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Abstract

Active learning is widely used to select which
examples from a pool should be labeled to
give best results when learning predictive
models. It is, however, sometimes desirable
to choose examples before any labeling or
machine learning has occurred. The opti-
mal experimental design literature has many
theoretically attractive optimality criteria for
example selection, but most are intractable
when working with large numbers of pre-
dictive features. We present the BaBiES
criterion, an approximation of Bayesian A-
optimal design for linear regression using bi-
nary predictors, which is both simple and ex-
tremely fast. Empirical evaluations demon-
strate that, in spite of selecting all examples
prior to learning, BaBiES is competitive with
standard active learning methods for a vari-
ety of document classification tasks.

1. Introduction

Recently, a large portion of machine learning litera-
ture has focused on pool-based scenarios where exam-
ples with classification labels are expensive to procure,
but unlabeled data is abundant and inexpensive, re-
siding in a so-called pool. We consider here the prob-
lem of example selection which attempts to gain the
most prediction accuracy from machine learning algo-
rithms while requiring the fewest number of labeled
examples—thus reducing the cost of building machine
learning systems. Random sampling from the pool
provides a baseline for testing whether biased sampling
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strategies can improve machine learning accuracy.!

Active learning approaches to the pool based set-
ting (Cohn et al., 1996; Lewis & Gale, 1994; Seung
et al., 1992) take a trained machine learning algorithm
and pick the next example from the pool for label-
ing according to a measure of expected benefit. In-
terleaving machine learning with labeling is intended
to provide better measures of expected benefit since
more information is available when each new example
is picked for labeling. A field in statistics known as
optimal experimental design (Fedorov, 1972; Chaloner
& Verdinelli, 1995) focuses on the related problem of
deciding what experimental conditions to use in or-
der to learn the best model according to a decision
theoretic cost. An Extension of the field of optimal
design called sequential experimental design is analo-
gous to pool-based active learning in that experiments
are interleaved with computation that re-estimates the
optimal design parameters. Nonsequential optimal ex-
perimental design has had no analogue in the machine
learning literature until now.

In this paper we will take an optimality criteria from
the optimal experimental design literature for a spe-
cific Bayesian model and apply it to pool-based ma-
chine learning of document topic labels. We call the
approach Bayesian example selection, or more specif-
ically, nonsequential Bayesian example selection, to
contrast differences in approach to the active learning
strategies. Empirical evaluation on three separate doc-
ument classification domains using two separate for-
matting schemes demonstrate that a (nonsequential)
Bayesian example selection approach can compete fa-
vorably with both active learning and random sam-
pling methods of selecting examples.

'n this work all samples from the pool are taken with-
out replacement, regardless of sampling strategy.



2. Background and Related Work

Current approaches to example selection usually for-
mulate the problem in an active learning framework,
where a machine learning algorithm is trained on a la-
beled subset of the pool and a utility measure scores
pool observations for labeling. The variety of active
learning algorithms differ primarily in their choice of
utility functions. Uncertainty sampling (Lewis & Gale,
1994) takes the approach of selecting examples of least
certain classification. For example, using a probabilis-
tic classifier such as logistic regression or naive Bayes,
uncertainty sampling would pick the observation who’s
predicted class probabilities yield the greatest entropy.
The query by committee utility (Seung et al., 1992)
measures the classification disagreement of a commit-
tee of classifiers, choosing an example with high dis-
agreement. Cohn et al, (Cohn et al., 1996) measure
the expected reduction in prediction variance of neural
networks and other models, an active learning criterion
that mirrors the nonsequential A-optimality method
described shortly.

Selecting nonrandom examples for human labeling is
just one of several competing approaches to learning
in a pool-based environment. Latent variable mod-
els cast the unlabeled portion of the pool as “missing
data” which can be learned along with a maximum
likelihood model (Nigam et al., 2000). The co-training
method (Blum & Mitchell, 1998) attempts to leverage
two independent, but redundant, views of the data
to grow the labeled set (using pool data) in an auto-
matic fashion. Other instances of pool-based scenarios
and proposals for pool-based learning abound and are
growing in number.

The remainder of the paper is organized as follows: we
describe A-optimality, a popular optimality criteria for
linear regression and discuss it’s applicability to com-
mon machine learning settings. Identifying computa-
tional challenges in optimizing the criteria we propose
the BaBiES criteria, an approximation of A-optimality
for learning in domains with sparse binary predictors.
We then evaluate BaBiES using three different doc-
ument classification domains using two separate data
preparation schemes (leading to six evaluations in to-
tal), discuss the results and conclude.

3. Bayesian A-Optimal Example
Selection

In pool-based example selection our goal is to parti-
tion a pool P into disjoint sets: 7T, the training set
and R, the residual set to maximize machine learning
model performance. Following the notation and de-

cision theory presentation of (Chaloner & Verdinelli,
1995) we define a utility function U(d,3,T,y) for
gauging model performance after selecting a training
set T of fixed size. The vector 3 corresponds to the pa-
rameters of a trained model, y is a vector of responses
for the training set, and d denotes a decision to be
made after the model is trained. The size of the train-
ing set | 7| is not given a symbol as it is assumed fixed
throughout this exposition. The Bayesian solution to
the example selection problem is to select:

U(T*) = max [ max /6 U8 T,y) (1)

TCP y deD

PBly, T)P(y|T) dB dy-

The intuition behind these dual expectations is that
the prior over parameters allows for an estimation of
response vector y which in turn allows us to compute
expected updates for 5.

Our goal is to develop example selection schemes for
optimal prediction accuracy of a Bayesian logistic re-
gression model in classification settings. As a first step
in this paper we consider instead optimizing the pre-
diction accuracy of the more tractable Bayesian linear
regression model defined below:

yijlB,07 ~ N(x}B,021) where (2)
B~ N(0,02I) 3)

This is the standard linear regression with the addi-
tional assumption of a Gaussian prior over the param-
eter vector § performing the task of model shrinkage.
Note the selection of two variance terms: ¢? corre-
sponding to the Bayes error rate of the model, and
af, defining the prior over the covariance matrix of
the parameters. The use of a mean zero prior with
isotropic variance is not necessary for the theory, but
has proven useful in reducing overfitting in models
with large numbers of predictors (c.f. ridge regression

as presented in (Hastie et al., 2001)).
Given our goal of prediction error minimization we em-

ploy utility

U == [ [(6- 546 - )] P8I oy (4)
which is maximized when criterion:
o(T) =tr {AX'X +0,°I) '} (5)

is minimized. = Equation (4) is the Bayesian A-
optimality utility function for linear regression. The
matrix X'X is the Fisher information of the standard
linear regression model, and depends on the training
set only. The matrix A is a symmetric non-negative



definite matrix determined by the pool as a whole.
To understand the origins of the matrix A and Equa-
tion (4), note that prediction error can be decomposed
into Var(z};3) +€; where the €; corresponds to an ir-
reducible error rate. The variance of the posterior
vector is given by o2(X'X + 0,2I)7"!, and hence the
prediction variance of a pool observation vector c¢ is
given by:

Var(dB) = o.d(X'X +0,%I)7 ¢, (6)

known as the c—optimality criterion. Note that here
we ignore the effects of the irreducible error €;. Defin-
ing A; = x;x} where z; is a pool vector indexed by i,
and A = . A; we derive an optimality for minimizing
prediction variance over the entire pool:

Z Var(z}) = o Z ey(X'X +0,°1) 'z (7)
= o) tr{AX'X+0,°D)7"} (8)
= ol {AX'X +0,°I)"} 9)

= [u{AB-HB-H'} 10

-P(y,B|T)do dy
= —1-Equation (4). (11)

4. The BaBiES Criterion

A challenge in applying the optimality criteria ¢
(Equation 5) to data sets with large numbers of predic-
tors, such as document classification, is computing the
inverse: (X'X + 0, 2I)~", an operation that is nearly
cubic in the number of predictors. In pilot studies we
found that by 2000 predictors, the inverse was too ex-
pensive to compute on a Pentium III computer when
employed inside a greedy example selection algorithm.
The numbers of predictors used in our empirical eval-
uation range from 3466 to 7543, and ideally we would
like to work on domains with even greater numbers of
predictors.

We present a heuristic approximation to computing
¢ (Equation 5) named BaBiES as an acronym for:
Bayesian Binary Example Selection. The BaBiES
approximation applies in the special case where X is
both sparse and binary, and the model to be learned is
a Bayesian linear regression with a bias term. In this
case the matrix X'X is also sparse, with the individual
(X'X);; taking on the the number of times features i
and j co-occur, and the diagonal values (X'X);; con-
sisting of the total number of times feature ¢ occurs.
We propose approximating the matrix X'X using its

Inputs: T a set of seed training instances,

k the desired final size |T|

Output: The updated T

while |T| < k
Select the example x; from the pool that reduces
(12) the most.
Add this example to T, removing it from the pool

(without updating the counts P,).
return 7

Figure 1. The Greedy BaBiES Algorithm

diagonal, last row, and last column.? The approxi-

mation allows rewriting of Equations (5) in terms of
pool counts P, and training set feature counts Ty, de-
scribing the number of times a predictor w occurs in
the pool and training set respectively. The resulting
objective function to minimize is:

Py
BaBiES(T) = Zﬁ,
w 3,2

w 3‘71:

(12)

where the sum w is over predictors (i.e. word tokens
in a document classification domain) rather than ob-
servations. Unlike the A-optimality objective ¢, the
BaBiES utility can be computed quickly, making it
feasible to apply a greedy algorithm. The algorithm
we use in evaluation, Greedy-BaBiES is outlined in
Figure 1.

Though we have derived and justified BaBiES using
A-optimality as a starting point, there are several
useful intuitions embedded within Equation 12 that
are worth elucidating. Given a setting where binary
predictors are independent, but occur with different
marginal frequencies, there are two competing objec-
tives that are attractive in sampling observations for
machine learning training. First, we desire a training
set from which to learn accurate parameters for the
most common predictors since these predictors will be
extremely valuable if they prove predictive of the re-
sponse variable. Second, we hope to learn accurate
parameters for as many predictors as possible since
this will increase the probability of having one or more
pieces of evidence to use in making a prediction for a
test set observation. The BaBiES criterion captures
both of these desideratum: the prior (712) determines
the benefit of seeing a predictor for the first time in
the training set, the numerator term gives high fre-
quency predictors greater priority, while the fractional
elements represent a diminishing returns in seeing a
predictor more than once.

2The last row and column of X’ X encodes the bias term,
which will always take the value ’1’.



5. Evaluation

We evaluate the greedy BaBiES algorithm in the doc-
ument classification domain, comparing it against var-
ious example selection strategies: uncertainty sam-
pling (Lewis & Gale, 1994), query by committee (Se-
ung et al., 1992), “maximum document-length” which
adds the longest document to the training set (ties are
broken randomly), and simple random selection, which
serves as our baseline. We use a variant of query by
committee described in (McCallum & Nigam, 1998)
where committee disagreement is expressed in terms
of KL-divergence from the mean.

We compare these selection techniques on three stan-
dard data sets for document classification: Ken Lang’s
20-Newsgroups (Joachims, 1997), the WebKB collec-
tion (Craven et al., 1998), and Reuters-21578 (Lewis,
2003) corpus. For the Newsgroups data, we restrict
our evaluation to the Comp.* subset, consisting of the
five computer-related topics from the newsgroups hi-
erarchy.

The WebKB data set consists of web pages culled
from computer science department websites at vari-
ous universities. The classification task is to predict
whether a web page is a student, faculty, course, or
project page. Finally, the Reuters data set consists of
news feeds from the Reuters-21578 corpus, limited to
those articles that are labeled with “earnings” and/or
“acquisition” topics (the two most prevalent topics).
For Reuters, the task is to predict whether an article
should be labeled with the earnings topic.

All data sets are tokenized on consecutive alphabetic
characters and consecutive numeric characters. Al-
phabetic strings are lowercased and numerical strings
mapped to the special token “N.” A count cut-off of
five occurrences is used, so that a word-type must oc-
cur at least 5 times in the data set in order to be
included in the vocabulary. Stop words are filtered
from the vocabulary using using the Rainbow sto-
plist (McCallum, 1996). In the case of the Comp.*
data sets, ascii-encoded binary data was manually sep-
arated from the articles. Each document was encoded
as a binary-valued vector where each vector compo-
nent encoded whether a specific word-type occurred
in the document.

To better understand the impact that document length
has on BaBiES and the other example selection algo-
rithms, we create truncated data sets for each of the
data sets listed above. The truncated sets are prepared
analogously to the untruncated ones; only documents
are restricted to twenty-five tokens in length (the first
25 unique tokens) and any document with fewer than

twenty-five unique tokens is discarded. The purpose
of the truncated document sets is to fully account for
document length characteristics in the evaluation since
document classification has the property that differ-
ent observations (documents) have different numbers
of distinct words. Other domains do not have this
property and so we isolate length as a factor influenc-
ing performance of example selection strategies.

The classifier used in evaluation was a Bayesian logistic
regression with a Gaussian shrinkage prior set to 1.0:

Ply; = cilz;, B:) = % where (13)
o) = H—%p(—e) and (14)
Bi ~ N(0,I), Vi. (15)

The indices i, k range over categories and j indexes an
observation.

The BaBiES prior o, was set to 1.0. The committee
size was set to five for query-by-committee.

In each of twenty trials, the data was randomly divided
so that half the documents were held out for evaluation
and the rest reserved for the pool. Twenty documents
were pulled from the pool at random and labeled to
create the initial training set. Using this training set
as a seed, the performance of a particular example
selection algorithm would be gauged with the following
iterative procedure:

Step 1: the accuracy of the classifier trained on the
current training set is measured and recorded.

Step 2: the selection algorithm at hand is given access
to the training set, the pool—and in the case of uncer-
tainty sampling and query-by-committee, one or more
classifiers trained from the current training set. Us-
ing this information to inform its choice, the selection
algorithm is then allowed to request that a particular
document from the pool be labeled and added to the
training set.

Step 3: if the total number of documents in the train-
ing set is less than 100x the number of classes, steps
1 and 2 are repeated.
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Figure 2. Evaluation accuracy on truncated (left column) and untruncated (right column) data sets. By row, from top to
bottom the data sets are Comp.*, WebKB, and Reuters. Pool sizes for these experiments are equal to 1/2 the data set
sizes given in Table 1.



Table 1. Statistics of the data sets used in evaluation in-
clude the number of categories (Classes), the number of
observations in the data set before splitting into pool and
test sets (Obs), the resulting number of observations after
truncating documents to 25 unique tokens (Trun Obs), and
the the number of tokens after applying the count cut-off
(Toks). In the case of truncated documents the cut-off is
applied only once: before the truncation has occurred.

Classes Obs Trun Obs Toks
Comp.* | § 4980 3592 7486
WebKB | 4 4169 3730 7543
Reuters | 2 5969 2745 3466

6. Experimental Results

Figure 2 shows performance results for random exam-
ple selection, BaBiES, uncertainty sampling, query by
committee, length (on the untruncated documents),
and using the entire pool. When using the entire pool,
the number of observations is fixed at a constant equal
to one half of the data set size given in Table 1. Per-
formance is measured by accuracy: the proportion of
documents correctly labeled by the trained model, and
measurements are taken over increments of the train-
ing set size |T|. The accuracies reported are averages
over twenty runs, and the standard deviations gener-
ally started at 0.06 early in the curves and went as low
as 0.01 as more documents were added to the training
set.

BaBiES performed significantly above random on the
untruncated Comp.* and all of the truncated docu-
ments, with performance improvements in the last 60
added documents of the untruncated Reuters data set.
In comparing the performance of BaBiES against pick-
ing the longest documents we see that BaBiES outper-
forms the length utility heuristic, demonstrating that
BaBiES does not simply pick the longest document.
However, close examination reveals that BaBiES does
follow the performance trends of length on the un-
truncated documents succeeding when length does and
performing less well when length fails to yield above-
random results. These results suggest a modified Ba-
BiES that accounts for length.

BaBiES approximates inverting the Fisher informa-
tion matrix X'X using diagonal information, and it
would be interesting to determine how well BaBiES
performs in comparison to different amounts and types
of off-diagonal structure in X'X. At one extreme, we
have the theoretical result of a diagonal Fisher infor-
mation matrix if the predictors are mean centered and
independent, since in this case the Fisher information
matrix is proportional to the covariance matrix of X.

Table 2. Squared error of data set reconstruction using a
number of principal components equal to 1% of the original
number of unique tokens used in prediction. The numbers
below are for untruncated documents.

Data Set WebKB Reuters
Squared Error 0.772 0.692

Comp.*
0.683

However, for our data sets the predictors are not mean
centered, and the Fisher information matrix can not
be of full rank since the number of observations is far
less than the number of predictors, for all data sets.

Table 2 attempts to answer the question of how corre-
lation among the predictors affects the approximation
by taking the (untruncated) data sets, projecting each
observation into a number of principal components of
X equal to 1% of the number of predictors (the num-
ber of predictors is shown in Table 1), and measuring
the error induced in reconstructing the original data
matrix X.

The relative orderings and magnitudes of the recon-
struction error rates in Table 2 correlate with the per-
formance of BaBiES, with WebKB having by far the
greatest reconstruction error rate and poorest perfor-
mance. These results suggest that BaBiES criterion is
best suited to document classification data sets when
the correlation structure among the predictors is eas-
ily modeled with fewer principal components. Exper-
iments revealing negative BaBiES results on Reuters
using an all-against-one evaluation predicting “earn-
ings” articles among 135 Reuters topics confirm this
finding (plots not shown).

Document truncation had a large impact on most of
the methods evaluated. For BaBiES, document trun-
cation led to performance improvements in every data
set. Uncertainty sampling performs below random on
the untruncated Comp.* data set, but above random
when the data set is truncated. We conjecture that the
untruncated version of the Comp.* set contains a re-
gion of high uncertainty with no utility to the trained
model. Query by committee seemed the least affected
by truncation, but also had the worst overall perfor-
mance, failing to give above-random performance on
all Comp.* and WebKB evaluations.

7. Summary

We proposed a new approach to selecting examples
from a pool for training machine learning algorithms.
The methodology can select examples for maximizing
prediction performance before any human labeling or
machine learning has occurred. The key ingredient



of our method is an optimality criteria that describes
with some accuracy the expected error induced by a
particular training set, providing a means for greedy
optimization. Since common optimality criteria in
the experimental design literature are computationally
intractable for high-dimensional observations, we de-
velop BaBiES, a simple approximation which performs
remarkably well on a variety of tasks. We expect that
with more appropriate optimality criteria, better ap-
proximations, and numerical optimizations, example
selection performance and robustness will improve.
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