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ABSTRACT

MODELING APPROACHES FOR COST AND COST-EFFECTIVENESS ESTIMATION USING

OBSERVATIONAL DATA

Jiaqi Li

Nandita Mitra

The estimation of treatment effects on medical costs and cost effectiveness measures is compli-

cated by the need to account for non-independent censoring, skewness and the effects of con-

founders. In this dissertation, we develop several cost and cost-effectiveness tools that account

for these issues. Since medical costs are often collected from observational claims data, we in-

vestigate propensity score methods such as covariate adjustment, stratification, inverse probability

weighting and doubly robust weighting. We also propose several doubly robust estimators for com-

mon cost effectiveness measures. Lastly, we explore the role of big data tools and machine learning

algorithms in cost estimation. We show how these modern techniques can be applied to big data

manipulation, cost prediction and dimension reduction.
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CHAPTER 1

INTRODUCTION

Proper medical cost and cost-effectiveness estimation is critical for health economics evaluation

and decision-making. We are often most interested in the effect of a new treatment on cost and

cost-effectiveness compared to the existing treatment. The gold standard for estimating the treat-

ment effect is a randomized controlled trial. However, it is often not feasible or ethical to carry

out trials just for the purpose of collecting medical cost data. Hence, we need to obtain cost and

cost-effectiveness measures from observational sources.

1.1. Background

The development of methods for the analysis of cost and cost-effectiveness data has been of inter-

est to many statisticians and health economists. In this section, we review several popular methods

that handle the unique features of cost data, including informative censoring, heteroscadasticity,

skewness and zero costs. We also provide a review of common cost effectiveness measures. Since

observational data play an important role in cost and cost-effectiveness estimation, we review sev-

eral common propensity score models that handle data from observational sources. Lastly, we give

some background on big data and machine learning tools that could be applied to cost estimation.

1.1.1. Background about cost estimations

Medical costs often have very different distributions depending on such the disease and treatment

setting. To handle distributional skewness and structural zeros, economists and statisticians have

developed two broadly categorized methods:, single equation and multiple equation models. Sin-

gle equation methods include ordinary least squares regression, generalized linear regression,

parametric models (e.g. Weibull, Gamma) with different transformations (e.g. log, Box-Cox) and

different variance functions. Some (Lumley et al., 2002) argue that with a large enough sample size

(n > 500), linear regression and t-tests are appropriate for analysis of highly skewed outcomes,

including costs. Mihaylova et al. (2011) carried out a study to review some popular methods for

analyzing cost data, and recommended using a simple method such as linear regression that as-

sumes a normal distribution for large samples. Others (O’Hagan and Stevens, 2003) disagree
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and advise against ignoring skewness of cost data because variance estimates based on normal

approximations may be biased.

Historically, the natural logarithm of costs in ordinary least squares regression (OLS) or generalized

linear model (GLM) with log link have been used. However, Manning and Mullahy (2001) found OLS

estimators can be biased under heteroscadasticity. Even though GLM estimators are consistent,

they can yield imprecise estimates if the log-scale error is heavy-tailed. Manning, Basu, and Mul-

lahy (2005) evaluated OLS, OLS for log cost, standard gamma model and exponential with a log

link, and the Weibull model and found that a generalized gamma distribution was the most robust.

Several GLM based estimators have also been proposed. For example, Basu and Rathouz (2005)

proposed GLM using box cox transformation and parametric models for the variance as a function

of the mean. Others have suggested using median regression since the median is less sensitive to

skewness and outliers. Bang and Tsiatis (2002); Ying, Jung, and Wei (1995) extended median re-

gression to incorporate simple weights to handle censored cost data. Dodd et al. (2006) compared

normal and bootstrapped multiple linear regression, median regression, gamma model with the log

link and OLS of log costs. They found that GLM with log link and gamma variance provided the

best fit. Lastly, Basu, Manning, and Mullahy (2004) conducted a similar comparison and applied

popular medical cost models to different cost data structures and arrived at the same conclusion -

GLM with log link and gamma variance is the most robust model.

In addition, multiple equation models have focused on different components of costs such as zero

and non-zero costs, and inpatient and outpatient billings (Duan et al., 1983; Leung and Yu, 1996).

The rationale behind these multiple equation models are that costs accrued at different times of a

patient’s history follow different distributions and thus should be modeled differently.

One of the biggest issues present in most cost data is informative censoring due to the lack of

a common rate of cost accrual over time among patients. To handle non-ignorable censoring, the

popular approaches are either weighting-based (Bang and Tsiatis, 2000; Lin et al., 1997) or survival

model based. The latter is less popular; Etzioni et al. (1999) demonstrated that standard survival

techniques yield biased estimates. Lin et al. (1997) proposed a non-parametric approach that splits

the time period into small intervals and weights mean costs from each interval by survival proba-

bilities estimated from the Kaplan-Meier curve. Lin’s method is only consistent if the partitions are

chosen so that censored observation and interval boundaries coincide. To overcome this issue,

2



(Bang and Tsiatis, 2000) proposed two popular methods: simple weighted and partitioned estima-

tors, to estimate mean medical cost. The simple weighted method averages subjects with complete

cost information weighted by the probability of not being censored. The The partitioned estimator

builds on the same weighting idea but makes use of cost history information and is hence more

efficient. Many (Raikou and McGuire, 2004; Zhao, Cheng, and Bang, 2011; Zhao et al., 2007) have

studied the properties of these two popular methods. Baser et al. (2004); Lin (2000, 2003) subse-

quently extended these methods to regression of censored cost. Recent work (Basu and Manning,

2010; Tian and Huang, 2007) has focused on two part models to accommodate significant zeroes,

end of life cost and skewness properties of medical cost data.

1.1.2. Background : cost effectiveness estimation

Cost effectiveness (CE) analysis is often used to evaluate the merits of a new health-care inter-

vention (treatment, Z = 1) compared to an existing one (control, Z = 0). CE measures integrate

estimates of costs and effectiveness in a single statistic derived from two components: ∆E and ∆C

where ∆E =EffectivenessZ=1−EffectivenessZ=0 and ∆C =CostZ=1−CostZ=0.

One common approach to combine the cost and effect outcomes to form Incremental Cost- Ef-

fectiveness Ratio (ICER). However, a major limitation of the ICER is its discontinuity when the

denominator ∆E approaches zero. Another issue is that ICER often has an unstable interpretation;

when the ∆E is positive and ∆C is negative, ICER has a different interpretation than when ∆C is

positive and ∆E is negative. In addition, estimating the variance of ICER is problematic due to the

acknowledged statistical problems associated with ratio statistics. Non-parametric bootstrapping,

Fieller’s theorem and Bayesian approaches (Heitjan, Moskowitz, and Whang, 1999; Polsky et al.,

1997; Willan and O’Brien, 1996) can be applied to estimate the variance of ICER.

Recently, health economists have advocated the use of the Net Monetary Benefit (NMB): NMB (λ) =

λ∆E −∆C . NMB is a linear combination of ∆C and ∆E and measures the excess benefit given a

fixed level of λ. λ is defined as willingness to pay (WTP), which is the maximal monetary value

decision-makers are willing to pay for a unit of ∆E . Typically, λ measures the dollar amount

one is willing to pay for one year of additional life. The NMB does not suffer from the singular-

ity problem that the ICER does. Moreover, the interpretation of NMB is straightforward: a positive

NMB means a new treatment is more cost-effectives and a negative NMB means a new treat-
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ment is less cost-effective compared to the control. It is also easy to estimate its variance as

var(NMB(λ)) = λ2var(∆E) + var(∆C)− 2λcov(∆E ,∆C).

A CE acceptability curve builds on the idea underlying the NMB and displays the probability that

the treatment is cost-effective (NMB> 0) compared with the control for a range of λ values. To plot

the CE acceptability curve, we use bootstrapping to estimate Pr(λ∆E −∆C > 0). In practice, we

simply count the proportion of bootstrapped samples that yields λ∆E − ∆C > 0 for a range of λ

values.

Similar to cost analysis, CE estimation needs to account for informative censoring in cost data.

Willan et al. (2002) proposed NMB and ICER estimation methods accounting for censoring in cost

data in the setting of randomized trials. A similar approach was taken to extend to developing a

linear regression method that accommodates censored outcomes (Willan, Lin, and Manca, 2005).

1.1.3. Background: propensity score methods

Heath care cost information are often collected from observational claims data, thus one must be

careful when dealing with potential confounding. The propensity score (PS), first introduced by

Rosenbaum and Rubin (1983) is commonly employed to adjusted for confounding in observational

studies (Austin, 2011). Propensity scores are often used in covariate adjustment, matching, strat-

ification, and weighting (Lunceford and Davidian, 2004; Rosenbaum, 1987). Covariate adjustment

on PS is easy to use but assumes that the relationship between the propensity score and the out-

come has been correctly modeled (Austin and Mamdani, 2006), which could be a challenge in cost

estimation since there is no one-size-fits-all cost model. Rosenbaum (1987) first introduced inverse

probability of treatment weighting (IPTW) while Lunceford and Davidian (2004) presents two other

types of weights. Robins, Rotnitzky, and Zhao (1994) provided the theory behind a broader class

of weighted estimators. Matching is commonly used in practice where we match subjects in treat-

ment and control groups according to their estimated propensity scores. Stratification based on the

quintiles of the PS eliminates approximately 90% of bias due to measured confounders (Cochran,

1968; Rubin and Rosenbaum, 1984). Many have compared the relative performance of these var-

ious methods (Austin, Grootendorst, and Anderson, 2007; Austin and Mamdani, 2006; Lunceford

and Davidian, 2004). As Rubin (2004) notes, covariate adjustment using PS and IPTW are more

sensitive to whether the PS has been accurately estimated.
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Recently, a new PS method, doubly robust (DR) estimation based on Robins, Rotnitzky, and Zhao

(1994) has become popular. It has the smallest large sample variance among the class of weighted

estimators. DR estimation combines outcome regression (regression model) with weighting by PS

(PS model) such that it is robust to misspecification of one (but not both) of these models (Bang

and Robins, 2005; Tsiatis and Davidian, 2007). The doubly robust property is appealing but can

result in biased estimates if both the outcome model and PS model are misspecified (Funk et al.,

2011).

1.1.4. Background : big data and machine learning methods

With the recent availability of big data, the role of machine learning in economics has become

increasingly important (Varian, 2014). Traditionally cost data have been be stored and manipulated

on spreadsheets or by a Structured Query Language (SQL). However, these tools are inadequate

for massive data which require special programing paradigms. . Some popular big data storage

and manipulation algorithms include Hadoop File Distribution System (Lam, 2010; Shvachko et al.,

2010; Venner, 2009) and MapReduce (Dean and Ghemawat, 2008).

Cost prediction has been of great interest to health economists (Folland, Goodman, Stano, et al.,

2007). Traditionally, parametric models have been used for cost prediction. In recent studies, ma-

chine learning non-parametric algorithms has been shown to have better predictive abilities (Kim,

An, and Kang, 2004; Sushmita et al., 2015). Bertsimas et al. (2008) compared the performance

of classification trees, clustering, and traditional models for cost bucket estimation, and found that

data-mining methods provide more accurate predictions. Popular machine learning prediction algo-

rithms include classification and regression trees, random forests, support vector machines, boost-

ing and Bayesian additive regression trees.

In addition, variable selection can be challenging in cost estimation models. We often have many

potential predictors that may need to be narrowed down for model building. Traditionally, re-

searchers use stepwise regression and model complexity measures such as the Akaike information

criterion (AIC) and Bayesian information criterion (BIC) to select important variables. With the rise

of big data, we see more and more large datasets with numerous potential predictors where modern

dimension reduction methods may serve as important tools in estimating cost. Popular dimension

reduction tools such as principle components analysis and Lasso combine the strength of statistical
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modeling with machine learning.

1.2. Novel developments

In this dissertation, we develop statistical methods for cost and cost-effectiveness estimation from

observational data. The dissertation consist of three parts. In Chapter 2, we investigate propen-

sity score (PS) based methods such as covariate adjustment, stratification and inverse probability

weighting taking into account informative censoring of the cost outcome. We compare these more

commonly used methods to doubly robust weighting. We then use a machine learning approach

called Super-Learner (SL) to 1) choose among conventional regression models to estimate mean

models in the DR approach and 2) choose among various covariate specifications for PS estima-

tion. Our simulation studies show that when the PS model is correctly specified, weighting and

DR perform well. When the PS model is misspecified, the combined approach of DR with Super

Learner can still provide unbiased estimates. SL is especially useful when the underlying cost dis-

tribution comes from a mixture of different distributions or when the true PS model is unknown. We

apply these approaches to a cost analysis of two bladder cancer treatments, cystectomy versus

bladder preservation therapy, using SEER-Medicare data.

In Chapter 3, we propose using separate doubly robust (DR) methods based on propensity scores

for estimating CE with and without incorporating cost history and show they are unbiased. We then

use cross validation to choose among popular cost models to estimate regression parameters in

the DR approach and to choose among various parametric and non-parametric propensity score

models. Our simulation studies demonstrate that the proposed DR models perform well even under

misspecification of either the PS model or the outcome model. We apply these approaches to a

cost-effectiveness analysis of two competing lung cancer surveillance procedures, CT versus chest

X-ray, using SEER-Medicare data.

In Chapter 4, we review and explore the use of big data and machine learning techniques in health

care cost estimation. Specifically, we look at three areas: big data manipulation, cost prediction and

variable dimension reduction. Massive health care cost data calls for the use of big data storage

and manipulation algorithms like Hadoop and MapReduce. Traditionally, the focus of cost predic-

tion has been on how to come up with the best parametric model to predict cost. With the rise

of modern machine learning techniques, we can use non-parametric prediction models such as

6



classification and regression trees, random forest, Bayesian adaptive regression trees, and support

vector machines. Moreover, popular dimension reduction tools such as LASSO and principle com-

ponents analysis combine the strengths of statistical modeling with machine learning, and allow

us to identify important covariates affecting one’s health care cost and to build parsimonious cost

models. We demonstrate the use of these state-of-the-art big data and machine learning models

using a cohort of lung cancer patients derived from SEER-Medicare.
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CHAPTER 2

PROPENSITY SCORE AND DOUBLY ROBUST METHODS FOR ESTIMATING THE

EFFECT OF TREATMENT ON CENSORED COST

2.1. Introduction

Proper medical cost estimation is imperative to health economics evaluation and decision-making.

Policy makers are often most interested in the average effect treatment effect (ATE) on total costs.

Since medical costs are often collected from claims data which are susceptible to confounding,

appropriate estimation of the ATE from observational data demands attention. These methods

must also account for other complicating features of cost data including informative censoring and

skewness.

The primary focus of earlier studies of cost estimation has been on methods for dealing with their

distributional skewness. Historically, researchers have used natural logarithm transformed costs in

ordinary least square regression (OLS) or used generalized linear models (GLM) with a log link.

However, Manning and Mullahy Manning and Mullahy (2001) showed that OLS estimators can

be biased under heteroscadasticity and GLM estimators can yield imprecise estimates if the log-

scale error is heavy-tailed. Others have suggested using median regression since the median is

less sensitive to skewness and outliers (Manning, Basu, and Mullahy, 2005). Several studies (Basu,

Manning, and Mullahy, 2004; Basu and Rathouz, 2005; Dodd et al., 2006) have evaluated additional

approaches such as OLS, OLS for log cost, standard gamma, standard GLM, generalized gamma,

median regression, exponential models with log link, and the weibull model. Dodd et al. (2006)

found the generalized gamma model to be the most robust cost model. Recent works (Basu and

Manning, 2010; Tian and Huang, 2007) have focused on two part models and Bayesian approaches

to accommodate structural zeros and end of life costs.

An important feature of medical costs is censoring, which often occurs if the study terminates after a

fixed follow-up period. Even though survival time is non-informatively censored due to end-of-study

censoring, cost is not. Censoring in cost is informative since the rate of cost accrual over time

may vary greatly among patients. To address this issue, Lin et al. (1997) introduced two estimators
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of mean cost by partitioning study period into subintervals and assuming censoring occurs only

at the boundaries of these subintervals. Bang and Tsiatis (2000) improved on Lin et al.’s work

and proposed two popular methods: the simple weighted method and the partitioned method, to

estimate mean medical cost under informative censoring. The simple weighted method averages

subjects with complete cost information weighted by the inverse of the probability of not being

censored. The partitioned estimator builds on the same weighting idea but also makes use of cost

history information and is therefore more efficient. Properties of these methods have been widely

studied (Raikou and McGuire, 2004; Zhao, Cheng, and Bang, 2011; Zhao et al., 2007) . Baser

et al. (2004); Lin (2000, 2003) have since extended these methods to linear regression and general

linear models to incorporate the effect of covariates. Several studies (Bang and Tsiatis, 2002; Ying,

Jung, and Wei, 1995) have also applied these techniques to median regression to handle censored

cost data.

Heath care cost information is often collected from observational sources, such as Medicare, ne-

cessitating the need to adjust for potential confounders. The propensity score (PS), first introduced

by Rosenbaum and Rubin (1983) is commonly employed to adjust for confounding in observational

studies (Austin, 2011). Propensity scores are often used in covariate adjustment, matching, strat-

ification and weighting (Lunceford and Davidian, 2004; Rosenbaum, 1987). Covariate adjustment

of the PS is easily implemented but is sensitive to the assumption that the relationship between

the propensity score and the outcome has been correctly modeled (Austin and Mamdani, 2006).

Stratification based on PS is also often used as it greatly simplifies implementation over standard

methods;Rubin and Rosenbaum (1984) demonstrated that stratification based on the quintiles of

the PS eliminates approximately 90% of bias due to measured confounders. More recently, inverse

probability of treatment weighting (IPTW) (Rosenbaum, 1987) has become the method of choice.

The normalized version of IPTW has been proposed (Busso, DiNardo, and McCrary, 2014; Hirano,

Imbens, and Ridder, 2003) which belongs to a broader class of weighted estimators described by

Robins, Rotnitzky, and Zhao (1994). Several studies (Austin, Grootendorst, and Anderson, 2007;

Lunceford and Davidian, 2004) compared the relative performance of these methods. Covariate

adjustment using PS and IPTW has been shown to be more sensitive to whether the PS has been

accurately estimated (Austin and Mamdani, 2006; Rubin, 2004).

In this study, we investigate doubly robust (DR) estimation of cost and compare it to more conven-
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tional propensity score based approaches. DR estimation combines outcome regression (regres-

sion model) with weighting by PS (PS model) such that it is robust to misspecification of one (but

not both) of these models (Bang and Robins, 2005; Tsiatis and Davidian, 2007). Lunceford and

Davidian (2004) demonstrated that the DR estimator performs better than stratification and IPTW.

The doubly robust property is appealing but can still lead to biased estimates if both the regres-

sion model and the PS model are misspecified (Funk et al., 2011). When using the DR method,

the biggest challenge is to accurately model cost in the regression model. Given the heteroge-

neous nature of cost distributions and the many possible choices of cost models described above,

we propose using an ensemble machine learning approach that relies on V-fold cross validation

called Super Learner (SL) (Laan, Polley, and Hubbard, 2007). Using SL, we can incorporate vari-

ous potential cost models and obtain asymptotically optimal prediction. Moreover, although logistic

regression is the most commonly used method for estimating the PS; we can use SL to obtain PS

estimates from other potential non-parametric PS models or PS models with different functional

forms.

The goal of this study is to develop appropriate PS methods for estimating skewed and censored

cost data. In the current literature, Basu, Polsky, and Manning (2011) have discussed several

methods for estimating the ATE on health care costs. Anstrom and Tsiatis (2001) have proposed

on normalized IPTW for censored cost. We extend this literature by considering PS methods on

censored cost. We begin by reviewing some of the existing cost estimation methods and then ex-

amine PS covariate adjustment, stratification and weighted approaches. We follow by discuss DR

and the application of SL in cost estimation. We provide results from simulation studies that com-

pare the performance of these estimators, and we also highlight the effect of PS mis-specification

on treatment effect estimation and demonstrate the merits of SL. Finally, we apply these PS ap-

proaches to a cost analysis of two competing bladder cancer treatments, cystectomy versus bladder

preservation therapy, using costs derived from SEER-Medicare data.

2.2. Cost estimation - existing methods

Cost estimation has been a great interest in the health economics literature. In this section we give

some brief background on existing methods. We are interested in estimation cost up to time L. We

define Yi(u) to be the known accumulated cost up to time u and Yi is the total cost that subject i
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accrues up to L. Let ti and Ci denote an individual’s survival time and censoring time in the duration

of interest respectively. Hence the random variable t is bounded by L. L can be considered as a

large number such as 100 if we are interested in life time cost. The observables are given by:

Ti = min(ti, Ci), time to event or censoring

δi = I(ti ≤ Ci), complete case indicator

Yi = Yi(ti), total cost observed only if δi = 1

We only observe Yi for the uncensored subjects. For censored subjects, their cost is still accru-

ing hence their total cost Yi is unknown. in standard survival analysis we say censoring is non-

informative if t |= C. In total cost estimation Y is not non-informatively censored since Y (t) |= Y (C)

does not hold. In practice, a patient with high cost at the time of censoring, Y (C), is also likely

to have high cost at the time of event Y (t) as that patients may likely have higher cost accrual

rate. Hence, censoring of cost is not non-informative and standard survival techniques do not ap-

ply. Now, let K(u) = Pr(C ≥ u) be the probability of not being censored at time u. K(u) can

be estimated from either parametric or non-parametric models. For instance, we can assume a

parametric survival model such as an exponential or weibull and estimate K(u) based on maximal

likelihood methods. Another approach is to use the Kaplan-Meier estimates K̂(u), based on the

data (T , 1− δ).

Economists and policy makers are often most interested in E(Y ). We describe two popular existing

methods to estimate E(Y ) assuming individual cost history data are not recorded, i.e. only cost at

event or censoring time Yi(Ti) is observed while Yi(u), u < Ti is unobserved. To estimate mean

total costE(Y ), Lin et al. (1997) proposed to partition the study period (0, L) intoK subintervals and

then “sum up” the cost contribution from subjects who died in each interval. Their method assumes

that censoring only occurs at the boundaries of the subintervals. To overcome this limitation, Bang

and Tsiatis (2000) propose using cost information from uncensored subjects and then weighting

each complete cost observation by the inverse of the probability of not being censored, which is

evaluated at the time of the subject’s death:

Ê(Y ) =
1

n

n∑
i=1

δiYi

K̂(Ti)

11



This weighted estimator is unbiased as E
[

1
n

∑n
i=1

δiYi
K̂(Ti)

]
= E

[
1
n

∑n
i=1E

[
δiYi
K̂(Ti)

∣∣∣Ti]] =

E
[

1
n

∑n
i=1

Yi
K̂(Ti)

[E(I(Ci ≥ Ti)|Ti]
]

= E
(

1
n

∑n
i=1 Yi

)
= E(Y ). This estimator is also shown to be

consistent regardless of the censoring pattern (Bang and Tsiatis, 2000). Intuitively, a subject that

is observed to die at Ti represents 1
K(Ti)

subjects who would have been observed if there were no

censoring.

Lin (2000) also applied the same weighting technique to model the linear relationship between total

cost and other covariates X as Y = β′X, when total cost is subjected to informative censoring.

If there were no censoring, the least square normal equation can be simply written as
∑n
i=1(Yi −

β′Xi)Xi = 0. However, to account for censoring, Lin applied the same weighting idea and modified

the above equation as follows:
n∑
i=1

δi
K(Ti)

(Yi − β′Xi)Xi = 0

This weighting method can also be applied to other regression models such as GLM or median

regression as discussed by Lin (2003) and Bang and Tsiatis (2002).

2.3. Propensity score approaches

Cost information is often collected from observational databases which are subjected to confound-

ing, here we develop propensity score approach to modeling censored cost data. Let Z be an

indicator of the treatment exposure: Z = 1 if treated, Z = 0 if control. We adopt the counterfactual

framework described by Rubin (1974) and define Y (0)
i to be the total cost of subject i if he were in

the control group. Similarly, Y (1)
i is the total cost if the patient had received treatment. Also, let t(0)

i

and t(1)
i denote the survival time if the patient were in the control and treatment group respectively.

Although we are most interested in total cost Y , we want to consider both Y and survival time t as

Y is dependent on t. We extend the usual assumption of strong ignorability to include both time

and total cost as follows

(Y (0), Y (1), t(0), t(1)) |= Z|X (2.1)

We also modify the assumption of non-informative censoring to state:

C |= (Y (0), Y (1), t(0), t(1),X)|(, Z) (2.2)
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In other words, we assume censoring time to be independent of potential failure time and cost

outcomes as well of other confounders conditional on covariates and treatment assignment. This

assumption is valid for end-of-study and other administrative censoring commonly seen in cost

studies; and was first formally introduced by Anstrom and Tsiatis Anstrom and Tsiatis, 2001.

Moreover, let µ be the average causal treatment effect on cost adjusted for covariates X. We use

µ1 and µ0 to represent E(Y (1)) and E(Y (0)) respectively. Therefore µ can be defined as:

µ = µ1 − µ0 = E(Y (1))− E(Y (0)) (2.3)

Further, Kz(u) = P (C ≥ u|Z = z) and must be estimated separately for the treatment and control

groups since they may have different survival trajectories. For simplicity, we use K̂(u) to denote the

treatment-specific estimated probability of being uncensored at time u, K̂z(u).

Our goal is to estimate µ from observational data utilizing propensity score methods. We extend

popular propensity score approaches to handle censored cost data. We also provide general step-

by-step guidelines for the proposed methods. First, we need to estimate propensity scores e(X) =

Pr(Z = 1|X). It is routine to estimate propensity scores from (Z,X) using a logistic regression

model:

e(X,β) =
1

1 + exp(−Xβ)
(2.4)

For simplicity, we write ei = e(Xi,β) and eβ = ∂ei/∂β. Moreover, β can be estimated using the

maximum likelihood method by solving:

n∑
i=1

ψ(Zi,Xi,β) =

n∑
i=1

Zi − ei
ei(1− ei)

eβ = 0 (2.5)

Estimated propensity scores êi can be predicted from the logistic regression model in Equation 2.4.

2.3.1. Covariate Adjustment

In the covariate adjustment approach, the outcome variables Y is regressed on Z along with the

estimated propensity score ê, and any additional covariates (subset of X). Using an extension

of the OLS model described by Lin (2000), we impose the simple weights δ
K̂(T)

to account for

censoring in costs. The choice of regression model depends on the nature of the outcome Y . Here
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we present three popular options:

Normal model The simplest method is a standard linear regression, which assumes that the total

cost Y follows a normal distribution, something unlikely to happen in practice. We regress Y on Z

and ê weighted by δ
K̂(T)

:

E(Yi|Zi,Xi) = β0 + β1Zi + β2êi weighted by
δi

K̂(Ti)
(2.6)

Hence,

µ̂ca1 = β̂1 (2.7)

Lognormal model This is similar to the linear regression model, except the outcome is transformed

using the natural logarithm. This is a popular approach in health economics, as cost is transformed

to reduce its skewness. The main shortcoming of this approach is that the analysis does not result

in a model for µ in the original scale. Re-transformation to the original scale of interest is problematic

(Manning and Mullahy, 2001) especially in the presence of heteroscedasticity. Nevertheless, log

transformation of the response variable followed by OLS is still common. Assuming log-scale errors

that are normally distributed with mean zero and common variance σ2, we regress log(Y ) on Z and

ê weighted by δ
K̂(T)

.

E(log(Yi)|Zi,Xi) = (β0 + β1Zi + β2êi) weighted by
δi

K̂(Ti)
(2.8)

Hence,

µ̂ca2 =

n∑
i=1

exp(β̂0 + β̂1 + β̂2êi + σ̂2/2)− exp(β̂0 + β̂2êi + σ̂2/2) (2.9)

Gamma model The gamma distribution has a raw-scale variance function that is proportional to

the square of the raw-scale mean function (Equation 2.10), an attribute common to many health

applications. To implement this, we regress Y on Z and ê in a GLM model weighted by δ
K̂(T)

, and

specify the variance family to be gamma.

E(Yi|Zi,Xi) = exp(β0 + β1Zi + β2êi) weighted by δi
K̂(Ti)

(2.10)

and V ar(Yi|Zi,Xi) ∝ [E(Yi|Zi,Xi)]
2 (2.11)
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Hence,

µ̂ca3 =

n∑
i=1

exp(β̂0 + β̂1 + β̂2êi)− exp(β̂0 + β̂2êi) (2.12)

The variance of µ̂ from covariance adjustment methods can be obtained in several ways. Ana-

lytically, the estimated variance of µ̂ca1 equals the variance of β̂1 estimated from Equation 2.6.

The variances of µ̂ca2 and µ̂ca3 can be derived using the delta method on Equation 2.8 and Equa-

tion 2.10. We can also use non-parametric bootstrapping to estimate the variances of µ̂ca1, µ̂ca2

and µ̂ca3.

2.3.2. Stratification

In stratification, subjects are first ranked and stratified into S mutually exclusive subsets based on

êi. If balance between treatment groups is achieved within each stratum, we can estimate µ by a

weighted sum of the difference of sample means of Yi across strata. Simple weights are imposed

to account for informative censoring:

µ̂s =

S∑
s=1

n∑
i=1

YiZiI(êi ∈ Q̂s)
n1s

× δi

K̂s1(Ti)
− Yi(1− Zi)I(êi ∈ Q̂s)

n0s
× δi

K̂s0(Ti)
(2.13)

where Qs is the sth sample quantile of ê, nzs is the total number of subjects with Zi = z. Here,

K̂s0(Ti) denotes the estimated probability of uncensoring for treated subjects in stratum s and

K̂s1(Ti) the estimated probability of uncensoring for control subjects in stratum s. Within each

stratum, subjects have roughly similar values of the propensity scores. Loosely speaking, we treat

S strata as S different independent groups. Therefore, K̂(Ti) needs to be estimated separately for

subjects in stratum s and treatment group z.

Notice that δi may be correlated with Zi since subjects on treatment may live longer; hence we

are less likely to observe their complete cost information and δi is more likely to be zero. However,

consistency of µ̂ is still valid. Consistency follows from the fact that E(δi/Ĝ(Ti)) = 1, V ar
(

δi
Ĝ(Ti)

)
is bounded, total cost is bounded (see Appendix 1 of Bang and Tsiatis (2000) for details) and the

unbiasedness property of stratification method (Lunceford and Davidian, 2004).

Lunceford and Davidian (2004) recommended approximating the empirical variance by treating µ̂

as the average of S independent, within-stratum, treatment effect estimates. If we further assume
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independence of δi and Zi, we have

V̂ ar(µ̂s) =
1

S2

S∑
s=1

s2
1j

n1s
+
s2

0j

n0s

where s2
1j and s2

0j are the sample variance of Yi for treated and control subjects in stratum s

weighted by δi/K̂(Ti). In real life settings, it is unlikely that δi is independent of Zi. Hence, the

formula above only serves as a “quick and dirty” variance estimate. In this case, it is preferably to

obtain the variance of µ̂s via bootstrapping (Jiang and Zhou, 2004).

2.3.3. Weighted approaches

Weighted estimators were first introduced by citetHorvitz1952 and were extended to propensity

scores by Rosenbaum (1987). There are many different weight choices; the most popular being

the inverse probability of treatment weights (IPTW). IPTW are defined as wi = Zi
ei

+ 1−Zi
1−ei , so that a

subject’s weight is equal to the inverse of the probability of receiving the treatment the subject was

actually given. Again, simple weights δi
K̂(Ti)

are applied to account for informative censoring.

µ̂iptw1 =
1

n

n∑
i=1

ZiYi
êi
× δi

K̂(Ti)
− (1− Zi)Yi

1− êi
× δi

K̂(Ti)
(2.14)

Another popular weight choice is the normalized version of IPTW (Busso, DiNardo, and McCrary,

2014; Hirano, Imbens, and Ridder, 2003), which follows from E
(
Z
e

)
= E

(
E(Z|X)

e

)
= 1, E

(
1−Z
1−e

)
=

1 and the estimating equations
∑n
i=1

Zi
êi

δi
K̂(Ti)

(Yi − µ1) = 0,
∑n
i=1

1−Zi
1−êi

δi
K̂(Ti)

(Yi − µ0) = 0.

µ̂iptw2 =

(
n∑
i=1

Zi
êi

δi

K̂(Ti)

)−1 n∑
i=1

ZiYi
êi
× δi

K̂(Ti)
−

(
n∑
i=1

1− Zi
1− êi

δi

K̂(Ti)

)−1 n∑
i=1

(1− Zi)Yi
1− êi

× δi

K̂(Ti)

(2.15)

As above δi may be correlated with Zi but the consistency of µ̂ is still valid. Consistency of µ̂iptw1

and µ̂iptw2 can also be demonstrated using M estimation.

The variance of µ̂iptw1 and µ̂iptw2 can be obtained in several ways. One option is to use non-

parametric bootstrapping. In addition, Anstrom and Tsiatis (2001) derived the analytic form for the

variance of µ̂iptw2 when K(Ti) is estimated using the KM method. Similar methods can be used to

derive the analytic variance of µ̂iptw1. If K(Ti) is estimated using parametric models, we can use
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M-estimation to derive var(µ̂) in Equation 2.14 and 2.15. Here we give the sketch of the derivation

when survival time ti follows an exponential distribution exp(λ):

λ can be estimated using the maximal likelihood L(λ) =
∏n
i=1[λ exp(−λTi)]δi [exp(−λTi)]1−δi . And

thus λ̂mle =
∑n
i=1 δi∑n
i=1 Ti

. Together with Equation 2.5 and Equation 2.14 we have the following estimating

equations:

Ψ =

n∑
i=1


ψ1

ψ2

ψ3

 =

n∑
i=1


(
ZiYi
ei
− (1−Zi)Yi

1−ei

)(
δi

K(Ti)

)
− µ

Zi−ei
ei(1−ei)eβ

δi − λTi

 = 0 (2.16)

Using the general framework described by Stefanski and Boos (2002), var(θ) = A(θ)−1B(θ)[A(θ)−1]T

where θ = (µ,β, λ)T . Hence V ar(µ) is the top left corner entry of var(θ).

A(θ) = E

[
− ∂

∂θ
Ψ

]
=


1 H F

0 eββ 0

0 0 E[Ti]



where H = E
[

δ
K(t)

(
ZY
e2 + (1−Z)Y

(1−e)2

)
eβ

]
, F = E

[
−
(
δT
K(t)

)(
ZY
e −

(1−Z)Y
1−e

)]
and eββ = E

[
eβe

T
β

e(1−e)

]
.

B(θ) = E
[
ΨΨT

]
=


Σ∗ H G1

H eββ G2

G1 G2 G3



where Σ∗ = E

[(
ZY
e −

(1−Z)Y
1−e

)(
δ

K(T )

)2
]
− µ2, H = E

[(
Y1

e + Y0

1−e

)
δ

K(T )eβ

]
,

G1 = E
[((

ZiYi
ei
− (1−Zi)Yi

1−ei

)(
δi

K(Ti)

)
− µ

)
(δi − λTi)

]
, G2 = E

[(
Zi−ei
ei(1−ei)eβ

)
(δi − λti)

]
and G3 =

E
[
(δi − λTi)2

]
. The components of all of the above expressions can be estimated from the ob-

served data.

2.4. Doubly Robust Estimation

Doubly Robust (DR) estimation incorporates outcome regression (regression model) and weighting

by PS (PS model), and it is robust to misspecification of one (but not both) of these models. There

are many forms of DR estimators; here we follow the general procedure described by Robins, Rot-

nitzky, and Zhao (1994). DR estimator has the smallest large sample variance among the class
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of weighted estimators and is locally semi parametric efficient. First, we estimate the regression

model for the treated group (Y ∼ X for Z = 1) and obtain predicted values for the entire sample:

m̂1(Xi). We then do the same for the control subjects and obtain predicted values for the entire

sample: m̂0(Xi). In other words, m0(Xi) and m1(Xi) are the postulated models for the true re-

gressions E(Y |Z = 0,X) and E(Y |Z = 1,X). Note that simple weights δ
K̂(T)

are applied to the

regression models to account for informative censoring. The DR estimator of µ̂ is given by:

µ̂dr =
1

n

n∑
i=1

[
ZiYiδi

êiK̂(Ti)
− (Zi − êi)m1(Xi)δi

êiK̂(Ti)

]
− 1

n

n∑
i=1

[
(1− Zi)Yiδi

(1− êi)K̂(Ti)
+

(Zi − êi)m0(Xi)δi

(1− êi)K̂(Ti)

]
(2.17)

Similar to section 2.2, the regression models m1(X) and m0(X) can be modeled in several ways:

Normal model:

E(Yi|Zi = z,Xi) = Xiβ weighted by
δi

K̂(Ti)
(2.18)

Lognormal model:

E(log(Yi)|Zi = z,Xi) = Xiβ weighted by
δi

K̂(Ti)
(2.19)

Gamma model:

E(Yi|Zi = z,Xi) = exp(Xiβ) weighted by
δi

K̂(Ti)
(2.20)

The doubly robust estimates are consistent if the propensity score model or the regression model

m1(X) = E(Y |Z = 1,X) and m0(X) = E(Y |Z = 0,X) are correctly specified. To see this, consider

µ̂1,dr = 1
n

∑n
i=1

[
ZiYiδi
êiK̂(Ti)

− (Zi−êi)m1(Xi)δi
êiK̂(Ti)

]
. By the Law of Large Numbers, µ̂1,dr estimates:

E

[
ZY δ

eK(T )
− (Z − e)m1(X)δ

eK(T )

]
= E

[
ZY (1)δ

eK(T )
− (Z − e)m1(X)δ

eK(T )

]
= E

[
δ

K(T )
Y (1) +

(Z − e)
e

(
δ

K(T )
Y (1) −m1(X)

)]
= E

[
Y (1)

]
+ E

[(
Z

e
− 1

)(
δ

K(T )
Y (1) −m1(X)

)]
= µ1 + E

[(
Z

e
− 1

)(
δ

K(T )
Y (1) −m1(X)

)]
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Hence for µ̂1,dr to be unbiased, we need the second term S = E
[(
Z
e − 1

) (
δ

K(T )Y
(1) −m1(X)

)]
to be zero. This condition is satisfied when the propensity score model is correctly specified:

E(Z|Y (1),X) = E(Z|X) = e(X, β) = e so S = E
[
E
[(
Z
e − 1

) (
δ

K(T )Y
(1) −m1(X)

)
|Y (1),X

]]
=

E
[(

E(Z|Y (1),X)
e − 1

)(
δ

K(T )Y
(1) −m1(X)

)]
= 0. When the regression model m1(X) is correctly

specified, m1(X) = E(Y |Z = 1,X) = E(Y (1)|Z = 1,X) = E(Y (1)|Z,X) so

S = E
[
E
[(
Z
e − 1

) (
δ

K(T )Y
(1) −m1(X)

)
|Z,X

]]
= E

[(
Z
e − 1

) (
E( δ

K(T )Y
(1)|Z,X)−m1(X)

)]
=

E
[(
Z
e − 1

) (
E(Y (1)|Z,X)−m1(X)

)]
= 0. Hence, the DR estimator is unbiased if either the

propensity score model or the regression model is correctly specified. The doubly robust proce-

dure has benefits over standard estimation but can result in biased estimates if both the regression

model and PS model are misspecified (Funk et al., 2011).

2.5. Super-Learning

The Super-learner algorithm (Laan, Polley, and Hubbard, 2007) is an ensemble machine learning

approach based on V-fold cross validation. It allows one to specify several candidate prediction

models and use them to produce an asymptotically optimal combination. Specifically, data are

split into blocks and then each of the candidate algorithms are fitted on the training set and out-

comes are predicted using the validation set. The loss function is calculated within each valida-

tion set, and averaging across validation sets provides the estimated cross validated risk score

for each method The SL algorithm finds the optimal weighted combination of all the methods.

Laan, Polley, and Hubbard (2007) proved asymptotic efficiency of the SL algorithm. Further, it is

guaranteed to perform at least as well as the best estimators from the candidate models. This

machine learning algorithm is available as an R package called Super Learner (https://cran.r-

project.org/web/packages/SuperLearner/SuperLearner.pdf) and as a SAS macro (Brooks, 2012).

In DR estimation, our primary concern is whether the cost regression models m1(X) and m0(X)

are correctly specified. Given the heterogeneous nature of costs, there is no one-size-fits-all re-

gression model. In machine learning literature, it is common to combine predictions from multiple

models or multiple parametric and non-parametric predictive algorithms. Hence, one intuitive solu-

tion to accommodate the complex features of cost distribution is to employ SL to obtain the optimal

prediction from common cost models.

Super-learner methods can also be applied when we are uncertain about model specification in the
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propensity model. Untill now, we have assumed the propensity score model to be correctly spec-

ified; but this is unlikely to be true in practice. If the correct subset and functional forms of covari-

ates are unknown, we can include all combinations of potential subsets, interactions and quadratic

forms of covariates and use SL to find the optimal estimates. Recent studies have proposed to use

tree-based methods (Setoguchi et al., 2009), random forests (Lee, Lessler, and Stuart, 2010) and

neural networks for estimating the PS. These can be included as candidate PS models, allowing SL

to obtain optimal PS estimates from a wide variety of candidate algorithms (Gruber et al., 2015).

2.6. Simulation studies

Using simulation studies, we evaluate the performances of all methods discussed in Section 2,

3 and 4 under various settings, including different survival models, cost models, and censoring

distributions. We report the bias, the coverage probability of the resulting 95% confidence interval

and the mean square error ratio (MSER) which is the ratio of MSE of each approach with reference

to MSE of DR with SL in regression models.

We based choices of our simulation parameters on data from our bladder cancer study (Section 7).

We simulated three covariates X = {X1, X2, X3}. Since most covariates in our empirical example

were categorical, we simulated X1 and X2 as binary with success probabilities of 0.5 and 0.25

respectively. X3 followed a normal distribution with standard deviation 1 and mean 0. Using these

covariates, we then defined treatment choice Z using a logit index model where D ∼ Bernoulli(p)

and

logit(p) = −0.8X1 − 1.6X2 + 0.4X3 (2.21)

The coefficients were fixed so that approximately 30% of the population received treatment, to

mirror our bladder cancer data. The sample sizes were set to be 1000 and 5000, typical sizes for

observational studies.

We drew failure times from weibull and exponential distributions where f(t) = k
λ

(
t
λ

)k−1
e−(t/λ)k .

For weibull failure times, we set k = 2.5 and λ = 3.2 + 2Z + 1.2X1 + 1.4X2− 0.6X3. For exponential

failure times, k = 1 and λ = exp(−Z − 0.8X1 − 1.2X2 − 0.6X3). Censoring times were indepen-

dently simulated from uniform distribution U(0, 20) and U(0, 12) for light and moderate censoring.

The probability of censoring was approximately 20% for light censoring and 35% for moderate cen-
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soring, respectively. The latter scenario was similar to our bladder cancer example. Observed time

was defined as the lesser of survival time and censoring time.

As medical costs are often complex and can come from very different distributions, we generated

total medical costs from normal, lognormal and gamma distributions according to the parametriza-

tion shown below. The mixed distribution was a weighted average of the normal, lognormal and

gamma cases.

Normal : Y (Normal) ∼ 5.8 + Normal(0, 0.4) + Z + 0.4X1 + 0.8X2 +X3

Lognormal : Y (Lognormal) ∼ exp(Normal(0, 0.2) + 1.6Z + 1.2X1 + 0.8X2 + 0.2X3)

Gamma : Y (Gamma) ∼ Gamma(shape = 2.5, scale = exp(Z + 0.6X1 + 0.4X2 + 0.2X3))

Mixed : Y (Mixed) ∼ {Y (Normal) + Y (Lognormal) + Y (Gamma)}/3

Propensity scores were estimated using a logistic regression model assuming correct model spec-

ification according to Equation 2.21. We then applied PS covariates adjustment with normal, log-

normal and gamma models, stratification, IPTW, normalized IPTW, DR with normal, lognormal and

gamma regression models and DR using SL for regression models to estimate µ. Jiang and Zhou

(2004) showed that using bootstrap methods to estimate CI of mean cost work well. Bang and

Tsiatis (2000) also showed that bootstrap estimates of variance for mean cost are consistent with

the analytically derived asymptotic variance estimates. In our analysis, there are several sources

of variation for µ̂. For example, when using the DR estimator, we have variation from the PS model,

KM model, regression models and the final DR estimation model. This greatly complicates analytic

variance estimation but can be easily dealt with by using non-parametric bootstrapping. We used a

bootstrap estimate with bias-corrected and accelerated (BCa) correction (Efron, 1987) to construct

95% CI confidence intervals of µ̂. Lastly, we included the naive regression method where total cost

is regressed on the main effects of covariates in a linear model to recognize the consequences of

analyses that do not properly account for confounding, skewness and censoring.

We simulated each scenario 500 times and summarize results by the empirical percentage bias

(%bias), coverage probability of the 95% confidence interval (Coverage) and MSE ratio based on

BCa standard errors (MSER). Note that for subjects with large observation time, if the estimated
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probability of censored K̂(ti) was zero, mini K̂(ti) in the specific treatment or treatment-stratum

group was used instead to avoid the issue of the denominator of δi
K̂(ti)

being zero. Thus, all empirical

estimations of µ were under-estimations. The extent of under-estimation depends on the censoring

proportion and method used.

2.6.1. Simulation results

Results of the simulation with various censoring and cost settings and sample size of 1000 appear

in Table 2.1. The naive estimator ignoring censoring and confounders is biased under all settings.

As anticipated, the PS covariate adjustment performs well when the correct model is specified, but

exhibits bias when mis-specified. For example, when cost follows gamma distribution, covariate

adjustment with gamma model yields 0.35% bias while the lognormal model had 18.74% bias under

light censoring. If cost comes from a mixture of normal, lognormal and the gamma distributions,

covariate adjustment methods perform poorly since the true relationship between outcome and PS

is unknown. Of the covariate adjustment models, the gamma model is the most robust, with the

smallest biases for misspecifed cost distributions, a finding consistent with Dodd et al. (2006) and

Basu, Manning, and Mullahy (2004). The PS stratification estimator has large biases and worst

MSE among all PS methods. Note that stratification is most susceptible to under-estimation of µ.

Since we need to calculate stratum and treatment specific K̂(u), K̂(u) is more likely to be zero for

observations with large observation time T .

IPTW estimators yield bias ranging from -0.38% to -6.58%. The normalized IPTW estimator has

smaller bias than the typical IPTW, consistent with findings from Lunceford and Davidian (2004).

Estimates from DR methods had very small bias, even when the regression model is mis-specified.

Since the PS is correctly modeled, DR estimators should be unbiased due to their doubly robust

property as demonstrated here. Correct regression model specification in DR has very small effect

on bias and coverage since PS model is already correct. Nevertheless, using SL for the regression

model results in small bias and MSE among all DR models. Simulations with a sample size of 5000

(data not shown) produce similar results in terms of bias and coverage, but have smaller MSE. As

expected, the larger sample size increases overall estimation efficiency.
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2.6.2. Misspecified PS

Next, we explore the case of PS misspecification when the correct model is unknown. We use the

same simulation procedure as above changing Equation 2.21 to

logit(p) = −2− 0.2X1 − 0.4X2 − 0.2X3 + 1.4X1X2 − 1.4X1X3 + 1.2X2
3 (2.22)

In the simulated data, we estimated PS according to the correct model in Equation 2.22, and also a

misspecified PS model with only main effects of X1, X2 and X3. Finally, we used SL to estimate PS

using all possible combinations of the second order polynomials of X and the two way interactions

among them. Table 2.2 shows the results for weibull survival time, light censoring, sample size of

1000, gamma and mixed cost models.

Correct PS Misspecified PS SL PS

gamma model %bias Coverage MSER %bias Coverage MSER %bias Coverage MSER
naive regression -9.52 0.67 5.81
covariates adjustmt: normal 6.66 0.92 5.18 7.50 0.88 7.80 5.01 0.92 3.85
covariates adjustmt: lognormal -21.98 0.22 1.35 -22.67 0.12 2.04 -22.19 0.72 1.26
covariates adjustmt: gamma 0.30 0.94 2.07 4.13 0.94 3.12 0.30 0.96 1.53
stratification 2.85 0.91 10.54 32.58 0.77 20.65 1.77 0.94 5.94
IPTW 0.76 0.96 14.25 46.71 0.28 21.48 0.62 0.93 8.95
IPTW: normalized -0.36 0.94 1.83 8.88 0.90 2.76 0.21 0.92 1.58
DR: normal 0.61 0.94 1.46 0.75 0.93 1.31 0.30 0.94 1.07
DR: lognormal -0.71 0.94 1.45 8.91 0.89 1.05 0.38 0.96 0.93
DR: gamma 0.29 0.93 1.53 0.19 0.93 0.94 0.09 0.95 0.90
DR: SL in regression model 0.48 0.92 1 (ref) 3.10 0.94 1 (ref) 0.02 0.90 1 (ref)
mixed
naive regression -48.82 0.29 6.70
covariates adjustmt: normal 44.45 0.54 1.74 45.15 0.54 2.27 42.34 0.60 2.21
covariates adjustmt: lognormal -16.81 0.85 2.54 -26.51 0.85 5.09 -19.18 0.83 4.21
covariates adjustmt: gamma 23.84 0.79 1.46 15.84 0.79 1.84 21.56 0.84 1.71
stratification 12.64 0.91 5.49 15.47 0.77 16.84 9.25 0.95 3.57
IPTW 8.57 0.97 9.47 10.57 0.97 23.13 4.23 0.92 6.00
IPTW: normalized -1.00 0.94 1.10 -2.00 0.94 1.88 -0.80 0.92 1.05
DR: normal -1.81 0.96 1.74 -8.07 0.96 1.03 -1.21 0.95 1.06
DR: lognormal -2.00 0.97 3.85 -6.77 0.98 1.86 -1.24 0.96 1.07
DR: gamma -2.07 0.97 1.82 -1.93 0.95 0.97 -0.34 0.95 1.05
DR: SL in regression model -0.18 0.98 1 (ref) -5.72 0.97 1 (ref) -0.02 0.97 1 (ref)

Table 2.2: %Bias, coverage and relative efficiency for estimated treatment effect on cost under
different PS estimation methods

When the PS model is mis-specified, estimates from PS covariate adjustment are biased (4.13%

to 45.15%). Estimates from IPTW methods are also highly biased (-2.00% to 46.71%) when PS

model is mis-specified, in line with Rubin (2004). When the regression models in DR are correctly

established, DR estimators have very small bias. However, when both the regression model and

the PS model are wrong, as anticipated we see some bias (0.75% to 8.91%). Overall, PS mis-

specification affects all of the estimators discussed, especially those that are sensitive to PS. The
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only method that is robust to PS misspecification is DR, provided the regression model is correctly

established.

When SL is used to estimate PS, we see significant improvement of performance across all estima-

tors. In most cases, using SL in PS estimation yields less bias and better coverage than when the

correct PS model is used. Hence, we recommend using SL when the correct PS model is unknown.

When true cost comes from a mixture of normal, lognormal and gamma distributions, SL in DR can

provide the best regression model estimates. In real life settings, it is highly likely that cost comes

from a mixture of different distributions and the correct PS model is unknown. In this case, using

SL with DR and PS estimation provides added flexibility which improves estimates substantially.

2.7. Costs of Bladder Cancer Therapies

Bladder cancer affects more than 70,000 people annually in the United States and accounts for

almost 5% of the total cancer-related costs to Medicare. The guideline recommended treatment for

bladder cancer is radical cystectomy (RC) which involves surgical removal of the bladder. Bladder

preservation therapy (BPT) is a less aggressive, non-surgical alternative that involves radiation and

chemotherapy. Recent studies have shown that BPT may improve quality of life over RC (Efstathiou

et al., 2012). We have applied our method to compare the life-time cost of RC and BPT using a

cohort of patients derived from SEER-Medicare registry.

We included stage II/III bladder cancer patients diagnosed between 1995 and 2005. See Bekelman

et al. (2013) for a detailed description of inclusion/exclusion criterion. 32% of the study cohort

were censored at the end of the study. Payment data were extracted from Carrier Claims file, the

Outpatient file, and the Medicare Provider Analysis and Review Record. We adjusted all costs to

year 2000 dollars using the Medicare Economics Index (Centers for Medicare and Medicaid, 2010).

The final cohort sample size was 1860; 422 had BPT and 1438 had RC. The mean uncensored

costs were $68,800 for BPT patients and $83,040 for RC patients. Total treatment cost were highly

right skewed Figure 2.1 with a maximum observed cost of $511,200. The average observation time

was 3.93 years.

In this study, both treatment assignment and total cost may have been affected by covariates such

as stage, grade, race, marital status, comorbidities, median income at the census tract level and
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Figure 2.1: Density of uncensored total costs in bladder cancer cohort

0 10000 20000 30000 40000 50000

0.
86

0.
90

0.
94

0.
98

Willingness to pay ($/yr)

P
ro

po
rt

io
n 

of
 it

er
at

io
ns

 w
ith

 N
M

B
>

0

community size. Hence, we estimated PS using a logistic regression model that was adjusted for all

of these potential confounders. We then estimated the difference in total cost between BPT and RC

using the approaches described above including: PS covariates adjustment with normal, lognor-

mal and gamma models, stratification, IPTWs, DR with normal, lognormal and gamma regression

models and DR using SL in regression model. Naive linear regression ignoring censoring and non-

random treatment assignment was used as a reference. Approximate confidence intervals for the

treatment effect on cost were constructed using non-parametric bootstrapping with BCa correction.

From Table 2.3, BPT was estimated to be $7,412 cheaper than RC using naive regression. Differ-

ence in cost estimated from various propensity score methods ranged from -$10,661 to -$20,937,

differed significantly from the naive regression method. Failure to account for censoring and the

effect of confounders could lead to biased estimates. Furthermore, covariate adjustment, stratifica-

tion and weighting methods could be sensitive to the choice of PS model estimation. Unsurprisingly,
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Regular PS Model SL PS Model
Estimates 95% CI Estimates 95% CI

naive regression -7,412 (-13,545, -1,279) - -
covariates adjustment normal -12,423 (-22,235, -3,047) -11,448 (-23,237, -2,689)
covariates adjustment lognormal -13,877 (-25,729, -3,323) -13,033 (-26,674, -3,092)
covariates adjustment gamma -12,482 (-22,171, -2,400) -11,599 (-24,943, -3,579)
stratification -17,678 (-28,542, -9,685) -15,416 (-26,876, -787)
IPTW -20,937 (-34,244, -7,171) -22,473 (-30,633, -8,446)
IPTW: normalized weights -10,661 (-21,073, -1,078) -11,951 (-21,469, -607)
DR: normal -12,163 (-23,285, -764) -12,312 (-23,458, -104)
DR: lognormal -14,117 (-25,070, -3,444) -14,086 (-24,449, -3,333)
DR: gamma -12,144 (-22,920, -172) -12,179 (-23,745, -235)
DR: SL mean model -14,163 (-24,216, -3,941) -14,086 (-26,876, -787)

Table 2.3: Estimated mean cost difference for bladder preserving therapy and radical cyccwetomy

we saw large variation in treatment effect estimates from these models. DR models yielded more

consistent treatment effect estimates; BPT was estimated to be -$12,144 to -$14,117 cheaper than

RC. Using SL in regression model in DR gave slight different estimations (-$14,163). SL in re-

gression model in DR is likely to be the closest to the true cost estimate as evidenced from the

simulation study. Lastly, all CIs did not cross zero, indicating that BPT was significantly less costly

than RC.

Next we applied SL in propensity score model to obtain the estimated PS. We specify several po-

tential propensity score models with different covariates functional forms: the basic logistic model

where all covariates were included, also a model including all two way interactions between co-

variates, adding square terms of all covariates and a backwards stepwise selection algorithm with

cut-off p-value of 0.1. SL was used to find the optimal combination of predications from these can-

didate models. We then use this estimated PS to find the differences in cost between BPT and

RC.

From Table 2.3, the SL PS models provided similar estimates from the regular PS models. One

possible explanation is all covariates were categorical, hence there was little variation in PS due to

limited covariate patterns. Interaction and quadratic terms might not have a huge impact on PS esti-

mation for the same reason. SL PS model would be more useful when we have little understanding

of the true PS model. Nevertheless, SL PS showed that the estimates of cost differences were

between -$11,448 and -$22,473, and 95% CIs strongly suggest the differences in cost between

BPT and RC were significant.
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All of the approaches discussed above demonstrate that BPT substantially decreases the total

medical cost compared to the standard treatment RC. However, we observed significant variations

in the ATE estimations and large range in the CIs. From our simulation studies, we believe DR with

SL in both regression model and PS model provides the best estimate. Hence, our findings indicate

that BPT was $14,086 ($787, $26,876) cheaper than RC.

2.8. Discussion

In this study, we explored propensity score based approaches for estimating the treatment effect

on censored costs in an observational study. We extended covariate adjustment, stratification,

weighting and doubly robust methods to handle censored medical cost. We also utilized a machine

learning algorithm, Super Learner, to better estimate PS and the regression models in DR. Our

simulation studies showed that when PS is correctly modeled, stratification and weighting yield

unbiased estimates. Covariate adjustment is sensitive to the choice of outcome model, while DR

is more robust to misspecification. When the correct PS model is unknown, misspecification could

result in biased estimates of the treatment effect even when using DR methods. SL mitigates this

bias by producing optimal regression models and PS estimates. In addition, one may consider tree-

based methods, random forests and neural networks. These methods can be easily incorporated

into SL to obtain optimal PS estimation from both fully parametric and non parametric models.

We note that in this study, we only used total cost data and ignored cost history data which may be

available from claims data. Bang and Tsiatis (2000) have proposed partitioned estimators making

use of cost history data which they showed to be more efficient than the simple weighted approach

we employed. It is unclear what the effect of partitioned estimators would have on PS-based esti-

mation and is worthy of future work.

We have shown that the variance of the IPTW estimator can be obtained analytically. However,

multi-parameter or non-parametric survival models add substantial complexity to analyzing variance

estimates due to the complex interaction between censoring and propensity scores.

As in any observational study, unobserved or hidden bias may be of concern. We suggest that in

addition to a propensity score based analysis of censored cost data, one should conduct a carefully

planned sensitivity analysis to assess the effect of an unmeasured confounder on the treatment
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effect (Handorf et al., 2013).
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CHAPTER 3

DOUBLY ROBUST METHODS FOR COST-EFFECTIVENESS ESTIMATION FROM

OBSERVATIONAL DATA

3.1. Introduction

Policy makers are often interested in the cost-effectiveness (CE) of health care interventions in their

decision making. Many countries, including the United Kingdom, Australia and Canada require CE

evidence before a drug is granted reimbursement status (Clement et al., 2009). However, proper

CE analysis is complicated by the need to account for features of cost data, including informative

censoring and skewness. In addition, medical costs are often collected from claims data, which

are susceptible to confounding. In this paper, we aim to estimate CE measures from observational

data accounting for the unique features of cost. Common CE measures include the incremental

cost effectiveness ratio (ICER), net monetary benefit (NMB) and CE acceptability curves. These

measures require one to estimate cost and effectiveness (e.g. survival time, quality adjusted sur-

vival) separately (Gomes et al., 2012; Willan and Briggs, 2006; Zhao and Tian, 2001).

Historically, cost estimation methods have focused on two unique features of these data: distribu-

tional skewness and informative censoring. To account for the skewness and heteroscadasticity

often present in cost data, researchers have used ordinary least square regression (OLS), OLS

for log cost, generalized linear models (GLM), generalized gamma models, median regression and

the Weibull model. Several studies (Basu, Manning, and Mullahy, 2004; Basu and Rathouz, 2005;

Dodd et al., 2006) have evaluated the performance of these various cost models. Dodd et al. (2006)

found the generalized gamma model to be the most robust; nevertheless, there is no one-size-fits-

all model and Mihaylova, Briggs, and Hagan (2011) concluded that the choice of cost model should

depend on the specific structure of the cost data at hand. Another important feature of cost data is

excess zeros, especially when analyzing monthly cost data. Two-part models (Duan et al., 1983;

Leung and Yu, 1996) have been proposed to accommodate these structural zeros.

Censoring, which occurs when a study terminates before all patients reach their end-points, is also

a common attribute of cost data. Although survival time is usually non-informatively censored (e.g.
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end-of-study censoring), total cost is informatively censored as patients may have drastically differ-

ent rates of cost accrual. In practice, a patient with higher costs at the time of censoring is likely to

have higher costs at the time of event as well. Lin et al., 1997 and Bang and Tsiatis, 2000 proposed

weighted estimators to handle such informative censoring. Several studies have investigated the

properties of these methods (Raikou and McGuire, 2004; Young, 2005; Zhao, Cheng, and Bang,

2011; Zhao et al., 2007), and some (Bang and Tsiatis, 2002; Baser et al., 2004; Lin, 2000, 2003)

have extended the weighting method to linear regression, generalized linear models and median

regression to model the relationship between cost and covariates.

As noted above, effectiveness (typically survival time) is often subject to non-informative censoring.

Most CE studies use the area under the Kaplan-Meier (KM) estimate of the survival function to

approximate mean survival time (Bang, 2005; Willan, Lin, and Manca, 2005; Zhao and Tian, 2001).

However, Willan and Briggs (2006) suggested using the weighting technique often used for cost

estimation to estimate effectiveness instead. This is a less intuitive but more flexible approach; to

our knowledge there is no study comparing the performances of these two approaches.

Current methodological guidance for CE estimation is primarily in the setting of randomized con-

trolled trials (Glick et al., 2014; Gomes et al., 2012; Willan and Briggs, 2006; Willan, Lin, and Manca,

2005; Zhao and Tian, 2001). In practice, most CE analyses rely on data from observational studies

(Kreif, Grieve, and Sadique, 2013), thus necessitating the need to develop CE estimation models

for observational data. Previous studies (Anstrom and Tsiatis, 2001 and Li et al., 2015) have investi-

gated propensity score based models for observational cost data only. Goldfeld (2014); Indurkhya,

Mitra, and Schrag (2006); Mitra and Indurkhya (2005) proposed propensity score adjustment for

estimating the NMB from claims data.

The goal of this study is to develop doubly robust (DR) methods based on propensity scores to

estimate CE measures from observational data. Here, we build on existing DR methods for cost

estimation (Li et al., 2015) and propose several DR models for time and cost estimation, respec-

tively. DR estimation combines outcome regression with weighting by propensity scores and is

robust to misspecification of one (but not both) of these two components (Bang and Robins, 2005;

Tsiatis and Davidian, 2007). Lunceford and Davidian (2004) demonstrated that the DR estima-

tor performs better than other propensity score based methods such as stratification and weighting.

Given the heterogeneous nature of cost distributions, the many possible choices of cost models de-
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scribed above, as well as the challenge of accurately estimating propensity scores, we propose an

ensemble machine learning approach based on cross validation called Super Learner (SL) (Laan,

Polley, and Hubbard, 2007) to best estimate the outcome and the propensity score components in

DR.

We begin with an introduction to common CE measures. We follow by reviewing and comparing two

effectiveness estimation methods and then propose a DR effectiveness estimation model. We then

introduce two DR models, the simple weighted and the partitioned model, for cost estimation. We

present results from extensive simulation studies that compare the performance of the proposed

DR estimators. Finally, we apply these DR models to a CE analysis of two lung cancer surveillance

procedures, CT scans versus chest X-ray, using SEER-Medicare data.

3.2. Common CE measures

CE analysis is often used to evaluate the merits of a new health-care intervention (treatment,

Z = 1) compared to an existing one (control, Z = 0). CE measures integrate estimates of

costs and effectiveness in a single statistic derived from two components: ∆E and ∆C where

∆E =EffectivenessZ=1−EffectivenessZ=0 and ∆C =CostZ=1−CostZ=0. The duration of interest

can be considered to be (0, τ) so that cost and effectiveness measures are bounded by τ and

cost refers to the total cost from time 0 to τ . In this section, we briefly introduce three of the most

commonly used CE measures.

3.2.1. ICER

ICER is an intuitive statistic that is defined as ICER = ∆C

∆E
. A major limitation of the ICER is its

discontinuity when the denominator ∆E approaches zero. In addition, estimating the variance of

ICER is problematic due to the acknowledged statistical problems associated with ratio statistics.

Non-parametric bootstrapping, Fieller’s theorem and Bayesian approaches (Heitjan, Moskowitz,

and Whang, 1999; Polsky et al., 1997; Willan and O’Brien, 1996) can be applied to estimate the

variance of ICER.
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3.2.2. CE acceptability curve

An important concept in CE analysis is called willingness to pay (WTP, denoted by λ), which is the

maximal monetary value decision-makers are willing to pay for a unit of ∆E . Typically, λ measures

the dollar amount one is willing to pay for one year of additional life. A CE acceptability curve

displays the probability that the treatment is cost-effective compared with the control for a range of

λ values. To plot the CE acceptability curve, we use bootstrapping to estimate Pr(λ∆E −∆C > 0).

In practice, we simply count the proportion of bootstrapped samples that yields λ∆E −∆C > 0 for

a range of λ values.

3.2.3. NMB

Recently, health economists have advocated the use of the Net Monetary Benefit (NMB): NMB (λ) =

λ∆E − ∆C . NMB is a linear combination of ∆C and ∆E ; it measures the excess benefit given a

fixed level of λ. The NMB does not suffer from the singularity problem that the ICER does and it is

straight forward to estimate its variance as var(NMB(λ)) = λ2var(∆E)+var(∆C)−2λcov(∆E ,∆C).

3.3. CE estimation

3.3.1. ∆E estimation

In CE studies, effectiveness usually refers to survival time or quality adjusted life years. From here

onwards, we will simply use survival time to represent effectiveness. Specifically, we are interested

in estimating the mean survival time difference ∆E between two treatment groups in the duration

of interest (0, τ) in the presence of censoring.

Review and comparison of current techniques

Consider a randomized controlled trial where ti and Ci represent the survival and censoring time

for subject i respectively, Ti = min(Ti, Ci, τ) and censoring indicator δi = I(Ti ≤ Ci) + I(Ti >

Ci)∗I(Ci ≥ τ). We start by reviewing two popular estimation techniques, the area under the survival

curve and the inverse probability weighting to estimate mean time difference ∆E = E(T |Z =

1−T |Z = 0) in the duration of interest (0, τ). Here, our goal is to accurately estimate mean survival

time under censoring.
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In the first approach, we integrate the area under the survival curve such as the Kaplan-Meier

curve. Let S(t) be the survival function, by definition:

∆E =

∫ τ

0

SZ=1(t)dt−
∫ τ

0

SZ=0(t)dt (3.1)

In practice, we integrate the area under the estimated survival curve: ∆̂E =
∑τ
i=1 ŜZ=1(ti)∗ (ti+1−

ti) −
∑τ
j=1 ŜZ=0(tj) ∗ (tj+1 − tj). The area under the survival curve approach is easy to use and

hence very popular in CE studies. It does not require the non-informative censoring assumption

and therefore works for dependent censoring too. However, this approach does not accommodate

adjustment of confounders. Common regression based survival models such as the Cox propor-

tional hazard model focus on hazard ratio estimation, making mean survival time estimation difficult.

In addition, to our knowledge, there is no DR method available for survival models.

An alternative way to handle censoring in mean survival time estimation is to utilize inverse proba-

bility weighting (Willan and Briggs, 2006). This weighting technique is often used for cost estimation

(Bang and Tsiatis, 2000) and is an application of the general representation theorem for missing

data (Robins and Rotnitzky, 1992; Robins, Rotnitzky, and Zhao, 1994). Here we apply the same

concept to estimate mean survival times as follows:

∆E =
1

n1

n1∑
i=1

TiδiZi
KZ=1(Ti)

− 1

n0

n0∑
j=1

Tjδj(1− Zi)
KZ=0(Tj)

(3.2)

where KZ=z(u) = P (C ≥ u|Z = z) and nz is the total number of subjects in treatment group

Z. This estimator is simply a weighted average of observed survival times Ti for patients who

are not censored. The weight is given by the inverse of the probability of not being censored

at the time of death for those who died prior to τ and the inverse of the probability of not being

censored at τ for those who survived to τ . We can easily show that 1
n1

∑n1

i=1
TiδiZ

KZ=1(Ti)
is an unbiased

estimator of E(T |Z = 1) as follows: E
[

1
n1

∑n1

i=1
TiδiZ

KZ=1(Ti)

]
= E

[
1
n1

∑
iE
[

Tiδi
KZ=1(Ti)

∣∣∣Ti, Z = 1
]]

=

E
[

1
n1

∑
i

[
Ti|Z=1
KZ=1(Ti)

E(I(Ci ≥ Ti|Ti, Z = 1)
]]

= E
[

1
n1

∑
i Ti|Z = 1

]
= E[T |Z = 1]. In practice, we

use Kaplan Meier to estimate K(u) based on the data (Ti, 1 − δi) so ∆̂E = 1
n1

∑n1

i=1
TiδiZi

K̂Z=1(Ti)
−

1
n0

∑n0

j=1
Tjδj(1−Zi)
K̂Z=0(Tj)

.

Hence we have shown that the inverse probability weighting technique provides an unbiased es-

timate of mean survival time and thus ∆E . However, this approach assumes censoring to be
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non-informative. In other words, censoring in time is independent of other covariates. This as-

sumption is considered to be valid for most observational studies (Anstrom and Tsiatis, 2001;

Goldfeld, 2014; Raikou and McGuire, 2004), especially in large population based registries where

censoring is administrative due to end of study. Nevertheless, if censoring is dependent on co-

variates X in the case of induced dropout or censoring due to non-compliance, we can modify

Equation 3.2 by using P (δi = 0|Xi, Z) instead of Kz(Ti) (Cain and Cole, 2009; Cole and Hernán,

2008). Specifically, we first divide (0, τ) into discrete time intervals. At each time point k, we es-

timate P (δki = 0|Xi, Z, δ
k−1
i = 0) using a logistic regression model δki ∼ Xi for all subjects with

Z = z alive at time k. We can then use P (δi = 0|Xi, Z) =
∏
k<Ti

P (δki = 0|Xi, Z, δ
k−1
i = 0) instead

of K(Ti) in Equation 3.2. This extension can easily incorporate time varying covariates X as well.

Although both techniques are unbiased, the weighting technique has more advantages. Specifi-

cally, it allows for covariate adjustment, accommodates informative censoring, as we will discuss

next, is a natural fit for DR estimation. In section 3.4.1, we carry out simulation studies to compare

the performance of these two approaches.

DR method for ∆E estimation

As CE studies are often based on observational data, we use the conventional counter-factual

notation modeling a causal framework. Let t(0)
i and t(1)

i denote the survival time if the patient were

in the control and treatment group respectively. Let Xi be a vector of measured confounders we

wish to adjust for. Lastly, propensity scores are denoted by e = e(X). We assume strong ignorability

and non-informative censoring (see Li et al. (2015) for further explanation of the assumptions).

We propose the following DR estimator for ∆E that uses the concept of inverse probability weight-

ing:

∆̂E =
1

n

n∑
i=1

[
ZiTiδi

êiK̂(Ti)
− (Zi − êi)m1(Xi)δi

êiK̂(Ti)

]
−

[
(1− Zi)Tiδi

(1− êi)K̂(Ti)
+

(Zi − êi)m0(Xi)δi

(1− êi)K̂(Ti)

]
(3.3)

For simplicity, we use K̂(u) to denote the treatment-specific estimated probability of being uncen-

sored at u, K̂z(u). Moreover, m0(Xi) andm1(Xi) are the postulated models for the true regressions

E(T |Z = 0,X) and E(T |Z = 1,X). The outcomes models m1(X) and m0(X) can be specified in

various ways including:
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• Normal model: E(Ti|Zi = z,Xi) = Xiβ weighted by δi
K̂(Ti)

• Lognormal model:E(log(Ti)|Zi = z,Xi) = Xiβ weighted by δi
K̂(Ti)

• Gamma model:E(Ti|Zi = z,Xi) = exp(Xiβ) weighted by δi
K̂(Ti)

The proposed doubly robust estimator is consistent if the propensity score model e or the outcome

models m1(X) = E(T |Z = 1,X) and m0(X) = E(T |Z = 0,X) are correctly specified. Notice that

weights δ
K̂(T)

are applied to both PS weighting and outcome models to account for censoring. The

variance of ∆̂E can be estimated using large sample theory to get the sandwich variance estimator

(Li et al., 2015) or non-parametric bootstrapping.

Funk et al., 2011 noted that the doubly robust property can lead to biased estimates if both the out-

come and the propensity score model are misspecified. In order to best estimate PS and outcome

models in DR estimation, we employ a machine learning algorithm, Super Learner (SL) (Laan,

Polley, and Hubbard, 2007). SL is an ensemble learning approach based on cross validation that

allows us to specify several candidate prediction models and use them to produce an asymptotically

optimal combination. Since survival time distributions can be very different for different diseases,

we can utilize SL to combine prediction from several possible survival time models to estimate

m1(X) and m0(X). Recent work suggest using non-parametric machine learning models such as

Classification and Regression Trees (CART), random forests and neural networks (Lee, Lessler,

and Stuart, 2010; Westreich, Lessler, and Funk, 2010) for propensity score estimation. Thus we

can use SL to estimate PS from models of different functional forms as well as the aforementioned

non-parametric PS estimation algorithms.

3.3.2. ∆C estimation

Let Yi(u) be the known accumulated cost up to time u and Yi be the total cost that subject i accrues

up to τ . Hence total cost Yi = Yi(ti) is not observed if δi = 0, when a subject is censored before

τ . In other words, we only observe Yi for uncensored subjects. For censored subjects, their cost

will continue to accrue hence their total cost Yi is unknown. In this section, we introduce two DR

estimators, the simple weighted and the partitioned based on Bang and Tsiatis (2000). The simple

weighted estimator is appropriate when cost history information Y (u), u < Ti is not available and

we only know total cost Yi(Ti). The partitioned estimator is appropriate when we have access
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to cost history information, for example, periodic insurance claims or monthly Medicare payment

information.

DR for ∆C estimation - simple weighted

When cost history data are not available, we propose the simple weighted DR estimator for cost

estimation. This estimator is very similar to the ∆E estimator discussed in section 3.3.1.

∆̂C =
1

n

n∑
i=1

[
ZiYiδi

êiK̂(Ti)
− (Zi − êi)m1(Xi)δi

êiK̂(Ti)

]
−

[
(1− Zi)Yiδi

(1− êi)K̂(Ti)
+

(Zi − êi)m0(Xi)δi

(1− êi)K̂(Ti)

]
(3.4)

Thompson and Nixon (2005) suggested that conclusions from CE analyses are sensitive to choice

of cost distribution. Hence, different cost models such as the normal, lognormal and gamma can

be used as outcome models for m0 and m1. We then apply SL to incorporate all possible outcome

models such as those mentioned in section 3.3.1. A proof of the DR property of the simple weighted

estimator can be found in Li et al. (2015).

DR methods for ∆C estimation - partitioned

When cost history information is available, we propose a partitioned DR estimator. This estimator

is based on the partitioned total cost estimation method (Bang and Tsiatis, 2000). Specifically,

the duration of interest (0, τ) is partitioned into L sub-intervals (tj , tj+1], j = 1, 2, . . . , L, 0 = t1 <

t2 < · · · < tL+1 = τ . Intuitively, we estimate the cost difference within each interval and “sum up”

contributions from all L intervals.

∆̂C =
1

n

n∑
i=1

L∑
j=1

[
ZiYijδ

j
i

êiK̂j(T
j
i )
− (Zi − êi)mj

1(Xi)δ
j
i

êiK̂j(T
j
i )

]
−

[
(1− Zi)Yijδji

(1− êi)K̂j(T
j
i )
− (Zi − êi)mj

0(Xi)δ
j
i

(1− êi)K̂j(T
j
i )

]
(3.5)

where Yij = Yi(tj)− Yi(tj−1) is subject i’s cost accrued in the interval (tj−1, tj ]. T
j
i = min(T

tj
i , Ci)

and δji = I(min(Ti, tj) ≤ Ci), the censoring indicator for subject i at time tj . K̂j(T
j
i ) are the KM

survival estimates of Kj(T
j
i ) based on the data (min(T

tj
i , Ci), 1− δ

j
i ). m

j
0(Xi) and mj

1(Xi) are the

postulated models for the true regressions E(Yij |Zi = 0,Xi) and E(Yij |Zi = 1,Xi).

Similarly we use SL to estimate the postulated outcome models and PS model. For outcome

models, we estimate within each interval. For example, the normal estimating equation for the pos-
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tulated outcome models is
∑n
i=1

δji
K̂j(T

j
i )

(Yij − β′kXi)Xi = 0 and thus β̂k =
{∑n

i=1
δji

K̂j(T
j
i )
X ′iXi

}−1

∑n
i=1

δji
K̂j(T

j
i )
YijXi. See Appendix A for a proof of the doubly robust property. Variance of ∆̂C

can be estimated using large sample theory to obtain the sandwich variance estimator or via non-

parametric bootstrapping.

In monthly claims data, it is common to observe subjects with zero costs in specific months. Thus

in addition to the outcome models mentioned in section 3.3.1, we propose the two-part model first

introduced by Duan et al. (1983) to account for structural zeros:

• Part 1: a logit/probit model to model the probability of zero cost: I(Yij = 0) ∼ Xiβ.

• Part 2: a normal/lognormal/gamma model for positive costs: f(Yij |Yij > 0) ∼ Xiβ.

3.3.3. CE estimation

After we have estimated ∆E and ∆C according to the methods presented above, we can combine

them to estimate common cost effectiveness measures:

ÎCER =
∆̂C

∆̂E

(3.6)

and

N̂MB(λ) = λ∆̂E − ∆̂C (3.7)

For the CE acceptability curve, we can use bootstrapping to count the proportion of iterations with

λ∆̂E−∆̂C > 0 for a range of λ values. The variance of NMB can be estimated directly as mentioned

in section 3.2, although bootstrapping (Briggs, Wonderling, and Mooney, 1997) is preferred due to

the complexity of the DR models.

3.4. Simulation studies

Using simulation studies, we first compare the two effectiveness estimation methods: inverse prob-

ability weighting vs. area under the survival curve. Then, we evaluate the performance of the DR

models for ∆E ,∆C and NMB discussed in section 3.3 under various settings. We chose to focus

on NMB over other CE measures because of its attractive statistical properties and popularity in

modern CE analyses. We report the percentage bias (bias), the coverage probability (cvrg) of the
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resulting 95% confidence interval and the empirical standard error (SE).

3.4.1. ∆E estimation: area under the survival curve vs. inverse probability weighting

In section 3.3.1, we reviewed these two popular techniques for mean time estimation. To our

knowledge, there are no studies in the literature comparing their empirical performance. In this

study, exponential (mean=6), weibull (shape=2, scale=6) and uniform ([0,10]) survival times were

simulated. Two levels of censorship were introduced with censoring time being uniformly distributed

on [0,20] and [0,12.5], corresponding to 20% and 30% censoring, respectively. The average 10-year

mean survival time E(T ), τ = 10 serves as the parameter of interest. Sample size n, was chosen

to be 100 and 1000. 500 simulations were conducted and confidence intervals were constructed

using non-parametric bootstrapping with the BCa correction. The simulation study settings were

chosen according to those used by Bang and Tsiatis (2000).

Table 3.1: E(T ) simulation results: inverse probability weighting vs. area under the survival curve

Inverse probability weighting Area under the survival curve
n Censoring Survival time bias SE cvrg bias SE cvrg

100 Light Uniform -0.006 0.309 0.952 -1.243 0.311 0.950
Weibull -0.297 0.280 0.944 -3.360 0.313 0.896

Exponential -0.327 0.371 0.964 -1.230 0.371 0.960
Heavy Uniform -0.673 0.349 0.940 -1.337 0.331 0.942

Weibull -0.009 0.336 0.940 -1.758 0.326 0.926
Exponential -0.218 0.438 0.962 -0.891 0.395 0.958

1000 Light Uniform 0.002 0.098 0.952 -0.116 0.098 0.948
Weibull -0.038 0.089 0.958 -0.408 0.091 0.954

Exponential 0.037 0.118 0.942 -0.052 0.118 0.938
Heavy Uniform -0.013 0.105 0.954 -0.114 0.105 0.950

Weibull 0.163 0.097 0.946 -0.063 0.098 0.942
Exponential -0.046 0.125 0.926 -0.138 0.125 0.918

As expected, mean survival time E(T ) estimation using inverse probability weighting and area

under the survival curve both yielded very small bias (Table 1) and comparably coverage. Note

that for subjects with large observation time, if the estimated probability of censoring K̂(Ti) was

zero, then min K̂(Ti) was used instead to avoid the denominator being zero. Similarly, for the

area under the survival curve, the estimated probability of the largest censored observation was

underestimated. Thus, we see some downward bias for the empirical estimation of mean survival

time. Results from Table 1 show that inverse probability weighting has comparable, if not slightly

better empirical performance compared to the area under the survival curve method, especially

with smaller sample sizes.
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3.4.2. CE estimation

We developed simulation studies to represent CE analyses from observational data. We first sim-

ulated three covariates X = (X1, X2, X3), where X1 was binary with success probability 0.5. X2

and X3 were normally distributed with means of 2 and 1, respectively and common standard er-

ror of 1. Using these covariates, treatment choice Z was defined using a logit index model with

D ∼ Bernoulli(p) and logit(p) = 0.5 + X1 + 0.25X2 + 0.5X3 − 0.5X1X2 − 0.25X2X3 − 0.5X2
3 . The

sample size was set to be 1000. The mean average five year ∆E , ∆C and NMB were chosen as

parameters of interest.

We drew failure times from Weibull and exponential distributions. For exponential failure times, we

set the mean to be 1/ exp(0.25− Z + 0.5X1 − 0.25X2 − 0.25X3). For Weibull, the shape parameter

was 2 and the scale parameter was exp(−0.15 + Z − 0.5X1 + 0.25X2 + 0.25X3). Censoring times

were independently drawn from U(0, 10) and U(0, 6) for light and heavy censoring. The rate of

censoring was approximately 20% for light censoring and 40% for heavy censoring.

For each subject, costs were generated for each month until the end of the study period τ . The

total costs were generated from three different components: an initial diagnostic cost, an ongoing

monthly cost and a cost accrued at the time of death if the subject’s death was observed before

τ . Four different cost distributions: normal, gamma, mixed and excess zeros, were generated as

demonstrated in Table 2. For the excess zero cost model, proportion p0 (logit(p0) = −Z − 2X1 −

.5X2 + .5X3) of the patients were assumed to experience zero cost each month.

Table 3.2: Simulation set up: four cost distributions

Initial cost Ongoing cost Dying cost
Normal N(µ = 10 + 10Z + 5X1 + 5X2 + 5X3,5) N(.1µ,.5) N(0.2µ,.1)

Gamma Gamma(α = 2.5, Gamma(α, .1β) Gamma(α, .2β)
β = exp(−Z − .5X1 − .2X2 − .2X3))

Mixed a 50/50 mixture of normal and gamma

Excess zero N(µ, 5) P (p0) = 0, N(0.2µ,.1)
P (1− p0) = N(.1µ, .5)

We first estimated ∆E and ∆C with a commonly used in practice approach that we refer to as a

“conventional” approach, in which ∆C was estimated from a linear regression and ∆E was derived

using area under the survival curve. We then estimated ∆C and ∆E using inverse probability of

treatment weighting (IPTW) based on propensity scores with censoring correction δ
K(T ) (Li et al.,
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2015). Propensity score (PS) models were either correctly specified or mis-specified. In the cor-

rectly specified case, covariates and their correct functional forms were included in the logistic

regression model; in the misspecified case, only the main effects X1, X2, X3 were included. Then,

our proposed DR model for ∆E and our two DR models, simple weighted and partitioned for ∆C

were applied. Propensity scores were estimated utilizing the Super Learner algorithm. Candidate

PS models included a logistic regression model, a logistic regression model with all interactions and

two non-parametric algorithms: generalized additive model (GAM) and k nearest network (KNN).

Similarly the outcome parameters in all DR models were estimated using the Super Learner al-

gorithm in conjunction with linear regression, GLM, generalized gamma model and the two parts

model. We estimated NMB with a standard willingness to pay of λ = 50, 000/yr.

Results from Table 3 show that the conventional area under the survival curve method yields bi-

ased estimates because it failed to account for confounders. IPTW method was unbiased; but pro-

duced biased estimates (-13.2 % to 15.0%) when the propensity score model was mis-specified.

In addition, even when the propensity score model was correct, IPTW had large standard errors

and inflated coverage (0.96-0.99). The proposed DR method worked well and had very small bias

(-0.23% to -0.05 %), small standard error and good coverage. DR model was also robust to propen-

sity score model misspecification since propensity scores were estimated using several parametric

and non-parametric algorithms.

For ∆C estimation, results show that conventional linear regression produced biased estimates

under all scenarios. IPTW yielded unbiased estimates with large standard errors and failed when

the propensity score model was mis-specified. Both simple and partitioned DR had negligible

biases ranging from (-0.036% to 0.349%). The two also had similar standard errors and their

coverage probabilities were around 95%. Note that even for the excessive zero cost structure, the

two DR methods had similar performance. This result again confirms the doubly robust property of

the proposed estimators since the propensity scores were estimated correctly using Super Learner.

For NMB estimation, the conventional method produced very biased estimates (-278% to 55%).

Estimates from IPTW exhibited the same problem with large standard errors, inflated coverage and

biased results when the propensity score model was mis-specified. Our proposed DR methods had

superior performance compared to all other approaches.
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3.5. Lung cancer surveillance data

Lung cancer is responsible for the largest number of cancer-related deaths worldwide (Siegel,

Naishadham, and Jemal, 2012). In addition, the overall economic burden of lung cancer on so-

ciety is large and growing (Goodwin and Shepherd, 1998). Patients that undergo curative resection

for lung cancer are at risk of developing a recurrence or a new primary lung cancer in the future.

Therefore, imaging surveillance has become standard of care after lung surgery. Currently, the two

most common approaches to surveillance are use of chest X-ray or chest CT. The optimal surveil-

lance strategy is unknown; there are no randomized trials that have directly compared the effect of

imaging strategy (CT vs. X-ray) on overall survival following lung cancer resection. Here we apply

our CE estimation approach to compare the three year cost-effectiveness of chest X-ray versus CT

using a cohort of patients derived from the SEER-Medicare registry.

We included stage I-IIIA non-small cell lung cancer patients diagnosed between 2007 and 2009

and treated with curative intent surgery. See Ciunci et al. (2015) for a detailed description of inclu-

sion/exclusion criterion. 59.1 percent of the study cohort were censored at the end of the study.

Payment data were extracted from Medicare claims from the inpatient MEDPAR, outpatient SAF

and non-institutional Carrier files covering 2007 through 2010. For each patient, we calculated total

spending as the sum of payments made to the provider by Medicare, the patient, and other payers.

Payments were calculated in consecutive 30-day periods starting 181 days after the surgery index

date and lasting until patient death or censoring (December 31, 2010). We did not adjust for infla-

tion due to the short time span covered in this study (2007 to 2010). The final cohort sample size

was 3389; 1058 of whom had chest X-ray and 2331 had CT surveillance. Three year total cost was

highly right skewed, with a maximum observed cost of $722,100. The average observation duration

was 22 months.

In this study, both the choice of surveillance strategy and three year cost may have been influ-

enced by covariates such as age, sex, median income, marital status, Charlson score, histology,

chemotherapy and radiation. We first estimated CE measures, including ICER and NMB, using

the “conventional” method, where ∆C is estimated from a linear model and ∆E is derived using

area under the survival curve. We then estimated ∆C and ∆E using IPTW based on propensity

scores. Lastly, DR models proposed in section 3.3.1 and section 3.3.2 were applied. Propensity
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scores were estimated utilizing the Super Learner algorithm. Candidate PS algorithms included a

logistic regression model, a logistic regression model with all interactions, GAM and KNN. Similarly,

the regression parameters in the DR model were estimated using the Super Learner algorithm in

conjunction with linear regression, GLM and generalized gamma models. Approximate confidence

intervals for ICER and NMB (WTP=$50,000/yr) were constructed using non-parametric bootstrap-

ping with BCa correction.

Table 3.4: CE analysis of CT vs. X-ray (reference) for lung cancer surveillance

NMB (WTP=50,000)
Method ∆E(mths) ∆C($) estimate 95% CI
Conventional 3.14 410 156,482 5,939, 19,359
IPTW 3.12 -2,539 158,390 7,330, 23,455
DR 3.65 -3,512 185,990 11,490, 27,472

From Table 4, patients on CT were estimated to live on average 3.12 to 3.65 months longer than

patients on X-ray. This result is consistent with Ciunci et al. (2015) that demonstrated CT is as-

sociated with lower hazard of death. ∆C were vastly different between the “conventional” method

and IPTW or DR. Although all three approaches suggest that CT is significantly more cost-effective

than X-ray, the DR approach produced a much higher NMB estimate, indicating that CT is notably

more cost-effective. In addition, DR yielded tighter 95% confidence interval than IPTW.

In Figure 3.1, we plotted the CE acceptability curve from bootstrapped samples under a wide range

of WTP values. This figure provides a visual demonstration of when CT becomes significantly more

cost-effective compared to X-ray. We see that around λ = $8, 000/yr, over 95% of the bootstrap

iterations yield positive NMB. In other words, CT was significantly more cost-effective compared to

X-ray with a WTP of more than $8, 000/yr.

3.6. Summary

In policy making and health services evaluation where an emphasis is placed on estimating not

only the effectiveness but the cost-effectiveness of interventions, it is imperative to estimate CE

measures accurately and robustly. We propose DR models based on propensity scores to estimate

the ICER and the NMB from censored observational data. These models draw on the strengths

of propensity score weighting and outcome regression fitting utilizing machine learning algorithms.

Thus, we have demonstrated the merit of both causal inference models and modern machine learn-
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Figure 3.1: CE acceptability curve of CT vs. X-ray
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ing approaches in CE analysis. We note that the partitioned DR ∆C estimator, although theoretically

more efficient than the simple weighted one, is more computationally intensive. Hence, we suggest

using the simple weighted estimator. With smaller sample sizes, the partitioned DR may perform

better, but further investigation is needed.

As in any observational study, unobserved or hidden bias may be of concern. Hence, in addi-

tion to DR based CE analysis, we suggest conducting sensitivity analyses to assess the effect of

unmeasured confounders on the treatment effect (Handorf et al., 2013).
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CHAPTER 4

MODERN STATISTICAL AND MACHINE LEARNING APPROACHES FOR HEALTH

CARE COST ESTIMATION FROM BIG DATA

4.1. Introduction

With the rise of big data, the role of machine learning in economics has gathered attention (Var-

ian, 2014). Economists, especially econometricians have employed these modern techniques for

model building, prediction and model selection to various economics research questions (Ahmed

et al., 2010; Ghose, Ipeirotis, and Sundararajan, 2007; Scott and Varian, 2013). However, machine

learning approaches has not been commonly used to answer health economics questions. In this

paper, we review big data and machine learning techniques and their potential application to health

care cost estimation, with an emphasis on providing statistical insights underlying each of these

state-of-the-art approaches.

In the era of big data, health care cost related data have grown exponentially. Traditionally cost data

could be stored and manipulated on spreadsheets or using a Structured Query Language (SQL).

However, these tools are inadequate for massive data which require special programing paradigms.

Some popular big data storage and manipulation algorithms include Hadoop File Distribution Sys-

tem (Lam, 2010; Shvachko et al., 2010; Venner, 2009) and MapReduce (Dean and Ghemawat,

2008).

Cost prediction, which is of great interest in health economic evaluations (Folland, Goodman, Stano,

et al., 2007), typically presents challenges because of the skewness and heterogeneity inherent in

cost data. Historically, researchers used parametric models such as ordinary least squares re-

gression, generalized linear regression, and other parametric models (e.g. Weibull, Gamma) with

different transformations (e.g. log, Box-Cox) and different variance functions(Ash et al., 2001; Man-

ning, 1998; Montez-Rath et al., 2006). For cost prediction, previous studies have evaluated the

performances of various cost prediction models (Basu and Rathouz, 2005; Dodd et al., 2006). In

recent studies, machine learning non-parametric algorithms have been shown to have better pre-

dictive ability (Bertsimas et al., 2008; Kim, An, and Kang, 2004; Sushmita et al., 2015). In this paper,
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we review some popular machine learning prediction algorithms such as classification and regres-

sion trees, random forest, supporting vector machines, boosting and Bayesian additive regression

trees.

In addition, variable selection can be challenging in cost estimation models. We often have many

potential predictors that may need to be narrowed down for model building. Traditionally, re-

searchers use stepwise regression and model complexity measures such as the Akaike information

criterion (AIC) and Bayesian information criterion (BIC) to select important variables. With the rise

of big data, we see more and more large datasets with numerous potential predictors where modern

dimension reduction methods may serve as important tools in estimating cost. Popular dimension

reduction tools such as principle components analysis and Lasso combine the strength of statistical

modeling with machine learning.

We demonstrate the application of these cutting edge big data and machine learning approaches

using a cohort of lung cancer patients derived from SEER-Medicare. Lung cancer causes the

largest number of cancer-related deaths worldwide (Siegel, Naishadham, and Jemal, 2012) and is

the second most frequently diagnosed cancer in the United States (Disease Control and Prevention.

2014). The overall economic burden of lung cancer and the associated cost of treatment on society

is large and growing (Goodwin and Shepherd, 1998). In the United States, per-patient total health

care costs were estimated to be US$34,191 to $47,941 for lung cancer patients following diagnosis

for different populations (Baker et al., 1991; Fireman et al., 1997; Hillner et al., 1998; Kutikova

et al., 2005). In this study, we use a group of patients derived from the SEER-Medicare registry

to demonstrate the merits of big data and machine learning algorithms. Specifically, we included

all non-small cell lung cancer patients diagnosed between 1998 and 2009. Payment data were

extracted from Medicare claims from the inpatient MEDPAR, outpatient SAF and non-institutional

Carrier files covering 1998 through 2010. For each patient, we calculated total spending as the

sum of payments made to the provider by Medicare, the patient, and other payers. Payments were

calculated in consecutive 30-day periods starting 181 days after the surgery index date and lasting

until patient death or December 31, 2010. We adjusted for inflation according to consumer price

index (Economic Analysis, 2015).

The goal of this paper is to elucidate big data and machine learning tools that can be used for

cost estimation and prediction. We provide statistical insight underlying behind these “black box”
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algorithms. Section 2 introduces big data storage and manipulation tools and section 3 reviews sev-

eral popular machine learning prediction algorithms. In section 4 we discuss dimension reduction

and variable selection. Lastly, Section 5 touches on some new topics and unanswered questions.

Throughout the paper, we use the lung cancer cost example to demonstrate these tools.

4.2. Big data storage and manipulation

With the rise of computing capabilities, there has been an explosive growth of health care cost

data and therefore a move from data that fits in a spreadsheet to data that lives on multi-server

databases (Einav and Levin, 2013). Examples of large health cost care data includes national

claims databases, patient level bills for large medical centers and insurance claims data for insur-

ance and reinsurance companies. Thus, there is a pressing need to store and handle such large

volumes of data. In this section, we introduce some popular big data storage and manipulation

algorithms such as MapReduce and Hadoop.

Big data storage often requires specialized hardware infrastructure and storage mechanisms. In

order to achieve consistency and availability in storing large volumes of data, these storage mech-

anisms need to be more primitive and less flexible than relational databases such as those that

can be accessed using a Structured Query Language (SQL) (Chen et al., 2014). The most popular

storage mechanism is the Hadoop Distributed File System (HDFS) from Apache Hadoop. HDFS is

an open source, distributed database processing platform designed to store big data across several

thousands nodes (Lam, 2010; Shvachko et al., 2010; Venner, 2009) and was inspired by Google’s

File System (Shafer, Rixner, and Cox, 2010). To see how HDFS works, image that we need to

store a file that contains all insurance claims from all 50 states in the past 24 months; the claims

from different months might be stored on different servers. All servers together constitute the entire

claims data file. As the number of servers increases, server failures will be inevitable. Thus, a major

component of HDFS has to do with dealing with such failures. HDFS can divide and replicate data

into multiple pieces (the default is three) to be stored on different servers. This redundancy means

higher availability when a server fails. In reality, it is often cheaper to rent data storage clusters from

cloud computing providers such as Google, IBM, Amazon, rather than to build and maintain a data

storage system.

Next, we need a programming paradigm to handle analytics across hundreds or thousands of
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servers. MapReduce (Dean and Ghemawat, 2008), originally proposed by Google, is one of the

most popular programming models that handles big data analytics. MapReduce Performs two dif-

ferent tasks, the Map task and Reduce task. In the Map stage, the query is “mapped” to the servers

and is then applied in parallel to the different components of the data. The partial calculations are

then combined or aggregated (“Reduced”) to create the summary statistics of interest (Chu et al.,

2007; Dean and Ghemawat, 2010). Figure 4.1 demonstrates the “divide and conquer” idea behind

the MapReduce algorithm. For example, if we are interested in finding out the maximum insurance

claims from each state, then mappers would work in parallel and summarize the maximum claims

by state from each month. After processing, the reducer receives the summary statistics from all

mappers and then calculates the maximum claims by state. One key feature of MapReduce is

fault-tolerant; a master server oversees the entire procedures and each slave server periodically

reporting its status to the master server. If a node fails, the master server reassigns that piece of

the job to other available servers. Slave servers work in parallel and thus save computing time. In

addition, most of the computing takes place on servers with data on local servers so that network

traffic is reduced.

Input
Big
Data

Input

Input

Input

Input

Input

Input

Map

Map

Map

Map

Map

Map

Reduce

Reduce

Results

Figure 4.1: MapReduce paradigm

Lastly, we can also connect data stored in Hadoop using Excel 2013 (Hortonworks, 2016). Hor-

tonworks, part of Apache Hadoop, provides an option to access big data stored in their Hadoop
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platform using Excel 2013. One can use Power View feature of Excel 2013 to easily summarizes

and visualize large data which is otherwise not accessible by Excel (Mohammed, Far, and Naugler,

2014).

4.3. Cost prediction

Health care cost prediction has been of interest to health economists and policy makers. While

economists and statisticians are generally looking to draw inference; machine learning specialists

are more concerned with developing algorithms with high predicting power. Historically, researchers

used parametric models such as ordinary least square regression, log normal and gamma models

(Ash et al., 2001; Diehr et al., 1999; Manning, 1998; Montez-Rath et al., 2006) with or without

transformation to model health care cost and then make predictions. However, machine learning

based non-parametric algorithms has been shown to have better predicting abilities (Bertsimas

et al., 2008; Sushmita et al., 2015). In this section, we review some popular machine learning

algorithms and demonstrate how they can be used in cost prediction.

Assume we have a training sample of n observations; the outcome of interest is Y = {Y1 . . . Yn}

and Y can be continuous or discrete. The p predictor variables are X1, . . . , Xp. Our goal is to build

a model for predicting Y from X and later use this model to predict Y from new X values called the

testing sample.

4.3.1. Tree based models

Tree based models including Classification and Regression Trees (CART), pruned CART and ran-

dom forest are some of the most widely used method in machine learning (Michie, Spiegelhalter,

and Taylor, 1994). All tree based models are based on stratifying or segmenting the predictor space

X into several simple regions (James et al., 2013).

CART. The idea of CART is intuitive: we divide the predictor space R into L disctinct and non-

overlapping partitions and each terminal node in the tree represents partition Rl (Breiman et al.,

1984). For each observation that falls into that terminal node and thus the associated partition, we

make the same prediction which is the mean of the Y values for the training observations in Rl

for continuous Y and the majority of Y categories for categorical Y (Loh, 2011). At each step, we

grow two more new branch further down on the tree and thus make more partitions. This process
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is repeated recursively until a stopping criterion such as each terminal nodes has fewer than some

pre-determined minimum of observations is reach. Here we provide the idea behind CART:

1. We take a top down approach and start from the root node

2. For each Xi, find the cut off point si such that the resulting tree yields the minimal risk score.

Consider all Xis, choose the Xi and its associated cut off si that has the overall small risk

score.

3. If a stopping criterion is reached, then stop. Otherwise, repeat step 2.

Other tree based algorithms such as C4.5 follow a similar idea (Quinlan, 1996). For categorical Y

(classification tree), C4.5 uses entropy to calculate its risk function R(X,Y ), where CART uses the

Gini index. For continuous Y (regression tree), root mean square error is used as the risk function

for both. Since we can grow a very large tree with excellent in sample prediction by changing

the stopping criterion, one obvious disadvantage of these tree based models is over-fitting. Many

algorithms have been proposed to overcome the issue of over fitting such as pruning (Quinlan,

2014), where we first grow a large tree and then apply cost complexity pruning to the large tree. A

common restriction is the number of terminal nodes T , thus changing its risk function to R(X,Y ) +

αT , α can be determined using cross-validation to provide the best out of sample prediction. CART

is available as R packages rpart and tree.

Classification and regression trees have nice graphical representations. Here we present an over-

simplification of the regression and classification trees with only two X variables. For the lung

cancer patients who were diagnostic in 2007, we want to use their year 1 and year 2 cost to predict

their year 3 cost. Figure 4.2a shows regression tree results obtained from using the rpart package

in R. At each terminal node, the estimated year 3 cost is simple the average of all year 3 cost that

falls into the terminal code in the training set. Figure 4.2b depicts the corresponding plot where

the predictor space formed by year 1 and year 2 costs are partitioned into four different regions

according to the regression tree.

Random Forest. Random Forest builds on the idea of CART. Instead of constructing a single

classification or regression tree, Random Forest grows many de-correlated trees to correct for

over-fitting (Breiman, 2001; Liaw and Wiener, 2002). We then combine all the trees and form a
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“forest”. Thus, random forest is a representation of bagging (bootstrap aggregation), where we

build an ensemble model by combining many different, often weaker, models. The Random Forest

idea can be summarized as:

1. A number q ≈ √p is specified.

2. Sample n cases from the original training set {X,Y } with replacement, {X ′, Y ′}

3. Grow a tree according the new training set {X ′, Y ′} to the largest extent possible. At each

node, q variables of X are selected at random to grow the next brunch. A fresh sample of q

variables of X is taken at each node but q is held constant during the forest growing

53



4. Repeat step 2-3 to get a forest of many trees.

For a new observation, run all trees and use majority vote or averaging to get the final prediction.

The idea of random forest is to decrease correlation between any two trees in the forest while

maintain the strength of each individual tree. Since we only consider a small subset of the predictors

at each node, the trees in the forest are less likely to be correlated. In addition, we can calculate the

information such as decrease of accuracy in predictions for out of bag samples at each node and

average over all nodes in all tress we find the average information for each variable Xj . Therefore,

we can rank all variables according to their average information to obtain the importance of all X

(Criminisi, Shotton, and Konukoglu, 2012). One disadvantage of random forest is the lack of simple

and intuitive summaries of relationships in the data. Unlike CART, we cannot visualize the “forest”.

Random forest is available as R package randomForest.

4.3.2. Support Vector Machines (SVM)

Support vector classifiers are based on the idea that we can use a class of hyperplanes to “sep-

arate” outcome Y based on predictors X (Suykens and Vandewalle, 1999). For a p dimensional

space, hyperplane is a p − 1 dimensional subspace. In our earlier example, the predictor space

X = (X1, X2) is two dimensional where X1 is the year 1 cost and X2 is year 2 cost. In this case, a

hyperplane is simply a line defined by β0 + β1X1 + β2X2 = 0. If the predictor space can be com-

pletely separated, then we want to maximize the margin M , the distance between the hyperplane

the points that are perpendicularly closest (support vectors) to the hyperplane. If we wish to predict

whether patients are considered high cost with year 3 cost Y ≥ 100, 000, we essentially want to

draw a hyperplane that separates the predictor space X into two regions corresponding to year 3

high cost and low cost subjects. In practice, a single separating hyperplane usually does not exist.

In Figure 4.2, no single line can separate year 3 low and high cost patients. For a p dimensional

space, the SVM classifiers are hydroplanes defined as β0 + β1X1 + . . . + βpXp = 0. In order for

these hyperplanes to identify binary Y s, they should satisfy yi(β0 +β1xi1 + . . .+βpxip) > 0 for all i.

Machine learning researchers extend the concept of separating hyperplane to develop a hyperplane

that “almost” separate different classes using a “soft margin” (Cristianini and Shawe-Taylor, 2000).

In other words, we want to maximize margin M while allowing misclassification. Thus, support
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Figure 4.2: Separating year 3 high and low cost patients

machine classifiers are simply the solution to maximize M conditional on:

p∑
j=1

β2
i = 1

yi(β0 + β1xi1 + . . .+ βpxip) > M(1− εi)

εi ≥ 0,

n∑
i=1

εi ≤ C

where εi are slack variables that allow individual points to be on the wrong side of the hyperplane

and C is a non negative tuning parameter. Loosely speaking, the first two equations defined the

supporting vectors and the separating margins the last equation allows for observations to violate

the margin. The tuning parameter C controls for the amount of violation allowed. In practice, C is

generally chosen by cross validation (Hsu, Chang, Lin, et al., 2003).

Moreover, SVM is an extension of support vector classifiers. Instead of linear boundaries like in the

one in Figure 4.2, SVM deals with non-linear class boundaries by incorporating higher order terms

of X. For example, we can include all second order terms of X and our predictor space would have

dimension 2p: (Xi, X
2
i ). And we can modify the equations for supporting vector classifiers, thus
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SVM is defined as the solution to maximize M conditional on:

p∑
j=1

β2
j1 + β2

j2 = 1

yi(β0 +

p∑
j=1

βj1xij +

p∑
j=1

βj2x
2
ij) > M(1− εi)

εi ≥ 0,

n∑
i=1

εi ≤ C

Similarly, SVMs can work with continuous outcome or categorical outcome with more than two

categories. One big advantage of SVM is flexibility in the choice of the forms of the threshold

separating hyperplanes (Auria and Moro, 2008). In stead of incorporating higher order spaces of

X, one can also use any generalized kernel function. Similar to random forest, SVM is a “black

box” while we cannot visualize the relationships in the data. SVM is available as R package e1071.

4.3.3. Boosting

The intuition beyond boosting is simple: we combine weak learners that usually have low variance

and do not over-fit to produce a strong learner (Schapire, 1990, 1999). Thus we draw strength from

many weak learners that are good at different parts of the predictor space. The key of boosting lay

in two areas: how to weight output from different weak learners and how to force weak learners to

learn about different parts of the predictor space. To answer these questions, all boosting algorithms

builds on the idea of weighting misclassified observations in such a way that they get properly

classified in future iterations (Schapire, 2003).

Similarly, in statistical modeling we often face the issue that some data points are more important

than the others as they affect our model and thus predictions more. Boosting takes consideration

of this by targeting these important observations. All boosting algorithms follow the same general

framework:

1. start by assigning an equal distribution D1(i) = 1/n to all data points

2. at iteration l, train base learner with distribution Dl

3. get predictions from base learner. Update the weightsDl+1 by how incorrectly it was predicted
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4. train next base learner with distribution Dl + 1

5. Report stem 2-4, the final is a linear combination of the predictions of the different learners

weighted by their strength.

In the example of trees, we grow small trees with no pruning and then improve based on that.

Boosting is another example of “slow learning” where we fit a tree using the current residuals so

that we improve fitting in areas where it does not perform well (James et al., 2013). In other words,

these algorithms learns and improves from previous trees errors and finally make a weighted sum

of all the trees.

Popular boosting algorithms include Gradient Boosting (Friedman, 2001) and AdaBoost (Freund

and Schapire, 1997). Boosting is a very popular choice on the statistical and machine learning

modeling competition site Kaggle. Although boosting often has stellar prediction performances, it

is less intuitive and even more of a “black box”. Adaboost is available as R package Adabag and

gradient boosting as gbm.

4.3.4. Bayesian additive regression trees (BART)

BART builds on the idea of Bayesian CART where we place CART within a Bayesian framework by

specifying a prior on tree space (Chipman, George, and McCulloch, 1998, 2002; Denison, Mallick,

and Smith, 1998). The intuition behind BART is to form a probability distribution over the space

of possible trees explored using Markov Chain Monte Carlo methods. If we let the true model

to be y(x) = f(x) + ε, ε ∼ N(0, σ2), then a CART model says y(x) = g(x;T,M) + ε where T

denotes the tree structure and MT = (µ1 . . . , µb) represents parameters at the b terminal nodes.

Then in a Bayesian framework we have P (T,M, σ2) = P (M |T, σ2)P (T |σ2)P (σ2) where the three

components model the tree structure itself, the terminal node parameters given the tree structure

and the error variance which is independent of the tree structure and terminal node parameters

respectively.

Compare to Bayesian CART, BART models the outcome Y by adding many regression trees, thus

the name additive regression trees. Thus our regression tree model becomes

y(x) =
∑m
j=1 g(x;Tj ,Mj) + ε where g(x;Tj ,Mj) represents one of m regression trees. And in

Bayesian framework, we have P ((T1...m,M1...m), σ2) =
∑m
j=1 P (Mj |Tj , σ2)P (Tj |σ2)P (σ2). Here
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we allow different forms for µi(x) such as constant (as seen in CART), linear and Gaussian pro-

cess Denison, Mallick, and Smith, 1998; Gramacy and Lee, 2012; Wu, Tjelmeland, and West,

2007. Furthurmore, a Gibbs sampler is used to generate draws from the posterior distribution of

P ((T1...m,M1...m), σ2|y) according to the following:

1. draw Ti|Ri, σ (Metropolis-Hastings step)

2. draw Mi|Ti, Ri, σ2 (Gibbs step)

3. repeat step 1-2, and draw σ|T1...m,M1...m (Gibbs step)

Specifically, drawing of Ti|Ri, σ (step 1) involves introducing a small perturbations that grows a

terminal node, pruning two nodes or change a splitting rule. Therefore, we can get multiple tree

realizations of one tree by introducing perturbations at each iteration; we average over the posterior

to form predictions. BART has shown to have excellent prediction performance. However it is rela-

tively slow due to its MCMC nature and somewhat less intuitive to a layperson. BART is available

as R package BayesTree and bartMachine.

4.3.5. Lung cancer cost prediction

In this section, we demonstrate how the machine learning algorithms introduced can be used in

cost prediction and compare their performances to traditional parametric cost prediction models.

Our data set includes 13,063 patients with at least three years of complete cost information 181

days after the surgery index data. We divide our data into learning (2/3) and testing (1/3) cohorts.

The learning cohort is used to build and calibrate our prediction models while the testing set is used

to evaluate the performance of the various models.

We are interested in predicting patients’ third year cost from their baseline demographic, medical

and past cost information. Baseline demographic variables include age at diagnosis, gender, race,

marital status, year of diagnosis, median income of primary residence at zip code level and report-

ing sources. In addition, we include medical and treatment related variables including Charlson

commodity score, stage, histology, primary surgery site. Lastly, we include year 1 and 2 cost, the

maximum monthly cost and the number of months with above average costs in the previous two

years.
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Figure 4.3a shows that outcome of interest, year 3 cost is highly right skewed with a maximal

observed cost of $443,278. Log transformation of year 3 cost Figure 4.3b results in a somewhat

normally distributed shape. To make meaningful comparison, we incorporate baseline methods

including linear regression with log transformed year 3 cost and the generalized gamma model with

log link and gamma distribution of the error terms. All 56 predictor variables are used for these

baseline methods.

We measure the performance of prediction models with two error measurements : mean square

error (MSE) and mean absolute error (MAE). The latter, although often used in published cost

prediction studies (Bertsimas et al., 2008; Diehr et al., 1999; Moran et al., 2007), is not as a strong

indicator for model predictability as MSE. Prediction results from the test cohort is summarized in

Table 4.1 where mean and se represents the mean and standard errors of the predictions.

Mean SE MSE MAE
Linear regression - logged 8801 27757 30181 13102

Generalized gamma model 16380 26287 27664 14557
CART 15876 15606 25305 14577

Random forest 16518 11345 23046 14275
Svm 10073 10545 24447 12590

Gradient Boosting 15734 12264 23033 13902
BART 16433 12804 24262 14271

Table 4.1: Predicted year 3 cost and model performance indices
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Results from Table 4.1 shows that linear regression with logged year 3 cost provides poor prediction

while generalized gamma model has better. This is not surprising given the right skewed distribution

of year 3 cost; and is consistent with past studies Dodd et al., 2006; Moran et al., 2007. All machine

learning algorithms show improved prediction and yield 15% to 33% reduction in MSE compared

to linear regression. Among the five popular machine learning models, random forest and gradient

boosting machines have the best prediction. Such result is due to the ensemble nature of both

models where we combine strength of many weak learners. Overall, machine learning algorithms

provide accurate prediction and could be powerful tools for prediction of health care cost.

4.4. Dimension reduction / variable selection

4.4.1. Principle component analysis (PCA)

The goal of PCA is to extract important information from correlated predictors and express this infor-

mation as a set of new orthogonal variables called principle components (Abdi and Williams, 2010).

These principle components can be calculated by eigenvalue decomposition of a data covariance

matrix or singular value decomposition of a data matrix (Jolliffe, 2002). These principle components

are the most important information from X so we can compress the size of X by keeping only the

essential information. In practice, we often construct the first M principle components Z1, . . . , ZM

and then use them as predictors in regression model. M is often much smaller than p and all Zi

are uncorrected with each other. In practice, M is chosen according by cross-validation. One dis-

advantage of PCA is that the principle components are hard to interpret. Thus, PCA is mostly used

making predictive models. PCA is available as R package pls.

We use our lung cancer cost model which have 88 predictors to see how PCA works in action.

Applying PCA and using cross validation, M is chosen to be 11. 97.84% of information about the

predictors is captured with 11 principle components. We these principle components to a regression

model on the training set and evaluate its test set performance we get MSE of 26487. This test set

MSE is slightly larger than what we obtain from other machine learning algorithms, but still shows

an improvement over traditional cost models.
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4.4.2. Lasso

Least Absolute Shrinkage and Selection Operator (Lasso), organically proposed by Tibshirani

(1996), is a modern regression technique that works well for variable selection. In a linear re-

gression model, the estimated coefficients β minimizes residual sums of squares (RSS): β̂ =

arg min
∑n
i=1(yi − β0 −

∑p
j=1 βjxij)

2. However, if p is large, lasso can force some of coefficients

estimates to be zero and thus performs variables selection Efron et al., 2004. The lasso coefficients

is defined as:

β̂λ = arg min

n∑
i=1

yi(β0 −
p∑
j=1

βjxij

2

+ λ

p∑
j=1

|βj |

The tuning parameter λ controls the strength of the penalty. When λ = 0, lasso will give the same

estimate with linear regression. When λ > 0, we essentially fit a linear model while shrinking some

of the coefficients to zero. Such shrunken is caused by the nature of the `1 penalty; as λ increases,

more penalty is imposed ans thus more shrinkage is employed. In practice, we often choose λ using

cross-validation. Lasso can also work when n < p, the sample size is smaller than the number of

predictors. Lasso is available as R package glmnet and lars.
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Figure 4.3: Lasso plot: λ versus coefficients of variables

In our lung cancer cost data, we applied Lasso to select important variables. In Figure 4.3, each
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curve corresponds to a variable and the figure shows the paths of its coefficients against the log(λ).

As λ increase, we allow for more and more predictors in our model. Using cross validation, we find

our optimum λ value to be 233, corresponding to including 22 variables in our regression model.

4.5. Discussion

To summarize, modern big data and machine learning tools are highly relevant to health care cost

estimation. In this paper, we see some applications in health care cost modeling, prediction, vari-

able selection. The obvious advantage of machine learning algorithms over traditional statistical

methods is efficiency: we see better predictive powers and efficiently reduced models. On the

other hand, many of machine learning algorithms’ lack of interpretable models or its “black box”

property is a double edged sword: it is highly automatic but at the same time makes statistical

and economics inference difficult. Therefore, depending on the research question, we should be

cautious with these modern techniques.

Big data and machine learning tools have many other applications such as causal inference in

cost. Propensity score based methods are often used in causal inference where the propensity

scores are traditionally estimated using a logistic regression mode. Recent work suggest using

tree based and neural networks (Lee, Lessler, and Stuart, 2010; Westreich, Lessler, and Funk,

2010) for propensity score estimation. Li et al. (2015) has looked at cost and cost effectiveness

estimation combining traditional propensity score models and machine learning tools.

A developing area in machine learning now is how to handle missing data in predictors. While

most existing models such as the ones we mentioned in this paper already have missing data

algorithm built in, new methods, especially Bayesian based methods have been proposed (Marlin,

2008). In practice, we often see missing data in predictors when modeling health care cost, thus

these methods are more appealing over traditional simple or multiple imputation. Another area

of statistical learning, unsupervised learning, can be applied in many real life health care cost

scenarios. Unlike supervised learning methods where we do know the outcome, unsupervised

learning can be used to find clusters of similar objects (Hastie, Tibshirani, and Friedman, 2009).

For example, insurance company could unsupervised learning to group patients into high/low cost

groups when they are first enrolled.
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CHAPTER 5

DISCUSSION

5.1. Conclusion

Policy making and health services evaluations rely on appropriate and accurate estimation of the

cost and cost effectiveness of interventions. In this dissertation, we developed cost and cost ef-

fectiveness evaluation models from observational sources. In Chapter 2, we proposed several

propensity score based models including covariate adjustment, stratification, weighting and doubly

robust estimation to estimate the treatment effect on cost. These methods allow an investigator

to compare the causal effect of two treatments on cost. We discussed the issue of informative

censoring for cost data, and showed the proposed methods utilizing inverse probability weighting

idea are unbiased. We also discussed the variance estimation of the proposed methods. Using

simulations, we showed that the doubly robust method gives unbiased results compared to other

models. Finally, we demonstrated the use of our proposed methods in a study comparing the

costs of two treatments for Stage II/III bladder cancer using an observational cohort derived from

SEER-Medicare.

In Chapter 3, we build on the cost estimation idea from Chapter 2 and proposed doubly robust mod-

eling strategies for cost-effectiveness. Specifically, we argue inverse probability weighting should

be used to estimate effectiveness instead of the traditional area under the survival cure method.

We then propose doubly robust estimators for effectiveness estimation based on inverse probability

weighting. We also proposed two estimators for cost estimation, with and without incorporating cost

history data. Our simulation studies demonstrate that the proposed DR models perform well even

under misspecification of either the propensity score model or the outcome model. We apply these

approaches to a cost-effectiveness analysis of two competing lung cancer surveillance procedures,

CT versus chest X-ray, using SEER-Medicare data.

In Chapter 4, we review and explore the use of big data and machine learning techniques in cost es-

timation, especially in big data manipulation, cost prediction and variable dimension reduction. We

reviewed popular algorithms including Hadoop, MapReduce, classification and regression trees,

random forest, Bayesian additive regression trees, supported vector machines, principle compo-
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nents analysis and LASSO. Throughout the chapter, we also demonstrate these state of the art

big data and machine learning models using a cohort of lung cancer patients derived from SEER-

Medicare.

5.2. Future Directions

This dissertation motivates several further areas of research. In both Chapters 2 and 3, we rec-

ommended using the non-parametric bootstrapping to estimate the variance of the doubly robust

cost and cost-effectiveness estimators due to model complexity. However, it would be desirable to

derive the variance formula and compare the variance estimated from bootstrapping and analytic

derivation.

Another future area of research is more in-depth understanding of the simple weighted and parti-

tioned doubly robust cost estimator. In Chapter 3, we showed that the two are both unbiased and

had similar bias under large sample sizes. However, we suspect with smaller sample size, the por-

tioned estimator may perform better, but further investigation is needed. In addition, the partitioned

estimator may have better empirical performance if the cost partitions, for example monthly cost,

follows drastically different distributions.
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APPENDIX A

DR PROPERTY OF PARTITIONED ∆C

From 3.3.2, consider µ̂1 = 1
n

∑n
i=1

∑L
j=1

[
ZiYijδ

j
i

êiK̂j(T
j
i )
− (Zi−êi)mj1(Xi)δ

j
i

êiK̂j(T
j
i )

]
. By the Law of Large Num-

bers, µ̂1 estimates:

E

 L∑
j=1

ZY jδj

eKj(T j)
− (Z − e)mj

1(X)δ

eKj(T j)

 =

L∑
j=1

E

[
ZY jδj

eKj(T j)
− (Z − e)mj

1(X)δ

eKj(T j)

]

Take an arbitrary interval j, µ̂1,j estimates:

E

[
ZY jδj

eKj(T j)
− (Z − e)mj

1(X)δ

eKj(T j)

]

= E

[
ZY (1),jδj

eKj(T j)
− (Z − e)mj

1(X)δ

eKj(T j)

]

= E

[
δj

Kj(T j)
Y (1),j +

(Z − e)
e

(
δj

Kj(T j)
Y (1),j −mj

1(X)

)]
= E

[
Y (1),j

]
+ E

[(
Z

e
− 1

)(
δj

Kj(T j)
Y (1),j −mj

1(X)

)]
= µ1,j + E

[(
Z

e
− 1

)(
δj

Kj(T j)
Y (1),j −mj

1(X)

)]

Hence for µ̂1,j to be unbiased, we need the second term S = E
[(
Z
e − 1

) (
δj

Kj(T j)
Y (1),j −mj

1(X)
)]

to be zero. This condition is satisfied when the propensity score model is correctly specified:

E(Z|Y (1),X) = E(Z|X) = e(X, β) = e so

S = E

[
E

[(
Z

e
− 1

)(
δj

Kj(T j)
Y (1),j −mj

1(X)

)
|Y (1),X

]]
= E

[(
E(Z|Y (1),X)

e
− 1

)(
δ

Kj(T j)
Y (1),j −mj

1(X)

)]
= 0
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When the outcome model mj
1(X) is correctly specified, mj

1(X) = E(Y j |Z = 1,X) = E(Y (1),j |Z =

1,X) = E(Y (1),j |Z,X) so

S = E

[
E

[(
Z

e
− 1

)(
δj

Kj(T j)
Y (1),j −mj

1(X)

)
|Z,X

]]
= E

[(
Z

e
− 1

)(
E(

δj
Kj(T j)

Y (1),j |Z,X)−mj
1(X)

)]
= E

[(
Z

e
− 1

)(
E(Y (1),j |Z,X)−mj

1(X)
)]

= 0

Hence µ1,j is unbiased if either the propensity score model e or the outcome model mj
1 is correctly

specified. Adding all the L intervals together, the DR property holds for ∆E as long as either the

propensity score model e or the outcome models mj
0 and mj

1 are correct.

66



BIBLIOGRAPHY

Abdi, H and Williams, LJ (2010). Principal component analysis. Wiley Interdisciplinary Reviews:
Computational Statistics 2.4, 433–459.

Ahmed, NK, Atiya, AF, Gayar, NE, and El-Shishiny, H (2010). An empirical comparison of machine
learning models for time series forecasting. Econometric Reviews 29.5-6, 594–621.

Anstrom, KJ and Tsiatis, AA (2001). Utilizing Propensity Scores to Estimate Causal Treatment
Effects with Censored Time-Lagged Data. Biometrics 57.4, 1207–1218.

Ash, AS, Zhao, Y, Ellis, RP, and Kramer, MS (2001). Finding future high-cost cases: comparing
prior cost versus diagnosis-based methods. Health services research 36.6 Pt 2, 194.

Auria, L and Moro, RA (2008). Support vector machines (SVM) as a technique for solvency analysis.

Austin, PC (2011). An introduction to propensity score methods for reducing the effects of con-
founding in observational studies. Multivariate Behavioral Research 46.3, 399–424.

Austin, PC, Grootendorst, P, and Anderson, GM (2007). A comparison of the ability of different
propensity score models to balance measured variables between treated and untreated sub-
jects: a Monte Carlo study. Statistics in Medicine 26.4, 734–753.

Austin, PC and Mamdani, MM (2006). A comparison of propensity score methods: a case-study
estimating the effectiveness of post-AMI statin use. Statistics in Medicine 25.12, 2084–2106.

Baker, MS, Kessler, LG, Urban, N, and Smucker, RC (1991). Estimating the treatment costs of
breast and lung cancer. Medical care, 40–49.

Bang, H (2005). Medical cost analysis: application to colorectal cancer data from the SEER Medi-
care database. Contemporary clinical trials 26.5, 586–597.

Bang, H and Robins, JM (2005). Doubly robust estimation in missing data and causal inference
models. Biometrics 61.4, 962–973.

Bang, H and Tsiatis, A (2000). Estimating medical costs with censored data. Biometrika 87.2, 329–
343.

Bang, H and Tsiatis, A (2002). Median Regression with Censored Cost Data. Biometrics 58.3, 643–
649.

Baser, O, Gardiner, JC, Bradley, CJ, and Given, CW (2004). Estimation from Censored Medical
Cost Data. Biometrical Journal 46.3, 351–363.

Basu, A and Manning, WG (2010). Estimating lifetime or episode-of-illness costs under censoring.
Health Economics 19, 1010–1028.

Basu, A, Manning, WG, and Mullahy, J (2004). Comparing alternative models: log vs Cox propor-
tional hazard? Health Economics 13.8, 749–766.

67



Basu, A, Polsky, D, and Manning, WG (2011). Estimating treatment effects on healthcare costs un-
der exogeneity: is there a ‘magic bullet’? Health Services and Outcomes Research Methodology
11.1-2, 1–26.

Basu, A and Rathouz, PJ (2005). Estimating marginal and incremental effects on health outcomes
using flexible link and variance function models. Biostatistics 6.1, 93–109.

Bekelman, JE, Handorf, EA, Guzzo, T, Pollack, CE, Christodouleas, J, Resnick, MJ, Swisher-
McClure, S, Vaughn, D, Ten Have, T, Polsky, D, et al. (2013). Radical cystectomy versus bladder-
preserving therapy for muscle-invasive urothelial carcinoma: examining confounding and mis-
classification biasin cancer observational comparative effectiveness research. Value in Health
16.4, 610–618.
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