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ABSTRACT

IGNORABILTY CONDITIONS FOR INCOMPLETE DATA AND THE FIRST-ORDER MARKOV

CONDITIONAL LINEAR EXPECTATION APPROACH FOR ANALYSIS OF LONGITUDINAL

DISCRETE DATA WITH OVERDISPERSION

Shaun Bender

Justine Shults

Medical researchers strive to collect complete information, but most studies will have some degree

of missing data. We first study the situations in which we can relax well accepted conditions under

which inferences that ignore missing data are valid. We partition a set of data into outcome, condi-

tioning, and latent variables, all of which potentially affect the probability of a missing response. We

describe sufficient conditions under which a complete-case estimate of the conditional cumulative

distribution function of the outcome given the conditioning variable is unbiased. We use simulations

on a renal transplant data set to illustrate the implications of these results. After describing when

missing data can be ignored, we provide a likelihood based statistical approach that accounts for

missing data in longitudinal studies, by fitting correlation structures that are plausible for measure-

ments that may be unbalanced and unequally spaced in time. Our approach can be viewed as

an extension of generalized linear models for longitudinal data that is in contrast to the general-

ized estimating equation approach that is semi-parametric. Key assumptions of our method include

first-order ante-dependence within subjects; independence between subjects; exponential family

distributions for the first outcome on each subject and for the subsequent conditional distributions;

and linearity of the expectations of the conditional distributions. Our approach is appropriate for

data with over-dispersion, which occurs when the variance is inflated relative to the assumed distri-

bution. We consider a clinical trial to compare two treatments for seizures in patients using Poisson

or Negative Binomial distributions. Next, we consider a study that evaluates the likelihood that a

transplant center is flagged for poor performance using the Binomial distribution. For both studies,

we perform simulations to assess the properties of our estimators and to compare our approach

with GEE. We demonstrate that our method outperforms GEE, especially as the degree of over-

dispersion increases. We also provide software in R so that the interested reader can implement

our method in his or her own analysis.
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CHAPTER 1

INTRODUCTION

1.1. Overview of the Thesis

In this dissertation we discuss two related topics. The first concerns the ignorability conditions

for frequentist nonparametric analysis of conditional distributions with incomplete data. Missing

data is common in any sort of scientific investigation, although medical researchers work hard to

obtain complete information. If missing observations occur completely at random throughout a

data set, semi-parametric approaches such as generalized estimating equations (GEE) (Liang and

Zeger, 1986) will be valid. However, analysis may be unbiased for when the data is not missing

completely at random. We will explore a situation when missing observations can lead to biased

results in Chapter 2. We will also explore conditions under which the reasons for missing data can

be ignored.

The second topic we consider is the development of the first-order Markov conditional linear ex-

pectation approach that, like GEE, extends generalized linear models (GLM) to longitudinal data.

However, unlike GEE, our proposed approach is likelihood based and is appropriate for longitudi-

nal data with over-dispersion. The proposed method can also be used to address the problem of

missing data that occur when participants in longitudinal studies drop out and do not return (drop

out), or miss some visits but then return for their final measurement (intermittent missingness).

Drop out and intermittently missing values result in a variable number of measurements per subject

(unbalanced data) and in measurements that are unequally spaced in time. The proposed method

addresses both situations, by allowing for the implementation of correlation structures that are ap-

propriate for data that are unbalanced and unequally spaced in time. We present this approach for

count data in Chapter 3 and for binomial type data in Chapter 4.

This thesis is organized as follows. This introductory Chapter provides a brief and general introduc-

tion, while Chapters 2,3, and 4 each represent distinct manuscripts. Finally, Chapter 5 summarizes

our findings and discusses possible future research directions.
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1.2. Ignorability Conditions for Incomplete Data

Protocols for longitudinal studies typically specify the number of measurements that will be collected

on each of a pre-specified number of subjects. However, some measurements will invariably be

missing from the final data set. Participants may drop out of the study, or may miss some visits.

Or, some information may be lost, for example, if some samples in a laboratory are accidentally

destroyed, or if questionnaires are lost.

In order to understand whether missing data will result in biased analytic results, it is important to

assess the missing data mechanism, which is the random process that results in missing values

in the final analytic dataset. Rubin (1976) provided general and weak conditions under which the

missing data mechanism can be ignored and the analysis results will still be correct. The weakest

general condition for frequentist ignorability of the missing data mechanism is when the missing

data mechanism is such that any missing data are missing completely at random (MCAR). However,

although the MCAR condition is sufficient for unbiased analysis, it is not always necessary. For

example, in linear regression, if the missing data mechanism depends on the predictors of the

outcome variables (so that the missing data mechanism depends on observed data and the MCAR

assumption is violated), a complete case analysis that ignores subjects with any missing data will

still yield results that are unbiased.

When the missing data mechanism depends on the predictors, the missing data are said to be

missing at random (MAR). To be more precise, the missing data mechanism is MAR when the

probability of observing the realized missing data pattern, given the missing and realized observed

data, does not depend on the values of the missing data. If the MAR assumption is violated, the

missing data mechanism is not missing at random (NMAR).

The conditions that are sufficient for correct analysis depend on the type of analysis that is being

performed. In likelihood based analysis, if the missing data mechanism is MAR and the parameter

spaces of the model and missing data mechanisms are distinct, then ignoring the missing data

mechanism will lead to unbiased results. Under a Bayesian-based framework of analysis, if the

data are MAR (along with the model parameters being a priori independent of the missing data

mechanism parameters), then ignoring the missing data mechanism will lead to unbiased results.

In general, ignoring the missing data mechanism will lead to unbiased results in a frequentist-based

2



approach if the data are MCAR.

In Chapter 2, we study the precise conditions under which frequentist nonparametric inference with

missing data is correct for modeling conditional distributions, such as in linear regression. In this

Chapter we rigorously describe the sufficient conditions for ignorability of the missing data mecha-

nism in complete-case frequentist inference for a nonparametric model of conditional distributions

when some outcomes may be missing. The conditions we describe may be weaker than MCAR.

We illustrate these results using data from a renal transplant study (“Improvements in muscle mass

and function following renal transplantation”).

1.3. The First Order Markov Maximum Likelihood Based Approach for Count Data

with Over-Dispersion

Count data are commonly encountered in medical research. For example, in Chapter 3 we consider

a longitudinal study of repeated seizure counts on patients enrolled in a clinical trial Thall and Vail

(1990). In general, we consider outcome variables that represent longitudinal counts that take value

in {0, 1, 2, · · · } on subject i.

We also consider outcomes with over-dispersion, which is a common feature of count data that oc-

curs when the variance of the outcome variable is inflated relative to the assumed distribution. Over-

dispersion is easy to detect for an assumed Poisson distribution because the mean and variance

of the outcome variable are equal for the Poisson distribution. Strong evidence of over-dispersion

is provided when the sample variances are very large relative to the sample means.

We provide a likelihood based approach for analysis of over-dispersed longitudinal discrete data

that is based on several assumptions. First, we assume that measurements on different subjects

are independent, but measurements within subjects are correlated. We also assume first-order

antedependence, which is also referred to as the first-order Markov property. Next, we assume

that the distribution of the first outcome on each subjects, and the distribution of the subsequent

conditional distributions, are members of the same exponential family. We also assume that the

conditional expectations of the conditional distributions are linear.

The assumptions of linearity (of the conditional means) and of first-order antedependence induce

decaying product structures that are plausible for longitudinal data (Guerra and Shults, 2014). The

3



decaying product structures include the AR(1) structure that is appropriate for equally spaced data;

the Markov structure that takes unequal temporal spacing of measurements into account; and the

first-order AD(1) structure that allows the correlation of adjacent measurements on subjects to vary

over the course of the study. The Markov structure includes the AR(1) structure as a special case,

when the measurements on a subject are equally spaced in time. The AD(1) structure includes the

AR(1) structure as a special case, when the adjacent correlations on a subject are equal.

Our assumption of exponential distributions for the first observation and subsequent conditional

distributions suggests that our method could be viewed as an approach that extends generalized

linear models (GLM) (McCullagh and Nelder, 1989) to longitudinal data with over-dispersion. We

therefore compared our approach with GEE, which extended the likelihood equations for exponen-

tial families to longitudinal data via the incorporation of working correlation structures that described

the pattern of intra-subject association of measurements. However, while our approach is likelihood

based, GEE is semi-parametric and only requires specification of the first and second moments of

the distribution of the outcome variable. In addition, GEE ignores the over-dispersion that is com-

monly encountered in longitudinal discrete data.

Our comparison demonstrates the advantages of a likelihood based approach relative to a semi-

parametric approach like GEE. Because likelihood based approaches are based on maximizing an

objective function (the log-likelihood) we can more easily assess the goodness of fit of our models,

via criteria that are based on the estimated log-likelihood. The criteria we consider include the

Akaike’s Information and Bayesian Information Criterion . We are also able to perform likelihood

ratio tests that are useful for choosing between nested models. For analysis of the seizure data,

the likelihood ratio test is also useful to justify the application of the negative Binomial versus the

Poisson distributions.

We also perform simulations that indicate that the mean-square error and bias of our estimators de-

crease as the sample size increases. In addition, the estimated coverage probability of our estima-

tors is appropriate, and approaches nominal levels as the sample size increases. Our simulations

also demonstrate that our method outperforms GEE, with increasing improvement in performance

as the degree of over-dispersion increases. GEE also requires the assumption that any missing

data are MCAR, while our approach only requires the less restrictive assumption that the missing

data are MAR. We also use simulation to assess the Likelihood Ratio Test for comparison of Pois-
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son and Negative-Binomial models, in which we must use the results of Chernoff (1954) instead of

the standard Likelihood Ratio Test.

1.4. The First Order Markov Maximum Likelihood Based Approach for Analysis of

Binomial Type Variables

Chapter 4 considers Binomial type outcomes that take value in {0, 1, · · · , ni} on subject i. Our

motivating study for this Chapter is of the relationship between the U.S. News & World Report

ranking of a hospital and the number of times the hospital was flagged for having poor performance

with respect to organ transplant.

Transplant programs are flagged for poor performance based on information in the Scientific Reg-

istry of Transplant Recipients (SRTR), which is a database of organ transplantation statistics in the

United States. Every six months, the SRTR releases publicly available transplant program reports

for each transplant center that include information on waiting time, organ availability, and survival

statistics. In addition, the reports include the number of observed and expected graft failures for

each center during the first year after transplant. If the number of observed graft failures is large,

then the Centers for Medicare & Medicaid Services (CMS) will flag a program for poor performance.

(More details regarding the criteria are provided in Chapter 4.)

We consider transplant program reports (excluding pediatric and Veteran’s hospitals) for kidney,

lung, liver, and heart transplant programs during the years 2012-2015. Two reports are released

each year, so that the maximum number of times that a transplant program can be flagged during

a year is 8. However, not all transplant programs provide transplants for all organs, so that the

number of times a program is flagged is a binomial type outcome with ni ∈ {1, · · · , 8}.

Our analysis goal is to relate the number of times a treatment program is flagged with the ranking

of the program according to the U.S. News & World Report introduced “America’s Best Hospitals”

ranking system (Olmsted et al., 2015). Each year, the U.S. News & World Report provides rankings

on 16 different adult specialties, 12 of which are based on the Donabedian model of health care:

structure, process, and outcomes (Donabedian, 1966). The components of the score are then used

to create a weighted score for each specialty at each hospital. We consider 1,897 hospitals that

were eligible for at least 1 of the 12 score-driven specialties under the U.S. News & World Report

5



criteria.

For our analysis, we use a binary variable to indicate whether a hospital received a high enough

score to earn a place in the U.S. News & World Honor Roll. Preliminary descriptive analysis sug-

gested that transplant programs that were affiliated with hospitals that were not in the U.S. News &

World Report Honor Roll had a higher number of occurrences of being flagged in the previous year

than hospitals that were on the honor roll. A preliminary analysis also suggested that there was

over-dispersion relative to the binomial distribution in the number of times a hospital was flagged.

An appropriate analysis of data from this study should therefore account for the over-dispersion of

the outcome variable, in addition to the intra-subject correlation within centers across the 4 years

of follow-up.

As in the previous Chapter, we assume first-order antedependence, exponential distributions, and

linearity of the conditional expectations. However, we now assume Binomial distributions for the

first distribution and the subsequent conditional distributions. We obtain the form of the likelihood

equations for the binomial distribution and fit models to relate being on the U.S. News & World

Report Honor Roll with being flagged for poor performance. We also fit models with GEE, to make

comparisons with the likelihood equations and developed software in R to implement our approach.

We again make comparisons with GEE, both in the analysis and in simulations. Our simulations

indicate that our approach outperforms GEE, with increasing superiority in relative performance as

the degree of over-dispersion and the degree of violation of the MCAR assumption (in favor of an

MAR assumption) increases. We perform our analyses in R and provide software so that interested

readers can use our approach in their own analyses. We also use simulations to assess how well

our Likelihood based analysis does in comparison to GEE methodology with data that are missing

at random. We vary the portion of data that are missing and random and assess bias of each

parameter.
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CHAPTER 2

IGNORABILITY CONDITIONS FOR FREQUENTIST NONPARAMETRIC ANALYSIS OF

CONDITIONAL DISTRIBUTIONS WITH INCOMPLETE DATA

2.1. Introduction

Missing data are common in scientific investigations of all kinds, and it has long been understood

that randomness in the missing data mechanism (MDM) can induce bias in estimation. Rubin

(1976) derived general conditions under which inference ignoring the MDM is correct. Rubin’s

conditions are, in his words, “the weakest general conditions under which ignoring the process that

causes missing data always leads to correct inferences”. That is, they represent general sufficient

conditions for ignorability, but they may not be necessary in all contexts. Yet many subsequent

papers assert that ignoring the MDM “requires” one or more of the conditions, when this is clearly

not the case. For example, it is known that when conducting a linear regression of a variable Y

on another variable X, one can select the points to include on the basis of their X values without

biasing estimation of the regression coefficients. Data generated under such a selection method are

not missing completely at random (MCAR), which Rubin presents (although not by that name) as

the weakest general condition for frequentist ignorability; see Rubin (1976), Little and Rubin (2002).

In this Chapter we study precise conditions under which frequentist nonparametric inference with

missing data is correct for modeling conditional distributions.

2.2. Background

Let Y be a matrix of notional complete data whose (i, j) element is Y (j)
i . LetR be the corresponding

matrix of observation indicators, with R(j)
i = 1 when Yij is observed and 0 when Yij is missing. Let

y (r) be a realization of Y (R). The general selection model describes the MDM as the conditional

distribution of R given Y , indexed by a parameter ψ:

Prψ(R = r|Y = y).

Rubin (1976) identified three types of MDM:
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• Missing completely at random (MCAR, originally missing at random plus observed at random)

holds when, for the given r and for every ψ, for all y∗ and y∗∗,

Prψ(R = r|Y = y∗) = Prψ(R = r|Y = y∗∗).

That is, the probability of observing the realized missing data pattern r given Y does not

depend on the value of Y .

• Missing at random (MAR). Let o(y, r) denote the portion of Y consisting of elements whose

corresponding elements of R equal 1 — i.e., the observed data. Then MAR holds when, for

the given r and for every ψ, for all y∗ such that o(y∗, r) = o(y, r),

Prψ(R = r|Y = y) = Prψ(R = r|Y = y∗).

That is, the probability of observing the realized missing data pattern r, given the missing data

and the realized observed data o(y, r), does not depend on the values of the missing data.

• Not MAR (NMAR) holds when the data are not MAR.

We emphasize that these definitions pertain only to the realized value R = r, not to all R; failure to

recognize this distinction has led to much confusion in the literature (Seaman et al., 2013).

Sufficient conditions for correct inference vary depending on the mode of inference. In likelihood

inference one specifies a model for Y indexed by a set of parameters θ. Within this framework,

if the data are MAR and θ and ψ are distinct then ignoring the MDM does not impair inferences.

The parameters are distinct if the joint parameter space is a Cartesian product of the individual

parameter spaces. Similarly, if the data are MAR and θ and ψ are a priori independent, then one

can safely ignore the MDM in Bayesian inferences.

The frequentist approach bases inference on the conditional distribution of Y given R = r in re-

peated sampling. Within this framework, if the data are MCAR then the MDM is ignorable in the

sense that the conditional sampling distribution of Y given R = r and ignoring the MDM is equal to

the correct conditional sampling distribution that accounts for the MDM.
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Authors commonly cite MCAR as a sufficient condition for validity of a complete-case regression

analysis with missing outcomes (Horton and Kleinman, 2007; Simonoff, 1988). Though this is true,

such an analysis is generally valid under weaker assumptions. For example, simulations in Little

(1992) show that complete-case linear regression estimates are unbiased if the MDM depends only

on the predictor variables. Little and Rubin (2002) later discussed this in their Example 3.3. In an

iid model, Galati and Seaton (2013) defined available at random (AAR) to mean that the conditional

probability that a case is complete, given the Y values for that case, does not depend on Y . AAR is

sufficient for the complete cases to be considered a random sample from the data, and therefore,

like MCAR, justifies frequentist complete-case analyses. They moreover showed that AAR may

hold under any of the conditions MCAR, MAR, or MNAR. This is slightly different from the results

of Little and Rubin (2002) (and the results presented here) in that the MDM cannot depend on the

regression covariates.

Robins, Rotnitzky, and Zhao (1994) examined general regression models of the form E(Y ) =

h(X,β), where β is the unknown parameter vector and h is a known function. They partitioned

the regressors into X = (W,V ), where W may be missing and V is fully observed. They stated that

if the probability of W being observed depends only on the vector V , then complete-case estimates

of β are consistent. If the probability depends on both Y and V then the complete-case estima-

tor may be biased. The first condition is MAR and the second condition is either MAR or NMAR

(depending on whether Y can be missing).

In this Chapter we give a rigorous explication of sufficient conditions for ignorability of the MDM

in complete-case frequentist inference for a nonparametric model of conditional distributions when

some outcomes may be missing. Our conditions are substantially weaker than MAR. We illustrate

the results using data from a renal transplant study (“Improvements in muscle mass and function

following renal transplantation”).

2.3. The Model and Ignorability Conditions

2.3.1. Assumptions

Suppose we sample N subjects from an infinite population and measure L discrete variables of

interest. Let Y (l)
i be the value of the lth variable for the ith unit, and Yi = (Y

(1)
i , · · · , Y (L)

i ) be the
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vector of observations for the ith unit. Let R(l)
i = 1 if the lth variable for the ith unit is observed (0

if unobserved), and Ri = (R
(1)
i , · · · , R(L)

i ) be the observation indicator vector for the ith unit. Thus

we have the following notional data matrices:

Y =


Y

(1)
1 · · · Y

(L)
1

...
. . .

...

Y
(1)
N · · · Y

(L)
N

 R =


R

(1)
1 · · · R

(L)
1

...
. . .

...

R
(1)
N · · · R

(L)
N



Let y (r) be a realization of Y (R) and yi (ri) be its corresponding ith row. We assume that the MDM

takes the form

Pr(R = r|Y = y) =

N∏
i=1

Pr(Ri = ri|Yi = yi);

that is, units are observed or missing independently of each other. We also assume that units are

iid with pmf

f(y) = Pr(Y = y) =

N∏
i=1

h(yi).

We seek to model the general situation of inference on outcome variables given conditioning vari-

ables when there are latent (unobserved or excluded) confounders. We therefore partition the

column labels {1, · · · , L} into label sets H(6= ∅), K, and M representing outcome, conditioning,

and latent variables, respectively. We partition each unit i in the same way: Yi = (Y Hi , Y Ki , YMi )

and Ri = (RHi , R
K
i , R

M
i ). Here, Y Hi and RHi contain the elements of Yi and Ri corresponding to

the variables H, and similarly for K and M . We partition the realizations yi and ri in the same

way: yi = (yHi , y
K
i , y

M
i ) and ri = (rHi , r

K
i , r

M
i ). Let Y H be a submatrix of Y containing the columns

corresponding to the variables H, and similarly for Y K and YM , and define the realizations yH , yK ,

and yM in the same way. Let ΩH , ΩK , and ΩM be the sample spaces of Y Hi , Y Ki , and YMi , respec-

tively. We define the vector ỹK ∈ ΩK to be the generic conditioning vector, in that our objective is to

make inferences regarding the conditional distribution of Y Hi |Y Ki = ỹK . We define K = ∅ to refer

to the situation where we are interested in the marginal distribution of Y H .

Let u ∈ ΩH . Define I(yHi < u) = 1 if y(j)i < u(j) ∀j ∈ H. Let 1A be a q × 1 vector of 1’s

where q = #A. Let nH,K,ỹK = #{i : rHi = 1H , rKi = 1K , yKi = ỹK} be the number of units fully

observed for yKi and yHi with yKi = ỹK . Let TH,K,i = 1 indicate rHi = 1H and rKi = 1K . Therefore
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nH,K,ỹK =
∑

i:Y Ki =ỹK

TH,K,i.

Assuming nH,K,ỹK > 0, define

ĪH,K,ỹK ,u =
1∑

i:Y Ki =ỹK TH,K,i

∑
i:Y Ki =ỹK

TH,K,i · I(Y Hi < u)

=
1

nH,K,ỹK

∑
i:Y Ki =ỹK

TH,K,i · I(Y Hi < u)

as the sample mean of I(Y Hi < u) across the rows where Y Ki = ỹK . Let FH|K(u|ỹK) be the cdf of

Y Hi |Y Ki = ỹK evaluated at u. For nH,K,ỹK > 0, we seek to determine conditions that imply

E
(
ĪH,K,ỹK ,u

∣∣Y K = ỹK , R = r
)

= FH|K(u|ỹK).

This is a valuable nonparametric model because a range of parameters, including means and

quantiles, are functionals of the cdf.

2.3.2. Illustration in the Renal Transplant Study

We illustrate the theorem using a subset of the data of Dienemann et al. (“Improvements in muscle

mass and function following renal transplantation”), who studied changes in body composition and

muscle function in renal transplant recipients. The study enrolled 60 patients and measured body

composition at the time of transplantation. The data consist of sex-, race-, and age-specific Z-

scores.

We suppose that the objective is to estimate the distribution of Muscle Strength Z-scores given

positive or negative Muscle Area Z-score, taking Fat Area to be a latent variable. Hence, Muscle

Strength Z-score is the outcome Y H ; dichotomized Muscle Area Z-score is the conditioning vari-

able Y K ; and Fat Area Z-score is a latent variable YM . Here u represents any element in the space

of Muscle Strength Z-score.
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2.3.3. Summary of Lemmas

We summarize our results into four lemmas and their consequent theorem, whose proofs appear

in Appendix A. Lemmas 1 and 2 give sufficient conditions under which the ith unit satisfies

E
(
Y Hi < u|Y Ki = ỹK , TH,K,i = 1

)
= FH|K(u|ỹK).

That is, Lemmas 1 and 2 give sufficient conditions under which the empirical conditional cdf for a

single unit is unbiased for the population conditional cdf. The key difference between Lemmas 1

and 2 are in their assumptions. Lemma 1 requires that the probability the ith unit is observed is

independent of the outcome and latent variables, whereas Lemma 2 requires that the probability

is independent of only the outcome variables. Lemma 2 has the additional requirement that the

outcome and latent variables are independent given the conditioning variables. Lemma 3 shows

the equivalency in the statement Y Hi < u in Lemmas 1 and 2 with the more familiar statement

Y Hi = u. Lemma 4 states conditions sufficient for a sample cdf estimate ĪH,K,ỹK ,u to be unbiased

for FH|K(u|ỹK).

2.3.4. Lemma 1

Given u and ỹK , suppose the following conditions hold for all yMi ∈ ΩM :

1. Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK), and

2. Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) > 0.

Then E
(
Y Hi < u|Y Ki = ỹK , TH,K,i = 1

)
= FH|K(u|ỹK).

2.3.5. Lemma 2

Given u and ỹK , suppose the following conditions hold for all yMi ∈ ΩM :

1. Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ),

2. Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) > 0, and

3. Pr(Y Hi < u|Y Ki = ỹK , YMi = yMi ) = Pr(Y Hi < u|Y Ki = ỹK).
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Then E
(
Y Hi < u|Y Ki = ỹK , TH,K,i = 1

)
= FH|K(u|ỹK).

2.3.6. Lemma 3

Assume Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) > 0 for all u, yMi . Then

Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ) for all u, yMi

if and only if

Pr(TH,K,i = 1|Y Hi = u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ) for all u, yMi

We note that, in the Lemma 3 statement and the proof, the expression Pr(TH,K,i = 1|Y Ki =

ỹK , YMi = yMi ) is interchangeable with Pr(TH,K,i = 1|Y Ki = ỹK).

2.3.7. Lemma 4

Suppose nH,K,ỹK > 0 and E
(
Y Hi < u|Y Ki = ỹK , TH,K,i = 1

)
= FH|K(u|ỹK) for all units in the set

{i : rHi = 1H , rKi = 1K , yKi = ỹK}. Then E
(
ĪH,K,ỹK ,u

∣∣Y K = yK , R = r
)

= FH|K(u|ỹK).

The Theorem below summarizes and integrates the lemmas.

2.3.8. Theorem

Given ỹK and suppose nH,K,ỹK > 0. Suppose further that for each unit i in the set {i : rHi =

1H , rKi = 1K , Y Ki = ỹK} one of the following sets of conditions holds for all u and yMi :

1. (a) Pr(TH,K,i = 1|Y Hi = u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK), and

(b) Pr(TH,K,i = 1|Y Hi = u, Y Ki = ỹK , YMi = yMi ) > 0; or

2. (a) Pr(TH,K,i = 1|Y Hi = u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ),

(b) Pr(TH,K,i = 1|Y Hi = u, Y Ki = ỹK , YMi = yMi ) > 0, and

(c) Pr(Y Hi < u|Y Ki = ỹK , YMi = yMi ) = Pr(Y Hi < u|Y Ki = ỹK).

Then E
(
ĪH,K,ỹK ,u

∣∣Y K = yK , R = r
)

= FH|K(u|ỹK).
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The Theorem states that the empirical conditional cdf is guaranteed unbiased if, for each unit with

complete data in the outcome and conditioning variables, one of two sets of conditions holds. The

first set of conditions has two elements:

1. The probability of being observed is independent of outcome and latent variables given the

conditioning variables (i.e., the MDM can depend on conditioning variables).

2. Each combination of data has a non-zero probability of being observed.

The second set of conditions has three elements:

1. The probability of being observed is independent of outcome variables given conditioning and

latent variables (i.e., the MDM can depend on conditioning and latent variables).

2. Each combination of data has a non-zero probability of being observed.

3. The outcome variables are independent of the latent variables given the conditioning vari-

ables.

The assumptions apply to the observed missingness matrix R = r, not to all possible values of R.

In parallel with Seaman et al. (2013), the assumptions refer to “realised” rather than “everywhere”

ignorability. See also Heitjan (1997).

2.3.9. Application of the Theorem to the Renal Transplant Data

Returning to the example, suppose there are N units from which we collect the Muscle Strength,

Muscle Area, and Fat Area Z-scores. Assume our objective is to estimate the cdf of the Muscle

Strength Z-score given a positive Muscle Area Z-score. From Rubin (1976), a sufficient condition

for frequentist ignorability is that the missing data are MCAR. With our model, however, sufficient

conditions are in some cases less restrictive.

Under our theorem, one sufficient condition for lack of bias is that the MDM depends only on the

conditioning variable (Muscle Area Z-score). When the latent (Fat Area) and outcome (Muscle

Strength) variables are independent given the conditioning variable (Muscle Area), one can permit

the MDM to also depend on the latent variable. Essentially, this means that the latent variable is

not a confounder.
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If we are instead interested in the marginal cdf of Muscle Strength, both Muscle Area and Fat

Area are latent variables, and our ignorability condition is equivalent to MCAR when the outcome

Muscle Strength and latent variables are correlated. When the latent and outcome variables are

independent of each other, the MDM can depend on the latent variables without inducing bias.

2.4. Simulation Study

We use simulation to illustrate the potential biases arising in this situation and to demonstrate the

Theorem. For unit i, let MSi, MAi, and FAi be the Muscle Strength, Muscle Area, and Fat Area

Z-scores, respectively. After removing incomplete units there were 57 complete cases. We copied

these cases to create a large dataset of 1824 units (32 copies per unit).

We performed a simulation on the data by generating Muscle Strength Z-score outcomes and

artificially inducing data to be missing. We created Muscle Strength Z-score data as

MSi = −1 + a/2 · I(MAi > 0) + b/2 · I(FAi > 1) + ε,

where ε ∼ N(0, 1). We considered three models for the mean: i) a = b = 1, in which both Muscle

Area and Fat Area predict Muscle Strength; ii) a = 1, b = 0, in which only Muscle Area predicts

Muscle Strength; and iii) a = 0, b = 1, in which only Fat Area predicts Muscle Strength. We

simulated the Fat Area latent variable as FAi ∼ N(1, 1/4).

We generated missing data indicators according to the MDM

Pr(Ri = 0|MSi,MAi,FAi) = 3/10 + c/5 · I(MSi < −1/2) + d/5 · I(MAi > 0)

+ e/5 · I(FAi > 1).

We consider three missingness models: i) c = d = e = 1, in which Muscle Strength, Muscle Area,

and Fat Area are associated with missingness; ii) c = 0, d = e = 1, in which only Muscle Area and

Fat Area are associated with missingness; and iii) c = e = 0, d = 1, in which only Muscle Area is

associated with missingness.

After creating the artificial Muscle Strength outcomes and generating the missing-data indicators,

we computed the 25th, 50th, and 75th quantiles of the empirical distribution of Muscle Strength
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Z-score given positive Muscle Area Z-score. We compared this to the quantile values of the true

distribution, which is the two-component normal mixture

1/2N(−1 + a/2, 1) + 1/2N(−1 + a/2 + b/2, 1)

Table 1 shows the combinations of mean and missingness models. The first set of conditions in

the Theorem applies to Scenarios 3, 5, and 7, where the missingness model depends only on the

conditioning variable Muscle Area. The second set of conditions applies to Scenario 4, where the

missingness model depends on both the conditioning variable (Muscle Area) and the latent variable

(Fat Area), whereas the mean model is independent of the latent variable. Hence, for Scenarios

3, 4, 5, and 7, the empirical conditional cdf is unbiased. Scenarios 1, 2, and 6 do not satisfy the

sufficient conditions because both the mean and missingness models depend on the latent variable.

Scenario 1 also has the mean model dependent on the outcome variable Muscle Strength. Hence,

for Scenarios 1, 2, and 6, estimation of the conditional cdf is potentially biased.

For each scenario, we simulated 10,000 data sets. Each mechanism resulted in roughly half to two-

thirds of the units being missing. Table 2 shows descriptive statistics for the quantiles, including

percent bias. As the Theorem predicts, Scenarios 3, 4, 5, and 7 all had minimal bias, whereas

Scenarios 1, 2, and 6 had substantial bias.

2.5. Discussion

We have discussed sufficient conditions for correct analysis of frequentist nonparametric inference

on conditional distributions subject to incomplete data. Our conditions relax those of Rubin (1976).

That is, assuming that the MDM is dependent on conditioning variables only is sufficient for un-

biased estimation of a conditional distribution. This can be relaxed further to have the MDM also

depend on latent variables, provided the latent and outcome variables are independent given the

conditioning variables. If the MDM depends on conditioning variables that are missing, generally

the data are NMAR. For marginal distributions, the sufficient conditions are equivalent to those of

Rubin (1976). That is, MCAR is sufficient for correct inference of a marginal distribution. Again, this

can be relaxed to have the MDM depend on latent variables if the latent and outcome variables are

independent. A strength of our model is that it is completely free of parametric assumptions.
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Our analysis addresses complete-case inference, which can be inefficient as it forfeits information

from incomplete cases. Statistical methods that make use of the incomplete units will likely require

more restrictive assumptions on the MDM (Little and Zhang, 2011; Rubin, 1987). White and Carlin

(2010) showed that multiple imputation is preferable to complete-case analysis under MAR mech-

anisms, though complete-case is often preferable under MNAR mechanisms. Bartlett et al. (2014)

argued that in studies in which missingness occurs only in the variable of interest, methods that

use the incomplete units offer little efficiency gain for analysis of the covariate effect.

Our analysis begs the question of what to do when ignorability conditions are not satisfied. We

seldom are in a position to know the MDM, still less to know that it is ignorable. A possible next

step is to collect an additional sample of observations that is free of missing observations, which

we could then use to “patch” inferences and thereby eliminate bias. We will pursue this approach

in ensuing work.
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Table 2.1: Combinations of mean model and missingness model considered for simulation of renal
transplant data (“Improvements in muscle mass and function following renal transplantation”). For
a given scenario, a check mark denotes that the variable is associated with the outcome Muscle
Strength Z-score or the variable is associated with missingness. The final column indicates whether
the theorem predicts absence of bias.

Scenario

Mean Model Missingness Model
Muscle Area Fat Area Muscle Strength Muscle Area Fat Area Predicted
Z-score Z-score Z-score Z-score Z-score Unbiased?

Covariate Latent Outcome Covariate Latent
1 X X X X X
2 X X X X
3 X X X X
4 X X X X
5 X X X
6 X X X
7 X X X

Table 2.2: For a given Scenario, listed are whether the theorem predicts absence of bias and
the simulated percent bias in the 25, 50, and 75th centiles of the empirical distribution of Muscle
Strength Z-score given positive Muscle Area Z-score.

Scenario Predicted % Quantile Bias
Unbiased? 25th 50th 75th

1 8.83 35.18 -20.44
2 6.25 24.71 -14.48
3 X -0.22 -0.46 0.09
4 X -0.15 -0.02 -1.21
5 X -0.17 -0.07 -0.94
6 4.08 8.19 116.57
7 X -0.15 -0.26 -0.66
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CHAPTER 3

THE FIRST ORDER MARKOV MAXIMUM LIKELIHOOD BASED APPROACH FOR

COUNT DATA WITH OVER-DISPERSION

3.1. Introduction

Longitudinal data are commonly encountered in medical studies. For example, clinical trials often

collect repeated measurements on patients at pre-specified measurement occasions, in order to

compare the effectiveness of two or more treatments. When analyzing the data from these trials, it

is important to account for the intra-subject correlation of measurements, in order to avoid the loss

in efficiency in estimation of the regression parameter that can occur when models are specified

under an incorrect assumption of independence.

In this Chapter we consider a clinical study that evaluated the effectiveness of the drug progabide

relative to placebo in the treatment of seizures (Thall and Vail, 1990). The primary outcome in this

trial was a count that represented the number of seizures that each patient experienced during

consecutive time periods during follow-up. In addition to the anticipated similarity between the

repeated counts on each subject (which would result in positive intra-subject correlations), it was

observed that the patient level sample variances of seizure counts greatly exceeded the sample

means. The seizure counts were therefore over-dispersed relative to the Poisson distribution that

is often applied for analysis of count data, but which assumes equality of the means and variances.

Appropriate analysis of the seizure data from Thall and Vail (1990) should therefore account for

over-dispersion in addition to the intra-subject correlation of measurements.

Our goal was to provide an approach for analysis of over-dispersed longitudinal discrete data in

the framework of generalized linear models, with a focus in this Chapter on outcome variables that

are counts. Perhaps the most widely used statistical method that provides a unified framework

for analysis of correlated variables that may be continuous or discrete is the generalized estimating

equation (GEE) approach Liang and Zeger (1986). GEE extended generalized linear models (GLM)

McCullagh and Nelder (1989) to longitudinal data by incorporating patterned correlation matrices

into likelihood equations that were originally obtained under an assumption of independence. Par-
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ticular patterned correlation matrices (Liang and Zeger, 1986) could be specified, depending on the

nature of the study. For example, an exchangeable structure (with equal intra-cluster correlations)

might be appropriate for clustered data in a cross-sectional study, while an AR(1) structure (with

intra-subject correlations that decay with increasing separation in time) might be appropriate for

longitudinal trials.

The GEE approach has a number of attractive features, in addition to providing a unified approach

for analysis of correlated data that is in the framework of GLM. GEE models are straightforward to

specify because they include the usual regression models for a two parameter exponential family

(that include linear, logistic, or Poisson regression models) coupled with the patterned correlation

matrix to describe the pairwise association of measurements within subjects, or clusters. They are

also viewed as being relatively robust to misspecification of the patterned correlation matrix (work-

ing correlation structure) because the GEE estimator of the regression parameter will be consistent

even if the choice of patterned structure is not correct.

However, there are some limitations to GEE. First, GEE is a framework for estimation that in-

volves application of moment based estimates of the correlation parameters that are functions of

the Pearson residuals. The approach does not specify which moment estimator should be used in

an analysis. For example, SAS, Stata, the geepack package in R, and the original manuscript of

Liang and Zeger (1986) all differ with respect to their choice of estimator for the AR(1) structure.

When implementing GEE for a particular patterned correlation structure, it may not be readily ap-

parent which estimator of the correlation parameter was implemented in the analysis, which can

have negative consequences. For example, Stata’s implementation of the AR(1) structure drops

subjects with only one measurement from the analysis, which does not occur for other correlation

structures in Stata, or when implementing the AR(1) structure for GEE in SAS or R.

Another limitation of GEE is that although the approach is robust with respect to choice of working

structure with respect to consistency of the regression parameter estimators, the estimators of the

correlation parameters may fail to be consistent if the working structure is misspecified. Crowder

(1995) demonstrated that the GEE estimation procedure can fail even in simple misspecification

scenarios, such as when the AR(1) structure is misspecified as exchangeable. If the limiting value

of the estimator of the correlation parameter tends to a value outside the feasible interval (interval

that yields a positive definite structure) this can result in a breakdown of the estimation procedure
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(Crowder, 1995). Or, if the estimator of the correlation parameter tends to a feasible value that is

not the true value (i.e. the estimator is not consistent but tends to a value that yields a positive

definite structure) then the covariance matrix of the estimators will not be estimated consistently

(Sutradhar and Das, 1999, 2000) and the p-values for tests involving the regression parameters will

be invalid. In general, there may loss in precision of estimation if the assumed and true patterns of

association are not close (Diggle et al., 2002; Fitzmaurice, Laird, and Ware, 2011).

It is also possible to perform a GEE analysis and unknowingly obtain estimates that are invalid

because they are not compatible with any valid parent distribution in which case it is impossible to

construct a valid multivariable distribution that has the fitted marginal means and correlation struc-

tures. For example, Prentice (1988) described additional constraints for the correlation estimates

that are necessary (although not necessarily sufficient) to guarantee the existence of a valid mul-

tivariable parent distribution for longitudinal binary data. (The fitted marginal means and pairwise

correlations completely determine the bivariate Bernoulli distributions. If the Prentice constraints

(Prentice, 1988) are not satisfied, some of the bivariate probabilities will be negative.)

Assessing goodness of fit can also be more challenging for GEE and other estimating equation

based approaches that do not start with an objective function (the log-likelihood), although attempts

have been made to extend goodness of fit criteria such as Akaike’s Information Criterion for GEE

(Pan, 2001). The lack of a log-likelihood also means that it is not possible to perform likelihood ratio

tests for comparison of nested models. The likelihood ratio test is especially useful for the analysis

of count data, to distinguish between the Poisson and negative binomial distributions.

GEE also requires the assumption that any missing data are missing completely at random (MCAR).

The MCAR assumption is often unreasonable for clinical trials, because patients who drop out of

a study may tend to do so for reasons related to their treatment (e.g. worsening symptoms) or to

other measured variables such as age or gender.

A final limitation of GEE is that it assumes that there is no over-dispersion, so that no adjustments

are made during the GEE iterative estimation procedure to account for over (or under) dispersion.

Other authors suggested estimating equation based approaches for analysis of over-dispersed

count data, including Thall and Vail, 1990, who presented a heuristic derivation of covariance ma-

trices for count data that was based on random effects coupled with estimating equations for the
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regression and correlation parameters. However, the approach of Thall and Vail, 1990 does not al-

low for implementation of all plausible structures, including the AR(1) structure that we will consider

in this Chapter. All estimating equation based approaches share the same limitations, namely lack

of a likelihood for likelihood ratio testing and assessment of goodness of fit; no guarantee of a valid

of a parent distribution; and requirement of the MCAR assumption for missing data.

In contrast to estimating equation based approaches, another class of available models are gen-

eralized linear mixed-effects models that include random-effects Poisson and Negative Binomial

models (Frees, 2004). The likelihoods for mixed-effects models can be complex and usually re-

quire integration over the random effects distributions. As a result, failure to converge can be an

issue for these models. The suitability of the distributional assumptions regarding the random ef-

fects can be difficult to assess. It is also difficult to implement a plausible correlation structure

for the outcome variable for random-effects models, because an assumed correlation structure for

the random effects does not induce the same correlation structure for the outcome variable. For

example, assuming an AR(1) structure for the random effects does not yield an AR(1) structure

for the outcome variable, when the outcome variable is discrete and a non-identity link function is

used to relate the marginal means with covariates. Zhang et al. (2011) also argues that GEE and

generalized linear mixed-effects models are the two most popular paradigms that extend methods

from cross-sectional to correlated data. However, there are conceptual differences between GEEs

and generalized linear mixed-effects models that can make it difficult to interpret and estimate the

regression parameters in mixed-effects models (Zhang et al., 2011).

In this Chapter we present an approach for analysis of over-dispersed longitudinal data that like

GEE, extends generalized linear models to correlated data. However, unlike GEE, our approach is

likelihood based. We assume distributions that are members of the exponential family. In order to

account for intra-subject correlations with structures that are plausible for longitudinal data, we also

assume first-order antedependence and linearity of the expectations of the conditional distributions.

Our approach allows us to specify the usual generalized linear model for the outcome variable cou-

pled with a decaying product working correlation structure that specifies the correlation between two

measurements as the product of the correlations of intermediate and adjacement measurements.

For example, for a decaying product correlation structure the correlation between the second and

fourth measurement on a subject is the product of the correlation between the second and third
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measurements and the correlation between the third and fourth measurements. If the adjacent

correlations are assumed to be constant, then the data has a first-order autoregressive (AR(1)) cor-

relation structure. The AR(1) correlation structure forces a decline in the correlations with increasing

separation in time. This structure is plausible for longitudinal studies because we often expect that

two outcomes measured closer in time will be more correlated than if they are measured farther

apart in time. However, assuming constant adjacent correlation may not be plausible for data that

are unequally spaced in time. Unequal spacing of measurements can be accounted for by allowing

the adjacent correlations to depend on their separation in time, as in a Markov correlation structure.

The AR(1) and Markov structures are not appropriate, however, when we expect different adjacent

correlations for different periods. For example, we might expect the correlation between the first and

second measurements to be different than the correlation between the second and third, regardless

of the differences in time. For these situations, we assume the adjacent correlation is unique to the

time period; this induces the first-order ante-dependent correlation structure (AD(1)).

This Chapter is organized as follows. In Section 3.2, we provide the assumptions and derived

likelihood. In Section 3.2.2, we describe our procedure for estimating the log-likelihood. We present

an analysis of the seizure count data from Thall and Vail (1990) to demonstrate application of the

methods in Section 3.3. Simulation results are presented in Section 3.4. Finally, discussion and

concluding remarks are presented in Section 3.5.

3.2. Methods

3.2.1. Assumptions and Likelihood

Suppose we collect longitudinal data on m units. The ith unit (i = 1, · · · ,m) has ni measurements

(j = 1, · · · , ni). For the ith unit, outcome measurements Yi = (Yi1, · · · , Yini)T are collected at the

corresponding times Ti = (ti1, · · · , tini)T . At each time point, covariate data xij = (xij1, · · · , xijp)

is collected. Let yi = (yi1, · · · , yini)T be a realization of Yi. Let µij = E(Yij), σ2
ij = V ar(Yij), and

Cijk = Corr(Yij , Yik).

First, we assume first-order antependence (Gabriel, 1962), so that the likelihood of (Yi, · · · , Ym)

can be expressed as
m∏
i=1

f(Yi1)

ni∏
j=2

f(yij |f(yij−1)). (3.1)
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Next, we assume that the distribution of Yi1, f(Yi1), and the conditional distributions of Yij given

Yij−1, f(Yij |Yij−1), (j = 2, . . . , ni) are members of the same exponential family. The likelihood (3.1)

can then be expressed as

L(β, α) =

m∏
i=1

f(Yi1 = yi1)

ni∏
j=2

f(Yij = yij |Yij−1 = yij−1)

=

m∏
i=1

exp

(
yi1θi1 − b(θi1)

a(φ)
− c(yi1, φ)

) ni∏
j=2

exp

(
yijθ

∗
ij − b(θ∗ij)
a(φ∗)

− c(yij , φ∗)
)

(3.2)

where a(), b(), c() are functions specific to the assumed distribution and φ, φ∗ are the dispersion

parameters (unrelated to model overdispersion, these are parameters of an exponential family). For

a particular distribution, let g() be the link function, for which θij = g(µij) (i = 1, . . . ,m; j = 1, . . . , ni)

and θ∗ij = g(µ∗ij) (i = 2, . . . ,m; j = 1, . . . , ni).

We next assume that the conditional expectation E(Yij |Yij−1) is a linear function of Yij−1. The

assumptions of first-order antedependence and linearity of the conditional expectations imply the

following (Theorems 2.1 and 2.2 of Guerra and Shults (2014)). First, for j = 2, · · · , ni,

E(Yij |Yij−1) ≡ µ∗ij = µij + Cijj−1
σij
σij−1

(Yij−1 − µij−1) (3.3)

where

σ2
ij =

E(V ar(Yij |Yij−1))

1− C2
ijj−1

.

There are two important points to make about this results. The first is that the expectation of the

conditional expectation is µij :

E(E(Yij |Yij−1)) = µij + Cijj−1
σij
σij−1

E(Yij−1 − µij−1)

= µij

This suggest the marginal means are averages of the conditional expectations. The second point

is that overdispersion is induced in the marginal means. Table 3.5 lists the marginal variances

(derivations will come later in this Chapter and in Chapter 4). We will discuss this in further detail

when discussing the individual distribution assumptions.
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Next, the correlation between Yij and Yij+t for t > 0 has decaying product form

Cijj+t =

j+t−1∏
k=j

Cikk+1. (3.4)

As noted earlier, product correlation structures are often plausible for longitudinal data because

they force a decline in the (absolute) correlations with increasing separation in measurement occa-

sion. If Cijj−1 = α in (3.4) the structure is the auto-regressive correlation structure of order 1, or

AR(1). With its assumption of equal adjacent correlations, the AR(1) structure is often plausible for

measurements that are equally spaced in time. Next, if Cijj−1 = αtij−tij−1 the structure is Markov,

which is appropriate for unequally spaced data and includes the AR(1) structure as a special case

(when ti1, . . . , tini = 1, . . . , ni ∀ i and j = 1, . . . , ni). Finally, if Cijj−1 = αj−1 the structure is first-

order antedependent, or AD(1). The AD(1) structure is plausible when the adjacent correlations

vary with time. It includes the AR(1) structure as a special case (when α1 = . . . = αN for N =

max {ni}).

3.2.2. Likelihood Equations

General Form of Estimating Equations

To obtain the log likelihood function we take the natural log of (3.2), to obtain

ln(L(β, α)) =

m∑
i=1

yi1θi1 − b(θi1)

a(φ)
− c(yi1, φ) +

ni∑
j=2

(
yijθ

∗
ij − b(θ∗ij)
a(φ∗)

− c(yij , φ∗)
) . (3.5)

Differentiating the log likelihood function (3.5) with respect to β, we obtain

∂ ln(L(β, α))

∂β
=

m∑
i=1

yi1 − b′(θi1)

a(φ)

∂θi1
∂β

+

ni∑
j=2

yij − b′(θ∗ij)
a(φ∗)

∂θ∗ij
∂β


=

m∑
i=1

yi1 − µi1
a(φ)

∂g(γ)

∂γ

∣∣∣
γ=µi1

∂µi1
∂β

+

ni∑
j=2

yij − µ∗ij
a(φ∗)

∂g(γ)

∂γ

∣∣∣
γ=µ∗

ij

∂µ∗ij
∂β


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The last component,
∂µ∗ij
∂β

, takes value (for j = 2 and j > 2, respectively):

∂µ∗i2
∂β

=
∂µi2
∂β

+
Ci21√

1− C2
i21

√
E(V ar(Yi2|Yi1))√

V ar(Yi1)

(
Yi1 − µi1

2

×

(
1

E(V ar(Yi2|Yi1))

∂E(V ar(Yi2|Yi1))

∂β
− 1

V ar(Yi1)

∂V ar(Yi1)

∂β

)

− ∂µi1
∂β

)

∂µ∗ij
∂β

=
∂µij
∂β

+ Cijj−1

√
1− C2

ij−1j−2√
1− C2

ijj−1

√
E(V ar(Yij |Yij−1))√
E(V ar(Yij−1|Yij−2))

×

(
Yij−1 − µij−1

2

(
1

E(V ar(Yij |Yij−1))

∂E(V ar(Yij |Yij−1))

∂β

− 1

E(V ar(Yij−1|Yij−2))

∂E(V ar(Yij−1|Yij−2))

∂β

)
− ∂µij−1

∂β

)

See Appendix B.1 for the full derivation of the β estimating equation. Differentiating the log likeli-

hood with respect to α, we obtain

∂ ln(L(β, α))

∂α
=

m∑
i=1

yi1 − b′(θi1)

a(φ)

∂θi1
∂α

+

ni∑
j=2

yij − b′(θ∗ij)
a(φ∗)

∂θ∗ij
∂α


=

m∑
i=1

ni∑
j=2

(
yij − µ∗ij
a(φ∗)

∂g(γ)

∂γ

∣∣∣
γ=µ∗

ij

∂µ∗ij
∂α

)

See Appendix B.2 for the full derivation of the α estimating equation. The value of the last compo-

nent,
∂µ∗ij
∂α

, depends on the induced correlation structure.

When the true correlation structure is AR(1),
∂µ∗ij
∂α

takes value (for j = 2 and j > 2, respectively;

see Appendix B.2.1 for full derivation):

∂µ∗i2
∂α

=

√
E(V ar(Yi2|Yi1))

V ar(Yi1)

Yi1 − µi1
(1− α2)3/2

∂µ∗ij
∂α

=

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))
(Yij−1 − µij−1)
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When the true correlation structure is Markov,
∂µ∗ij
∂α

takes value (for j = 2 and j > 2, respectively;

see Appendix B.2.2 for full derivation):

∂µ∗i2
∂α

=
Yi1 − µi1√

1− α2ti2−2ti1

√
E(V ar(Yi2|Yi1))

V ar(Yi1)
(ti2 − ti1)αti2−ti1−1

(
1 +

αti2−ti1

1− α2ti2−2ti1

)

∂µ∗ij
∂α

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))

√
1− α2tij−1−2tij−2

1− α2tij−2tij−1
αtij−tij−1−1

×

(
tij − tij−1

1− α2tij−2tij−1
− (tij−1 − tij−2)α2tij−1−2tij−2

1− α2tij−1−2tij−2

)

Let Îj denote a vector containing a 1 in the jth element and 0 elsewhere and α = (α1, · · · , αn).

When AD(1) is the true correlation structure,
∂µ∗ij
∂α

takes value (for j = 2 and j > 2, respectively;

see Appendix B.2.3 for full derivation):

∂µ∗i2
∂α

= (Yi1 − µi1)

√
E(V ar(Yi2|Yi1))

V ar(Yi1)

Î1
(1− α2

1)3/2

∂µ∗ij
∂α

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))

×

(
Îj−1

√
1− α2

j−2

(1− α2
j−1)3/2

− Îj−2
αj−1αj−2√

(1− α2
j−1)(1− α2

j−2)

)

Estimation

In order to find the maximum likelihood estimators for our set of estimating equations, we use

the package ’alabama’ (Varadhan, 2015) that is available in the software R (R Core Team, 2013).

The alabama package performs an augmented Lagrangian minimization algorithm for optimizing

nonlinear objective functions with linear or nonlinear constraints.

The Augmented Lagrangian minimization algorithm finds the vector of variables x that minimize the
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function f(x), subject the the constraints

ci(x) = 0, i = 1, · · · , h

ci(x) ≥ 0, i = h+ 1, · · · , k

The first h constraints are equality constraints whereas the remaining k − h are inequality con-

straints. The Augmented Lagrangian method is similar to the penalty method in that it replaces the

constrained optimization problem with a series of unconstrained problems. It does this by adding a

penalty term to the objective function f and a second term that mimics a Lagrange multiplier. The

resulting objective function is

g(x, λ, σ) = f(x)− λT d(x) +
1

2
σd(x)T d(x) (3.6)

where

di(x) =


ci(x) if i ≤ h or ci(x) ≤ 1

σ
λi

1

σ
λi if i > h and ci(x) >

1

σ
λi

λ is the term that mimics a Lagrange multiplier and σ is the term that is the penalty term. A general

description of the algorithm steps are as follows:

1. Choose initial values for x, λ, σ.

2. Next, repeat these steps until the stopping criteria are satisfied:

(a) Compute the value of x that minimizes g in (3.6).

(b) Update λ and σ.

Step 2a, that finds the x that minimizes g, is an unconstrained optimization problem. It is referred

to as the ”inner” loop and can be specified for different algorithms. For our purposes, we use the

the Broyden - Fletcher - Goldfarb - Shanno (BFGS) algorithm as the inner loop, which is an uncon-

strained optimization algorithm that approximates Newton’s method (Broyden, 1970a,b; Fletcher,

1970; Goldfarb, 1970; Shanno, 1970). The BFGS routine is included in the standard package of R.
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The solution to the constrained optimization problem is the resulting x is the steps above.

For the alabama package, the user provides starting values, the function to be minimized, the gradi-

ent (optional), constraints, and control parameters on the optimization algorithm. Since we seek to

maximize the log likelihood equation, we simply reverse the sign of the log-likelihood. Because our

log likelihood equation depends on many different factors, we developed R functions in which the

user specifies the assumptions and the value of the log-likelihood is returned. The assumptions that

the user specifies include the formula for the mean model expressed as a function of covariates,

the correlation structure, and the distribution.

After running the alabama function, numerous components of the algorithm are returned, including

whether the algorithm converged successfully. The log likelihood, the parameters x = (β, α), λ, σ,

the Gradient and Hessian of the Lagrangian function (3.6) are all returned. In addition, information

regarding convergence is included, such as the number of iterations required to achieve conver-

gence, and the values of the constraints. The code for the algorithm is provided in Appendix C.

Asymptotic distribution

Under weak regularity conditions (Bradley and Gart, 1962), the maximum likelihood estimator θ̂ (for

variable θ = (α, β)) has an asymptotically normal distribution:

√
m
(
θ̂ − θ

)
d−→ N(0, I−1)

where

I = E


∂2 ln(L(β, α))

∂α2

∂2 ln(L(β, α))

∂β∂α
∂2 ln(L(β, α))

∂βT∂α

∂2 ln(L(β, α))

∂βT∂β

 .

For our purposes, we estimate I by utilizing the Hessian matrix which is provided as output in

optimization software.
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3.2.3. Special Cases

Poisson

Here, we assume Yi1 and Yij |Yij−1 are distributed as Poisson. Taking u as a placeholder for µi1

and µ∗ij , the pdf is

f =
u
yij
ij e
−µij

yij !

= exp (yij ln(uij)− uij − ln(yij !))

From here, we recognize the following component functions

θij = ln(uij)

a(φ) = 1

b(θij) = µij

c(yij , φ) = ln(yij !)

g(γ) = ln(γ)

g′(γ) =
1

γ

µij = exp(x′iβ)V ar(Yi1) = µi1

∂V ar(Yi1)

∂β
=
∂µij
∂β

We note above that we use the canonical inverse log-link function, µij = exp(x′iβ), which is standard

practice for Poisson regression. Furthermore, for j > 1

E(V ar(Yij |Yij−1)) = E(µ∗ij) = µij

E(V ar(Yij |Yij−1))

∂β
=
∂µij
∂β

Hence the marginal variance for j > 1 is V ar(Yij) =
µij

1− C2
ijj−1

. Since V ar(Yij) > E(Yij) = µij , it

is clear the over dispersion is induced for the marginal distributions for j > 1.

We note that the Poisson distribution with AR(1) working structure was implemented in Gamerman,
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Guerra, and Shults (2016).

Negative Binomial

Here, we assume Yi1 and Yij |Yij−1 are Negative-Binomial distributed with second parameter r.

Taking u as a placeholder for µi1 and µ∗ij , the pdf is

f =

(
ruij

1 + ruij

)yij ( 1

1 + ruij

)1/r Γ(yij + 1
r )

Γ(yij + 1)Γ( 1
r )

= exp

(
yij ln

(
ruij

1 + ruij

)
− 1

r
ln (1 + ruij) + ln Γ

(
yij +

1

r

)
− ln Γ(yij + 1)− ln Γ

(
1

r

))

From here, we recognize the component functions to be

θij = ln

(
ruij

1 + ruij

)
a(φ) = 1

b(θij) =
1

r
ln (1 + ruij)

c(yij , φ) = − ln Γ

(
yij +

1

r

)
+ ln Γ(yij + 1) + ln Γ

(
1

r

)
g(γ) = ln

(
rγ

1 + rγ

)
g′(γ) =

1

γ(1 + rγ)

µij = exp(x′iβ)

V ar(Yi1) = µi1 + rµ2
i1

∂V ar(Yi1)

∂β
= (2rµi1 + 1)

∂µi1
∂β

We note above that use the non-canonical inverse log-link function, µij = exp(x′iβ), which is

standard practice for Negative-Binomial regression. The canonical link function for the Negative-

Binomial is not appropriate for modeling overdispersed Poisson data and the interpretation of the β

coefficients would not be comparable to those found from Poisson regression. For a more thorough

discussion of the different Negative-Binomial parameterizations see Hilbe (2011). Next, for j > 1

(see Appendix B.4 for derivation of E((µ∗ij)
2)),

E(V ar(Yij |Yij−1)) = E
(
µij + rµ2

ij

)
31



= E(µ∗ij) + rE((µ∗ij)
2)

= µij + r

(
µ2
ij +

C2
ijj−1

1− C2
ijj−1

E(V ar(Yij |Yij−1))

)

Solving for E(V ar(Yij |Yij−1)), we have

E(V ar(Yij |Yij−1))

(
1− r

C2
ijj−1

1− C2
ijj−1

)
= µij + rµ2

ij

E(V ar(Yij |Yij−1)) = (µij + rµ2
ij)

(
1− r

C2
ijj−1

1− C2
ijj−1

)−1
∂E(V ar(Yij |Yij−1))

∂β
=

(
1− r

C2
ijj−1

1− C2
ijj−1

)−1
(2rµij + 1)

∂µij
∂β

Hence the marginal variance for j > 1 is V ar(Yij) =
(µij + rµ2

ij)
(

1− r C2
ijj−1

1−C2
ijj−1

)−1
1− C2

ijj−1
. Since

V ar(Yij) > E(Yij) = µij , it is clear the over dispersion is induced for the marginal distributions

for j > 1.

We note that this specifies a constraint on α. Since E(V ar(Yij |Yij−1)) > 0, that forces 1 −

r
C2
ijj−1

1− C2
ijj−1

to be positive as well. This means that

1− r
C2
ijj−1

1− C2
ijj−1

> 0

1 > r
C2
ijj−1

1− C2
ijj−1

1− C2
ijj−1 > rC2

ijj−1

1 > rC2
ijj−1 + C2

ijj−1

1 > (r + 1)C2
ijj−1

1

r + 1
> C2

ijj−1√
1

r + 1
> |Cijj−1|

If the correlation structure is AR(1), then the inequality is rewritten as
√

1

r + 1
> |α|.

If the correlation structure is Markov, then the inequality is rewritten as
√

1

r + 1
> |αtij−tij−1 |.
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This is equivalent to
(

1

r + 1

) 1
2(tij−tij−1)

> |α|. Since the equality is for each j > 1, α is con-

strained by the smallest difference in adjacent times. Written down algebraically, the constraint is(
1

r + 1

) 1
2·min(tij−tij−1)

> |α|

If the correlation structure is AD(1), then the inequality is rewritten as
√

1

r + 1
> |αj−1|. Since, the

equality is for each j > 1, the constraint becomes
√

1

r + 1
1̂ > |α|, where |α| = (|α1|, · · · , |αn−1|)T

and 1̂ = (1, · · · , 1)T is a vector of length n− 1 containing only 1’s.

r is estimated using the maximum likelihood estimate. Finding the score equation with respect to

r, we have (see Appendix B.3 for full derivations)

∂ lnL

∂r
=

m∑
i=1

(
(yi1 − b′(θi1))

∂θi1
∂r
− ∂C(yi1, φ)

∂r
+

ni∑
j=2

(
(yij − b′(θ∗ij))

∂θ∗ij
∂r
− ∂C(yij , φ

∗)

∂r

))

=

m∑
i=1

(
(yi1 − µi1)

∂θi1
∂r
− ∂C(yi1, φ)

∂r
+

ni∑
j=2

(
(yij − µ∗ij)

∂θ∗ij
∂r
− ∂C(yij , φ)

∂r

))

where

∂θi1
∂r

=
1

r(1 + rµi1)

∂C(yij , φ)

∂r
=


0 if yij = 0

1

r2

yij−1∑
k=0

1
1
r + k

if yij 6= 0

∂θ∗ij
∂r

=
r
∂µ∗

ij

∂r + µ∗ij
rµ∗ij(1 + rµ∗ij)

For j = 2,

∂µ∗i2
∂r

=
Ci21√

1− C2
i21

(yi1 − µi1)

√
V ar(Yi1)

∂
√
E(V ar(Yi2|Yi1))

∂r −
√
E(V ar(Yi2|Yi1))

∂
√
V ar(Yi1)

∂r

V ar(Yi1)

with

∂
√
V ar(Yi1)

∂r
=

µ2
i1

2
√
µi1 + rµ2

i1
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And, for j > 2,

∂µ∗ij
∂r

= Cijj−1

√
1− C2

ij−1j−2√
1− C2

ijj−1

(yij−1 − µij−1)

×
√
E(V ar(Yij−1|Yij−2))

∂
√
E(V ar(Yij |Yij−1))

∂r −
√
E(V ar(Yij |Yij−1))

∂
√
E(V ar(Yij−1|Yij−2))

∂r

E(V ar(Yij−1|Yij−2))

with

∂
√
E(V ar(Yij |Yij−1))

∂r
=

1

2
√
E(V ar(Yij |Yij−1))

(
µ2
ij + µij

C2
ijj−1

1− C2
ijj−1

)(
1− r

C2
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3.2.4. Comparison of Models

To compare models with different assumed distribution or correlation structures we use the Like-

lihood Ratio test. In the standard Likelihood-Ratio test, the goal is to make a comparison of the

alternative model and the null model. The null model has less parameters and will be contained in

the alternative models (i.e., by fixing the free parameters of the alternative model to some value,

the null model is obtained). Let Likalt and Liknull be the likelihood of the alternative and null models,

respectively. The test statistic is twice the difference of the log likelihoods.

D = 2× (ln(Likalt)− ln(Liknull))

The distribution of D is χ2 with degrees of freedom equal to the number of free parameters.

The Likelihood-Ratio test is very useful but can only be used in limited circumstances. As ex-

plained, the null model must be contained in the alternative model. This is true when testing

whether the addition of covariates improves the fit of the data, assuming the same distribution

and correlation assumptions. Suppose the null model has covariates (X1, X2) corresponding to

coefficients (β0, β1, β2) and the alternative model has covariates (X1, X2, X3) corresponding to co-

efficients (β0, β1, β2, β3). Under this set-up, the null model is the same as the alternative model

when β3 = 0. Hence the Likelihood-Ratio test can be used to compare the fit of the models. The

degrees of freedom is simply the number of additional parameters in the alternative model.
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Another scenario is in comparing models with different correlation structure assumptions. Suppose

the null model assumes the AR(1) correlation structure and the alternative model assumes the

AD(1) correlation structure. Here, the null model is the same as the alternative model when α1 =

· · · = αn−1. I.e., when all the adjacent correlations in the alternative model are equal to each

other, the null model is contained within the alternative model. Hence, the Likelihood-Ratio test

can be used to compare models in this case. However, the same is not true in comparing a model

assuming Markov correlation structure with AR(1) or AD(1): the models are not contained within

each other.

Suppose the null model assumes the Poisson distribution and the alternative model assumes a

Negative-Binomial distribution. In this case, we are not able use the standard Likelihood-Ratio test

for our comparison because the Poisson distribution is on the boundary of the Negative-Binomial.

I.e., as r → 0 in the Negative-Binomial distribution, we obtain the Poisson Distribution. However, 0

does not exists in the parameter space of r. Therefore, the asymptotic distribution of the likelihood

ratio is not the standard χ2 with a degree of freedom that is the difference in parameters. Instead,

we need to use the results from Chernoff (1954), who derived the asymptotic distribution for the

likelihood ratio when the value of the parameter is a boundary point. In short, Chernoff (1954)

showed the the asymptotic distribution is zero half the time and χ2 with one degree of freedom the

other half of the time. Therefore, the corresponding p-value to this test - the probability of observing

a more extreme likelihood ratio - is simply half the probability that a χ2
1 distribution is greater the the

likelihood ratio.

3.3. Application

Here we demonstrate our approach on data provided by Thall and Vail (1990); they analyzed data

from a crossover trial of 59 epileptics who were were randomized to receive placebo or the anti-

epileptic drug progabide. The drug was being tested as an adjuvant, a treatment applied after

chemotherapy. Here, and in Thall and Vail (1990), we analyze only the pre-crossover responses.

Upon starting the trial, the number of seizures in the 8 weeks prior to starting was recorded as a

baseline measurement. At 2-week intervals, the number of seizures occurring in the last 2 weeks

was reported. There were 4 total post-randomization clinic visits. In addition to the seizure counts,

the patients age was recorded.
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Table 3.2 reports the descriptive statistics of the epileptics dataset. For each of the four clinical

visits, the mean and variance of the seizure counts for the different treatment groups are listed. The

mean and variance of the ages and the baseline seizure counts are listed as well. For each of the

visits and treatment groups, the variance is much larger than the mean, suggesting overdispersion.

Let Yij be the seizure count for patient i at time period j. Let Basei be the baseline seizure count

for patient i. Let Agei be the age of patient i. Let Trti be the treatment assignment for patient i: 0

for placebo and 1 for progabide.

We assumed

µij = exp(β0 + β1 · Trti + β2 · Basei + β3 · Agei + β4 · j)

where β = (β0, β1, β2, β3, β4) are the coefficient values. We considered two distributions: i) Poisson,

and ii) Negative-Binomial. We considered three structures for the correlation structure: i) AR(1), ii)

Markov, and iii) AD(1).

After fitting our regression methodology to the data, we calculate several goodness-of-fit statistics, β

coefficient estimates and their p-values, α correlation parameter estimates. For Negative-Binomial,

the ancillary parameter r is also estimated.

The goodness-of-fit statistics provided are the log likelihood, the AIC, and the BIC. The log likelihood

is simply the value of the objective function that the optimizing algorithm converges to. A higher

log-likelihood indicates a better fitting model. The AIC and BIC are derived from the log-likelihood

as

AIC = 2 · (Number of Variables + 1)− 2 · Log-Likelihood

BIC = log(Number of Subjects) · (Number of Variables + 1)− 2 · Log-Likelihood

The AIC and BIC penalize models for having complex models with a large number of parameters.

A lower AIC and BIC indicate a better fitting model.

The p-value is computed by utilizing the Hessian matrix which is provided as output in the optimiza-

tion software. As explained in Section 3.2.2, the covariance is equal to the inverse of the Hessian
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matrix. The Wald Statistic, with a null hypothesis that β = 0, is simply the square of the estimate di-

vided by the corresponding variance. The p-value is the probability of a more extreme Wald Statistic

with 1 degree of freedom.

We also fit GEE to the same model. Again, we have models for which the distribution is either

Poisson or Negative-Binomial. For the correlation structure assumption, we assume Independence,

AR(1), and Exchangeable correlation structures. In the Negative-Binomial cases, the ancillary

parameter r must be specified. Here, we specify r as the estimate of r found in the Likelihood-

based approach under an AR(1) correlation structure. We note that r is the ancillary parameter of

the conditional distributions, which may not hold for the marginal distributions that are modeled in

GEE.

3.3.1. Poisson

We first fit the epilepsy dataset to a model assuming a Poisson distribution. Table 3.3 reports

the goodness-of-fit statistics, coefficients estimates, standard errors, Wald statistics, and p-values

under each of the correlation structures. We also fit a model with an interaction between treatment

and period (results not shown); the interaction term coefficient estimate had a p-value that was not

statistically significant (p-value > 0.18 in each correlation structure assumption).

Across each correlation structure case, all covariates had statistically significant associations. The

AR(1) and Markov correlation structure cases had the same results due to the time periods be-

ing equally spaced. The coefficient estimates under the AD(1) cases were within 0.05 of the

AR(1)/Markov coefficient estimates, suggesting the coefficient estimates are robust to the corre-

lation structure assumption.

The coefficient estimates can be interpreted as marginal effects. Examining the coefficient esti-

mates for AR(1), we find that patients had, on average

• a decrease of 0.170 in the log of the expected number of seizures for patients on progabide;

• an increase of 0.023 in the log of the expected number of seizures for each additional seizure

in baseline seizure count;

• an increase of 0.022 in the log of the expected number of seizures for each additional year in
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age;

• a decrease of 0.064 in the log of the expected number of seizures for an the subsequent

clinical visit.

The coefficient estimates for the Markov and AD(1) correlation structure cases are interpreted in

the same way.

Each correlation structure case had a positive correlation parameter. The AD(1) correlation struc-

ture parameter estimate, α̂ = (0.281, 0.620, 0.363) suggests the adjacent correlation structure dif-

fers across time. For example, the adjacent correlation parameter estimate between visits 2 and 3

(0.620) is more than twice that of the adjacent correlation parameter estimate between visits 1 and

2 (0.281). The adjacent correlation parameter estimates between visits 1 and 2 and between visits

3 and 4 have overlapping 95% confidence intervals (not shown).

By all goodness-of-fit statistics, the AD(1) was the best fitting of the correlation structure cases.

It had the highest Log-Likelihood, lowest AIC, and lowest BIC. This difference was statistically

significant when evaluating a likelihood ratio test (p-value < 0.001).

By comparison, in the GEE analysis, only the coefficient estimate for baseline seizure count was

found to be statistically significant. In addition, the Independence case had the Intercept coefficient

statistically different from 0; the AR(1) case had the Age coefficient statistically different from 0;

and the Exchangeable case had the Intercept and Age coefficients statistically different from 0. In

terms of the magnitude and direction of the coefficient estimates, the GEE coefficients were very

similar to those found in the Likelihood-based approach. The directions were all consistent and the

difference in magnitude was up to 0.12. The estimates of α were similar to the Likelihood-based

approach, with 0.510 for AR(1) and 0.399 for Exchangeable correlation structures.

3.3.2. Negative Binomial

Next we fit the epilepsy dataset to a model assuming a Negative-Binomial distribution. Table 3.4

reports the goodness-of-fit statistics, coefficients estimates, standard errors, Wald statistics, and

p-values under each of the correlation structures. We also fit a model with an interaction between

treatment and period (results not shown); the interaction term coefficient estimate had a p-value

that was not statistically significant (p-value > 0.48 in each correlation structure assumption).
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Not all covariates had statistically significant associations. AR(1) and Markov correlation structure

cases only had statistically significant coefficient estimates for the Intercept and Baseline. The

AR(1) and Markov correlation structure cases had the same results due to the time periods being

equally spaced. The AD(1) correlation structure case had statistically significant results for all

covariates except Age and Period. The coefficient estimates under the AD(1) cases were within

0.08 of the AR(1)/Markov coefficient estimates, suggesting the coefficient estimates are robust to

the correlation structure assumption.

The coefficient estimates can be interpreted as marginal effects. Examining the coefficient esti-

mates for AR(1), we find that patients had, on average

• a decrease of 0.236 in the log of the expected number of seizures for patients on progabide,

though this was not statistically significant;

• an increase of 0.026 in the log of the expected number of seizures for each additional seizure

in baseline seizure count;

• an increase of 0.015 in the log of the expected number of seizures for each additional year in

age, though this was not statistically significant;

• a decrease of 0.048 in the log of the expected number of seizures for an the subsequent

clinical visit, though this was not statistically significant.

The coefficient estimates for the Markov and AD(1) correlation structure cases are interpreted in

the same way.

Each correlation structure case had a positive correlation parameter. The AD(1) correlation struc-

ture parameter estimate, α̂ = (0.265, 0.536, 0.357) suggests the adjacent correlation structure dif-

fers across time. For example, the adjacent correlation parameter estimate between visits 2 and 3

(0.536) is more than twice that of the adjacent correlation parameter estimate between visits 1 and

2 (0.265). The adjacent correlation parameter estimates between visits 1 and 2 and between visits

3 and 4 have overlapping 95% confidence intervals (not shown).

The estimates for the ancillary parameter r were similar across all correlation structure cases.

AD(1)/Markov had an estimate of 0.311 whereas AD(1) had an estimate of 0.293. As r is a measure
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of overdispersion, these estimates suggest there is some overdispersion.

By all goodness-of-fit statistics, the AD(1) was the best fitting of the correlation structure cases.

It had the highest Log-Likelihood, lowest AIC, and lowest BIC. This difference was statistically

significant when evaluating a likelihood ratio test (p-value = 0.016).

By comparison, in the GEE analysis, only the coefficient estimate for baseline seizure count was

found to be statistically significant. In addition, the Independence case had the Intercept coefficient

statistically different from 0; the AR(1) case had the Age coefficient statistically different from 0;

and the Exchangeable case had the Intercept coefficient statistically different from 0. In terms of

the magnitude and direction of the coefficient estimates, the GEE coefficients were very similar to

those found in the Likelihood-based approach. The directions were all consistent and the difference

in magnitude was up to 0.24. The estimates of α were higher than the Likelihood-based approach,

with 0.531 for AR(1) and 0.407 for Exchangeable correlation structures.

3.3.3. Comparisons of Results

Comparing the results between Poisson and Negative-Binomial assumptions, we find that the coef-

ficient parameter estimates are at most 0.12 of each other and were always in the same direction.

This suggests the analysis is robust to the distribution assumption.

Comparing the correlation parameter estimates, we find that the Negative-Binomial case had esti-

mates that were deflated by 2-14%. This is likely caused by introduction of the ancillary parameter

r, which put constraints on α.

Using the nonstandard Likelihood-Ratio test described in Section 3.2.4 to compare the Poisson

and Negative-Binomial models under a AD(1) correlation assumption, we find that the Negative-

Binomial model was the better-fitting model (p-value < 0.001).

Hence, assuming a distribution of Negative-Binomial and a correlation structure of AD(1) led to the

best fitting model. The coefficient estimates can be interpreted as marginal effects. Examining the

coefficient estimates, we find that patients had, on average

• a decrease of 0.257 in the log of the expected number of seizures for patients on progabide;

• an increase of 0.025 in the log of the expected number of seizures for each additional seizure
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in baseline seizure count;

• an increase of 0.013 in the log of the expected number of seizures for each additional year in

age, though this was not statistically significant;

• a decrease of 0.053 in the log of the expected number of seizures for an the subsequent

clinical visit, though this was not statistically significant.

The correlation structure parameter was estimated to be α = (0.265, 0.536, 0.357). This suggests

the correlation is high between the second and third visits. The ancillary parameter was estimated

to be r = 0.293, which suggests overdispersion.

The GEE models had similar coefficient estimates as the Likelihood-based approach. The esti-

mates themselves had the same direction and the difference in magnitude was up to 0.24. However,

many more coefficient estimates in the GEE model were not statistically different from 0. So the

Likelihood-based approach was able to detect a statistically significant different in those parameters

whereas the GEE methodology was more conservative.

3.4. Simulations

We use simulation to assess the characteristics of the estimators and to demonstrate the methodol-

ogy. We simulate outcomes on the seizure count data discussed previously (Thall and Vail, 1990). In

this dataset, the number of seizures was recorded for four two-week periods. A baseline measure-

ment of eight weeks was recorded as well as the patients age. Patients were randomly assigned to

two treatments groups: placebo and progabide.

Let Yij be the seizure count for patient i at time period j. Let Basei be the baseline seizure count

for patient i. Let Agei be the age of patient i. Let Trti be the treatment assignment for patient i:

0 for placebo and 1 for progabide. There were 59 complete cases in the dataset. We change the

time periods from (1, 2, 3, 4), corresponding to the two-week intervals, to (1, 2, 4, 8). This is done

in order to have differences between AR(1) and Markov correlation structures.

We performed a simulation on the data by generating the bi-weekly seizure count outcomes. We

created the seizure count outcomes by randomly drawing a value from one of the distributions

described in Section 3.2.3. For j = 1, the distribution is defined by µi1. For j > 1, the distributions
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are defined by the conditional mean (3.3):

E(Yij |Yij−1) = µij + Cijj−1
σij
σij−1

(Yij−1 − µij−1).

Cijj−1 is defined as the correlation between Yij and Yij−1. µij is assumed to be:

µij = exp(β0 + β1 · Trti + β2 · Basei + β3 · Agei + β4 · j)

where β = (β0, β1, β2, β3, β4) are the coefficient values. We set β = (0.667,−0.169, 0.023, 0.022,

− 0.027). We considered two distributions: i) Poisson, and ii) Negative-Binomial. When the dis-

tribution is Negative-Binomial, we set r = 0.310. We considered three structures for the cor-

relation structure: i) AR(1), ii) Markov, and iii) AD(1). We consider several different values for

the correlation structure parameter α that depends on the correlation structure. For AR(1), we

consider α ∈ {0, 0.5}. For Markov, we consider α ∈ {0.1, 0.5}. For AD(1), we consider α ∈

{(0, 0.25, 0), (0, 0.5, 0.25)}. We consider varying sample sizes by multiplying the 59 patients and

giving the copied patients unique identifiers.

After creating the artificial seizure count outcomes, we fit our regression methodology to the result-

ing dataset. We calculate the mean square error, percent bias, and the 95% confidence interval

of the treatment coefficient estimate. In fitting our regression methodology, we choose different

combinations of the fitted distribution and fitted correlation structure. If the true distribution is Pois-

son, then the fitted distribution is always Poisson. If the true distribution is Negative-Binomial, then

the fitted distribution is either Poisson or Negative-Binomial. We consider three fitted correlation

structures: i) AR(1), ii) Markov, and iii) AD(1).

Below, we lists the different factors from which we draw our simulation cases. Not all combinations

are included in the simulations (e.g., the fitted distribution is only Poisson if the true distribution is

Poisson). The Sample Size cases refer to the factor by which the sample size is increased: 1X has

59 patients; 2X has 118 patients; 3X has 177 patients.

1. True Distribution: Poisson, Negative-Binomial

2. True Correlation Structure: AR(1), Markov, AD(1)
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3. True Correlation Parameter - Depends on True Correlation Structure:

• If AR(1): α ∈ {0, 0.5}

• If Markov: α ∈ {0.1, 0.5}

• If AD(1): α ∈ {(0, 0.5, 0.25), (0, 0.25, 0)}

4. Fitted Distribution: Poisson, Negative-Binomial

5. Fitted Correlation Structure: AR(1), Markov, AD(1)

6. Sample Size: 1X, 2X, 3X

We also used simulations to assess the performance of GEE on the same data. After simulating the

seizure count outcomes in the same way, we apply GEE to the dataset and obtain the regression

estimates. We assume the same cases as before except for the fitted correlation structure. For

the fitted correlation structure, we assume independence. Because GEE regression estimates

are robust to the fitted correlation structure, we chose the simplest one available. We note that,

in testing a fitted correlation structure of AR(1), the GEE algorithm did not always converge (not

shown). When the true distribution is Negative-Binomial, we assume the ancillary parameter r is

0.310. We use the R package geeM (McDaniel and Henderson, 2015), since Negative-Binomial is

not an option in many other R GEE packages.

For each case, we simulated 100 data sets. Tables 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 shows

the mean square error, average percent bias, and the coverage probability of the 95% confidence

interval for the treatment coefficient estimate under each of the cases examined.

Table 3.7 has the simulation statistics under which the true distribution is Poisson and the fitted

distribution is Poisson. First, we report the results when the true correlation structure is AR(1).

The MSE ranged from 0.666×10−3 to 5.467×10−3; the average percent bias ranged from 0.131%

to 10.583%; and the coverage probability ranged from 0.848 to 0.970. Having a true correlation

parameter of 0.5 as compared to 0 lead to the MSE increasing by a factor of 2-4, and no discernible

pattern in either the average percent bias or coverage probability. When the true correlation pa-

rameter is 0, there was no noticeable patterns in the MSE, average percent bias, or coverage

probability in comparing the fitted correlation structures. When the true correlation parameter is
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0.5, there was no discernible patterns in the MSE, average percent bias, or coverage probability,

in comparing the fitted correlation structures. As the sample size increased, the MSE decreased,

the average percent bias had no noticeable pattern, and the coverage probability had no noticeable

pattern. Next, we report the results when the true correlation structure is Markov. The MSE ranged

from 0.736×10−3 to 3.603×10−3; the average percent bias ranged from 0.104% to 5.541%; and

the coverage probability ranged from 0.900 to 0.970. Having a true correlation parameter of 0.5

as compared to 0.1 lead to the MSE increasing by up to a factor of 2, no discernible pattern in

the average percent bias, and no discernible pattern in the coverage probability. When the true

correlation parameter is .1, there was no noticeable patterns in the MSE, average percent bias,

or coverage probability in comparing the fitted correlation structures. When the true correlation

parameter is 0.5, there was no noticeable patterns in the MSE, average percent bias, or coverage

probability in comparing the fitted correlation structures. As the sample size increased the coverage

probability tended to increase; there were no noticeable patterns in the MSE or the average percent

bias. Finally, we report the results when the true correlation structure is AD(1). The MSE ranged

from 0.869×10−3 to 4.018×10−3; the average percent bias ranged from 0.513% to 5.872%; and

the coverage probability ranged from 0.860 to 0.950. Having a true correlation parameter of (0, 0.5,

0.25) as compared to (0, 0.25, 0) lead to the MSE increasing by up to a factor of 2, no discernible

pattern in the average percent bias, and no discernible pattern in the coverage probability. When

the true correlation parameter is (0, 0.25, 0), there was no noticeable patterns in the MSE, average

percent bias, or coverage probability in comparing the fitted correlation structures. When the true

correlation parameter is (0, 0.5, 0.25), there was no noticeable patterns in the MSE, average per-

cent bias, or coverage probability in comparing the fitted correlation structures. As the sample size

increased, the MSE decreased, there was no discernible pattern in the average percent bias, and

the coverage probability had no discernible pattern.

Table 3.8 has the simulation statistics under which the true distribution is Negative-Binomial and

the fitted distribution is Poisson. First, we report the results for when the true correlation structure

is AR(1). The MSE ranged from 4.191×10−3 to 37.113×10−3; the average percent bias ranged

from 0.325% to 8.986%; and the coverage probability ranged from 0.424 to 0.650. Having a true

correlation parameter of 0.5 as compared to 0 led to an increase in the MSE by up to a factor of 3,

the average percent bias had no discernible pattern, and the coverage probability had no discernible

pattern. When the true correlation parameter is 0, there was no noticeable patterns in the MSE,
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average percent bias, or coverage probability in comparing the fitted correlation structures. When

the true correlation parameter is 0.5, having a Markov fitted correlation structure led to an increase

in MSE, no discernible change in average percent bias, and a decrease in coverage probability,

as compared to having a AR(1) fitted correlation structure. When the true correlation parameter is

0.5, having a AD(1) fitted correlation structure had no discernible differences compared to AR(1)

in MSE, average percent bias, or coverage probability. As the sample size increased, the MSE

decreased, while there was no discernible patterns in average percent bias or coverage probability.

Next, we report the results for when the true correlation structure is Markov. The MSE ranged

from 4.510×10−3 to 23.333×10−3; the average percent bias ranged from 0.402% to 11.910%; and

the coverage probability ranged from 0.530 to 0.640. Having a true correlation parameter of 0.5

as compared to 0.1 tended to lead to the MSE increasing by up to a factor of 3, no discernible

pattern in the average percent bias or coverage probability. When the true correlation parameter is

.1, there was no noticeable patterns in the MSE, average percent bias, or coverage probability in

comparing the fitted correlation structures. When the true correlation parameter is 0.5, there was

no noticeable patterns in the MSE, average percent bias, or coverage probability in comparing the

fitted correlation structures. As the sample size increased the MSE decreased, while there was no

discernible difference in average percent bias or coverage probability. Finally, we report the results

for when the true correlation structure is AD(1). The MSE ranged from 3.678×10−3 to 22.869×10−3;

the average percent bias ranged from 0.763% to 17.848%; and the coverage probability ranged

from 0.480 to 0.640. Having a true correlation parameter of (0, 0.5, 0.25) as compared to (0, 0.25,

0) led to an increase in the MSE by up to a factor of 2, and tended to lead to decreases in average

percent bias and the coverage probability. When the true correlation parameter is (0, 0.25, 0), there

was no noticeable patterns in the MSE, average percent bias, or coverage probability in comparing

the fitted correlation structures. When the true correlation parameter is (0, 0.5, 0.25), there was no

discernible pattern in the MSE, average percent bias, or the coverage probability, in comparing the

fitted correlation structures. As the sample size increased, MSE decreased, the average percent

bias had no discernible pattern, and there was no discernible pattern in the coverage probability.

Table 3.9 has the simulation statistics under which the true distribution is Negative-Binomial and

the fitted distribution is Negative-Binomial. First, we report the results for when the true correlation

structure is AR(1). The MSE ranged from 2.649×10−3 to 21.800×10−3; the average percent bias

ranged from 0.059% to 18.254%; and the coverage probability ranged from 0.880 to 0.990. Having
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a true correlation parameter of 0.5 as compared to 0 lead to the MSE increasing by up to a factor

of 4, the average percent bias had no discernible pattern, and the coverage probability had no dis-

cernible pattern. When the true correlation parameter is 0, there was no noticeable patterns in the

MSE, average percent bias, or coverage probability in comparing the fitted correlation structures.

When the true correlation parameter is 0.5, there was no discernible pattern in the MSE, average

percent bias, or coverage probability in comparing the fitted correlation structures. As the sample

size increased, the MSE decreased, the average percent bias had no discernible pattern, and the

coverage probability had no discernible pattern. Next, we report the results for when the true corre-

lation structure is Markov. The MSE ranged from 2.992×10−3 to 18.593×10−3; the average percent

bias ranged from 0.290% to 14.089%; and the coverage probability ranged from 0.900 to 0.970.

Having a true correlation parameter of 0.5 as compared to 0.1 lead to the MSE increasing by up

to a factor of 3, no discernible pattern in the average percent bias, and no discernible change for

coverage probability. When the true correlation parameter is .1, there was no noticeable patterns

in the MSE, average percent bias, or coverage probability in comparing the fitted correlation struc-

tures. When the true correlation parameter is 0.5, there was no noticeable patterns in the MSE,

average percent bias, or coverage probability in comparing the fitted correlation structures. As the

sample size increased the MSE tended to decrease, though there were no discernible patterns

in average percent bias or coverage probability. Finally, we report the results for when the true

correlation structure is AD(1). The MSE ranged from 2.959×10−3 to 22.993×10−3; the average

percent bias ranged from 0.294% to 7.116%; and the coverage probability ranged from 0.840 to

0.980. Having a true correlation parameter of (0, 0.5, 0.25) as compared to (0, 0.25, 0) lead to the

MSE increasing by up to a factor of 3, no discernible pattern in the average percent bias, and no

discernible difference in the coverage probability. When the true correlation parameter is (0, 0.25,

0), there was no noticeable patterns in the MSE, average percent bias, or coverage probability in

comparing the fitted correlation structures. When the true correlation parameter is (0, 0.5, 0.25),

there was no discernible patterns in the MSE, average percent bias, or converage probability in

comparing the fitted correlation structures. As the sample size increased, MSE decreased, there

was no discernible pattern in the average percent bias, and there was no discernible pattern in the

coverage probability.

Table 3.10 has the GEE simulation statistics under which the true distribution is Poisson and the

fitted distribution is Poisson. The MSE ranged from 0.754×10−3 to 5.556×10−3; the percent bias
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ranged from 0.058 to 9.050; and the coverage probability ranged from 0.860 to 0.980. There was

no discernible pattern in how well the GEE model did across the different true correlation structures.

As the true correlation parameter increased in value, the MSE increased, the percent bias had no

discernible pattern, and there was no discernible pattern in the coverage probability. As the sample

size increased the MSE decreased, the percent biased had no discernible pattern, and there was

no discernible pattern in the coverage probability.

Table 3.11 has the GEE simulation statistics under which the true distribution is Negative-Binomial

and the fitted distribution is Poisson. The MSE ranged from 4.297×10−3 to 39.937×10−3; the

percent bias ranged from 0.044 to 24.322; and the coverage probability ranged from 0.860 to 0.960.

There was no discernible pattern in how well the GEE model did across the different true correlation

structures. As the true correlation parameter increased in value, the MSE increased, the percent

bias had no discernible pattern, and there was no discernible pattern in the coverage probability.

As the sample size increased the MSE decreased, the percent biased had no discernible pattern,

and there was no discernible pattern in the coverage probability.

Table 3.12 has the GEE simulation statistics under which the true distribution is Negative-Binomial

and the fitted distribution is Negative-Binomial. The MSE ranged from 2.387×10−3 to 23.382×10−3;

the percent bias ranged from 0.481 to 11.507; and the coverage probability ranged from 0.900

to 0.970. There was no discernible pattern in how well the GEE model did across the different

true correlation structures. As the true correlation parameter increased in value, the MSE tended

to increase, the percent bias no discernible pattern, and there was no discernible pattern in the

coverage probability. As the sample size increased the MSE decreased, the percent biased tended

to decrease, and there was no discernible pattern in the coverage probability.

The model performed well when both the true distribution and fitted distribution was Poisson. The

MSE was consistently low, the average percent bias never went higher than 11%, and the coverage

probability was consistently near 0.95. There was no consistency in how the model did when the

fitted correlation structure was misspecified. By comparison, the GEE had similar results. The MSE,

percent bias, and coverage probability had similar values and patterns as the likelihood method.

As expected, the results were poor when the true distribution was Negative-Binomial and the fitted

distribution was Poisson. The model failed to capture the overdispersion and this is seen in the
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MSE, average percent bias, and coverage probability. The MSE was larger, relative to the other

scenarios. The average percent bias was consistently high in the 20 and 30%. The coverage

probability was consistently low, rarely going above 0.7. The model performed better when the cor-

relation parameter was higher, which is consistent across the scenarios. There was no consistency

in how the model did when the fitted correlation structure was misspecified. By comparison, the

GEE model did well. The MSE were low, the percent bias was low, and the coverage probability was

high in comparison. However, the misspecification of the distribution led to poor results, compared

to the correctly-specified GEE results.

The model performed well when both the true distribution and fitted distribution was Negative-

Binomial. The MSE was consistently low, the average percent bias never went higher than 7%,

and the coverage probability was consistently near 0.95. This suggests the model is effective in

capturing overdispersion in the model. There was no consistency in how the model did when the

fitted correlation structure was misspecified, suggesting the model is robust to the fitted correlation

structure. By comparison, the GEE had similar results. The MSE, percent bias, and coverage

probability had similar values and patterns as the likelihood method.

3.5. Discussion

We developed a maximum-likelihood based analysis that i) extends GLM for correlated discrete

data, and ii) induces over-dispersion and plausible correlation structures for longitudinal data.

We demonstrated implementation of the approaches we developed in an analysis of Thall and Vail

(1990). In our analysis, we found the model assuming a Negative-Binomial distribution and a AD(1)

correlation structure to be the statistically-significant best fitting model. In this model, receiving the

treatment progabide led to, on average, a decrease in the number of seizures. Having a higher

number of seizures in the baseline count led to, on average, an increase in the number of seizures

for any given visit. Age and the visit period were not statistically significant in the model.

Through simulations, we demonstrated that model performed well when both the true distribution

and fitted distribution was Negative-Binomial, well when the true and fitted distributions was Pois-

son, and poor when the true distribution was Negative-Binomial and the fitted distribution was

Poisson. Across each of these scenarios, the model tended to do better when the true correlation
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parameter was higher. There was no consistency in how well the model did when the fitted correla-

tion structure was different from the true correlation structure. The GEE did better when i) both the

true and fitted distributions were Poisson; and ii) the true distribution is Negative-Binomial and the

fitted distribution is Poisson. The GEE performed similarly as our likelihood method when both the

true and fitted distribution was Negative-Binomial.

Our maximum-likelihood based analysis has a lot of attractive features. Having a log-likelihood

allows us to assess the fit of competing models and construct likelihood ratio tests. By contrast,

GEE has no objective function, which complicates the process of comparing competing models

and assessing goodness-of-fit. Our maximum-likelihood based analysis requires the data to be

missing at random for unbiased analysis whereas GEE requires missing completely at random for

valid analysis. However, our maximum-likelihood approach may be less robust to misspecifying the

model. Whereas GEE analysis will yield a consistent estimator of the regression parameters even

when incorrectly specified.

Distribution E(Yij) = µij V ar(Yi1) = σ2
i1 V ar(Yij) = σ2

ij (j > 1)
Poisson ex

T
ijβ µi1

µij
1− C2

ijj−1

Negative-Binomial ex
T
ijβ µi1 + rµ2

i1

(µij + rµ2
ij)
(

1− r C2
ijj−1

1−C2
ijj−1

)−1
1− C2

ijj−1

Binomial lij
ex
T
ijβ

1 + ex
T
ijβ

µi1
li1

(li1 − µi1)

µij
lij

(lij − µij)
(

1 + 1
lij

C2
ijj−1

1−C2
ijj−1

)−1
1− C2

ijj−1

Table 3.1: Marginal means and variances for different assumed distributions. The assumed distri-
butions are for Yi1 and for the conditional distribution of Yij given Yij−1 (j > 1).
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Variable Placebo Progabide Total
(n = 28) (n = 31) (n = 59)

Visit 1 9.36 (102.8) 8.58 (332.7) 8.95 (220.1)
Seizure Visit 2 8.29 (66.67) 8.42 (140.7) 8.36 (103.8)
Count Visit 3 8.71 (213.3) 8.13 (193.1) 8.41 (199.3)

Visit 4 7.96 (58.2) 6.71 (126.9) 7.31 (93.1)
Age 29.00 (35.0) 27.74 (42.5) 28.34 (39.2)

Baseline 30.79 (663.0) 31.61 (763.9) 31.22 (713.2)

Table 3.2: Mean and variance across treatment groups and periods for the sample population and
for each combination of assumptions.

AR(1)
Log-Likelihood -777.169

AIC 1566.338
BIC 1578.804

Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.718 0.195 13.590 <0.001
Treatment -0.170 0.067 6.493 0.011
Baseline 0.023 0.001 1097.448 <0.001

Age 0.022 0.006 15.604 <0.001
Period -0.064 0.021 8.760 0.003
α 0.416 0.033

Markov
Log-Likelihood -777.169

AIC 1566.338
BIC 1578.804

Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.718 0.195 13.590 <0.001
Treatment -0.170 0.067 6.493 0.011
Baseline 0.023 0.001 1097.448 <0.001

Age 0.022 0.006 15.604 <0.001
Period -0.064 0.021 8.760 0.003
α 0.416 0.033

AD(1)
Log-Likelihood -758.172

AIC 1528.344
BIC 1540.809

Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.765 0.193 15.780 <0.001
Treatment -0.180 0.066 7.389 0.007
Baseline 0.023 0.001 1078.864 <0.001

Age 0.020 0.006 13.351 <0.001
Period -0.060 0.021 8.142 0.004
α1 0.281 0.062
α2 0.620 0.028
α3 0.363 0.058

Table 3.3: Goodness of fit statistics, coefficient estimates, standard errors, Wald statistics, and
p-values for analysis of seizure counts in epileptics (Thall and Vail, 1990) under each correlation
structure in a Poisson distribution assumption.
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AR(1)
Log-Likelihood -637.722

AIC 1287.444
BIC 1299.909

Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.804 0.342 5.528 0.019
Treatment -0.236 0.122 3.745 0.053
Baseline 0.026 0.002 144.587 <0.001

Age 0.015 0.010 2.263 0.132
Period -0.048 0.043 1.233 0.267
α 0.374 0.060
r 0.311 0.047

Markov
Log-Likelihood -637.722

AIC 1287.444
BIC 1299.909

Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.804 0.342 5.528 0.019
Treatment -0.236 0.122 3.745 0.053
Baseline 0.026 0.002 144.587 <0.001

Age 0.015 0.010 2.263 0.132
Period -0.048 0.043 1.233 0.267
α 0.374 0.060
r 0.311 0.047

AD(1)
Log-Likelihood -634.305

AIC 1280.610
BIC 1293.075

Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.882 0.338 6.817 0.009
Treatment -0.257 0.120 4.598 0.032
Baseline 0.025 0.002 140.835 <0.001

Age 0.013 0.010 1.939 0.164
Period -0.053 0.042 1.549 0.213
α1 0.265 0.103
α2 0.536 0.057
α3 0.357 0.110
r 0.293 0.045

Table 3.4: Goodness of fit statistics, coefficient estimates, standard errors, Wald statistics, and
p-values for analysis of seizure counts in epileptics (Thall and Vail, 1990) under each correlation
structure in a Negative-Binomial distribution assumption.
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Independence
Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.719 0.344 2.092 0.036
Treatment -0.152 0.171 -0.887 0.375
Baseline 0.023 0.001 18.448 0.000

Age 0.022 0.011 1.960 0.050
Period -0.059 0.035 -1.682 0.093
α 0

AR(1)
Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.601 0.348 1.727 0.084
Treatment -0.163 0.160 -1.020 0.307
Baseline 0.023 0.001 18.742 0.000

Age 0.026 0.012 2.200 0.028
Period -0.064 0.034 -1.888 0.059
α 0.510

Exchangeable
Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.687 0.350 1.966 0.049
Treatment -0.147 0.169 -0.872 0.383
Baseline 0.023 0.001 18.405 0.000

Age 0.023 0.012 1.995 0.046
Period -0.059 0.035 -1.681 0.093
α 0.399

Table 3.5: Coefficient estimates, robust standard errors, Wald statistics, and p-values for GEE
analysis of seizure counts in epileptics (Thall and Vail, 1990) under several correlation structures in
a Poisson distribution assumption.
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Independence
Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.667 0.329 2.027 0.043
Treatment -0.188 0.169 -1.112 0.266
Baseline 0.027 0.002 11.171 0.000

Age 0.018 0.010 1.762 0.078
Period -0.045 0.034 -1.308 0.191
α 0 0.060

AR(1)
Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.562 0.320 1.753 0.080
Treatment -0.225 0.157 -1.427 0.153
Baseline 0.027 0.002 12.167 0.000

Age 0.021 0.010 2.076 0.038
Period -0.042 0.033 -1.285 0.199
α 0.531 0.060

Exchangeable
Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 0.662 0.330 2.007 0.045
Treatment -0.187 0.169 -1.111 0.267
Baseline 0.026 0.002 11.201 0.000

Age 0.018 0.010 1.782 0.075
Period -0.045 0.034 -1.306 0.191
α 0.407 0.103

Table 3.6: Coefficient estimates, robust standard errors, Wald statistics, and p-values for GEE
analysis of seizure counts in epileptics (Thall and Vail, 1990) under several correlation structure in
a Negative-Binomial distribution assumption.
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True True Fitted Average
Correlation Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Structure Size (×10−3) Bias (%) Probability

AR(1) 0.0 AR(1) 1X 2.104 0.658 0.920
AR(1) 0.0 AR(1) 2X 0.990 0.457 0.940
AR(1) 0.0 AR(1) 3X 0.825 2.088 0.920
AR(1) 0.0 Markov 1X 2.539 3.347 0.950
AR(1) 0.0 Markov 2X 1.186 4.221 0.960
AR(1) 0.0 Markov 3X 0.936 0.677 0.910
AR(1) 0.0 AD(1) 1X 2.369 3.147 0.910
AR(1) 0.0 AD(1) 2X 1.246 0.348 0.930
AR(1) 0.0 AD(1) 3X 0.666 4.190 0.960
AR(1) 0.5 AR(1) 1X 5.266 10.583 0.880
AR(1) 0.5 AR(1) 2X 3.305 6.581 0.900
AR(1) 0.5 AR(1) 3X 1.552 0.379 0.950
AR(1) 0.5 Markov 1X 5.467 9.308 0.848
AR(1) 0.5 Markov 2X 2.945 3.929 0.880
AR(1) 0.5 Markov 3X 2.066 0.131 0.860
AR(1) 0.5 AD(1) 1X 4.973 1.260 0.880
AR(1) 0.5 AD(1) 2X 2.698 6.144 0.970
AR(1) 0.5 AD(1) 3X 2.031 4.486 0.930

Markov 0.1 AR(1) 1X 2.630 0.364 0.940
Markov 0.1 AR(1) 2X 1.524 1.690 0.940
Markov 0.1 AR(1) 3X 0.756 1.411 0.950
Markov 0.1 Markov 1X 2.453 3.834 0.960
Markov 0.1 Markov 2X 1.177 0.478 0.960
Markov 0.1 Markov 3X 0.825 3.128 0.960
Markov 0.1 AD(1) 1X 2.606 0.938 0.920
Markov 0.1 AD(1) 2X 1.263 2.326 0.920
Markov 0.1 AD(1) 3X 0.736 0.104 0.930
Markov 0.5 AR(1) 1X 3.603 5.541 0.920
Markov 0.5 AR(1) 2X 2.071 1.288 0.940
Markov 0.5 AR(1) 3X 1.213 0.582 0.960
Markov 0.5 Markov 1X 2.675 1.111 0.940
Markov 0.5 Markov 2X 2.197 1.131 0.900
Markov 0.5 Markov 3X 1.153 1.231 0.960
Markov 0.5 AD(1) 1X 3.564 2.275 0.910
Markov 0.5 AD(1) 2X 1.791 1.705 0.940
Markov 0.5 AD(1) 3X 0.953 1.482 0.970

Table 3.7: Continued on next page
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Continued from previous page
True True Fitted Average

Correlation Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Structure Size (×10−3) Bias (%) Probability

AD(1) (0, 0.25, 0) AR(1) 1X 2.897 0.513 0.900
AD(1) (0, 0.25, 0) AR(1) 2X 1.211 1.360 0.940
AD(1) (0, 0.25, 0) AR(1) 3X 0.869 0.829 0.940
AD(1) (0, 0.25, 0) Markov 1X 2.715 2.959 0.940
AD(1) (0, 0.25, 0) Markov 2X 1.214 1.681 0.930
AD(1) (0, 0.25, 0) Markov 3X 0.969 2.881 0.930
AD(1) (0, 0.25, 0) AD(1) 1X 2.635 4.189 0.950
AD(1) (0, 0.25, 0) AD(1) 2X 1.325 2.388 0.910
AD(1) (0, 0.25, 0) AD(1) 3X 0.942 0.841 0.920
AD(1) (0, 0.5, 0.25) AR(1) 1X 3.511 1.099 0.900
AD(1) (0, 0.5, 0.25) AR(1) 2X 1.720 5.108 0.930
AD(1) (0, 0.5, 0.25) AR(1) 3X 1.181 3.446 0.930
AD(1) (0, 0.5, 0.25) Markov 1X 2.941 2.885 0.930
AD(1) (0, 0.5, 0.25) Markov 2X 1.890 0.703 0.860
AD(1) (0, 0.5, 0.25) Markov 3X 1.332 5.872 0.890
AD(1) (0, 0.5, 0.25) AD(1) 1X 4.018 1.402 0.910
AD(1) (0, 0.5, 0.25) AD(1) 2X 2.003 2.609 0.940
AD(1) (0, 0.5, 0.25) AD(1) 3X 1.133 1.493 0.930

Table 3.7: Simulation results of mean square error (MSE), absolute value of the average percent
bias, and coverage probability of the treatment parameter coefficient for combinations of true cor-
relation structure, true correlation parameter, fitted correlation structure, and sample size. Both the
true distribution and the fitted distribution are Poisson.

55



True True Fitted Average
Correlation Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Structure Size (×10−3) Bias (%) Probability

AR(1) 0.0 AR(1) 1X 12.918 1.427 0.520
AR(1) 0.0 AR(1) 2X 5.922 0.610 0.590
AR(1) 0.0 AR(1) 3X 4.191 1.181 0.600
AR(1) 0.0 Markov 1X 11.739 5.111 0.650
AR(1) 0.0 Markov 2X 6.504 4.018 0.550
AR(1) 0.0 Markov 3X 4.144 4.354 0.650
AR(1) 0.0 AD(1) 1X 14.355 6.516 0.600
AR(1) 0.0 AD(1) 2X 6.870 4.970 0.560
AR(1) 0.0 AD(1) 3X 5.302 1.301 0.570
AR(1) 0.5 AR(1) 1X 26.715 8.966 0.630
AR(1) 0.5 AR(1) 2X 13.047 0.325 0.560
AR(1) 0.5 AR(1) 3X 9.112 1.249 0.550
AR(1) 0.5 Markov 1X 30.023 8.986 0.424
AR(1) 0.5 Markov 2X 14.741 4.061 0.540
AR(1) 0.5 Markov 3X 10.665 4.850 0.530
AR(1) 0.5 AD(1) 1X 37.113 5.025 0.520
AR(1) 0.5 AD(1) 2X 12.874 5.958 0.590
AR(1) 0.5 AD(1) 3X 9.989 9.900 0.520

Markov 0.1 AR(1) 1X 18.026 1.918 0.550
Markov 0.1 AR(1) 2X 7.358 1.599 0.590
Markov 0.1 AR(1) 3X 4.510 1.423 0.600
Markov 0.1 Markov 1X 12.779 7.712 0.560
Markov 0.1 Markov 2X 8.292 5.710 0.530
Markov 0.1 Markov 3X 4.967 0.653 0.580
Markov 0.1 AD(1) 1X 11.945 0.534 0.610
Markov 0.1 AD(1) 2X 5.591 3.143 0.630
Markov 0.1 AD(1) 3X 5.687 9.504 0.540
Markov 0.5 AR(1) 1X 21.685 0.977 0.550
Markov 0.5 AR(1) 2X 11.055 11.910 0.530
Markov 0.5 AR(1) 3X 7.243 0.260 0.590
Markov 0.5 Markov 1X 23.333 1.987 0.550
Markov 0.5 Markov 2X 8.714 0.402 0.590
Markov 0.5 Markov 3X 8.517 1.347 0.540
Markov 0.5 AD(1) 1X 20.580 1.388 0.600
Markov 0.5 AD(1) 2X 14.417 9.454 0.640
Markov 0.5 AD(1) 3X 7.267 6.441 0.500

Table 3.8: Continued on next page
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Continued from previous page
True True Fitted Average

Correlation Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Structure Size (×10−3) Bias (%) Probability

AD(1) (0, 0.25, 0) AR(1) 1X 14.973 12.593 0.600
AD(1) (0, 0.25, 0) AR(1) 2X 9.104 0.879 0.590
AD(1) (0, 0.25, 0) AR(1) 3X 4.515 2.650 0.600
AD(1) (0, 0.25, 0) Markov 1X 18.089 15.005 0.550
AD(1) (0, 0.25, 0) Markov 2X 7.993 3.554 0.490
AD(1) (0, 0.25, 0) Markov 3X 4.426 0.763 0.610
AD(1) (0, 0.25, 0) AD(1) 1X 21.073 0.882 0.550
AD(1) (0, 0.25, 0) AD(1) 2X 7.714 6.740 0.560
AD(1) (0, 0.25, 0) AD(1) 3X 3.678 9.378 0.640
AD(1) (0, 0.5, 0.25) AR(1) 1X 20.929 3.240 0.560
AD(1) (0, 0.5, 0.25) AR(1) 2X 14.097 5.382 0.540
AD(1) (0, 0.5, 0.25) AR(1) 3X 6.978 1.840 0.590
AD(1) (0, 0.5, 0.25) Markov 1X 22.869 6.297 0.520
AD(1) (0, 0.5, 0.25) Markov 2X 9.661 1.531 0.500
AD(1) (0, 0.5, 0.25) Markov 3X 7.103 0.951 0.500
AD(1) (0, 0.5, 0.25) AD(1) 1X 21.594 17.848 0.480
AD(1) (0, 0.5, 0.25) AD(1) 2X 9.182 8.603 0.540
AD(1) (0, 0.5, 0.25) AD(1) 3X 7.190 3.117 0.480

Table 3.8: Simulation results of mean square error (MSE), absolute value of the average percent
bias, and coverage probability of the treatment parameter coefficient for combinations of true cor-
relation structure, true correlation parameter, fitted correlation structure, and sample size. The true
distribution is Negative-Binomial and fitted distribution is Poisson.
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True True Fitted Average
Correlation Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Structure Size (×10−3) Bias (%) Probability

AR(1) 0.0 AR(1) 1X 6.915 0.059 0.970
AR(1) 0.0 AR(1) 2X 4.308 4.676 0.930
AR(1) 0.0 AR(1) 3X 2.707 4.479 0.970
AR(1) 0.0 Markov 1X 7.992 12.356 0.940
AR(1) 0.0 Markov 2X 3.838 2.690 0.960
AR(1) 0.0 Markov 3X 2.740 2.142 0.950
AR(1) 0.0 AD(1) 1X 10.602 3.501 0.920
AR(1) 0.0 AD(1) 2X 4.199 3.009 0.950
AR(1) 0.0 AD(1) 3X 2.649 0.089 0.930
AR(1) 0.5 AR(1) 1X 19.786 2.438 0.920
AR(1) 0.5 AR(1) 2X 7.287 4.381 0.990
AR(1) 0.5 AR(1) 3X 6.296 5.688 0.930
AR(1) 0.5 Markov 1X 21.800 6.906 0.880
AR(1) 0.5 Markov 2X 12.125 18.254 0.890
AR(1) 0.5 Markov 3X 6.338 0.782 0.910
AR(1) 0.5 AD(1) 1X 18.089 7.660 0.950
AR(1) 0.5 AD(1) 2X 11.339 4.847 0.930
AR(1) 0.5 AD(1) 3X 4.273 4.180 0.970

Markov 0.1 AR(1) 1X 9.198 0.864 0.950
Markov 0.1 AR(1) 2X 5.021 5.124 0.950
Markov 0.1 AR(1) 3X 2.992 0.290 0.950
Markov 0.1 Markov 1X 6.856 2.326 0.970
Markov 0.1 Markov 2X 5.162 5.594 0.920
Markov 0.1 Markov 3X 4.017 1.980 0.920
Markov 0.1 AD(1) 1X 17.061 4.799 0.940
Markov 0.1 AD(1) 2X 3.415 1.477 0.960
Markov 0.1 AD(1) 3X 4.360 4.230 0.930
Markov 0.5 AR(1) 1X 15.247 2.999 0.930
Markov 0.5 AR(1) 2X 6.852 1.789 0.940
Markov 0.5 AR(1) 3X 4.877 2.009 0.900
Markov 0.5 Markov 1X 14.019 14.089 0.920
Markov 0.5 Markov 2X 5.662 3.442 0.940
Markov 0.5 Markov 3X 4.421 1.645 0.930
Markov 0.5 AD(1) 1X 18.593 6.754 0.920
Markov 0.5 AD(1) 2X 5.437 4.794 0.960
Markov 0.5 AD(1) 3X 3.478 1.809 0.940

Table 3.9: Continued on next page
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Continued from previous page
True True Fitted Average

Correlation Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Structure Size (×10−3) Bias (%) Probability

AD(1) (0, 0.25, 0) AR(1) 1X 8.423 4.913 0.950
AD(1) (0, 0.25, 0) AR(1) 2X 3.868 4.390 0.960
AD(1) (0, 0.25, 0) AR(1) 3X 2.964 3.009 0.950
AD(1) (0, 0.25, 0) Markov 1X 12.122 3.999 0.869
AD(1) (0, 0.25, 0) Markov 2X 5.245 1.895 0.900
AD(1) (0, 0.25, 0) Markov 3X 3.421 3.133 0.910
AD(1) (0, 0.25, 0) AD(1) 1X 9.041 4.144 0.930
AD(1) (0, 0.25, 0) AD(1) 2X 4.389 4.807 0.930
AD(1) (0, 0.25, 0) AD(1) 3X 2.959 4.380 0.980
AD(1) (0, 0.5, 0.25) AR(1) 1X 15.785 4.441 0.920
AD(1) (0, 0.5, 0.25) AR(1) 2X 9.485 1.229 0.890
AD(1) (0, 0.5, 0.25) AR(1) 3X 4.383 0.546 0.950
AD(1) (0, 0.5, 0.25) Markov 1X 18.370 5.409 0.840
AD(1) (0, 0.5, 0.25) Markov 2X 6.933 0.294 0.879
AD(1) (0, 0.5, 0.25) Markov 3X 6.419 2.097 0.800
AD(1) (0, 0.5, 0.25) AD(1) 1X 22.993 9.089 0.930
AD(1) (0, 0.5, 0.25) AD(1) 2X 4.366 7.116 0.980
AD(1) (0, 0.5, 0.25) AD(1) 3X 3.651 2.645 0.960

Table 3.9: Simulation results of mean square error (MSE), absolute value of the average percent
bias, and coverage probability of the treatment parameter coefficient for combinations of true cor-
relation structure, true correlation parameter, fitted correlation structure, and sample size. Both the
true distribution and fitted distribution are Negative-Binomial.
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True True Average
Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Size (×10−3) Bias Probability

AR(1) 0.0 1X 2.151 2.541 0.910
AR(1) 0.0 2X 1.002 2.118 0.930
AR(1) 0.0 3X 0.818 0.492 0.930
AR(1) 0.5 1X 5.556 9.050 0.930
AR(1) 0.5 2X 3.629 4.962 0.890
AR(1) 0.5 3X 2.584 3.243 0.900

Markov 0.1 1X 2.132 0.108 0.960
Markov 0.1 2X 1.090 7.146 0.940
Markov 0.1 3X 0.797 0.880 0.930
Markov 0.5 1X 4.284 2.713 0.920
Markov 0.5 2X 2.629 1.757 0.860
Markov 0.5 3X 1.524 1.572 0.940
AD(1) (0, 0.25, 0) 1X 2.224 0.408 0.920
AD(1) (0, 0.25, 0) 2X 1.683 2.506 0.910
AD(1) (0, 0.25, 0) 3X 0.754 1.512 0.980
AD(1) (0, 0.5, 0.25) 1X 3.343 2.197 0.930
AD(1) (0, 0.5, 0.25) 2X 2.723 6.750 0.880
AD(1) (0, 0.5, 0.25) 3X 0.994 0.058 0.970

Table 3.10: GEE simulation results of mean square error (MSE), absolute value of the average
percent bias, and coverage probability of the treatment parameter coefficient for combinations of
true correlation structure, true correlation parameter, and sample size. Both the true distribution
and fitted distribution are Poisson.
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True True Average
Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Size (×10−3) Bias Probability

AR(1) 0.0 1X 10.851 5.588 0.920
AR(1) 0.0 2X 5.849 3.110 0.920
AR(1) 0.0 3X 4.297 4.013 0.950
AR(1) 0.5 1X 39.937 24.322 0.890
AR(1) 0.5 2X 19.703 8.126 0.860
AR(1) 0.5 3X 10.074 2.038 0.940

Markov 0.1 1X 12.796 9.486 0.920
Markov 0.1 2X 5.394 0.968 0.960
Markov 0.1 3X 4.749 7.320 0.950
Markov 0.5 1X 18.200 6.525 0.920
Markov 0.5 2X 11.735 8.350 0.900
Markov 0.5 3X 6.961 1.891 0.920
AD(1) (0, 0.25, 0) 1X 17.888 1.912 0.880
AD(1) (0, 0.25, 0) 2X 8.619 4.786 0.910
AD(1) (0, 0.25, 0) 3X 5.952 0.044 0.910
AD(1) (0, 0.5, 0.25) 1X 18.338 5.211 0.930
AD(1) (0, 0.5, 0.25) 2X 7.302 3.606 0.950
AD(1) (0, 0.5, 0.25) 3X 7.602 10.307 0.930

Table 3.11: GEE simulation results of mean square error (MSE), absolute value of the average
percent bias, and coverage probability of the treatment parameter coefficient for combinations of
true correlation structure, true correlation parameter, and sample size. The true distribution is
Negative-Binomial and the fitted distribution is Poisson.
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True True Average
Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Size (×10−3) Bias Probability

AR(1) 0.0 1X 7.418 0.481 0.970
AR(1) 0.0 2X 4.831 2.898 0.930
AR(1) 0.0 3X 2.387 1.234 0.970
AR(1) 0.5 1X 23.382 1.294 0.930
AR(1) 0.5 2X 10.384 6.055 0.970
AR(1) 0.5 3X 8.145 0.500 0.950

Markov 0.1 1X 9.217 4.067 0.910
Markov 0.1 2X 4.494 8.263 0.910
Markov 0.1 3X 2.440 3.433 0.960
Markov 0.5 1X 17.571 8.588 0.910
Markov 0.5 2X 8.632 11.507 0.900
Markov 0.5 3X 5.043 5.690 0.920
AD(1) (0, 0.25, 0) 1X 8.407 2.981 0.960
AD(1) (0, 0.25, 0) 2X 5.183 3.069 0.930
AD(1) (0, 0.25, 0) 3X 3.455 2.215 0.910
AD(1) (0, 0.5, 0.25) 1X 11.693 6.138 0.960
AD(1) (0, 0.5, 0.25) 2X 7.044 4.250 0.930
AD(1) (0, 0.5, 0.25) 3X 4.464 4.599 0.930

Table 3.12: GEE simulation results of mean square error (MSE), absolute value of the average
percent bias, and coverage probability of the treatment parameter coefficient for combinations of
true correlation structure, true correlation parameter, and sample size. Both the true distribution
and fitted distribution are Negative-Binomial.
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CHAPTER 4

THE FIRST ORDER MARKOV MAXIMUM LIKELIHOOD BASED APPROACH FOR

ANALYSIS OF BINOMIAL TYPE VARIABLES

4.1. Introduction

Longitudinal binomial outcomes are often encountered in medical research. We investigate once

such example in this paper. We explore the associations between hospital quality evaluations

developed by U.S. News & World Report and the transplant quality evaluations developed by the

Scientific Registry of Transplant Recipients (SRTR). Twice a year, the SRTR releases reports on

how well a hospital’s transplant program is doing for each organ category. The Center for Medicare

& Medicaid Services (CMS) uses the SRTR reports to ”flag” a hospital for review. We treat the

number of ”flags” that a hospital receives in a year, which can be up to 8, as a Binomial response.

Likewise, the U.S. News & World Report releases ”America’s Best Hospitals,” a ranking of all the

hospitals in the United States. Included is the Honor Roll, a list of hospitals that are in the top 20

across at least 6 medical specialties. In this paper, we explore the association of the number of

”flagged” SRTR reports with the status of a hospital being on the Honor Roll. We use the maximum-

likelihood based methodology developed in Chapter 3, which we extend for Binomial outcome data.

The methodology developed in Chapter 3 makes several assumptions. First, they assume the

first-order Markov property for outcomes within hospitals. That is to say, the value of an outcome

for a hospital at a particular measurement only depends on the value at the immediate previous

measurement. The methodology allows several different assumptions on the adjacent correlation.

We assume adjacent correlations that induce three different types of correlation structures: AR(1),

Markov, and AD(1). The AR(1) correlation structure assumes a decline in the correlations with

increasing separation in time. The Markov correlation structure assumes the adjcent correlation

depends on the separation in time. The AD(1) correlation structure assumes the adjacent correla-

tion is unique to the time period.

There are many advantages and disadvantages to maximum-likelihood based analysis. An ad-

vantage is that it provides an objective function. This allows easy comparison between models
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through the likelihood ratio test and to assess the goodness-of-fit of a model. Generalized estimat-

ing equations (GEE) have no objective function, which makes assessing these properties difficult.

Maximum-likelihood based analysis requires the data to be missing at random whereas GEE re-

quires the data to be missing completely at random (Liang and Zeger, 1986). However, maximum-

likelihood based analysis may be less robust to mis-specification of the model. Whereass GEE

yields a consistent estimator of the regression parameters even when the fited correlation structure

is not the true correlation structure. This comes with a cost for GEE: there may be a loss in preci-

sion if the fitted and true correlation structures are not close (Diggle et al., 2002; Fitzmaurice, Laird,

and Ware, 2011).

Guerra et al. (2012) showed that the maximum-likelihood based analysis of this type are robust to

mis-specification of the true correlation structure. However, there are caveats with that statement.

For example, the maximum-likelihood model cannot be the true model for exchangeable data, under

which all pairwise correlations are constant. As long as the funcitonal forms for the off-diagonal

elements of the assumed correlation structure are correctly specified, the analysis will be robust to

mis-specification. With this in mind, the assumption will be correct if the true correlation structure

is among exchangelable, tri-diagonal, AR(1), or identity. With that said, it is not to the same degree

as GEE, which often yields consistent estimates of the regression parameter for any combination of

true and fitted correlation structure. In addition, mis-specifying the correlation structure may cause

a loss of efficiency in estimation of the regression parameter.

In this Chapter we explore associations between hospital quality evaluations developed by U.S.

News & World Report and the transplant quality evaluations developed by the Scientific Registry

of Transplant Recipients (SRTR). The Chapter is organized as follows. Section 4.2 discuss the

data, with Sections 4.2.1 and 4.2.2 providing details on the source and Sections 4.2.3 providing

descriptive statistics. In Section 4.3, we review the assumptions and likelihood that was derived in

Chapter 3. We present an analysis of the U.S. News / SRTR dataset to demonstrate application of

the methods in Section 4.4. Simulation results are presented in Section 4.5. Finally, discussion and

concluding remarks are presented in Section 4.7.
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4.2. SRTR / U.S. News Dataset

4.2.1. Scientific Registry of Transplant Recipients

The Scientific Registry of Transplant Recipients (SRTR) is a database of organ transplantation

statistics in the United States that started in 1987. The registry was designed to provide useful

information in the evaluation of solid organ transplantation, which can include kidney, heart, liver,

lung, intestine, and pancreas. The data for organ transplantation in the United States is collected

by the Organ Procurement and Transplantation Network (OPTN), which also manages the national

transplant waiting list and matches the organ donors to recipients. The goal of the SRTR is to

provide information relevant to evidence-based policy, provide analysis of transplant programs, and

to support transplantation research.

The SRTR releases publicly available transplant program reports for each transplant center every

six months that provide waiting time, organ availability, and survival statistics. Included in the report

card is the number of observed and expected graft failures during the first year after transplant.

The observed number of graft failures is simply the count for the cohort that corresponds to that

particular report.

The number of expected graft failures is calculated based on the national data for donor recip-

ients similar to those at a particular transplant program. A Cox proportional hazards regres-

sion model for time to graft failure was fit to nation-wide data. The covariates included vari-

ous patient, donor, and transplant characteristics. The covariates included differ depending on

the organ. The exact list of covariates used, and the resulting β estimates, can be found at

http://www.srtr.org/csr/current/modtabs.aspx. From the model, we obtain Si(1), the probability of

graft survival to 1 year for patient i with characteristics xi. Supposing there are n patients, the

expected number of graft failures would then be
∑
− lnSi(1).

The SRTR transplant program reports are used by the Centers for Medicare & Medicaid Services

(CMS) in evaluating the effectiveness of hospital transplant programs. CMS has criteria for whether

a transplant program is approved for Medicare or Medicaid. Let O be the observed number of graft

failures and E be the expected number of graft failures. CMS will review a transplant program if all

of the following three criteria are met:
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1. the number of observed graft failures is 3 more than the expected number of graft failures

(O − E > 3);

2. the number of observed graft failures is at least 50% more than the expected number of graft

failures (O/E > 1.50);

3. the one-sided P value of the statistical hypothesis test that O = E is less than 0.05 (one-sided

P < 0.05).

The hypothesis that O = E is tested using an exact Poisson test. If a transplant program meets

these criteria, we say that the program is “flagged.”

For our analysis, we exclude pediatric and Veteran’s hospitals. We include transplant program

reports for Kidney, Lung, Liver, and Heart in years 2012-2015. For a given year, we count the

number of flagged reports for a given transplant program. Because there are two reports released

each year, the number of flagged reports can be up to 8. Some transplant programs may not

provide transplants for all the organs, so their maximum count may be less than 8.

4.2.2. US News & World Report

Beginning in 1990, the U.S. News & World Report introduced “America’s Best Hospitals,” in order

to aid patients and families facing serious or complex medical problems in finding a hospital. The

first year of the program took the form of an alphabetically ordered list of hospitals that were rated.

After the first year, beginning in 1991, the hospitals were ranked. The rankings were developed

to help patients determine the best hospitals for providing care for serious or complicated medical

conditions. The data is provided on their website at www.usnews.com/besthospitals/rankings. The

methodology is summarized below and can be found in more detail in Olmsted et al. (2015).

Each year, the U.S. News & World Report provides rankings on 16 different adult specialties which

are based on data from several sources. The specialties examined over the years has changed;

for example, AIDS care was removed in 1998 after it became clear that the care had shifted to

outpatient settings.

The rankings for 12 of the 16 specialties are based on the Donabedian model of health care:

structure, process, and outcomes (Donabedian, 1966). The structure refers to hospital resources
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that are directly related to patient care such as nurse staffing and availability of technologies and

patient services. The process refers to delivering care, including diagnosis, treatment, prevention,

and patient education. The outcomes include death, harm to patients, incidence of preventable

re-admissions, etc. The patient’s condition and complexity are taken into account in measuring the

outcomes. The U.S. News & World Report also include patient safety in calculating the rankings for

each specialty. These include any complications that may compromise the safety of a patient. From

these four components, a weighted score is calculated for each of the specialties at each hospital.

The structure component of a hospital is measured based on the AHA Annual Survey Database,

as well as the Medicare Provider Analysis and Review (MedPAR) that is provided by CMS. The

process component of a hospital is measured based on a hospital’s reputation. The reputation

is found by averaging the responses of the three most recent annual surveys of physicians. The

surveyed physicians were asked to list up to five hospitals that they considered best for complicated

conditions. The outcomes component of a hospital is measured based on the mortality 30 days after

admission and is based on the MedPAR data. The patient safety component is measured based

on the MedPAR data.

The rankings for the remaining 4 of the 16 specialties are based on a reputation survey alone.

These specialties include ophthalmology, psychiatry, rehabilitation, and rheumatology. Because

care for these specialties is largely outpatient and poses little risk of death, the structural and

outcomes measures of the Donabedian model are not appropriate.

1,897 hospitals were eligible for at least 1 of the 12 score-driven specialties under the U.S. News &

World Report criteria. For each specialty and each hospital the rankings are calculated. The Honor

Roll hospitals are calculated by a point system. If a hospital is in the top 10 rankings in a specialty,

they receive 2 points. If a hospital is in the next 10, 11-20, they receive 1 point. Any hospital with

points in at least six specialties are included in the honor roll. They are ranked by the number of

points they receive. For our analysis, we use an binary variable to indicate whether a hospital is in

the Honor Roll or not, regardless of where they are ranked in the Honor Roll.

4.2.3. Descriptive Statistics

Table 4.1 lists across each year the number of hospitals, the number of hospitals ranked in the

Honor Roll by the U.S. News & World Report, number of hospitals with a given number of transplant
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reports, and the mean percentage of flagged reports for hospitals both in and not in the Honor Roll

of the U.S. News & World Report. There were 220 hospitals that met the SRTR and US News &

World Report inclusion/exclusion criteria; each year had 208-213 hospitals. For a given year, the

number of hospitals ranked in the Honor Roll was between 7.2 and 8.5% of the hospitals included

in the analysis. The number of transplant reports for a given transplant program ranged from 1-8

but was most concentrated on the even numbers. The mean percentage of flagged reports for

hospitals not ranked in the U.S. News & World Report Honor Roll was 2.6 to 6.4 times the mean

percentage of flagged reports for hospitals ranked in the U.S. News & World Report.

4.3. Methods

4.3.1. Assumptions and Likelihood

We assume the same notation and assumptions as Chapter 3, which is summarized here. See

Appendix B for derivations.

We collect data on m hospitals. For the ith hospital, the number of flagged reports

Yi = (Yi1, · · · , Yini)T and the total number of reports li = (li1, · · · , lini)T are collected at the cor-

responding years Ti = (ti1, · · · , tini)′. We note that, for each i and j, Yij < lij . At each year, the

Ranked and Year data xij = (xij1, , xij2) are collected. Let yi = (yi1, · · · , yini)T be a realization of

Yi.

By the assumptions made in Chapter 3, the distribution of (Y1, · · · , Ym) takes form

f(Y1 = y1, · · · , Ym = ym) =
m∏
i=1

f(Yi1 = yi1)

ni∏
j=2

f(Yij = yij |Yij−1 = yij−1)

Furthermore, by assuming the expectation of Yij |Yij−1 is a linear function of Yij−1 we have, for

j = 2, · · · , ni,

E(Yij |Yij−1) = µij + Cijj−1
σij
σij−1

(Yij−1 − µij−1)

≡ µ∗ij
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where

σ2
ij =

E(V ar(Yij |Yij−1))

1− C2
ijj−1

As mentioned previously, we assume Yi1 and Yij |Yij−1 are Binomial distributed with lij as the total

number of trials. Taking u as a placeholder for µi1 and µ∗ij , the pdf is

f =

(
lij
yij

)(
uij
lij

)yij (
1− uij

lij

)lij−yij
= exp

(
yij ln

(
uij
lij

)
+ (lij − yij) ln

(
1− uij

lij

)
+ ln

(
lij
yij

))
= exp

(
yij ln

(
uij

lij − uij

)
+ lij ln

(
lij − uij
lij

)
+ ln

(
lij
yij

))

4.3.2. Likelihood Equations

The likelihood of (Yi, · · · , Ym), described in Chapter 3 is

L(β, α) =

m∏
i=1

exp

(
yi1θi1 − b(θi1)

a(φ)
− c(yi1, φ)

) ni∏
j=2

exp

(
yijθ

∗
ij − b(θ∗ij)
a(φ∗)

− c(yij , φ∗)
)

where θi1 = g(µi1) and θ∗ij = g(µ∗ij). a(), b(), and c() are functions specific to the assumed distribu-

tion; φ is the dispersion parameter. g() is the link function, which relates the linear predictor to the

expected value of the data. Taking the natural log, we obtain

ln(L(β, α)) =

m∑
i=1

yi1θi1 − b(θi1)

a(φ)
− c(yi1, φ) +

ni∑
j=2

(
yijθ

∗
ij − b(θ∗ij)
a(φ∗)

− c(yij , φ∗)
)

From here, we recognize the different components of the Binomial Distribution as

θij = ln

(
uij

lij − uij

)
a(φ) = 1

b(θij) = lij ln

(
lij − uij
lij

)
c(yij , φ) = − ln

(
lij
yij

)
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g(γ) = ln

(
γ

lij − γ

)
g′(γ) =

lij
γ(lij − γ)

µij = lij expit(x′iβ)

V ar(Yi1) =
µij
lij

(lij − µij)

∂V ar(Yi1)

∂β
=
µi1
−∂µi1
∂β + (lij − µi1)∂µi1∂β

lij

=
lij − 2µi1

lij

∂µi1
∂β

We note above that we use the canonical inverse logit-link function, µij = lij expit(x′iβ), which is

standard practice for Binomial regression. Furthermore, for j > 1,

E(V ar(Yij |Yij−1)) = E

(
µ∗ij
lij

(lij − µ∗ij)
)

= E(µ∗ij)−
1

lij
E((µ∗ij)

2)

= µij −
1

lij

(
µ2
ij +

C2
ijj−1

1− C2
ijj−1

E(V ar(Yij |Yij−1))

)

Solving for E(V ar(Yij |Yij−1)), we have

E(V ar(Yij |Yij−1))

(
1 +

1

lij

C2
ijj−1

1− C2
ijj−1

)
=
µij
lij

(lij − µij)

E(V ar(Yij |Yij−1)) =
µij
lij

(lij − µij)

(
1 +

1

lij

C2
ijj−1

1− C2
ijj−1

)−1
∂E(V ar(Yij |Yij−1))

∂β
=
µij
−∂µij
∂β + (lij − µij)∂µij∂β

lij

(
1 +

1

lij

C2
ijj−1

1− C2
ijj−1

)−1

=
lij − 2µij

lij

∂µij
∂β

(
1 +

1

lij

C2
ijj−1

1− C2
ijj−1

)−1

Hence the marginal variance for j > 1 is V ar(Yij) =

µij
lij

(lij − µij)
(

1 + 1
lij

C2
ijj−1

1−C2
ijj−1

)−1
1− C2

ijj−1
. Since

V ar(Yij) > E(Yij) = µij , it is clear the over dispersion is induced for the marginal distributions for

j > 1.

We note that, for the Bernoulli case, we simply set lij = 1 to obtain the component functions.
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General Form of Estimating Equations

The estimating equations are the same as those listed in Chapter 3:

With respect to β, we have

∂ ln(L(β, α))

∂β
=

m∑
i=1

yi1 − µi1
a(φ)

∂g(γ)

∂γ

∣∣∣
γ=µi1

∂µi1
∂β

+

ni∑
j=2

yij − µ∗ij
a(φ∗)

∂g(γ)

∂γ

∣∣∣
γ=µ∗

ij

∂µ∗ij
∂β


With respect to α, we have

∂ ln(L(β, α))

∂α
=

m∑
i=1

ni∑
j=2

(
yij − µ∗ij
a(φ∗)

∂g(γ)

∂γ

∣∣∣
γ=µ∗

ij

∂µ∗ij
∂α

)

Details on the different components in each estimating equation is provided in Chapter 3.

Again, we assume three different correlation structures: AR(1), Markov, and AD(1). AR(1) holds

when the correlation between adjacent measurements takes the same value regardless of the pre-

ceding value or time measurement. Markov holds when the correlation between adjacent measure-

ments is dependent on the time between those measurements. AD(1) holds when the correlation

between adjacent measurements on a subject is dependent on a parameter that is unique to the

previous measurement. Further details are provided in Chapter 3. The code describing the algo-

rithm that finds the maximum likelihood estimates is provided in Appendix C.

4.4. Analysis of Real-World Data

4.4.1. Analysis

Here we demonstrate our approach on the SRTR / U.S. News dataset. Let Yij be the number of

flagged reports for the jth observation at hospital i. Let lij be the total number of reports for the jth

observation at hospital i. Let Rankedij indicate that the jth observation at hospital i is ranked in

the Honor Roll by the U.S. News & World Report. Let Yearij be the Year of the jth observation for

the ith hospital.
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We assumed

µij = lij expit(β0 + β1 · Rankedij + β2 · Yearij)

where β = (β0, β1, β2) are the coefficient values. We also consider a model in which the covariate

Year is not included. We considered three structures for the correlation structure: i) AR(1), ii)

Markov, and iii) AD(1).

After fitting our regression methodology to the data, we calculate several goodness-of-fit statistics,

β coefficient estimates and their p-values, α correlation parameter estimates.

The goodness-of-fit statistics provided are the log likelihood, the AIC, and the BIC. The log likelihood

is simply the value of the objective function that the optimizing algorithm converges to. A higher

log-likelihood indicates a better fitting model. The AIC and BIC are derived from the log-likelihood

as

AIC = 2 · (Number of Variables + 1)− 2 · Log-Likelihood

BIC = log(Number of Subjects) · (Number of Variables + 1)− 2 · Log-Likelihood

The AIC and BIC penalize models for having complex models with a large number of parameters.

A lower AIC and BIC indicate a better fitting model.

The p-value is computed by utilizing the Hessian matrix which is provided as output in the optimiza-

tion software. The Hessian matrix is a matrix of second derivatives of a function. In the context

of log-likelihoods, the Hessian matrix is equal to the inverse of the covariance matrix. The Wald

Statistic, with a null hypothesis that β = 0, is simply the square of the estimate divided by the cor-

responding variance. The p-value is the probability of a more extreme Wald Statistic with 1 degree

of freedom.

We fit the SRTR / U.S. News dataset to a model assuming a Binomial distribution. Table 4.2 reports

the goodness-of-fit statistics, coefficients estimates, standard errors, Wald statistics, and p-values

under each of the correlation structures.

Across each correlation structure case, only Ranked had an association that was statistically sig-
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nificant whereas Year did not have an association that was statistically significant. The AR(1) and

Markov correlation structure cases had the same results due to the time periods being equally

spaced. The coefficient for Ranked under the AD(1) case was -0.749 as opposed to -1.172 for the

AR(1) and Markov cases. The coefficient for the Intercept under the AD(1) case was 157 636 as

opposed to 25.860 for the AR(1) and Markov cases, though the differences from 0 was not statisti-

cally significant. The coefficient for the Year under the AD(1) was -0.080 as opposed to -0.014 for

the AR(1) and Markov cases, though the differences from 0 was not statistically significant.

The coefficient estimates can be interpreted as marginal effects. Examining the coefficient esti-

mates for AD(1), we find that patients had, on average

• a decrease of 0.749 in the logit of the expected number of flagged report cards for hospitals

that were ranked in the Honor Roll by the U.S. News & World Report;

• a decrease of 0.080 in the logit of the expected number of flagged report cards for an increase

by one year.

The coefficient estimates for the Markov and AD(1) correlation structure cases are interpreted in

the same way.

Each correlation structure case had a positive correlation parameter. The AD(1) correlation struc-

ture parameter estimate, α̂ = (0.437, 0.552, 0.455) suggests the adjacent correlation structure is

rather consistent across time; the adjacent correlation parameter estimates between the visits have

overlapping 95% confidence intervals. The correlation parameter estimate for AR(1) / Markov was

0.473, which was similar to the AD(1) correlation parameter estimates.

By all goodness-of-fit statistics, the AD(1) was the best fitting of the correlation structure cases: it

had the highest Log-Likelihood, lowest AIC, and lowest BIC. This difference was statistically signif-

icant when evaluating a likelihood ratio test (p-value = 0.038).

Table 4.3 reports the goodness-of-fit statistics, coefficients estimates, standard errors, Wald statis-

tics, and p-values under each of the correlation structures for the model without Year as a covariate.

Across each correlation structure case, both the intercept and Ranked had coefficient that were

statistically different from 0. Again, the AR(1) and Markov correlation structure cases had the same
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results due to the time periods being equally spaced. The coefficient for Ranked under the AD(1)

case was -0.784 as opposed to -0.838 for the AR(1) and Markov cases. The coefficient for the

Intercept under the AD(1) case was -2.680 as opposed to -2.699 for the AR(1) and Markov cases.

The coefficient estimates can be interpreted as marginal effects. Examining the coefficient esti-

mates for AD(1), we find that patients had, on average

• a decrease of 0.784 in the logit of the expected number of flagged report cards for hospitals

that were ranked in the Honor Roll by the U.S. News & World Report;

The coefficient estimates for the Markov and AD(1) correlation structure cases are interpreted in

the same way.

Each correlation structure case had a positive correlation parameter. The AD(1) correlation struc-

ture parameter estimate, α̂ = (0.432, 0.563, 0.493) suggests the adjacent correlation structure is

rather consistent across time; the adjacent correlation parameter estimates between the visits have

overlapping 95% confidence intervals. The correlation parameter estimate for AR(1) / Markov was

0.479, which was similar to the AD(1) correlation parameter estimates.

There was no statistically significant difference in how well the AD(1) model fit in comparison to the

AR(1) / Markov models (p-vlaue = 0.106).

Comparing the results between the models with and without Year, we find that the Ranked coef-

ficient parameter estimates for models without year are 0.1 within the model with year assuming

AD(1). The correlation parameter estimates were very consistent, only varying by up to 0.04 of the

equivalent model between with / without. The correlation parameter estimates varied from 0.43 to

0.56. Comparing the models with and without Year under a AD(1) correlation assumption, we find

there was no significant difference in how well the model with Year fit (p-value = 0.124).

By comparison, in the GEE analysis, only the Ranked coefficient estimate was found to be sta-

tistically significant from 0, and only in the cases with Independence or Exchangeable correlation

structures. All other parameters were not statistically different from 0. In terms of the magnitude

and direction of the coefficient estimates, the GEE coefficients were very similar to those found in

the Likelihood-based approach. The directions were all consistent and the difference in magnitude

was up to 0.6. The estimates of α were similar than the Likelihood-based approach, with 0.531 for

74



AR(1) and 0.407 for Exchangeable correlation structures. Hence, the GEE methodology was more

conservative in regards to the statistical significance of the parameters.

4.5. Simulations

We use simulation to assess the characteristics of the estimators and to demonstrate the methodol-

ogy under a Binomial assumption. We simulate the number of flagged reports discussed previously

in Section 4.4. In this dataset, the number of flagged reports was recorded every year for four years.

The status of a hospital being ranked in the Honor Roll of the U.S. News & World Report was the

main covariate of interest.

There were 220 hospitals in the dataset. We performed a simulation on the data by generating

the number of flagged report outcomes. We created the number of flagged report outcomes by

randomly drawing a value from the Binomial distributions. For j = 1, the distribution is defined by

µi1. For j > 1, the distributions are defined by the conditional mean (3.3):

E(Yij |Yij−1) = µij + Cijj−1
σij
σij−1

(Yij−1 − µij−1).

Cijj−1 is defined as the correlation between Yij and Yij−1. µij is assumed to be:

µij = lij expit(β0 + β1 · Rankedij + β2 · Yearij)

where β = (β0, β1, β2) are the coefficient values. We set β = (0.75,−0.5,−0.25). The Year values

are changed from {2012, 2013, 2014, 2015} to {0, 1, 2, 3}, respectively. We considered three struc-

tures for the correlation structure: i) AR(1), ii) Markov, and iii) AD(1). We consider several different

values for the correlation structure parameter α that depends on the correlation structure. For

AR(1), we consider α ∈ {0, 0.5}. For Markov, we consider α ∈ {0.1, 0.5}. For AD(1), we consider

α ∈ {(0, 0.25, 0), (0, 0.5, 0.25)}. We consider varying sample sizes by multiplying the x patients and

giving the copied patients unique identifiers.

After creating the artificial number of flagged reports, we fit our regression methodology to the

resulting dataset. We calculate the mean square error, percent bias, and the 95% confidence

interval of the ranked coefficient estimate. In fitting our regression methodology, we choose different

combinations of the fitted correlation structure. We consider three fitted correlation structures: i)
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AR(1), ii) Markov, and iii) AD(1).

Below, we lists the different factors from which we draw our simulation cases. The Sample Size

cases refer to the factor by which the sample size is increased: 1X has 220 hospitals; 2X has 440

hospitals; 3X has 660 hospitals.

1. True Correlation Structure: AR(1), Markov, AD(1)

2. True Correlation Parameter - Depends on True Correlation Structure:

• If AR(1): α ∈ {0, 0.5}

• If Markov: α ∈ {0.1, 0.5}

• If AD(1): α ∈ {(0, 0.5, 0.25), (0, 0.25, 0)}

3. Fitted Correlation Structure: AR(1), Markov, AD(1)

4. Sample Size: 1X, 2X, 3X

We also used simulations to assess the performance of GEE on the same data. After simulating the

seizure count outcomes in the same way, we apply GEE to the dataset and obtain the regression

estimates. We assume the same cases as before except for the fitted correlation structure. For

the fitted correlation structure, we assume independence. Because GEE regression estimates

are robust to the fitted correlation structure, we chose the simplest one available. We note that,

in testing a fitted correlation structure of AR(1), the GEE algorithm did not aways converge (not

shown).

For each case, we simulated 100 data sets. Tables 4.5 and 4.6 show the mean square error,

average percent bias, and the coverage probability of the 95% confidence interval for the treatment

coefficient estimate under each of the cases examined.

Table 4.5 has the simulation statistics under which the true and fitted distributions are Binomial.

First, we report the results for when the true correlation structure is AR(1). The MSE ranged from

3.124×10−3 to 19.860×10−3; the average percent bias ranged from 0.054% to 8.827%; and the

coverage probability ranged from 0.910 to 1.000. Having a true correlation parameter of 0.5 as

compared to 0 lead to the MSE increasing by up to a factor of 3, the average percent bias had
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no discernible pattern, and the coverage probability had no discernible pattern. When the true

correlation parameter is 0, there was no noticeable patterns in the MSE, average percent bias, or

coverage probability in comparing the fitted correlation structures. When the true correlation pa-

rameter is 0.5, there was no discernible pattern in the MSE, average percent bias, or coverage

probability in comparing the fitted correlation structures. As the sample size increased, the MSE

decreased, the average percent bias had no discernible pattern, and the coverage probability had

no discernible pattern. Next, we report the results for when the true correlation structure is Markov.

The MSE ranged from 3.432×10−3 to 20.099×10−3; the average percent bias ranged from 0.253%

to 2.861%; and the coverage probability ranged from 0.920 to 0.980. Having a true correlation

parameter of 0.5 as compared to 0.1 lead to the MSE increasing by up to a factor of 3, no dis-

cernible pattern in the average percent bias, and no discernible change for coverage probability.

When the true correlation parameter is .1, there was no noticeable patterns in the MSE, average

percent bias, or coverage probability in comparing the fitted correlation structures. When the true

correlation parameter is 0.5, there was no noticeable patterns in the MSE, average percent bias,

or coverage probability in comparing the fitted correlation structures. As the sample size increased

the MSE tended to decrease, though there were no discernible patterns in average percent bias or

coverage probability. Finally, we report the results for when the true correlation structure is AD(1).

The MSE ranged from 3.552×10−3 to 14.061×10−3; the average percent bias ranged from 0.122%

to 2.813%; and the coverage probability ranged from 0.900 to 0.990. Having a true correlation pa-

rameter of (0, 0.5, 0.25) as compared to (0, 0.25, 0) lead to the MSE increasing by up to a factor of

2, no discernible pattern in the average percent bias, and no discernible difference in the coverage

probability. When the true correlation parameter is (0, 0.25, 0), there was no noticeable patterns

in the MSE, average percent bias, or coverage probability in comparing the fitted correlation struc-

tures. When the true correlation parameter is (0, 0.5, 0.25), there was no discernible patterns in the

MSE, average percent bias, or coverage probability in comparing the fitted correlation structures.

As the sample size increased, MSE decreased, there was no discernible pattern in the average

percent bias, and there was no discernible pattern in the coverage probability.

Table 4.6 has the GEE simulation statistics under which the true and fitted distribution are Binomial.

The MSE ranged from 3.409×10−3 to 27.164×10−3; the percent bias ranged from 0.054 to 8.706;

and the coverage probability ranged from 0.880 to 1.000. There was no discernible pattern in how

well the GEE model did across the different true correlation structures. As the true correlation
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parameter increased in value, the MSE tended to increase, the percent bias had no discernible pat-

tern, and there was no discernible pattern in the coverage probability. As the sample size increased

the MSE decreased, the percent biased tended to decrease, and there was no discernible pattern

in the coverage probability.

The Likelihood model performed well under a Binomial assumption. The MSE was consistently low,

the average percent bias never went higher than 8%, and the coverage probability was consistently

near 0.95. There was no consistency in how the model did when the fitted correlation structure was

misspecified. By comparison, the GEE had similar results. The MSE, percent bias, and coverage

probability had similar values and patterns as the Likelihood method.

4.6. Missing Data Simulation

We use simulation to assess the characteristics of the estimators under a missing at random (MAR)

missing data mechanism. We simulate the number of flagged reports, using the same method as

described in Section 4.5. In short, we created the number of flagged report outcomes by randomly

drawing a value from the Binomial distributions. Again, we set β = (0.75,−0.5,−0.25). We set

the true correlation structure as AR(1) and set α = 0.5. Hospitals without data across all four

years were excluded. The resulting dataset is the “base” dataset from which the MAR simulation is

conducted.

With the base dataset created, we induced missingness onto the dataset. For each hospital, if a

random number drawn from a U(0, 1) distribution is less than a × Yi2
li2

, then the third and fourth

visits (Yi3 and Yi4) are missing. The probability of this happening is a× Yi2
li2

. If a = 0, then this is a

missing completely at random mechanism. If a > 0, then this is a missing at random mechanism.

We considered a ∈ {0, 0.1, · · · , 0.65, 0.66}. For each value of a, we simulated 100 missing datasets.

After inducing values to be missing from the dataset, we fit both GEE and our regression method-

ology to each resulting dataset. We fit both models assuming an AR(1) correlation structure. We

extract the regression parameter estimates β and the correlation parameter estimate α from both

models. We found the average bias for each parameter.

Figure 4.1 plots the average bias for each parameter under GEE and our developed likelihood

methodology against a. We first discuss the results of the plot of average bias against a for the
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Intercept coefficient estimates. For both GEE and the Likelihood methodology, as a increased so

did the absolute average bias. Both methods had similar projectiles, starting at an average bias

of roughly -0.3 for a ≈ 0 and linearly decreasing to roughly -0.5 for a ≈ 0.66. The average bias

for the Likelihood methodology averaged roughly 0.03 less than the average bias for the GEE

methodology.

Next we discuss the results of the plot of average bias against a for the Ranked coefficient estimate.

Again, as a increased so did the absolute average bias, for both GEE and the Likelihood method-

ology. For the Likelihood methodology, the average bias was roughly -0.03 for a ≈ 0 and linearly

decreased to roughly -0.04 for a ≈ 0.66. For the GEE methodology, the average bias was roughly

-0.04 for a ≈ 0 and linearly decreased to roughly -0.06 for a ≈ 0.66. The absolute average bias for

the Likelihood methodology averaged roughly 0.01 less than the absolute average bias for the GEE

methodology.

Next we discuss the results of the plot of average bias against a for the Year coefficient estimate.

As a increased so did the absolute average bias, for both GEE and the Likelihood methodology. For

the Likelihood methodology, the average bias was roughly 0.09 for a ≈ 0 and linearly increased to

roughly 0.14 for a ≈ 0.66. For the GEE methodology, the average bias was roughly 0.10 for a ≈ 0

and linearly increased to roughly 0.15 for a ≈ 0.66. The absolute average bias for the Likelihood

methodology averaged roughly 0.015 less than the average bias for the GEE methodology.

Finally, we discuss the results of the plot of average bias against a for the correlation parameter α

estimates. The Likelihood methodology had an average bias of roughly +0.01 and it stayed roughly

constant. The GEE methodology had an average bias roughly around -0.08 for a ≈ 0 and linearly

increased to roughly -0.06 for a ≈ 0.66. The Likelihood methodology had an absolute average bias

roughly 0.085 less than that of the GEE methodology.

Overall, our developed Likelihood methodology performed better than GEE in estimating the param-

eters. In each of the model parameters, the Likelihood methodology has less absolute bias than

did the GEE methodology. In each regression parameter of β, the absolute bias increased as a

increased. For the correlation parameter estimate of α, the average bias stayed relatively constant

as a increase, whereas the absolute average bias decreased as a increased. These simulations

suggest the developed Likelihood methodology perform better than GEE in the presense of MAR
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data.

4.7. Discussion

We developed a maximum-likelihood based analysis that i) extends GLM for correlated binomial

data, and ii) induces over-dispersion and plausible correlation structures for longitudinal data. We

applied our methodology in evaluating the association between hospital quality evaluations de-

veloped by U.S. News & World Report and the transplant quality evaluations developed by the

Scientific Registry of Transplant Recipients.

In our analysis of the U.S. News / SRTR dataset, we found that hospitals ranked in the Honor Roll

of the U.S. News & World Report had a lower probability of flagged reports in SRTR. There was

no statistical significance in the association between year and the probability of flagged reports.

Among models that included year, AD(1) was the best-fitting model. Among models that did not

include year, there was no statistically significant difference in how well the models fit.

Through simulations, we demonstrated that model performed well under a Binomial distribution.

Across each of these scenarios, the model tended to do better when the true correlation param-

eter was higher. There was no consistency in how well the model did when the fitted correlation

structure was different from the true correlation structure. The GEE performed similarly as our

likelihood method. We also used simulations to compare our Likelihood methodology and GEE in

the presence of data that are missing at random. Overall, the Likelihood methodology has less

absolute bias than did the GEE methodology. These simulations suggest the developed Likelihood

methodology perform better than GEE in the presense of MAR data.

Our maximum-likelihood based analysis has a lot of attractive features. Having a log-likelihood

allows us to assess the fit of competing models and construct likelihood ratio tests. By contrast,

GEE has no objective function, which complicates the process of comparing competing models

and assessing goodness-of-fit. Our maximum-likelihood based analysis requires the data to be

missing at random for unbiased analysis whereas GEE requires missing completely at random for

valid analysis. However, our maximum-likelihood approach may be less robust to misspecifying the

model. Whereas GEE analysis will yield a consistent estimator of the regression parameters even

when incorrectly specified.
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Figure 4.1: Average bias of each parameter estimate against MAR simulation parameter a for GEE
(triangles) and the developed likelihood method (circles). A horizontal line at 0 has been added to
each plot.
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Number of Mean % of
Ranked Number of Transplant Reports Flagged Reports

Year n Programs 1 2 3 4 5 6 7 8 Ranked Unranked
2012 213 17 (8.0%) 3 81 2 48 1 26 1 51 1.471 7.255
2013 213 18 (8.5%) 3 81 1 46 2 28 1 51 2.778 7.385
2014 213 17 (8.0%) 3 81 0 45 0 32 1 51 1.716 5.685
2015 208 15 (7.2%) 3 77 2 42 3 29 4 48 0.952 6.085
Total 220 67 (7.9%) 12 320 5 181 6 115 7 201 1.768 6.603

Table 4.1: Descriptive statistics across each year of the number of hospitals, number (percentage)
of hospitals that were in the Honor Roll of the U.S. News & World Report, number of hospitals with
a given number of transplant reports, and mean percentage of flagged reports for hospitals both in
and not in the Honor Roll of the U.S. News & World Report.

AR(1) Log-Likelihood -496.053
AIC 1000.106
BIC 1013.680

Variable Estimate Std. Error Wald Pr(>|W|)
Intercept 25.860 65.592 0.155 0.693
Ranked -1.172 0.395 8.822 0.003

Year -0.014 0.031 0.206 0.650
α 0.473 0.047

Markov Log-Likelihood -496.053
AIC 1000.106
BIC 1013.680

Variable Estimate Std. Error Wald Pr(>|W|)
Intercept 25.860 65.592 0.155 0.693
Ranked -1.172 0.395 8.822 0.003

Year -0.014 0.031 0.206 0.650
α 0.473 0.047

AD(1) Log-Likelihood -493.475
AIC 994.950
BIC 1008.525

Variable Estimate Std. Error Wald Pr(>|W|)
Intercept 157.636 195.572 0.650 0.420
Ranked -0.749 0.322 5.416 0.020

Year -0.080 0.093 0.731 0.393
α1 0.437 0.050
α2 0.552 0.086
α3 0.455 0.229

Table 4.2: Goodness of fit statistics, coefficient estimates, standard errors, Wald statistics, and
p-values for analysis of flagged hospitals under each correlation structure.
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AR(1) Log-Likelihood -495.907
AIC 997.814
BIC 1007.995

Variable Estimate Std. Error Wald Pr(>|W|)
Intercept -2.699 0.102 706.125 < 0.001
Ranked -0.838 0.350 5.731 0.017

α 0.479 0.040
Markov Log-Likelihood -495.907

AIC 997.814
BIC 1007.995

Variable Estimate Std. Error Wald Pr(>|W|)
Intercept -2.699 0.102 706.125 < 0.001
Ranked -0.838 0.350 5.731 0.017

α 0.479 0.040
AD(1) Log-Likelihood -494.358

AIC 994.715
BIC 1004.896

Variable Estimate Std. Error Wald Pr(>|W|)
Intercept -2.680 0.104 666.995 <0.001
Ranked -0.784 0.341 5.277 0.022
α1 0.432 0.058
α2 0.563 0.057
α3 0.493 0.071

Table 4.3: Goodness of fit statistics, coefficient estimates, standard errors, Wald statistics, and p-
values for analysis of flagged hospitals under each correlation structure without year as a covariate.

Independence
Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 203.247 168.120 1.209 0.227
Ranked -1.265 0.403 -3.143 0.002

Year -0.102 0.084 -1.225 0.221
α 0 0.060

AR(1)
Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 161.298 171.595 0.940 0.347
Ranked -0.611 0.405 -1.507 0.132

Year -0.081 0.085 -0.956 0.339
α 0.550

Exchangeable
Variable Estimate Std. Error Wald Pr(> |W |)
Intercept 191.698 169.472 1.131 0.258
Ranked -0.799 0.380 -2.099 0.036

Year -0.097 0.084 -1.147 0.251
α 0.385

Table 4.4: Coefficient estimates, robust standard errors, Wald statistics, and p-values for GEE
analysis of seizure counts in epileptics (Thall and Vail, 1990) under several correlation structure in
a Negative-Binomial distribution assumption.
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True True Fitted Average
Correlation Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Structure Size (×10−3) Bias (%) Probability

AR(1) 0.0 AR(1) 1X 10.103 1.308 0.910
AR(1) 0.0 AR(1) 2X 3.802 0.054 1.000
AR(1) 0.0 AR(1) 3X 3.427 1.028 0.950
AR(1) 0.0 Markov 1X 11.141 1.422 0.960
AR(1) 0.0 Markov 2X 4.256 1.576 0.960
AR(1) 0.0 Markov 3X 3.124 1.029 0.950
AR(1) 0.0 AD(1) 1X 10.558 1.663 0.960
AR(1) 0.0 AD(1) 2X 4.816 0.507 0.940
AR(1) 0.0 AD(1) 3X 3.809 0.479 0.920
AR(1) 0.5 AR(1) 1X 19.860 8.827 0.930
AR(1) 0.5 AR(1) 2X 10.888 2.556 0.950
AR(1) 0.5 AR(1) 3X 5.657 3.316 0.950
AR(1) 0.5 Markov 1X 19.166 0.539 0.940
AR(1) 0.5 Markov 2X 8.561 0.101 0.950
AR(1) 0.5 Markov 3X 6.538 0.465 0.970
AR(1) 0.5 AD(1) 1X 17.752 0.293 0.940
AR(1) 0.5 AD(1) 2X 8.264 1.349 0.960
AR(1) 0.5 AD(1) 3X 5.120 0.349 0.970

Markov 0.1 AR(1) 1X 13.530 1.888 0.950
Markov 0.1 AR(1) 2X 5.313 0.326 0.970
Markov 0.1 AR(1) 3X 3.396 1.982 0.950
Markov 0.1 Markov 1X 8.775 1.127 0.980
Markov 0.1 Markov 2X 4.974 2.562 0.950
Markov 0.1 Markov 3X 5.305 0.654 0.930
Markov 0.1 AD(1) 1X 12.764 0.612 0.930
Markov 0.1 AD(1) 2X 5.500 0.327 0.970
Markov 0.1 AD(1) 3X 3.432 1.827 0.970
Markov 0.5 AR(1) 1X 21.925 0.253 0.920
Markov 0.5 AR(1) 2X 9.870 1.048 0.920
Markov 0.5 AR(1) 3X 7.507 2.192 0.930
Markov 0.5 Markov 1X 20.099 2.846 0.930
Markov 0.5 Markov 2X 10.633 2.861 0.940
Markov 0.5 Markov 3X 6.634 1.320 0.930
Markov 0.5 AD(1) 1X 17.205 0.467 0.950
Markov 0.5 AD(1) 2X 8.085 0.672 0.980
Markov 0.5 AD(1) 3X 5.217 0.354 0.980

Table 4.5: Continued on next page
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Continued from previous page
True True Fitted Average

Correlation Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Structure Size (×10−3) Bias (%) Probability

AD(1) (0, 0.25, 0) AR(1) 1X 13.523 1.277 0.910
AD(1) (0, 0.25, 0) AR(1) 2X 4.814 1.728 0.990
AD(1) (0, 0.25, 0) AR(1) 3X 3.552 0.391 0.940
AD(1) (0, 0.25, 0) Markov 1X 10.812 0.728 0.960
AD(1) (0, 0.25, 0) Markov 2X 6.146 0.376 0.930
AD(1) (0, 0.25, 0) Markov 3X 4.447 1.543 0.900
AD(1) (0, 0.25, 0) AD(1) 1X 9.704 0.143 0.960
AD(1) (0, 0.25, 0) AD(1) 2X 5.955 1.248 0.950
AD(1) (0, 0.25, 0) AD(1) 3X 3.642 0.122 0.960
AD(1) (0, 0.5, 0.25) AR(1) 1X 12.129 2.813 0.970
AD(1) (0, 0.5, 0.25) AR(1) 2X 6.270 0.625 0.950
AD(1) (0, 0.5, 0.25) AR(1) 3X 4.849 1.694 0.950
AD(1) (0, 0.5, 0.25) Markov 1X 12.047 0.253 0.970
AD(1) (0, 0.5, 0.25) Markov 2X 8.069 1.187 0.910
AD(1) (0, 0.5, 0.25) Markov 3X 4.721 1.730 0.940
AD(1) (0, 0.5, 0.25) AD(1) 1X 14.061 0.351 0.940
AD(1) (0, 0.5, 0.25) AD(1) 2X 7.483 0.403 0.920
AD(1) (0, 0.5, 0.25) AD(1) 3X 3.681 2.699 0.940

Table 4.5: Simulation results of mean square error (MSE), absolute value of the average percent
bias, and coverage probability of the treatment parameter coefficient for combinations of true cor-
relation structure, true correlation parameter, fitted correlation structure, and sample size.
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True True Average
Correlation Correlation Sample MSE Percent Coverage
Structure Parameter Size (×10−3) Bias Probability

AR(1) 0.0 1X 10.116 1.410 0.900
AR(1) 0.0 2X 3.802 0.054 0.980
AR(1) 0.0 3X 3.423 0.986 0.940
AR(1) 0.5 1X 27.164 0.361 0.880
AR(1) 0.5 2X 9.768 0.746 0.960
AR(1) 0.5 3X 6.231 2.594 1.000

Markov 0.1 1X 10.890 3.231 0.950
Markov 0.1 2X 5.398 0.326 0.940
Markov 0.1 3X 3.409 1.047 0.940
Markov 0.5 1X 24.154 8.706 0.930
Markov 0.5 2X 13.692 2.414 0.930
Markov 0.5 3X 6.736 3.270 0.970
AD(1) (0, 0.25, 0) 1X 13.322 2.594 0.950
AD(1) (0, 0.25, 0) 2X 7.006 0.067 0.930
AD(1) (0, 0.25, 0) 3X 3.452 0.576 0.970
AD(1) (0, 0.5, 0.25) 1X 12.801 1.242 0.980
AD(1) (0, 0.5, 0.25) 2X 7.422 1.118 0.920
AD(1) (0, 0.5, 0.25) 3X 3.919 0.252 0.960

Table 4.6: GEE simulation results of mean square error (MSE), absolute value of the average
percent bias, and coverage probability of the treatment parameter coefficient for combinations of
true correlation structure, true correlation parameter, and sample size.
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CHAPTER 5

DISCUSSION

In this dissertation we discussed two related topics. The first concerned the ignorability condi-

tions for frequentist nonparametric analysis of conditional distributions with incomplete data. We

discussed sufficient conditions for correct analysis of frequentist nonparametric inference on con-

ditional distributions subject to incomplete data. We provided conditions that are weaker than the

conditions that are usually considered necessary Rubin (1976). Assuming that the missing data

mechanism is dependent on conditioning variables only, is known to be sufficient for unbiased esti-

mation of a conditional distribution. However, we showed that this condition is not a necessary. We

showed that we will have unbiased estimation when we ignore the missing data mechanism, if the

missing data mechanism depends on conditioning variables only.

We also showed the condition of missing completely at random for correct inference for a marginal

distribution can be relaxed to have the missing data mechanism also depend on latent variables if

the latent and outcome variables are independent. A strength of our model and proofs is that they

are completely free of any parametric assumptions.

A possible next step for this research is to evaluate what can be done when the ignorability con-

ditions are not satisfied. In general, we will not know the missing data mechanism, let alone be

able to determine that any missing data are ignorable. It would be of interest to attempt to correct

our inference and thereby reduce bias, by collecting an additional sample of observations that is

complete. This additional information could be used to adjust our analysis results with the goal of

eliminating any bias due to missing data in the original analytic data set.

In the second part of this dissertation, we developed a maximum-likelihood based analysis that

could be viewed as extending GLM for correlated discrete data with over-dispersion. Our approach

assumed first-order antedependence of outcomes within subjects, exponential family distributions

for the first and conditional distributions, and linearity of the conditional expectations. The assump-

tions of first-order antedependence and linearity induced decaying product correlation structures

that are plausible for longitudinal data because they force the correlation on two measurements to

decrease as the two measurements become further apart in time.
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We proposed an approach for analysis of count data, by implementing the Poisson and Negative

Binomial distributions. Our likelihood based approach allowed for easier assessment of goodness

of fit (when compared with GEE) and also allowed for implementation of the likelihood ratio test

that was useful for choosing between the Poisson and negative Binomial distributions in our anal-

ysis of seizure data. We also proposed an approach for analysis of binomial type outcomes, by

implementing the Binomial distribution. We demonstrated our approach in an analysis of the asso-

ciation of SRTR transplant reports and the status of being in the U.S. News & World Report Honor

Roll. Our analysis suggested that hospitals that were in the U.S. News & World Report Honor Roll

of Hospitals had fewer occurrences of being flagged for poor performance with respect to organ

transplantation.

Through simulations, we demonstrated the model performed well for when the distribution is cor-

rectly specified. Across each of these scenarios explored in the simulations, the model tended

to do better when the true correlation parameter was higher. There was no consistency in how

well the model did when the fitted correlation structure was different from the true correlation struc-

ture. The GEE performed similarly as our likelihood method. We also used simulations to assess

our Likelihood methodology and GEE when data are missing at random. Overall, we found that

the Likelihood methodology has less absolute bias than did the GEE methodology suggesting the

developed Likelihood methodology perform better than GEE in the presense of MAR data.

We provided estimating equations under the assumption of exponential families, and then further

simplified those equations for the Poisson, negative binomial, and binomial distributions. It should

be relatively straightforward to implement our approach for other distributions that are members of

an exponential family, such as the exponential or Dirichlet distributions. It might also be of interest

to choose distributions for the first and then conditional distributions that are not members of the

same family. For example, it might be of interest to allow the first measurement on a subject follow

a Bernoulli distribution (to represent membership in a particular class), followed by conditional

distributions that are negative binomial (to model counts).

Also, we are interested in further exploring the properties of the marginal distributions. Although

we derived the means and variances of the marginal distribution, it would be of interest to learn

more of the distribution. This can potentially be explored through simulations to obtain an estimate

of the distribution. We are also interested in seeing how the method does in modeling data created
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from alternative models. In the simulations, we modeled data that was simulated from the correct

structure. It would be of interest to see how it does in other structures. Furthermore, we are

interested in comparing the methodology with other alternative models beyond GEE. In addition,

we are interested in appropriate goodness-of-fit statistics for our methodology.

89



APPENDIX A

CHAPTER 2 DERIVATIONS

A.1. Lemma 1

Given u and ỹK , suppose the following conditions hold for all yMi ∈ ΩM :

1. Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK), and

2. Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) > 0.

Then E
(
Y Hi < u|Y Ki = ỹK , TH,K,i = 1

)
= FH|K(u|ỹK).

Proof:

E
(
Y Hi < u|Y Ki = ỹK , TH,K,i = 1

)
= Pr(Y Hi < u|Y Ki = ỹK , TH,K,i = 1)

=
Pr(Y Hi < u, TH,K,i = 1|Y Ki = ỹK)

Pr(TH,K,i = 1|Y Ki = ỹK)

=
Pr(Y Hi < u|Y Ki = ỹK)Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK)

Pr(TH,K,i = 1|Y Ki = ỹK)

= Pr(Y Hi < u|Y Ki = ỹK)

·
∑
yMi

Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi )Pr(YMi = yMi |Y Hi < u, Y Ki = ỹK)

Pr(TH,K,i = 1|Y Ki = ỹK)

= Pr(Y Hi < u|Y Ki = ỹK)

·
∑
yMi

Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi )

Pr(TH,K,i = 1|Y Ki = ỹK)
Pr(YMi = yMi |Y Hi < u, Y Ki = ỹK)

= Pr(Y Hi < u|Y Ki = ỹK)
∑
yMi

Pr(YMi = yMi |Y Hi < u, Y Ki = ỹK)

= Pr(Y Hi < u|Y Ki = ỹK) · 1

= E(Y Hi < u|Y Ki = ỹK)

= FH|K(u|ỹK),

which is the desired quantity.
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A.2. Lemma 2

Given u and ỹK , suppose the following conditions hold for all yMi ∈ ΩM :

1. Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ),

2. Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) > 0, and

3. Pr(Y Hi < u|Y Ki = ỹK , YMi = yMi ) = Pr(Y Hi < u|Y Ki = ỹK).

Then E
(
Y Hi < u|Y Ki = ỹK , TH,K,i = 1

)
= FH|K(u|ỹK).

Proof:

E
(
Y Hi < u|Y Ki = ỹK , TH,K,i = 1

)
= Pr(Y Hi < u|Y Ki = ỹK , TH,K,i = 1)

=
∑
yMi

Pr(Y Hi < u|Y Ki = ỹK , TH,K,i = 1, YMi = yMi )Pr(YMi = yMi |Y Ki = ỹK , TH,K,i = 1)

=
∑
yMi

Pr(Y Hi < u, TH,K,i = 1, YMi = yMi |Y Ki = ỹK)

Pr(TH,K,i = 1, YMi = yMi |Y Ki = ỹK)
Pr(YMi = yMi |Y Ki = ỹK , TH,K,i = 1)

=
∑
yMi

Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi )Pr(Y Hi < u, YMi = yMi |Y Ki = ỹK)
· Pr(YMi = yMi |Y Ki = ỹK , TH,K,i = 1)

Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi )Pr(YMi = yMi |Y Ki = ỹK)

=
∑
yMi

Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi )Pr(Y Hi < u|YMi = yMi , Y
K
i = ỹK)

· Pr(YMi = yMi |Y Ki = yKi )Pr(YMi = yMi |Y Ki = ỹK , TH,K,i = 1)

Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi )Pr(YMi = yMi |Y Ki = ỹK)

=
∑
yMi

Pr(Y Hi < u|Y Ki = ỹK , YMi = yMi )Pr(YMi = yMi |Y Ki = ỹK , TH,K,i = 1)

=
∑
yMi

Pr(Y Hi < u|Y Ki = ỹK)Pr(YMi = yMi |Y Ki = ỹK , TH,K,i = 1)

= Pr(Y Hi < u|Y Ki = ỹK)
∑
yMi

Pr(YMi = yMi |Y Ki = ỹK , TH,K,i = 1)

= Pr(Y Hi < u|Y Ki = ỹK) · 1
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= E(Y Hi < u|Y Ki = ỹK)

= FH|K(u|ỹK),

which is the desired quantity.

A.3. Lemma 3

Assume Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) > 0 for all u, yMi . Then

Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ) for all u, yMi

if and only if

Pr(TH,K,i = 1|Y Hi = u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ) for all u, yMi

Proof: We show that the former statement implies the latter. To show the converse, apply the steps

in reverse. By assumption we have that, for any u,

Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi )

We manipulate this equality below to arrive at the desired equality.

Pr(TH,K,i = 1|Y Hi < u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi )

Pr(TH,K,i = 1, Y Hi < u|Y Ki = ỹK , YMi = yMi )

Pr(Y Hi < u|Y Ki = ỹK , YMi = yMi )
= Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi )

Pr(TH,K,i = 1, Y Hi < u|Y Ki = ỹK , YMi = yMi )

= Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ) · Pr(Y Hi < u|Y Ki = ỹK , YMi = yMi )
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Define u1 as the largest element of ΩH such that u1 < u.

Pr(TH,K,i = 1, Y Hi < u|Y Ki = ỹK , YMi = yMi )

= Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ) · Pr(Y Hi < u|Y Ki = ỹK , YMi = yMi )

Pr(TH,K,i = 1, Y Hi < u|Y Ki = ỹK , YMi = yMi )− Pr(TH,K,i = 1, Y Hi < u1|Y Ki = ỹK , YMi = yMi )

= Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ) · Pr(Y Hi < u|Y Ki = ỹK , YMi = yMi )

− Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ) · Pr(Y Hi < u1|Y Ki = ỹK , YMi = yMi )

∑
yHi <u

Pr(TH,K,i = 1, Y Hi = yHi |Y Ki = ỹK , YMi = yMi )

−
∑

yHi <u1

Pr(TH,K,i = 1, Y Hi = yHi |Y Ki = ỹK , YMi = yMi )

= Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ) ·
∑
yHi <u

Pr(Y Hi = yHi |Y Ki = ỹK , YMi = yMi )

− Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ) ·
∑

yHi <u1

Pr(Y Hi < yHi |Y Ki = ỹK , YMi = yMi )

Pr(TH,K,i = 1, Y Hi = u1|Y Ki = ỹK , YMi = yMi )

= Pr(TH,K,i = 1|Y Ki = yKi , Y
M
i = yMi ) · Pr(Y Hi = u1|Y Ki = ỹK , YMi = yMi )

Pr(TH,K,i = 1, Y Hi = u1|Y Ki = ỹK , YMi = yMi )

Pr(Y Hi = u1|Y Ki = ỹK , YMi = yMi )
= Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi )

Pr(TH,K,i = 1|Y Hi = u1, Y
K
i = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi )

Repeat these same steps for all u ∈ ΩH to obtain the full result.

A.4. Lemma 4

Suppose nH,K,ỹK > 0 and E
(
Y Hi < u|Y Ki = ỹK , TH,K,i = 1

)
= FH|K(u|ỹK) for all units in the set

{i : rHi = 1H , rKi = 1K , yKi = ỹK}. Then E
(
ĪH,K,ỹK ,u

∣∣Y K = yK , R = r
)

= FH|K(u|ỹK).
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Proof:

E
(
ĪH,K,ỹK ,u

∣∣Y K = yK , R = r
)

= E

 1

nH,K,ỹK

∑
i:yKi =ỹK

TH,K,i · I(Y Hi < u)

∣∣∣∣∣∣Y K = yK , R = r


=

1

nH,K,ỹK

∑
i:yKi =ỹK

TH,K,iE
[
I(Y Hi < u)|Y K = yK , R = r

]

Because units in Y and R are independent, I(Y Hi < u) is independent of Y Kj and RKj for i 6= j.

This implies E[I(Y Hi < u)|Y K = yK , R = r] = E[I(Y Hi < u)|Y Ki = yki , Ri = ri].

=
1

nH,K,ỹK

∑
i:yKi =ỹK

TH,K,iE
[
I(Y Hi < u)|Y Ki = yki , Ri = ri

]

Since the summation is limited to units such that Y Ki = ỹK , the conditioning argument Y Ki = yki is

re-written as Y Ki = ỹK .

=
1

nH,K,ỹK

∑
i:yKi =ỹK

TH,K,iE
[
I(Y Hi < u)|Y Ki = ỹK , Ri = ri

]

The component TH,K,i is non-zero only when RHi = 1H and RMi = 1M , or equivalently, TH,K,i = 1.

Hence, the conditioning argument Ri = ri is re-written as TH,K,i = 1.

=
1

nH,K,ỹK

∑
i:yKi =ỹK

TH,K,i · E
[
I(Y Hi < u)|Y Ki = ỹK , TH,K,i = 1

]
=

1

nH,K,ỹK

∑
i:yKi =ỹK

TH,K,i · FH|K(u|ỹK)

= FH|K(u|ỹK),

which is the desired quantity.

A.5. Theorem

Given ỹK and suppose nH,K,ỹK > 0. Suppose further that for each unit i in the set {i : rHi =

1H , rKi = 1K , Y Ki = ỹK} one of the following sets of conditions holds for all u and yMi :

1. (a) Pr(TH,K,i = 1|Y Hi = u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK), and
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(b) Pr(TH,K,i = 1|Y Hi = u, Y Ki = ỹK , YMi = yMi ) > 0; or

2. (a) Pr(TH,K,i = 1|Y Hi = u, Y Ki = ỹK , YMi = yMi ) = Pr(TH,K,i = 1|Y Ki = ỹK , YMi = yMi ),

(b) Pr(TH,K,i = 1|Y Hi = u, Y Ki = ỹK , YMi = yMi ) > 0, and

(c) Pr(Y Hi < u|Y Ki = ỹK , YMi = yMi ) = Pr(Y Hi < u|Y Ki = ỹK).

Then E
(
ĪH,K,ỹK ,u

∣∣Y K = yK , R = r
)

= FH|K(u|ỹK).

Proof: By Lemma 3, the conditioning argument Y Hi = u is interchangeable with Y Hi < u in the

probabilities involving TH,K,i = 1. With this change, every unit in the set {i : rHi = 1H , rKi =

1K , Y Ki = ỹK} satisfies the conditions of either Lemma 1 or Lemma 2. This implies that, for each

unit i in that set, E
(
Y Hi < u|Y Ki = ỹK , TH,K,i = 1

)
= FH|K(u|ỹK). By Lemma 4,

E
(
ĪH,K,ỹK ,u

∣∣Y K = yK , R = r
)

= FH|K(u|ỹK).
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APPENDIX B

CHAPTER 3 DERIVATIONS

B.1. Derivation of β Score Equations

Below are formulas used in the derivation of the score equation with respect to β. We have

∂µ∗ij
∂β

=
∂µij
∂β

+ Cijj−1

(
σij
σij−1

−∂µij−1
∂β

+ (Yij−1 − µij−1)
σij−1

∂σij
∂β − σij

∂σij−1

∂β

σ2
ij−1

)

=
∂µij
∂β

+ Cijj−1

(
(Yij−1 − µij−1)

(
1

σij−1

∂σij
∂β
− σij
σ2
ij−1

∂σij−1
∂β

)
− σij
σij−1

∂µij−1
∂β

)

=
∂µij
∂β

+ Cijj−1
σij
σij−1

(
(Yij−1 − µij−1)

(
1

σij

∂σij
∂β
− 1

σij−1

∂σij−1
∂β

)
− ∂µij−1

∂β

)

∂σi1
∂β

=
∂
√
V ar(Yi1)

∂β
=

1

2
(V ar(Yi1))−1/2

∂V ar(Yi1)

∂β

=
1

2

1√
V ar(Yi1)

∂V ar(Yi1)

∂β

And, for j > 1,

∂σij
∂β

=
∂
√

1
1−C2

ijj−1
E(V ar(Yij |Yij−1))

∂β

=
1√

1− C2
ijj−1

∂
√
E(V ar(Yij |Yij−1))

∂β

=
1√

1− C2
ijj−1

1

2

1√
E(V ar(Yij |Yij−1))

∂E(V ar(Yij |Yij−1))

∂β

=
1

2

1√
(1− C2

ijj−1)E(V ar(Yij |Yij−1))

∂E(V ar(Yij |Yij−1))

∂β

Hence, for j = 2,
∂µ∗ij
∂β

is equal to

∂µ∗i2
∂β

=
∂µi2
∂β

+ Ci21

√
E(V ar(Yi2|Yi1))

1−C2
i21√

V ar(Yi1)

(
(Yi1 − µi1)

(
1√

E(V ar(Yi2|Yi1))
1−C2

i21

1

2

1√
(1− C2

i21)E(V ar(Yi2|Yi1))
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× ∂E(V ar(Yi2|Yi1))

∂β
− 1√

V ar(Yi1)

1

2

1√
V ar(Yi1)

∂V ar(Yi1)

∂β

)
− ∂µi1

∂β

)

=
∂µi2
∂β

+
Ci21√

1− C2
i21

√
E(V ar(Yi2|Yi1))

V ar(Yi1)

(
Yi1 − µi1

2

(
1

E(V ar(Yi2|Yi1))

∂E(V ar(Yi2|Yi1))

∂β

− 1

V ar(Yi1)

∂V ar(Yi1)

∂β

)
− ∂µi1

∂β

)

And, for j > 2,
∂µ∗ij
∂β

is equal to

∂µ∗ij
∂β

=
∂µij
∂β

+ Cijj−1

√
E(V ar(Yij |Yij−1))

1−C2
ijj−1√

E(V ar(Yij−1|Yij−2))

1−C2
ij−1j−2

(
(Yij−1 − µij−1)

(
1√

E(V ar(Yij |Yij−1))

1−C2
ijj−1

1

2

× 1√
(1− C2

ijj−1)E(V ar(Yij |Yij−1))

∂E(V ar(Yij |Yij−1))

∂β
− 1√

E(V ar(Yij−1|Yij−2))

1−C2
ij−1j−2

1

2

× 1√
(1− C2

ij−1j−2)E(V ar(Yij−1|Yij−2)

∂E(V ar(Yij−1|Yij−2)

∂β

)
− ∂µij−1

∂β

)

=
∂µij
∂β

+ Cijj−1

√
1− C2

ij−1j−2√
1− C2

ijj−1

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2)

(
Yij−1 − µij−1

2

(
1

E(V ar(Yij |Yij−1))

× ∂E(V ar(Yij |Yij−1))

∂β
− 1

E(V ar(Yij−1|Yij−2))

∂E(V ar(Yij−1|Yij−2))

∂β

)
− ∂µij−1

∂β

)

B.2. Derivation of α Score Equations

Below are formulas used in the derivation of the score equation with respect to α. We have

∂µ∗ij
∂α

= (Yij−1 − µij−1)

(
Cijj−1

σij−1
∂σij
∂α − σij

∂σij−1

∂α

σ2
ij−1

+
σij
σij−1

∂Cijj−1
∂α

)

= (Yij−1 − µij−1)

(
σij
σij−1

∂Cijj−1
∂α

+ Cijj−1

(
1

σij−1

∂σij
∂α
− σij
σ2
ij−1

∂σij−1
∂α

))

= (Yij−1 − µij−1)
σij
σij−1

(
∂Cijj−1
∂α

+ Cijj−1

(
1

σij

∂σij
∂α
− 1

σij−1

∂σij−1
∂α

))

∂σi1
∂α

= 0
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And, for j > 1,

∂σij
∂α

=
√
E(V ar(Yij |Yij−1))

∂(1− C2
ijj−1)−1/2

∂α

=
√
E(V ar(Yij |Yij−1))

−1

2
(1− C2

ijj−1)−3/2 · −2Cijj−1
∂Cijj−1
∂α

=
∂Cijj−1
∂α

Cijj−1
(1− C2

ijj−1)3/2

√
E(V ar(Yij |Yij−1))

B.2.1. AR(1) Correlation Structure

For an AR(1) correlation structure,
∂σij
∂α

simplifies to, for j > 1,

∂σij
∂α

=
α

(1− α2)3/2

√
E(V ar(Yij |Yij−1))

Hence, for j = 2,
∂µ∗ij
∂α

simplifies to

∂µ∗i2
∂α

= (Yi1 − µi1)

√
E(V ar(Yi2|Yi1))

1−α2√
V ar(Yi1)

(
1 + α

(
1√

E(V ar(Yi2|Yi1))
1−α2

α

(1− α2)3/2

√
E(V ar(Yi2|Yi1))− 0

))

=
Yi1 − µi1√

1− α2

√
E(V ar(Yi2|Yi1))

V ar(Yi1)

(
1 + α

α

1− α2

)

=
Yi1 − µi1

(1− α2)3/2

√
E(V ar(Yi2|Yi1))

V ar(Yi1)

And, for j > 2,

∂µ∗ij
∂α

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

1−α2√
E(V ar(Yij−1|Yij−2))

1−α2

(
1 + α

(
1√

E(V ar(Yij |Yij−1))
1−α2

α

(1− α2)3/2

×
√
E(V ar(Yij |Yij−1))− 1√

E(V ar(Yij−1|Yij−2))
1−α2

α

(1− α2)3/2

×
√
E(V ar(Yij−1|Yij−2))

))

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))
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B.2.2. Markov Correlation Structure

For a Markov correlation structure,
∂σij
∂α

simplifies to, for j > 1,

∂σij
∂α

= (tij − tij−1)αtij−tij−1−1 αtij−tij−1

(1− α2tij−2tij−1)3/2

√
E(V ar(Yij |Yij−1))

Hence, for j = 2,
∂µ∗ij
∂α

simplifies to

∂µ∗i2
∂α

= (Yi1 − µi1)

√
E(V ar(Yi2|Yi1))
1−α2ti2−2ti1√
V ar(Yi1)

(
(ti2 − ti1)αti2−ti1−1 + αti2−ti1

(
1√

E(V ar(Yi2|Yi1))
1−α2ti2−2ti1

(ti2 − ti1)

× αti2−ti1−1 αti2−ti1

(1− α2ti2−2ti1)3/2

√
E(V ar(Yi2|Yi1))− 0

))

=
Yi1 − µi1√

1− α2ti2−2ti1

√
E(V ar(Yi2|Yi1))

V ar(Yi1)

(
(ti2 − ti1)αti2−ti1−1 +

(ti2 − ti1)αti2−ti1−1αti2−ti1

1− α2ti2−2ti1

)

=
Yi1 − µi1√

1− α2ti2−2ti1

√
E(V ar(Yi2|Yi1))

V ar(Yi1)
(ti2 − ti1)αti2−ti1−1

(
1 +

αti2−ti1

1− α2ti2−2ti1

)

And, for j > 2,

∂µ∗ij
∂α

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

1−α2tij−2tij−1√
E(V ar(Yij−1|Yij−2))

1−α2tij−1−2tij−2

(
(tij − tij−1)αtij−tij−1−1 + αtij−tij−1

×

(
1√

E(V ar(Yij |Yij−1))

1−α2tij−2tij−1

× (tij − tij−1)αtij−tij−1−1 αtij−tij−1

(1− α2tij−2tij−1)3/2

√
E(V ar(Yij |Yij−1))

− 1√
E(V ar(Yij−1|Yij−2))

1−α2tij−1−2tij−2

× (tij−1 − tij−2)αtij−1−tij−2−1 αtij−1−tij−2

(1− α2tij−1−2tij−2)3/2

√
E(V ar(Yij−1|Yij−2))

))

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))

√
1− α2tij−1−2tij−2

1− α2tij−2tij−1

(
(tij − tij−1)αtij−tij−1−1

+ αtij−tij−1

(
(tij − tij−1)αtij−tij−1−1αtij−tij−1

1− α2tij−2tij−1

− (tij−1 − tij−2)αtij−1−tij−2−1αtij−1−tij−2

1− α2tij−1−2tij−2

))
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= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))

√
1− α2tij−1−2tij−2

1− α2tij−2tij−1
αtij−tij−1−1

(
(tij − tij−1)

+
(tij − tij−1)α2tij−2tij−1

1− α2tij−2tij−1
− (tij−1 − tij−2)α2tij−1−2tij−2

1− α2tij−1−2tij−2

)

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))

√
1− α2tij−1−2tij−2

1− α2tij−2tij−1
αtij−tij−1−1

(
(tij − tij−1)

×
(

1 +
α2tij−2tij−1

1− α2tij−2tij−1

)
− (tij−1 − tij−2)α2tij−1−2tij−2

1− α2tij−1−2tij−2

)

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))

√
1− α2tij−1−2tij−2

1− α2tij−2tij−1
αtij−tij−1−1

×

(
tij − tij−1

1− α2tij−2tij−1
− (tij−1 − tij−2)α2tij−1−2tij−2

1− α2tij−1−2tij−2

)

B.2.3. AD(1) Correlation Structure

Let Îj denote a vector containing a 1 in the jth element and 0 elsewhere. For an AD(1) correlation

structure,
∂σij
∂α

simplifies to (with α = (α1, · · · , αn−1))

∂σij
∂α

= Îj−1
αj−1

(1− α2
j−1)3/2

√
E(V ar(Yij |Yij−1))

Hence,
∂µ∗ij
∂α

simplifies to, for j = 2,

∂µ∗i2
∂α

= (Yi1 − µi1)

√
E(V ar(Yi2|Yi1))

1−α2
1√

V ar(Yi1)

(
Î1

+ α1

(
1√

E(V ar(Yi2|Yi1))
1−α2

Î1
α1

(1− α2
1)3/2

√
E(V ar(Yi2|Yi1))− 0

))

=
Yi1 − µi1√

1− α2
1

√
E(V ar(Yi2|Yi1))

V ar(Yi1)

(
Î1 +

Î1α
2
1

1− α2
1

)

=
Yi1 − µi1√

1− α2
1

√
E(V ar(Yi2|Yi1))

V ar(Yi1)
Î1

(
1 +

α2
1

1− α2
1

)

=
Yi1 − µi1√

1− α2
1

√
E(V ar(Yi2|Yi1))

V ar(Yi1)
Î1

1

1− α2
1

= (Yi1 − µi1)

√
E(V ar(Yi2|Yi1))

V ar(Yi1)

Î1
(1− α2

1)3/2
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And, for j > 2,

∂µ∗ij
∂α

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

1−α2
j−1√

E(V ar(Yij−1|Yij−2))

1−α2
j−2

(
Îj−1 + αj−1

(
1√

E(V ar(Yij |Yij−1))

1−α2
j−1

Îj−1
αj−1

(1− α2
j−1)3/2

×
√
E(V ar(Yij−1|Yij−2))− 1√

E(V ar(Yij−1|Yij−2))

1−α2
j−2

Îj−2
αj−2

(1− α2
j−2)3/2

×
√
E(V ar(Yij−1|Yij−2))

))

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))

√
1− α2

j−2

1− α2
j−1

(
Îj−1 + αj−1

(
Îj−1αj−1
1− α2

j−1

− Îj−2αj−2
1− α2

j−2

))

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))

√
1− α2

j−2

1− α2
j−1

(
Îj−1 +

Îj−1α
2
j−1

1− α2
j−1
− Îj−2αj−1αj−2

1− α2
j−2

)

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))

√
1− α2

j−2

1− α2
j−1

(
Îj−1

(
1 +

α2
j−1

1− α2
j−1

)

− Îj−2αj−1αj−2
1− α2

j−2

)

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))

√
1− α2

j−2

1− α2
j−1

(
Îj−1

1

1− α2
j−1
− Îj−2αj−1αj−2

1− α2
j−2

)

= (Yij−1 − µij−1)

√
E(V ar(Yij |Yij−1))

E(V ar(Yij−1|Yij−2))

(
Îj−1

√
1− α2

j−2

(1− α2
j−1)3/2

− Îj−2
αj−1αj−2√

(1− α2
j−1)(1− α2

j−2)

)

B.3. Derivation of r Score Equations for Negative-Binomial Case

∂θi1
∂r

=

(1+rµi1)µi1−rµ2
i1

(1+rµi1)2

rµi1
1+rµi1
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=

µi1
(1+rµi1)2

rµi1
1+rµi1

=
1

r(1 + rµi1)

Let ψ(x) =
∂ ln Γ(x)

∂x
be the digamma function. The digamma function has the following difference

equation, for integer M :

ψ(x+M)− ψ(x) =

M−1∑
k=0

1

x+ k

Hence,

∂C(yij , φ)

∂r
= −∂ ln Γ(γ)

∂γ

∣∣∣
γ=yij+1/r

∂(yij + 1/r)

∂r
+
∂ ln Γ(γ)

∂γ

∣∣∣
γ=1/r

∂(1/r)

∂r

= −ψ(yij + 1/r) · −r−2 + ψ(1/r) · −r−2

=
ψ(yij + 1/r)

r2
− ψ(1/r)

r2

=
1

r2

yij−1∑
k=0

1
1
r + k

∂θ∗ij
∂r

=

(1+rµ∗
ij)(r

∂µ∗ij
∂r +µ∗

ij)−rµ
∗
ij(r

∂µ∗ij
∂r +µ∗

ij)

(1+rµ∗
ij)

2

rµ∗
ij

1+rµ∗
ij

=

r
∂µ∗ij
∂r +µ∗

ij

(1+rµ∗
ij)

2

rµ∗
ij

1+rµ∗
ij

=
r
∂µ∗

ij

∂r + µ∗ij
rµ∗ij(1 + rµ∗ij)

For j > 2,

∂µ∗ij
∂r

=
∂

∂r

(
µij + Cijj−1

√
1− C2

ij−1j−2√
1− C2

ijj−1

√
E(V ar(Yij |Yij−1))√
E(V ar(Yij−1|Yij−2))

(Yij−1 − µij−1)

)

= Cijj−1

√
1− C2

ij−1j−2√
1− C2

ijj−1

(Yij−1 − µij−1)
∂

∂r

( √
E(V ar(Yij |Yij−1))√
E(V ar(Yij−1|Yij−2))

)
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= Cijj−1

√
1− C2

ij−1j−2√
1− C2

ijj−1

(Yij−1 − µij−1)

×
√
E(V ar(Yij−1|Yij−2))

∂
√
E(V ar(Yij |Yij−1))

∂r −
√
E(V ar(Yij |Yij−1))

∂
√
E(V ar(Yij−1|Yij−2))

∂r

E(V ar(Yij−1|Yij−2))

where

∂
√
E(V ar(Yij |Yij−1))

∂r
=

1

2
√
E(V ar(Yij |Yij−1))

∂E(V ar(Yij |Yij−1))

∂r

=
1

2
√
E(V ar(Yij |Yij−1))

(
1− r C2

ijj−1

1−C2
ijj−2

)
µ2
ij + (µij + rµ2

ij)
C2
ijj−1

1−C2
ijj−1(

1− r C2
ijj−1

1−C2
ijj−1

)2
=

1

2
√
E(V ar(Yij |Yij−1))

(
µ2
ij + µij

C2
ijj−1

1− C2
ijj−1

)(
1− r

C2
ijj−1

1− C2
ijj−1

)−2

For j = 2,

µ∗i2
∂r

=
∂

∂r

(
µi1 +

Ci21√
1− C2

i21

√
E(V ar(Yi2|Yi1))√

V ar(Yi1)
(Yi1 − µi1)

)

=
Ci21√

1− C2
i21

(Yi1 − µi1)
∂

∂r

(√
E(V ar(Yi2|Yi1))√

V ar(Yi1)

)

=
Ci21√

1− C2
i21

(Yi1 − µi1)

√
V ar(Yi1)

∂
√
E(V ar(Yi2|Yi1))

∂r −
√
E(V ar(Yi2|Yi1))

∂
√
V ar(Yi1)

∂r

V ar(Yi1)

where

∂
√
V ar(Yi1)

∂r
=
∂(µi1 + rµ2

i1)1/2

∂r

=
1

2
(µi1 + rµ2

i1)−1/2 · µ2
i1

=
µ2
i1

2
√
µi1 + rµ2

i1

B.4. Expectations

E((µ∗ij)
2) can be expanded to

E((µ∗ij)
2) = E

((
µij + Cijj−1

σij
σij−1

(Yij−1 − µij−1)

)2
)
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= E

(
µ2
ij + 2µijCijj−1

σij
σij−1

(Yij−1 − µij−1) + C2
ijj−1

σ2
ij

σ2
ij−1

(Yij−1 − µij−1)2

)

= µ2
ij + 2µijCijj−1

σij
σij−1

E(Yij−1 − µij−1) + C2
ijj−1

σ2
ij

σ2
ij−1

E((Yij−1 − µij−1)2)

= µ2
ij + 0 + Cijj−1

σ2
ij

σ2
ij−1

σ2
ij−1

= µ2
ij + C2

ijj−1σ
2
ij

= µ2
ij +

C2
ijj−1

1− C2
ijj−1

E(V ar(Yij |Yij−1))
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APPENDIX C

CODE FOR CHAPTERS 3 AND 4

Provided in this appendix is the R software for the code described in Chapters 3 and 4 on the

methodology of maximum-likelihood based analysis of longitudinal data with specified marginal

means, first-order antedependence, and linear conditional expectations.

The software requires the use of the alabama package.

library(alabama)

The function below obtains the necessary information from the dataset provided. This function was

written by Matt Guerra.

cluster.size = function(id)

{

clid = unique(id)

m = length(unique(id))

n = rep(0,m)

autotime = rep(0,0)

for(i in 1:m)

{

n[i] = length(which(id == clid[i]))

autotime = c(autotime, 1:n[i])

}

id = rep(1:m, n)

return(list(m = m, n = n, id = id, autotime = autotime))

}

The function below formats the dataset and deletes unnecessary information. This function was

written by Matt Guerra with additions by Shaun Bender.

data.proc = function(data,formula,time=NULL,id,del.n, binom = NULL)

{
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dat = data.frame(data)

col.name = names(dat)

cluster = cluster.size(id)

m = cluster$m

n = cluster$n

id = cluster$id

if(length(time)==0)

{

time = cluster$autotime

}

autotime = cluster$autotime

index = order(id,time)

if(ncol(dat) == 1)

{

dat = dat[index,]

} else

{

dat = dat[index,]

}

dat = data.frame(dat)

names(dat) = col.name

if(Dist == "Binomial"){binomN = binom[index]} else

{binomN = NULL}

del = which(n <= del.n)

if(length(del) > 0)

{

n = n[-del]

m = length(n)

mtch = match(id, del)

del.id = which(mtch != "NA")

dat = dat[-del.id,]
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dat = data.frame(dat)

names(dat) = col.name

row.names(dat) = 1:nrow(dat)

time = time[-del.id]

autotime = autotime[-del.id]

id = rep(1:m, n)

if(Dist == "Binomial"){binomN = binomN[-del.id]}

}

formula = as.formula(formula)

fml = as.formula(paste("~", formula[3], "+", formula[2], sep=""))

dat = model.matrix(fml, data=dat)

return(list(data = dat, time = time, autotime = autotime, id = id, m = m, n = n,

binomN = binomN))

}

The function returns the value of the log likelihood for the inputted parameter values and a given

dataset. This function was written by Victoria Gamerman with additions by Shaun Bender.

drv.logl = function(start.values)

{

if(Dist == "Negative-Binomial"){Anc = 1}

if(Dist != "Negative-Binomial"){Anc = 0}

if(CorrStr == "AR(1)" | CorrStr == "Markov")

{

alpha = start.values[1]

beta = start.values[2:(length(start.values)-Anc)]

if(Dist == "Negative-Binomial"){r = start.values[length(start.values)]}

}

if(CorrStr == "AD(1)")

{

alpha = start.values[1:max(n)-1]
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beta = start.values[max(n):(length(start.values)-Anc)]

if(Dist == "Negative-Binomial"){r = start.values[length(start.values)]}

}

LogLik = 0

for (i in 1:m)

{

data_i = matrix(NA, nrow=n[i], ncol=dim(dataset$data)[2])

data_i[1:n[i],1:dim(dataset$data)[2]] = dataset$data[which(id==i),]

data.end = ncol(data_i)

x_i = matrix(NA, nrow=n[i], ncol=k+1)

x_i[1:n[i],1:(k+1)] = data_i[,-data.end]

y_i = data_i[,data.end]

n_i = nrow(data_i)

time_i = dataset$time[which(id==i)]

for (j in 1:n_i)

{

if (j == 1)

{

lam_ij = LinkInv(i, j, beta, x_i)

if(Dist == "Negative-Binomial"){LogLik = LogLik +

UnitLikelihood(i, j, y_i, lam_ij, r)}

else {LogLik = LogLik + UnitLikelihood(i, j, y_i, lam_ij)}

}

if (j > 1)

{

lam = c(LinkInv(i, j, beta, x_i), LinkInv(i, j-1, beta, x_i))

lamdot_i2 = MuSt_ij(i, j, y_i, time_i, alpha, lam, r)

if(Dist == "Negative-Binomial"){LogLik = LogLik +

UnitLikelihood(i, j, y_i, lamdot_i2, r)}

else {LogLik = LogLik + UnitLikelihood(i, j, y_i, lamdot_i2)}
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}

}

}

return(-LogLik)

}

The function returns the value of the gradient of the log likelihood for the inputted parameter values

and a given dataset. This function was written by Victoria Gamerman with additions by Shaun

Bender.

drv.grad = function(start.values)

{

D_Beta = matrix(0, nrow = k+1, ncol = 1)

D_R = matrix(0, nrow = 1, ncol = 1)

if(Dist == "Negative-Binomial"){Anc = 1}

if(Dist != "Negative-Binomial"){Anc = 0}

if(CorrStr == "AR(1)" | CorrStr == "Markov")

{

alpha = start.values[1]

beta = start.values[2:(length(start.values)-Anc)]

if(Dist == "Negative-Binomial"){r = start.values[length(start.values)]}

if(Dist != "Negative-Binomial"){r = NULL}

D_Alpha = matrix(0, nrow = 1, ncol = 1)

}

if(CorrStr == "AD(1)")

{

alpha = start.values[1:max(n)-1]

beta = start.values[max(n):(length(start.values)-Anc)]

if(Dist == "Negative-Binomial"){r = start.values[length(start.values)]}

if(Dist != "Negative-Binomial"){r = NULL}

D_Alpha = matrix(0, nrow = max(n)-1, ncol = 1)

}
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for (i in 1:m)

{

data_i = matrix(NA, nrow = n[i], ncol = dim(dataset$data)[2])

data_i[1:n[i],1:dim(dataset$data)[2]] = dataset$data[which(id==i),]

data.end = ncol(data_i)

x_i = matrix(NA, nrow = n[i], ncol = k+1)

x_i[1:n[i],1:(k+1)] = data_i[,-data.end]

y_i = data_i[,data.end]

n_i = nrow(data_i)

time_i = dataset$time[which(id==i)]

if(n_i>=1)

{

for(j in 1:n_i)

{

if(j == 1)

{

lam_ij = LinkInv(i, j, beta, x_i)

if(Dist == "Negative-Binomial")

{

D_Beta = D_Beta + functBeta(i, j, x_i, y_i, time_i, alpha, lam_ij, r)

D_R = D_R + functR(i, j, r, y_i, time_i, lam_ij, alpha)

}

if(Dist != "Negative-Binomial")

{

D_Beta = D_Beta + functBeta(i, j, x_i, y_i, time_i, alpha, lam_ij)

}

}

if(j > 1)

{

lam = c(LinkInv(i, j, beta, x_i), LinkInv(i, j-1, beta, x_i))

D_Alpha = D_Alpha + functAlpha(i, j, y_i, time_i, alpha, lam, r)
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if(Dist == "Negative-Binomial")

{

D_Beta = D_Beta + functBeta(i, j, x_i, y_i, time_i, alpha, lam, r)

D_R = D_R + functR(i, j, r, y_i, time_i, lam, alpha)

}

if(Dist != "Negative-Binomial")

{

D_Beta = D_Beta + functBeta(i, j, x_i, y_i, time_i, alpha, lam)

}

}

}

}

}

Output = t(t(c(-D_Alpha, -D_Beta)))

if(Dist == "Negative-Binomial"){Output = t(t(c(-D_Alpha, -D_Beta, -D_R)))}

return(-Output)

}

This function calculates the inverse of the link function used. Note that for the Negative Binomial

case, a non-canonical log inverse link is used. This function was written by Shaun Bender.

LinkInv = function(i, j, beta, x_i)

{

if(Dist == "Poisson")

{

lam_ij = exp(t(beta)%*%x_i[j,])

}

if(Dist == "Negative-Binomial")

{

lam_ij = exp(t(beta)%*%x_i[j,])

if(lam_ij[1] == 0){lam_ij[1] = .001}

}

111



if(Dist == "Binomial")

{

N = binomN[which(id==i)][j]

lam_ij = N * exp(t(beta)%*%x_i[j,]) / (1 + exp(t(beta)%*%x_i[j,]))

}

return(lam_ij[1])

}

This function calculates the log likelihood for a single unit. This function was written by Shaun

Bender.

UnitLikelihood = function(i, j, y_i, lam_ij, r)

{

if(Dist == "Poisson")

{

Theta = log(lam_ij)

B_Theta = lam_ij

if(y_i[j] == 0){Const = 0}

if(y_i[j] > 0){Const = sum(log(seq(from = 1, to = y_i[j], by = 1)))}

}

if(Dist == "Negative-Binomial")

{

Theta = log(r * lam_ij / (1 + r * lam_ij))

B_Theta = 1 / r * log(1 + r * lam_ij)

Const = -lgamma(y_i[j] + 1/r) + lgamma(y_i[j] + 1) + lgamma(1/r)

}

if(Dist == "Binomial")

{

N = binomN[which(id==i)][j]

Theta = log(lam_ij / (N - lam_ij))

B_Theta = -N * log((N - lam_ij) / N)

Const = -log(choose(N, y_i[j]))
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}

Unit = y_i[j]*Theta - B_Theta - Const

return(Unit)

}

This function calculates the derivative of the log likelihood with respect to r, under the assumption

of a Negative-Binomial distribution. This function was written by Shaun Bender.

functR = function(i, j, r, y_i, time_i, lam, alpha)

{

lam_ij = lam[1]

if(j == 1){DTheta = 1 / r / (1 + r * lam_ij)}

if(j > 1)

{

lam_ij_1 = lam[2]

Corr = FindCorr(j, time_i, alpha)

C_ij = Corr[1]

if(j>2){C_ij_1 = Corr[2]}

E_V = FindE_V(i, j, lam, Corr, r)

E_V_ij_1 = E_V[1]

E_V_ij = E_V[2]

if(j == 2){DE_V_ij_1 = lam_ij_1^2 / 2 / sqrt(lam_ij_1 + r * lam_ij_1^2)}

if(j > 2){DE_V_ij_1 = 1/2/sqrt(E_V_ij_1) * (lam_ij_1^2+lam_ij_1*C_ij_1^2/

(1 - C_ij_1^2)) / (1-r*C_ij_1^2/(1-C_ij_1^2))^2}

DE_V_ij = 1/2/sqrt(E_V_ij) * (lam_ij^2+lam_ij*C_ij^2/(1 - C_ij^2)) /

(1-r*C_ij^2/(1-C_ij^2))^2

Num = sqrt(E_V_ij_1) * DE_V_ij - E_V_ij * DE_V_ij_1

if(j == 2){DMuSt = C_ij / sqrt(1-C_ij^2) * (y_i[j-1]-lam_ij_1) * Num /

E_V_ij_1}

if(j > 2){DMuSt = C_ij * sqrt(1-C_ij_1^2)/sqrt(1-C_ij^2)*(y_i[j-1]-lam_ij_1) *

Num / E_V_ij_1}

MuSt = MuSt_ij(i, j, y_i, time_i, alpha, lam, r)
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DTheta = (r * DMuSt + MuSt) / r / MuSt / (1 + r * MuSt)

}

DC = 0

if(y_i[j] != 0){for(i in 0:(y_i[j]-1)){DC = DC + (1/r^2) * 1 / (1/r + i)}}

Output = (y_i[j]-lam_ij) * DTheta - DC

return(Output)

}

This function calculates the term to be added for the derivative of the log-likelihood. This function

was written by Shaun Bender.

functAlpha = function(i, j, y_i, time_i, alpha, lam, r)

{

MuSt = MuSt_ij(i, j, y_i, time_i, alpha, lam, r)

Added = (y_i[j]-MuSt)*DerivG(i, MuSt, r)*DMuStarAlpha(i, j, y_i, time_i, alpha,

lam, r)

return(Added)

}

This function calculates the value of µ∗ij . This function was written by Shaun Bender.

MuSt_ij = function(i, j, y_i, time_i, alpha, lam, r)

{

Corr = FindCorr(j, time_i, alpha)

Corr_ij = Corr[1]

Corr_ij_1 = Corr[2]

E_V = FindE_V(i, j, lam, Corr,r)

E_V_ij = E_V[1]

E_V_ij_1 = E_V[2]

lam_ij = lam[1]

lam_ij_1 = lam[2]

if(j == 2)

{
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MuSt = lam_ij + Corr_ij/sqrt(1-Corr_ij^2) * sqrt(E_V_ij / E_V_ij_1) *

(y_i[j-1] - lam_ij_1)

}

if(j > 2)

{

MuSt = lam_ij + Corr_ij * sqrt(E_V_ij / E_V_ij_1) * sqrt((1-Corr_ij_1^2) /

(1-Corr_ij^2)) * (y_i[j-1] - lam_ij_1)

}

constr = sqrt(lam_ij / (lam_ij_1 + lam_ij))

if(is.finite(constr) == FALSE){constr = 0.2}

if(is.finite(MuSt) == FALSE){MuSt = 0.5*constr}

if(MuSt < 0){MuSt = 0.5*constr}

return(MuSt)

}

This function calculates
∂µ∗ij
∂α

, the derivative of µ∗ij with respect to α. This function was written by

Shaun Bender.

DMuStarAlpha = function(i, j, y_i, time_i, alpha, lam, r)

{

Corr = FindCorr(j, time_i, alpha)

Corr_ij = Corr[1]

Corr_ij_1 = Corr[2]

E_V = FindE_V(i, j, lam, Corr,r)

E_V_ij = E_V[1]

E_V_ij_1 = E_V[2]

lam_ij = lam[1]

lam_ij_1 = lam[2]

if(CorrStr == "AR(1)")

{

if(j == 2){Output = sqrt(E_V_ij/E_V_ij_1) * (y_i[1] - lam_ij_1) /

(1-alpha^2)^(3/2)}
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if(j > 2){Output = sqrt(E_V_ij/E_V_ij_1) * (y_i[j-1] - lam_ij_1)}

}

if(CorrStr == "Markov")

{

if(j == 2)

{

Output = (y_i[1]-lam_ij_1) / sqrt(1-alpha^(2*time_i[2]-2*time_i[1])) *

sqrt(E_V_ij/E_V_ij_1) * (time_i[2]-time_i[1]) *

alpha^(time_i[2]-time_i[1]-1) * (1 + alpha^(2*time_i[2]-2*time_i[1])/

(1-alpha^(2*time_i[2]-2*time_i[1])))

}

if(j > 2)

{

Output = (y_i[j-1]-lam_ij_1)*sqrt(1-alpha^(2*time_i[j-1]-2*time_i[j-2])) /

sqrt(1-alpha^(2*time_i[j]-2*time_i[j-1])) *

sqrt(E_V_ij/E_V_ij_1)*alpha^(time_i[j]-time_i[j-1]-1) *

((time_i[j]-time_i[j-1])/

(1-alpha^(2*time_i[j]-2*time_i[j-1]))-(time_i[j-1]-time_i[j-2]) *

alpha^(2*time_i[j-1]-2*time_i[j-2]) /

(1-alpha^(2*time_i[j-1]-2*time_i[j-2])))

}

}

if(CorrStr == "AD(1)")

{

if(j == 2)

{

One = c(1, rep(0,(length(alpha)-1)))

Output = sqrt(E_V_ij/E_V_ij_1) * (y_i[1] - lam_ij_1) * One /

(1-alpha[1]^2)^(3/2)

}

if(j > 2)
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{

J_1 = c(rep(0,j-2),1,rep(0,length(alpha)-j+1))

J_2 = c(rep(0,j-3),1,rep(0,length(alpha)-j+2))

Output = sqrt(E_V_ij/E_V_ij_1) * (y_i[1] - lam_ij_1) *

(J_1 * sqrt(1-alpha[j-2]^2)/(1-alpha[j-1]^2)^(3/2) -

J_2 * alpha[j-1] * alpha[j-2] / sqrt(1-alpha[j-1]^2) / sqrt(1-alpha[j-2]^2))

}

}

return(Output)

}

This function calculates the term to be added for the derivative of the log-likelihood. This function

was written by Shaun Bender.

functBeta = function(i, j, x_i, y_i, time_i, alpha, lam, r)

{

if(j == 1){Added = (y_i[j]-lam) * DerivG(i, lam, r) * Dlam_ij(j, lam, x_i)}

if(j > 1)

{

MuSt = MuSt_ij(i, j, y_i, time_i, alpha, lam, r)

Added = (y_i[j]-MuSt)*DerivG(i, MuSt, r)*DMuStarBeta(i, j, x_i, y_i, time_i,

alpha, lam, r)

}

return(Added)

}

This function calculates
∂µ∗ij
∂β

, the derivative of µ∗ij with respect to β. This function was written by

Shaun Bender.

DMuStarBeta = function(i, j, x_i, y_i, time_i, alpha, lam,r)

{

Corr = FindCorr(j, time_i, alpha)

Corr_ij = Corr[1]
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Corr_ij_1 = Corr[2]

E_V = FindE_V(i, j, lam, Corr, r)

E_V_ij = E_V[1]

E_V_ij_1 = E_V[2]

lam_ij = lam[1]

lam_ij_1 = lam[2]

if(j == 2)

{

Output = Dlam_ij(j, lam_ij, x_i) + Corr_ij/sqrt(1-Corr_ij^2) *

sqrt(E_V_ij/E_V_ij_1)*((y_i[1]-lam_ij_1)/2 *

(DE_V(i,j,lam_ij,x_i,time_i,alpha,r)/E_V_ij -

DE_V(i,j-1,lam_ij_1,x_i,time_i,alpha,r)/E_V_ij_1) -

Dlam_ij(j-1, lam_ij_1, x_i))

}

if(j > 2)

{

Output = Dlam_ij(j, lam_ij, x_i) + Corr_ij*sqrt(1-Corr_ij_1^2) /

sqrt(1-Corr_ij^2)*sqrt(E_V_ij/E_V_ij_1)*

((y_i[j-1]-lam_ij_1)/2*(DE_V(i,j,lam_ij,x_i,time_i,alpha,r)/E_V_ij -

DE_V(i,j-1,lam_ij_1,x_i,time_i,alpha,r)/E_V_ij_1) -

Dlam_ij(j-1, lam_ij_1, x_i))

}

return(Output)

}

This function calculates the adjacent correlations at time j (and j − 1 for j > 2). This function was

written by Shaun Bender.

FindCorr = function(j, time_i, alpha)

{

if(CorrStr == "AR(1)")

{
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Corr_ij = alpha

if(j > 2){Corr_ij_1 = alpha}

}

if(CorrStr == "Markov")

{

Corr_ij = alpha^(time_i[j]-time_i[j-1])

if(j > 2){Corr_ij_1 = alpha^(time_i[j-1]-time_i[j-2])}

}

if(CorrStr == "AD(1)")

{

Corr_ij = alpha[j-1]

if(j > 2){Corr_ij_1 = alpha[j-2]}

}

if(j == 2){Output = Corr_ij}

if(j > 2){Output = c(Corr_ij, Corr_ij_1)}

return(Output)

}

This function calculates E(V ar(Yij |Yij−1)) (and if j > 2, E(V ar(Yij1 |Yij2))). This function was

written by Shaun Bender.

FindE_V = function(i, j, lam, Corr, r)

{

lam_ij = lam[1]

lam_ij_1 = lam[2]

Corr_ij = Corr[1]

if(j > 2){Corr_ij_1 = Corr[2]}

if(Dist == "Poisson")

{

E_V_ij = lam_ij

E_V_ij_1 = lam_ij_1

}
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if(Dist == "Negative-Binomial")

{

C_ij = 1 - r * Corr_ij^2 / (1 - Corr_ij^2)

if(j > 2){C_ij_1 = 1 - r * Corr_ij_1^2 / (1 - Corr_ij_1^2)}

E_V_ij = (lam_ij + r * lam_ij^2) / C_ij

if(j == 2){E_V_ij_1 = lam_ij_1 + r * lam_ij_1^2}

if(j > 2){E_V_ij_1 = (lam_ij_1 + r * lam_ij_1^2) / C_ij_1}

}

if(Dist == "Binomial")

{

N = binomN[which(id==i)][j]

if(j > 1){N_1 = binomN[which(id==i)][j-1]}

C_ij = 1 + Corr_ij^2 / (1 - Corr_ij^2) / N

if(j > 2){C_ij_1 = 1 + Corr_ij_1^2 / (1 - Corr_ij_1^2) / N_1}

E_V_ij = lam_ij * (N - lam_ij) / N / C_ij

if(j == 2){E_V_ij_1 = lam_ij_1 * (N_1 - lam_ij_1) / N_1}

if(j > 2){E_V_ij_1 = lam_ij_1 * (N_1 - lam_ij_1) / N_1 / C_ij_1}

}

Output = c(E_V_ij, E_V_ij_1)

return(Output)

}

This function calculates
∂E(V ar(Yij |Yij−1))

∂β
, the derivative of E(V ar(Yij |Yij−1)) with respect to β.

This function was written by Shaun Bender.

DE_V = function(i, j, lam_ij, x_i, time_i, alpha, r)

{

if(Dist == "Poisson"){Output = Dlam_ij(j, lam_ij, x_i)}

if(Dist == "Negative-Binomial")

{

if(j == 1){Output = (2 * r * lam_ij +1) * Dlam_ij(j, lam_ij, x_i)}

if(j > 1)
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{

Corr_ij = FindCorr(j, time_i, alpha)[1]

C_ij = 1 - r * Corr_ij^2 / (1 - Corr_ij^2)

Output = (2 * r * lam_ij + 1) * Dlam_ij(j, lam_ij, x_i) / C_ij

}

}

if(Dist == "Binomial")

{

N = binomN[which(id==i)][j]

if(j == 1){Output = (K - 2 * lam_ij) * Dlam_ij(j, lam_ij, x_i) / N}

if(j > 1)

{

Corr_ij = FindCorr(j, time_i, alpha)[1]

C_ij = 1 + Corr_ij^2 / (1 - Corr_ij^2) / N

Output = (N - 2 * lam_ij) * Dlam_ij(j, lam_ij, x_i) / N / C_ij

}

}

return(Output)

}

This function calculates
∂µij
∂β

, the derivative of µij with respect to β. This function was written by

Shaun Bender.

Dlam_ij = function(j, lam_ij, x_i)

{

if(Dist == "Poisson")

{

Dlam = x_i[j,] * lam_ij

}

if(Dist == "Negative-Binomial")

{

Dlam = x_i[j,] * lam_ij
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}

if(Dist == "Binomial")

{

Dlam = x_i[j,] * lam_ij / (1 + exp(t(beta)%*%x_i[j,]))

}

return(Dlam)

}

This function calculates
∂g(γ)

∂γ

∣∣∣
γ=Eval

, the derivative of the link function g() evaluated at ”Eval”. This

function was written by Shaun Bender.

DerivG = function(i, Eval, r)

{

if(Dist == "Poisson")

{

Output = 1 / Eval

}

if(Dist == "Negative-Binomial")

{

Output = 1 / Eval / (1 + r * Eval)

}

if(Dist == "Binomial")

{

N = binomN[which(id==i)][j]

Output = N / Eval / (N - Eval)

}

return(Output)

}

This function organizes the output and computes several statistics of interest. This function was

written by Shaun Bender, based on code by Victoria Gamerman.

CompileResults = function(model, formula, N_Alp, N_Var, N_Subjects)
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{

mle.alpha = model$par[1:N_Alp]

mle.beta = model$par[(N_Alp+1):(N_Alp+N_Var)]

if(Dist == "Negative-Binomial"){mle.r = model$par[N_Alp+N_Var+1]}

mle.full = -model$value

mle.cov = solve(model$hessian)

AIC = 2*(N_Var+1)-2*(mle.full)

BIC = log(N_Subjects)*(length(mle.beta)+1)-2*(mle.full)

Stderr = matrix(NA, nrow = N_Var, ncol = 1)

Wald = matrix(NA, nrow = N_Var, ncol = 1)

pval = matrix(NA, nrow = N_Var, ncol = 1)

for(p in (N_Alp+1):(N_Alp+N_Var))

{

Stderr[p-N_Alp,] = sqrt(mle.cov[(p),(p)])

Wald[p-N_Alp,] = (mle.beta[p-N_Alp] / sqrt(mle.cov[(p),(p)]))^2

pval[p-N_Alp,] = 1-pchisq(Wald[p-N_Alp,1], df = 1, lower.tail = TRUE,

log.p = FALSE)

}

results = cbind(mle.beta, Stderr, Wald, pval)

Alpha_Cov = NULL

for(p in 1:N_Alp)

{

Alpha_Cov = c(Alpha_Cov, sqrt(mle.cov[p,p]))

}

alpha_results = cbind(mle.alpha,Alpha_Cov)

fit_stats = rbind(mle.full, AIC, BIC)

if(Dist == "Negative-Binomial")

{

r_Cov = NULL

r_Cov = sqrt(mle.cov[N_Alp+N_Var+1,N_Alp+N_Var+1])

r_results = cbind(mle.r,r_Cov)
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colnames(r_results) = c("Estimate", "Std.err")

rownames(r_results) = "r"

}

#format output

rownames(fit_stats) = c("Log-Likelihood:", "AIC:", "BIC:")

colnames(fit_stats) = c("")

colnames(results) = c("Estimate", "Std.err", "Wald", "Pr(>|W|)")

rownames(results) = c("(Intercept)", all.vars(formula[[3]]))

colnames(alpha_results) = c("Estimate", "Std.err")

rownames(alpha_results) = c(rep("alpha",N_Alp))

if(Dist != "Negative-Binomial"){return(list(fit_stats, results, alpha_results))}

if(Dist == "Negative-Binomial"){return(list(fit_stats, results, alpha_results,

r_results))}

}

The function below calculates the value of the constraints. This function was written by Shaun

Bender.

Constraints = function(Values)

{

Last = length(Values)

Output = rep(NA, 1)

if(CorrStr == "AR(1)")

{

Output[1] = 1 - Values[1]

Output[2] = Values[1] + 1

if(Dist == "Negative-Binomial"){Output[3] = - Values[1]^2 + 1/(Values[Last]+1)}

}

if(CorrStr == "Markov")

{

Output[1] = 1-Values[1]

Output[2] = Values[1] + 1
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if(Dist == "Negative-Binomial"){Output[3] = -Values[1]^2 + 1/(Values[Last]+1)}

}

if(CorrStr == "AD(1)")

{

for(i in 0:(N_Alp-1))

{

Output[2*i+1] = 1 - Values[i+1]

Output[2*i+2] = Values[i+1] + 1

}

if(Dist == "Negative-Binomial")

{

for(i in 1:N_Alp)

{

Output[2*N_Alp+i] = - Values[i]^2 + 1/(Values[Last]+1)

}

}

}

return(Output)

}

The function belew calculates the value of the Jacobian of the constraints. This function was written

by Shaun Bender.

ConstraintsJacobian = function(Values)

{

Last = length(Values)

if(CorrStr == "AR(1)")

{

if(Dist != "Negative-Binomial"){Output = matrix(0, 2, Last)}

if(Dist == "Negative-Binomial")

{

Output = matrix(0, 3, length(Values))
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Output[3,1] = -2*Values[1]

Output[3,Last] = 1 / (Values[Last] + 1)^2

}

Output[1,1] = -1

Output[2,1] = 1

}

if(CorrStr == "Markov")

{

if(Dist != "Negative-Binomial"){Output = matrix(0, 2, Last)}

if(Dist == "Negative-Binomial")

{

Output = matrix(0, 3, length(Values))

Output[3,1] = -2*Values[1]

Output[3,Last] = 1 / (Values[Last] + 1)^2

}

Output[1,1] = -1

Output[2,1] = 1

}

if(CorrStr == "AD(1)")

{

if(Dist != "Negative-Binomial"){Output = matrix(0, 2*N_Alp, Last)}

if(Dist == "Negative-Binomial")

{

Output = matrix(0, 3*N_Alp, Last)

for(i in 1:N_Alp)

{

Output[2*N_Alp+i,i] = -2*Values[i]

Output[2*N_Alp+i,Last] = 1 / (Values[Last] + 1)^2

}

}

for(i in 0:(N_Alp-1))
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{

Output[2*i+1,i+1] = -1

Output[2*i+2,i+1] = 1

}

}

return(Output)

}

The function below is the function that is called by the user. It calls the above functions in order to

organize the data, run the methodology using the alabama package, and organize the results for

presentation.

EndResults = function(formula, CorrInput, Dist, DatasetInput, IDInput, TimeInput,

start.values, DistOpts)

{

id = IDInput

t = TimeInput

d = dim(DatasetInput)

k <<- length(all.vars(formula))-1

dt.fm = data.frame(DatasetInput)

Dist <<- Dist

if(Dist == "Binomial")

{

dataset <<- data.proc(data = dt.fm, formula = formula, time = t, id = id,

del.n = 0, binom = DistOpts)

}

if(Dist != "Binomial")

{

dataset <<- data.proc(data = dt.fm, formula = formula, time = t, id = id,

del.n = 0, binom = NULL)

}

m <<- dataset$m
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n <<- dataset$n

id <<- dataset$id

.GlobalEnv$time <- dataset$time

autotime <<- dataset$autotime

binomN <<- dataset$binomN

CorrStr <<- CorrInput

N_Var = length(all.vars(formula[[3]]))+1

if(CorrStr == "AR(1)" | CorrStr == "Markov"){N_Alp <<- 1}

if(CorrStr == "AD(1)"){N_Alp <<- length(unique(time))-1}

lb = rep(-Inf, length(start.values))

ub = rep(Inf, length(start.values))

lb[1:N_Alp] = rep(-1, N_Alp)

ub[1:N_Alp] = rep(1, N_Alp)

full.ml = auglag(par = start.values, fn = drv.logl, hin = Constraints,

hin.jac = ConstraintsJacobian, control.outer = list("itmax" =

1000, "trace" = FALSE, ilack.max = 10, eps = 10^-8))

Output = CompileResults(full.ml, formula, N_Alp, N_Var, m)

rm(list = c(’k’,’dataset’,’m’,’n’,’time’,’autotime’,’CorrStr’,’K’),

pos = ".GlobalEnv")

return(Output)

}
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