisis managing

directors trading exotic credit derivatives were making $3.4 million on average per year.1 Since

then, some Wall Street firms have gone as far as paying a few highly specialized traders more than

the CEO to ensure these traders would not be poached by one of the very few firms that compete

for their services.2 But what makes hiring and retaining these traders so important for financial

firms? Does the high compensation traders collect necessarily imply that these workers create a

lot of value for their employers and for society in general? And how does it impact the market for

other skilled workers in finance?

We propose a labor market model that highlights the importance for financial firms to hire

highly talented individuals as traders by offering them seemingly excessive levels of pay. When the

supply of skilled workers is sufficiently limited, the compensation traders are offered in equilibrium

exceeds the profits they bring into their firm, as the full benefit of hiring a trader also includes the

losses avoided by preventing trading counterparties from employing this worker when bargaining

with the firm. Traders may also earn significantly more than non-traders with similar skills, but the

gap disappears when firms can easily interchange workers across tasks as high trader compensation

indirectly drives non-traders’ compensation up above their marginal product. Thus, our model not

only sheds light on the elevated levels of compensation we observe for highly specialized traders

but also on those we observe for the financial sector in general, even after controlling for workers’

ability levels (see Philippon and Reshef 2012).

Specifically, we model a financial firm as an entity that engages in two interlinked tasks that

require the labor of financial experts. Firms compete for a limited supply of skilled workers they

can deploy as traders or as surplus creators. Deploying some workers as traders allows a firm to

obtain a more precise valuation of a security before agreeing to trade it with another firm in an

over-the-counter (OTC) market. Deploying some workers as surplus creators, on the other hand,
1See “London trader bonuses top those in U.S. - survey” published March 26, 2007 on Reuters.com
2See “Traders Beat Wall Street CEOs in Pay” by Stephen Grocer and Aaron Lucchetti in the April 6, 2010 issue

of The Wall Street Journal.
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raises the total gains to trade that can be split between firms, which can naturally be interpreted

as resulting from expanded efforts to locate counterparties with large private benefits from trading

a security or to design new securities with improved risk sharing properties.

When the supply of workers is low enough that firms find it optimal to hire them all in equilib-

rium, traders earn a premium above the profits they bring into the firm, while surplus creators may

earn less than traders even when all these experts have virtually identical skills. Intuitively, when

trading expertise improves firms’ ability to extract the surplus in a fixed-sum trading game, hiring

traders imposes a negative externality on rival firms (i.e., trading counterparties). This leads to

defensive bidding by firms that offer traders a premium over the profits they produce for the firm.

Without such a premium, traders would be hired by rival firms, who would then use this additional

expertise against the firm in question. Thus, traders are paid what we call a “defense premium”

over their internal marginal productivity—they extract some rents for the losses the hiring firm

would experience if they instead worked for a trading counterparty.

Alternatively, if hiring fewer traders did not imply that rival firms would employ more traders,

firms would not find optimal to offer such a defense premium and traders would only receive their

reservation payoff. As a result, our model highlights the non-monotonic effect that competition can

have on workers’ compensation. The more firms there are competing for workers, the more excess

demand there is for traders, and the higher the likelihood is that firms will have to offer a premium

over workers’ reservation payoffs. However, as the number of firms increases, the probability that

a firm will trade with the firm that actually hires a given trader it covets becomes smaller, hence

the cost of losing this trader to another firm and the compensation he is offered in equilibrium

both decrease. High trader compensation is predicted to arise in markets for securities that only

a small number of firms trade among themselves and that very few qualified experts are able to

value. One good example would be the trading of financial derivatives by U.S. banks. Begenau,

Piazzesi, and Schneider (2012) show that three dealer banks overwhelmingly dominate the market

for interest-rate derivatives, whose total notional value surpasses $160 trillion (the authors note

that this concentration is also common for many classes of bonds). Similarly, Atkeson, Eisfeldt,

and Weill (2012) study the $23-trillion market for credit derivatives and provide more evidence of
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highly concentrated trading among U.S. banks, which they rationalize in a model with heterogenous

bank exposure to credit risk and endogenous entry. Our model can also speak to the compensation

of traders in novel markets, such as the dealer markets for junk bonds in the 1980’s and for

collateralized debt obligations in the 1990’s, when only a small number of firms operated and very

few workers had the required skills needed to produce or value the instruments.

Our model shows that many other skilled workers in finance may see their compensation in-

creased by the presence of highly specialized trading. Equilibrium wages for non-traders, or surplus

creators, are determined as follows. When workers are offered contracts that are tied to a particular

task, surplus creators may appear to be “underpaid” in the sense that they earn less than what

they produce for the firm and a lot less than what traders earn. The nature of the trading game

allows hiring for surplus creation to have positive externalities, thus reducing the temptation for

firms to hire surplus creators away from rival firms. The strict inequality of pay levels in this case

is guaranteed by the optimal assignment of workers within the firm, in that all workers generate

the same internal marginal productivity, but rival firms see more value in poaching a trader than

a surplus creator. If, however, firms assign workers to tasks after the labor market has closed, the

dispersion in compensation between traders and surplus creators disappears, with all workers now

receiving the high, trader compensation. Financial firms thus need to pay all their employees far

more than their internal marginal value and labor appropriates an abnormally large share of any

surplus available. The importance of the ease with which workers can be reallocated between tasks

should therefore be a consideration in light of recent policy debates surrounding the Volcker rule

and the wisdom of separating proprietary trading activities from other activities within financial

firms.

Although in our model the cost of financial expertise takes the form of a transfer from firms

to workers, overinvestment in some activities still generates a social inefficiency. The source of the

inefficiency comes from the incentives firms face to assign workers to surplus extraction, rather than

to surplus creation. This inefficiency arises even though traders are, in equilibrium, “overpaid” from

the perspective of the firm; firms would prefer not to hire traders at the prevailing compensation

levels, but do so to prevent other firms from hiring them instead. We discuss, at the end of the
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paper, how restricting compensation in the sector, as done in the recent crisis, can improve or

worsen the allocation of workers across and within firms.

Our paper directly contributes to the growing theoretical literature on the size of the financial

sector — it accounted for 9.1 % of U.S. GDP in 2010, according to Shiller (2012)3 — and the de-

terminants of pay in the sector. First, Axelson and Bond (2009), Bond and Glode (2011), Acharya,

Pagano, and Volpin (2011), Bijlsma, Boone, and Zwart (2012), and Thanassoulis (2012) all share

with our paper the objective of modeling a labor market to understand equilibrium compensation

in finance. Acharya, Pagano, and Volpin (2011) study a negative externality that can arise in the

market for managers when dynamic poaching prevents firms from learning the ability of their em-

ployees and leads to excessive risk taking. Thanassoulis (2012) highlights the negative externality

that competition for workers can have on the financial stability of hiring firms as the resulting

high wages lead to lower profits and higher default risk. Axelson and Bond (2009) and Bijlsma,

Boone, and Zwart (2012) focus on the role moral hazard can play in determining optimal contracts

in finance, whereas Bond and Glode (2011) focus on the competition among financial firms and

regulatory bodies for a scarce supply of skilled workers. None of these papers, however, studies

the role workers’ expertise plays when financial firms interact with each others and trade securities

among themselves as we explicitly model in this paper. We believe it is important to do so given

the impact that trading expertise has on financial institutions’ profits, and stability — for example,

the financial services firm J.P. Morgan recently admitted to have lost $5.8 billion from one massive

credit-default-swap trade gone awry (compared to profits of $5 billion for the quarter).4

A well-known model of high compensation has been proposed by Rosen (1981) to rationalize

the skewed reward distributions we observe in some industries like show business. He shows that a

“superstar” effect, defined as a convex revenue-to-talent function, can result from a technological

indivisibility in the consumption of labor. Similar ideas are found in models in which managerial

talent is assortatively matched with firm productivity and size (see, e.g., Lucas 1978, Gabaix and

Landier 2008). Philippon and Reshef (2012) show, however, that these effects can only explain a
3See also Greenwood and Scharfstein (2012) who document the growth of the U.S. financial sector since 1980.
4See “JP Morgan Says Trading Loss Tops $5.8 Billion; Profit for Quarter Falls 9%” by Jessica Silver-Greenberg

in the July 13, 2012 issue of The New York Times’ DealBook.
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small fraction of the elevated levels of compensation recently paid to financial executives. In any

case, our goal here is not to argue that these effects do not play a role in explaining the cross-section

of compensation in the financial sector, but rather to highlight that when firms bid strategically

for the services of workers who impose negative externalities on rival firms, such as OTC traders,

the level of compensation offered in equilibrium can exceed the value created for their firms, unlike

what we observe in these models. This result and others we derive about the endogenous allocation

of workers across tasks (some more socially productive than others) strike us as important for the

current debates on the optimal size and compensation in the financial sector.

As a result, our model is closer in spirit to papers studying the social efficiency of resources

allocated to different sectors of the economy, including finance. Fishman and Parker (2010), Philip-

pon (2010), Bolton, Santos, and Scheinkman (2011), Glode, Green, and Lowery (2011), and Biais,

Foucault, and Moinas (2012) all propose mechanisms that cause some financial activities to exist

at levels that exceed the social optimum.5 The current model uses the same link between trading

expertise and trading outcomes as in Glode, Green, and Lowery (2011), but the focus here is on

firms’ strategic interactions in the labor market and the allocation of talent within these firms,

neither of which were considered there. This difference allows our model to make novel predictions

about optimal compensation and allocation of workers in the financial sector. A few papers also

study the decision by agents to perform rent-seeking activities; that is, activities for which the

private rewards agents extract exceed the social value they create, just like informed OTC trading

in our model. In particular, Murphy, Shleifer, and Vishny (1991) show theoretically that skilled

workers prefer to enter sectors of the economy with the most elastic production function and em-

pirically that economic growth is slower in countries where rent-seeking activities reward talent

more than entrepreneurship does. Acemoglu (1995) solve for the equilibrium allocation of talent

between a productive sector and a rent-seeking sector that impedes production. Rothschild and

Scheuer (2011) instead focus on how taxation schemes can reduce workers’ incentives to enter a

rent-seeking sector. In these papers, a continuum of workers choose whether to become rent seekers

or entrepreneurs, based on private rewards available from both types of careers. Here, we model
5See also Hirshleifer (1971), Allen (1984), and Diamond (1985) who compare the private and social benefits of

acquiring information when valuing and trading financial securities.
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the competition by a few firms for the services of workers performing rent-seeking tasks, and it

is the defensive bidding by firms resulting from this competition that allows workers to collect a

defense premium in equilibrium. Not only do they earn more than what they contribute to society,

as is standard in the rent-seeking literature, but we show that they also earn more than what they

contribute to their rent-seeking firms.

Our paper contributes more broadly to the literature on personnel economics (see Lazear and

Oyer 2011, for a survey). In our model, similarly skilled workers are compensated differently

based on how their work affects the firms that failed to hire them — workers earn abnormally high

compensation when hired to perform tasks that impose negative externalities on rival firms. From a

social point of view, this result can be alarming as socially unproductive tasks might become overly

attractive for skilled workers. We show that under some conditions the compensation premium can

leak to other employees who are not hired to perform these rent-seeking activities but who do have

the necessary skills, potentially making socially valuable activities unprofitable for firms because

of their linkage with rent-seeking activities. We apply our model to OTC trading of complex

securities because it represents one of the few, though not only, areas in which: (i) a small number

of sophisticated firms compete for the service of workers whose unique skills are an important

driver of firms’ profits and (ii) one firm’s success directly implies other firms’ failure. The intuition

we develop could, nonetheless, apply to a few other settings with fixed-sum game features such

as divorce litigation where two ex-partners compete for the services of the best lawyer in town,

professional sports where a few rival teams in the same division try to sign a star free-agent athlete,

or patent races where a few technology companies fight for the services of the most gifted scientists.6

The rest of the paper is organized as follows. In the next section we describe the environment

and how trading takes place among financial firms in our model. Section 2 studies the labor

market for financial experts when firms only employ experts to value and trade securities. Section

3 generalizes the concept of financial expertise and considers the situation in which firms can hire

experts as traders who compete with other firms for a fixed surplus or as non-traders who work on
6See Bhagwati (1982), Baumol (1990), or Scharfstein and Stein (2000) for more examples of rent-seeking activities.
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creating that surplus. Section 4 discusses the potential impact of restricting workers’ compensation

on the equilibrium allocation of workers and on welfare. The last section concludes.

1 Model

Our model has two stages. In the first stage, N financial firms compete for the hiring of a fixed

supply of risk-neutral workers whose expertise is needed to value financial securities. In the second

stage, firms are randomly matched with each others to trade a security of uncertain value. This

section describes the trading game when firms’ expertise levels are taken as given, which is identical

to the trading game in Glode, Green, and Lowery (2011). The labor market for experts, which

replaces the assumption of an exogenously given (low) cost for expertise from the earlier paper, is

the main focus of the current paper and is studied in the following sections.

1.1 Trading Game

Each firm i meets a randomly assigned counterparty j, drawn with equal probability from a set of

N − 1 potential trading partners, to exchange a hard-to-value security through bargaining in an

ultimatum game. One of the two parties is assigned the role of buyer, who we denote as firm j for

now while firm i is the seller. The seller values the security at v while the buyer values it at v+2∆.

The private value component, 2∆, is the source of the gains to trade and could represent hedging

motives, special access to a retail investor willing to overpay for the security, or any other source of

value that is not shared by both parties. Without this, trade would break down in this setting due

to the standard no-trade theorem. Gains to trade are common knowledge to both parties, but the

common value v is uncertain: it can be high, vh, or low, vl, with equal probabilities. The spread

vh− vl is fixed and common knowledge to all parties. It measures the amount of uncertainty about

the value of the security and will play an important role in identifying the optimal mass of experts

firms want to hire and the resulting labor market equilibrium.

For simplicity, we give the buyer all the bargaining power in an ultimatum game as he makes a

take-it-or-leave-it offer to buy the security at a price p. The buyer is uninformed about the value, v,

and views the two possible outcomes as equally likely. Assuming an uninformed buyer dramatically
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simplifies the analysis while still allowing us to illustrate the incentives to hire experts because

it eliminates the complications that arise when the first mover in the trading game is privately

informed. Glode, Green, and Lowery (2011) allow for two-sided asymmetric information and show

that the intuition from the trading game with one-sided asymmetric information holds under an

appropriate equilibrium refinement—the main difference being that the restriction that adverse

selection imposes on the levels of expertise that preserve efficient trade is tighter with two-sided

asymmetric information.

The seller can use the experts hired in the first stage to gather information about the security

before responding to the buyer’s offer. Specifically, these experts can generate a signal, si ∈ {H,L},

that is informative about whether the security is worth vh or vl. The probability that firm i’s signal

is correct is µi = 1
2 +ei, where ei ∈ [0, 1

2 ] denotes the mass of experts hired by firm i — its expertise.

Such expertise is assumed to be observable by trading counterparties, as hiring highly specialized

traders away from another firm is usually a visible activity on Wall Street.

The uninformed buyer considers offering one of two potential prices: the lowest price a seller

would accept after receiving a low signal and the lowest price a seller would accept after receiving

a high signal. These prices are, respectively, the seller’s valuations given a low signal:

pL = E(v | si = L)

= (1− µi)vh + µivl, (1)

and given a high signal:

pH = E(v | si = H)

= µivh + (1− µi)vl. (2)

If the buyer offers the low price pL, trade only takes place when the seller observes a low signal.

The buyer’s expected payoff is then:

1
2

(2∆ + E(v | si = L)− pL) = ∆, (3)
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and the seller’s expected surplus is his reservation price of zero.

If the buyer offers the high price pH , trade always takes place, preserving the whole surplus

available. The buyer, however, shares some of that surplus with the seller. The buyer’s expected

payoff is:

E(v) + 2∆− pH = 2∆− (vh − vl)
(
µi −

1
2

)
= 2∆− (vh − vl)ei, (4)

and the seller’s expected payoff (unconditionally, across both possible realizations of his signal) is:

E[pH − E(v | si)] = pH − E(v)

= (vh − vl)
(
µi −

1
2

)
(5)

= (vh − vl)ei.

Thus, hiring experts who generate a more accurate valuation of the security may allow a seller to

force the buyer to make a better offer, even though the seller ends up not using the information

acquired once the offer is received. The buyer’s choice between the two prices depends on which

offer yields the highest expected payoff to him. Defining σ ≡ vh − vl, we compare (3) and (4) and

observe that the buyer offers the high price pH if and only if

2∆− σei ≥ ∆ (6)

or, equivalently,

ei ≤ ē ≡
∆
σ
. (7)

As in Hirshleifer (1971), the social value of information in this simple trading game is zero when

expertise is low enough, that is: ei ≤ ē. However, our trading game also allows for expertise to
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trigger adverse selection and destroy social value whenever ei > ē. The impact expertise has on

adverse selection will play a key role in determining firms’ demand for workers.

2 Hiring Traders

In the first stage, firms try to hire experts to help value the security traded in the second stage.

There is a mass ξ of skilled financial workers, also known as experts, with a reservation payoff of β.

Hiring a mass ei of workers yields a probability µi = 1
2 + ei that firm i’s signal is correct.

The labor market for experts works as follows. Each firm submits a single wage offer wi (per

unit of workers) and a demand for workers xi ∈ [0, 1], representing the fraction of the ξ workers that

the firm i is willing to hire at wi. Workers are then allocated to firms based on wage, with the firm

offering the highest wage receiving its full demand for workers, the firm offering the second highest

wage receiving the maximum of its demand and the residual mass of workers available, and so forth.

If two (or more) firms offer the same wage but there are too few workers available to satisfy their

total demand, workers are evenly divided among the firms offering the highest wage whose total

demand cannot be satisfied. In later sections, we introduce ex-post and ex-ante heterogeneity over

workers and the labor market triggers, effectively, worker-by-worker competition. In the current

setup, the simpler labor market is adequate as results are equivalent with a setup in which firms

compete separately for each infinitesimal worker.

To ensure that some traders are hired in equilibrium, we impose the condition that their reser-

vation payoff is low, that is: β ≤ σ
2 . Note that, for now, hiring experts only serves to appropriate

a larger share of the surplus 2∆ and does not create social value—in fact, hiring too many might

destroy some of the gains to trade. In the next section, we generalize our model of financial exper-

tise by allowing firms to also hire workers to perform value-creating tasks. This assumption will

trigger predictions about the allocation of experts within the financial sector and how the tasks

they perform impact their compensation.

Before knowing its role as a buyer or as a seller, firm i’s expected payoff from participating in
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a trade with firm j is given by:

σ

2
eiI

(
ei ≤

∆
σ

)
+

1
2

[
∆ + (∆− σej)I

(
ej ≤

∆
σ

)]
, (8)

where I(·) is an indicator function. It is obvious from this equation that no firm acquires expertise

above the level e ≡ ∆
σ , even if unemployed workers are willing to work for free. Specifically, we know

from Glode, Green, and Lowery (2011) that if the cost of expertise is low enough, all firms want to

acquire an expertise level of e. This, however, is where the fixed supply of financial experts changes

things and becomes important in the current paper. The supply ξ of experts determines how

financial firms compete for these workers through compensation. With a labor market, financial

firms now strategically interact with each other not only at the trading stage but also at the hiring

stage. The limits on firms’ expertise that adverse selection imposes will imply equilibrium levels of

(un)employment for financial workers.

Throughout the paper, we focus on symmetric equilibria for brevity. We first study the case in

which the supply of workers binds, even when one firm decides to deviate from the equilibrium and

hires no worker.

2.1 Low Supply of Experts

When the supply of workers is low, that is ξ < (N − 1)e = (N − 1)∆
σ , the N firms compete in the

hiring of workers as the limited supply of workers binds. Further, if one firm chooses not to hire

any workers, all workers can still be employed by the remaining firms without disrupting trade.

Firm i’s expected payoff from trade is given by:

∆ +
σ

2
(ei − E[ej ]), (9)

since all firms hire no more than e traders, a condition that is optimal for all firms to satisfy and

that ensures efficient trade. Equilibrium compensation is, obviously, affected by the binding supply

of workers. However, our model highlights the impact of the fixed-sum game nature of trading on

workers’ compensation.
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We now solve for the equilibrium demand for workers and their wages. If demand is fully

satisfied for all firms, i.e., xi ≤ 1
N , the wage offered must be no more than σ

2 , since this is exactly

what one unit of traders produces for the firm. If the wage is above this level, there is a profitable

deviation to hiring fewer workers because the demand by other firms is fully satisfied and the

workers will remain unemployed. But, if the wage is σ
2 or lower, then there is a profitable deviation

to offering a slightly higher wage and demanding slightly more than a mass ξ
N of workers. The

benefit of hiring extra workers now includes the fact that they no longer work against the firm

itself. When the supply of workers is low, all experts not hired by firm i end up working for some

of the firm’s counterparties, making the expected payoff from trade:

∆ +
σ

2

[
ei −

(
ξ − ei
N − 1

)]
. (10)

Thus, the (per-unit) benefit from deviating to an infinitesimally higher wage and to an infinites-

imally higher demand is σ
2

(
1 + 1

N−1

)
= σ

2

(
N
N−1

)
, which is greater than σ

2 . This deviation is

profitable as long as the wage is less than σ
2

(
N
N−1

)
, so the equilibrium wage for traders can only

be:

w∗ =
σ

2

(
N

N − 1

)
. (11)

At such a wage, it is profitable for a firm to deviate to hiring fewer traders only if it anticipates

that some of the workers the firm does not hire will remain unemployed. Thus, in any symmetric

equilibrium, the equilibrium demand of traders must satisfy x∗ ≥ 1
N−1 because then each firm

knows that deviating to hiring no traders would result in these traders working for rival firms. The

marginal loss due to the hiring of traders by rival firms is positive only when the adverse selection

limit on trading expertise does not bind. Hence, a deviation to hiring no trader and saving on the

high wages that traders command cannot be profitable as long as the (N−1) rival firms are expected

to hire all traders without triggering trade breakdowns when bargaining with the deviating firm.

This condition is satisfied only when ξ ≤ (N − 1)∆
σ .

To summarize these first results, the total benefit of hiring an additional trader depends on two

things when the supply of experts is sufficiently low. First, by hiring an expert firm i improves its
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ability to value securities, which increases its bargaining power when responding to an offer. This

benefit is worth σ
2 to the firm. Second, by hiring an expert firm i ensures that this worker is not

hired by potential counterparties and thus lowers their bargaining power when responding to an

offer from firm i. This benefit is worth σ
2

(
1

N−1

)
to the firm. Hence, when hiring workers the firm

does not only value the increase in its own trading expertise, but it also values the decrease in the

expertise it needs to defend itself against. When the supply of workers is low enough given the

number of firms, equilibrium compensation w∗ is such that firms are indifferent about “poaching”

workers from their counterparties, so it includes a defense premium. Traders are paid more than the

value they create by improving their employers’ ability to value securities as they also extract some

rents from the fact that hiring them lowers the ability of their employer’s trading counterparties.

2.2 High Supply of Experts

We now study two cases that can arise when the supply of workers is too large for the equilibrium

above to exist, that is when ξ > (N − 1)∆
σ .

We start with the simple case in which the supply of workers is the highest, that is: ξ ≥ N ∆
σ .

Then, the N firms do not hire all workers in equilibrium, even if workers are willing to work for

free. The reason is that hiring more than a mass e = ∆
σ of workers within one firm would result

in a separating equilibrium in the trading stage and destroy some of the gains to trade. Thus, the

supply of experts does not bind, financial firms only hire a mass e of workers by offering them the

reservation payoff of β. A positive mass (ξ −Ne) of workers remain unemployed.

The second, and more complex, case has the supply of workers being small enough that the N

firms are still able to hire all available workers without destroying gains to trade, i.e., ξ < N ∆
σ . As

with a low supply of workers, no equilibrium with some unemployment can exist because workers’

reservation payoff is lower than their marginal productivity. The only wage that can make marginal

deviations unprofitable is given by equation (11). However, at that wage it is optimal for a firm to

deviate to hiring no traders. The wage in question makes firms indifferent between hiring or not

these workers only if rival firms would hire and use against the firm all the workers that the firm
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does not hire. But if a firm does not hire any trader, its expected profit becomes:

∆− σ

2
∆
σ

=
1
2

∆, (12)

which, in the current region of ξ, is greater than the expected profit from offering a wage w =

σ
2

(
N
N−1

)
and hiring ξ

N of the workers:

∆− σ

2
ξ

N − 1
. (13)

Consequently, when (N − 1)∆
σ < ξ < N ∆

σ , no symmetric pure strategy Nash equilibrium exists.

This non-existence is driven by the property that the value of trading expertise increases linearly

in the mass of experts hired as long as trade is efficient, but the payoff drops discontinuously when

expertise crosses the boundary where trade breaks down with positive probability.

As we show in the Appendix, there exists a unique symmetric, mixed strategy equilibrium over

this region and such equilibrium implies, effectively, a continuous transition from the high supply

to the low supply pure strategy equilibria. For ξ close to (N−1)∆
σ , the mass of wage offers becomes

arbitrarily concentrated around σ
2

(
N
N−1

)
, the pure strategy wage offer for ξ < (N−1)∆

σ . Similarly,

as ξ converges to N ∆
σ , the mass becomes arbitrarily concentrated around β, the equilibrium wage

offer with a high supply of experts. In between, each firms demands a mass ∆
σ of workers and mixes

over an interval of wage offers w ∈ [β,w], where w is defined as:

w = β +
(
σ

2

(
N

N − 1

)
− β

)(
N − ξ

∆
σ

)
. (14)

The equilibrium wage offer is thus effectively continuous between the two regions over which the

wage is determined as part of a pure strategy Nash equilibrium. Traders extract part of the

surplus they would have extracted if the supply of experts was lower and a symmetric pure strategy

equilibrium existed. Also, since this unique candidate for a symmetric mixed strategy equilibrium

does not exist outside the intermediate region, the symmetric pure strategy equilibria we derive

above represent the unique symmetric equilibrium that exists in each respective region.
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2.3 Discussion

Uncertainty in asset value plays a key role in the demand for and compensation of traders. Studying

the effects of changes in the uncertainty σ, while keeping the number of firms N and the supply of

workers ξ fixed, highlights that highly volatile settings could be associated with lower demand for

traders, but also with their higher compensation. A lower demand for traders usually means that

these workers are less likely to earn a surplus over their reservation payoffs. However, conditional on

seeing excess demand for workers, which then drives wages higher than β, traders’ compensation

increases as the value of the security becomes more uncertain. This seemingly counterintuitive

relationship results from trading expertise becoming more valuable while its limits due to adverse

selection also become more restrictive as uncertainty increases.

Moreover, the degree of competition in the sector affects in a non-monotonic fashion the alloca-

tion and compensation of workers hired to perform tasks that impose negative externalities on rival

firms. As we increase the number of firms but keep the supply of workers fixed, we are less likely

to observe unemployment of experts and more likely to see compensation premia offered to them.

As N increases, it becomes easier to satisfy the condition necessary for the defense premium, that

is: ξ ≤ (N − 1)∆
σ . We also observe, however, that when the limited supply of experts binds, and

therefore a premium is paid, the magnitude of this premium decreases with the number of firms.

The reason for this is simple. As we increase the number of potential trading partners a firm has,

hiring an expert still allows the firm to improve its own bargaining power but it also decreases the

expected losses incurred by letting this expert work for another firm. At the margin, payoffs from

trade are less sensitive to the exact allocation of workers, and these workers become less able to

extract a compensation premium for the negative externality they impose. For a given ξ, workers’

compensation is then non-monotone in the number of firms N . It is β for any N ≤ ξ
ē , then increases

to σ
2

(
N
N−1

)
until N ≥ 1 + ξ

ē , and then decreases and converges toward σ
2 as N grows.

Note that in a more general model in which the probability of firms trading with each other

depends on the pairing, the term 1
N−1 in the defense premium would be replaced by the probability

that a firm ends up trading with the second highest bidder for the services of a worker. For

example, a large bank like Goldman Sachs will offer more to the specialized traders likely to defect
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to J.P. Morgan than to those likely to defect to a small hedge fund with which the bank trades less

often. In the current model, we focus on the simple case in which firms meet randomly with equal

probability, but ultimately the size of the negative externality a trader imposes on firms that fail

to hire him is what determines his defense premium. Empirically, large defense premia can still

exist in markets (e.g., securities, time periods, or regions) where the number of firms is large, as

long as some firms with frequent trading interactions happen to target and bid for the same skilled

workers.

The magnitude of the defense premium, which is also the difference between workers’ compen-

sation and internal marginal product, thus depends on how firms interact with each others in the

industry. Changes in the structure of the industry (e.g., entries or exits) should impact the com-

pensation of workers, even after controlling for their effects on firms’ actual profits. In that sense,

our implications differ from those in superstar models such as Rosen (1981) or Gabaix and Landier

(2008) where production functions are independent across firms and agents (which makes sense in

models of generalist CEOs employed in various industries, but not if we are modeling specialized

OTC traders working for a very small set of financial firms). There, the demand for the services of

agents is convex in their quality, which results in the cross-sectional prediction that the best agents

create, and extract, significantly more value than agents of slightly lower quality. In our model,

instead, workers who impose negative externalities on rival firms can extract more than they create

for their firms. This difference has important implications for recent policy debates on the optimal

size of and compensation in the financial sector. Still, one could combine in a more complicated

model the industrial organization modeled in the current paper with the heterogeneous workers

and firms from superstar models and generate even more cross-sectional variation in rewards to

skill than in those models, thanks to the amplification effect that our defense premium has on

compensation. We leave such endeavor for future work and instead focus, in the next section, on

showing how firms’ defensive bidding for traders can also affect the compensation offered to workers

with virtually identical skills, but who occupy different jobs.

Also note that the intuition we develop for the potential “overcompensation” of traders echoes

some of the results found in a few papers on auctions with externalities (see Jéhiel, Moldovanu,
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and Stacchetti 1996, Caillaud and Jéhiel 1998, Jéhiel, Moldovanu, and Stacchetti 1999, Jéhiel and

Moldovanu 2000).7 Overall, our model differs significantly from such papers as it focuses on a

fungible good (i.e., labor), which is allowed in the next section to be allocated by firms either

to produce positive or negative externalities; the type of externality depends on the equilibrium

allocation of the good within a production process (i.e., trading vs. surplus creation). We also

consider a disaggregated labor market rather than a monopolist selling a good, and are concerned

with the allocation of the labor market input among firms. Most previous work focuses on the

allocation of an indivisible good, except for Eső, Nocke, and White (2010), who consider an auction

for shares of production capacity to be divided among firms. Their model, however, abstracts

from the design of the auction for capacity, focusing on the efficient allocations, and considers

Cournot competition in an oligopolistic product market. This focus generates substantially different

implications than our labor market model. As will become clearer in the next section, our model

allows us to show that the price paid by firms for the resources that impose negative externalities

(i.e., the traders) can affect the price paid for other resources (i.e., the non-traders) based on the

interchangeability of these resources.

3 Socially Valuable Expertise

In the last section, we showed that OTC traders, hired to extract some surplus away from rival firms,

not only earn more than what they contribute to society, but also more than what they contribute to

their rent-seeking firms. In this section, we generalize the concept of workers’ expertise by allowing

firms to assign some workers to a socially valuable task. We show that the “overcompensation” of

traders not only survives this generalization, but may also leak to non-traders.

The mass ξ of experts can now be hired by the N financial firms to work on two different

tasks—each worker can be hired to increase the accuracy of the firm’s signal about the value of the

security, which as before only affects the division of the surplus from trade between firms, or be

hired to increase the size of the overall surplus available. This second task is socially valuable and
7Related ideas can be found in McCardle and Viswanathan (1994) where a new firm chooses between directly

entering an industry or bidding for the acquisition of an incumbent firm, where the decision is based on the negative
externalities that rival firms generate under Cournot competition in the product market.
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could, for example, represent the creation of securities that allow for more efficient risk sharing or

the search for better matching trade partners. Specifically, a firm will hire a mass ei of workers

to become trading experts who work on appropriating a larger share of the surplus 2∆ through

bargaining and will hire a mass mi of workers to become intermediation experts who work on

increasing the available surplus 2∆.

As before, employing a mass ei of traders yields a probability µi = 1
2 + ei that firm i’s signal

is correct. The ex-ante gains to trade when firm i proposes to buy from firm j are now denoted

by ∆(mi,mj), which depend on mi and mj , the number of experts the two counterparties hire

to work on surplus creation. For simplicity, we use a reduced-form characterization of ∆(mi,mj)

and assume that it is strictly increasing and concave in its two arguments. We also assume that

both the level of the gains to trade and the marginal productivity of surplus creation are more

sensitive to the buyer’s own expertise than to the expertise of the counterparty. First, we impose

that ∆1(m,m) > ∆2(m,m) to ensure that each firm captures more benefits from its own effort

than from the efforts of other firms (since in our model the gains to trade accrue to the firm

who is selected as the buyer rather than the seller). Second, we impose that ∆12(mi,mj) = 0,

which greatly simplifies the analysis in subsection 3.2 but is not necessary for our results.8 In

the more complicated two-task setup below, we focus on the case in which the supply of workers

would bind even if one firm were to deviate from the equilibrium and hire no traders. This region

is the analog to the region in which our one-task model produced its most novel and interesting

predictions. Finally, to ensure that surplus creators and traders are hired in equilibrium, we impose

the boundary conditions that ∆1(0,mj)→ +∞ and ∆1

(
ξ
N ,

ξ
N

)
< σ

2 .

The labor market operates as follows. There is a mass ξ of workers indexed by a continuous

variable h ∈ [0, 1], which will represent worker heterogeneity, and there is a parameter κ > 0 that

determines the importance of such heterogeneity. Values of h, the worker’s type, are uniformly

distributed. Heterogeneity is modeled as some additive, orthogonal (per-unit) benefit κh of em-

ploying a worker as a surplus creator rather than as a trader. For example, some workers may be

easier to train for certain tasks than others. Note, however, that nothing in our results depends on
8This condition is sufficient for the existence of a symmetric, pure strategy equilibrium, but such an equilibrium

would exist under much milder conditions.
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the specific role of worker heterogeneity. All that matters is that there is some ex ante difference

between workers that makes some of them marginally more suited to one task versus the other.

Furthermore, the equilibrium of the game with heterogeneity we describe in this section still exists

in the limiting case with homogenous workers (where κ → 0), but directly analyzing a model in

which κ = 0 can become more involved for reasons that will become clear later.

3.1 Rigid Assignment of Workers between Tasks

In this subsection, we assume that each of the N financial firms submits for each type of worker h a

wage offer, a job type, and a measure for the quantity of workers demanded: {wi(h), τi(h), xi(h)}.

Here, wi(h) ≥ 0 is the wage offered by firm i to type h and τi(h) ∈ {Surplus Creation,Trading}

is the task to which type h will be assigned. For now, we assume that the task offered, τi(h), is

binding, in the sense that if firm i offers to a worker of type h to become a trader for a wage of

wi(h), then firm i cannot later reassign the worker to surplus creation, or vice versa, as a response

to an unanticipated strategy by a rival firm. We relax this assumption in subsection 3.2, where

the assignment of workers to the two tasks takes place after workers have been matched to firms

through the wage bidding process. Finally, xi(h) ∈ [0, 1] is the “fraction” of workers of type h that

firm i is willing to hire at that wage.9 Aggregate demand for workers of type h is then
∑N

i=1 xi(h).

If this quantity is less than or equal to 1, all firms obtain the fraction of workers they desire. If

aggregate demand exceeds the supply of workers, firms instead receive an allocation γi(h) ≤ xi(h)

of workers of type h. The functions {γi}Ni=1 are determined as follows. Workers allocate themselves

to the highest wage offers first. If several firms offer the same wage and demand more workers than

available at that wage (which will be the case in equilibrium) the workers are divided evenly. No

firm ever receives more workers than it requests.

A couple of examples of how the labor market works may prove helpful. If all firms offer the

same wage schedule (i.e., wi(h) = wj(h) for all i, j ∈ {1, . . . , N} and h ∈ [0, 1]), and all firms choose

xi(h) = 1 for all h, then γi(h) = 1
N for all h and for all firms. If one firm (say, j) were to deviate by

offering a slightly higher wage than wi(h) to each type h with xj(h) = 1, then the deviating firm

9Here, we use quotation marks to highlight that notions of quantity, such as a fraction, are imprecise in a setting
with atomistic workers.
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would hire all workers. Less trivially, if all firms except j offer a wage wi(h), but firm j offers a wage

very slightly below wi(h), then firm j would still obtain ξ
N total workers if the other firms choose

xi(h) = 1
N for all h, but would obtain no workers at all if xi(h) ≥ 1

N−1 . If all firms, including j, had

offered wi(h), the allocation of workers would be the same regardless of whether all firms choose

xi(h) = 1
N or xi(h) = 1; in both cases, γi(h) = 1

N . Put simply, all demands for workers that can

be satisfied are satisfied whenever possible. However, when aggregate demand cannot be satisfied,

the demand of the highest bidding firms is satisfied first, then the demand of the second highest

bidding firms is satisfied, and so on. As soon as the supply of remaining workers to be allocated

to firms that are the n-th highest bidders is insufficient to satisfy their total demand, workers are

evenly allocated among the n-th highest bidders. In the Appendix, we describe in greater details

how labor is allocated for general actions by firms. Given our focus on symmetric equilibria, solving

for the quantity of workers hired and the wages paid to workers is relatively simple, but we include

general expressions in the Appendix for completeness.

While workers’ heterogeneity described above allows for various distributions of type for the

workers hired by each firm, it will not play a role in our analysis because we will focus on what

happens as we let κ→ 0. Thus, when calculating payoffs, we will not account for the small benefits

received from assigning a worker to surplus creation versus trading. The limit case as κ → 0 will

highlight that differences between workers’ abilities do not drive the wage dispersion we obtain in

this model. The only role worker type plays is that it allows firms to predict which workers will be

assigned to each job by other firms. Absent this dispersion, the equilibrium we identify still exists,

but the analysis become more complicated as the final allocation of workers cannot be predicted by

other firms. The pseudo “coordination device” that workers’ heterogeneity represents is a simple

way to ensure that our static model captures the idea that, in reality, firms are able to target

specific workers they want to poach from rival firms and set contract terms based on the jobs these

workers currently occupy for their employer.

We now describe how firms pick the jobs they offer to workers, given the distribution of workers

they expect to hire. Before knowing its role as buyer or seller, firm i’s expected payoff from
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participating in a trade with firm j is:

σ

2
eiI

(
ei ≤

∆(mj ,mi)
σ

)
+

1
2

[
∆(mi,mj) + (∆(mi,mj)− σej)I

(
ej ≤

∆(mi,mj)
σ

)]
, (15)

where I(·) is an indicator function. The highest bidder for a given worker can offer him a job

in surplus creation or in trading. Since workers’ heterogeneity, though potentially small, is non-

degenerate, we can represent the optimal assignment of expertise within firm i as a threshold

h∗i ∈ [0, 1], where the mass of experts assigned to trading in firm i becomes
∫ h∗i

0 γi(h)ξdh. In a

symmetric equilibrium with full employment, γi(h) = 1
N for each firm i, so the total mass of

workers that receive and accept a job offer as traders in a symmetric equilibrium is given by ξ
N h
∗,

and as surplus creators by ξ
N (1− h∗), where the threshold h∗ is the same for all firms.

We can now study equilibrium employment and wages for surplus creators and traders. An

equilibrium wage requires that no firm would strictly benefit from hiring more workers at the equi-

librium wage. Any wage offer infinitesimally above the equilibrium wage would permit employment

of more workers, so the condition for equilibrium is that no firm would prefer to hire a larger mass of

workers for either task at the prevailing wage. This is, however, not a statement about the demand

for workers in equilibrium, xi(h); firms may still submit demands in excess of what they expect to

receive on the equilibrium path, and in fact such demands play a crucial role in the equilibrium of

the labor market. The requirement is rather that no firm would be willing to pay an infinitesimally

higher wage in order to hire more workers of a given type.

It is immediate that wage dispersion among experts who perform the same task must vanish

as κ → 0. If some surplus creators, for example, were to earn more than others, then whichever

firm is hiring these workers could hire fewer workers at this high wage and replace them by offering

lower wage workers from other firms a slightly higher wage. Thus, in any equilibrium, for κ → 0,

at most two wage levels, wm for surplus creators and we for traders, can coexist.

In equilibrium, the wage schedule depends on the total supply of experts. In the situation we

focus on, the mass of available workers is sufficiently small that there is no unemployment and firms
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are indifferent between hiring the marginal expert for surplus creation or for trading.10 Equilibrium

wages differ depending on the task, even as we let workers’ heterogeneity κ→ 0.

We first need to derive the optimal assignment of experts within a firm in a conjectured sym-

metric equilibrium with full employment. For the same reasons as before, we can focus on solving

for a symmetric equilibrium where no breakdowns in trade occur. To find this equilibrium, we solve

the maximization problem of a single firm, given that it is able to hire an equal fraction of each

worker type. At this stage the wage bill is fixed (taking as given how much the firm needs to pay to

get the conjectured mass of workers) and therefore does not enter into the firm’s decision problem.

The total mass of workers hired by the firm is ξ
N by the conjecture that we are in a symmetric,

full employment equilibrium. In that case, the threshold on h that differentiates workers who

receive job offers as traders or as surplus creators is given by m ≡ (1− h) ξN , where m satisfies:11

∆1 (m,m) + κh =
σ

2
. (16)

The definition for m implies that, when all firms hire a mass m of workers as surplus creators, their

marginal benefit is equal to that of hired traders, which is constant as long as efficient trade is

preserved. Note here that the marginal benefit of hiring surplus creators does not account for the

fact that larger gains to trade reduce adverse selection problems and allow for the hiring of more

traders. Therefore, this definition for an optimal mi will only be relevant when the limit on ei for

efficient trade does not bind.

When the supply of workers is low, i.e., ξ < N
[
m+ ∆(m,m)

σ

]
, and all workers are employed

because β is low, each firm would like to hire a mass m of workers as surplus creators and the

remaining ξ
N −m as traders. The supply of workers is small enough that all workers who are not

hired as surplus creators are hired as traders and efficient trade still takes place. No allocation

of workers other than h∗ = h can be sustained in a symmetric pure strategy equilibrium with a
10In the interest of space, we omit analysis of the game with a high or intermediate supply of skilled workers; this

analysis proceeds largely along the lines of the analysis of the case in which only traders are hired but is more involved
because of considerations involving allocations of workers between tasks following deviations. As in the model with
traders only, there is a pure strategy equilibrium with low wages when the supply of experts is high and only a mixed
strategy equilibrium in the intermediate region for supply.

11Throughout, we denote the partial derivative of a function with respect to its nth argument, evaluated at the
point {x1, x2, . . . }, as fn(x1, x2, . . . ).
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sufficiently low supply of workers, because it would allow for a strictly profitable reassignment of

some hired workers. What remains to be derived are the wage and demand schedules that sustain

this symmetric equilibrium assignment of workers for each firm. Since the intuition behind these

derivations is similar to that developed in Section 2, except that now we add workers who create

a positive externality rather than a negative one, we relegate these derivations to the proof of the

proposition below, which can be found in the Appendix.

Proposition 1 For ξ < (N − 1)∆
σ , as κ→ 0, the unique symmetric pure strategy equilibrium with

rigid assignment of workers has each firm hiring a mass m of surplus creators at a wage of:

w∗m = max
{
σ

2
− 1
N − 1

∆2(m,m), β
}
, (17)

and a mass ξ
N −m of traders at a wage of:

w∗e =
σ

2

(
N

N − 1

)
. (18)

In the limiting case in which workers’ heterogeneity vanishes and the supply of workers is

small, our model predicts that traders will be better compensated than surplus creators. Although

surplus creators can also earn a premium over their reservation payoff β, their wage ends up being

dominated by the wage paid to traders. This difference in wage is due to the fact that trading

activities are part of a fixed-sum game and surplus creation is not. When assigning potential

workers between the two tasks, firms equate the payoffs of allocating workers to surplus creation

and trading. But when competing with rival firms for the hiring of workers, firms compare the

payoffs of employing a worker versus having a competitor employ him. If the gains to trade a firm

can extract increase when counterparties hire surplus creators, surplus creation becomes a public

good and reduces firms’ incentives to retain these workers. Comparatively, “poaching” experts who

would have become traders for a counterparty is more profitable because of the fixed-sum game

nature of trading. Outbidding other firms for the services of traders not only improves a firm’s

expertise in valuing a security but it also lowers the expertise of counterparties the firm trades with.
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Poaching the experts who are assigned to socially valuable tasks that generate positive externalities

is less attractive because some of the benefits created by the employee at another firm already accrue

to the firm considering whether to poach the employee. Moreover, the equilibrium assignment of

experts across tasks is socially inefficient, as some workers who could generate a social surplus

through surplus creation are instead trying to appropriate a larger share of the surplus for the firm

that employs them.

Note that the heterogeneity in workers’ type delivers a unique equilibrium outcome in terms of

worker allocation and wages in this setup. We have focussed our analysis on the limited case in

which this heterogeneity converges to zero and the type of equilibria described above still exists.

The crucial characteristic of these equilibria is that all firms anticipate and agree perfectly on

which workers will be assigned to each task. But when experts are ex ante identical, other types of

equilibria may also emerge. Any such equilibrium exists only in the knife-edge case with ex ante

homogeneity, which is not the case for the type of equilibria we focus on. These other equilibria are

unlikely to describe an actual labor market for financial experts, in which firms can target specific

workers they want to poach from rival firms and find it optimal to set contract terms based on the

jobs these workers currently occupy for their employer.

3.2 Flexible Assignment of Workers between Tasks

Up to this point, we have assumed that workers are hired for a specific task. This assumption

is realistic if, for example, the different tasks are carried out by different divisions within a firm.

This environment is particularly relevant in finance where regulations such as Sarbanes-Oxley or

the Volcker rule require stark divisions of tasks across units of a single firm. It is also appropriate

if we view the static model as an abstraction for a richer, dynamic environment in which workers

develop task-specific skills as they engage in one task or the other and firms pay them just enough

to discourage poaching in the future.

We can, alternatively, allow firms to choose how to assign workers within the firm after the labor

market has closed. In equilibrium, the assignment of workers between the tasks will be identical to

what we derived earlier, since firms correctly anticipate how they and their opponents will assign
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workers when making offers in the labor market stage. Wages, however, will differ dramatically.

We show this by establishing the existence, when the supply of workers is low enough, of a pure

strategy, symmetric equilibrium. When experts are essentially perfect substitutes for each other,

each non-deviating firm responds to poaching by a rival firm by moving the threshold for assigning

workers to surplus creation so as to exactly offset the loss of surplus creators. Consequently, as

κ→ 0, traders and surplus creators get paid the same wage, which includes the defense premium,

in equilibrium. Proof for the proposition below is relegated to the Appendix.

Proposition 2 For ξ < (N − 1)∆
σ , as κ→ 0, the unique pure strategy symmetric equilibrium with

flexible assignment of workers has each firm hiring a mass m of surplus creators and a mass ξ
N −m

of traders, all at a wage of:

w∗ =
σ

2

(
N

N − 1

)
. (19)

If ξ ≤ (N − 1)∆(0,0)
σ , all firms make positive profits, net of compensation expenses.

With flexible assignment of workers, price dispersion collapses because, for small κ, deviating

from the symmetric equilibrium by hiring more experts who would have otherwise been deployed

as surplus creators by rival firms has the same effect on rival firms’ trading expertise as deviating

by poaching their traders. The near perfect substitutability of experts across tasks ensures that

if a firm finds itself hiring fewer workers than expected due to a deviation by a rival firm, it will

respond by reallocating workers until the returns to the two activities are again equalized. When

κ > 0, this substitution effect is not complete; poaching workers expected to work as surplus

creators in equilibrium from other firms will, in fact, lead to less surplus creation because any

worker reassigned from trading to surplus creation to make up for the loss of surplus creators will

have a lower idiosyncratic payoff for surplus creation than the poached workers. Thus, the level

of surplus creation that equalizes the marginal value of surplus creation and the marginal value of

trading will be lower. The wedge in compensation between surplus creators and traders diminishes,

and even disappears completely, as κ→ 0 and workers can be redeployed within firms in response

to a deviation by other firms. Since experts are essentially perfect substitutes for each other when

κ → 0, every firm responds to the poaching of a mass of workers by reallocating non-poached
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workers so as to exactly offset the loss of “would-be” surplus creators, whose internal marginal

productivity (weakly) dominates that of traders.12 Thus, poaching a surplus creator is just as

valuable as poaching a trader, since a trader will be moved out of trading and into surplus creation

(to replace the poached surplus creator) following such a deviation. The implications of this new

labor structure are markedly different than with rigid assignment of workers where traders, assumed

to create no value, are paid a premium over what they bring in for the firm, and experts assigned

to a socially productive task are paid less than their marginal product. When we allow for optimal

reassignment of workers following a deviation, the presence of the fixed-sum trading task raises the

wages of all experts.

3.3 Discussion

Obviously, in reality, distinctions between rent-seeking careers and surplus-creating careers are not

as clean as in our model and most jobs involve different mixtures of these types of activities. The

full separation of these two types of activities, however, allows our model to make stark predictions

about the pecuniary incentives associated with the externalities workers impose on other firms.

Specifically, the analysis of the two structures of the labor market has two potentially important

implications which are outside of the model we consider but warrant comment.

First, if workers can take actions prior to the job market that influence their suitability for

one type of activities versus the other (for example, through choice of classes in an MBA program

or through other means to develop technical skills), the setup without immediate reassignment

suggests that they would greatly favor investment in skills useful for surplus extraction rather than

for surplus creation. The setup with optimal reassignment then ameliorates this effect as workers

who develop skills associated with a socially useful task are now able to obtain some, if not all, of

the wage premium that develops from the existence of fixed-sum game activities. The setup with

optimal reassignment consequently generates a wage bill for the financial firms that is much higher
12Given the constant returns to trading expertise and the decreasing returns to surplus creation expertise, the

equilibrium wage all workers receive is the trader wage from earlier sections. However, if we complicated the model
by assuming that returns to trading expertise are decreasing as well, the defense premium would be smaller than with
rigid assignment as firms would then partially replace their poached traders with surplus creators. Such a premium
would, however, still apply to all workers for the same reasons as in the current setup.
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than the wage bill without reassignment, even though the actual assignment of workers is identical.

If financial firms face shocks to their capital, this higher wage bill could have a destabilizing effect

on the financial sector.

4 Discussion on Restricting Workers’ Compensation

Even though the cost of financial expertise for a firm is a simple transfer from its owners to its

workers in our model, optimal competition for workers among firms results in social inefficiencies.

These inefficiencies originate from the incentives firms have to assign some workers to trading, and

appropriate a greater share of the surplus, rather than to the tasks that create the actual surplus.

A policymaker would naturally have an interest in promoting investment in surplus creation over

trading expertise. Pigouvian taxation of profits from trading, potentially combined with subsidies

for surplus creation, would be a standard approach to promote a more efficient outcome. Such a

scheme would, of course, be difficult to implement either in our model or in reality. Profits from

speculative trading and surplus creation (e.g., through market making) are too interlinked for such a

tax plan to work. Taxing the “bonus” that traders earn above the compensation of surplus creators

would also not affect the efficiency of worker allocations. The defense premium puts traders well

above their opportunity cost and these workers would continue to provide the same level of trading

activity, with the tax serving only as a transfer from traders to the government.

We can, however, use some of the model’s insights to analyze the effects of a type of policy

interventions used during the recent crisis that will turn out to have implications for the efficiency

of worker allocations: restricting the compensation a subset of financial firms can pay to their

workers. Constrained firms could, for example, represent the financial firms that require extraor-

dinary assistance from the government or central bank in times of crisis and that may be forced to

limit workers’ compensation until they have repaid taxpayers. To ease the exposition, we discuss

the impact of these policies on the aggregate level of social surplus that financial firms create with

more involved derivations available on request from the authors.

The corrective effect of limiting compensation in the financial sector will vary with the level of

the wage cap as well as with the number of firms it constrains. In many cases, restraining wages
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does not affect the aggregate surplus that financial firms create for the economy, as all it does is

move some experts from constrained firms to unconstrained firms and possibly transfer some of

the rents from workers to unconstrained firms. It does not make constrained firms (e.g., those that

owe taxpayers money) better off nor does it increase the aggregate surplus. In fact, if the limit on

workers’ compensation is low enough to affect the wages of non-traders, it might actually reduce the

surplus firms create as some workers hired to create more surplus in the unconstrained equilibrium

are instead hired by unconstrained firms to work as traders in the constrained equilibrium. On

the other hand, imposing a high wage cap that only restricts trader wages paid by constrained

firms can, in some cases, reduce the inefficiencies highlighted in our model. When the supply

of experts is large enough that unconstrained firms cannot hire all the workers who would be

traders in the unconstrained equilibrium without violating the efficient trade condition imposed on

trading expertise, the aggregate surplus can be greater with wage constraints than without wage

constraints. The reason is that unconstrained firms now find it optimal to hire some or all of the

experts who would otherwise work as traders for constrained firms and to assign some of them to

surplus creation. Effectively, the wage constraints reduce the number of firms able to hire traders

in equilibrium and unconstrained firms then hire more than a mass m of surplus creators as they

do not want to violate the condition that allows for efficient trade.13

5 Conclusion

We propose a labor market model that highlights the importance for financial firms to retain

their skilled traders. Firms bid for a limited supply of financial workers who can be assigned to

information production in OTC trading or to more socially productive activities. When the supply

of workers is sufficiently low, hiring an additional trader has two benefits. By hiring a trader a

firm not only improves its own ability to value securities but also ensures that this worker will

not be hired by trading counterparties. Equilibrium compensation for the trader is thus given by

the difference between the firm’s profits when hiring the worker and the firm’s profits when losing
13Acharya, Pagano, and Volpin (2011) also find that imposing salary caps can improve social efficiency. In their

model, salary caps serve to facilitate efficient risk-sharing between employees and firms, leading to better incentives
and less excessive risk taking.
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the worker to a counterparty who is then better armed to bargain against the firm over the trade

of a financial security. Because of the fixed-sum game nature of informed OTC trading among

financial firms, traders extracts some rents from the fact that hiring them lowers the expertise of

counterparties the hiring firm trades with. When substituting these workers with the firm’s other

workers is easy, the presence of the fixed-sum trading task can raise the wages of all workers who

could potentially be poached away from the firm, making the overall compensation of financial

workers higher than their marginal product.

Finally, although we apply our model to specialized trading in finance, our paper also provides

a new rationale for why other types of jobs garner seemingly high levels of compensation. For

example, highly skilled litigation lawyers, professional athletes in team sports, and Silicon Valley

software engineers are all the object of a few parties’ competition for their services and their work

imposes negative externalities on the parties that fail to hire them. If we believe that their talents

are scarce, we should not be surprised to observe that these workers earn what we call a defense

premium.
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Jéhiel, Philippe, and Benny Moldovanu, 2000, “Auctions with Downstream Interactions among

Buyers,” RAND Journal of Economics 31, 768-791.
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A Appendix

A.1 Equilibrium with Intermediate Supply of Workers

We solve for the mixed strategy equilibrium that prevails in the region where no symmetric pure

strategy equilibrium exists. As in the main text, we focus on the case with β < σ
2 .

We claim that the following is a symmetric, mixed-strategy Nash equilibrium. Each firm de-

mands a mass ē = ∆
σ of experts, which is the maximum quantity of experts a firm can hire without

creating adverse selection. Using notation from the main text, this means that each firm demands

a fraction x∗ = ∆
σ /ξ of the total supply of workers. The wage offer is random, as firms draw the

offer w from a cumulative distribution function (CDF) given by:

G(w) = 1−


(
σ
2

(
N
N−1

)
− β

)
(N∆− ξσ)−∆(w − β)(

σ
2

(
N
N−1

)
− w

)
(N∆− ξσ)


1

N−1

. (20)

Since we consider only the range ξ ∈
(
(N − 1)∆

σ , N
∆
σ

)
, the CDF in (20) is strictly positive for

w > β, equal to zero at w = β, and implies an upper bound on wage of

w = β +
(
σ

2

(
N

N − 1

)
− β

)(
N − ξ

∆
σ

)
. (21)

Thus, w < σ
2

(
N
N−1

)
since

(
N − ξ

∆
σ

)
∈ (0, 1) in the region of interest and G is a well defined

distribution function for a mixed strategy with support w ∈ [β,w].

Given the demand for experts by all firms, a firm hires ∆
σ if it turns out to outbid at least one

rival firm and ξ − (N − 1)∆
σ otherwise. The payoff for any wage offer w ∈ [β,w] is thus:

(1− (1−G(w))N−1)
[
∆ +

σ

2

(
∆
σ
− N − 2
N − 1

∆
σ
− 1
N − 1

(
ξ − (N − 1)

∆
σ

))
− w∆

σ

]
+(1−G(w))N−1

[
∆ +

σ

2

(
ξ − (N − 1)

∆
σ
− ∆
σ

)
− w

(
ξ − (N − 1)

∆
σ

)]
. (22)

Differentiating the above expression with respect to w gives 0 for all w ∈ (β,w), implying that

the firm is indifferent among any interior wage offer. When the wage offer is either β or w, the
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firm obtains a mass of experts ξ − (N − 1)∆
σ and ∆

σ , respectively, with probability 1. Payoffs are

thus continuous around w = β and w = w, and firms are indifferent between the endpoints of the

distribution of wages and interior wage offers. It remains to check whether there is a profitable

deviation outside of the interval w ∈ [β,w] and whether there is a profitable deviation to a different

quantity of demand for workers. First, it is immediate that there is no value to deviating to a higher

wage offer, as an offer of w = w guarantees that the firm can hire ∆
σ workers with probability 1.

Thus, any higher wage is wasted. A deviation to a wage lower than β implies that the deviating

firm hires zero experts. But, for β < σ
2 , always offering β instead dominates this deviation.

Next, we consider deviations on quantity. Any demand of workers between ξ− (N −1)∆
σ and ∆

σ

makes the deviating firm strictly worse off since its realized expertise is unchanged when it turns

out to offer the lowest wage of all firms, but it is lower otherwise. The workers who are not hired by

the deviating firm now end up working for the firm that made the lowest wage offer, which implies

a decrease in trading profits of σ
2

(
N
N−1

)
times the size of the deviation. But, since wage is lower

than σ
2

(
N
N−1

)
, this is an unprofitable deviation. If the firm instead deviates by demanding fewer

than ξ − (N − 1)∆
σ workers, the firm is then guaranteed to have its demand fullfilled. Therefore,

the firm should choose to offer a wage of β because this is the lowest wage that workers will accept.

But, we know that at a wage of β, which is lower than σ
2 , the firm would strictly prefer to hire

ξ − (N − 1)∆
σ workers rather than fewer workers. Hence, deviating to a demand for less than

ξ − (N − 1)∆
σ workers generates a lower payoff than the payoff the firm gets on the equilibrium

path. This confirms that no deviation on quantity can be profitable at any wage offer.

Thus, the posited G and demand of ∆
σ is a mixed-strategy Nash equilibrium of the game, and

in fact is the only symmetric Nash equilibrium. We have already shown that no symmetric pure-

strategy equilibrium exists. Consequently, uniqueness can be proved using standard arguments that

establish that the wage distribution must be atomless, and the fact that the posited distribution

is the only distribution that satisfies the required indifference over wages. That is, any symmetric

mixed strategy of the game must be the solution to a differential equation given by setting the

derivative of equation (22) with respect to w equal to zero. The lower bound of the distribution of

wage must be β; otherwise, there would be a profitable deviation from the lowest wage offer to β.
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These two conditions imply a unique solution for G, which also pins down a unique equilibrium since

the demand posited is the only possible equilibrium demand.14 Any higher demand would generate

adverse selection losses whenever the demand is satisfied and would imply a reduced payoff. A lower

demand could be improved upon for reasons symmetric to why there is no profitable deviation to

a lower demand from the demand ∆
σ .

These arguments also establish that the pure strategy equilibrium derived for the high and low

supply of workers is the unique symmetric equilibrium. Otherwise, the mixed strategy equilibrium

would have the same form described here. From equation (21), the upper bound on wages in

the region where a pure strategy exists either falls below β, which implies zero employment and

cannot be an equilibrium, or exceeds σ
2

(
N
N−1

)
, which also cannot be an equilibrium since any firm

employing traders at such a wage would prefer to hire zero traders.

The mixed strategy equilibrium has the following characteristics. For ξ close to (N − 1)∆
σ , the

mass of wage offers becomes arbitrarily concentrated around σ
2

(
N
N−1

)
, the pure strategy wage offer

for ξ < (N − 1)∆
σ . Similarly, as ξ converges to N ∆

σ , the mass becomes arbitrarily concentrated

around β, the high expertise wage offer. In between, each firm mixes over the interval of wage offers.

Thus, the equilibrium wage offer is effectively continuous between the two regions over which the

wage is determined as part of a pure strategy Nash equilibrium.

A.2 Formal Description of Labor Market in Section 3

Here, we present a formal description of the allocation of workers in the labor market. We describe

how to calculate the distribution of wages and worker types within a firm for any arbitrary set

of actions taken by firms. These quantities are necessary to calculate the payoffs for any set

of strategies employed by firms. The payoffs simplify greatly both along the equilibrium paths

studied and for all unilateral deviations from these equilibria, so the general expressions do not

play a role in our main analysis. We include them here only for completeness.
14To be strictly formal, we note that there are equilibria that differ from the posited equilibria for events that

occur with zero probability. For example, playing G as posited with a demand of ∆
σ

whenever the wage offer is
greater than β, but submitting a demand between ξ − (N − 1) ∆

σ
and ∆

σ
when the wage offer turns out to be β, is

also an equilibrium. As is standard, we ignore such alternative, but payoff equivalent, equilibria when describing the
uniqueness of our equilibrium.
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Allocation functions γi(h) depend on demand functions xi(h) for firm i and worker type h.

Since each worker type represents only an infinitesimal share of the mass of workers, the quantities

demanded and allocated are meaningful only as they determine the total mass of workers allocated

to a firm and the distribution of worker types within that allocation.

Now, we define rules for the allocation of workers for any wage/demand pairs submitted by

firms. These rules state mathematically the allocation rules mentioned in the main text. They

ensure that all demands that can be satisfied are satisfied, and that when total demand cannot be

satisfied the available supply of workers is allocated evenly among the high demanders. In such

instance, a firm receiving its full allocation must receive weakly less than the partial allocation

going to firms that posted a higher demand and offered the same wage, and firms posting identical

demands and wages must receive identical allocations.

The mass of workers of type less than y allocated to firm i is given by:

∫ y

0
γi(h)ξdh.

where γi(h) is given by:

• If
∑N

j=1 xj(h)1{wj(h)≥wi(h)} ≤ 1, then γi(h) = xi(h). That is, if the total demand for workers

by firms offering a wage greater than or equal to the wage offered by the firm in question

leaves enough of the type of worker to satisfy the firm’s demand, then that firm receives all

the workers it demands.

• If
∑N

j=1 xj(h)1{wj(h)>wi(h)} < 1, but
∑N

j=1 xj(h)1{wj(h)≥wi(h)} > 1

– If we defineNwi(h) as the number of firms offering wi(h) and xj(h) >
1−
∑N
j=1 xj(h)1{wj(h)>wi(h)}

Nwi(h)

for all j such that wj(h) = wi(h), then γi(h) =
1−
∑N
j=1 xj(h)1{wj(h)>wi(h)}

Nwi(h)
.

– Otherwise, ordering the firms j offering wj(h) = wi(h) by xj(h) such that x1 ≤ x2 ≤

. . . xk ≤ . . . , find the largest k such that k is the highest index assigned to a given
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demand and:

1−
∑N

j=1 xj(h)1{wj(h)>wi(h)} −
∑k

j=1 xj(h)
Nwi(h) − k

≥ xk(h).

For j ≤ k under the reordering, γi(h) = xi(h). For j > k, γi(h) is equal to the left-hand

side of the above inequality.

• For all other firms, γi(h) = 0. Supply is completely exhausted by firms offering higher wages,

so these low bidders receive no workers.

In order to calculate firms’ payoffs, we need to be able to calculate the total wages paid to a

worker of type less than y: ∫ y

0
γi(h)wi(h)ξdh.

In equilibrium, there will be at most two levels of wages for the case with κ→ 0, so the calculation

of the wage bill is quite simple. However, the expressions for the distribution of worker types and

wages is necessary to fully specify the payoff functions of the game.

A.3 Proofs of Propositions

Proof of Proposition 1: First, as explained in the body of the paper, the internal optimal

assignment condition in equation (16) needs to be satisfied in equilibrium, hence h∗ = h. And

similar to Section 2, if the demand for an expert expected to be hired as a trader is fully satisfied

for all firms, i.e., xi(h) ≤ 1
N , the wage offered must be no more than σ

2 , since this is exactly what the

trader produces for the firm. But, if the wage is σ
2 or lower, then there is a profitable deviation to

offering a higher wage and demanding more than a mass ξ
N of that type of worker. This deviation

is profitable as long as the wage is less than σ
2

(
N
N−1

)
, so the equilibrium wage schedule for traders

must be:

w∗e =
σ

2

(
N

N − 1

)
, (23)

and includes the defense premium we observed in the model with trading jobs only. With such

wage schedule, it is profitable for a firm to deviate to hiring marginally fewer traders only if

37



it anticipates that other firms would not hire anyone whom the firm in question does not hire.

Thus, in any symmetric equilibrium, the total demand for traders must at least exceed supply, i.e.

x∗(h) > 1
N whenever h < h.

The wage of the surplus creator, on the other hand, turns out to be potentially less than the value

he creates for the firm. If the wage offered to surplus creators is below ∆1(m,m)− 1
N−1∆2(m,m)+

κh, then firms will prefer to hire more workers of the types expected to engage in surplus creation

by paying an infinitesimally higher wage. Assume for now that β is lower than this level, then if

the wage exceeds this level, firms will want to reduce their employment of these workers. However,

if the aggregate demand for workers equals their supply, a firm will have a profitable deviation

unless the wage is the reservation payoff β. Hence, in equilibrium, demands for workers expected

to become surplus creators, i.e., with h ≥ h, must exceed the supply and the wage must therefore

be:

w∗m(h) = ∆1(m,m)− 1
N − 1

∆2(m,m) + κh. (24)

These conjectured equilibrium wages rule out most possible discrete deviations by construction.

First, at these wages hiring significantly more than the equilibrium levels of traders and surplus

creators is not an attractive deviation given the concavity of ∆(·, ·) and the linearity of trading

payoffs. Similarly, if a firm is thinking of hiring fewer surplus creators, the concavity of ∆(·, ·)

and the restriction on the sensitivity of payoffs to own versus counterparty investments make this

deviation strictly suboptimal. Now, given the linear payoff function from trading (as long as

ej ≤ ∆(mi,mj)
σ ), hiring fewer traders could imply that rival firms would hire all these otherwise

unemployed traders and the savings in wages from this deviation would equal the loss in trading

profits. Therefore, if not hiring these traders implies that rival firms will hire them and still

satisfy the efficient trade condition on trading expertise, hiring fewer traders cannot be a profitable

deviation.

However, if hiring fewer traders means that rival firms, who have excess demand for these

workers, will end up with so many traders that the conditions for efficient trade are violated or that

these workers will become surplus creators in rival firms or unemployed, then the deviation can be

profitable. Hence, in equilibrium the demand for workers who become traders, those with h < h,
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must be greater or equal to 1
N−1 , and the resulting level of trading expertise by rival firms cannot

prevent efficient trade, i.e.,

ξ ≤ Nm+ (N − 1)
∆(m,m)

σ
. (25)

This condition rules out the remaining discrete deviations and is more restrictive than the condition

imposed on ξ earlier in the subsection.

In the case where β is greater than the equilibrium wage mentioned above for surplus creators,

firms just pay surplus creators β without changing the allocation of workers. Equilibrium wages

still fall below what surplus creators produce for the firm; wages are depressed by the fact that

experts produce positive externalities when they are hired by other firms. Since a worker would

exit the sector entirely in favor of his reservation payoff if the firm were to pay him a wage lower

than β, then the incentive to decrease wages below β disappears. This holds as long as β ≤ σ
2 ,

which is the parameter range of interest for our model.

Proof of Proposition 2: We start by conjecturing a symmetric, pure strategy equilibrium

with full employment where optimal expertise levels do not reach their adverse selection boundary.

As before, the marginal value of surplus creation must equal the marginal value of trading, hence

h∗ = h. To ensure that no firm deviates from this equilibrium, we must determine the allocation of

workers by all firms after a deviation by one firm. This is the major distinction between this setup

and the earlier one. It is immediate that, if a firm deviates to offering an infinitesimally higher

wage to a small mass of experts of the type deployed as traders by other firms on the equilibrium

path, the deviating firm will deploy the new experts it hires as traders. Furthermore, rival firms

will choose exactly the same level of surplus creation as they would have without the deviation.

Thus, traders must be paid a wage σ
2

(
N
N−1

)
to prevent poaching, as in all the previous setups.

On the other hand, a deviation to hiring a small mass of additional workers who would have

been deployed as surplus creators by other firms results in a reassignment of workers both within

the deviating firm and within the other (N − 1) firms. When the poached surplus creators come

from the interior of [h∗, 1], the deviating firm will assign the poached workers to surplus creation

but will reassign some of the marginal surplus creators to trading. The firms facing the deviation,
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on the other hand, will respond by partially compensating for the lost surplus creators by moving

marginal traders to surplus creation. Defining h̃ as the new threshold for the deviator and ĥ as

the new threshold for the non-deviators, the deviator and non-deviators solve the following two

maximization problems in response to a deviation to poach an additional ε surplus creators from

other firms:

1) For the deviator:

max
h̃

∆(m+ ε− ξ

N
(h̃− h∗),m− ε

N − 1
+

ξ

N
(h∗ − ĥ)) +

σ

2
ξ

N
(h̃− h∗)− ξ

N

∫ h̃

h∗
κhdh+W, (26)

where W is a constant that does not depend on h̃.

2) For each of the (N − 1) non-deviators:

max
ĥ

1
N − 1

∆(m− ε

N − 1
+

ξ

N
(h∗ − ĥ),m+ ε− ξ

N
(h̃− h∗))

+
N − 2
N − 1

∆(m− ε

N − 1
+

ξ

N
(h∗ − ĥ),m− ε

N − 1
+

ξ

N
(h∗ − h̆))

+
σ

2
ξ

N
(ĥ− h∗)− ξ

N

∫ ĥ

h∗
κhdh+ V, (27)

where V is a constant that does not depend on ĥ, and h̆ denotes the reaction of the other non-

deviating firms.

Recalling that ∆12(mi,mj) = 0, we can define ∆̂
′
(m) ≡ ∆1(m,mj) and ∆̂

′′
(m) ≡ ∆11(m,mj)

for all mj . This produces the following system of first-order conditions:

∆̂
′
(m+ ε− ξ

N
(h̃− h∗)) + κh̃ =

σ

2
(28)

∆̂
′
(m− ε

N − 1
+

ξ

N
(h∗ − ĥ)) + κĥ =

σ

2
(29)

From equation (29), we can derive the rate at which ĥ changes with ε in a neighborhood of 0. This
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is given by
dĥ

dε
= −

(
1

N−1∆̂
′′
(m)

ξ
N ∆̂′′(m)− κ

)
. (30)

As κ → 0, then ξ
N
dĥ
dε = − 1

N−1 , meaning that when experts are essentially perfect substitutes for

each other every non-deviating firm responds to poaching by moving the threshold for assigning

workers to surplus creation so as to exactly offset the loss of surplus creators. Consequently, as

κ→ 0 traders and surplus creators get paid the same wage in equilibrium.

For κ > 0, a deviation to hire slightly more surplus creators leads to a partial offsetting of the

loss of surplus creators by non-deviating firms, and thus the discount for surplus creators from the

baseline setup survives partially. Poaching surplus creators rather than traders leads to a decrease

in positive externalities and is thus easier to prevent. As a result, surplus creators’ wages are

adjusted downward to account for the fact that poaching them is not as attractive to rival firms as

poaching traders because poaching surplus creators does not decrease trading expertise as much as

poaching traders (and it also reduces the gains to trade generated by rival firms).

The conditions on wages described here must hold in any symmetric, pure strategy equilibrium,

or a firm will have an incentive to deviate to hiring a slightly different level of experts. We have yet

to rule out larger deviations. A firm may profit by reducing surplus creation sufficiently that the

adverse selection boundary binds for the other firm. Once the adverse selection boundary binds,

workers hired away from the firm deviating to lower employment are not deployed as traders, and

thus the loss in profits from reducing employment decreases for large enough deviations. It is clear,

however, that as long as the supply of workers ξ is sufficiently small relative to the initial level of

gains to trade ∆(0, 0), the equilibrium demands for workers can sufficiently exceed their supply and

no deviation by a single firm can lead to the adverse selection boundary binding for other firms.
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