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Abstract

Distributed logic programming languages, that allow both
facts and programs to be distributed among different nodes
in a network, have been recently proposed and used to declar-
atively program a wide-range of distributed systems, such as
network protocols and multi-agent systems. However, the dis-
tributed nature of the underlying systems poses serious chal-
lenges to developing efficient and correct algorithms for eval-
uating these programs. This paper proposes an efficient asyn-
chronous algorithm to compute incrementally the changes to
the states in response to insertions and deletions of base facts.
Our algorithm is formally proven to be correct in the presence
of message reordering in the system. To our knowledge, this
is the first formal proof of correctness for such an algorithm.

1 Introduction

One of the most exciting developments in computer science
in recent years is that computing has become increasingly
distributed. Both resources and computation no longer re-
side in a single place. Resources can be stored in different
machines possibly around the world, and computation can
also be performed by different machines, e.g. cloud comput-
ing. Since machines usually run asynchronously and under
very different environments, programming computer artifacts
in such frameworks has become increasingly difficult as pro-
grams have to be at the same time correct, readable, effi-
cient and portable. There has therefore been a recent return
to using declarative programming languages, based on Pro-
log and Datalog, to program distributed systems such as net-
works and multi-agent robotic systems, e.g. Network Datalog
(NDlog) [10], MELD [5], Netlog [6], DAHL [11], Dedalus [4].
When programming in these declarative languages, program-

mers usually do not need to specify how computation is done,
but rather what is to be computed. Therefore declarative pro-
grams tend to be more readable, portable, and orders of mag-
nitude smaller than their imperative counterpart.

Distributed systems, such as networking and multi-agent
robotic systems, deal at their core with maintaining states by
allowing each node (agent) to compute locally and then propa-
gate its local states to other nodes in the system. For instance,
in routing protocols, at each iteration each node computes lo-
cally its routing tables based on information it has gained so
far, then distributes the set of derived facts to its neighbors.
We can specify these systems as distributed logic programs,
where the base facts as well as the rules are distributed among
different nodes in the network.

Similarly to its centralized counterpart, one of the main
challenges of implementing these distributed logic programs is
to efficiently and correctly update them when the base facts
change. For distributed systems, the communication costs due
to updates also need to be taken consideration. For instance,
in the network setting, when a new link in the network has
been established or an old link has been broken, the set of
derived routes need to be updated to reflect the changes in
the base facts. It is impractical to recompute each node’s state
from-scratch when changes occur, since that would require all
nodes to exchange their local states including those that have
been previously propagated. For example, in the path-vector
protocol used in Internet routing, recomputation from-scratch
would require all nodes to exchange all routing information.

A better approach is to maintain the state of distributed
logic programs incrementally. Instead of reconstructing the
entire state, one only modifies previously derived facts that
are affected by the changes of the base facts, while the remain-
ing facts are left untouched. For typical network topologies,
whenever a link update happens, incremental recomputation
requires less bandwidth and results in much faster protocol



convergence times when compared to recomputing a protocol
from scratch.

This paper develops algorithms for incrementally maintain-
ing recursive logic programs in a distributed setting. Our algo-
rithms allow asynchronous execution among agents. No agent
needs to stop computing because some other agent has not
concluded its computation. Synchronization requires extra
communication between agents, which comes at a huge per-
formance penalty. In addition, we also allow update messages
to be received out of order. We do not assume the existence of
a coordinator in the system, which matches the realty of dis-
tributed systems. Finally, we develop techniques that ensure
the termination of updates even in the presence of recursive
logic programs.

More concretely, we propose an asynchronous incremen-
tal logic programming maintenance algorithm, based on the
pipelined semi-naive (PSN) evaluation strategy proposed by
Loo et al. [10]. PSN relaxes the traditional semi-naive (SN)
evaluation strategy for Datalog by allowing an agent to change
its local state by following a local pipeline of update messages.
These messages specify the insertions and deletions scheduled
to be performed to the agents’ local state. When an update is
processed, new updates may be generated and those that have
to be processed by other agents of the system are transmitted
accordingly.

We discovered that existing PSN algorithms [10, 9] may
produce incorrect results if the messages are received out of
order. We formally prove the correctness of our PSN algo-
rithm, which is lacking from existing work. What makes the
problem hard is that we need to show that, in a distributed,
asynchronous setting, the state computed by our algorithm is
correct regardless of the order in which updates are processed.
Unlike prior PSN proposals [10, 9], our algorithm does not
require that message channels be FIFO, which is for many
distributed systems an unrealistic assumption.

Guaranteeing termination is another challenge for develop-
ing an incremental maintenance algorithm for distributed re-
cursive logic programs. Typically, in a centralized synchronous
setting, algorithms, such as DRed [7], guarantee the termina-
tion of updates caused by insertion by maintaining the set of
derivable facts, and discarding new derivations of previously
derived facts. However, to handle updates caused by deletion
properly, DRed [7] needs to first delete facts caused by deletion
of base facts, then re-derive any deleted fact that has an alter-
native derivation. Re-derivation incurs communication costs,
which degrade the performance in a distributed setting. This
argues for maintaining the multiset of derivable facts, where
no re-derivation of facts is needed, since nodes keep track of
all possible derivations for any fact. However, termination

is no longer guaranteed, as cycles in the derivation of recur-
sive programs allow facts to be supported by infinitely many
derivations.

To tackle this problem, we adapt an existing centralized
solution [12] to distributed settings. For any given fact, we
add annotations containing the set of base and intermediate
facts used to derive that fact. These per-fact annotations are
then used to detect cycles in derivations. We formally prove
that in a distributed setting, the annotations are enough to
detect when facts are supported by infinitely many derivations
and guarantee termination of our algorithm.

This paper makes the following technical contributions, af-
ter introducing some basic definitions in Section 2:

e We propose a new PSN-algorithm to maintain distributed
logic programs incrementally (Section 3). This algorithm only
deals with distributed non-recursive logic programs. (Recur-
sive programs is dealt in Section 5.)

e We formally prove that PSN is correct (Section 4). In-
stead of directly proving PSN maintains distributed logic pro-
grams correctly, we construct our proofs in two steps. First,
we define a synchronous algorithm based on SN evaluations,
and prove the synchronous SN algorithm is correct. Then, we
show that any PSN execution computes the same result as the
synchronous SN algorithm.

o We extend the basic algorithm by annotating each fact with
information about its derivation to ensure the termination of
maintaining distributed states (Section 5), and prove its cor-
rectness.

e We point out the limitations of existing maintenance algo-
rithms in a distributed setting where channels are not neces-
sarily FIFO (Section 6) and comment on related work (Section
7

Finally, we conclude with some final remarks in Section 8.
All proofs appear in the Appendix.

2 Distributed Datalog

We present Distributed Datalog (DDlog), which extends Dat-
alog programs by allowing Datalog rules to be distributed
among different nodes. DDlog is the core sublanguage com-
mon to many of the distributed Datalog languages, such as
NDiog [10], MELD [5], Netlog [6], and Dedalus [4]. Our algo-
rithms maintain the states for DDlog programs.

2.1 Syntax and Evaluation
Syntax. Similar to Datalog programs, a DDlog pro-

gram consists of a (finite) set of logic rules of the form
h(t) := bi(t1),...,bu(t,), where the commas are interpreted



as conjunctions and the symbol :- as reverse implication. Fol-
lowing [16], we assume a finite signature of predicate and con-
stant symbols, but no function symbols. A fact is a ground
atomic formula. For the rest of this paper, we use fact and
predicate interchangeably.

We say that a predicate p depends on ¢ if there is a rule
where p appears in its head and ¢ in its body. The depen-
dency graph of a program is the transitive closure of the de-
pendency relation using its rules. We say that a program is
(non)recursive if there are (no) cycles in its dependency graph.
We classify the predicates that do not depend on any predi-
cates as base predicates (facts), and the remaining predicates
as derived predicates.

To allow distributed computation, DDlog extends Datalog
by augmenting its syntax with the location operator e [10],
which specifies the location of a fact. The following DDlog
program computes the reachability relation among nodes:

rl: reachable(@S,D)
r2: reachable(@S,D)

:- 1ink(@S,D).
:— 1ink(@S,Z), reachable(@Z,D).

It takes as input link(@S,D) facts, each of which represents
an edge from the node itself (S) to one of its neighbors (D).
The location operator @ specifies where facts are stored. For
example, link facts are stored based on the value of the 8
attribute.

Distributed Evaluation. Rules ri-r2 recursively derive
reachable(@S,D) facts, each of which states that the node s is
reachable from the node D. Rule r1 computes one-hop reach-
ability, given the neighbor set of S stored in 1link(@s,D). Rule
r2 computes transitive reachability as follows: if there exists
a link from S to Z, and the node D is reachable from z, then S
can also reach D.

In a distributed setting, initially, each node in the system
stores the link facts that are relevant to its own state. For
example, the fact 1ink(@2,4) is stored at the node 2. To com-
pute all reachability relations, each node runs the exact same
copy of the program above concurrently. Newly derived facts
may need to be sent to the corresponding nodes as specified
by the @ operator.

Rule localization. As illustrated by the rule r2, the atomic
formulas in the body of the rules can have different location
specifiers indicating that they are stored on different nodes.
To apply such a rule, facts may need to be gathered from sev-
eral nodes, possibly different from where the rule resides. To
have a clearly defined semantics of the program, we apply rule
localization rewrite procedure as shown in [10] to make such
communication explicit. The rule localization rewrite proce-
dure transforms a program into an equivalent one (called lo-
calized program) where all elements in the body of a rule are

located at the same location, but the head of the rule may
reside at a different location than the body atoms. This pro-
cedure improves performance by eliminating the need of un-
necessary communication among nodes, as a node only needs
the facts locally stored to derive a new fact. For example, the
followings two rules are the localized version of r2:

r2-1: reachable(@S,D) :- 1ink(@S,Z), aux(@S,Z,D).
r2-2: aux(@S,Z,D) :- reachable(@Z,D), co-1link(@Z,S).

Here, the predicate aux is a new predicate: it does not
appear in the original alphabet of predicates and the fact
co-link(@Z,8) is true if and only if 1ink(es,z) is true. The
predicate co-link(@Z,S) is used to denote that the node z
knows that the node S is one of its neighbors. As specified in
the rule r2-1, these predicates are used to inform all neighbors,
S, of node Z that the node Z can reach node D. It is not hard
to show, by induction on the height of derivations, that this
program is equivalent to the previous one in the sense that a
reachable fact is derivable using one program if and only if
it is derivable using the other. For the rest of this paper, we
assume that such localization rewrite has been performed.

2.2 Multiset Semantics

The semantics of DDlog programs is defined in terms of the
(multi)set of derivable facts (least model). We call such a
(multi)set, the state of the program. In database community,
it is called the materialized view of the program. For instance,
in the following non-recursive program, p, s, and t are derived
predicates and u, q, and r are base predicates.
{p :-s,t,r; s :-q; t:-u; q:-; u:-}

The (multi)set of all the ground atoms that are derivable from
this program, is {s, t, q, u}. For this example, each fact
is supported by only one derivation and therefore the same
state is obtained whether the state is the set, or the multiset
of derivable facts. If we add, the rule s :- u to this pro-
gram, then the state when using the multiset semantics of the
resulting program would change to {s, s, t, q, u} where s
appears twice. This is because there are two different ways
to derive s: one by using q and the other by using u. Our
choice of multiset-semantics is essential for correctness, which
we discuss in detail in Section 6.

2.3 Incremental State Maintenance

Changes to the base predicates of a DDlog program will change
its state. The goal of this paper is to develop a correct asyn-
chronous algorithm that incrementally maintains the state of



DDlog programs as updates occur in the system. The main
idea of the algorithm is to first compute only the changes
caused by the updates to the base predicates, then apply the
changes to the state. For instance, when a base fact is inserted,
the algorithm computes all the facts that were not in the state
before the insertion, but are now derivable. Similarly, when
a deletion occurs, the algorithm computes all the facts that
were in the state before the deletion, but need to be removed.
We introduce notations for defining such an algorithm here,
and we formally define our algorithms and prove them correct
in the next few sections starting from Section 3.

We denote an update as a pair (U, p(t)), where U is either
+, denoting an insertion, or -, denoting a deletion, and p(f)
is a ground fact. We call an update of the form (+,p(Z)) an
insertion update; and (-, p(t)) a deletion update. We write U
to denote a multiset of updates. For instance, the following
multiset of updates

U= {<+7 Q(@lv d)>’ <_a Q(@2’ a)>7 <_a Q(@2’ a)>})

specifies that two copies of the fact (@2, a) should be deleted
from node 2’s state, while one copy of the fact ¢(el, d) should
be inserted into node 1’s state.

We use W as the multiset union operator, and \ as the mul-
tiset minus operator. We write P to denote the multiset of
ground atoms of the form p(Z) (atoms whose predicate name
is p), and AP to denote the multiset of updates to predicate
p. We write P” to denote the updated multiset of predicate
p based on AP. PY can be computed from P and AP by
union P with all the facts inserted by AP and minus the facts
deleted by AP. For ease of presentation, we use the predicate
name Ap in places where we need to use the updates, and
p¥ in places where we need to use the updated multiset. For
instance, if the multiset of ¢ is {q(a), ¢(a),q(b), q(c)} and we
update it with & shown above, the resulting multiset (Q*) for

v is {q(b), q(c), q(d)}.
Rules for computing updates. The main idea of comput-
ing updates of a DDlog program given a multiset of updates
to its base predicates is that we can modify the rules in the
corresponding program to do so. Consider, for example, the
rule p :- b1,b2 whose body contains two elements. There are
the following three possible cases that one needs to consider
in order to compute the changes to the predicate p: Ap :-
Aby, b2, Ap :- by, Aba, and Ap :- Aby, Aba. The first two just
take into consideration the changes to the predicates b; and
by alone, while the last rule uses their combination. We call
these rules delta-rules.

Following [1, 16], we can simplify the delta-rules above by
using the state of p¥, as defined above. The delta-rules above
are changed to Ap :- Abi,b2 and Ap :- by, Abe, where the

second clause encompasses all updates generated by changes
to new updates in both b; and b; as well as only changes to
bs.

Generalizing the notion of delta-rules described above, for
each rule h(f) :- bi(£1),...,bn(f,) in a program, we create the
following delta insertion and deletion rules, where 1 < i < n:

), Abi(), bbﬂ@ )53 bn(tn)
)y Abi(ti), biy1(tiv1), .., bn(tn)

The first rule applies when Ab; is an insertion, and the second
one applies when Ab; is a deletion.

By distinguishing predicates with v and without v one does
not derive the same derivation twice [7].

—

h(t)) : —bY (t1), ..,3_1@-,
R(B)) : =bY (1), ..., bY 1 (ti1

SHLSH

3 Basic PSN Algorithm for Non re-
cursive Programs

We first present an algorithm for incremental maintenance of
distributed non-recursive logic programs. We do not consider
termination issues in the presence of recursive programs, which
allows us to focus on proving the correctness of pipelined ex-
ecution. In Section 5, we will present an improved algorithm
that provably ensures termination of recursive programs.

3.1 System Assumptions

Our model of distributed systems makes two main assump-
tions, which are realistic for many systems, such as in net-
working and systems involving robots.

The first assumption, following [10], is the bursty model:
once a burst of updates is generated, the system eventually
quiesces (does not change) for a time long enough for all the
nodes to reach a fixed point. Without the bursty model, the
links in a network could be changing constantly. Due to net-
work propagation delays, no routing protocol would be able to
update routing tables to correctly reflect the latest state of the
network. Similarly, if the environment where a robot is situ-
ated changes too quickly, then the robot’s internal knowledge
of the world would not be useful for it to construct a successful
plan. The bursty model can be seen as a compromise between
completely synchronized models of communication and com-
pletely asynchronous models.

The second assumption is that messages are never lost dur-
ing transmission. Here, we are not interested in the mecha-
nisms of message transmission, but we assume that any mes-
sage is eventually received by the correct node specified by the
location specifier @. Differently from previous work [9, 10], it
is possible for messages to be reordered in our model. We do
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Figure 1: A simple network topology. A dashed arrow indi-
cates an edge that is inserted, while a curly arrow an edge that
is deleted. For instance, the edge from d to f is added, while
the edge from a to b is deleted.

not assume that a message that is sent before another mes-
sage has to necessarily arrive at its destination first. There
are existing protocols which acknowledge when messages are
received and have the source nodes resend the messages in
the event of acknowledgments timeouts, hence enforcing that
messages are not lost. Message reordering manifests itself in
several practical scenarios. For instance, in addition to re-
ordering of messages buffered at the network layer, network
measurements studies have shown that packets may traverse
different Internet paths for any two routers due to ISP poli-
cies [14]. In a highly disconnected environment such as in
Robotics [5], messages from a given source to destination may
traverse different paths due to available network connectivity
during the point of transmission of each message.

3.2 PSN Algorithm

We propose Algorithm 1 for maintaining incrementally dis-
tributed states given a DDlog program. Algorithm 1 enhances
the original pipelined evaluation strategy [10]. Since all facts
are stored according to the @ operator, we can use a single
multiset /C containing the union of states of all the nodes in
the system. It is clear from the @ operator where the data is
stored. Similarly, we use a single multiset of updates U con-
taining the updates that are in the system, but that have not
yet been processed by any node.

Algorithm 1 starts with a multiset of updates U and the
multiset  containing two copies of the state of all nodes in
the system, one marked with v and another without v (see
Section 2.3). The execution of one node of the system is spec-
ified by one iteration of the while-loop in Algorithm 1. In
line 2, an update is picked non-deterministically from U to be
processed next. However, only deletion updates whose corre-
sponding facts are present in I are allowed to be picked. This
is specified by the operation removeElement(K), which avoids
facts to have negative counts. Once an update is picked, the v
table is updated according to the type of update in lines 3-6.
In lines 7-12, the picked update is used to fire delta-rules and
create new updates that are then inserted into the multiset

Algorithm 1 Basic pipelined semi-naive algorithm.

1: while U.size > 0 do

2 0 < U.removeElement(K)

3 if § is an insertion update (+,p(#))

L PV =Pu{pD)

5: if § is a deletion update (-, p(Z))

6: PY =P\ {p(H)}

7 if § is an insertion update (+, b(f))

8 execute all insertions delta-rules for b:

9 (+,h)

= b, b, Ab b, by
10: if § is a deletion update (-, b(Z))
11: execute all deletion delta-rules for b:
12: <_7h’> B b’ljy"'vbz"jflyAb7bi+1a'"7b7l
13:  for all derived insertion (deletion) updates v do
14: U .insert(u)
15: end for
16: if § is an insertion update (+, p(%))
17: P=Pu{p{)}
18: if § is a deletion update (-, p(%))
19 P=P\{p(D)}

20: end while

(lines 13-15). This last step intuitively corresponds to a node
sending new messages to other nodes, even to itself. Finally
in the remaining lines, the changes to the state without v are
committed according to the update picked, making the table
with v and without v have the same elements again and ready
for the execution of the next iteration.

We prove that Algorithm 1 terminates for non-recursive
DDlog programs.

Lemma 1 For non-recursive DDlog programs, PSN ezecu-
tions always terminate.

The idea behind the proof is that since the dependency graph
of non-recursive programs is a DAG (does not have cycles),
whenever an update is picked and used to fire delta-rule, all
updates created involve facts whose predicate names appear
necessarily in a position “higher” in the dependency graph.
Eventually, the set of updates will be empty since the depen-
dency graph has a bounded height. Thus, the algorithm fin-
ishes. This argument is valid regardless of the order in which
updates are picked.

An Example Execution. We illustrate an execution of Al-
gorithm 1 using the topology in Figure 1 and the following
program adapted from [7], which specifies two and three hop
reachability:!

hop(@X,Y) :- 1link(@X,Z), 1link(@Z,Y)
tri hop(@X,Y) :- hop(@X,Z), 1ink(@Z,Y)

ITechnically, the given program passes first through the rule local-
ization procedure described in Section 2. However, for the purpose of
illustration, we use instead this un-localized program.



Here the only base predicate is 1link. Furthermore, assume
that the state is as given below, where we elide the @ symbols.
For example, the facts 1ink(@a,b) and hop(@a,c) are in the
state. Also at the beginning, the multiset of predicates with
v is the same as the multiset of predicates without v, so we
elide the former.

Link = {link(a,b), link(a,d), link(d,c), link(b,c),
link(c,h), link(f,g)}

Hop = {hop(a,c), hop(a,c), hop(d,h), hop(b,h)}

Tri-hop = {tri-hop(a,h), tri-hop(a,h)}

In the state above some facts appear with multiplicity greater
than one, which means that there are more than one derivation
supporting such facts. Assume as depicted in Figure 1 that
there is the following changes to the set of base facts link:

U = {(+1ink(d,f)), (+, link(a,f)), (-,1link(a,b))}

Algorithm 1 first picks an update non-deterministically, for
instance, the update u = (+,1ink(a,f)), which causes an in-
sertion of the fact 1ink(a,f) to the table marked with v. Now
Link” is as follows:

Link” = {1ink"”(a,b), link”(a,d), link”(d,c),
link” (b,c), link”(c,h), link”(f,g),
link” (a,f)}

Then, u is used to propagate new updates by firing rules,
which creates a single insertion update: (+,hop(a,g)). Finally,
the change due to the update w is committed to the table
without v. The new multiset of updates and the new multiset
of the link facts are as follows:

U = {(+,hop(a,g) ), (+,1ink(d,£)), (-, link(a,b))}
Link = {link(a,b), link(a,d), link(d,c), link(b,c),
link(c,h), link(f,g), link(a,f)}

Asynchronous Execution. As previously mentioned, in a
distributed setting, agents need to run as asynchronously as
possible, since synchronization among agents involves unde-
sired communication overhead.

Synchronized algorithms proposed in the literature admit
the following invariant: in an iteration one only processes up-
dates that insert or delete facts that are supported by deriva-
tions of some specific height. This is no longer the case for
Algorithm 1: it picks updates non-deterministically. In the ex-
ample above, one does not necessarily process all the updates
involving 1ink facts before processing hop or tri_hop facts. In
fact, in the next iteration of Algorithm 1, a node is allowed
to pick the update (+, hop(d,g)) although there are insertions
and deletions of link facts still to be processed. However, this

asynchronous behavior makes the correctness proof for Algo-
rithm 1 much harder and forces us to proceed our correctness
proofs quite differently.

Algorithm 1 sequentializes the execution of all nodes: in
each iteration of the outermost while loop, one node picks an
update in its queue, fires all the delta-rules and commits the
changes to the state, while other nodes are idle. However this
is only for the convenience of constructing the proofs of cor-
rectness. In a real implementation, nodes run Algorithm 1
concurrently. The correctness of this simplification is justified
by Theorem 2 below. Intuitively, the localization procedure
described in Section 2 ensures that all the predicates in the
body are stored at the same location, which implies that up-
dates on two different nodes can proceed independently, based
only on their local states respectively.

Consider, as an illustrative example, the following localized
program with two clauses:

(1) p(eY) :- s(eX,Y)

(2) s(eY, X) :- g(eX),v(eX,Y).

Assume that there are two nodes n; and ny and that the initial
state and set of updates are, respectively, {g(en;),v(ens,n2)}
and {(+, s(eng,n1)), (-,q(en))}. If both nodes execute con-
currently, then both updates are picked and used to fire the
rules of the program. However, since the programs are local-
ized, there is no need for the nodes n; and ny to communicate
between each other during the execution of an iteration of Al-
gorithm 1: they only need to access their own internal states.
Node n; will fire a deletion delta-rule of rule (2) using the up-
date (-, g(en1)) and the fact v(eny,ns), which are at node n;.
The update (-, s(eny, n1)) is then created and sent to node na,
while the fact g(en;) is deleted from nq’s local state. Similarly,
the node ng will fire an insertion delta-rule of rule (1) using
the update (+,s(@ng,n1)) and creating the insertion update
(+,p(eny)). Since the operations involved in the iterations do
not interfere with each other, this concurrent execution can be
replaced by a sequential execution where the node n; executes
its iteration before the node ns and the resulting final state is
the same.

For simplicity Theorem 2 only considers the case with two
nodes running concurrently. The general case where more
than two nodes running concurrently can be proved in a sim-
ilar fashion.

Theorem 2 Let P be a localized DDlog program, and let Wi
and Ur be an initial state and an initial multiset of updates.
Let Wg and U be the state and the multiset of updates re-
sulting from executing at different nodes two iterations, i1 and
12, of Algorithm 1 concurrently, where w.l.o.g. i1 starts before
or at the same time as ia. Then the same state and multi-
set of updates, Wg and Up, are obtained after executing in a



sequence i1 and then is.

4 Correctness of Basic PSN

The correctness proof relates the distributed PSN algorithm
(Algorithm 1) to a synchronous SN algorithm (Algorithm 2),
whose correctness is easier to show. After proving that Al-
gorithm 2 is correct, we prove the correctness of Algorithm 1
by showing that an execution using distributed PSN can be
transformed into an execution using SN.

4.1 Operational Semantics for Algorithm 1

To prove the correctness of Basic PSN, we first formally define
the operational semantics of Algorithm 1 in terms of state
transitions.

Algorithm 1 consists of three key operations: pick, fire and
commit. We call them basic commands, and an informal de-
scription are given below:

pick — A node picks non-deterministically one update, u,
that is not a deletion of a fact that is not (yet) in the state,
from the multiset of updates ¢/. If u is an insertion of predicate
p, p¥ is inserted into the updated state P¥; otherwise if it is a
deletion update, p” is deleted from P”. This basic command
is used in lines 2-6 in Algorithm 1.

fire — This command is used to execute all the delta-rules
that contain Ap in their body, where (U, p(#)) has already
been selected by the pick command. After a rule is fired, the
derived updates from firing this rule are added to the multiset
U of updates. This basic command is used in lines 7-15 in
Algorithm 1.

commit — Finally, after an update u has already been both
picked and used to fire delta-rules, the change to the state
caused by u is committed: if u is an insertion update of a fact
p, p is inserted into the state P; otherwise, if it is a deletion
update of p, p is deleted from the state P. This basic command
is used in lines 16-19 in Algorithm 1.

A configuration s is a tuple (IC,U, P, E), where K is a multi-
set of facts, and U, P and £ are all multisets of updates. More
specifically, at each iteration of the execution, K is a snapshot
of the derivable facts, and it contains both the multiset (P)
and the updated multiset (P¥). The multiset U contains all
the updates that are yet to be picked for processing; P con-
tains the updates that have been picked and are scheduled to
fire delta-rules; and finally £ contains the updates that have
been already used to fire delta-rules, but not yet committed
into the state. At the end of the execution, U, P and £ should
be empty signaling that all updates have been processed, and
KC is the final state of the system.

The five functions depicted in Figure 2, that take a
configuration and an update and return a new configuration,
specify the semantics of the basic commands. The semantics
of the pick command is specified by pick;, when the update is
an insertion; and pick,, when the update is a deletion. The
pick command moves, an update (U, p(t)) from U to P, and
updates the state in K: p¥(f) is inserted into K if U is +; it
is deleted from K if U is -. Note that the rule pickp only
applies when the predicate to be deleted actually exists in K.
Because messages may be re-ordered, it could happen that a
deletion update message for predicate p arrives before p is de-
rived based on some insertion updates. In an implementation,
if such an update happens to be picked, we simply put it back
to the update queue, and pick another update.

The rule fire specifies the semantics of command fire, where
we make use of the function firRules. This function takes an
update, (U, p(t)), the current state, K, and the set of rules, R,
as input and returns the multiset of all updates, F, generated
from firing all delta-rules that contain Ap in their body. The
multiset F is then added to the multiset ¢/ of updates to be
processed later.

Finally, the last two rules, commit; and commitp, specify
the operation of committing the changes to the state. Similar
to the rules for pick, they either insert into or delete from the
updated multiset P a fact p(t).

A computation run of a program R is a valid sequence of ap-
plications of the functions defined in Figure 2. We call the first
configuration of a computation run the initial configuration
and its last configuration the resulting configuration.

A single iteration of Algorithm 1, called PSN-iteration, is
a sequence of these three commands. In particular, only one
update is picked from U (lines 2-6), and used to fire delta-rules
(lines 7-15), and then the change to the state (lines 16-19) is
committed. For instance, in the example execution described
in Section 3.2. The initial configuration is (K,U, (), B), where
K and U are the same initial set of facts and updates shown
in Section 3.2. Then the update u = (+,1link(a,£)) from U is
picked using the rule pick;. The resulting configuration is the
following, where the update u is moved to the set of picked
updates:

(KW {1ink" (a,£) },U \ {u}, {u},0).

Then the fire rule is applied and creates the single update v’ =
(+,hop(a,g) ), which is added to the set of updates, obtaining:

(K W {1ink” (a,0) }, U\ {u}) W {u'}, 0, {u}).

Finally the commit rule is applied and the state is updated
yielding:

(K W {1ink” (a,£),link(a,£) }, (U \ {u}) W {u'},0,0).
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Figure 2: Definition for the Basic Commands. Here S is the configuration (IC,U, P, E).

which corresponds to the execution shown in Section 3.2,
where the facts 1ink” (a,f) and link(a,f) are added, and the
update u is removed from the original set of updates, while
the propagated update u’ is added to it.

The intuition above is formalized by using the more general
notion of complete-iterations. Intuitively, a complete-iteration
is a sequence of picks, fires and updates that use the same set
of updates. A PSN-iteration is one special case of a complete-
iteration where only one update is picked. In the example
above the update used was (+,1link(a,f)). A PSN execution
is a sequence of PSN-iterations.

Definition 3 (Complete-iteration)

A computation run is a complete-iteration if it can be parti-
tioned into a sequence of transitions using the pick commands
(pick; and pickp,), followed by a sequence of transitions using
the fire command, and finally a sequence of transitions using
the commit command, such that the multiset of updates, T,
used by the sequence of pick; and pick, transitions is the same
those used by the sequence of fire and those used by commit
transitions.

Definition 4 (PSN-iteration) A complete iteration is a
PSN-iteration if the multiset of updates used by the pick com-
mands contains only one update.

Definition 5 (PSN execution) We call a computation run
a PSN execution if it can be partitioned into a sequence of
PSN-iterations, and in the last configuration U, P and & are
empty.

4.2 Correctness of SN Evaluations

We define an incremental maintenance algorithm based on
synchronous semi-naive (SN) evaluation. This algorithm it-
self is not practical for any real implementation because of
high synchronization costs between nodes. We only use it as
an intermediary step to prove the correctness of Algorithm 1.

Algorithm 2 Basic semi-naive algorithm (multiset semantics).
1: while U.size > 0 do
2:  for all insertion updates u = (+, h(f)) in U do
3 I, .insert(h(t))
4: end for
5:  for all deletion updates u = (-
6.
7
8

h(#)) in U do
Dy, .insert(h(t))
end for

: for all predicates p do

9: PY <+ (PWIp)\ Dy
10: end for
11: while U.size > 0 do
12: d + U.removeElement(K)
13: if § is an insertion update (+, b(%))
14: execute all insertions delta rules for b:
15: (+,hy = bY,..., b} 17Ab bit1,.-.,bn
16: if § is a deletion update (-, b(%))
17: execute all deletion delta rules for b:
18: (=, h) = by, ..., bi_1,Abbit1,...,bn
19: for all derived insertion (deletion) updates u do
20: UY .insert(u)
21: end for

22: end while

23: U < UY .flush

24: for all predicates p do

25: P+ (PWIp)\ Dp; Ip < 0;Dp <0
26: end for

27: end while

4.2.1 A Synchronous SN Algorithm

Algorithm 2 is a synchronous SN algorithm. There, all the
updates in U (lines 2 — 10) are picked to fire delta-rules (lines
11-22) creating new updates, which are inserted in ¢ (line
23), and then the changes are committed to the state (lines
24-26), where the operation flush in line 23 denotes that all
the elements from U* are moved to U.

The main difference between Algorithm 1 and Algorithm 2
is that in Algorithm 2, all nodes are synchronized at the end of
each iteration. In one iteration, all updates at the beginning
of the iteration are processed by the corresponding nodes and
updates created are sent accordingly. However, the updates
that are created are not processed until the beginning of the
next iteration. Nodes need to synchronize with one another so



that no node is allowed to start the execution of the next iter-
ation if there are some nodes that have not finished processing
all the updates in its local queue in the current iteration or
have not received all the updates generated by other nodes in
the current iteration. On the other hand, Algorithm 1 allows
each node to pick and process any one update available at the
time of the pick.

For instance, if we apply SN to the same example discussed
in Section 3.2, then all updates in U:

U = {(+1ink(d,f)), (+, link(a,f)), (-,1link(a,b))}

are necessarily picked and are used to fire delta-rules creating
the following set of new updates:

{<+,hop(a,g)>, <+,h0p(d,g)>7 <+,hop(a,f)>,
(-,hop(a,c)), (-, hop(a,h))}

At the end of the while-loop, the updates picked are commit-
ted in the state. The facts 1link(d,f) and link(a,f) are in-
serted into the state, while the fact 1ink(a,b) is deleted from
it. The iteration repeats by using all the new updates created
above.

Interestingly, the operational semantics for Algorithm 2 can
also be defined in terms of the three basic commands: pick,
fire, and commit. In particular an iteration of the outermost
loop in Algorithm 2 corresponds exactly to an SN-iteration.
Differently from PSN-iterations, where only a single update
is picked at a time, SN-iterations are complete-iterations that
pick all updates.

Definition 6 (SN-iteration) A complete-iteration is an
SN-iteration if the multiset of updates used by the pick com-
mands contains all updates in the initial configuration U.

Definition 7 (SN execution) We call a computation run
an SN execution if it can be partitioned into a sequence of
SN-iterations, and in the last configuration U, P and &€ are
empty.

4.2.2 Correctness Statement

In this section we prove that the Algorithm 2 is correct. For
this we need to introduce the following set of definitions.

We keep track of the multiplicity of facts by distinguishing
between different occurrences of the same fact in the following
form: we label different occurrences of the same base fact with
different natural numbers and label each occurrence of the
same derived fact with the derivation supporting it. Consider,

for example, the program from Section 2.2:
{p :- s,t,r; s

- q; s - u; t :-u; q :i-; u :-}.

The state of the above program using multiset-semantics is
actually interpreted in our proofs as the set of annotated facts:

{57 1% g ')

The two occurrences of s are distinguished by using the
derivations trees =; and Z3. The former is a derivation tree
with a single leaf q* and the latter is a derivation tree with a
single leaf u'. We elide these annotations whenever they are
clear from the context. These annotations are only used in our
proofs as a formal artifact to distinguish different occurrences
of facts.

We use the following notation throughout the rest of this
section: given a multiset of updates U, we write U* to denote
the multiset of facts in Y. Given a program P, let V be the
state of a program P given the set of base facts E, and let V¥
be the state of P given the set of facts F W I* \ D, where I
and D are, respectively, a multiset of insertion and deletion
updates of base facts. We assume that D! C Ew I*.

We write A to denote the multiset of insertion and deletion
updates of facts such that V" is the same multiset resulting
from applying the insertions and deletions in A to V. We write
Alz] to denote the multiset of insertion and deletion updates
of facts in A such that (U,p(f)) € Al if and only if p(#)
is supported by a derivation of height ¢. In an execution of
Algorithm 2, we use U[i] to denote the multiset of updates
at the beginning of the ' iteration, and U[i, j] to denote the
union of all multisets U[k] such that ¢ < k < j.

Continue our example, the state of this program is the multi-
set of annotated facts V = {s%1,552,t53 q!, u'}. If we, for ex-
ample, delete the base fact u', then the resulting state changes
to V¥ = {s%1,q'}, where the difference set is

A:{<—,u1>,<—, E2>v<_7t33>} _ _
A[O] - {<—,u1>}, and A[H - {<_7S;2>7 <_7t;3>}'

Before proving the correctness of Algorithm 2, we formally
define correctness, which is similar to the definition of eventual
consistency used by Loo et al. [10] in defining the correctness
of declarative networking protocols.

Definition 8 (Correctness) We say that an algorithm cor-
rectly maintains the state if it takes as input, a program P, the
state V' based on base facts E, a multiset of insertion updates
I and a multiset of deletion updates D, such that D* C EWIt;
and the resulting state when the algorithm finishes is the same
as V¥, which is the state of P given the set of facts EWI'\ Dt.

In particular, we can prove that Algorithm 2 is indeed cor-
rect according to the definition above. It corresponds to main-
tenance algorithms that use semi-naive strategies. The proofs



which can be found in the Appendix are quite interesting. It
is non-trivial to find the invariants needed for the proofs.

Theorem 9 (Correctness of SN) Given a non-recursive
DDlog program P, a multiset of base facts, E, a multiset of
updates insertion updates I and deletion updates D to base
facts, such that D' C EW I, Algorithm 2 correctly maintains
the state of the program when it terminates.

4.3 Relating SN and PSN executions

Our final goal is to prove the correctness of PSN. With the cor-
rectness result of Algorithm 2 in hand, now we are left to prove
that Algorithm 1 computes the same result as Algorithm 2.
At a high-level we would like to show that given any PSN
execution, we can transform it into an SN execution without
changing the final result of the execution. This transformation
requires two operations: one is to permute two PSN-iterations
so that a PSN execution can be transformed into one where
the updates are picked in the same order as in an SN exe-
cution; the other is to merge several PSN-iterations into one
SN-iteration. We need to show that both of these operations
do not affect the final configuration of the execution.

psn

Definitions. Let s % (U)s and s —> (U)s denote, re-
spectively, an execution from configuration s to § using an
SN iteration and a PSN iteration. We annotate the updates
used in the iterations in the parenthesis after the arrow. We
write s == ¢ to denote an execution from s to s using multi-
ple SN iterations, when a is sn; or PSN iterations, when a is
psn. Let s => ¢ denote an execution from s to ¢ using multi-
ple complete iterations. We write o1 ~» o9 if the existence of
execution o implies the existence of execution oy. We write
01 e~ 02 when o1 ~ 09 and o3 ~ 07.

An update u is classified as conflicting if it is supported by
a proof containing a base fact that was inserted (in I*) and
another fact that was deleted (in D). We say u and 4 are a
pair of complementary updates if u is an insertion (deletion)
of predicate p, and @ is a deletion (insertion) of p. Intuitively,
conflicting updates are temporary updates that appear in the
execution of incremental maintenance algorithms but that do
not affect the final configuration. The effect of a deletion up-
date cancels the effect of the corresponding insertion update.
Lemma 13 formalizes this intuition, and we will explain later
in this section.

Permuting PSN-iterations. The following lemma states
that permuting two PSN-iterations that are both insertion
(deletion) updates leaves the final configuration unchanged.
So in our example execution described in Section 3.2, it does
not matter whether the update (+,1ink(a,)) is picked before
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or after the update (+,1ink(d,£)). The set of updates after
these two updates are picked is the same, namely the set of
updates: {(+ hop(a,g)), (+,hop(a,f))}.

Lemma 10 (Permutation — same kind)
Given an nitial configuration s,

s 75 ({(Ur) s == ({(U,r2)}) s
Raaad

s 25 ({{U, r2)})s2 225 ({(U,r1)})s ,where U € {+,-}.

The proof, given in the Appendix, proceeds by considering
all possible ways that an update can fire a rule and showing
that the same set of updates are created when we permute the
order in which the updates are picked.

However, permuting a PSN-iteration that picks a deletion
update over a PSN-iteration that picks an insertion update
might generate new updates. Consider a program consisting
of the rule p :- r1,r2 and assume that ro is in the state. Fur-
thermore, assume the updates {(+,7r1), (-,72)}. If the deletion
update is picked before the insertion update, no delta-rule is
fired. However, if we pick the insertion rule first, then the rule
above is fired twice, one propagating an insertion of p and the
other propagating a deletion of p. However, the new updates
are necessarily conflicting updates. This is formalized by the
statement below. The side condition that r; # ry captures
the semantics of the pick command in that deletion updates
are only picked if the facts to be deleted are already in the
state.

Lemma 11 (Permutation — different kind)
Given and initial configuration s
s 25 ((r,r1))s1 == ((=r2)) (KU W A, 0,0)
Raaad
5 5 ({=yra))s2 = ((v,r0) (KU, 0,0),
where 11 # o and A is a (possibly empty) multiset contain-

ing pairs of complementary conflicting updates.

The proof is very similar to the proof of Lemma 10.

From PSN iterations to an SN iteration and back.
The second operation we need for transforming a PSN execu-
tion into an SN execution is merging a PSN-iteration with a
complete-iteration to form a bigger complete-iteration.
Similarly to the case when permuting PSN-iterations of dif-
ferent kinds, merging PSN iterations may change the set of
conflicting updates. For example, consider a program consist-
ing of a single rule p :- r,q, the initial state {q}, and the
multiset of updates {(+,r), (-,¢)}. If both updates are picked
in a complete-iteration, then an insertion update, (+, p), is cre-
ated by firing the delta-rule (+,p) :- Ar,q using the insertion
update (+,7). Similarly a deletion update (-,p) is created by



firing the delta-rule (-,p) :- r”,Aq and the deletion update
(-,q). However, if we break the complete-iteration into two
PSN-iterations, the first picking the deletion update and the
second picking the insertion update, then no delta-rule is fired.
We prove the following:

Lemma 12 (Merging Iterations) Let U be a multiset of
updates such that the multiset {u} WH C U and let s =
(K, U,0,0) be an initial configuration.

s= ({u} WHK' U W Fy,0,0)

Raaad

5= (H) (Ko, U' W {u} & F},0,0) 25 (u)(K',U' & Fy, 0, 0)

Where Fy and Fy only differ in pairs of complementary con-
flicting updates.

Lemma 12 actually give us for free, the ability to break a
complete SN-iteration into several PSN-iterations.

For example, we can use the lemma above to transform
the SN-iteration shown in Section 4.2.1 where we pick all the
updates appearing in the set of initial updates:

{(+,1ink(d,$)), (+,1ink(a,£)), (-, link(a,b) )}

into a sequence of three PSN-iterations where these updates
are picked one by one in any order. In this particular case,
there are no conflicting updates created. The resulting sets of
updates in both executions are the same:

{(+,hop(a,g)), (+,hop(d,g)),
(+,hop(a, 1)), (-, hop(a,c)), (-, hop(a,h))}.

Dealing with Conflicting Update Pairs. Next, we prove
that conflicting updates do not interfere with the final
configuration when using PSN executions. Intuitively, we will
rely on the following observations: (1) All updates generated
by firing delta-rules for conflicting updates are also conflicting
updates. (2) A pair of complementary conflicting updates gen-
erate pairs of complement conflicting updates. For example,
consider adding the rule v :- p to the example given before
Lemma 12. Then the conflicting update (+, p) would propa-
gate the update (+,v). The latter update is also conflicting
because the fact p is supported by a fact ¢ which is to be
deleted. Moreover, when the deletion of ¢ “catches up,” then
the complementary update (-,v) is created and cancels the
effect of the conflicting update (+,v). Consequently, a PSN
execution that contains a pair of complementary conflicting
updates in its initial configuration can be transformed into
another PSN execution that does not contain these updates
and that the final configurations of the two executions are the
same. The following lemma precisely states that.
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Lemma 13 Let A = {{(+,p),(-,p)} be a multiset containing
a pair of complementary conflicting updates, then
psn psn

(K, U,0,0) = s (K, UWA D, D) = s.

oA

Its proof relies on the termination arguments for PSN algo-
rithm for non-recursive programs. For recursive programs, it
is possible that a pair of complementary conflicting updates
will generate infinite number of complementary conflicting up-
dates; and therefore the transformation process may never ter-
minate.

Correctness of Basic PSN. Finally, using the operations
above we can prove the following theorem, which establishes
that PSN is sound and complete with respect to SN.

Theorem 14 (Correctness of PSN w.r.t. SN) Let s =
(K,U,D,0) be an initial configuration. Then for non-recursive
programs:

52K, 0,0,0) e s == (K, 0,0,0).

The above theorem states that the same derived facts that
are created by SN are also created by PSN and vice-versa.
The proof idea is that we can use the operations described in
Lemmas 10, 11, and 12 to transform a PSN execution into an
SN one and vice-versa. In particular, we use Lemmas 10 and
11 to permute PSN iterations so that updates are picked in
the same order as an SN execution. Then we use Lemma 12
to merge PSN-iterations into SN-iterations. The conflicting
updates that are created in the process of using such transfor-
mations are handled by Lemma 13. Hence, from Theorem 9,
PSN is correct.

Corollary 15 (Correctness of basic PSN) Given a non-
recursive DDlog program P, a multiset of base facts, E, a
multiset of updates insertion updates I and deletion updates
D to base facts, such that D' C E W It, then Algorithm 1
correctly maintains the state of the program.

Discussion The framework of using three basic commands:
pick, fire, and commit to describe PSN and SN algorithms can
be used for specifying and proving formal properties about
other SN-like algorithms. For instance, one can easily gener-
alize the proof above to prove the correctness of algorithms
where nodes pick multiple updates per iteration instead of
just one update, as in PSN-iterations; or the complete mul-
tiset of updates available, as in SN-iteration. That is, we
can transform an execution with arbitrary complete iterations
into an SN execution and vice-versa. One first breaks the
complete-iterations into PSN-iterations, obtaining a PSN ex-
ecution. Then the proof follows in exactly the same way as
before. This means that when implementing such systems, a



o pick; (S, (+, (p(t), S, H))) W {(p"(8), S, 1)} U\ {{+

(p(1), S, 1))}, Pw {{+, (p(1), S, H')}, E),

pr0v1ded +, pf)SH GUandpf)GS where H' = HU{pf}}

o pick} (S, (+, (p(t), S, H))) w{(p’(),S, ")}, U\ {(+

(i

prov]ded +, (p 75 S H E U and p(j

</C\{Ep (), S, 1)L U\ {(-
(

 (p(8), S, 1))}, P w {(+,
¢S.
(p(), S, 1)}, Pw{(~, (p(£),S, 1))}, €),

(p(), S, 1)}, €),

p(1),S,H)) €L(andp£>€$ where H' = HU{p(‘)

(p), S, 1)}, P {(-,(p(}),S,H))},E),

o pickp(S, (-, (p(t), S, H))
pr0v1ded
o pick(S, (-, (p(#), S, 1)) ’C\{p”f)S”H}U\{
prov1ded ,(p(1),S,H)) € U and p( E} ¢S.
o fire(S,u) = (KW {(p E‘)SH}MPS\{ (p(t),S,H))}

(p(t),S,H)))
(p(®), S, H)))

e commity (S, (+

= L\ {(p

e commitp (S, (-

=(K,UWF,P \ {u}, & W {u}), provided (+
(p(£), S, 1)}, U, P,E\ {(-,

)}), provided u € P, where F = firRules(u, K, R).
(p(t),S,H)) € £.

E)SH V1), provided (-, (p(t), S, H)) € .

Figure 3: Definitions for the basic commands that detect cycles. Here § is the configuration (IC,U,P,E).

node can pick all applicable updates that are in its buffer and
process them in one single iteration, instead of picking them
one by one, and the resulting algorithm is still correct.

5 Extended PSN Algorithm for Re-
cursive Programs

Algorithm 1 and 2 use multiset-semantics. As a consequence,
termination is not guaranteed when they are used to maintain
states of recursive programs. Consider the following recursive
program.

p(@1) :- a(eo) q(@2) :- p(e1) p(@l) :- q(e2)

Notice that p and q form a cycle in the dependency graph.
Any insertion of the fact p(e1) will trigger an insertion of
q(@2) and vice versa. Given an insertion of the fact a(e@0),
neither Algorithm 1 nor Algorithm 2 terminate because the
propagation of insertion updates of q(@2) and p(e1) do not
terminate. Recursively defined predicates could have infinite
number of derivations because of cycles in the dependency
graph. In other words, in the multiset-semantics, such facts
have infinite count. Neither Algorithm 1 nor Algorithm 2 have
the ability to detect cycles.

One way to detect such cycles in a centralized setting is
proposed in [12]. The main idea is to remember for any fact
p, the set of facts, S, called derivation set, that contains all the
facts that are used to derive p. While maintaining the state,
the algorithm checks whether a newly derived fact p appears
in the set of facts supporting it. If this is the case, then there
is a cycle, and p has infinite count. Whenever a fact with
infinite count is detected, we store it in a second set, H, called
infinite count set. Future updates of p are not propagated to

avoid non-termination.?

The same idea is applicable to the distributed setting. We
formalize this by attaching the derivation and infinite count
sets, S and H, to facts both in states and updates. An an-
notated fact is of the form (p,S,H), where p is a fact, S is
the derivation set of p, containing all the facts used to derive
p, and H is a subset of S containing all the recursive facts
that belong to a cycle in the derivation and therefore cause p
to have an infinite count. In the example above, the state of
facts without v of the nodes would be:

{(a7 0, (Z))a (P7 {3}7 (2))7 (q7 {p.a}, @)7 (p,{a.p.a}.{p}),-- }
where we elide the (@X) symbols. The fact p in
(p,{a,p,q},{p}), also appears in the set supporting it. This
means that p appears in a cyclic derivation, and therefore p is
in the set H.

In order to maintain correctly the state, we adapt the defi-
nition of the basic commands accordingly. A summary of the
rules are shown in Figure 3. Each pick rule in Figure 2 is
divided into two rules. Once an update u = (U, (p, S, H)) is
picked from the multiset of updates by using either the tran-
sition rule pick; or pickp, the algorithm first checks whether
the fact is supported by a derivation tree that has a cycle (if
p € S). If so, then p is added to the set H; otherwise H remain
unchanged. Notice that the updated state of p in K uses the
updated H set. The commit rule is the same as before, except
for the new presentation of facts.

The major changes in the operational semantics are in the
fire rule, where the derivation set and the infinite count set

?Notice that the derivation set of a fact is not the same as the annota-
tion used before in our proofs to distinguish different occurrences of the
same fact. The former is part of the algorithm, while the latter is only
used in our proofs.
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Figure 4: Dependency graph of a propositional program.
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Figure 5: Sequence of updates created in an execution of PSN
that detect cycles when inserting the base fact s. Here P =

{s,p,q,r}.

need to be computed, when a delta-rule is fired and the
propagation of updates to facts with infinite count need to
be avoided. Given an update (U, (b;, S;, H;)), in addition to
computing all updates that are propagated from this update,
the algorithm also constructs the corresponding derivation
and infinite count sets, S and H as follows. Assume that
the update (U, p) is propagated using a delta-rule with body
Voo b Ab by, ..., by, and the facts (bj,S;,H;) where
1 < j < n, then the derivation set for p is S, = {b1,...,b,} U
S1U---US, and the infinite count set H, = H1 U --- U H,.
In order to avoid divergence, we also need to make sure that
an update of a fact with infinite count is not re-send. To do
so, the algorithm only adds the update (U, (p, S, H,)) to the
multiset of updates U, if it is not part of cycle that has been
already computed (p ¢ Hp).

Returning to the previous example, when the update
inserting the fact p(e1l) arrives for the second time at
node 1, this update would contain the derivation set S =
{a(@0),p(@1),q(@2)}. Since the fact p(e1)e S, node 1 detects
the cycle in the derivation and adds the fact p(e1) to the in-
finite count set H. As q(@2) is not in H, the insertion update
of q(@2) is sent to node 2. However, when this update is pro-
cessed, creating a new insertion of p(@1), this new insertion is
not sent back to 1 because p(@1) is in the infinite count set,
which means that it is part of a cycle that has already been
computed. Therefore, computation terminates. In fact, the
derivation set and infinite count set guarantee termination of
PSN on any recursive DDlog program.

Theorem 16 (Finiteness of PSN that detects cycles)
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Let § be an initial configuration and R be a DDlog program.
Then all PSN executions using R and from S have finite
length.

The proof of the theorem relies on the fact that while exe-
cuting PSN that detects cycles, the size of the derivation set,
S and the infinite set, H, of updates increase. Since there
are finitely many different facts in a program, there is an up-
per bound on the sizes of these sets. Hence, there is a global
bound on the number of possible updates created in a run and
therefore PSN that detects cycles terminates.

Corollary 17 The PSN algorithm that detects cycles always
terminates.

Consider the following program with five clauses:

P qQ =P T i q; P iTT;q
whose dependency graph is depicted in Figure 4 and contains
multiple dependency cycles. Figure 5 contains the sequence of
updates created when executing PSN that detects cycles start-
ing from an update inserting the base fact s. The branches
1 and 2 are created when (+,(r,{s,p,q},0)) is used to fire
delta-rules. At the end of these two branches, no more up-
dates are created. At the end of branch 1, processing the up-
date (+, (r,P,{p,q})) does not propagate any updates, since
it could only propagate an insertion of q and of p. How-
ever, both q and p are in its infinite set, which means that
they have infinite count, and therefore such updates are not
created. Similarly, in the branch 2, processing the update
(+, (p, P,{a,r})) does not propagate new updates, since q is
in its infinite count set. In the branches 1 and 2, the algo-
rithm detects that all facts in {p, q,r} have an infinite count.
For instance, the first PSN-iteration in branch 1, which pro-
cesses the update (+, (p, P,0)), consists of the basic commands
pick},ﬁre, and commity. In the pick} the fact p is added to
the infinite set, (), because p appears in the supporting set, P.
Hence, at the end of this iteration, by the commit; command,
the fact (p, P, {p}) is added to the state, which indicates that
p has infinite count since p is in the infinite count set of this
fact.

i- s, r - T,

Corollary 18 (Correctness of PSN) Given any DDlog
program P, a multiset of base facts, E, a multiset of updates
insertion updates I and deletion updates D to base facts, such
that D C EwW I, then the PSN algorithm that detects cycles
correctly maintains the state of the program.

Correctness for PSN that Detects Cycles.

We need to prove that the PSN algorithm that detects cy-
cles maintains views correctly in the presence of recursive pro-
grams. The proofs follow the same steps as the proof for the



correctness of the basic PSN algorithm in Section 4. First,
we extend the basic SN algorithm (Algorithm 2) to deal with
annotations for derivation and infinite count sets by using the
new transition rules in Figure 3. Then, we prove that the
extended SN algorithm is correct. Next, we relate PSN exe-
cutions to SN executions.

However we need to revisit the definition of correctness. We
have shown in the beginning of this section that the multiset
semantics for recursive programs include tuples with infinite
counts. That means that the view V and V¥ could be infinite,
which implies that the updates that have to be computed (A)
could be infinite as well. The definition for correctness only
makes sense when A is finite, since no terminating programs
can compute infinite set of updates. What the cycle-detection
mechanism really does is to represent the infinite number of
derivations for a recursive tuple by one derivation that con-
tains only one cycle. We revise the definition for correctness
accordingly to reflect the fact that the standard resulting view
V¥ that we compare against is a finite multiset view where
a tuple that would have had infinite number of derivations
in traditional fixed-point semantics now has a finite number
of representative derivations. For instance, in a centralized
setting, the semi-naive evaluation algorithm described in [12]
computes such a finite (multiset) view for recursive programs.

Then in the proof of correctness of SN executions, we add a
new case when tuples with infinite counts are derived, that is,
when they are supported by a derivation with a single cycle.
This is indeed the case for any SN execution as the new fire
rule does not propagate new updates when such updates are
processed.

Finally, the proofs that relate a PSN execution to an SN
execution remain almost the same except that we have to con-
sider attaching annotations to tuples and updates; and that
the termination argument for PSN is different. The transfor-
mations used in that proof continue to be valid when using
the transition systems in Figure 3.

6 Comparison with Existing Incre-
mental Maintenance Algorithms

We compare our algorithm with existing incremental main-
tenance algorithms. We discuss limitations of these existing
approaches and how our algorithms improve them.

Delete and Re-derive. Gupta et al. proposed an algorithm
in their seminal paper [7] on incrementally maintaining logic
programs in a centralized setting, called DRed (Delete and
Re-derive). DRed [7] maintains a state by using set-semantics.
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DRed does not keep track of the number of supporting deriva-
tions for any fact. Whenever a fact, p, is deleted, DRed eagerly
deletes all the facts that are supported by a derivation that
contains p. Since some of the deleted facts may be supported
by alternative derivations that do not use p, DRed re-derives
them in order to maintain a correct state.

Re-deriving facts in a distributed setting is expensive due to
high communication overhead, as demonstrated in [9]. Con-
sider, for example, the topology depicted in Figure 1, taken
from [7]. There are two ways to reach the node c from the
node a, one passing the node b and the other through the
node d. Therefore the fact reachable(@a,c) is supported by
two derivations. However, when using set-semantics, DRed
only stores one copy of reachable(@a,c) at the node a. As-
sume that at some point the link from node a to the node
b is broken, that is, the fact 1ink(@a,b) is deleted. Then in
DRed’s deletion phase, the deletion of this fact propagates
the deletion of reachable(@a,b), which similarly will propa-
gate the deletion of reachable(@a,c) and of reachable(@a,h).
Then DRed’s re-derive phase starts, which checks which facts
that were deleted in the deletion phase can be re-derived us-
ing an alternative derivation. In this case, all the deleted facts
(reachable(@a,b), reachable(@a,c), and reachable(@a,h)) are
re-derivable using other derivations. All the reachable facts
derived using the path from a to b that passes through d have
to be sent cross the network. For example reachable(@d,c) is
send to a in order to re-derive the fact reachable(@a,c).

Our algorithm (Algorithm 1) uses multiset-semantics to
keep track of the number of supporting derivations of any fact.
So, whenever a fact is deleted, such algorithm just needs to
reduce its multiplicity by one, and whenever its multiplicity
is zero, the fact is deleted from the state. Algorithm 1 in-
curs less communication than DRed. Our extended algorithm
(Section 5) annotates each predicate with the set of support-
ing facts. Compared with DRed, this algorithm incurs higher
communication overhead in a workload where there are no
deletions. In the presence of deletions, our algorithm results
in lower communication overhead, since the deletion of a fact
does not require the construction of alternative derivations.

Original PSN algorithm. The original PSN algorithm was
proposed by Loo et al.[10]. Our paper extends the original
proposal in several ways. First, Loo et al. consider only lin-
ear recursive terminating Datalog programs. We consider the
complete Datalog language including non-linear recursive pro-
grams. Second, we relax the assumptions in the original pro-
posal: instead of assuming that the transmission channels are
FIFO, which is unrealistic in many domains, we do not make
any assumption about the order in which updates are pro-
cessed. In other words, we do not assume the existence of a



Node 1: {}] Burst {}]

Node 2:  {s,t}[] of {r,s,t}[{(+,7)] Dequeue
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Figure 6: PSN computation-run resulting in an incorrect final state. The " row depicts the evolution of the state, in curly-brackets,
and the update queue, in brackets, of node i. The updates in the arrows are the ones dequeued by PSN and used to update the state

of the nodes. We also elide the (@X) in facts.

coordinator in the system. An important improvement is that
the PSN algorithm proposed in this paper is proven to ter-
minate and maintain states correctly. As pointed out in our
previous work [13], the PSN algorithm as presented in [10]
may produce unsound results and the use of the count algo-
rithm [7] leads to non-termination. We elaborate further on
the former problem of the original PSN algorithm.

The original PSN performs the following operation: when-
ever an update reaches a node, the update is not only stored
at the end of the node’s update queue, but also immediately
used to update the node’s local state: the fact in the update
is immediately inserted into or deleted from the node’s state.
This procedure, however, leads to unsound results if channels
are not FIFO. Consider the following DDlog program, which
is the same program as shown in Section 2.2, but now dis-
tributed over four nodes. The global state of this program is
{s(e2), t(@2), q(e3), u(ed)}:

node2: p(@1) :- s(02), t(@2), r(e2).
node3: s(02) :- q(@3).

q(e3) :-.
node4: t(02) :- u(@4).

u(e4) :-

Consider the PSN computation-run depicted in Figure 6
(based on the original algorithm). At the first transition, there
is a burst of updates inserting the base fact r and deleting the
base facts ¢ and u, where we elide the (@X) symbols. When
these updates are created, they are not only stored in the
nodes’ queues but also used to update the state of the nodes
(first transition in Figure 6). Then when the update (+,r) is
dequeued and processed, a new update inserting p is created
(second transition in Figure 6). When the updates (-, ¢) and
(-,u) are processed, they create the updates (-,s) and (-,t)
(third transition in Figure 6). In the final transitions, none of
the updates deleting s or t trigger the deletion of p because
t and u are no longer in node 2’s state and the bodies of the
respective deletion rules are not satisfied. Hence, the predicate
p is entailed after the original PSN terminates although it is
not supported by any derivation.

Our algorithms correct this error by delaying updates to the
facts until after updates are processed.

PSN with annotated facts. After the original PSN algo-
rithm, Liu et al. proposed in [9] a new PSN algorithm where
facts are annotated in order to handle the known problem that
the original PSN does not terminate. Differently from our ap-
proach, Liu et al. only track the base facts used in the deriva-
tion, while our derivation set contains all facts (including in-
termediate derived facts) used for each derivation. Moreover,
as with the original PSN algorithm, Liu et al. also assume
the existence of coordinator in the system enforcing that all
transmission channels are FIFO. Under this assumption, Liu
et al. show that their PSN algorithm terminates.

However, by using only base facts, it is not possible, without
assuming that the transmission channels used are FIFO, to
differentiate an update that is the result of computing a cyclic
derivation from an update that arrived out-of-order. When
messages are processed out of order, the algorithm proposed
in [9] yields unsound results, illustrated below.

Consider the following program also used in Section 5 that
contains cycles and for which original PSN does not terminate:
a(e0) :-; p(@1) :- a(@0); q(e2) :- p(e1); p(el) :- q(e2)
In [9], the state of this program is represented as the set
{(a,{a}), (p,{a}), (q,{a})} where we elide the (Q@X) sym-
bols. All facts are derived by only using the base fact a and
therefore their annotations consist only of the base fact a. An
update inserting (p,{a}) could be derived due to a deriva-
tion with no cycles or due to a cyclic derivation obtained by
using the last two rules of the program. In order to avoid
divergence, the latter type of updates resulting from cyclic
derivations need to be discarded. Assume that there is a dele-
tion of a, represented by a deletion update (-, (a,{a})). When
this update is processed, node 1 creates (-, (p,{a})), which is
processed by node 2, creating the update (-, (q,{a})). Finally,
node 2 processes the latter, creating again the deletion update
(-, (p,{a})). When this update is received by node 1, the fact

15



(p,{a}) is not in the state, as it was deleted by the first dele-
tion update. Therefore, node 1 can safely conclude, under the
assumption of FIFO channels, that the latter update is due to
a cyclic derivation. Hence it just discards it and the algorithm
terminates.

It is easy to show that discarding eagerly such deletion up-
dates yields unsound results when one relaxes the assumption
of FIFO channels. Consider the same program above, but two
conflicting updates: (-, (a,{a})) and (+, (a,{a})). If the dele-
tion update is processed first by node 0, it will be discarded
since the fact (a,{a}) is not present in its state. The inser-
tion update on the other hand would be processed, generating
eventually new insertion updates for all the facts in the pro-
gram. Hence, the final state obtained by their algorithm is
(a,{a}), (p,{a}), (q,{a}), whereas the correct state is the
empty set.

Our algorithm annotates each predicate with all the predi-
cates used to derive it, which include not only the base pred-
icates, but also intermediate predicates. We have shown in
Section 5 that we can detect cycles properly, even in the pres-
ence of message re-ordering. Finally, Liu et al.’s algorithm is
only experimentally evaluated but not formally proven correct.

7 Additional Related Work

In contrast to our approach, MELD [5] simply attaches to
each fact the height of the supporting derivation. Although
they are able to perform many optimizations with such type
of annotations, simply attaching the height of derivations to
facts is not enough to detect cycles in derivations and therefore
it is not enough to avoid divergence by itself. They address
this problem by synchronizing nodes and not allowing nodes
to compute until they receive the response from other nodes
that all the deletions propagated from a deletion of a base
fact have been processed. As expected, performance can be
greatly affected since an unbounded number of nodes might
need to be synchronized at the same time due to cascading
derivations. We believe that their work can directly leverage
the results in this paper.

In an attempt to generalize Loo et al’s work [10],
Dedalus [4] relaxes the set of assumptions above by no longer
assuming that messages always reach their destination. The
main difficulty when considering message loss is that the se-
mantics does not relate well with the semantics in the Datalog
literature. Depending on whether a message is lost or not, the
final states computed by their evaluation algorithms can be
considerably different. Therefore, it is not clear what is the
notion of correctness in such systems. We believe that proba-
bilistic models where messages are lost with certain probability
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can be used, and we leave this for future work.

In the agent programming community, several languages
that allow for the update of knowledge bases have been pro-
posed. For instance, [3] proposes a logic programming lan-
guage that allows updates not only to base facts, but also to
rules themselves. Differently from this paper, however, their
work considers only a centralized setting. Moreover, a cen-
tral difference from our work is that while [3] is concerned
in extending logic programming languages so that program-
mers can specify updates, here we focus on algorithms that
efficiently maintain states of distributed Datalog programs.
An interesting direction for future work would be extend our
results to also allow rule updates in a distributed setting.

Adjiman et al. in [2] use classical propositional logic to spec-
ify knowledge bases of agents in a peer-to-peer setting. They
prove correct a distributed algorithm that computes the conse-
quences of inserting a literal, that is, an atom or its negation,
to a node (or peer). Since they use resolution in their algo-
rithm, they are able to deduce not only the atomic formulas
that are derivable when an insertion is made, but proposi-
tional formulas in general. While they are mainly interested in
finding the resulting state from inserting a formula, we are in-
terested in efficiently maintaining a state was previously com-
puted. It is not clear how their approach can be used to update
the consequences when a sequence of insertions and deletions
are made to the knowledge base.

8 Conclusions and Future Work

Besides the correctness of the algorithm itself, our ultimate
goal is to prove interesting properties about programs writ-
ten in distributed Datalog. The correctness results in this
paper allow us to first formally verify high-level properties of
programs prior to actual deployment by relying on the well es-
tablished semantics for centralized Datalog, then the verified
properties carry over to the distributed deployment, because
semantics for Distributed Datalog and centralized Datalog co-
incide.

In particular, we are interested in formal verification of im-
plementations of networking protocols prior to actual deploy-
ment in declarative network setting [17, 18]. In order to do
so, we need to extend this work to include additional language
features present in declarative networking including function
symbols and aggregates. Since Datalog programs with arbi-
trary functions symbols may not terminate, we are investigat-
ing if we can extend existing analysis techniques [8] developed
for centralized Datalog with function symbols to determine
when DDlog programs with function symbols terminate. It
turns out that it is not an easy task to develop efficient and



correct algorithms that maintain logic programs incrementally
in the presence of aggregate functions. We are looking into
adapting existing work, such as [15] in incremental view main-
tenance in a centralized setting to fit our needs.
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A Missing Proofs

Proof of Lemma 1.

Proof In order to show termination, we need to show that
the set of updates, U, eventually becomes empty regardless of
the order in which updates are picked. We rely on the fact
that the dependency graph for a non-recursive program con-
tains no cycles, that is, it is a directed acyclic graph. First,
we order the predicate names in the dependency graph in a
sequence S by using any of the graph’s topological sorts. Then
given a set U of updates at the beginning of an iteration of
the while-loop that remain to be processed by Algorithm 1, we
construct a state-tuple associated to U as follows: for the 3"
position of the state-tuple, we count the number of updates in-
serting or deleting tuples whose predicate name is the same as
the predicate name appearing at the i*” position of S. We can
show that after an iteration of Algorithm 1’s while-loop the
state-tuple reduces its value with respect to the lexicographical
ordering, which is well-founded since their are finitely many
predicate names in the program. At the beginning of an it-
eration, an arbitrary update, u, is picked and removed from
U. Assume w.l.o.g. that u is an update of a tuple whose
predicate name appears at the 3" position in the sequence S.
After the delta-rules are executed, new updates are created,
but since the program is non-recursive, it is necessarily the
case that their predicate names appear at the i*" +m position
in S, where m > 0. Therefore the value of the i*" position
of the the state-tuple decreases by one and only values in po-
sitions after ¢ increase, while all values in positions before 4
remain the same. Hence, the resulting state-tuple associated
to the new set of updates decreases w.r.t. the lexicographical
ordering. Since this ordering is well founded, Algorithm 1 al-
ways terminates, regardless of the order in which updates are
picked. O

Proof of Theorem 2.

Proof We need to show that the resulting state reached
by 41 and io are the same when these are executed in a se-
quence. Assume that i; and io are executed, respectively, by
nodes ny and ny and pick, respectively, the updates u; and
ug. Notice that these updates have to be different since they
have the location specifier, @, attached to the identifiers n;
and no respectively. Since i1 starts before 75, uy is necessarily
belongs to U;, whereas us can either belong to U; or to the
set of updates created by ;. Since in the sequence of execu-
tions, we first execute 7; and only then is, if we show that the
same updates are created by iq, then the existence of us is
guaranteed.

To show that the set of updates created by the iterations is
the same as in the concurrent setting, we rely on the following
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two facts: (Fact 1) since the view is changed in an iteration
i; by incorporating u; (lines 17 and 19 in Algorithm 1) to the
view, the only changes to the set of facts performed by 4; are
to the set of facts located at n;, that is, those that have the
@ at the atribute n;. The remaining facts remain untouched.
(Fact 2) Since the program P is localized, the body of all its
rules have the location specified, @, in the same atribute, that
is, n; for the iteration i;. Now we are ready to prove that set
of updates is the same. Assume that u; is created in i; by
firing in the concurrent setting the delta-rule

u; B b'f(l?l), IERX] zy—l({i—l)v Abl(a)v b7~'+1(£;'+1)v IR} b"(Fn)

From fact 2, we have that the facts in the body of this

rule have @ on nj, and from the fact 1, the view of the facts
located at n; can only be modified by the interation ; itself.
Therefore when iy and iy are sequentialized, the same facts
used to fire the rule above are also in the view of n;. Hence
the same rule is fired in such setting and therefore the same
update u; is created. O
Proof of Lemma 10.
Proof We show the case where U = + for the ~~ direction,
the other cases are similar. We need to show that the updates
generated are the same no matter which insertion update is
fired first.

Let’s assume that the initial state s = (K, U, 0, 0).

Let F, = firRules({+,71), KW {r{}, R),

Fy = firRules({+,12), KW {ry,rY,r5}, R).
Let Fj = firRules((+,m2), LW {r¥}, R),

F| = firRules((+,71), KW {ra,ry,r7}, R).

In the first execution sequence, F; contains updates gener-
ated by firing delta-rules that contain Ar; in the body using
the initial views with 7] inserted, and F5 contains updates
generated by firing delta-rules that contain Ary in the body
using the views where r; is already inserted into the view.

In the second execution sequence, Fj contains updates gen-
erated by firing delta-rules that contain Ars in the body using
the initial views with 4 inserted, and Fy contains updates gen-
erated by firing delta-rules that contain Ar; in the body from
the state where ro is already inserted into the view.

We need to show that Fy W Fy = F{ W Fj.

Based on the definition of firRule, it is not hard to see that
F} is a superset of Fy because in the second execution se-
quence, 79 is already inserted into the view before firing up-
date to ry. Similarly, F5 is a superset of Fj. Let us assume
that F{ = F1 W F{', and F» = Fy W Fj/. We just need to show
that F{' = Fj.

All updates in F{’ are fired by rules that have Ar; and either
ro or r5 in the body. Without loss of generality, any update
u = (+,q) € F' is created by firing delta-rules of the following
two forms: u : oru

v .
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If it is the first case, then a corresponding delta-rule

w i= --+ ,Arg, -+ 71, will be fired when (+,r3) is picked;
and therefore, (+,¢) € Fj'.

For the second case, a corresponding delta-rule

w = o,y -~ Ary--. will be fired; and therefore (+,q) €
FJ also. Consequently, Fy’ C Fj. We can use similar rea-
soning to show that Fj C F}’. Combining the above two,
F} = F{'. Therefore F; W Fy = F| W Fy. Finally, we can con-
clude that permuting two insertion updates leaves the final
state unchanged. O
Proof of Lemma 11.
Proof We show the ~~ direction. The reasoning is symmet-
ric for the reverse transformation. Let

Fy = firRules((+,7), KW {r’} R),
Fy = firRules((-, ), KW {ri,r}\ {r5},R),
F} = firRules({-,r9), K\ {r§}, R),
F| = firRules({+,r1), K\ {ra,r¥ W {r{}, R).

In the first execution sequence, F) contains all insertion
updates created from the initial view by firing insertion delta-
rules that contain Ar; in their body. Similarly, F5 contains
all the deletion updates created by firing deletion delta-rules
that contain Ary in their body, with rq inserted into the initial
view.

In the second execution sequence, on the other hand, F}
contains all the deletion updates created from the initial view
by firing deletion delta-rules that contain Ars in their body.
F} contains all the insertion delta-rules that contain Ary in
their body, with ro deleted from the view.

We would like to show that Fy W Fy = F{WFj WA, where A
is a multiset of pairs of complementary conflicting updates.

The multiset F7 is clearly a superset of F] since the latter is
obtained by executing rules when r is deleted from the initial
view. Similarly, F5 is a superset of Fi since the former is
obtained by executing rules when r; is inserted into the view.

Let Fy = F{ WA and F; = F, W Ay. We need to show that
A; W Ay contains a multiset of pairs of complementary con-
flicting updates. More specifically, we can show that for any
insertion updates in u € A; there its complementary updates
u € As.

Updates that are in A; are generated by firing delta-rules
that contain (+,71) and either ro or 74 in the body. Updates
that are in A, are generated by firing delta-rules that contain
(-, r2) and either r; or 74 in the body. Next we show that there
is one-to-one mapping between the delta-rules that generate
an update u in Ay and the delta-rules that generate an update
4 in AQ.

Any insertion update u in A; is necessarily fired by rules of
the following two forms:

u -1y, -+ ,Ary, -+, which we call a;

and u :- --- ,Ary,---72---, which we call as.
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Any deletion update u in As is necessarily fired by rules of
the following two forms:

u -,ry, o+ Arg, - -+, which we call by

and u :- - ,Args,---r1---, which we call bs.

Notice that there is a one-to-one mapping between a; and
ba, and a one-to-one mapping between as and b;. In other
words, in the first execution sequence, a; is fired when (+,71)
is picked, and bs is fired when (-, r9) is picked. Furthermore, a;
and by generates a pair of complementary conflicting updates,
and so do as and by.

Therefore, FiWFy, = F{WF,WA; WA, and Aj WA, contains
pairs of complementary conflicting updates. O
Proof of Lemma 12 Proof We only show the case when
u is an insertion, and the second case can be proved similarly.
Let u = (+,p). By examining the two execution sequences, we
know that

3 Lﬂu(}emﬂ{u} firRules(uo, K WHY W {p"} \ H¥, R),
Fl = W, ey firRules(ug, K & HY N\ HY R),

F, = firRules(u, CWHY WH, W {p’} \ HY W HY), R),
Fy, = FlYF;

where we write H ( H!Y respectively) to denote the multi-
set that contains p” if and only if (+,p) ({-, p) respectively) is
in H. We write H! ( H!, respectively) to denote the multiset
that contains p if and only if (+ p) ((-,p) respectively) is in
H.

Let’s further rewrite Fy to be F{' & Fy
where ' = ), ¢4 firRules(uo, CWHY W {p”} \ H}, R), and
FY = firRules(u, KW HY W {p"} \ HY,R).

F|" is a superset of F|. Let F|' = F{ W A; W Ap.

Any update (+,71) € Ay is generated by a delta-rule that
contains p” and an insertion update (+,¢) € H in the body:

(#,71) = -, p" -+, (+,q), -+, which we call a;.

Any update (-,71) € Ap is generated by a delta-rule that
contains p” and a deletion update (-, ¢) € H in the body:

(=,r1) = - ,p", -+ ,{=q), -+, which we call as.

The relation between Fy' and F3 is more complicated. What
we can show is the following Fy WA} = Fj W A} where A} =
Ay, and A contains all the complimentary updates to the
ones in Ap, nothing else.

We would like to show that there is a one-to-one mapping
between the delta-rules that are fired to generate A; in the
bigger complete iteration (the first execution sequence), and
the delta-rules that are fired to generate A’ in the PSN iter-
ation (the second part of the second execution sequence).

The only updates that are in F3, but not in F} are due to
HY. Therefore, all insertion updates in A’ are generated by
firing delta-rules that contain u and ¢, where (+,q) € H, in
the body:

<+, 7‘1> :

-, ,q,- -, which we call by.



By the definition of delta-rules, there is one-to-one mapping
between a; and b;. Consequently, Ay = A’.

We also need to show that there is a one-to-one mapping
between the delta-rules that are fired to generate A/, and the
delta-rules that are fired to generate Ap.

The only updates that are in F3, but not in Fj are due to
H',, which is deleted from the view before the PSN iteration.
Therefore, all insertion updates in A7 are generated by firing
delta-rules that contain v and ¢, where (-, ¢) € H, in the body:

(#,71) 1= - ,q, -+, which we call by.

By the definition of delta-rules, there is one-to-one mapping
between as and by. Consequently, A7 contains all the com-
plementary updates to those ones that are in Ap, which we
denote by Ap.

Finally, we obtain the following: F' = F{ W (AW Ap) and
FlwAr = FjW Ap. We know the following by union both
sides of the above equations: F{'W Fy W A; = F{ W (A; ¢
Ap) W Fyw Ap. We can conclude that Fy = Fh W Ap W Ap.
Therefore, F; and F only differs in pairs of complementary
conflicting updates. O
Proof of Lemma 13. Proof
ucD = <_7p>

We first show that for any insertion update, u, created by
firing delta-rules that contains (+, p) in the body, there is ex-
actly one deletion update @ that is created at an iteration no
later than the one where u? is picked.

Let’s assume that u is created by firing the following delta-
rule:

s Uy

Assume that ul = (+,p) and

u = bi,...,bn, <+,p>,bn+1,...,bn+m.

The update @ can be created either by a deletion update for
b; which is picked before uZ; or by the time u? is processed
none of the predicates (b;) in the body has been deleted, in
which case u will be generated by firing the following delta-
rule.

u - bl,...,bn, <—,p>,bn+1,...,bn+m.

This means that only pairs of complementary conflicting up-
dates are propagated by the insertion and deletion of p. Using
the same reasoning above, these pairs of conflicting updates
created will also cause the propagation of conflicting pairs of
updates only. For the rest of the proof, we call all these up-
dates as p-propagated updates.

Then, in this subexecution, we use Lemma 11 to permute
deletion updates to the right of insertion updates eagerly. In
the process, new conflicting updates are generated, which will
be dealt later. Finally, we use Lemma 10 to permute insertion
updates (respectively, deletion updates), so that the propa-
gated updates are picked last and in the same order. That
is, if the propagated insertion update u; is picked before the

propagated insertion update uo, then the deletion update uy
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is picked before o.

Next, we define ID executions. A PSN execution is an ID
execution if it has the following form:

s0 22 (Ur)s 2 Up)sy 22 (Up)ss 22 (U sa,

where for all u € Uy, u is a non-p-propagated insertion up-
date, for all u € Up, u is a p-propagated insertion update, and
for all uw € Up, u is a non-p-propagated deletion update, and
for all u € U}, u is a p-propagated deletion update. Further-
more, for all u € Up then @ € Uy and vice-versa. We denote
an ID execution as s == .

We show that any PSN execution can be transformed into
a sequence of two consecutive ID executions. The first ID
execution is formed by using repeatedly using Lemma 11 to
permute deletion updates to the right of insertion updates.
In the process, new conflicting updates are generated, which
will be used to form the second ID execution. In the end,
we obtain a PSN-execution where all insertion updates are
picked before deletion updates. Now we use Lemma 10 to
permute insertion updates (respectively, deletion updates), so
that the p-propagated updates are picked after all the non p-
propagated updates are picked. This is possible because by
its definition, non p-propagated updates cannot be generated
by firing a delta-rule that uses p-propagated updates. Now we
have obtained our first ID execution. This is not a complete
PSN run because in the first step, we have generated new pairs
of complementary conflicting updates.

Next, we construct the second ID execution by complete the
execution of the program. We eagerly pick non-p-propagated
insertion updates until only none is left, then we pick all
p-propagated insertion updates. After that, we pick non-p-
propagated deletion updates; then, we finish by picking all
p-propagated deletion updates.

Now we have obtained a complete run of PSN, of the fol-
lowing form: (KCq,Uy, 0, 0) LN (Ko, U, 0, 0) LN (Ks,0,0,0),
where the view in Iy is the same as the original PSN execu-
tion, which is guaranteed by Lemma 11 and Lemma 10.

Next we show that we can prune an ID execution to con-
tain only non-p-propagated updates without changing the fi-
nal view.

Given an ID execution,

(K, u,n,0)

2L U (Kwut,u\ Uy & Fr,0,0)

22 (Up) (K WUt wUL U\ Ur W Fr \Up & Fp, 0, 0)

£ (Up)(K wUf wUp \Up,
Z/{\UIH'JFI\UPL'HFP\UDL'HFD,@,@

5 Up) (K WU wUp \Up \UP,
U\UWF \Up W Fp\Up W Fp \UpWFp,0,0)

Let U’ contain all the non-p-propagated updates in U, and



we generate a PSN execution that only pick non-p-propagated
updates as follows.

U0, 0)

L2 (U (K wut,u' \Ur @ Fr, 0,0)
(Z/{D)UCUZ/[[ \Z/{D,Z/I’\UI W Fy \Z/{D UFD,@ [Z)>

Compared with the original ID execution, we have the fol-
lowing invariants.

First, CW Ul v UL\ UL \ UL = KW UL\ U}, because U
contains the complement of Up.

Second, U’ \ Ur W Fr \ Up W F}, contains only the non-p-
propagated updates in U \ U; W F; \ Up W Fp \ Up W Fp \
Up W Fp,. This is because the only updates that contain non-
p-propagated updates are U’, F; and F},; and Fp D FJ,.

We perform the above rewriting separately to both ID exe-
cutions in (Kq,Us, 0, @} <IC2,Z/{27(Z) @) (/Csa(b 0, 0).

We obtain the followmg' (K1, U1, 0, @) <IC2,U2,® 0)

and <IC2,Z/{ @ ®> <K:3,@ @ ®>

The invariants tell us that U contains all non-p-propagated
updates in U; and nothing else, and both U5 and UJ con-

tains all the non-p-propagated updates in Us and nothing
else. Therefore, we know that U; = U W {{+,p), (-,p)}, and

psn

U, =ul. Finally, we obtain the Valid PSN execution sequence:
(K0, U3, 0, 0) =2 (Ko, U3, 0,0) =2 (K3, 0,0,0). O

Proof of Theorem 14.

Proof

Given a PSN execution, we construct an SN execution by in-
duction as follows: we use the first operation (Lemmas 10 and
11) to permute to the left all the PSN-iterations that pick one
element in the initial state’s I/ set. The resulting execution has
all PSN-iterations in the same order as the first SN-iteration
of an SN execution. After each permutation, we either gener-
ate new conflicting updates, or suppressed the generation of
conflicting updates that is in the original execution. We apply
Lemma 13 to transform the rest of the execution into a valid
PSN execution, but leave the final state unchanged.

Next, we merge these PSN-iterations into an SN-iteration
by applying the second operation (Lemma 12). Again, we need
to apply Lemma 13 to transform the rest of the execution to
account for the difference in conflicting updates.

We repeat the above process with the PSN sub-execution.
This process will eventually terminate because there is a finite
number of updates (conflicting and non-conflicting), with each
iteration of the process, the sub-execution has fewer updates
to generate.

For the converse direction, given an SN execution, we apply
Lemma 12 repeatedly to split SN-iterations and obtain a PSN
execution. Again we might need to apply the transformation
described in Lemma 13 in order to construct valid executions.
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O
Proof of Theorem 16.
Proof Since we are assuming finite signature with no func-

tion symbols, there is a finite number N of different facts in a
system. We use a tuple with 2N elements, called state tuple,
described next and the lexicographical ordering among them
to show termination. Given a state of the system, the it" el-
ement of the state tuple contains the the number of updates
(U, (p,S,H)) € U, such that ¢ = |S| + |H|, where |S| and |H|
are the number of elements in S and H, respectively. This or-
dering is clearly well founded. It is easy to show by induction
on the length of runs that there cannot be any update whose
associated derivation set S or infinite set H have more than N
elements, since they are sets of facts.> Therefore, only when
the set of updates is empty, U = 0, can the least state tuple
be reached. For any update message u = (U, (p,S,H)), we
denote |u| as the number of elements in the multiset S plus
the number of elements in H.

We show that the value of the state tuple reduces with re-
spect to the lexicographical ordering after any PSN-iteration.
After a PSN-iteration, there are two possible ways that the
multiset of updates U is changed. The first case is when the
picked update, u, does not contain a cycle. Then whenever
a rule is fired, an update, u’, is propagated such that the
|u| < |u'| since at least the tuple in u is inserted into the
derivation set of ’. Then the update u is inserted in the set
U, while the update u is removed from it. Therefore, the value
of the i*" element in the state tuple, where i = |u/, is reduced
by one, while all the values of the elements appearing before
are untouched. The second case is when a cycle is detected.
Since the fire rule does not create updates whose cycle has
been detected, there is only the case when the update, u’, cre-
ated inserts or deletes a tuple that is in the infinite set, H, in
which case it is added to it. Hence |u| < |u/| and as before the
state tuple is reduced by one. O

B Correctness Proof of SN

Algorithm 2 computes a multiset of updates U that are applied
to the view V. Ideally, we want to show that the multiset of
updates computed by Algorithm 2 is the same as A, which is
the difference between the initial V' and the desired final result
V¥. The correctness proof of Algorithm 2 is composed of two
parts: (1) all the updates generated by Algorithm 2 are in A

3Even if they were not sets but multisets of annotated facts, we can
show that their size is bounded by 2N. This is because no update is
created when a cycle is detected and therefore there in the worst case
2N elements in S and at most N elements in H. Also notice that in this
case, we would need to use a state tuple with 3NV elements, instead.



(Algorithm 2 is sound); and (2) Algorithm 2 generates all the
updates in A (Algorithm 2 is complete).

Soundness of Synchronous SN We first show that Al-
gorithm 2 does not perform more updates to the view than
what’s specified in A. Given a terminating execution of Al-
gorithm 2, let’s assume that the execution consists of n it-
erations. Intuitively, the soundness statement would require
that U[0,n] € A. However, this is not true. Consider the
following program with two clauses: p :- ¢, and ¢ :- s. As-
sume that the original view V is {s,¢} and that one pro-
vides the updates {(+,7),(-,s)}. Then the view V¥ = {r}
and A = {(+,7), (-, s), (-,q) }. After the first iteration of Algo-
rithm 2, the resulting set of new updates U[1] = {(+, p), (-, ¢) }.
The update (+,p) is not in A but in U[1]. Notice that (+,p)
is supported by a proof that uses the base fact r, which is in-
serted; and the fact ¢, which is supported by a proof that uses
a deleted fact s. The deletion of s needs some more iterations
to “catch up” and correct the unsound insertion of p.

We classify an update u as conflicting if it is supported by
a proof containing a base fact that was inserted (in I*) and
another fact that was deleted (in D?). In the example above,
(+,p) is a conflicting updated because it is supported by r,
which is inserted and s, which is deleted. One key observation
is that Algorithm 2 may compute more updates than those in
A. These extra updates are all conflicting updates. We need
to show that the effects of all conflicting updates eventually
cancel each other out.

The following lemma formalizes the intuition that updates
that are needed to change V to V¥ are all non-conflicting
updates. As discussed above, conflicting updates are just a
side-effect of an SN evaluation.

Lemma 19 All updates in A are non-conflicting.

Proof Consider by contradiction that an insertion update
u € A of the tuple p is conflicting. Then p is supported by a
tuple ¢ that is deleted from the view V. This is a contradiction
because then p is no longer derivable in V¥; and therefore, the
insertion, u, of p could not have been in A.

Similarly, assume that a deletion update u € A of the tuple
p is conflicting. Then p is supported by a tuple ¢ that is
inserted to V. Again, we have a contradiction, since then p
could not have been in V; and hence u could not have been in
A. O

The following lemma, which can be proved by induction on
the number of iterations, states that the non-conflicting up-
dates (updates that are supported only by insertion updates
or only by deletion updates) generated at each iteration by
the algorithm, are necessary to change V to V. For instance,
in the example above, the non-conflicting updates (+,r) and
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(-,s)y in U[0] and (-, ¢) in U[1] are indeed necessary to main-
tain the initial view, {s,q}, and obtain the final view, {r}.
This corresponds to the soundness of non-conflicting updates
created in an SN evaluation.

Lemma 20 (Soundness of Non-conflicting Updates)

Let U be the multiset of mon-conflicting updates in a multiset
of updates U. Then for any iteration i, the multiset U[i] C A.

Proof We proceed by induction on the number of iterations
i.

For the base case, we have U[0] = & D = A[0] C A.

For the inductive case, consider i j + 1 and the induc-
tive hypothesis U[k] C A for all k& < j. Assume that
u = (+,p=) € a[j + 1], and it is computed by using a delta-
rule of therule p :- b1,...,b, and the tuples or the insertion of
tuples of the form 151, ...,b2". Since u is non-conflicting, all
smaller derivations =;s are also non-conflicting. Hence from
the inductive hypothesis, all the insertions used by Z;s, in-

cluding any insertion of b;j , belong to A. Hence the tuples
blsl, ...,b=" belong to V¥, and therefore by using the same
rule above, there is an insertion of the tuple p= in V'V, that is
(+,p%) € A. The case for deletion follows similarly. O

Now, we turn our attention to the conflicting updates. We
write % to denote the complement update of w. If u is an in-
sertion (respectively, deletion) update of a tuple p, then @ is a
deletion (respectively, insertion) update of the same tuple p.
The following lemma formalizes the intuition described above
that when a conflicting update u (e.g., (+,p)) is created, then
the another update @ (e.g., (-,p)) needs some iterations to
“catch up.” An interesting observation is that the conflicting
update inserting a tuple is necessarily created before the up-
date deleting the tuple. This is because in order to fire the
body of a rule which creates a conflicting update, the body
needs to be satisfied. Hence, the insertion update that inserts
a fact into the view and creates a conflicting update needs to
be processed first.

Lemma 21 (Pairing of Conflicting Updates) For any
conflicting update uw € U[i], there is exzactly one wupdate
u € U[j], for some j, that is supported by the same derivation.
If uw is an insertion update then i < j, and if u is a deletion
update then i > j.

Proof Let us first prove that conflicting insertion updates
are computed first. Given a conflicting deletion update (-, p)
that is generated at iteration ¢, it must be the case that a
delta-rule

(=,p) = b7,...

) ;—17Abmabm+lv- . bn



is fired. By the definition of conflicting updates, one of the
tuples b; in the body is supported by a tuple that must be
inserted. Since the body of the rule above can only be sat-
isfied when b; is inserted, the insertion of b; must have been
necessarily picked before or at the iteration ¢, firing another
delta-rule similar to the rule above. Hence, the insertion up-
date for the tuple p is created before or at iteration .

Next we show that for any conflicting insertion update, a
complementary deletion update is generated at the same or in
a later iteration. Given an insertion update u € U[i]. Let m be
the minimal height among all the subtrees of the derivation
supporting the tuple in u that contain a tuple, b;, that is
deleted. In exactly m iterations, the corresponding deletion
delta-rule is going to be fired using the deletion update for
b;, generating a deletion update u with a tuple with same
supporting proof. O

Completeness of Synchronous SN Now we prove by in-
duction on the height of derivations that all the updates in
A are generated by Algorithm 2. The following lemma states
that all updates in A that are supported by a derivation of
height ¢ have already been computed by Algorithm 2 at an
iteration that is no later than . Or in other words, that syn-
chronous SN is complete since all updates that have to be
processed are indeed processed by it. For instance, in the ex-
ample above, the updates in A[0] = {(+,r), (-, s)} belong to
UJ0] and similarly the update in A[1] = {(-,¢)} belongs to
Ulo,1].

Lemma 22 (Completeness) For any i, A[i] C U]0,7].

Proof By induction on the height of proofs.

Base case i = 0: A[0] =1W D =U[0] =U[0,0].

Inductive case ¢« = j + 1: By induction hypothesis, we know
that all Alk], where k& < j + 1, have been computed. Now,
we show that all updates in A[j + 1] are contained in |0, j +
1]. Assume that (+,p=) € A[j + 1] and assume that p= is
supported in the view V¥ by using rule p :- b1,...,b, called r
and tuples blal, ...,bZn also in V. We now show that a delta-
rule of r is fired before the j** + 1 iteration. Since p= ¢ V,
it means that some biEis do not belong to V', but belong V¥
(hence the insertion update). Since the insertion of = is a
derivation of height j + 1, the Z;s are derivations of height at
most j. Hence, from the inductive hypothesis, it is the case
that the insertions of the biEis have been previously derived and
in the worst case the delta-rule for r is fired at the iteration
j. However, in order to fire a delta-rule of r, we also need to
make sure that Algorithm 2 does not delete any of the biE"s.
Since (+,p=) is in A, it follows from Lemma 19 that = is non-
conflicting. So, no tuple biE*s is supported by a tuple that
is deleted and hence indeed none of the biEiS are deleted by

Algorithm 2. Therefore, (+,p=) € U[0,j + 1]. The case for
deletion updates is similar. O

Also notice that in its proof shown in Appendix A, we use
invariants that relate the derivation height of the tuples to
the iteration number of the while loop. This is not possible
for Algorithm 1 because Algorithm 1 picks an update non-
deterministically.

Correctness of Synchronous SN Combining the sound-
ness and completeness result, we can finally show the correct-
ness of Algorithm 2.

Proof of Theorem 9.

Proof Because P is non-recursive, we know that both V'
and V" is finite; and therefore, A is also finite.

By the definition of the transition rules, given a complete
run of Algorithm 2, the final view V; computed by Algorithm 2
is VwiU}i0,n] \ U5[0,n], where n is the number of iterations
of the execution, U; denotes the insertions updates in I/, and
Up denotes the deletion updates in U.

Let U denotes the non-conflicting updates in U. By
Lemma 20, U[0,n] € A. By Lemma 22, A C U[0,n]. By
Lemma 19, A C #[0,n]. Therefore, A = [0,n]. By
Lemma 21, V & UL[0,n] \ UL[0,n] = V wUL[0,n] \ UL[0,n).
Since V¥ = VW AL \ AL we can conclude that V; = V¥, O
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