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ABSTRACT 
 

CORRELATED ACTIVITY AND CORTICOTHALAMIC CELL FUNCTION IN THE EARLY 

MOUSE VISUAL SYSTEM  

Daniel Denman 

Diego Contreras 

 

Vision has long been the model for understanding cortical function. Great progress has been 

made in understanding the transformations that occur within some primary visual cortex (V1) 

layers, like the emergence of orientation selectivity in layer 4. Less is known about other V1 

circuit elements, like the shaping of V1 input via corticothalamic projections, or the population 

structure of the cortico-cortical output in layer 2/3. Here, we use the mouse early visual system to 

investigate the structure and function of circuit elements in V1. We use two approaches: 

comparative physiology and optogenetics. We measured the structure of pairwise correlations in 

the output layer 2/3 using extracellular recordings. We find that despite a lack of organization in 

mouse V1 seen in other species, the specificity of connections preserves a correlation structure 

on multiple timescales. To investigate the role of corticogeniculate projections, we utilize a 

transgenic mouse line to specifically and reversibly manipulate these projections with millisecond 

precision. We find that activity of these cells results a mix of inhibition and excitation in the 

thalamus, is not spatiotemporally specific, and can affect correlated activity. Finally, we classify 

mouse thalamic cells according to stimuli used for cell classification in primates and cats, finding 

some, but not complete, homology to the processing streams of primate thalamus and further 

highlighting fundamentals of mammalian visual system organization.  
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CHAPTER 1: INTRODUCTION 

 
In the following work, we utilize the emerging model system of mouse vision to address 

several questions relating to output neurons from primary visual cortex (V1): layer 2/3 cortico-

cortical neurons and corticogeniculate layer 6 cells. First, we address the independence of 

individual unit responses in layer 2/3 and the relationship to the underlying structure by 

measuring pairwise correlation on multiple time scales. We assess the functional role of a cell 

class in layer 6, the corticogeniculate population, and what effect these cells might have on the 

thalamus and V1 during visual responses. Below, we explain our motivation for exploring these 

questions, and why we chose to do so using the mouse early visual system.  

 
Cortical structure and function 

The cerebral cortex is widely held as the seat of cognition, from simple sensory (Hubel 

and Wiesel, 1968) and motor (Chouinard, 2006) processing, to complex decision-making 

(Heekeren et al., 2008) and executive activity (Kimberg and Farah, 1993; Brown and Bowman, 

2002; Alvarez and Emory, 2006). Interest in the structure and function of the cerebral cortex 

dates to the birth of modern neuroscience (Ramon y Cajal, 1890; Penfield and Jasper, 1954). 

Recognition of the cortex as cognitive center predates this, at least to Thomas Willis in 1664, 

possibly to Erisistratus c.a. 260 BCE (Gross, 1999) 

The painstaking work of early anatomists led to the description of a regular, repeatable 

organization across broad cortical areas, a layered structure with six, or eight (Ramon y Cajal, 

1890), described layers. Contemporary consensus is a cortex with six primary layers 

(Mountcastle, 1997; Thomson and Lamy, 2007), with the first layer, layer 1, containing mostly 

dendrites and axons from long-range inputs, and very few cell bodies. The primary thalamic input 

comes in layer 4, which in turn projects superficially to layers 2 and 3. These superficial layers 

send cortico-cortical outputs to other cortical areas, as well as locally to layer 5, where many 

subcortical projection neurons are present. Layer 6 contains a mix of cells, with local cortico-
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cortical neurons as well as subcortical projection neurons (Briggs, 2010; Thomson, 2010), with 

subcortical targets different than those of layer 5. These layer 6 neurons are of particular interest 

in this thesis, and are discussed in more detail below. 

Although the structure varies slightly across cortical areas (Herculano-Houzel et al., 

2008; 2013), it is remarkably similar across humans, other primates, and all mammals. A 

canonical operation across many cortical areas has been the target of speculation (Mountcastle, 

1997; Douglas and Martin, 2007), though this has not yet been thoroughly demonstrated.  

 
Primary visual cortex 

Primary visual cortex (V1) is one of the most extensively investigated cortical areas 

(Hubel and Wiesel, 1959; 1962; Priebe and Ferster, 2012), serving as a model system for 

understanding cerebral cortex. This area, alternatively called granular cortex or Brodmann area 

17, has an appearance distinct from many other parts of cortex due to the high density and small 

size of the cell bodies in thalamorecipient layer 4.  V1 receives a strong thalamic projection from 

the dorsal lateral geniculate nucleus (dLGN) to this granular layer 4, and also to some cells within 

layer 6.  The extensive study of V1 has led to remarkable insight into the transformation of visual 

activity within V1. The best and most cited example occurs within layer 4, at the synapse between 

arriving thalamic input and L4 stellate cells: the appearance of orientation selective responses. In 

the LGN, the best stimulus effectively engages its receptive field center, which is either ON- or 

OFF-.  The majority of dLGN cells respond equally to elongated stimuli of any orientation.  

However, V1 cells that receive direct input from these center-surround cells (either dLGN center-

surround in cat, or layer 4Cβ center surround in some primates) are exquisitely tuned to the 

orientation of elongated stimuli. This emergence of orientation selectivity is a consequence of 

elongated receptive fields; these elongated receptive fields result from convergence of center-

surround receptive fields offset in space but aligned along the axis of elongation (Reid and 

Alonso, 1995). This transformation of orientation insensitive center-surround into orientation 

selective responses across one synapse through selective convergence results in so-called 
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‘simple cells’. Simple cells have separable, elongated receptive field subregions that match their 

orientation selectivity. A second selective convergence from layer 4 to layer 2/3, of cells with 

matching orientation preference but non-matching phase, may generate the phase-invariant 

orientation tuning in layer 2/3 (Alonso and Martinez, 1998). These phase-invariant cells are still 

orientation selective, but do display separable subregions and are called ‘complex’ cells.  

This difference in phase sensitivity between layers 4 and 2/3 is also an example of the 

structure, or organization, of single cell response properties in primary visual cortex. In this case, 

the response property of phase sensitivity is organized across layers, with a systematic change 

from phase sensitive simple cells in layer 4 to the complex cells of layer 2/3, with layer 5 

resembling the phase insensitivity in 2/3 and layer 6 a mix of simple and complex cells (Martinez 

et al., 2005; Hirsch and Martinez, 2006). Here the response properties change systematically 

through the depth. In most species, response properties are also organized across the dimension 

orthogonal to the depth: visual space, orientation preference, and ocular dominance all vary 

systematically across the cortical surface. Exceptions to this organization exist, like the lack of 

organization in orientation preference in mouse V1, a feature we explore in Chapter 2. 

 This emergence and organization of phase-invariant orientation selectivity is an example 

of the great detail at which some V1 processing is understood. Yet much remains to be learned 

about the function and structure of V1 (Olshausen and Field, 2006). Locally in V1, the role of 

interneurons in shaping the cortical transformation has drawn great recent interest (Sohya et al., 

2007; Cardin et al., 2009; Zariwala et al., 2010; Kerlin et al., 2010; Adesnik et al., 2012; Atallah et 

al., 2012; Cardin, 2012). Transformations, if any, across other cortical layers have not been well 

described, and may require often-neglected stimulus parameters like color (Horwitz et al., 2007; 

Horwitz and Hass, 2012) or behavioral context (Cohen and Maunsell, 2009; Niell and Stryker, 

2010; Polack et al., 2013). Most relevantly, we lack a full understanding of the various V1 outputs 

and what effects these outputs might have on their targets. In addition, network and circuit-level 

questions like the correlated activity within V1 are an active area of research, including but not 

limited to, chapter 2 of this thesis.   
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Correlated activity, pairs, and populations 

For much of modern neuroscience, recording techniques have limited the experimenter to 

either recording from one isolated cell (like with single high impedance electrodes or intracellular 

recording with glass pipettes), or to the aggregate activity of an unknown, often uncontrollable 

number of cells (like with field potentials or fMRI). Both of these approaches have been fruitful, 

and promise to continue to be, especially as they are advanced (Long et al., 2011) and become 

better understood (Buzsáki et al., 2012; Einevoll et al., 2013). In this work, we have taken 

advantage of multi-tetrode recording to record the simultaneous activity of small populations of 

isolated single units, and analyze the correlation between these units at various timescales using 

various established techniques (Perkel et al., 1967a; Zohary et al., 1994), focusing on pairwise 

correlations. Correlations can and do occur beyond pairs of neurons (Schnitzer and Meister, 

2003; Shlens et al., 2006); the frequency of these types of correlations in the early visual system 

is not yet clear, nor are any functional consequences. 

What can be gained from considering pairwise correlated activity? The interpretation of 

pairwise correlations depends heavily on the stimulus conditions and the timescale of correlation 

measured. In the case of stimulus-corrected pairwise cross-correlograms (CCGs) on the scale of 

milliseconds (Perkel et al., 1967b; Gerstein et al., 1985), correlations can reflect the functional 

connectivity within the network (Aertsen and Gerstein, 1985; Ostojic et al., 2009). When both cells 

in a pair of neurons receive common excitatory input, these cells display a sharp CCG peak that 

straddles the zero line. Monosynaptic excitatory connections generate their own signature, a 

sharp peak offset from zero by approximately the synaptic latency (~2 milliseconds). Inferring 

functional connectivity from this form of correlation is useful for comparing said functional 

connectivity to other physiological measurements, usually other single cell physiological 

measurements. 

Short time scale correlations could be more than an experimental tool for inferring 

connectivity: coincident spikes on this timescale can drive nonlinearities in the responses in 
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readout neurons. In some cases, this type of correlated activity might carry additional stimulus 

information (Bohte, 2004), including the visual system (Dan et al., 1998; Shlens et al., 2006). 

While synchronous activity could be used to encode information, it is not clear if this approach is 

actually used in any neural system, a possibility explored in more detail in the Discussion.    

Pairs of neurons can be correlated on other timescales, like correlated fluctuations in 

spike count over the period of a stimulus presentation, often seconds long. When these 

correlated fluctuations are a result of changing stimulus parameters they are called ‘signal 

correlations’. When these fluctuations are independent of stimulus parameters, they are termed 

‘noise correlations’. Under some decoding regimes, noise correlations can reduce the 

effectiveness of pooling (Zohary et al., 1994) and reduce the amount of stimulus information in 

the response (Abbott and Dayan, 1999; Nirenberg and Latham, 2003). The most commonly 

assumed neural readout regimes, like pooling models (Tolhurst et al., 1983) and variants of this 

(e.g., Law and Gold, 2009), are sensitive to this form of correlation.  Because of the prevalence of 

these models, noise correlations have been the most extensively considered and measured form 

of pairwise correlation (Tolhurst et al., 1983; Kruger and Aiple, 1988; Kohn and Smith, 2005; 

Smith and Kohn, 2008; Cohen and Kohn, 2011). 

 The effect of correlations of any timescale on decoding of neural information depends on 

the identity and connectivity of correlated cells (Panzeri et al., 2003). It is therefore important to 

measure the structure of correlations on all timescales, and understand the mechanisms that 

generate them. In primate V1, the structure of correlations, both fast synchrony and noise 

correlations, follows the organization of somatic organization preference. On the short time scale, 

pairs of cells with similar orientation preferences are more likely to receive common input. This 

true also on the longer timescale: nearby pairs of cells, and pairs of cells with similar orientation 

preference, have higher noise correlation (Smith and Kohn, 2008). It is not clear if this 

organization of correlations is a trivial result of the single cell orientation topography (i.e, 

organization into orientation pinwheels), or if organization of pairwise correlations might be a 

reason for pinwheels to exist. To resolve this, we measure the structure of correlation in the 
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absence of this orientation pinwheel organization in mouse visual cortex. We discuss the 

structure of mouse visual cortex below, and the results of our measurement of correlation in 

mouse V1 are presented in Chapter 2.  

 
Mouse as a tool for visual cortical neuroscience 

 The mouse, while not a traditional model system used to study vision, is a useful system 

for investigating these questions for several reasons. First and foremost, the gross organization of 

the cortex resembles that of humans, as noted by Ramon y Cajal (in Pasik and Pasik, 2002). But 

the primary reason is the ready availability of transgenic tools that allow access to specific cell 

types. Several groups have embarked on large-scale generation of transgenic mouse lines, like 

the GENSAT project’s collection of GFP- or Cre recombinase-expressing lines (Gong et al., 2003; 

2007) and the Allen Institute for Brain Science’s Cre-dependent tool  mouse lines (Madisen et al., 

2012). GFP-expressing lines offer the ability to visualize specific populations of cells for targeted 

recordings, for example PV+ interneurons (Sohya et al., 2007). Cre recombinase lines restrict the 

expression of this enzyme to a subset of cells. When combined with Cre-dependent transgene 

expression, either through viral introduction (Atasoy et al., 2008; Cardin et al., 2010b) or crossing 

with another transgenic line (Madisen et al., 2009; 2012), genetically encoded tools like algal and 

bacterial opsins (Bernstein and Boyden, 2011; Fenno et al., 2011), Ca2+ indicators (Zhao et al., 

2011), or voltage indicators (Jin et al., 2012) are only expressed in that subset of Cre-expressign 

cells. This type of cell type specificity in vivo is not yet possible in other model systems.   

The size and structure of the mouse brain also provides the opportunity for more 

complete sampling, relative to other model systems. Mice are lissencephalic, with a smooth 

cortical surface that lacks gyri or sulci. Because of this flat cortex, all cortical areas are accessible 

from a cranial window and vertical penetrations are possible in all areas. With the layered 

structure of cortex parallel to the skull, it is often possible to ensure an even, layer-specific 

imaging plane. Successive imaging planes can sample across the depth to nearly 800 µm, which 

because of the small size of mouse cortex allows for imaging to cortical layer 5, and even deeper 
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imaging can be obtained with microprisms (Chia and Levene, 2009). The small size is also an 

advantage in the rostral-caudal and medial-lateral planes. Because the total cortical volume is 

small ( ~1.8 cm2, (Badea et al., 2007)), and the 25% of the cortex related to visual processing is 

even more manageable (~3mm by 3mm), simultaneous imaging and recording across visual 

areas is feasible (Glickfeld et al., 2013). The ganglion cell population of the mouse retina is better 

understood than any other species (Masland, 2012; Siegert et al., 2012), opening the possibility 

of understanding the inputs to central visual areas, and how those inputs might be transformed. 

Finally, mammalian high-throughput behavior is only possible with rodents (Meier et al., 2011; 

Scott et al., 2013), and our ability to exploit behavioral repertoire of mice is growing (Carandini 

and Churchland, 2013). The mouse as a model system for vision is not without downsides 

(Movshon, 2013), both experimental (e.g., small size) and biological (see below, e.g., poor spatial 

resolution and lack of directed eye movements), but other advantages make it a viable model.  

 What is known about mouse dLGN and V1 has grown rapidly in the last several years. 

Mouse retina has previously been the subject of intense characterization (Sun et al., 2002; 

Wässle et al. 2009; reviewed in Masland, 2012). The retinal outputs have been fully classified 

(Masland, 2012), and through combinatorial genetics individual ganglion cell classes can be 

isolated (Siegert et al., 2012). Much less is known about subsequent visual processing in mice. 

Anatomical evidence shows a lack of structure in mouse dLGN, but strikingly similar single cell 

morphology to other species (Krahe et al., 2011). In vitro work has shown the synaptic structure 

of mouse dLGN recapitulates that of cats. More specifically, the mouse dLGN has a triadic 

synaptic structure at retinal inputs, where the retinal bouton, the relay dendrite, and a 

neurotransmitter-releasing interneuron dendrite meet to form the so-called ‘triad’. In the relay cell, 

directly stimulating the optic chiasm generates excitation from the retinal bouton followed by 

strong inhibition from the interneuron (Blitz and Regehr, 2005). This triadic synapse sequence 

was first elucidated in slices of cat dLGN, but the pharmacological details have been worked out 

in mouse slices. This and other slice work in mouse dLGN has advanced understanding of dLGN 

function (Chen and Regehr, 2000; Blitz and Regehr, 2003; Chen and Regehr, 2003; Acuna-
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Goycolea et al., 2008; Wijesinghe et al., 2013), even in the absence of information about the 

responses of mouse dLGN to visual stimulation.  

Pioneering physiological work by Drager (1975), established that mouse primary visual 

cortex shares some canonical features of the better-described feline and primate visual systems: 

retinotopy, orientation selectivity, and simple and complex receptive fields. Behavioral 

assessments showed mice to be capable of using visual information (Prusky et al., 2000). But 

because visual projections to superior colliculus had received the most attention (Drager and 

Hubel, 1975; Dunlop et al., 1996; Drescher et al., 1997), the neural basis of this behavior was 

questioned. Importantly, ablation of V1 revealed that this behavior was cortically mediated 

(Prusky and Douglas, 2004). Few other studies investigated canonical thalamocortical vision in 

mice. 

The emergence of transgenic tools rekindled interest in mouse visual response 

properties. From this more recent wave, a new consensus has formed: poor spatial resolution, 

lack of orientation pinwheels, but good orientation tuning, temporal properties, receptive field 

structure, layer-like organization and parallel cortical processing streams (Gao et al., 2010).  

Measurement of receptive fields in the dLGN (Grubb and Thompson, 2003; 2004; Piscopo et al., 

2013) and visual cortex (Niell and Stryker, 2008; Gao et al., 2010) have yielded V1 receptive 

fields about one order of magnitude larger than that seen in cats and primates, in the range of 5-

15º in diameter. This poor spatial resolution is confirmed by preferred spatial frequency of drifting 

gratings, at < 0.1 cycles/º. In spite of this, orientation tuning can be very sharp in mouse V1 (Niell 

and Stryker, 2008; Gao et al., 2010; Zariwala et al., 2010). Mouse V1 has simple and complex 

receptive fields, with more simple receptive fields in the middle layers, corresponding a 

thalamorecipient layer. Like other species, response properties in V1 indicate parallel but 

separate processing streams (Gao et al., 2010).  

Given these similarities, one striking difference between mouse V1 and other species is 

the lack of orientation pinwheels (Ohki et al., 2006; Ohki and Reid, 2007). In cats and primates, 

cell somas with similar orientation preference cluster together, forming a smoothly varying 
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organization of orientation selectivity that resembles several pinwheels, visible at macrocellular 

(Bartfeld and Grinvald, 1992) and single cell (Ohki et al., 2006) resolution. This orientation map is 

superimposed onto other maps, like the retinotopic map. Mice have a retinotopic map, but lack 

any somatic organization in orientation, a feature we exploit in our studies of the structure of 

correlation in mouse layer 2/3.  

 
The usefulness of comparative biology in visual neu rophysiology 

Visual neurophysiology as a field has been dominated by work in cats and non-human 

primates, in cats because of the excellent spatial resolution, front-facing eyes, and availability of 

experimental animals, and in non-human primates because of the homology to human primates. 

Mice share a more recent common ancestor to primates (in the Euarchontoglires clade) than cats 

and primates (in the Boreoeutheria magnorder) (Kriegs et al., 2006). Homologies in visual system 

organization between mice and primates represent traits either preserved from the common cat-

primate ancestor or that arose before the divergence of primates and mice. Any of these 

homologies represent a fundamental feature of visual system organization preserved across 

evolutionary time. The visual receptive field first described in the invertebrate limulus (Ratliff and 

Hartline, 1959) bears a great resemblance to retinal and dLGN receptive field, and this homology 

across evolutionary distance cemented the receptive fields as a basic concept in visual system 

organization. This is an example of how the comparative approach, performing measurements of 

known quantities in one system in a new species can reveal factors important to basic function 

and preserved across species. We take this approach in making measurements of pairwise 

correlation structure in mouse layer 2/3 (Chapter 2) and dLGN response properties known in cats 

and monkeys in mice (Chapter 5).  

 
Optogenetics  

Beyond the power of comparative biology, using mouse dLGN allowed us to dig in to the 

growing optogenetics toolkit. Optogenetics, the manipulation of membrane potential in 
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mammalian cells using expression of bacterial or algal opsins and exogenously applied light is a 

rapidly spreading technique. It offers some significant advantages over other methods for 

manipulating neural activity: the opsins are genetically encoded, allowing for cell-type specific 

expression due to viral tropism (Nathanson et al., 2009), or other combinatorial expression 

systems such as the FLEX system (Atasoy et al., 2008). These opsins allow for single millisecond 

precision in spike generation, and can achieve similar timescale hyperpolarization (Chow et al., 

2010). Continuing engineering of these proteins has improved the temporal resolution, increased 

sensitivity to allow for transcranial stimulation (JAWS, Boyden laboratory, MIT), and generated 

new tools like step-function opsins (Diester et al., 2011). In the early use of these tools, much 

focus has been on activating cells, perhaps due to the historical difficulty in achieving specific 

stimulation. Here, we utlize Channelrhodpsin-2 (ChR2) to stimulate a specific cell type, but in 

support of more extensive loss of function experiments using Archaerhodopsin-3 (Arch) to 

hyperpolarize during visual stimulation.  

These opsins can be powerful tools for understanding the function of cell types in both 

physiology (Cardin et al., 2009; Adesnik et al., 2012), behavior (Gerits et al., 2012; Jazayeri et al., 

2012), and disease (Gradinaru et al., 2009; Kravitz et al., 2010) through loss-of-function 

experiments, and for elucidating mechanisms of cell type action through gain-of-function 

activation in specific and varied experimental contexts.  

 
The function of corticogeniculate-projecting cells 

Anatomical tracings by Ramon y Cajal led him to comment on the number and density of 

fibers from cortex to thalamus, saying of them “An infinite number of fibers, coursing together with 

the previous ones, enter the [thalamic] nucleus under study and generate a fine and dense 

plexus” (in Pasik and Pasik, 2002). Indeed later anatomical studies led to the oft-quoted estimate 

of corticothalamic fibers outnumbering thalamocortical fibers by and order of magnitude 

(Sherman and Guillery, 1996), and corticothalamic inputs have been estimated at 30% of the total 

number of inputs to a dLGN relay cell (Erişir et al., 1997). Corticothalamic (CT) axons originate in 
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the deeper layers of V1, in both layers 5 and 6. However, the corticothalamic fibers of layer 5 do 

no project to primary sensory nuclei like the dLGN, but rather to secondary thalamic nuclei like 

pulvinar (Jones 2007). Corticothalamic axons originating in layer 6 project to both primary and 

secondary nuclei (Briggs, 2010; Thomson, 2010; Tombol,1984). Here, we focus on the 

corticothalamic axons in layer 6 projecting from primary sensory cortex to primary sensory 

thalamic nuclei, and will refer to these axons as ‘corticogeniculate’. 

Corticogeniculate (CG) axons follow the optic radiation back from cortex to dLGN, leave 

an axon collateral in the perigeniculate or reticular nucleus, and continue into dLGN to form 

synapses directly onto relay cells and interneurons. The synapses of CG axons onto relay cells 

are found at distal dendritic areas; CG axons excite relay cells via type 1 metabotropic glutamate 

receptors (mGluR1s) (McCormick and Krosigk, 1992; Rivadulla et al., 2002) and contain an 

NMDA component (Scharfman et al., 1990) at synapses that depress strongly during repeated 

stimulation (Jurgens et al., 2012). In addition, these axons bifurcate before exiting V1, sending an 

axon collateral up to layer 4. This local cortical projection targets all cell types in layer 4, including 

the excitatory stellate cells and local interneurons. Electron microscopy suggests a slight bias 

toward inhibitory cells in layer 4 (McGuire et al., 1984) and a net inhibitory effect. This net 

inhibition is supported by recordings in dLGN following stimulation of cortex (Widen and Amjone 

Marsan 1960; Olsen et al., 2012). 

Given this synaptic arrangement, with direct excitation and two sources of disynaptic 

inhibition, CG projections are in position to provide general influence on dLGN responses. 

Indeed, corticothalamic projections have been shown to have both generally facilitative and 

suppressive effects on dLGN visual responses, though the effects are generally weak. Eliminating 

cortical activity increases responses to drifting gratings (Andolina, 2007, 2013, Baker and Malpeli, 

1978); alternatively, other groups have concluded that eliminating cortical activity decreases 

responses to drifting gratings (Vastola, 1967; Hull, 1968; Przybyszewski et al., 2000; Rivadulla et 

al., 2002). Still others have observed both increases and decreases under their experimental 
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conditions (Kalil and Chase, 1970; Kayama et al., 1984; Molotchnikoff et al., 1986; McClurkin et 

al., 1991). 

While most of these studies used drifting sinusoidal gratings (McClurkin et al., 1991; 

Przybyszewski et al., 2000; Rivadulla et al., 2002; Andolina et al., 2007), others used bars 

(Vastola, 1967; Hull, 1968; Kalil and Chase, 1970), and the size of stimuli ranged across studies. 

As a result, these spatial disparities have been invoked to explain the disparities in results: 

misaligned RFs providing suppression and aligned RFs facilitation. Direct evidence supporting 

this hypothesis has been obtained with paired recordings of single CG axons and single dLGN 

cells (Tsumoto et al., 1978). Further evidence comes from the effect of cortical activity on 

elements of dLGN single unit non-classical RFs. (Murphy and Sillito, 1987, 1988; Murphy et al., 

1999; see Sillito and Jones, 2002). Another approach has been to focus on the temporal structure 

of dLGN responses and how CT projections alter this structure (Funke et al., 1996; Worgotter et 

al., 1998). Some consensus about CT feedback has emerged: a weak modulatory effect, not 

affecting spatiotemporal properties, that has divergent effects through depolarization to change 

firing mode. Even so, papers continue to appear that challenge this model (Andolina et al., 2013).  

Here, we use the GN220 Nstr1-Cre line, created and distributed by the GENSAT project 

(Gong et al., 2007) to characterize specific and general effects of a genetically specified 

corticogeniculate cell population. This line, referred to hereafter as the Ntsr1-Cre line, restricts 

expression of Cre recombinase to a limited number of cells in cortical layer 6. The morphology of 

cells expressing Cre recombinase suggests that the Ntsr1-Cre line is comprised of a population of 

two cell types, both corticogeniculate. Both cell morphologies include a corticothalamic axon that 

targets the thalamic primary sensory nucleus that project to that cortical volume (Olsen et al., 

2012). One cell type has dendrites that ramify locally in layer 6 as well as extend to layer 4; the 

other also has dendrites in layers 6 and 4, as well as a long apical dendrite that extends to and 

ramifies in layer 1. These types have been called type I and type II, and their function in visual 

processing remains controversial. By hyperpolarizing these cells using Arch, we explore the effect 

of these cells on V1 (Chapter 3) and dLGN responses (Chapter 4). Because our method differed 
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from previous approaches in specificity and in species, we attempted to use the simplest stimuli 

possible and to comprehensively characterize the effect of Ntsr1-CG cells. Briefly, we find similar 

results to some of those reported previously: both facilitative and suppressive effects of Ntsr1-CG 

projections that do not alter spatiotemporal properties, though we do not see evidence for 

changes in thalamic firing mode.  
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CHAPTER 2: THE STRUCTURE OF PAIRWISE CORRELATION IN  MOUSE 
PRIMARY VISUAL CORTEX REVEALS FUNCTIONAL ORGANIZATI ON IN THE 

ABSENCE OF AN ORIENTATION MAP 
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Abstract 
 

Neural responses to sensory stimuli are not independent. Pairwise correlation can reduce coding 

efficiency, occur independent of stimulus representation, or serve as an additional channel of 

information, depending on timescale of correlation and method of decoding. Any role for 

correlation depends on its magnitude and structure. In sensory areas with maps, like the 

orientation map in primary visual cortex (V1), correlation is strongly related to the underlying 

functional architecture, but it is unclear whether this correlation structure is an essential feature of 

the system or arises from the arrangement of cells in the map. We assessed the relationship 

between functional architecture and pairwise correlation by measuring both synchrony and 

correlated spike count variability in mouse V1. We observed significant pairwise synchrony, which 

was organized by distance and relative orientation preference between cells. We also observed 

non-zero correlated variability in both the anesthetized (0.16) and awake states (0.18). Correlated 

variability was associated with common excitatory input, but not direct excitatory connections. Our 

results indicate that the structure of pairwise correlation on any timescale is maintained in the 

absence of an underlying anatomical structure, and may be an organizing principle of mammalian 

visual system preserved by non-random connectivity within local networks.  
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Introduction 
 

Throughout sensory systems, neurons are organized by response preference, so that 

like-responding neurons are close to each other, creating a functional map [e.g., orientation pin- 

wheels in primary visual cortex (V1)]. Despite the ubiquity of maps, their role is unclear. For 

example, although rodent V1 lacks an orientation map (Ohki et al., 2005), single-cell orientation 

selectivity is not grossly different than in species with an orientation architecture (Niell and 

Stryker, 2008; Gao et al., 2010). In addition, correlations of spike output within a population of 

responding neurons are also organized by the underlying functional architecture. In V1, pairwise 

correlated activity depends on the pair’s relative orientation preference (Kohn and Smith, 2005; 

Smith and Kohn, 2008), relative distance (Kruger and Aiple, 1988; Gawne and Richmond, 1991; 

Smith and Kohn, 2008), and among distant cells it is only observed between cells with similar 

orientation preference (Ts'o et al., 1986). 

Correlations reflect the functional connectivity within a network (Perkel et al., 1967a). In 

addition, correlations can affect representation of information by a network in diverse ways, 

including influencing pooling (Zohary et al., 1994; Abbott and Dayan, 1999; Romo et al., 2003) 

and enhancing post- synaptic integration (Alonso et al., 1996; Cardin et al., 2010a). Any role for 

these correlations in sensory coding depends on the magnitude of correlation and the structure of 

correlation relative to space and stimulus parameters (Abbott and Dayan, 1999; Deneve et al., 

1999; Pouget et al., 1999). In the presence of an orientation map, nearby neighbors often share 

selectivity for space and orientation, making the local structure of pairwise correlation difficult to 

determine. 

To elucidate the local structure of pairwise correlation in V1, we utilize layer 2/3 of mouse 

V1, where distance between a pair of cells is independent of relative orientation selectivity. The 

structure of functional connectivity could reflect disordered functional architecture with random 

connectivity (Jia et al., 2010; Hofer et al., 2011; Hansel and van Vreeswijk, 2012). However, we 

hypothesized that synaptic specificity of inputs to (Yoshimura et al., 2005; Yoshimura and 
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Callaway, 2005) and within (Ko et al., 2012) layer 2/3 networks would result in a structure of 

pairwise correlations between neurons that is dependent on orientation and distance even in the 

absence of functional architecture. 

We measured pairwise correlation on two timescales: a longer timescale of mean spike 

count on a trial-to-trial basis (rsc) and a short timescale of synchrony within tens of milliseconds. 

We found that pairwise synchrony is dependent on the distance and the difference in orientation 

preference between the cells in each pair. Both visually evoked and spontaneous rsc are also 

organized by pair distance and orientation preference. Our results show that, in mouse V1, 

specific synaptic connectivity maintains the structure of pairwise correlation despite the absence 

of a map. 
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Materials and Methods 
 

Animal Preparation and Surgery 

All procedures were done within the guidelines of the National Institutes of Health and were 

approved by the University of Pennsylvania Institutional Animal Care and Use Committee. Adult 

C57/B6 mice (8– 24 weeks) were initially sedated with a mixture of xylazine (10 mg/kg) and 

fentanyl (10 µg/kg); anesthesia was induced with a high concentration of isoflurane (5%) and 

maintained with continuous inhaled isoflurane (0.1–1%). Additional doses of fentanyl (5µg/kg) 

were administered every approximately 2 h to maintain anesthetic plane. The depth of anesthesia 

was monitored by heart rate (maintained between 300 and 600 beats/min), pupil dilation, pinch 

reflex, and fol- lowing the opening of the craniotomy by the level of synchronous activity in the 

local field potential (LFP). After placement in a stereotactic apparatus, eye moisture was 

maintained by application of a transparent lubricant and body temperature was maintained at 

37°C by rectal monitoring and a heating pad (FHC In c., Bowdoin, ME, USA). A 2-by-2 mm 

craniotomy was opened over V1. To minimize damage during electrode penetration, the dura was 

resected across the majority of the craniotomy using a dura hook and the exposed surface was 

coated with a layer of silicon oil. Following surgery, the entire stereotactic apparatus was rotated 

60° to position the contralateral eye in front of t he display screen. 

For separate set of animals (n = 3), a survival surgery was performed at least 1 week prior to a 

single recording session. During this surgery, two fixation bolts were permanently implanted and 

a V1 craniotomy was performed. The exposed V1 was covered with silicon oil and the opening 

resealed. On the day of recording, the mouse was head-fixed on a passive treadmill using the 

implanted bolts. The temporary seal over V1 was removed, mouse rotated 60° to position the 

contralateral eye, and tetrodes lowered as described above. The mouse was allowed to run freely 

and transitioned between passive and active behavioral states. 
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Electrophysiology 

Following surgery, an array of four to six tetrodes (Thomas Recording GmbH, Giessen, Germany) 

arranged either linearly or concentrically was inserted into V1 perpendicularly relative to the 

cortical surface. In both configurations, the tip-to-tip space between neighboring tetrodes was 254 

µm. Individual tetrodes were 100 µm in diameter with a central contact at the tip approximately 40 

µm below three concentrically arranged contacts around the shaft approximately 20 µm from 

each other. Signals were preamplified by the tetrode drive and amplified, individually filtered, and 

acquired at 30 kHz using a Cheetah 32 acquisition system (Neuralynx, Boseman, MT, USA). 

High-frequency spiking activity was isolated at each contact by filtering between 600 and 6000 

Hz. A single channel from each tetrode was duplicated and filtered 0.1–375 Hz to record an LFP. 

Each tetrode was individually inserted to an initial depth of 100–160 µm. Following a rest period 

of at least 30 min, each tetrode was lowered through the cortex in 2-µm steps until at least one 

strong unit was present; in this dataset, all tetrodes were stopped before reaching approximately 

350 µm below the cortical surface, the putative boundary of layers 3 and 4. 

 

Visual Stimuli 

All visual stimuli were generated using the ViSaGe stimulus generation hardware (Cambridge 

Research Systems, Cambridge, UK) and a custom software package utilizing the accompanying 

MATLAB (Math- works, Natick, MA, USA) toolbox. Stimuli were displayed on a 19-in cathode ray 

tube monitor configured to refresh at 100 Hz. This monitor was gamma-corrected using a 

luminometer and ViSaGe configuration software and placed 30 cm from the eye contralateral to 

the craniotomy. Full-screen stimuli covered approximately 70° of visual field. After tetrode 

insertion, the screen was set to a background of 50% luminance. Stimuli consisted of drifting 

sinusoidal gratings. To drive responses from as many cells as possible, all stimuli were 100% 

contrast and 0.04–0.06 cycles/°, in line with previ ous reports in mouse visual cortex (Niell and 
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Stryker 2008; Gao et al. 2010; Niell and Stryker 2010). The 70° stimuli were sufficiently large, as 

the visual space recorded by our most distantly spaced electrodes is approximately 30°; given the 

median size of a mouse V1 receptive field (Gao et al., 2010) of all cell pairs recorded up to 500 

µm are at least partially overlapping (Bonin et al., 2011). 

 

Spike Clustering and Data Analysis 

Spike waveforms from each tetrode were clustered into individual units offline using a mixture of 

algorithmic and manual sorting (Spike- Sort3D, Neuralynx). Waveforms were initially sorted using 

KlustaKwik and subsequently manually refined (e.g., Fig. 1A,B). All clusters with spikes in the 0–

1-ms bin of the interspike interval histogram were strictly rejected. To assess the quality of 

separation of the identified single units, we measured isolation distance and the L-ratio for each 

cluster (Fig. 1C), which indicate the distance of the center of the cluster from the noise and the 

quality of the moat around the cluster, respectively (Schmitzer-Torbert et al., 2005). An example 

set of clustered data in Figure 1A–C shows the isolation of 6 single units from one tetrode, with 

isolation distances >10 and L-ratios <0.4. 

All analysis of single-cell and pairwise spikes was done using Igor Pro 6.0 (Wavemetrics, 

Lake Oswego, OR, USA) at 1-ms resolution. Orientation tuning was quantified using the average 

number of spikes over the duration of stimulus presentation. The orientation tuning curves, across 

the range 0–360°, were fit with the von Mises funct ion (Swindale, 1998): 
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where b0 is an offset for the baseline firing rate, b1 and b2 independently determine the size of 

each peak, K is the width parameter, and µ the preferred orientation. The maximum value of this 

fit was used as the cell’s preferred orientation, and the half width at half height indicates the 

bandwidth of orientation selectivity. The difference in preferred orientation (∆θ) is the difference 



21 

 

between the maxima for a pair of cells. Orientation selectivity index (OSI) was calculated, from 

raw responses, as the difference between responses at preferred and orthogonal orientations as 

follows: 
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where Rpreferred is the response at the preferred orientation, as deter- mined by the circular 

Gaussian fit, and Rortho is the response at the orientation 90° from R preferred. All reported p-

values were calculated using the Wilcoxon rank-sum test. 

Correlation Measures 

Correlation between pairs of cells was measured on two timescales: trial-to-trial variation in spike 

count (rsc) and synchrony within 10 ms. Correlated variability was defined as the shared 

variation, either increase or decrease, in the number of spikes fired over a given time window. 

The time window used here was the duration of stimulus presentation, which was 2 s. To 

calculate the rsc for a given pair, the response of each cell was assigned a z-score for each trial: 
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where x is the rate on a given trial, µ the average rate for all trials, and σ the variance. The 

Pearson correlation was computed as the product of z-scores between a pair summed across all 

trials: 
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where n is the number of trials, Xi and Yi the rates for each cell on a given trial, X and Y the 

sample means for each cell, and σX and σY the sample variance for each cell. 

Synchrony was calculated as a peak in a cross-correlogram (CCG) occurring within 10 

ms of the zero line. To produce CCGs, we followed Perkel et al. (1967a) to compute raw cross 
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correlation; to account for differences in firing across the population, each CCG was divided into 

the geometric mean of the firing rates of the pair of cells. CCGs were further corrected by the 

jitter-correction method (Smith and Kohn, 2008; Harrison and Geman, 2009)) using a 50-ms jitter 

window. Choosing this window size destroys all correlations <50 ms in the correction term, but 

preserves correlation on all longer timescales. Subtraction of this correction term isolates only the 

correlation in the raw CCG that occurs on the <50 ms timescale. The presence of a synchronous 

peak was assessed using a threshold set 2 standard deviations (SD) above the mean level of 

correlation. Mean correlation was here defined as the mean of the corrected CCG from 100 to 

200 ms. The magnitude of synchrony was determined as the area between the threshold and the 

CCG ±10 ms from the zero line. The correction method used did not affect the presence or the 

size of synchronous peak (see Fig. 3C,D). All measurements reported here are based on jitter-

corrected CCGs. 

To statistically justify the separation of CCG shapes into classes, we measured several 

parameters from each CCG: width, peak lag, and symmetry. Width was measured at the crossing 

of the significance threshold. Peak lag was the difference between zero and the time at which the 

peak occurred. CCG symmetry was measured as follows: 
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where P0 is the magnitude of the peak at time zero and Pmax the magnitude of the peak. This 

measure was taken over ±100 ms, and all values below the significance threshold were treated 

as baseline (i.e. given a CCG magnitude of zero). 
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Results 
 

Our goal was to quantify visually driven and spontaneous pair- wise correlations of neurons in the 

supragranular layers 2 and 3 (L2/3) of mouse V1 as a function of their relative distance and their 

similarity of orientation preference. We recorded single neurons from L2/3 of V1 of anesthetized 

mice (n = 38) using six independently positioned tetrodes. To minimize sampling bias, the 

position of the tetrodes in L2/3 was not readjusted once a set of cells was detected within the first 

370 µm from the pial surface. Individual units were identified using an offline, partially automated 

clustering procedure (see Materials and Methods; Fig. 1A–C). Each tetrode sampled up to seven 

single neurons simultaneously. To maximally drive spiking activity from each population of 

simultaneously recorded neurons, we used full screen, 100% contrast, drifting sinusoidal gratings 

optimized in spatial and temporal frequencies for mouse V1 (0.06 cycles/°, 2Hz; Niell and Stryker 

2008; Gao et al. 2010). The example cell in Figure 1D responded to repeated presentations of an 

optimally oriented drifting grating with a nonmodulated increase in the firing rate (mean = 7.2 Hz). 

The visual response was robust and consistent across trials, as shown by the raster plot 

(consecutive trials from top to bottom); this cell showed characteristic strong adaptation during 

the course of the grating as illustrated by the decrease in frequency in the peristimulus time 

histogram (PSTH, in light gray). Our population consisted almost exclusively of nonmodulating 

cells with an F1/F0 ratio compatible with a classification as complex cells (Supplementary Fig. 1). 

We plotted the mean firing rate as a function of stimulus orientation (n = 20 presentations of each 

orientation) and used a circular Gaussian fit to generate the orientation tuning curve (Fig. 1E). 

This cell had a preferred orientation of 223° and a n OSI of 0.72. We included in our database all 

cells which fired a minimum of 400 spikes over the 20 min required for the stimulus block, 

resulting in a total of 648 cells and 4160 simultaneously recorded pairs. Across the population, 

the mean evoked firing rate was 6.4 ± 7.0 Hz (mean ± SD), spontaneous firing rate was 0.29 ± 

0.34 Hz, and the mean half height at half width of orientation tuning curves was 23° ± 8.3°. The 

OSI distribution was clearly bimodal with a large number of cells highly selective for stimulus 
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orientation (>0.8 OSI) and a large number with weak selectivity (<0.4 OSI). However, there were 

only 3 untuned cells in our database with OSIs <0.2 (Fig. 1F, left panel). The response properties 

of the cells in our database were consistent with recent quantitative descriptions of mouse V1 

(Niell and Stryker 2008; Gao et al. 2010). 

 

Quantification of Correlation 

  We quantified correlated firing for each pair of simultaneously recorded cells on two 

timescales, according to previously established methods (Perkel et al. 1967; Smith and Kohn 

2008): (1) synchrony, which measures the pairwise correlation of spike times within ±10 ms, and 

(2) correlated variability (also called noise correlation, or rsc), which measures the trial-to-trial 

correlation of spike counts over the duration of each trial (2 s). All measurements of correlation 

were made from responses to 2 Hz drifting gratings of varying orientation, sufficient to elicit a 

response from many cells on each trial. Correlations induced by the temporal frequency of these 

stimuli are broader than the synchrony measured. 

We quantified synchrony from the pairwise CCGs (bin = 1 ms) normalized by the 

geometric mean firing rate and corrected using the subtraction of a 50-ms jitter-correction term to 

remove stimulus-induced correlation (see Materials and Methods). The “magnitude” of synchrony 

was the area of the central peak (±10 ms) of the CCG exceeding 2SD above base- line noise 

(Fig. 2A, the dotted line indicates 2SD; see Materials and Methods). The “probability” of 

synchrony was the ratio of the number of pairs with a significant peak over all recorded pairs. We 

further subdivided the population of significant CCGs based on the position of the peak with 

respect to the zero line. A positive peak entirely displaced from the zero line was classified as 

“offset” synchrony (Fig. 2A, left; n = 90/4160). 

This shape is not sufficient to demonstrate a direct connection, but is the most likely 
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explanation for such a shape (Perkel et al. 1967; T’so et al. 1986; Ostojic et al. 2009). A positive 

peak straddling the zero line was classified as “zero spanning,” and is consistent with a shared 

source of excitatory input (Fig. 2A, right; n = 234/4160; Perkel et al. 1967). Most zero-spanning 

peaks were not centered over the zero line (164/234 zero-spanning peaks). The remainder of 

zero-spanning peaks were centered on zero (70/234). This ad hoc classification of CCGs as 

offset or zero spanning was supported by the difference in the distribution of peak widths (Fig. 

2B), showing statistically different means (Fig. 2E; P < 0.005). The distribution of peak lags, 

defined as the time of peak relative to zero, was complementary: zero-spanning CCGs were 

centered on zero (Fig. 2C, right), while offset CCGs had a bimodal distribution with centers at 5 

and −5 ms (Fig. 2C, left). The absolute peak lag was significantly larger for offset CCGs than 

zero-spanning CCGs (Fig. 2E, center; P < 0.005). To formalize the difference between the two 

CCG classes, we measured peak symmetry relative to zero (see Materials and Methods). This 

value is 1 for peaks exactly centered on the zero line and 0 for peaks fully shifted from the zero 

line. All offset CCGs showed high asymmetry (Fig. 2D, left). Zero-spanning CCGs (Fig. 2D, right) 

had a bimodal distribution of symmetries, with a population of highly symmetrical CCGs 

(symmetry >0.4; mean: 0.79 ± 0.02) and a population of asymmetrical, yet zero-spanning, CCGs 

(symmetry <0.4; mean: 0.26 ± 0.005). The subset of symmetrical zero-spanning CCGs was 

similar to the full population of zero-spanning CCGs in all measurements made subsequently 

(Supplementary Fig. 2), and so all zero-spanning CCGs were grouped to maximize statistical 

power. 

We tested several factors that could affect measurements of CCG magnitude. We 

compared the CCG magnitude measured using the jitter-correction method (Smith and Kohn 

2008) with two other forms of stimulus correlation removal: shift correction and shuffle correction 

(Fig. 3A,B). The method removal of stimulus correlation did not significantly reduce the size of the 

zero-spanning CCGs or offset CCGs (Fig. 3B–F). Further, to account for correlations during any 

onset transient, we removed the first 250 ms of each response after correcting each CCG (Fig. 
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3C,D). The removal of this onset transient reduced the peak of some pairs slightly (Fig. 3D), but 

the reduction in CCG magnitude was not significant and smaller than the percentage of spikes 

removed. 

We included pairs recorded on the same tetrode, despite the inability to detect near 

synchronous spikes for such pairs due to acquisition enforced dead times; because of this, we 

removed the zero-lag bin from all CCGs from pairs on the same electrode. Peaks from the cells 

recorded on the same tetrode reflected both forms of synchrony (e.g., Fig. 4A). Removing the 

zero-lag bin affected the classification of CCGs as offset or zero spanning in only 1 of 90 offset 

CCGs. 

We quantified trial-to-trial correlated variability, or rsc, as the Pearson correlation 

coefficient of standardized mean firing rates across the duration of a trial. This measure is equal 

to 1 when the covariance between a pair is perfect and 0 when a pair of cells does not covary. 

 

Synchrony as a Function of Orientation Preference 

We first examined the dependence of synchrony on the difference in orientation preference, 

regardless of the distance between neurons in each pair. The difference in orientation preference 

(∆θ, range = 0–90°) was measured as the difference bet ween preferred orientation of the 2 cells 

in each pair, esti- mated from the Gaussian fits to the orientation tuning curves (as illustrated in 

Fig. 1). Figure 4A illustrates 3 cells that were isolated on the same tetrode (indicated in black) and 

therefore, within an approximate radius of approximately 200µm (Buzsáki et al., 2012). We chose 

to illustrate a group of cells re- corded from the same tetrode to emphasize the fact that neurons 

in close proximity may show very different orientation preferences (Ohki et al. 2005). Cells 1 and 

2 differed only by 18° in their optimal orientation  (cell 1: 255° and cell 2: 273°), but diverged by 

53° and 35°, respectively, from cell 3 (128°). Cros s-correlation revealed zero-spanning synchrony 
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with a magnitude that was dependent on the similarity of orientation preference despite the 

proximity of the neurons. The strongest synchrony was observed within the pair with the most 

similar orientation preference (CCG peak = 0.016, cells 1 and 2), while the pair with largest 

difference in orientation preference showed no significant synchrony (cells 1 and 3), and the 

intermediate orientation preference difference showed weaker synchrony (CCG peak = 0.002, 

cells 2 and 3). This example is inconsistent with the synchrony observed between neighboring 

neurons at pinwheel singularities in cat visual cortex, where the magnitude of synchrony of 

nearby neighbors is unaffected by difference in orientation preference (Das and Gilbert, 1999). 

We obtained population measures of the relationship between synchrony and orientation tuning 

separately for zero-spanning (Fig. 4B) and offset CCGs (Fig. 4C). For zero-spanning synchrony, 

the probability (gray) and magnitude (black) of synchrony were dependent on ∆θ and were fit by 

exponential decay functions (x2
prob 1⁄4 4 10_4; x2

mag 1⁄4 4 10_5; Fig. 4B). The probability of 

zero-spanning synchrony was higher for cell pairs whose preferred orientations differed by <30° 

than for cell pairs with less similar orientation tuning (Fig. 4B). As a function of ∆θ, the magnitude 

of zero-spanning synchrony decreased more slowly (τmag = 126.2°) than the probability ( τprob = 

19.9°; Fig. 4B). To determine a criterion ∆θ value for magnitude zero-spanning synchrony, we 

compared each 10° ∆θ bin to the first bin (0°– 10°); the first signific antly different bin was 40–50° 

(P = 0.03), and all subsequent bins were significantly different (P < 0.05). We conclude that zero-

spanning synchrony is both strongest and most likely within pairs with ∆θ < 40°, reflecting the 

specificity of L4 projections to L2/3. 

For offset synchrony, probability and magnitude were also dependent on ∆θ and were fit by 

exponential decay functions (x2
prob 1⁄4 7:5 10_5 ; x2

mag 1⁄4 8:8 10_5 ; Fig. 4C). The magnitude 

of offset synchrony decayed similar to probability (τmag = 15.6° and τprob = 9.3°). The probability 

of offset synchrony was small and relatively flat for ∆θ greater than 30° (Fig. 4C). The criterion ∆θ 

value for offset synchrony was 10–20° (P = 0.003), and all subsequent bins were significantly 
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different (P < 0.05); the exponential decay saturated >40°. We conclude that the strength of offset 

synchrony is strongest within pairs with ∆θ < 40°, consistent with in vitro measurements of 

synaptic connections between neighboring cells of known orientation preference (Ko et al. 2011). 

The dependence of synchrony on firing rate could affect this measurement (la Rocha et 

al., 2007), as dissimilarly tuned cells are less likely to fire spikes on the same trial. However, 

across ∆θ, rate-matched pairs yielded exponential fits similar to the full dataset (data not shown), 

indicating that the effect of stimulus selectivity on synchrony is not dependent on rate. 

 

Synchrony as a Function of Distance 

We next considered how the distance between a pair of cells affects synchrony independent of 

their difference in orientation preference. We found that the distance between a pair of cells, as 

measured by electrode spacing, significantly affected the probability and magnitude of both types 

of synchrony. The example in Figure 5A shows three neurons recorded from three tetrodes 

spanning 508 µm. The orientation preference of these cells was very similar, differing by only 4–

8° (cell 1: 221°, cell 2: 217°, and cell 3: 225°). Despite the considerable distance between cells 1 

and 3, they had a significant zero-spanning CCG peak (magnitude = 0.012). One closer pair had 

a larger synchrony magnitude in spite of having similar ∆θ (cells 1 and 2: 0.026), demonstrating 

the effect of distance on the magnitude of zero-spanning synchrony, while another closely spaced 

pair had weaker synchrony (cells 2 and 3: 0.001). 

For the population, the decay of probability and magnitude of zero-spanning synchrony 

as a function of distance were well fit by an exponential decay (x2
prob 1⁄4 5:7 10_3 ; x2

mag 1⁄4 

1:4 10_5; Fig. 5B). Probability decayed slightly faster than magnitude but on the same order of 

magnitude (τprob = 491.0 µm; τmag = 662.8 µm). Magnitude dropped significantly at the 508-µm 

distance (Fig. 5B; P = 0.01). The probability of offset synchrony fell exponentially with distance 
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(χ2 = 2.2 × 10−6; Fig. 5C) much faster (τprob = 162.9 µm) than zero-spanning synchrony. The 

magnitude of offset synchrony decayed quickly (x2
mag 1⁄4 5:4 10_6; τmag = 72.7 µm), though 

the few observations of offset synchrony at distances >508 µm were not significantly smaller than 

those at smaller distances (P > 0.05). Our measurements constrain the spatial extent of the 

functional networks described by zero-spanning and offset synchrony. The spread of zero-

spanning synchrony suggested a wider feedforward network, approximately 1 mm in diameter, 

compared with a more constrained functional network of offset synchrony, <400 µm in diameter. 

 

Width of Synchrony as a Function of Distance  and Orientation Preference   

The width of the synchronous peak can affect the measurement of synchrony strength and may 

be regulated by distinct mechanisms in V1 (Kohn and Smith 2005). Within the allow- able window 

of ±10 ms, we measured the width of the synchronous peak at the point of crossing the 2SD 

significance threshold. Offset synchrony peaks were significantly narrower (4.8 ± 2.77 ms) than 

zero-spanning synchrony (8.7 ± 3.29 ms; P < 0.005, Wilcoxon rank test, Fig. 2B). Narrower offset 

synchrony peaks are compatible with the underlying hypothesis that this form of synchrony arises 

from a single source, while zero-spanning peaks can arise from multiple sources. For both types 

of synchrony peak, peak width was positively correlated with CCG magnitude, though weakly 

(Fig. 6A; slope of the linear fit, zero-spanning: 0.48 × 10−3 ± 0.28 × 10−3; offset: 0.67 × 10−3 ± 

0.45 × 10−3). There was no trend in peak width, either offset or zero-spanning, over difference in 

preferred orientation (Fig. 6B). Zero-spanning synchrony was narrower for nearby cells (<500 

µm), even though these nearby pairs had higher synchrony magnitude (Fig. 5B), but still not as 

narrow as offset synchrony (Fig. 6C). Across the distances measured, the width of offset 

synchrony peaks was un- changed (Fig. 6C). 
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Synchrony as a Function of Both Orientation Prefere nce and Distance   

Finally, we measured the codependence of both forms of synchrony on distance and ∆θ, a 

measurement that is straightforward here because distance and orientation preference are 

independent across the topography of mouse visual cortex (i. e., there are no orientation 

pinwheels). Across a network of approximately 1 mm, zero-spanning synchrony is more likely and 

of larger amplitude for neurons with similar orientation preference (Fig. 7A–C). The probability 

and magnitude of zero-spanning synchrony decreased as a function of distance across all ∆θ. 

Notably, probability and magnitude appeared to have the same structure over distance and ∆θ, 

reflecting the stimulus specificity of the common input presumably originating in L4 and 

responsible for the orientation selectivity of L2/3 neurons. 

In contrast, the probability of offset synchrony was nearly independent of ∆θ for nearby 

cells (<500µm; Fig. 7D). However, the magnitude of offset synchrony between neighbors was 

highly dependent on ∆θ, falling for ∆θ > 20°. Thus, within smaller networks (<500 µm), 

connectivity is wide- spread but the strength of connectivity is ∆θ specific. For further separated 

pairs (>500 µm), the probability of connection was lower and limited to pairs with ∆θ < 30°; 

observations of offset synchronous pairs separated by >500 µm and with ∆θ > 30° were rare and 

always of very small magnitude (Fig. 7E). Thus, our measurements show that the mechanisms 

that generate zero-spanning, but not offset, synchrony between nearby cells (within 

approximately 200 µm) show specificity to the orientation preference within the pair. For longer-

range connections, both forms of synchrony show specificity for the orientation preference within 

the pair. 

To fully characterize the structure of functional connectivity, we created a measure of 

connectivity strength by multiplying the probability of observing synchrony by the magnitude of 

the synchrony observed at each distance and ∆θ (Fig. 7C,F). We call this metric functional 

connectivity “power”. For zero-spanning synchrony, connection power showed a similar 
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parametric dependence on distance and ∆θ as probability and magnitude alone. That is, the 

strongest zero-spanning power was for nearby and similarly tuned cells, decreasing with both 

distance and ∆θ (Fig. 7C). 

The power of offset synchrony had a similar parametric dependence as the power of 

zero-spanning synchrony, again showing the strongest functional connectivity for nearby and 

similarly tuned cells, decreasing with both distance and ∆θ (Fig. 7F). Unlike zero-spanning power, 

the structure of the power of offset synchrony was however created by the combination of 

complementary dependencies: the effect of ∆θ at distances >500 µm was conferred by the 

probability (Fig. 7D), while the effect of ∆θ at local distances was conferred by the magnitude 

(Fig. 7E). These plots demonstrate that functional connectivity can be organized in the absence 

of a functional architecture. In addition, the powers of functional connectivity of zero-spanning and 

offset synchrony show matching organization: highest for nearby cells with the similar orientation 

preference, lowest for distant pairs of the orthogonal orientation preference. Our data show 

functional connectivity that reflects the synaptic specificity of input to and within layer 2/3, in 

agreement with predictions based on in vitro measurements (Yoshimura et al., 2005; Ko et al., 

2012). 

 

Correlated Variability 

The correlated fluctuation of trial-to-trial response magnitude, or correlated variability (rsc), can 

have repercussions for how populations of neurons represent sensory responses from both the 

encoding and decoding perspectives (Johnson 1980; Zohary et al. 1994; Panzeri et al. 1999; 

Pouget et al. 2003; Averbeck and Lee 2006; Averbeck et al. 2006; Cohen and Kohn 2011). Under 

our conditions, we observed an evoked rsc across our population of 0.16 ± 0.003 (mean ± SD; 

Fig. 8A, left, gray histogram, mean indicated by gray arrow). This value is similar to that 

measured in anesthetized macaque V1 over a comparable scale (Gawne and Richmond 1993; 
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Reich et al. 2001; Kohn and Smith 2005; Smith and Kohn 2008) and cat V1 (Das and Gilbert, 

1999). We quantified a “spontaneous” rsc using the periods between presentations of visual 

stimuli. To account for adaptation effects from the preceding stimulus, we calculated a 

spontaneous rsc from periods subsequent to stimuli of the same orientation, and averaged across 

all orientations. Ac- counting for adaptation effects reduced spontaneous rsc primarily for nearby 

pairs (data not shown). The rsc calculated from epochs of spontaneous activity (0.15 ± 0.005; Fig. 

8A, black histogram, mean indicated by black arrow) was not significantly higher than evoked rsc 

(P = 0.13). Spontaneous rsc was highly correlated with evoked rsc (linear fit slope = 0.82 ± 0.02, 

R2 = 0.47, Fig. 8A, right). 

 

Correlated Variability as a Function of Distance  and Orientation Preference   

At our spatial scale, we observed a dependence of evoked rsc on distance, well fit by an 

exponential decay function (χ2 = 0.004, τ = 209.9 µm; Fig. 8B, left panel). It is important to note 

that although the area of cortex over which we measured correlation (approximately 1mm) is 

more limited than in studies of other species, the span of visual space covered by our recordings 

is actually slightly larger (approximately 60° of v isual space; Kalatsky and Stryker 2003). The 

decay in evoked rsc with distance (τ = 209.9 µm; Fig. 8B, left) was most similar to the decay in 

offset magnitude (τ = 162.9 µm; Fig. 5C). The fit parameters used to fit the magnitude of offset 

synchrony fit the decay of evoked rsc with χ2 = 3 × 10−4, consistent with a conclusion that trial-

to-trial correlated variability is at least partially mediated by connectivity within L2/3. 

We further investigated correlated variability by examining the relationship between ∆θ 

and rsc. In the presence of functional architecture, evoked rsc depends on orientation tuning 

similarity (Smith and Kohn 2008). While we did observe an initial decay of evoked rsc with 
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increasing ∆θ, evoked rsc in- creased at larger ∆θ leading to a slightly U-shaped dependence 

(Fig. 8C, left). Still, this dependence was fit with an exponential decay (τ = 11.7°, χ2 = 2 × 10−4). 

Finally, we were able to measure the codependence of evoked rsc on distance and ∆θ 

(Fig. 8D, left), as we did for synchrony (Fig. 7). At short distances, evoked rsc depended on ∆θ, 

while at distances >500 µm, rsc was independent of ∆θ. The two-dimensional relationship of 

evoked rsc closely matched that of synchrony power. We further explore the relationship between 

evoked rsc and functional connectivity below (Fig. 10). The structure of evoked rsc demonstrates 

that correlation can be organized in the absence of functional architecture. 

 

Correlated Variability of Spontaneous Activity 

The correlated variability of spontaneous activity could have different spatial properties than that 

of evoked activity. Similar to evoked rsc,, we observed a dependence of spontaneous rsc on the 

distance between the pair (Ch'ng, 2010) (τ = 235.3 µm, χ2 = 0.013; Fig. 8B, right). ∆θ had a weak 

effect on the measured spontaneous rsc (τ = 3.0°, χ2 = 3 × 10−4; Fig. 8C, right). A stronger 

dependence of spontaneous rsc on ∆θ was apparent for nearby pairs (Fig. 8D, right), as has 

been previously observed in rodents (Ch’ng and Reid 2010). The relatively flat spatial and 

orientation tuning structure of spontaneous rsc (Fig. 8D, right) suggests that the source of input 

responsible for these correlations operates nonspecifically over a distance >1 mm in mouse V1, 

distinct from the sources of synchrony. 

 

Correlated Variability as a Function of Network Sta te 

It has been argued that the conditions that give rise to correlated variability of the magnitude 
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observed here are not physiologically relevant (Ecker et al., 2010), namely that correlated 

variability is aberrantly increased by several factors, including clustering error and anesthetic-

induced network state. To assess the role of network state on correlated variability, we quantified 

network synchronization using the spectral content of LFP recordings. The level of gamma 

activity either immediately preceding or during evoked activity did not affect the value of rsc 

observed (Supplementary Fig. 3). To more directly assess the role of anesthesia on rsc, we 

measured rsc in awake, head-fixed mice under the same visual stimulus paradigm. Under these 

conditions, spontaneous and evoked firing rates were higher than under anesthesia (spontaneous 

mean: 2.8 ± 2.12 Hz; evoked mean: 8.082 ± 7.52 Hz; Fig. 9A), but cells showed similar 

orientation tuning (Fig. 9B). As such, these conditions eliminate two of the proposed confounding 

factors in measuring rsc: anesthetic-induced synchronization and dampened firing rates. Despite 

this, evoked rsc was very similar in the anesthetized and awake states (anesthetized: 0.16 ± 

0.002, awake: 0.18 ± 0.03, P = 0.34; Fig. 9C). In contrast, spontaneous rsc (0.03 + 0.01) was 

much lower in the awake state than that observed in the anesthetized state (anesthetized: 0.36 ± 

0.004, P < 0.01; Fig. 9C), likely due to the lack of a slow oscillation in the LFP. In summary, 

measurements of correlation in the awake state were not different than those measured under 

our anesthetic regime. 

 

The Relationship Between Correlated Variability  and Synchrony   

To investigate the origin of correlated variability, and to directly assess the relationship between 

the two timescales of correlation measured here, we sought to determine if correlated variability 

was predictive of either the probability or the magnitude of synchrony between pairs. To do this, 

we classified each of the 4160 pairs based on their value of evoked and spontaneous rsc. We 

sorted each pair into one of three classes: High, moderate, or low rsc according to the distribution 
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of rsc values (Fig. 10A). The thresholds for high (evoked rsc > 0.36; spontaneous rsc > 0.31; Fig. 

10A,B, light gray) and low (evoked rsc < −0.04; spontaneous rsc < −0.02; Fig. 10A,B, black) 

classes were set one SD above and below the mean, respectively. The probability (Fig. 10C, left) 

and magnitude (right) of zero-spanning synchrony within each rsc class were highest for pairs 

with high evoked rsc. In contrast, the probability and magnitude of zero-spanning synchrony were 

highest for pairs close to the mean value of spontaneous rsc (Fig. 10C, right), indicating a 

dissociation of the source of spontaneous rsc from both evoked rsc and zero-spanning 

synchrony. We observed even probability of offset synchrony across evoked rsc classes, with 

higher CCG magnitude for pairs with midlevel rsc (Fig. 10D), suggesting the mechanisms that 

generate offset synchrony have relatively less impact in determining the correlation of spike count 

variability. 
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Discussion 
 

We measured the pairwise correlation of spike output in mouse V1 in response to visual 

stimulation on two timescales: synchronous spikes within ±10 ms and covariations in the mean 

evoked firing rate. Each has implications for information processing, depending on the neural 

implementation of de- coding. We measured synchrony using pairwise CCGs and found that both 

the magnitude and probability of positive CCGs were a function of the difference in orientation 

tuning and distance between the two neurons in the pair, a functional structure despite the 

absence of columns. 

We measured pairwise correlated variability (rsc) of mean trial spike counts using 

Pearson’s correlation coefficient. We found a small but significant value of rsc (0.16 ± 0.01), 

similar to most of the studies in the literature. This magnitude was not due to anesthesia, as it 

was not significantly different in awake, actively moving mice. We found that rsc depended on 

inter- neuronal distance and on the difference of orientation preference. Our results revealed a 

structure of neuronal correlations independent of a functional architecture. 

 

Synchrony and Functional Connectivity 

Cross-correlation techniques were originally developed to demonstrate functional 

connectivity between pairs of neurons (Perkel et al. 1967). We observed two types of positive 

CCG. The most common (234 of 4160 pairs; 5.6%) was a central peak straddling the zero line. 

We classified these as zero-spanning input because this shape could encompass complex 

synaptic arrangements, including common excitatory input and direct connections. The second 

type of CCG (90 of 4160; 2.2%) showed the entire positive peak offset from the zero line by a few 

milliseconds, compatible with monosynaptic latency. While this shape is not sufficient to establish 

connec- tivity, which can only be demonstrated with dual simultaneous intracellular recordings 
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(Thomson and Lamy 2007) or electron microscopy (Bock et al. 2011), we consider this evidence 

of a direct excitatory connection (Perkel et al. 1967; Ostojic et al. 2009). 

At the short distances recorded by a single tetrode, the probability and magnitude of 

zero-spanning synchrony decreased as a function of relative orientation preference (∆θ) (Fig. 7). 

As in columnar organization, L2/3 visual responses were dominated by orientation-specific L4 

input, in agreement with specific connectivity between L4 and subnetworks of L2/3 pyramidal 

cells demonstrated in rodent visual cortex in vitro (Yoshimura and Callaway 2005). In contrast, 

the probability of offset synchrony at short distances was not dependent on ∆θ, consistent with 

diffuse L2/3 pyramidal cell axons in the local vicinity (Malach et al. 1993; Bosking et al. 1997; Van 

Hooser et al. 2006). As opposed to apparent local promiscuity, distant functional connectivity 

(>500 µm) was highly dependent on orientation tuning as in cat (Ts’o et al. 1986; Gilbert and 

Wiesel 1989; Bringuier et al. 1999), ferret (Tucker and Katz 2003), and macaque (Smith and 

Kohn 2008) V1. Our measurements suggest that common input is strongest within a 500-µm 

radius, matching the width of a receptive field, while strong offset synchrony spanned a shorter 

distance (Fig. 5B,C). In- stances of offset synchrony that span longer distances linked excitatory 

cells with similar orientation preference over approximately 30° of visual space. 

To provide a more complete picture of functional connectivity, we generated a metric that 

combines probability and magnitude, called connection “power.” Like postsynaptic potentials (Ko 

et al. 2011), functional connectivity “power” de- pended on orientation and distance, for both zero-

spanning and offset synchrony. Our results identify a functional role for specific synaptic 

connections: the organization of synchronous spike generation in local networks. 

Observations of networks of synchronous cells are critical for large-scale models of V1 

(McLaughlin et al. 2003; Seriès et al. 2004). Our observation of structured functional connectivity 

does not support models based on local random connectivity, either vertical or horizontal (Hansel 

and van Vreeswijk 2012). 
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Structure of r sc and Synchrony 

Columnar organization determines that nearby neurons share tuning properties and similar noise 

sources. As a result, there is significant correlation between tuning properties and trial-to-trial 

variability. In mouse V1, however, such arrangement is not trivial. Our data show that synchrony 

“power” decays exponentially along both the orientation and distance dimensions. We suggest 

that synaptic specificity within the apparent orientation domain disorganization preserves the 

structure of functional connectivity. Correlated variability is also weakly organized in the 

orientation domain (Fig. 8C); this structure may be partially inherited from contributions of 

functional connectivity (Fig. 10). Regardless of origin, our data indicate that the structures of 

correlated variability and synchrony represent an organizing principle of mammalian visual 

systems. 

Along the distance domain, the decrement in synchrony in mouse V1 matched that in 

macaque V1 (Smith and Kohn 2008), when interneuronal distance is considered in terms of visual 

space. In mouse, correlation extended over less physical brain distance but more visual space, 

by a factor of 30 (30 vs. approximately 1°). This d ifference can be partially accounted for by the 

difference in receptive field diameter. As in macaque, synchrony in mouse V1 required some 

receptive field overlap, though less: we observed synchrony at all levels of overlap, whereas 

monkey required >50% overlap. Synchrony in cat V1 does not strictly require overlap (Ts’o et al. 

1986), but it is dependent on the amount of overlap. 

 

Spike Count Variability and Coding 

Small pairwise correlations in variability limit the effectiveness of increasing the signal-to-noise 

ratio by pooling over many neurons (Zohary et al. 1994; Bair et al. 2001; Reich et al. 2001). 

Therefore, determining accurately the magnitude and structure of correlated variability is essential 
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to constrain coding models based on pooled firing rates (Abbott and Dayan 1999). Although some 

estimate near-zero correlated variability in V1 (Ecker et al. 2010, but see Cohen and Kohn 2011), 

our results agree with a small, nonuniform level of evoked correlated variability independent of 

firing rate and anesthetic state (Fig. 9). 

Correlated variability of spontaneous activity was weakly de- pendent on distance (Fig. 

8), consistent with other studies in rodent V1 (Ch’Ng and Reid 2010). The weakness of 

correlation observed in rodents, together with the lack of correlation from macaque V1 (Smith and 

Kohn 2008), suggests a source of variability during spontaneous activity that is uniform over V1. 

Only at the local level ( pairs separated by <500 µm) was spontaneous correlated variability 

organized by difference in preferred orientation, reflecting the preferred orientation specificity of 

synchrony (Fig. 7) and synaptic connections (Ko et al. 2011). 

Our results showed a significant dependence of evoked correlated variability on distance 

and a weaker dependence on orientation preference. We suggest that the sources of evoked 

correlated variability are organized by the functional architecture. We were able to correlate high 

evoked correlated variability with the presence of zero-spanning synchrony, but not offset 

synchrony (Fig. 10), suggesting that correlated variability is partially mediated by shared sources 

of synaptic excitatory input, but not local excitatory connectivity. 

 

Synchrony and Coding 

Regardless of the underlying functional connectivity, synchronous spikes are critical for driving 

postsynaptic cells in noisy synaptic environments in vivo. Synchronized input more effectively 

drives a postsynaptic neuron than nonsynchronized increases in firing rate (Bruno and Sakmann 

2006). Enhanced effectiveness of synchronized spikes derives from supralinear summation of 

short interspike interval post-synaptic potentials (PSPs). In L4 of cat V1 in vivo, supralinear 
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summation of visually evoked excitatoty PSPs depends on the delay between excitation and 

inhibition within a window of 0–20 ms (Cardin et al. 2010a); elsewhere in sensory systems, 

sensitivity to coincidence requires intervals of <10 ms (Alonso et al. 1996; Roy and Alloway 2001; 

Kumbhani et al. 2007). Supralinear summation in vitro depends on Na+ and Ca2+ dendritic 

conductances with a 0- to 30-ms effective summation interval (Nettleton and Spain 2000) and can 

overcome the strong synaptic depression in cortical cells (Bannister and Thomson 2006). Given 

firing rates of mouse V1 cells to artificial stimuli (<10 Hz), and other visual systems to natural 

stimuli (Vinje and Gallant 2000; Haider et al. 2010), summation within these intervals requires 

heterosynaptic summation through synchrony. 

It has been proposed that representation of information in neuronal networks depends on 

synchrony. While pairwise analysis in the retina adds <10% to the information that can be 

extracted from independent responses (Nirenberg et al. 2001; Schneidman et al. 2003), higher-

order correlations increase information by as much as 20% (Pillow et al. 2008). In the lateral 

geniculate nucleus, up to 20% additional information can be extracted from pairwise correlations 

(Dan et al. 1998). In V1, synchrony between pairs of cells can be used to better discriminate 

gratings with fine, but not course, orientation differences (Samonds et al. 2003, 2004), supporting 

a role for synchrony. It is not known if correlated spikes in the millisecond timescale are used by 

the brain to decode population activity, but these, and theoretical results (reviewed in Harris 

2005), underscore the need for simultaneous recordings of multiple neurons and the identification 

of higher statistical dependencies (Nirenberg and Latham 2003; Schneidman et al. 2006; Pillow et 

al. 2008). 

Our data show that about 8% of neuronal pairs fired synchronous spikes within a window 

of ±10 ms. This synchrony depends on distance and orientation preference. Because of stimulus 

limitations, clustering resolution, and low spike rates, our measurements represent a lower bound 

on the amount of synchrony among cortical cells and reinforce the notion that, to understand 

neural coding, neuronal responses should not be treated independently. 
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Figures 
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Figure 2.1. Characterization of simultaneously recorded small population in mouse V1.  
(A and B) Example for the separation of spiking activity on a single tetrode into single-cell 

clusters. (A) Spikes from the tetrode, plotted in feature space, and color-coded by cluster 

assignment. Features 1 and 2 correspond to the waveform peak values on 2 contacts, shown in 

the top row of B. Nonclustered spikes have been removed. (B) Average waveform values on each 

contact for each cluster shown in A. (C) Spike cluster metrics, isolation distance, and L-ratio, from 

the example data. (D and E) Representative response from a single cell in L2/3 of mouse V1. (D) 

Peristimulus time histogram and (E) orientation tuning. (F) Orientation tuning parameters across 

the population of recorded neurons. In this and all subsequent figures, error bars are standard 

error of the mean. 
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Figure 2.2. Quantification of pairwise correlation.  
(A) Measuring and classifying synchrony from CCGs. Raw CCGs (gray) were corrected using a 

50-ms jitter-correction term. A threshold (dashed lines) was set 2SD above mean in the 100- to 

200-ms range of each CCG. Any peak above this threshold within 10 ms of zero was classified as 

positive; positive peaks were classified as either offset if the entire peak was offset from zero (A, 

left) or zero-spanning otherwise (A, right). (B) The distributions of peak widths for each CCG 

class, where peak width is measured at the crossing of the significance threshold. (C) The 

distributions of peak lag for each class of CCG, where peak lag is measured as the time of peak 

relative to time zero. (D) The distributions of peak symmetry for each class of CCG, where peak 

symmetry is measured as the magnitude of peak at time zero relative to the peak magnitude. (E) 

Comparison of the mean peak width, absolute peak lag, and peak symmetry between CCG 

classes. 
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Figure 2.3. Examination of factors contributing to the measurement of synchrony magnitude.  
(A and B) Correction of raw correlograms using 3 correction techniques: Shift (gray line), shuffle 

(blue line), and jitter (red line), for offset (A) and zero-spanning (B) CCGs. (C and D) Removing 

onset transient did not affect CCG magnitude for offset (C) or zero-spanning (D) CCGs. (E and F) 

Population measures of each factor on CCG magnitude. For the correction method, each CCG is 

normalized to the magnitude of the jitter-corrected CCG (left). For transient removal, the 

transient-removed CCG is normalized to the height of the full-response CCG (right). 
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Figure 2.4. Synchrony is dependent on difference in the orientation preference.  
(A) Example trio of simultaneously recorded pairs. The pair with the most divergent orientation 

preferences showed no synchrony (top), while the magnitude of synchrony between the 

remaining pairs was largest for the aligned pair (bottom). (B) The magnitude and probability of 

zero-spanning synchrony depended exponentially on difference in the orientation preference. (C) 

The magnitude and probability of offset synchrony depended exponentially on difference in the 

orientation preference. 
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Figure 2.5. Synchrony is dependent on distance between a pair of cells.  
(A) Example trio of simultaneously recorded pairs. The pair with the largest electrode separation 

showed weak synchrony (top), while the closer pairs showed stronger synchrony. (B) The 

magnitude and probability of zero-spanning synchrony depended exponentially on pair distance. 

(C) The magnitude and probability of offset synchrony depended exponentially on pair distance. 

  



47 

 

 

Figure 2.6. Offset synchrony width is narrower than zero-spanning synchrony.  
(A) Cross-correlation magnitude measured as a function of peak width for zero-spanning (black, 

left) and direct synchrony (gray, right). (B) Width of CCG peaks, measured at the threshold 

crossing, as a function of distance between cells for offset (gray trace) and zero-spanning 

synchrony (black trace). (C) The width of CCG peaks as a function difference in preferred 

orientation for offset (gray trace) and zero-spanning synchrony (black trace). 
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Figure 2.7. The structure of synchrony across distance and orientation preference.  
(A–C) Zero-spanning synchrony depends on distance and ∆θ. Probability (A), magnitude (B), and 

synchrony power (C) decayed exponentially from nearby, closely aligned pairs. (D–F) Offset 

synchrony depends on distance and ∆θ. The probability of direct synchrony (D) was independent 

of ∆θ for nearby pairs, but dependent on ∆θ at greater distances. Magnitude (E) was dependent 

on ∆θ at all distances, and synchrony power (F) decayed exponentially from nearby, closely 

aligned pairs. 
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Figure 2.8. The structure of correlated variability across distance and orientation preference. 
 (A) Distributions of evoked (gray) and spontaneous (black) rsc were nonzero (left). Evoked rsc 

was positively correlated with spontaneous rsc (right). (B) Evoked and spontaneous, rsc, decayed 

with distance between a pair of cells. (C) Evoked and spontaneous, rsc, was dependent on the 

difference in orientation preference between a pair of cells. (D) Spontaneous and evoked, rsc, 

have a stronger dependence on ∆θ at smaller distances. 
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Figure 2.9. rsc is not affected by anesthetic state.  

(A) PSTH and spike rasters from a single unit recorded from V1 of an awake, head-fixed mouse. 

Gray shading of spike rasters indicates epochs of locomotion. (B) Orientation tuning of cell in A. 

(C) The distributions of evoked rsc were the same in anesthetized (top) and awake (bottom) 

states, while that of spontaneous rsc were higher in the anesthetized (top) than awake (bottom) 

states. 
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Figure 2.10. rsc is correlated with zero spanning, but not offset synchrony. 

 (A and B) Each pair was classified as high, mid, or low rsc, for both evoked (A) and spontaneous 

(B) correlated variabilities, based on the total distribution of rsc values (top). (C) Pairs with high 

evoked rsc had a higher probability of having zero-spanning synchrony. Pairs with high evoked 

rsc had a larger magnitude of zero-spanning synchrony. (D) Level of rsc, either spontaneous or 

evoked, did not affect either the probability or magnitude of offset synchrony. 
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Figure 2.11. Distribution of simple and complex cells in the population of layer 2/3 neurons. 
 The distribution of F1/F0 values from a representative set of simultaneously recorded layer 

neurons responding to a drifting sinusoidal grating. One cell [bottom right] had an F1/F0 ratio 

greater than one, indicating a simple-like modulating response at the temporal frequency of the 

grating. All other cells had a complex cell-like non-modulating response to the drifting grating [top 

right]. Recording depth: 325 µm from the surface of the cortex.  
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Figure 2.12. Stimulus-induced correlations do not affect measured synchrony.  
A, The method of correction for correlation induced by the drifting of the stimulus does not affect 

the size or shape of synchronous peak for either direct or feedforward synchrony. Raw 

correlograms [black traces] are corrected using a trial-shift correction method [grey traces], trial 

shuffle method [blue traces], or spike train jittering method [red traces]. B,C, removing the first 

250 milliseconds of each response, to eliminate correlations during the onset transient, reduced 

but did not eliminate either form of correlation.   
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Figure 2.13. Network oscillations do not affect magnitude of correlated variability.  
A, Network state preceding and during each stimulus presentation was determined based on the 

spectral content of simultaneously recorded local field potentials (LFPs) by appling a fast Fourier 

transform (FFT) to LFP segments (0.5 s). B, The ratio between 20-70 Hz and 1-7 Hz bands 

(gamma [γ] ratio) was to describe the state of the network. The spontaneous state of the network 

was classified, according to the distribution of gamma ratios, as “high” (values above 1SD, light 

gray, mean indicated by arrow head) and “low” (values below 1SD, black). C, Correlated 

variability was not different between the two state extremes, nor was the rsc for either state 

different that the rsc measured across all states. 
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CHAPTER 3: SPECIFIC CORTICAL LAYER 6 THALAMIC PROJE CTIONS MODIFY 
THE BALANCE OF INHIBITION AND EXCITATION IN MOUSE D ORSAL LATERAL 

GENICUALTE NUCLEUS 
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Abstract 
 

Understanding the role of corticothalamic projections in shaping visual response properties in the 

thalamus has been a longstanding challenge in visual neuroscience. Here, we take advantage of 

the cell-type specificity of a transgenic mouse line, the GN220-Ntsr1 Cre line, to selectively 

manipulate the activity of a layer 6 corticogeniculate (CG) population while recording visual 

responses in the dorsal lateral geniculate nucleus (dLGN). We manipulate Ntsr1 cell activity 

primarily by hyperpolarizing using archaerhodopsin-3, but also investigate the effect of stimulating 

these cells with channelrhodopsin-2. We find that removing Ntsr1 projections resulted in both 

increases and decreases in visually-evoked spike count, even in simultaneously recorded cells. 

The effect is contrast dependent, and the sign is consistent over the full range of contrasts. 

Tuning properties suggest wide convergence of Ntsr1 cells with similar spatial and temporal 

frequency tuning onto single dLGN cells. We do not find evidence that Ntsr1-CG cells sharpen 

spatial tuning properties or improve temporal fidelity. Finally, pairwise analysis shows that Ntsr1 

cells can affect retinal transfer, in a way consistent with and predicted by the effects on single 

cells.   
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Introduction 
 

In most sensory modalities, primary sensory thalamus is the locus of transfer from the sensory 

periphery to cortex (Jones, 2007). Reciprocal projections from primary sensory cortex to thalamus 

are in a position to shape this transfer. Corticothalamic (CT) axons make excitatory synaptic 

connections with thalamic relay cells, thalamic interneurons, and inhibitory, thalamus-projecting 

neurons in the reticular nucleus (RE) (Bourassa and Deschenes, 1995; Zhang and Deschenes, 

1997). CT projections form distal synapses onto relay cells that utilize metabotropic glutatate 

receptors (McCormick and von Krosigk, 1992) and inhibitory synapses on RE and local 

interneurons (REF). Thus, CT projections are position to provide a mix of excitation and inhibition 

to relay cells, with potentially divergent effects on thalamic spiking activity. Indeed, many studies 

have concluded that the cortical influence on thalamus is facilitatory (Przybyszewski et al, 2000), 

suppressive (Andolina et al., 2007), or both  (Kalil and Chase, 1970; Molotchnikoff and 

Lachapelle, 1977; McClurkin et al., 1994), while still others see minimal effects on responses 

(Richard et al., 1975; Baker and Malpeli, 1977),  

Reciprocal CT projections originate in cortical layer 6 (L6), from thalamorecipient neurons 

that have an apical dendrite extending to cortical layer 4 (L4) and a bifurcating axon that 

terminates in both L4 and the thalamus (Tombol, 1984; Zhang and Deschenes, 1997; Zarrinpar 

and Callaway, 2006; Briggs, 2010; Thomson, 2010). In L6, CT cells are intermixed with 

claustrum-projecting, pulvinar-projecting, cortical-projecting and local cortical neurons (Zarrinpar 

and Callaway, 2006) reviewed in (Briggs, 2010; Thomson, 2010). Specifically accessing the 

sensory thalamus-projecting population of CT cells, here called corticogeniculate (CG) cells, is 

challenging. Because of this anatomy, techniques for manipulating CG activity have usually 

included all cortical activity (Vastola, 1967; Hull, 1968; Baker and Malpeli, 1977; Sillito et al., 

1994; de Labra et al., 2007). Using these techniques in the visual system, investigations of the 

effect of CG axons on thalamic activity have yielded potential roles for CG projections in gain 

control (Przybyszewski et al, 2000), responsiveness to high-velocity stimuli (Gulyas et al., 1990), 
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sharpening of dLGN receptive fields (Marrocco and McClurkin, 1985; Andolina et al., 2013) and in 

increasing reliability and precision of spike timing (Worgotter et al., 1998; Andolina et al., 2007). 

Transgenic approaches allow for manipulation of genetically-specified populations of 

neurons and have facilitated investigation of the role of layer 6 CG neurons (Olsen et al., 2012). 

The bidirectional modification of CG cell activity with millisecond resolution, via optogenetics, 

could yield new insight into the function of CG feedback. Here, we utilize the Gn220 Ntsr1-Cre 

line to investigate the effect of these cells on dLGN responses. Ntsr1-Cre corticogeniculate cells 

(Ntsr1-CG) are comprised of layer 6 pyramidal cells with two morphologies, both of which project 

to dLGN (Gong et al., 2007; Gong et al., 2012). We find that removing only Ntsr1-CG projections 

was capable of driving both increases and decreases in visually-evoked spike count, even in 

simultaneously recorded cells. The effect is contrast dependent and consistent over the full range 

of contrasts. Tuning properties suggest wide convergence of Ntsr1-CG cells with similar spatial 

and temporal frequency tuning onto single dLGN cells. We do not find evidence that Ntsr1-CG 

cells sharpen spatial tuning properties or improve temporal fidelity. Finally, pairwise analysis 

shows that Ntsr1-CG cells can affect retinal transfer, in a way consistent with and predicted by 

the effects on single cells.  
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Materials and Methods 
 

All procedures were approved by the University of Pennsylvania Institutional Animal Care and 

Use Committee using adult GN220 Ntsr1-Cre mice originally generated by the GENSAT project 

(Gong et al., 2007).  

 

Expression of opsins 

To achieve specific expression of microbial opsins in Ntsr1-CG cells, we used an adeno-

associated viral (AAV) delivery system and the FLEX switch (Atasoy et al., 2008) to limit 

expression to Cre+ cells (Cardin et al., 2010b). Briefly, animals were anesthetized with 2% 

inhaled isoflurane and placed in the stereotactic apparatus. A burrhole craniotomy was made 

over primary visual cortex (V1). A Hamilton syringe with a 33-gauge beveled opening needle 

controlled by a Quintessential Stereotactic Injector (Stoelting Co., IL, USA) was inserted into V1 

to a tip-depth of 900 µm. Following a 10 minute rest period, 300-1000 µL of AAV (serotype: 2/9, 

prepared by the University of Pennsylvania Vector Core) was injected at a rate of 30 µL/min. 

Following another 10 minutes rest period, the syringe was retracted, burrhole filled with bone 

wax, and skin sutured. At least two weeks elapsed before acute recording to allow for maximal 

opsin expression.   

 

Acute Experiment Preparation  

All data were collected during acute recording sessions. Animals were anesthetized with 2% 

inhaled isoflurane and placed in the stereotactic apparatus. Temperature was maintained at 37ºC 

via feedback to a heating pad from a rectal thermometer and eye moisture maintained via 

transparent lubricant. A cranial window was opened over dLGN and visual cortex. An array of 

independently positionable tetrodes (Thomas Recording GmbH, Germany) was lowered into 
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cortex above dLGN and a laser-coupled optical fiber positioned on the cortical surface above V1. 

Each tetrode was lowered individually; placement in dLGN was assessed by strong multi-unit 

spike modulation to a spatially uniform flashed stimulus. Because layer 6 cortical activity can be 

sensitive to many anesthetic regimes (Angel and LeBeau, 1992; Briggs and Usrey, 2008), once 

tetrodes were positioned isoflurane concentration was lowered (~1.2%) and continuously 

adjusted based on the synchrony of the local field potential activity. This ensured a cortical state 

with relatively little slow oscillation in order to facilitate L6 responsiveness.   

 

Stimulation and Acquisition 

Spike data were acquired at 30.303 kHz, filtered between 600-6000 Hz, and a threshold was 

manually set on each channel. Crossing of this threshold triggered acquisition of the spike 

waveform on all four tetrode channels. 

 Visual stimuli were generated using the ViSaGe stimulus generation hardware 

(Cambridge Research Systems (CRS), Cambridge, UK) and a custom software package utilizing 

the CRS-provided MATLAB toolbox. Stimuli were presented on a 19-inch cathode ray tube 

monitor configured to refresh at 100 Hz with 600 X 800 resolution. The monitor was placed 30 cm 

from the eye and the position in the animal’s visual field was adjusted in an attempt to maximize 

the evoked activity from a single recording site. Drifting grating stimuli subtended a total of ~70º of 

visual space and were presented with at least 1 second of mean luminance between each 

stimulus. Ternary noise stimuli contained 12 x 16 square pixels with an edge length of 3.3 

degrees. Each frame was independent of the previous, and frames changed at a rate of 50Hz. 

The spatially-uniform flicker stimulus was designed following (Reinagel and Reid, 2002; 

Kumbhani et al., 2007), modified here to draw the contrast value randomly from an even 

distribution. The stimulus was updated at 50 Hz and a 5 second sample was repeated 100 times 

for each condition.  
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Laser illumination was performed using either a 200W, 532 nm solid state laser (for Arch 

activation) or 100W, 473 nM laser (for ChR2 activation) (OptoEngine LLC, Midvale, UT) coupled 

to a bare 200 µm, 0.62NA optical fiber. We chose a higher NA aperture fiber in order to maximize 

the horizontal spread of our laser illumination to achieve maximal coverage of V1 during the 

optogenetic manipulation.   

 

Analysis  

Spike waveforms were clustered offline using a mixture of an initial algorithmic (KlustaKwik) 

sorting followed by manual refinement using SpikeSort 3D (Neuralynx, Bozeman, MT), as 

described previously (Denman and Contreras, 2013).  

 Spike counts were made over the period during which the stimulus (drifting grating, 

ternary noise, or flicker) was present on the display, plus 200 msec to include any offset 

transients. The Ntsr1-CG effect was measured as the normalized difference between control and 

laser (Arch or ChR2) activated conditions: 
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where ALM(NO is the spike count during Ntsr1-CG cell manipulation and A)P*QOPL is spike count 

during control conditions.  

 Contrast response functions (CRFs) were measured using the F1 component as the 

measure of each dLGN unit’s spiking response, or as normalized Ntsr1-CG effect (see above) as 

a function of contrast. CRFs were fit with a hyperbolic ratio function, as in Contreras and Palmer, 

2003: 
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where R� is an offset, RSM$ is the amplitude, D[� is the inflection point, and \ controls the slope of 

the fit.  

 The orientation tuning curves, across the range 0-360º, were fit with the von Mises 

function (Swindale, 1998): 
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where b0 is an offset for the baseline firing rate, b1 and b2 independently determine the size of 

each peak, K  is the width parameter, and µ the preferred orientation. Orientation selectivity index 

(OSI) was calculated, from raw responses, as the difference between responses at preferred and 

orthogonal orientations as follows: 
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where Rpreferred is the response at the preferred orientation, as determined by the circular 

Gaussian fit, and Rortho is the response at the orientation 90º from Rpreferred. 

 Spatial and temporal frequency tuning curves were generated from spike counts, and 

both fit with the same function, from Gao et al., 2010: 
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where B is an offset for the baseline firing rate, A is the amplitude, s  is the standard deviation,O  

is the log offset, and p  the preferred spatial or temporal frequency.  

 Spatial receptive fields were fit with a two-dimensional Gaussian function: 
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with a center point chosen based on the pixel with maximal absolute deviation and the fit 

performed on the frame included this pixel. Frames computed at 10 msec intervals (Δl = 10 

msec). Although the receptive fields were mostly symmetrical, we allowed the x and y parameters 

to be independent to get the best possible fits. 

 Flicker analysis was performed following Kumbhani et al. (2007). Briefly, histograms of 

the unit response to flicker stimulus were generated at 100 µsec resolution. Individual events 

were identified by smoothing thes histograms with a 10 msec box filter, threshholding, and finding 

the center of each excursion above the threshold. These event times were used to extract peri-

event responses from raw non-smoothed histograms; peri-event responses were fit with a 

Gaussian function to parameterize event height and width.  Event Fano factor was measured as 

the mean of squared variance in spike count divided mean spike count. Event reliability was 

measured by taking the average inner product of each trial, after each trial was converted to a 

binarized vector the length of the noise sequence, with 1 representing a spike in that bin and 0 no 

spike in that bin. Finally, mutual information in each cell’s response about the stimulus sequence 

was estimated by considering the total number of possible contrast sequences, given the number 

of contrasts we used and a random generation and the reduction in uncertainty given the cell’s 

response.    
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Results 
 

 We investigated the role of corticogeniculate projections in dLGN neuron visual 

responses using the GN220 Ntsr1-Cre transgenic mouse created by the GENSAT project (Gong 

et al., 2007). To gain fast, reversible inactivation of corticogeniculate neurons, we introduced 

GFP-Archaerhosopsin-3 (Arch) using a FLEX expression system (Atasoy et al., 2008; Chow et 

al., 2010) via intracranial injection of an adeno-associated virus (AAV) (Cardin et al., 2010b). In a 

subset of experiments, we also introduced a FLEXed mCherry-Channelrhodopsin-2 (ChR2) to 

specifically activate Ntsr1-CG cells (see Materials and Methods).  Expression of opsins was 

limited to corticothalamic neurons (Fig. 1A), which we will refer from here on as Ntsr1 cells. 

Expression of Arch following viral injections was extensive, covering all of V1; somatic expression 

was restricted to the lower layers of V1 and robust expression of Arch can be seen in axonal 

terminals in LGN and reticular nucleus (RE, Fig. 1A). Ntsr1 cells were limited to layer 6 (Fig 1A); 

neurites expressing the fluorescent reporter extended to layer 4 and densely ramified, and a 

subset also extended to, and ramified in, layer 1 (Fig 1A). We also observed axonal projections 

from Nstr1 cells to the lateral dorsal nucleus (LD) and lateral posterior nucleus (LP) of the 

thalamus. In target structures, as well as cortical layer 4, the density of neurites was such that 

gaps in fluorescence that shape somas were observable. 

 To record visually-evoked spiking activity from small populations of neurons in dorsal 

lateral geniculate nucleus (dLGN) and primary visual cortex (V1), we used arrays of 

independently movable tetrodes. To control the Arch proton pump, we coupled a green (532 nm) 

laser into an optical fiber positioned on the cortical surface; output wattage from the fiber tip was 

measured to be 50mW/mm2.  In recordings of small groups of cells in L6, spontaneous activity of 

a subset of units (28%) was hyperpolarized by 532-nm light illuminating V1, while other nearby 

units were not directly affected (Fig. 1B). Hyperpolarization of Ntsr1 cells effectively eliminated 

visually-evoked activity, even at preferred orientations (Fig 1C, control in gray, during illumination 
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with green laser in green). We first investigated the effect of Nstr1 cell projections on LGN spike 

counts evoked with drifting sinusoidal gratings. 

 

Effect of Ntsr1 corticogeniculate cell activity on dLGN spike count. 

V1 has been shown to both enhance (Tsumoto et al., 1978; McClurkin et al., 1994, 

Przybyszewski et al., 2000), suppress (Tsumoto et al., 1978; McClurkin et al., 1994; Andolina et 

al., 2007, 2013), or have little effect on dLGN visually evoked activity (Richard et al., 1975; Baker 

and Malpeli, 1977). We assessed the effect of specifically removing Ntsr1 cell input on the dLGN 

spike output evoked by a highly effective stimulus: high contrast drifting sinusoidal gratings with 

spatial and temporal frequencies optimized to drive mouse dLGN units (0.08 cyc/deg, 3 deg/s). 

On half of the trials, randomly interleaved, corticogeniculate Ntsr1 cells were hyperpolarized by 

illuminating the cortex with a green laser that activates Arch. We will refer to responses during 

laser illumination as “+Arch”. Single dLGN units responded in both conditions with a temporally 

modulated firing output at the frequency of the grating. We quantified visual responses by the 

mean firing rate (the DC component) and the amplitude of the fundamental harmonic (the F1 

component).  

 Removing corticogeniculate input resulted in a range of effects on single dLGN unit visual 

responses (Fig. 2). The single LGN unit in Fig 2A (average tetrode waveforms shown above) 

showed robust output to the drifting grating (represented above rasters), both during control 

conditions (black rasters, black PSTH below) and +Arch (green rasters, green PSTH below). This 

cell exemplifies the group of dLGN units that showed no changes in visual response in the 

absence of Ntsr1 input (DC: 14.3±2.2 Hz, 12.4±2.0 Hz +Arch; F1: 13.6 Hz, 12.3 Hz +Arch). In 

contrast, the unit in Fig. 2B is an example of cell that showed an increase in response in the 

absence of Ntsr1 corticogeniculate input, in this case, a 42% increase in response (DC: 4.5 Hz 

control; 6.4 Hz +Arch). Finally, the single dLGN unit in Fig. 2C showed a 15% decrease in visual 
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response in absence of Ntsr1 input (DC: 4.9 Hz in control; 3.7 Hz +Arch; F1: 4.1 Hz in control; 3.5 

Hz +Arch). We plotted the DC (Fig. 2D, 0-10 spks/sec range expanded at right) and F1 (Fig. 2E, 

0-5 spks/sec expanded at right) of the response of all LGN units before and during 

hyperpolarization of Ntsr1 cells (+ Arch). The main effect of removing Ntsr1 input in spike output 

was a modest change in response magnitude with a tendency for an increase in the visual 

response (DC) compared to control. The change in response DC (∆DC) was larger than that of 

response F1 (∆F1, Fig. 2H).  

To summarize effect of removing Ntsr1 cell input, we calculated the ratio between the 

response DC in control conditions and +Arch for each unit. The distribution of response ratios  

(Fig. 2F) had a mean of 1.24 ±0.05 and a median of 1.09. The distribution shows that the visual 

response of 38% (n = 46/122) of LGN units had no contribution from Ntsr1 corticogeniculate cells, 

since removing their input had no effect (0.9 < response ratio < 1.1, Fig. 2F, vertical lines). In 

contrast, in 21% (n=26/122) of LGN units Ntsr1 input increased visual responses, since removing 

that input decreased response DC (minimum = 0.28). Finally, in 41% of LGN units Ntsr1 input 

suppressed visual responses, since its removal led to increased response DC (maximum = 3.86). 

Noticeably, a small population had ratios centered around 2, which shows that for some dLGN 

units cortical input reduces by half the visual response in control conditions.  

  The distribution of response ratio could be biased by very low or very high firing rates of 

dLGN units during control visual responses. Cells with high control firing rates could show small 

response ratios even for important effects of removing Ntsr1 input. Conversely, cells with low 

control firing rates could show very large response ratios for even for small effects of Arch. To 

verify whether such bias was present in our data, we plotted the numerator against the response 

ratio for all cells. The control firing rate (Fig. 2G, numerator) showed the same shape as the 

response ratio distribution, indicating that our distribution was not biased by the firing rates of the 

individual dLGN neurons. 
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 Cortical input to the dLGN targets both interneurons and relay cells. In an attempt to 

determine whether the effect of removing Ntsr1 on each target is different, we separated our LGN 

single unit population in two classes according to spike shape (Fig. 2H). Units with narrow spikes, 

such as the example in Fig. 2C were classified as fast-spiking (FS; 18/122), and are presumably 

interneurons (McCormick and Pape, 1990). The remainder of units (104/122) were classified as 

regular-spiking (RS), and are presumably relay neurons. Of our population of FS units, 33% 

showed reduced visual response in the absence of Ntsr1. Conversely, of all units that were 

suppressed (n=29/137), 12% were classified as FS units (Fig 2E). Units with the highest evoked 

firing rates behaved like the example cell in Fig. 2B, showing modest suppression by Ntsr1-CG 

cells; evoked firing rate was otherwise not predictive of the type or magnitude of the effect (Fig 

2I). In sum, Ntsr1 cell projections can either modestly suppress or enhance both RS and FS 

dLGN unit responses. 

 

Contrast dependence of Ntsr1 dLGN effects 

 It has been proposed that corticothalamic projections control the gain of dLGN responses 

(Przybyszewski et al., 2000), and that Ntsr1 cells mediate gain control in V1 (Olsen et al., 2012). 

Thus, we hypothesized that dLGN sensitivity to increasing stimulus contrast should be affected by 

Ntsr1 activity. We first verified that the contrast response functions (CRF) of our population of 

Ntsr1 cells were similar to those described in mouse V1 (Gao et al., 2010, data not shown).  We 

then measured the effect of removing Ntsr1 input on the CRFs of dLGN units using response F1 

(Fig. 3). The effect of removing Ntsr1 input on the CRFs of dLGN units was mixed (Fig. 3). As 

before (Fig 2), we used the change in response magnitude to the highest contrast in order to 

separate our population in three groups: cells with either (i) a larger than 10% increase (Fig. 3E, 

red, n = 24/109), (ii) a larger than 10% decrease (Fig. 3E, blue, n=32/109) or (iii) a smaller than 

10% change (Fig. 3E, black, 53/109) in the F1 response. 
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 The example in Figure 3A is representative of those neurons in which removing Ntsr1 

input increased the response to maximum contrast by more than 10%. The increase in response 

magnitude was contrast dependent, i.e., it became larger at increasing stimulus contrast. The 

example cell in Fig. 3B is representative of those neurons in which Ntsr1 had not effect along the 

entire range of stimulus contrast. Finally, the cell shown in Fig 3C showed the opposite effect, 

removing Ntsr1 input led to a decrease in visual response. Here again, the change in response 

magnitude was contrast dependent and occurred along the entire range of contrasts used. To 

compare across we calculated the difference for each cell between the control CRF and +Arch. 

We averaged separately the difference CRF for all cells with an increase, an absence, or a 

decrease in response (Fig. 3A-C, right column) according to the 10% criteria described above. 

The comparison of the three averages (Fig. 3D) showed that both the increase and decrease in 

response magnitude was contrast dependent and spanned the contrast range used. Therefore, 

Ntsr1 input can control response gain in subpopulation of neurons, either upwards or downwards.   

 To evaluate whether the dynamic range of the CRF changed in absence of Ntsr1 input 

we calculated the contrast at which the response F1 reached the 50% of its maximum. We found 

this more valuable for comparison across cells than the C50 from the hyperbolic ratio fits, 

because most often mouse dLGN CRFs do not saturate. Despite the changes in response 

magnitude, the value of contrast at 50% did not change after removal of Ntsr1 input. This was 

shown by the complete overlap of the two distributions (Fig. 3F, +Arch in green) and by plotting 

the values of individual cells in a scatter plot, which mostly aligned along the main diagonal  (Fig. 

3G). 

 In summary, we observed a stereotyped change in the CRF consistent with a gain 

change (Fig 3A-C), such that Ntsr1-CG effects scale multiplicatively with contrast (Olsen et al., 

2012). This multiplicative scaling could indicate that Ntsr1-CG cells implement gain control in 

dLGN; alternatively, Ntsr1-CG effects could follow global V1 gain changes (Carandini et al., 1997; 

Carandini and Heeger 2011; Priebe and Ferster, 2012), possibilities we cannot distinguish here.  
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Convergence of Ntsr1 cell projections onto dLGN cel ls: effect on response selectivity. 

If similarly tuned Ntsr1 neurons project to a given dLGN cell, the effects of removing 

Ntsr1 input on dLGN spike output should depend on these parameters. To test this, we 

independently varied the orientation, spatial frequency, and temporal frequency of the drifting 

gratings while interleaving trials with and without Ntsr1 cell hyperpolarization (Fig. 4).  

 We measured orientation tuning in 47 dLGN units (n=4 mice) and found that most cells 

were untuned (mean OSI: 0.26 +/- 0.02; n=34/47, OSI < 0.3) or weakly tuned for orientation 

(n=13/47, 0.3 < OSI <0.6;), consistent with recent reports in mouse dLGN (Piscopo et al., 2013). 

Removing Ntsr1 input did not significantly alter OSI (+Arch mean OSI: 0.28+/-0.02, p=0.18, 

Wilcoxon Signed test), for both the untuned and biased groups (p>0.05, Wilcoxon Signed test). 

We examined orientation-specific effects as we did with contrast, dividing cells into 3 groups 

based on the amplitude of the effect of removing Ntsr1 input at the maximal stimulus (Fig. 4A, top 

row). 23 cells showed no change (Fig. 4A, black), 9 cells showed an increased in response to 

orientation that caused maximal response (Fig. 4A, red) and 13 cells showed a decrease (Fig. 

4A, blue). The example cell in Fig. 4B showed a remarkable increase in response to two 

orientations  +Arch (OSI control = 0.08; OSI +Arch = 0.63), and exemplifies the 2/45 for which 

orientation selective responses are suppressed by Ntsr1 input in control conditions. The two other 

groups are exemplified by a cell (Fig. 4A, 3rd row) that showed a small orientation preference in 

control conditions and no change +Arch (OSI = 0.51, OSI +Arch = 0.53) and a cell in which its 

orientation bias was reduced in the absence of Ntsr1 input (OSI = 0.42, OSI +Arch = 0.31). The 

average of all cells in each category (Fig. 4A, bottom row) showed no statistically significant effect 

of Ntsr1 input. This is consistent with the hypothesis that dLGN units receive input from Ntsr1 

cells with a wide distribution of orientation preferences, suggesting a high level of convergence of 

Ntsr1 cells onto single dLGN cells. 
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 We measured the effect of removing Ntsr1 input on the spatial frequency properties of 

dLGN neurons (Fig. 4B). We found that 28 cells showed an increase in peak spatial frequency 

(Fig. 4B, red) such the example cell in Fig. 4B in which the response to 0.02 c/º increased by 1.9 

spikes/sec. 15 cells showed a decrease in peak spatial frequency (blue), such as the cell in Fig. 

4B (4th row) which decreased by 3.9 spks/s at the peak spatial frequency of 0.04 cyc/deg. 66 cells 

showed no change (black), the example illustrated (Fig. 4B, 3rd row) is a band-pass neuron with a 

peak spatial frequency of 0.1 c/deg.  We found spatial Ntsr1 effect to be greatest at the lowest 

spatial frequencies, though some effect were observed across spatial frequency. 

 Ntsr1 input also showed diverse effects on the temporal frequency tuning of dLGN 

neurons (Fig. 4C). As with orientation and spatial frequency, we classified our cells in three 

groups according to a set change in maximal response caused by Arch (Fig. 4C, top row). 13 

cells show an increase in peak temporal frequency (red), 4 cells a decrease (blue) and 10 cells 

showed no change in peak temporal frequency +Arch (black). We illustrate these three groups by 

example cells in which the peak temporal frequency increased (Fig. 4C, 2nd row, from 0.5 to 1.5 

spks/s at the peak temporal frequency of 14 cycles/s), decreased (Fig. 4C, 4th row; from 7.6 to 5.0 

spks/s at the peak temporal frequency of 8 cyc/s), or was not changed by removing Ntsr1 input 

(Fig. 4C, 3rd row, peak temporal frequency was 4 cyc/s). Even though the average of all cells in 

each group showed no significant effect at any particular temporal frequency, it is noticeable that 

we observed maximal effect of NTsr1 input in 4/25 cells that showed strong release from 

inhibition at high (>10Hz) temporal frequencies, which is consistent with a role for Ntsr1 cells 

suppressing dLGN activity at high temporal frequencies (Gulyas et al., 1990). 

 In conclusion, Ntsr1 cell suppression or facilitation occurs in the lower range of cortical 

spatial frequency tuning and is consistent across orientation and temporal frequency. These 

results are consistent with a convergence of Ntsr1 input with diverse tuning properties.  
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Ntsr1 cells do not sharpen dLGN receptive field pro perties 

 Large drifting gratings could conceal spatially or temporally specific effects of 

corticogeniculate input. To investigate this possibility, we mapped receptive fields (RFs) of dLGN 

units using reverse correlation to dense ternary noise. This stimulus provided the means to test 

the hypothesis that spatially distinct regions of Ntsr1-CG feedback provide opposite sign effects in 

dLGN. According to this hypothesis aligned areas enhance response and misaligned areas 

suppress dLGN responses (Tsumoto et al, 1978; Marrocco and McLurkin, 1985). Ternary noise 

also allowed us to test the hypothesis that Ntsr1 input ensures temporal organization among 

populations of visually responding dLGN neurons (Kalil and Chase 1970; McClurkin et al., 1994; 

Sillito et al., 1994; Worgotter et al., 1998).  

 

RF area. 

 Ternary noise yielded approximately circular ON-center and OFF-center dLGN RFs with 

weak surrounds (Fig 5A). To quantify spatial effects, we fit the reverse-correlated RF at the peak 

of the response with a two-dimensional Gaussian (Fig. 5B; see Methods). This provides an 

estimate of the size of the receptive field center. Neither the RF area (Fig. 5C) nor the X and Y 

measures of the RF (Fig. 5D) were significantly altered by Ntsr1 cell hyperpolarization (X: p=0.30; 

Y: p=0.38, Wilcoxon rank tests)  

 

RF response magnitude. 

 The lack of change in receptive field size belies changes in the strength of both bright 

and dark center responses in the absence of Ntsr1 input. We were able to measure both 

increases and reductions in firing rate to center stimuli of opposing contrast because the dense 

ternary noise generated sufficient background firing.  The example cell in Fig. 5F was a OFF-
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center cell, removal of Ntsr1 input reduced both responses to center stimuli, i.e., the excitation 

produced by dark stimuli (Fig. 5F, left column, red represents a 10% increase in firing rate over 

background firing), as well as the inhibition produced by bright stimuli (Fig. 5F, right column, deep 

blue represents a 10% reduction in firing rate with respect to background). In this and all cells the 

magnitude of the response was measured at the time of the peak (in the example peak = 100 

ms). To quantify the effect of removing Ntsr1 input we measured the change in response 

magnitude at each non-noise pixel of the RF center (Fig. 5G; see Methods). We found a 

significant reduction in the response to both contrasts (ON: 41%, p=0.002, Kolmogorov-Smirnov; 

OFF: 38%; p = 0.001; Fig 5G, mean represented by dotted lines). Across the population (Fig. 

5H,J), 26/32 cells showed reductions in the center response to both contrasts (p<0.05, 

Kolmogorov-Smirnov test), 4/32 showed a change in only the OFF response, and 2/32 showed 

no change in either response contrast. Thus, changes in both ON and OFF response magnitude 

combine to yield changes in dLGN cell responsiveness with no change in receptive field size.  

 When non-noise surround pixels were observed (10/37), we also measured changes in 

the strength of the surround by considering pixels in ON- or OFF- responses that were opposite 

sign to the center. We averaged the effect of removing Ntsr1 input and found that the strength of 

surround reduction correlated with the strength of center reduction, for both ON- and OFF-

responses (Fig 5K). Surround reductions were not significantly different from those triggered from 

the center (p=0.96, K-S test). We do not see evidence that dLGN surrounds are more affected by 

Ntsr1 projections than dLGN receptive field centers. Thus, since the surround and the inhibitory 

center are supposedly mediated by interneurons, our results suggest that Ntsr1 input modulates 

relay and interneurons similarly. 

 

RF time course. 
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 The impulse response measured at the RF center was not modified by removing Ntsr1 

cell input (Fig. 6A). This was an ON-center cell with an excitatory peak at 88 ms and an inhibitory 

peak to dark stimuli in the center at 140 ms. From each impulse response (n=35) we measured 

the time of the peak (Fig. 6B), the amplitude of the peak (Fig. 6C) and the area under the rectified 

impulse response curve (Fig. 6D). None of these parameters showed differences between control 

and +Arch (Fig. 6B-D, middle and right columns).  

 We measured the temporal profile of the response at several locations based on the 

shape estimate of each RF. At the pixel with maximum response in the RF center (Fig. 6E, pixel 

1, solid lines in impulse responses) and at points in the RF surround (Fig. 6E, pixel 2, dotted 

lines), we saw minimal change in the amplitude or time course of the impulse response after 

removal of Ntsr1 input. To ensure we weren’t missing any temporal effects by measuring impulse 

responses from individual pixels we computed space-time receptive fields across several one-

dimensional slices of the receptive field. The example cell in Fig 6F showed a reduction in the 

magnitude of the response to dark stimuli in the RF center, which was obvious in 2D RF plots and 

the impulse response with no change in time course of the response. The space-time RF for this 

cell (Fig. 6G) revealed that both the dark and bright responses were reduced in magnitude as 

shown in the color-coded difference plot (Fig. 6G, right), but there was no change in the temporal 

dynamics of the response. 

 In summary, Ntsr1 input modulates response magnitude without changing the 

spatiotemporal properties of the RF of dLGN neurons. Furthermore, center and surround 

response magnitude were equally affected by Ntsr1 input, inconsistent with the notion that spatial 

arrangement controls the sign of the corticothalamic effect (Tsumoto et al., 1978).  

 

Ntsr1 cells do not change the temporal fidelity of LGN responses 
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 Changes in the temporal distribution of dLGN spikes have been attributed to 

corticothalamic projections (Kalil and Chase, 1970; McClurkin et al., 1994; Worgotter et al., 1998). 

Although we did not observe any temporal effects during noise stimulation in the impulse 

response, we sought to isolate any temporal redistribution of spike output caused by Ntsr1-CG 

cells from spatial effects. To accomplish this, we used a spatially uniform frozen-noise flicker 

stimulus (Reinagel and Reid, 2000) and analyzed the fidelity of the response (Kumbhani et al., 

2007). Repeated presentations of the same sequence of contrasts (Fig. 7A, top row) generated 

reliable events under control and +Arch conditions responses (Fig. 7A, +Arch in green). We used 

a threshold to isolate events from the PSTH and each event was fit with a Gaussian. Three 

events and their Gaussian fits are illustrated in the example cell in Fig. 7B. From the Gaussian fits 

to all events and all cells, we calculated the peak time, the width and the height of the event peak. 

For the population (n=27 cells, 713 events, median 19 events/cell), neither the time of the peak of 

the event (Fig 7C; ∆ peak time: 1.6 ± 0.6 msec, p = 0.31, one sample t-test) nor the duration (Fig. 

7D, control: 18.9, +Arch = 19.4; p=0.10, Kolomogrov-Smirnov test) were changed by Ntsr1 

removal. To generate a null expectation for difference in event structure between control and+ 

Arch, we compared the first and second half of all the control trials (Fig. 7C-E, gray). A subset of 

events showed a change in event structure without a change in spike count – a shortening and 

widening or a heightening accompanied with a narrowing (Fig 7E). Despite these small changes 

in event precision, we did not observe a change in event variability (measured with Fano factor; 

Fig 7H, control: 5.1 ± 0.57, +Arch = 4.6 ± 0.48; p=0.92 K-S test), reliability (Fig7I, control: 2.3 ± 

0.34, +Arch = 2.3 ± 0.35; p=0.98, K-S test), or the mutual information regarding the stimulus 

encoded in the spike train (Fig 7J control: 2.34 ± 0.09, Arch = 2.38 ± 0.1; p=0.78 K-S test).  

Despite some changes in the distribution of spikes, we find that Ntsr1 input does not affect the 

temporal fidelity of dLGN stimulus information, for either the full responses or when considering 

only the first spike (data not shown).  
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Ntsr1-CG cells affect dLGN coordinated activity 

The coincident activity of dLGN cells affects transmission of retinal input to V1 (Wang et al., 2010; 

Cardin et al., 2010a), can provide extra stimulus information (Dan et al., 1998; Reich et al., 2001), 

and may be influenced by cortical activity (Sillito et al., 1994; Sillito and Jones, 2002; Andolina et 

al., 2007). To test if Ntsr1 cells regulate the coordinated activity of pairs of dLGN cells, we 

calculated cross-correlograms (CCGs; n=392 pairs from 10 experiments) from the activity of pairs 

of dLGN units generated by drifting gratings of fixed orientation, spatial frequency, and temporal 

frequency while hyperpolarizing Ntsr1 cells on interleaved trials. In both control and +Arch 

conditions, CCGs show a robust modulation at the frequency of the drifting grating (Fig 8A, three 

example cells). The preferred phase of this modulation depends on the relative spatial locations 

of the dLGN cell receptive fields (Andolina et al., 2007; Stanley et al., 2012); this phase was not 

altered by elimination of Ntsr1 projections (Fig. 8B), consistent with a lack of changes in spatial 

properties in +Arch condition (Fig 5). As was expected from the effect on single dLGN units, the 

effect on CCGs was heterogeneous, with pairs exhibiting a range of increases and decreases in 

the percentage spikes at the center of the CCG (Fig. 8C).  The change in synchronous spikes 

was not dependent on the phase of the modulation, as shown by the distribution of the 

differences in peak amplitude along the stimulus cycle (Fig. 8E, red dots); the distribution of 

changes in synchrony area was centered on zero (Fig. 8E, distribution at right). Changes in 

correlated spikes, i.e., those at the peak of the CCG regardless of the peak phase, were also 

variable and independent of phase (Fig 8F). Together, the CCG results indicate that the Ntsr1 

modulation of coordinated activity of dLGN neurons is, at least within the range of our stimulus 

size, uniform in space. 

 To address a role of Ntsr1 projections in selectively synchronizing dLGN cells linked by 

stimulus features (Sillito et al., 1994)), we measured the Ntsr1 cell effect on dLGN unit pairwise 

synchrony while varying the orientation of a drifting gratings (n=45 CCGs from 4 experiments; 

Fig. 9). As described above, dLGN unit pair CCGs modulated at the temporal frequency of the 
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grating (Fig. 9A) and, as shown by the example cells in Fig. 9A,B, in this case the phase of the 

modulation shifted with the orientation of the grating (Stanley et al., 2012). Synchronous activity 

was not dependent on the orientation of the grating (Fig. 9B), inconsistent with a role for 

corticothalamic input in selectivity synchronizing dLGN cells only for stimuli with a linking spatial 

feature. Suppression of Ntsr1 input did not change the area under the center of the CCG at any 

phase (Fig. 9C), neither did it change the peak time regardless of CCG peak phase (Fig. 9D).  In 

some CCGs (8/45) we also observed a gamma frequency entrainment between the cells; this 

gamma entrainment was also not stimulus specific (Fig. 9F), inconsistent with the interpretation of 

gamma entrainment as a feature-binding mechanism (Singer, 2001).  

 

Driving Ntsr1 cells results decreased spike count 

 The preceding removal Ntsr1 cell function suggests both net inhibitory and net excitatory 

actions on dLGN relay cells. To directly assess this, we injected an AAV carrying ChR2 into 

GN220-Ntsr1 mice to record dLGN responses to direct Ntsr1 cell excitation; our injections yielded 

good coverage of the L6 Ntsr1 population (Fig. 10A). We then recorded thalamic activity during 

visual stimulation paired with synchronous activation of the transfected Ntsr1 population. 

Activation of Ntsr1 cells led to robust and reliable decreases in evoked spike count (Fig10 B,C, 

two example cells, PSTH during Chr2 in blue), regardless of the strength of visual stimulation 

measured by the contrast of the sinusoidal grating (Fig.10 D,E, for the same two example cells, 

Chr2 in blue).  Anecdotally, synchronous Chr2 activation of Nstr1 cells sometimes caused an 

initial burst, or increase in spike count in dLGN units in the absence of a visual stimulus (see Fig 

10B, indicated by an asterisk), followed by reduced spike count during visual stimulation. Overall, 

spike count was significantly reduced in 23/32 cells, by an average 63% whereas 1/32 showed a 

significant increase in spike count (Fig. 10F). The distribution of fold-change in spike count with 

Chr2 showed that most of the cells lied below 1 (Fig. 10G). In sum, we find that synchronous 
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activation of Ntsr1 cells elicits strong reduction in dLGN unit spike count, presumably through 

activation of reticular or local inhibitory input to dLGN relay cells.  

 

Ntsr1 cells do not control thalamic firing mode 

 Given the net inhibition caused by activation the Ntsr1 population, we wondered if 

removing Ntsr1 corticogeniculate projections could alter burst frequency. A change in firing mode, 

or in the proportion of T-channel activity, could result in more visually-evoked spikes even if Ntsr1 

cells were providing a net inhibition. Moreover, cortical activity has been shown to affect dLGN 

interspike interval (ISI) distribution (Worgotter et al., 1998). To measure dLGN firing mode, we 

constructed composite ISI plots to distinguish tonic and burst spikes. Composite ISIs were 

generated by plotting, for each spike, the subsequent ISI versus the previous ISI. Bursts, due to a 

low threshold spike (LTS), generate a characteristic set of three clusters: the first spike in each 

burst is preceded by a long (>100ms) and followed by a short ISI (<4ms) (Fig. 11A, zone #1); the 

spike at the end of each burst is preceded by a short (< 4ms) and followed by a long (>100 ms) 

ISI (Fig. 11A, zone #3). Within burst are characterized by both preceding and following short ISIs 

(<4 ms; Fig. 11A, zone#2). All other spikes are treated as tonic firing.  

Three example cells in Fig. 11A illustrate critical points about spike firing patterns in 

mouse dLGN. First, the three cells recorded simultaneously responded to drifting gratings with 

either a large proportion of spike bursts (Fig. 11A, left ISI), predominant tonic firing (Fig. 11A, right 

ISI) or a combination of both (Fig. 11A, middle ISI). Second, the three cells largely preserve their 

distinction in firing pattern in response to a very different visual stimulus such as the flicker 

stimulus (Fig. 11D). 

 By interleaving control and Arch trials we were able to compare quantitatively the 

proportion of bursting with and without Ntsr1 input. In the examples cells in Fig. 11, the 

distribution of ISIs in the visual responses to gratings and the flicker stimuli were not modified in 
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the absence of Ntsr1 input (Fig. 11A and B, green dots). We summed the intervals falling within 

zones 1,2 and 3 to calculate the percent bursting within the entire visual response in each cell. 

The comparison of percent bursting in control and +Arch during the response to gratings (Fig. 

11B) and the response to the flicker stimulus (Fig. 11E) was similar as the vast majority of 

neurons lie along the main diagonal of the scatter plots.  

 In conclusion, our observation of firing pattern and firing rate combined with the observed 

changes in visual responsiveness in the absence of Ntsr1 cells, indicates that Ntsr1 derived 

corticogeniculate projections drive a mix of inhibition and excitation, depending on the dLGN cell 

target and level of Ntsr1 cell activation. Therefore, even though activation of Ntsr1 projection with 

Chr2 generates almost exclusively inhibitory responses in dLGN, such is clearly not the influence 

exerted by Ntsr1 input during visual stimulation, since the removal of Ntsr1 cell activity does not 

lead to clear disinhibition, which would have presumably changed the firing pattern from bursting 

to tonic and changed the percentage of bursts in the visual response. 
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Discussion 
 

We find Ntsr1-Cre corticogeniculate (Ntsr1-CG) projections capable of driving both increases and 

decreases in dLGN spike counts during visually-evoked activity, likely via a mix of indirect 

inhibition and direct excitation. Tuning properties suggest wide convergence of Ntsr1-CG cells 

with similar contrast, spatial, and temporal frequency tuning onto single dLGN cells. We do not 

find evidence that Ntsr1-CG cells sharpen spatial tuning properties or improve temporal fidelity. 

Finally, we found Ntsr1-CG cells can affect retinal transfer, in a way consistent and predicted by 

from the effects on single cells.  

 

Anatomical correlates of Ntsr1 cell classification 

Previous investigation of CT projections have relied on gross manipulations of cortical activity, 

whereas here we restrict our manipulation to a more specific cell type, the Ntsr1-CG population. 

Ntsr1-CG cells are a genetically defined class, as opposed to the many anatomically (Tombol, 

1984) or physiologically defined (Briggs and Usrey, 2009) L6 cell classes. Based on the 

morphology of Nstr1-CT cells (Fig. 1, Fig. 10, Olsen et al., 2012) and distribution of subcortical 

targets, Ntsr1-CG cells represent a conglomerate of two layer 6 cell classes, the upper L6 dLGN-

specific and lower L6 dLGN and lateral posterior nucleus (LP) projecting cells (Bourassa and 

Deschenes, 1995; Zhang and Deschenes, 1997).  These morphological classes correlate with the 

‘type I’ and ‘type II’, classification based on morphology and the pattern of local cortical input 

(Zarrinpar and Callaway, 2006). Ntsr1 cells are orientation selective and responses modulate 

strongly at the drifting grating frequency (Fig 1D), consistent with a simple receptive field 

structure.   
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Diversity of spike count effects 

While some previous studies have reported a diversity of spike count effects from manipulations 

of corticothalamic projections (Molotchnikoff and Lachapelle, 1977; McClurkin et al.,1994), others 

have focused on increases or decreases. What could account for the diversity in spike count 

effects? One hypothesis, in the visual (Tsumoto et al., 1978; Marrocco and McClurkin, 1985) as 

well as other corticothalamic systems (Li and Ebner 2007, Temereanca and Simons, 2004) is the 

alignment of feedback. According to this hypothesis the effect of corticothalamic cells with 

spatially-aligned receptive field centers is excitatory, while corticothalamic cells centered in the 

dLGN cell surround provide a net inhibition. Here, we manipulated all Ntsr1 corticogeniculate 

projections, regardless of the spatial arrangement with the recorded cells in dLGN. Nevertheless, 

we did not observe any non-uniformities in Ntsr1 effect during noise stimulation, which would 

expected if corticothalamic projections in different spatial regions provided opposing effects. More 

direct testing of this hypothesis may require spatial control of the optogenetic manipulation, such 

that only center-aligned or only surround corticogeniculate cells are manipulated; such arbitrary 

spatiotemporal specificity is achievable by combining optogenetics with modified-DLP optical 

systems (Stirman et al., 2012). 

Given the parallel population of relay cells in primate and cat dLGN it is possible that the 

diversity of Ntsr1-CG effect could be correlated with dLGN cell type. To date, only morphological 

evidence indicates a homology to X/Y-types (Krahe et al., 2011), with functional studies of single 

cells finding very little evidence for magno/parvo or X/Y type homology (Grubb and Thomson, 

2003; Piscopo et al., 2013).  Because of the lack of physiological identifier, we are unable to test 

if any of the observed variance can be attributed to separate, parallel channels in dLGN. 

However, evidence from other rodents suggests multiple populations (Sumimoto et al, 1969; Hale 

et al., 1979), so it remains a possibility that parallel mouse dLGN streams could be differently 
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affected by Ntsr1-CG projections, perhaps with release of inhibition to high velocity stimuli 

(Gulyas et al., 1990; Hawken et al, 1996; Fig 4).  

 

Gain   

We observed changes in spike count that scaled with the contrast of the visual stimulus (Fig. 3). 

Ntsr1-CG cells are visually responsive; their spike count increases with increasing stimulus 

contrast. Given this, the fact that the Ntsr1-CG effect was largest for stimuli that induce the 

largest Ntsr1-CG cell responses indicates that the Ntsr1-CG effects are a function of the Ntsr1-

CG spike count. This could be interpreted as a gain control (Olsen et al., 2012); alternatively, it 

could be interpreted as a scaling of the Ntsr1 effect with the gain of system. That is, whatever the 

Ntsr1 cell effect, that effect will scale with total V1 activity. In this sense, Ntsr1 cells may not be 

implementing gain control in the thalamus (Saalman and Kastner, 2009), bur rather providing a 

change in spike count that itself is also gain controlled. 

 

Regulation of retinal transfer, receptive field spa tial extent, and temporal properties 

Our cross–correlation data indicate that Ntsr1-CG cells can regulate transfer of retinal 

input both up and down. This is evident in the increases and decreases in spikes in the non-linear 

synchrony window. These spikes, occurring within 10 milliseconds of each other, are more 

effective at driving downstream cortical activity (Cardin et al., 2010a; Wang et al, 2010), and are 

up and down-regulated by Ntsr1 activity (Fig 8).  The present data do not address under what 

condition, or toward what end, such regulation would occur, or if it does at all.  

We do not find evidence that Ntsr1-CG cells sharpen spatial tuning properties or improve 

temporal fidelity, suggesting that cortical influences on these dLGN response features either use 

another channel or are species-specific. It is possible that surround effect require more effective 
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engagement of the surround than our stimuli provided. Our stimuli are limited by the size of the 

monitor, which may not always be large enough mouse receptive fields, especially given that the 

stimuli are tailored for only a subset of the many cells recorded using our mutlitetrode approach. 

Changes in neuromodulation caused by cortical manipulation of non-CT cells could account for 

increase in stimulus information reported in other studies (Goard and Dan, 2009; Worgotter et al, 

1998; Andolina et al., 2007). 

 

Putative Mechanisms 

Consistent with the reduction in dLGN spiking generated by electrical stimulation V1 (Marocco et 

al., 1982; Ahlsén et al., 1985), transcranial magnetic stimulation of V1 (de Labra et al., 2007), as 

well as previous reports in the mouse visual system (Olsen et al., 2012), we found that 

synchronous activation of Ntsr1-CG cells elicits reduction in spike count, presumably through 

activation of RE or local inhibitory input to dLGN relay cells. However, Ntsr1-CG activity does not 

always result in net inhibition, as evidenced by our Arch experiments removing Ntsr1 activity. We 

propose that Ntsr1 effects are a balance of monosynaptic excitation and disynaptic inhibition that 

can be tipped toward either inhibition or excitation. Synchronous activation results in a large 

inhibition. These results highlight the usefulness of pairing gain- and loss-of-function experiments.  

An alternative possible explanation for a decrease in thalamic spike count is change in 

firing mode, from burst to tonic, whereby a depolarization would reduce the number to burst spike 

evoked by an excitatory input (Guido and Weyand, 1995). According to this hypothesis, 

manipulating Ntsr1 projections should create changes in burst frequency or magnitude. We do 

not see evidence change in either burst frequency or magnitude in the absence of Ntsr1 cell 

activity (Fig 11).  
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Non-sensory functions of corticothalamic projection s 

Corticothalamic projections have been hypothesized to participate in several non-sensory 

functions such as spindles (Contreras and Steriade, 1996), seizures (McCormick and Contreras, 

2001), and the sleep-wake transition (Steriade and Timofeev, 2003). Our data support the role of 

corticotgeniculate projections in absence seizures, as strong synchronous activity of Ntsr1 cells 

could deeply inhibit thalamic activity, though no visual stimuli we used are sufficient to tip the 

balance to strong thalamic inhibition in this way. The relatively subtle and bidirectional effects limit 

what role these cells might have in generating an oscillation, but they may be able to modify an 

ongoing oscillation. Ntsr1 cells did not specifically affect the oscillations we observed, pairwise 

gamma oscillations. We propose that the effects of Ntsr1 on oscillations are general and mixed, 

just as Ntsr1 sensory effects are general and mixed. 
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Figures 

 
Figure 3.1  Optogenetic inactivation of L6 corticotgeniculate cells. 
A, Expression of Arch-GFP carried by an AAV 2/9 vector in Ntsr1-Cre mice,  injected directly into 

V1. Expression shown is 4 weeks after injection. Paraformaldehyde fixed tissue, sagittal section; 

scale bar 0.5 mm.  B, Hyperpolarization of cells in layer 6. Optical fiber is placed directly in 

primary visual cortex; array of tetrodes lowered to approximate L6 depth (example shown: 712 

um). Spontaneous firing of a cell (left) is eliminated by activation Arch; spontaneous activity of 

another cell recorded on the same tetrode (right) is unaffected by Arch.  C, Hyperpolarization of a 

layer 6 cell by green light during visual stimulation with a drifting grating. Two cycles of a drifting 

grating evoke a modulation response (left).; enveloping activation of Arch eliminated the activity 

evoked by the same stimulus (right).  
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Figure 3.2 Effect of hyperpolarizing Ntsr1 cells on dLGN responses.   
A-C, Examples of the effects of Ntsr1 hyperpolarization on three dLGN single units. For each 

example, average waveform on each of four tetrode wires is shown above the temporal envelope 

of the stimulus. Rasters of control (black) and +Arch (green) trials are separated for clarity, but 

were presented interleaved. Peristimulus time histograms calculated with 33 msec bins for control 

(black) and +Arch (green) are shown with S.E.M. for each bin shaded. D, Scatter plot (left) of the 

effect of Ntsr1 hyperpolarization on the DC component of dLGN responses to gratings. Right plot 

shows expansion of marked section in left plot. E, Scatter plot (left) of the effect of Ntsr1 

hyperpolarization on the F1 component of dLGN responses to gratings. Right plot shows 

expansion of marked section in left plot. F, Distribution of fold change in DC component with 

Ntsr1 hyperpolarization. G Fold change in DC component is not dependent on high or low control 

firing rate. H, Ntsr1 hyperpolarization effect on the DC component (bottom) correlated with the 

magnitude of the effect on the F1 component (left). I, Separation of dLGN single unit waveforms 

into RS (blue) and FS (green) according to peak-to-trough time, ending slope (left), and relative 

peak-to-trough amplitude (right). J, The distribution of Ntsr1 hyperpolarization effects is the same 

for putative RS and FS units.  
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Figure 3.3 Contrast dependence of Ntsr1 cell effects on dLGN units.  
A-C Examples and sorted populations of units suppressed (A), unchanged (B), or facilitated (B) 

by Ntsr1 activity. For each group, an example unit with control (black) and +Arch (green) contrast 

response function is shown at left; all group contrast response functions, and the within group 

average, is shown at right. D, Within group average contrast response functions from A-C, plotted 

together. E, Distribution of the fold change in the F1 component at 100% contrast. F, Distribution 

of contrast @ half maximum response for control (open bars) and +Arch (green) conditions. G, 

Scatter plot of data in F.  
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Figure 3.4 Effects of Ntsr1 cells across orientations, spatial frequencies and temporal 

frequencies.  
A, Distribution of the effects of Ntsr1 hyperpolarization of response DC component (top); 

examples from each group of effect indicated in A, suppressed (top), no change (middle), and 

facilitated (bottom); population averages for each group. B, same as A, for spatial frequency. C, 

same as A, for temporal frequency.   
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Figure 3.5 Effect of Ntsr1 hyperpolarization on dLGN spatial receptive fields.  
A, Spatial receptive fields for an ON-center (left) and OFF-center (right) unit, in control (top) and 

+Arch (bottom) conditions. B, 2D Gaussian fits of example cells in A for both control (solid 

contour lines) and +Arch (dashed contour lines). C, Scatter plot showing the effect of  Ntsr1 

hyperpolarization on receptive field area calculated from fit parameters (right) and the distribution 

of this effect (left). D, Scatter plot of X and Y parameters of in control (black) and +Arch (green) 
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conditions. E, Distribution of the change in total number of spikes during ternary noise stimulation. 

F, Bright-only (left) and dark-only (right) receptive fields in control (top) and +Arch (bottom) for an 

OFF-center cell. G, Pixel-specific changes in non-noise pixels in the dark receptive field (black) 

and bright receptive field (white). Averages and S.E.M. for each connected by a dashed line. H, 

Average changes in bright (left) and dark (right) pixels for all cells. I, Average changes in pixels 

that increase spike probability (left) and decrease spike probability (right). J. Average change in 

spike probability from plots in H; cells are split by ON-center and OFF-center for solid plots and 

combined for striped plots. K, Scatter plot of changes in surround versus changes in center 

strength. 
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Figure 3.6 Effect of Ntsr1 hyperpolarization on dLGN temporal receptive fields. 
 A, Example impulse responses for and ON-center (left) and OFF-center (right). B-D, Scatter plots 

(left )and corresponding distributions of effects of Ntsr1 hyperpolarization for the time of impulse 

response peak (B), the value at that peak (C), and the absolute area under the impulse response 

(D). E, Comparison of impulse responses from a center pixel and a surround pixel F,G, Space-

time plot does not reveal any changes in temporal structure for the example cell shown in (F).  
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Figure 3.7. Effect of Ntr1 

hyperpolarization on temporal precision 

of response to spatially-uniform flicker.  
A, Example of a dLGN single unit response 

to the repeated contrast sequence (top), 

with control (black) and +Arch (green) 

raster plots and PSTHs. B. Three example 

events from the same cell, with control 

(black) and +Arch (green) overlaid with 

Gaussian fits to each event.  C –E, 

Distribution of changes in event time (C), 

event width (D), and event height (E) due to 

Ntsr1 hyperpolarization (solid bars); 

difference in peak time, width and height 

expected from splitting control trials (open 

bars). F,G, Scatter plot of all events 

showing  changes in event width by event 

height (F) and event time by event width 

(G). H-J, Scatter plots of Ntsr1 

hyperpolarization effects on fano factor (H), 

reliability (I), and mutual information (I). 
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Figure 3.8. Effects of Ntsr1 hyperpolarization of dLGN pairwise coordinated activity. 
 A. Three example pairs whose modulating correlated activity are increased (left), unchanged 

(middle), and reduced (right) by Ntsr1 hyperpolarization. B, the phase of the pairwise modulation 

is unchanged by Ntsr1 hyperpolarization. C, Area under the cross-correlation in the non-linear 

summation window (+/- 10 msec) as a function of the phase of cross-correlation modulation. D, 

Area under the cross-correlation at the first peak of the cross-correlation as a function of the 

phase of modulation. E, difference in area under the curve between control and +Arch conditions 

in part C. F, difference in area under the curve between control and +Arch conditions in part D. 
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Figure 3.9 No stimulus dependence of Ntsr1 effects on coordinated activity. 
 A Drifting grating responses of two simultaneously recorded units. B, Orientation tuning of the 

units shown in A (center); cross-correlation of the responses at each orientation showing 

procession of modulation peak but no change in peak area or time at any orientation. C,D 

consistent change in peak area and time across all orientation for the population of 

simultaneously recorded pairs. E Drifting grating responses of two simultaneously recorded units. 

F Orientation tuning of the units shown in E (center); cross-correlation of the responses at each 

orientation showing no procession of gamma frequency modulation at any orientation.  
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Figure 3.10 Effect of stimulating Ntsr1 cells on dLGN visual responses.  
A, expression of ChR2-mCherry in Ntsr1 neurons in layer 6. B,C, Driving Ntsr1 cells causes 

decreased visual responses, D,E at all contrasts. F Scatter of the effect of driving Ntsr1 cells on 

the DC component of repossess and G the corresponding distribution.  
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Figure 3.11 No change in dLGN burst statistics due to Ntsr1 hyperpolarization.  
A, Composite interspike interval plots for three example cells generated from spike responses to 

drifting gratings. Burst spikes fall in the demarcated by dashed lines. B, Scatter plot of percentage 

of burst spikes in control and +Arch conditions and the (C) corresponding distribution. D, 

Composite interspike interval plots for three example cells generated from spike responses to 

spatially-uniform flicker. E, Scatter plot of percentage of burst spikes in control and +Arch 

conditions and the (F) corresponding distribution.     
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CHAPTER 4: EVIDENCE FOR PARALLEL POPULATIONS IN MOU SE DORSAL 
LATERAL GENICULATE NUCLEUS 
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Abstract 
 

The mouse visual system is an emerging model for the study of cortical function. To maximize the 

usefulness of the system, it is important to understand the similarities and differences between 

the organization of all levels mouse vision and other, better studied systems like macaque and 

cat. While the characterization of mouse retinal outputs is deep and studies of mouse visual 

cortex have expanded rapidly, relatively little is known about mouse dorsal lateral geniculate 

nucleus (dLGN). Here, we present evidence for parallel processing streams in mouse dLGN. We 

use stimuli that have been previously shown to distinguish parallel streams in other species: optic 

chiasm stimulation, contrast-reversing stationary gratings, and dense noise for receptive field 

reconstruction. We find evidence for multiple conduction velocities from optic chiasm stimulation 

and a subpopulation of mouse dLGN cells show non-linear spatial summation. Our results 

suggest that parallel processing is maintained in the mouse dLGN, and that despite the lack of 

lamination, response properties can bear homology to the organization of primate dLGN.  
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Introduction 
 

Processing of visual information is carried out in parallel streams, from the retina (Wässle, 2004) 

to the cerebral cortex (Livingstone and Hubel, 1988; Nassi and Callaway, 2009). In cat dorsal 

lateral geniculate nucleus (dLGN), X and Y pathways are distinguished by the linearity of spatial 

summation (Shapley and Hochstein, 1984). In primate dLGN, processing is separated into three 

pathways, including one for depth and motion and one for space and detail: the magnocellular 

and parvocellular pathways, respectively (Livingstone and Hubel, 1988; Callaway, 1998). Both of 

these classifications also have an anatomical basis: X and Y cells have separable dendritic 

morphology and are separated into different layers (Sherman and Spear, 1982). In macaque, the 

magno and parvoceullular names come from a description of soma size. Magnocellular cells are 

confined to the two bottom layers while parvocelluar cells are found in the other four dLGN layers. 

 Evidence for this classification has been found not only in the aforementioned primate 

and feline systems, but also in ferret, squirrel, and rat (Van Hooser, 2007).  However, little 

physiological evidence for parallel streams in mouse LGN has been found (Grubb and 

Thompson, 2003; Piscopo et al., 2013), despite evidence for multiple dLGN morphological 

populations (Krahe et al., 2011) and in the parallel organization of mouse primary visual cortex 

(Gao et al., 2010). Given the rising prominence of the mouse visual system as a tool for 

understanding visual processing (Niell and Stryker, 2008; Liu et al., 2009; Niell and Stryker, 2010; 

Huberman and Niell, 2011; Liu et al., 2011; Niell, 2011; Polack et al., 2013), cortical structure and 

function (Sohya et al., 2007; Cardin et al., 2009; Sohal et al., 2009; Marshel et al., 2011; Adesnik 

et al., 2012; Bock et al., 2012; Olsen et al., 2012), and visually-guided behavior (Dombeck et al., 

2007; Andermann et al., 2010; Busse et al., 2011; Lee et al., 2012; Carandini and Churchland, 

2013; Saleem et al., 2013), it is important to characterize the output of mouse dLGN, if that output 

is organized into parallel streams when projecting to V1, and how that organization compares to 

what is known in other species. Towards this end, recent studies have identified direction and 
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orientation selective cells (Marshel et al., 2012)  that may be analogous to koniocellular or W cell 

pathways and a diversity of response properties (Piscopo et al., 2013) in mouse dLGN  

Here, we present evidence for parallel processing streams the mouse dLGN.  We 

recorded the spiking responses of single LGN cells to electrical stimulation of the optic chiasm 

and to visual stimuli including spatiotemporal noise, drifting sinusoidal gratings, counterphase 

sinusoidal gratings, and a spatially-uniform flicker sequence. Classification was based on the 

linearity of spatial summation to a counterphase modulating sinusoidal grating, and distinct 

classes were observed. We observed approximately 9:1 more X-like than Y-like cells. These 

classes showed little difference in drifting grating tuning and receptive field parameters, however, 

we observed parallel populations of spatial and temporal tuning within X-like cells. Most LGN cells 

observed responded with approximately equal precision and reliability (Kumbhani et al., 2007), 

with the exception of a subset of slower-responding X-like cells.  
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Materials and Methods 
 

Animal Preparation and Surgery 

All procedures were done within the guidelines of the National Institutes of Health and were 

approved by the University of Pennsylvania Institutional Animal Care and Use Committee. Adult 

C57/B6 mice (8– 24 weeks) were anesthetized with a high concentration of isoflurane (5%) and 

maintained with continuous inhaled isoflurane (0.8–1.2%). The depth of anesthesia was 

monitored by heart rate (maintained between 300 and 600 beats/min), pupil dilation, pinch reflex, 

and following the opening of the craniotomy, by the level of synchronous activity in the local field 

potential (LFP). After placement in a stereotactic apparatus, eye moisture was maintained by 

application of a transparent lubricant and body temperature was maintained at 37°C by rectal 

monitoring and a heating pad (FHC Inc., Bowdoin, ME, USA). A 2-by-3 mm craniotomy was 

opened over dLGN. Following surgery, the entire stereotactic apparatus was rotated 60° to 

position the contralateral eye in front of the display screen. 

 

Electrophysiology 

An array of four to six tetrodes (Thomas Recording GmbH, Giessen, Germany) arranged 

concentrically was inserted perpendicularly relative to the cortical surface. In both configurations, 

the tip-to-tip space between neighboring tetrodes was 254 µm. Individual tetrodes were 100 µm in 

diameter with a central contact at the tip approximately 40 µm below three concentrically 

arranged contacts around the shaft approximately 20 µm from each other. Signals were 

preamplified by the tetrode drive and amplified, individually filtered, and acquired at 30 kHz using 

a Cheetah 32 acquisition system (Neuralynx, Boseman, MT, USA). High-frequency spiking 

activity was isolated at each contact by filtering between 600 and 6000 Hz. A single channel from 

each tetrode was duplicated and filtered 0.1–375 Hz to record an LFP. Following a rest period of 

at least 30 min, each tetrode was lowered through the cortex and hippocampus until audible 
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modulation of background activity to a test stimulus was apparent. Tetrodes were further lowered 

until at least one isolatable unit appeared.  

 

Visual Stimuli 

All visual stimuli were generated using the ViSaGe stimulus generation hardware (Cambridge 

Research Systems, Cambridge, UK) and a custom software package utilizing the accompanying 

MATLAB (Math- works, Natick, MA, USA) toolbox. Stimuli were displayed on a 19-inch cathode 

ray tube monitor configured to refresh at 100 Hz at 600X800 resolution. This monitor was 

gamma-corrected using a luminometer and ViSaGe configuration software and placed 30 cm 

from the eye contralateral to the craniotomy. Full-screen stimuli covered approximately 70° of 

visual field. After tetrode insertion, the screen was set to a background of 50% luminance. Stimuli 

consisted of drifting sinusoidal gratings, counterphase reversing gratings, two-dimensional ternary 

white noise, and a spatially-uniform contrast modulating flicker stimulus. Counterphase gratings 

were the size of the display (~70º). The spatial phase of counterphase gratings modulated 

sinusoidally, with a varying spatial frequency and starting phase; the contrast of the grating 

reversed at 2Hz following a square wave. Ternary white noise and spatially uniform flicker 

updated at 50Hz. For ternary white noise the contrast each 50x50 pixel square was chosen for 

each frame independently of the previous frames and other pixels in that frame. Flicker stimuli 

consisted of a repeated sequence of contrasts; this sequence was generated by choosing 

randomly from a flat distribution of contrasts.  

 

Electrical Stimulation 

Electrical stimuli were delivered through a bipolar stimulating electrode inserted proximal to the 

optic chiasm through independent burrhole craniotomies made with 500µm of bregma. Each lead 
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was connected to an stimulus isolation unit controlled by a Master-8 pulse stimulator  (A.M.P.I., 

Jerusalem, Israel). Stimulation was monophasic and the duration was 50µs. Initially large 

stimulus intensities (2mA) were stepped down in ~0.1 mA increments in order to isolate the 

sensitivity of components of the dLGN response. a 

 

Spike Clustering and Data Analysis 

Spike waveforms from each tetrode were clustered into individual units offline using a mixture of 

algorithmic and manual sorting (Spike- Sort3D, Neuralynx). Waveforms were initially sorted using 

KlustaKwik and subsequently manually refined. All clusters with spikes in the 0–1-ms bin of the 

interspike interval histogram were strictly rejected. To assess the quality of separation of the 

identified single units, we measured isolation distance and the L-ratio for each cluster ,which 

indicate the distance of the center of the cluster from the noise and the quality of the moat around 

the cluster, respectively (Schmitzer-Torbert et al., 2005). Linearity of spatial summation was 

measured using the frequency components of the response to counterphase gratings (Shapley 

and Hochstein, 1976). Analyses of drifting gratings and ternary white noise were as performed 

elsewhere (Denman and Contreras, 2013; Chapter 3).  
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Results 
 

In order to investigate the possibility of parallel streams in mouse retinogeniculate pathway, we 

recorded local field potentials (LFPs) and single units from the dorsal lateral geniculate nucleus 

(dLGN) using an array of independently positionable tetrodes in isoflurane-anesthetized mice (n = 

18).  We stimulated either the optic chiasm electrically or the retina with a battery of visual stimuli. 

These recordings yielded 311 single units and 24 multi-unit clusters consisting of a mixture of 

spikes from several cells. Unless otherwise noted, the analyses described below were all 

performed on isolated single units. 

 

Electrical stimulation of the optic chiasm. 

 In cat (Bishop and McLeod, 1954; Bishop et al., 1959) and macaque (Reese and Cowey, 

1990) dLGN, retinal ganglion cell afferent fibers have a broad and non-unimodal distribution of 

conduction velocities. This corresponds to the non-unimodal distribution of retinal axon diameters 

(Perge et al., 2009). Detailed anatomical characterization of C57/B6 retinal axons suggest a 

bimodal distribution of axons (Seecharan et al., 2003), but to our knowledge no study of mouse 

dLGN activity evoked by electrical stimulation of the optic nerve has been published.  

 To test for the presence of different populations of LGN neurons in the mouse retino-

geniculate pathway, we stimulated the optic chiasm electrically and recorded the population field 

potential in the dLGN. We estimated the distance along the optic tract from the stimulating 

electrode to the dLGN to be 4.5mm, according to the placement of the stimulating electrode just 

caudal to bregma (Fig 1A) and the online 3D mouse brain atlas (Allen Institute 3D connection 

map) and published measurements of the mouse optic nerve (Kurimoto et al., 2010). We also 

verified the placement of our electrodes into dLGN histologically after each experiment (Fig. 1B) 

and saw no obvious lamination in mouse V1 (Nissl stain, Fig. 1C). Based on conduction velocities 

for the two primary populations measured in other species (Gouras, 1969; Sumimoto et al., 1969; 
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Hale et al.,1979), 20 and 4 m/s, we expected to see electrically evoked responses with latencies 

of 1.2 and 2.2 ms.. We observed multiple reproducible components in the LFP response to 

electrical stimulation of the optic chiasm that may indicate the presence of types of inputs with 

different conduction velocity in mouse. Bipolar field responses showed four overlapping peaks 

that correspond with those described in cat (Bishop and McLeod, 1954). An early positive-

negative peak that corresponds with the arriving volley of fast conducting fibers, followed by the 

synchronous postsynaptic potential in dLGN neurons, the negative potential '
. These two peaks 

can be elicited at much lower intensities than the following two (Fig. 1D, top). The subsequent 

large and less precise negative field, ;�, corresponds with the arriving volley of lower velocity 

conducting fibers, and the negative potential '� corresponds with the postsynaptic cellular 

potentials elicited by ;�  (Fig. 1D, bottom). Strength response curves for the different components 

revealed that the fastest component (;
) had the lowest threshold, that ;
 correlates with '
, and ;� 

with '� (Fig 1E). 

 Direct comparison of the observed mouse potentials with those from other species 

(Bishop and McLeod. 1954; Hale et al, 1979) is complicated by two factors: (i) given the small 

size of structures in mouse compared to cat or monkey, the stimulation of the optic chiasm may 

have spread to the nearby optic nerve or optic tract and the volleys may arrive from both sides 

with slightly different delays. (ii) In cats and monkeys the arrangement of horizontal layers and 

vertical inputs is a key factor in the shape of the LFP response components. In the mouse, the 

lack of lamination may result in different arrangement of inputs and changes in waveforms 

compared to those of cat and monkey. 

 X and Y cells in cat dLGN have statistically different mean response latencies, though the 

distributions overlap. We therefore thought it important to examine latency of dLGN spike 

response to optic chiasm. Using 1MΩ tetrodes, we were unable to isolate single units after optic 

chiasm stimulation because of the large number synchronously active cells generating some 

signal on each tetrode wire.  In lieu of single units, we examined multi-unit activity evoked by optic 
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chiasm stimulation (Fig. 2). Like population potential activity (Fig 1), we were able to observe 

several repeatable components of the multi-unit response. We saw large, fast (~900 µsec) 

negativities corresponding to population spikes beginning at 1.2 at 2.2 and milliseconds after 

optic chiasm stimulation, consistent with the expected latencies.  

 

Classification of units with the modified null test  

 The observation of multiple responses components in mouse dLGN is consistent with the 

presence of parallel populations of relay cells (Krahe et al., 2011). To classify dLGN units we 

utilized a modified null test (Enroth-Cugell and Robson, 1966; Cleland et al., 1971; Shapley and 

Hochstein, 1975). We presented stationary gratings modulated in sinusoidally in space and as a 

square wave in time, at 4 spatial phases, with 30º phase increments, and at 4 spatial frequencies 

(0.06 cyc/º, 0.12 cyc/º, 0.18 cyc/º, and 0.24 cyc/º). A cell was classified as an X-like cell by the 

presence of at least one spatial phase that elicits no response to the temporal modulation of the 

grating. The presence of such null-phase indicates that the cell sums inputs linearly over space.  

The majority of cells had at least one null-phase at one of the tested spatial frequencies 

(277/311). We call these cells linear. For the example dLGN neuron shown in Fig 3A (cluster 

isolation shown at right), the largest response was obtained at 0.06 cyc/º and a phase of 90º, and 

this cell had two null-phases 90 degrees away from the maximum, at 0 and 180 degrees.   

 A subset of cells  (34/311) did not display a null position, as the example shown in Fig. 

2B. These cells do not perform linear summation of their inputs over space; we called these non-

linear cells. At all spatial phases and spatial frequencies non-linear cells responded with an ON-

OFF response at twice the temporal frequency of the grating (Fig. 3B).  The extracellular 

waveforms of putative linear and non-linear cells were not significantly different in amplitude of 

the rising phase, ratio of peak-to-trough, or the slope of the repolarization phase (data not 

shown). 
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Linearity of spatial summation. 

 X cells respond only to one half of the stimulus, so that their response occurs at the 

fundamental frequency (F1) of the stimulus, with greater modulation of F1 than mean firing rate 

(DC). Furthermore, the F1 component of X cells responses are modulated systematically as 

function of stimulus phase. The example linear unit in Fig. 3A showed a sinusoidal modulation of 

its response F1 as a function of spatial phase (Fig. 4A, filled circles), with only much smaller 

change in mean firing rate (Fig. 4A, DC, red symbols). In this unit the response had a small F2 

component (Fig. 4A, open symbols) also modulated by the spatial phase, but was dominated by 

F1 modulation.  

 Y cells respond to both phases of grating reversal, thus leading to a response at twice the 

frequency of the stimulus (the F2 component) at most spatial frequencies and all spatial phases. 

Indeed, the non-linear unit illustrated in Fig. 3B showed a response dominated by the F2 

component (Fig. 4B), which was larger than both the F1 and DC components and remained 

constant across spatial phases.  The DC component of the response was also constant across 

spatial phases.  

 We measured the linearity of spatial summation for all units as the peak of the F2/F1 ratio 

across all spatial frequencies (Hochstein and Shapley, 1976). We calculated the linearity index 

(LI) as the mean F2 over maximum F1. An LI above 1 indicates non-linear spatial summation and 

identifies Y cells in cats; an LI below 1 indicates linear summation and identifies X cells. We 

therefore classify cells with an L1 less than 1 as linear and greater than 1 as non-inear (Fig. 4C, 

dotted line indicates value of 1). The linear unit in Fig. 4A had a linearity index of 0.24 (identified 

as A in the histogram) and the non-linear unit in Fig. 4B had a linearity index of 2.0 (B in the 

histogram). Our population was dominated by linear cells (277/311); we identify for the first time a 

population of non-linear cells in mouse dLGN (34/311).   
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Response properties of linear and non-linear cells 

 In cats and primates, parallel dLGN populations show differences in their contrast 

sensitivity and their selectivity to spatial and temporal frequency (Livingstone and Hubel, 1988; 

Tootell et al., 1988). Typically, X and parvocellular cells respond better to higher spatial and lower 

temporal frequencies, while Y and magnocellular cells prefer higher temporal and lower spatial 

frequencies. In macaque (Kaplan and Shapley, 1986) these populations are also separable by 

contrast sensitivity. To assess mouse dLGN, we probed single units with a battery of gratings that 

varied in spatial frequency, contrast, and temporal frequency (Fig 5). In mouse dLGN, stimulus 

preferences were not correlated with null test classification. Distributions of peak spatial 

frequency (Fig. 5A, left), spatial frequency bandwidth (Fig. 5A, right), peak temporal frequency 

(Fig. 5B, left), temporal frequency bandwidth (Fig. 5A, right), contrast response F[� (Fig. 5C, left), 

and contrast response n (Fig. 5C, right) were not statistically distinguishable (p > 0.05, Wilcoxon 

rank test). In mouse dLGN linear and non-linear summating cells both span a broad range of 

stimulus preferences. 

 We did see evidence for parallel spatial and temporal frequency sensitivities in the mouse 

dLGN population.  This is exemplified by the two linear units in Fig. 5D-F (left column). The unit 

depicted in black had a low-pass selectivity for spatial frequency with peak response to 0.05 

cycles/º (Fig. 5A) and high temporal frequency preference with a peak at 5 cycles/s (Fig. 5D). The 

unit depicted in gray was band-pass for spatial frequency with a higher peak spatial frequency of 

0.12 cycles/º, and low pass for temporal frequency with a peak response at 2 cycles/s (Fig. 5E). 

The black linear unit had higher contrast sensitivity (F[� = 54%) relative to the gray unit (F[� = 

89%; Fig. 5F). While these cells seem to match X-like (the gray cell) and Y-like (the black cell) 

properties, both had null spatial phases and were classified as linear. Within the linear population, 

high spatial and temporal frequency preference correlated with narrower tuning width, creating 

bandwidth and low-pass populations (Fig. 5D,E, right). We see evidence that like V1 (Gao et al,. 
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2011), mouse dLGN contains parallel linear populations, more homologous to magno- and 

parvocellular pathways than X and Y. 

 

Receptive field properties  

 Parallel dLGN populations may differ in the spatial extent of their receptive fields (Xu et 

al., 2001). We used reverse correlation on spikes elicited by dense ternary noise to obtain the 

receptive field (RF) of dLGN units (Fig. 6). We fit the reverse correlated RFs with a 2-dimensional 

Gaussian to measure RF area. The example ON-center and OFF-center units in Fig. 6A and B 

had RF center areas of 7.8 and 7.6º�, respectively. The areas of RF centers span from 3.5 to 

20.4 º� with a median of 8.3 º� (Fig. 6C). The distribution of receptive field areas was unimodal 

(Fig 6C); populations of null-tested linear and non-linear units were not distinguishable from each 

other or from non null-tested (unclassified) units (Fig 6D) 

 The time course of the responses of ON and OFF cells (Fig. 6E) was similar for ON- and 

OFF-center cells (Fig. 6F,G). We compared the impulse response functions of ON- and OFF-

center cells by plotting the peak amplitude versus peak time (Fig. 6F), the distribution of peak 

times was unimodal with a peak of 83.9 +/- 11.8 ms. Thus, showing that ON and OFF cells show 

similar response time course.  

 

Precision and reliability.  

 In cats, Y-cells have slightly higher precision and reliability than X-cells when tested with 

a stimulus with rapidly changing contrast (Kumbhani et al., 2007). Such differences are in part 

attributed to the higher temporal resolution of Y-cells in that species. We used a full screen flicker 

stimulus consisting of spatially homogeneous stimulus whose contrast varies rapidly (50 Hz), 

drawing from an even distribution of contrasts. Linear units responded robustly to repeated 
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presentations of the same stimulus sequence (Fig. 7A), giving rise to clear distinguishable events 

in the accumulated PSTH (Fig. 7A, 1ms bins). These events were at much higher firing rates than 

the background as seen by the period before time zero in the PSTH. We did observe non-linear 

units respond to the flicker stimulus.  

 To estimate precision and reliability we first identified events from the PSTH based on a 

threshold; each event was fit with a Gaussian. The fits for all the events of the example X and Y-

like cells in Fig. 7 are shown at right to show variability in event amplitude and shape (Fig. 7B, left 

column), and are shown normalized to their peaks in order to illustrate the variability in the width 

(Fig. 7B, right column). From the Gaussian fits to all events and all cells, we calculated the time, 

the width and the height of the event peak. We used the width of the events as an estimate of 

spike precision of the total spikes in the event. The distribution of precision of all events in all cells 

showed a unimodal distribution with a 7.9 msec median and a mean of 8.8 ± 6.6 ms (Fig 7C). 

 We measured the reliability of the response as percent of stimulus presentations in which 

there was at least one spike in the event window (± 30 ms around the peak). Our measure of 

reliability quantifies the reproducibility of the entire spike train in the response, independent of any 

variability within each event. The population of dLGN cells was distributed along a range of 

reliability values from 3% to 97%, with a median of 31.6% and mean of 35.5 ± 23.0% (Fig 7D, 

bottom). 
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Discussion 
 

We have used electrical and visual stimulation to look for evidence of parallel processing 

in mouse dorsal lateral geniculate nucleus. We find evidence for parallel pathways, and that the 

properties of these pathways may be closer to the organization of primate dLGN than cat dLGN. 

Like previous reports, we find that mouse dLGN is dominated by the linear spatial summation, 

though we do observe some non-linear spatial summation.  

 

Retinal basis of mouse dLGN parallel streams 

In both primates and cats, parallel processing streams are established in the retina. In the 

macaque, retinal ganglion cells can distinguished morphologically; the predominant class is the 

“midget” (or type III or B-type) ganglion cell, which is smaller than the “parasol” (or type II or A-

type) ganglion cell (Leventhal et al., 1981; Watanabe and Rodieck, 1989). These cells are also 

distinguished by their response properties: midget cells tend to have sustained responses to 

flashed spots, whereas parasol cells display transient responses (de Monasterio and Gouras, 

1975). In cats, X and Y type retinal ganglion cells are distinguished by morphology, and by the 

linearity of spatial summation (Enroth-Cugell and Robson, 1966) and the transience of responses 

(Cleland et al., 1971). Like primate and cat retinae, mouse retina contains > 20 retinal ganglion 

cell types (Sun et al., 2002; Völgyi et al., 2009). Morphometric analyses of soma size and 

dendritic field shape suggest that these types include homologs of A and B type primate retinal 

ganglion cells and X and Y type cat cell ganglion cells. Recordings from mouse retina validate 

this morphological evidence: sustained and transient ganglion cells have been observed in the 

mouse retina (Balkema and Pinto, 1982). In addition, non-linear spatial summation is observed in 

a subset of mouse retinal ganglion cells (Stone and Pinto, 1993). It is therefore reasonable to 

hypothesize the continuation of parallel streams into mouse dLGN. Indeed, the percentage of X-
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like ganglion cells reported by Stone and Pinto (1993; 87%) agrees with our observations of linear 

summating cells in mouse dLGN (89%). 

 

Homology of mouse dLGN to other classification syst ems 

 We saw several homologies between mouse and cat dLGN. Multiple component field 

responses were first observed following optic chiasm stimulation in the cat (Bishop and McLeod, 

1954; Bishop et al., 1959). Similar to these results, we observed compound responses in the field 

potential in mouse dLGN. While we were unable to measure spike latencies from isolated single 

units, we did see multiple compound high-frequency spikes with distinct latencies. Further, in cat 

retina (Enroth-Cugell and Robson, 1966) and dLGN (Shapley and Hochstein, 1975) cells have 

been classified by linearity of spatial summation. We were able to classify 11% of mouse dLGN 

units as non-linear, or Y-like. This frequency of non-linear cells in the mouse dLGN (and retina) is 

smaller than the frequency of Y cells measured in cats (48%, (Sireteanu and Hoffmann, 1979). 

Both of these factors, conduction velocity and linearity of spatial summation, can also 

distinguish streams in the macaque retinogeniculate pathway. In macaque a 25% subset of 

magnocellular cells are non-linear (Kaplan and Shapley, 1982), making the total percentage of 

non-linear cells ~8%, a number closer to the observed frequency in mouse. Like the percentage 

of linear cells we observe in mouse dLGN, and the number of B-type ganglion cells in mouse, the 

percentage of midget cells in the macaque retina is ~90% (Dacey 1994). Macaque dLGN cells 

are more often described in terms of the transience of response, contrast sensitivity and 

spatiotemporal selectivity. In mouse dLGN, we see a range of spatiotemporal selectivities, though 

these do not distinguish linear and non-linear cells. Instead, linear cells showed a mix of 

spatiotemporal profiles, rather like magnocellular and parvocellular populations that are linear in 

spatial summation (Kaplan and Shapley, 1982) but classifiable by spatial frequency preference 
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and contrast sensitivity (Kaplan and Shapley, 1986; Livingstone and Hubel, 1988; Tootell et al., 

1988). 

 

W-like and koniocelluar-like response in mouse dLGN  

 So far, we have discussed homologies of mouse dLGN units with X/Y and 

magnocellular/parvocellular pathways. In both cat and macaque a third, somewhat catch-all, 

class of geniculate cells contains a diversity of response properties including orientation selective 

responses (Levay Ferster 1977; Hendry and Reid 2000). Here, we see some evidence for 

orientation biased responses in mouse dLGN, but more complete and convincing descriptions of 

orientation selective responses in mouse dLGN have been published elsewhere (Huberman et 

al., 2009; Krahe et al., 2011; Piscopo et al., 2013; Scholl et al., 2013). Though mouse does seem 

to contain a third pathway, how much of the mixed koniocellular and W streams is recapitulated in 

mouse dLGN is far from resolved by this or any other mouse studies.  

 

Major differences from primate magnocellular and pa rvocellular designations 

While the organization of mouse dLGN contains several homologies to the macaque 

system, it must also be noted that there are also several major differences. The most obvious 

difference is the gross laminar organization: while macaque dLGN has six layers and interlaminar 

zones, mouse dLGN is not layered. There is some organization in mouse V1, with W-like 

dendritic morphologies in a dorsal shell and X-like morphologies in a core (Krahe et al., 2011), but 

this pales in comparison to the organization of both car and macaque dLGN.  

We saw little difference in receptive field size between linear and non-linear cells in 

mouse dLGN, whereas Y and magnocellular cells tend toward larger receptive fields than X and 

parvocellular cells, respectively. Several factors may contribute to our inability to see differences 
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in receptive field size. We combine cells from across retinotopic positions could be a factor. I 

addition, the large spatial scale of the mouse system could limit our ability to fully stimulate very 

large receptive fields because of the limits of our stimulus monitor. To resolve this, measurement 

of eye position for display position and very large displays corrected for distortions may be 

required.  
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Figures 

 

Figure 4.1 Optic chiasm stimulation generates compound field responses in mouse dLGN.  
A, Electrode track showing positioning of stimulating electrodes at optic chiasm fibers. B, 

Electrode tracks showing multiple tetrode placement into dLGN. C, Nissl stain of dLGN showing 

lack of obvious lamination. D, Local field activity in mouse dLGN following dLGN stimulation, at 

two stimulus intensities: 500µA (top) and 1.5 mA (bottom). E, Measurement of response 

component latencies and amplitudes. t1, open triangles, t2, open squares, r1, solid triangles, r2, 

solid squares.  
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Figure 4.2 Spike activity in mouse dLGN following optic chiasm stimulation.  
The high frequency (600 – 6000 Hz) activity is elicited by electrical stimulation of the optic chiasm 

at three stimulus intensities, 1.3 mA (bottom), 1.8 mA (middle), and 2 mA (top), for both polarities 

of the bipolar stimulating electrode (red and black) Individual trials (8-10 each) are overlaid. 

Compound population spikes do not increase in amplitude with increasing intensity (red) and are 

elicited at only at 2mA for negative polarity (black).  
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Figure 4.3 Examples of linear and non-linear spatial summation in mouse dLGN.  
A, an example of a more common, linear summating unit. Cyclograms from peristimulus time 

histograms of responses to four spatial phases separated by 90º are shown in each row; rows 

show responses at different spatial frequencies indicated at left. Spike waveform on each wire 

shown at right along with a projection in cluster space showing cluster isolation. B, an example of 

a unit showing non-linear spatial summation.  
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Figure 4.4 Linearity of spatial summation in mouse dLGN.  
A,B., The DC, F1, and F2 components of the response to counterphase gratings across all spatial 

phases for the example cells shown in Figure 3. C, The distribution of linearity index across our 

population of dLGN single units, with the examples in parts A and B indicated with arrows. A 

linearity index above 1 indicated non-linear spatial summation.  
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Figure 4.5 Tuning characteristics of linear and non-linear units in mouse dLGN.  
A, Distributions of peak spatial frequency (left) and width of spatial frequency tuning (right) for 

cells classified as linear (solid bars) and non-linear (open bars) using the modified null test, 

measured from fits to spatial frequency tuning plots. B, Distributions of peak temporal frequency 

(left) and width of temporal frequency tuning (right) for cells classified as linear (solid bars) and 

non-linear (open bars) using the modified null test, measured from fits to temporal frequency 

tuning plots. C, Distributions c50 (left) and n parameters (right) of contrast response functions for 
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cells classified as linear (solid bars) and non-linear (open bars) using the modified null test. D-F, 

Examples of opposing spatial frequency tuning (top), temporal frequency (middle), and contrast 

sensitivity (bottom) between two linear cells (black and gray traces).  
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Figure 4.6 Receptive field properties of single units in mouse dLGN.  
A, Example spatial receptive fields from an OFF-center (top) and OFF-center (bottom) cell. B, All 

spatial receptive fields from our population. For each cell the 0.5 level contour from a two-

dimensional Gaussian fit is shown. C, distribution of receptive field areas in mouse dLGN, 

calculated from two-dimensional Gaussian fit parameter.  D, No difference in linear, non-linear, 

and unclassified receptive field areas. E, Impulse response function from the center of the 

example receptive fields shown in part A. F, All impulse responses from our population. G, 

Bimodal distribution of impulse response absolute maxima, but unimodal distribution of maximum 

time.  
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Figure 4.7 Reliability and temporal precision of mouse dLGN single units.   
A, Example response of a mouse dLGN cell to spatially uniform flicker. B, All response of mouse 

dLGN to flicker; each identified event has been fit with a Gaussian, aligned, and overlaid here 

(left) and normalized to the maximum of each event to show the temporal precision of each event 

(right). C, distribution of width of the Gaussian fit to each event. D, distribution of event reliability.  
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 
 

 

In this thesis, we have investigated two populations of V1 output neurons, layer 2/3 cortico-

cortical neurons and layer 6 corticogeniculate neurons in the mouse early visual system. We find 

several aspects of the early mouse visual system are organized in a similar fashion to other 

species. First, dorsal lateral geniculate nucleus contains parallel, overlapping populations as 

classified by physiological responses, despite an absence of obvious layer structure in the 

thalamus. Second, the correlation structure is organized by distance and orientation preference, 

despite differences in somatic organization. Utilizing transgenic tools to specifically manipulate 

layer 6 corticogeniculate cells, we find that these cells are capable of regulating general dLGN 

responsiveness to visual stimuli. In the course of these studies, we have also found evidence for 

parallel processing streams in mouse dLGN.   

 

Mouse as a model system 

The current boom in interest in mouse vision (Huberman and Niell, 2011; Niell, 2011; 

Baker, 2013) is not without its detractors (Movshon, 2013). Critics point to a lack of spatial 

resolution, differences in rodent eye movements (Wallace et al., 2013) and major differences in 

the organization of response properties. Some of these differences in organization are: the 

homogeneity of dLGN responses (Grubb and Thompson, 2003), lack of V1 lamination, and a lack 

of orientation pinwheels in V1 (Ohki and Reid, 2007). Our data do not directly address lamination 

in mouse V1, though we do observe changes in response features through the depth of cortex, 

with complex cells superficial to simple cells (Chapter 2). Our data indicate that some of these 

apparent differences in organization actually hide striking similarities in organization. First, we 
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observe distinct response groups in mouse dLGN: multiple inputs from optic chiasm stimulation, a 

subset of relay cells with non-linear spatial summation, and a diversity of spatial and temporal 

selectivity (Chapter 5). Second, although neighboring cells lack a somatic organization in 

orientation preference, function connectivity and noise correlation both follow orientation 

selectivity. This indicates a specificity of connection that respects both space (which is organized 

in a map) and orientation (which is not organized in a map).  

Why do orientation pinwheels, or functional maps more generally, exist? Mouse V1 has 

comparable single cell orientation sharpness, functional connectivity, and noise correlation in the 

absence of an orientation map. Functional maps have been proposed to exist in order to reduce 

wiring cost, given the amount of neurite ‘wire’ required to generate the observed properties 

(Koulakov and Chklovskii, 2001; Chklovskii et al., 2002). Due to the size of mouse V1, this wiring 

may be energetically reasonable even in the absence of the cost-reducing orientation. The 

developmental mechanism by which such connectivity might be established are not fully 

described, but great advancements have been made describing molecular mechanisms of 

synaptic specificity (Clandinin and Feldheim, 2009; Josten and Huberman, 2010).  

Our analyses further support the usefulness of mouse as a system for understanding 

visual neuroscience. Despite the homologies, questions remain about the usefulness of mouse 

vision. One of these questions is the behavioral relevance of visual processing in mice. 

Integrating physiology with behavior is an active area of expansion in mouse visual physiology 

(Andermann et al., 2010; Carandini and Churchland, 2013; Saleem et al., 2013). New insights 

into V1 have already resulted from awake, behaving mouse preparations. For example, firing rate 

in V1 is modulated by locomotion (Niell and Stryker, 2010) this locomotion can modulate 

response gain and may be a result of locomotive regulation of neuromoduation (Polack et al., 

2013).  
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Parallel processing in mouse dLGN 

Prior investigations of mouse dLGN have yielded mixed conclusions about the homology 

of mouse with other mammalian dLGN (Grubb, 2003; Krahe et al., 2011; Marshel et al., 2011; 

Piscopo et al., 2013; Scholl et al., 2013). We have shown evidence that mouse dLGN contains 

multiple parallel populations of relay cells. It remains an open question if parallel populations exist 

in mouse dLGN, and whether they bear greater homology to the X/Y/W cell classification of the 

cat visual system or the magno-/parvo-/konio-cellular system of non-human primates. 

Initial anatomical investigations revealed little in the way of distinctions between cells or 

areas of mouse dLGN, with no obvious layers or interlaminar zones in mouse dLGN as in cats or 

primates. More recently, Krahe et al (2013) reconstructed the morphology of a large number of 

single mouse dLGN cells and found striking similarity in dendritic morphology to the cell types of 

primates (Saini and Garey, 1981; Nassi and Callaway, 2009) and cats (Friedlander et al., 1981). 

These authors also saw some bias in the localization of these morphological types, suggesting an 

organization of mouse dLGN into functional domains: a koniocellular-like dorsal shell, an X-like 

core, and Y-like morphology the most prevalent the three morphologies. These anatomical data 

support parallel processing in the mouse and a homology between mice and X/Y/W cells. 

Does morphological type correspond to physiological cell type in mouse dLGN, as they 

do in cats and primates? The few studies of the physiological response properties of mouse 

dLGN found little evidence for multiple populations of dLGN cells. These studies found mostly 

linear responses analogous to an X-like or parvocellular-like population, using drifting gratings 

(Piscopo et al., 2013) or the classical counterphase gratings (Grubb and Thompson, 2003). We 

find that evidence for multiple conduction velocities in the inputs to mouse V1 and ~10% of single 

units in mouse dLGN display non-linear spatial summation. Contrast response and spatial and 

temporal tuning profiles in dLGN measured here support the existence of parallel population in V1 

(Gao et al., 2010). The percentage of non-linear cells we observed in mouse dLGN (~10%) is 

closer to that seen in primates (~12.5%, Kaplan and Shapley, 1982) than cats (~30%, Cleland et 
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al., 1971). Unlike cat X and Y ganglion cells (Peichl and Wässle, 1979), the distribution of mouse 

dLGN receptive field size was not bimodal.  

Our results suggest mouse dLGN is more homologous to magno/parvo pathways in 

primates than X/Y pathways in cats. Other recent evidence point towards a functional analog of 

the koniocellular pathway in mouse dLGN (Huberman et al., 2009; Kay et al., 2011; Krahe et al., 

2011; Marshel et al., 2011; Rivlin-Etzion et al., 2011; Piscopo et al., 2013; Scholl et al., 2013). 

Retinal direction-selective cells project to mouse dLGN (Huberman et al., 2009), targeting a shell 

area that matches the localization of koniocellular-like morphologies, where direction selective 

dLGN responses are observed (Marshel et al., 2012; Piscopo et al., 2013). A critical future 

direction in the classification of mouse dLGN cells is measurement single cell spike latencies to 

optic chiasm stimulation, a parameters that has been used for classification in both cats and 

primates (Cleland et al., 1971; Hoffmann et al., 1972; Dreher et al., 1976). Due to the small 

distance between the optic chiasm and LGN, we had little success in measuring single cell 

latencies in the mouse. In the future, guided placement of the stimulating electrode, minimal 

stimulation intensity, and juxtacellular and other single cell recording approaches may facilitate 

this important measurement. 

 

Corticotgeniculate feedback.  

The early mouse visual system also recapitulates corticothalamic organization in other 

species. Axonal projections arising from V1 layer 6 extend back to dLGN, leaving a collateral in 

the reticular nucleus and targeting both relay cells and interneurons. These layer 6 cells have two 

morphologies, each with a layer 4 axon and dendrite. One of these cell types also includes an 

apical dendrite that extends to layer 1, and an axon that includes a projection to the lateral 

posterior area of the thalamus. The transgenic mouse line GN220 Ntsr1-Cre specifically labels 

these CT neurons, making it a useful system for investigating the function of this projection. 
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We found a mix of effects of Ntsr1 neurons on thalamic responses. When driving this 

population using ChR2, we always saw a decrease in dLGN spikes, consistent with previous 

reports in mouse (Olsen et al., 2012), cats (Ahlsen et al., 1985; de Labra et al., 2007), and 

primates (Hull, 1968). Unexpectedly, removing the activity of this population by hyperpolarization 

with Arch did not always lead to an increase in spike count: some cells showed an increase, 

some a decrease, some no change (Chapter 4). This is consistent with several cat studies (Kalil 

and Chase, 1970; Molotchnikoff et al., 1977; Marrocco et al., 1996). Despite the fact that some 

groups have argued consistently facilitative (Przybyszewski et al., 2000; Rivadulla et al., 2002) or 

suppressive (Baker and Malpeli, 1977; Andolina et al., 2007; Olsen et al., 2012) effects of CT 

axons on dLGN, we show that this pathway is capable of bidirectional modulation of dLGN 

responsiveness. This modulation is general: it is not spatiotemporally specific. It has been 

previously argued that the sign of effect is spatially specific (Tsumoto et al., 1978; Andolina et al., 

2013). To reconcile these results, future experiments will need to isolate the effects of Ntsr1 cells 

that are spatially misaligned with their dLGN targets, either through stimuli customized for a single 

dLGN unit, or through paired recordings of dLGN with isolated Ntsr1 units.  

Through what mechanisms do Ntsr1 neuron axons exert their effects on thalamic relay 

cells? Because of the T-current and thalamic bursting, increases in spike count could result from 

either depolarization or hyperpolarization. Several approaches could more conclusively address 

the mechanisms of CG axon effects on relay cells. It is important to know the effect of 

corticogeniculate axons on other, connected, cells (i.e. interneurons and reticular cells); their 

activity might shed some insight into the mechanism of corticogenicualte action on relay cells. In 

addition, recording relay cell membrane potential would be direct measurement of synaptic 

effects, possibly revealing a mechanism of action. Investigating the membrane potential changes 

due to Ntsr1-CG cell activity is an active project in the lab (M.M. Taylor & D. Contreras) 

One factor that could contribute to the variability of the observed results is the sensitivity 

of layer 6 cells to brain state (Livingstone and Hubel, 1981; Sherman and Guillery, 1996). Layer 6 
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is more sensitive to some anesthetics that other cortical cells (Angel and LeBeau, 1992), an effect 

also observed in our system. It is therefore critical that future studies of layer 6 be performed in 

awake animals if possible. Beyond anesthesia, other brain states, like states of vigilance or 

attention, can affect the thalamogeniculate system (Briggs et al., 2013) . Understanding the role 

of layer 6 in shaping thalamic and V1 responses during may require active behavior context, an 

approach that may be facilitated by the high throughput behavior in rodents (Meier et al., 2011; 

Scott et al., 2013). 

 

Synchrony: chance or code? 

Near simultaneous activity can engage non-linear readout mechanisms in target neurons.  

In V1, layer 4 stellate cells are sensitive to the relative timing of thalamic inputs, with up to 40% 

non-linearity (Cardin et al., 2010a). With two independent, Poisson-like, neurons some activity 

within the non-linear window will happen by chance. What we observe in V1 is synchrony 

occurring beyond these levels of chance, more frequency than might be otherwise expected. This 

type of synchrony can result from input that links a pair of cells, a direct relationship between the 

cells, or from network mechanisms that produce this kind of synchrony (Aertsen and Gerstein, 

1985; Ostojic et al., 2009). However it arises, pairwise synchrony can be regulated independently 

of firing rate (Person and Raman, 2012; Briggs et al., 2013). This, at minimum, implies that this 

type of synchrony is not an epiphenomena but a biologically relevant process.  

Is synchrony actually used to read out encoded variables in neural systems? The answer 

to this question is far from obvious. The typical approach to addressing this question involves 

quantifying the total stimulus information, with and without correlations, either by removing 

correlations (Dan et al., 1996) or by disregarding them in the readout scheme (Michel and 

Jacobs, 2006; Pouget et al., 2009; Quian Quiroga and Panzeri, 2009; Eyherabide and Samengo, 

2013). Most studies find minimal value for correlations of any timescale (Nirenberg et al., 2003), 
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though some present additional value in synchrony (Dan et al., 1996, Samonds and Bonds, 

2003).  

These approaches use neural decoders, which are not implementations of neural 

mechanisms of readout, but rather tools for assessing information content. A description of the 

neural mechanisms of readout must take into the biophysical properties of synapses, 

membranes, and spike generation, all of which contain non-linearites that will affect readout of 

input. On the presynaptic side, synaptic depression is a non-linearity that could affect readout. 

Postsynaptic specializations can create non-linearities (Yuste, 2013), an idea that dates to 

Ramon Y Cajal. Dendrites can be linear (Rall, 1962), but also contain active membrane 

conductances which create complex non-linearities (Major et al., 2013). The presence of a spike 

threshold rectifies and imposes a high-pass filter (Priebe and Ferster, 2012). Because it is 

difficult, to impossible, to simultaneously monitor the constellation of inputs to a given cell, and 

that cell’s output, the neural mechanisms of readout are not known. The advent of retrosynaptic 

viral techniques for tracing neural circuits in vivo (Wall et al., 2010; Beier and Cepko, 2012; 

Osakada and Callaway, 2013) may soon provide a method for addressing these questions.  

 

Noise correlations: epiphenomenon, contaminant, or feature? 

Noise correlations are shared variability in spike count independent of changes in spike 

count due to a stimulus (Cohen and Kohn, 2011). When using a decoder that assumes 

independence, this type of correlation can degrade the quality of decoding (Nirenberg and Victor, 

2007); they also constrain the number of neurons over which it is useful to pool signals for noise 

removal (Zohary et al., 1994). Even small amounts of pairwise noise correlation imply much 

greater correlation within a network (Schneidman et al., 2006). This then implies that information 

loss can actually grow with increasing numbers of neurons  (Klam et al., 2008, Oizumi et al., 

2010). We found significant, non-zero noise correlation in mouse V1, as in other species, and 

found that the structure of these noise correlations matched that of other species. 



135 

 

Given the negative implication of noise correlation, why might noise correlation, and its 

structure, be preserved in systems from mice to primates? It is possible that these correlations 

are an unavoidable, or at least tolerable, consequence of the number and interconnectivity of 

neurons using an independent visual encoding and transformation regime. Alternatively, one 

could speculate that noise correlations are not necessarily detrimental to decoding. In fact, Romo 

et al (2003) demonstrate conditions in the somatosensory system in which noise correlations can 

be beneficial. Beneficial noise correlations might also occur in the visual system, at least in the 

retina (Cafaro and Rieke, 2010). Previous estimates of the effect of correlation on decoding 

assume independent encoding elements (Nirenberg and Latham, 2003; Eyherabide and 

Samengo, 2013), but neural systems from the retina to prefrontal cortex violate this assumption of 

independence (see Cohen and Kohn, 2011). It is possible to construct decoding mechanism that 

takes dependencies between the encoding elements into account. This type of decoding would 

require precise wiring, which the results of our functional connectivity measurement, as well as 

other measures in mouse V1 (Ko et al., 2012), suggest is realistic in the visual system. This type 

of decoding also opens the door to other forms of noise reduction beyond pooling and 

normalization, such as estimation of noise terms using correlations (Pouget et al., 2008). Like 

synchronous activity, the role of noise correlations during neural readout and computation will 

require measurement of specified input populations in conjunction with the output at their target 

(Wall et al., 2010; Beier and Cepko, 2012; Osakada and Callaway, 2013).  
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