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The randomly diluted resistor network is formulated in terms of an n-replicated s-state Potts
model with a spin-spin coupling constant J in the limit when first n, then s, and finally 1/J go to
zero. This limit is discussed and to leading order in 1/J the generalized susceptibility is shown to
reproduce the results of the accompanying paper where the resistor network is treated using the xy
model. This Potts Hamiltonian is converted into a field theory by the usual Hubbard-Stratonovich
transformation and thereby a renormalization-group treatment is developed to obtain the corrections
to the critical exponents to first order in e=6—d, where d is the spatial dimensionality. The recur-
sion relations are shown to be the same as for the xy model. Their detailed analysis (given in the ac-
companying paper) gives the resistance crossover exponent as ¢, =1+ €/42, and determines the criti-
cal exponent, ¢ for the conductivity of the randomly diluted resistor network at concentrations, p,
just above the percolation threshold: ¢=(d —2)v+¢,, where v is the critical exponent for the corre-
lation length at the percolation threshold. These results correct previously accepted results giving
¢=1 to all orders in €. The new result for ¢, removes the paradox associated with the numerical re-
sult that ¢ > 1 for d =2, and also shows that the Alexander-Orbach conjecture, while numerically
quite accurate, is not exact, since it disagrees with the € expansion.
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1. INTRODUCTION

The properties of the randomly diluted resistor network
has received considerable attention over the past several
years.!~® In the usual model one associates a finite
nonzero conductance o with occupied bonds and zero
conductance with unoccupied bonds. Each bond is ran-
domly occupied with probability p and unoccupied with
probability 1—p. Consider the resistance R (x,x’) be-
tween two terminals at the sites x and x’. If the sites x
and x' are in different clusters, this quantity will be infi-
nite. Even if the two sites are in the same cluster, R(x,x’)
will still be described by a (conditional) probability distri-
bution. For p near the percolation threshold, p., this dis-
tribution function may be characterized by an infinite set
of crossover exponents ¢y, k=1, 2, 3,.... In mean-
field theory, i.e., for spatial dimension d > 6, ¢, =1 for all
k. For d =6—¢€ <6 these exponents may be calculated in
two apparently very different formalisms.>!® In the ac-
companying paper!! we give the details of such calcula-
tions'2 based on consideration of a random xy model, fol-
lowing the technique introduced by Stephen.!® Here we
describe the calculations based on a modification of the
connection found by Kasteleyn and Fortuin'? between the
resistor network and the s—O0 limit of the s-state Potts
model. We show that the renormalization-group recur-
sion relations obtained using the Potts model are identical
to those obtained and fully analyzed in the accompanying
paper for the xy model. To avoid undue repetition their
analysis is not reproduced here. The results of this paper
were summarized previously.'*

A brief discussion placing these calculations in the
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proper context is given in the introduction of the accom-
panying paper, and will not be repeated here. However,
some comments specific to the technique based on the
Potts model are in order. In the original analysis of
Kasteleyn and Fortuin'® and in our succeeding work, use
has been made of the connection between the resistance
between two terminals in a network and the generating
function for spanning trees on that network. Of course, in
the presence of random dilution, one obtains the proper
quenched average by considering the n—0 limit of the
appropriate n-replicated Hamiltonian. The most impor-
tant modification’ of the development from that presented
by Kasteleyn and Fortuin,'? is to replace the \/_sp in their
formulation by suitable limiting operations on s and on
the coupling constant J appearing in the Hamiltonian.
These changes facilitate the development of a field-
theoretic Hamiltonian upon which the appropriate limit-
ing processes can readily be performed.

Briefly, this paper is organized as follows. In Sec. IT we
discuss in some detail the formalism whereby the ap-
propriate quenched average of the arbitrary moments of
the resistance between two terminals can be obtained us-
ing the replica formalism for the s-state Potts model. In
particular, we show that it is important to take the limits
in the order, n—0 first, then s—0, and finally J— oo.
In Sec. IIT this model is converted into a field theory us-
ing a Hubbard-Stratonovich transformation. The recur-
sion relation from which the crossover exponents are ob-
tained are derived in Sec. IV and are shown to be
equivalent, for J— o to those in the accompanying pa-
per,!! where their consequences are analyzed in detail. Fi-
nally, Sec. V contains discussion and concluding remarks.

6987 ©1987 The American Physical Society



6988 A. B. HARRIS AND T. C. LUBENSKY 35

II. FORMULATION

In this section we derive the Potts-model Hamiltonian
from which one can obtain the resistance between two
sites in a random resistor network. This formulation® is a
modification in two respects of that given originally by
Kasteleyn and Fortuin.!> First of all, we introduce the re-
plicated Hamiltonian to treat the quenched disorder in the
resistor network. Secondly, our treatment of the s-state
Potts model in the limit s—0 is more suitable for setting
up a field theory than was the original formulation.

We start by discussing the Hamiltonian of a Potts
model in which there is associated with each site x a set of
vectors {e":tr=1,2,...,s} corresponding to the s dif-
ferent directions from the center of the (s —1)-
dimensional simplex (or regular multihedron) to its s ver-
tices. For later convenience these vectors are normalized
to have length (s —1)!/2 and therefore obey the relations!’

ee" =58, —1, 2.1)

where 8 is the Kronecker delta. The interaction between
two sites x and x’, denoted /, , is given by

hx,x’: _Jo'x,x'er(“'eﬂx') (22)

=-—JUX’X' SS,—(X)‘T(X')—I . (2.3)

As we will discuss below, J~! is an expansion parameter
and oy » is the conductance between sites x and x’ in the
associated resistor network. The interaction of Eq. (2.3) is
such that a pair of neighboring spins can have either of
two energies: if they are in the same state, their energy is
Joy «(1—s), and if they are in different states, their ener-
gy is Joy . Thus the energy gap between the ground
state of a pair of spins and the excited state is sJoy ». In
what follows we will see that the existence of a gap for all
s50 has crucial effects on the cross-over phenomena to
be expected at the percolation threshold. Roughly speak-
ing, the existence of a gap is typified by Ising symmetry,
whereas the nonexistence of a gap is typified by xy or

Since we will be interested in the partition function and
thermal correlation functions of this Potts model, we note
the following relations

—hx,x' ‘“Jax,x’ es‘]ax,x’sf(xJ,r(x’)

(2.4a)

—e 14 (¥ 1085 nx0] - (2.4b)

Now we consider some arbitrary assembly IT" of conduc-
tances. In general, this network will consist of indepen-
dent clusters (denoted ¥4, 75, . . ., etc.) of sites, such that
voltages and currents in one cluster are completely in-
dependent of those in other clusters. This situation is ob-
viously relevant for a discussion of the randomly dilute
resistor network. The Potts model associated with this
network can be written as

H(I)= 3 H(y), (2.5)
vyE€l

where the Hamiltonian for the cluster y is

Hy)=—J 3 o, e™e™, (2.6)
(x,x')EY

where {(x,x') €y means that the bond connecting site x
and x’ is in the set y. For an isolated site, i.e. for a cluster
consisting of a single site, the sum in Eq. (2.6) is empty
and H(y)=0 in this case. We now consider the correla-
tion function

(™€) yry=gr(y,y) , (2.7)

where ( -+ - )y denotes a statistical average with weight
exp(—H). There are two cases to consider, depending on
whether or not y and y’ are in the same cluster. If they
are not, then the vectors €™V’ and ™’ are uncorrelated
and gr(y,y’) vanishes. If y and y’ are in the same cluster
7, then the presence of other clusters is irrelevant and we
have

griy,y)=<(e"-e"") ., =g,(y,y) . (2.8)

Explicitly, this is
Tre —H(r)er(y),ef(y’)

Heisenberg symmetry. The fact that this difference is g, (y,¥y)= —HG) 2.9
. . .. Tre
correctly reflected in our mathematical formulation is an
indication that our procedures are valid. Using Egs. (2.2) we may write this as
|
Jo,
Tr T [14e™ 7 — 18 (5 ) 1(58 g, riyn— 1)
, (x,x')Ey
8, (y,y)= To (2.10)
Tr JT [0+ =180, nx0]
(x,x')Ey
. . Jo.
In order to discuss Eq. (2.10), we write it as C,(y,y)=Tr H [1+(e Tax 1 18 ]
’ — ( 'y ,)e
gy(y,y’)z—————cy(y’y) z) (2.11) Y
Z(V) XSSf(y)’,-(y') . (212b)

where Z (v ), the partition function for the cluster v, is

Zy)=Tr ] [1+(e‘J°""—I)Sﬁx;,m«)],
(x,x')Ey

(2.12a)

and

We now interpret Z(y) and C,(y,y’) graphically. To
do this, we consider bond percolation on the lattice de-
fined by the cluster ¥, which by construction is a con-
nected cluster. Thus, if ¥ consists of ng(y) bonds, we
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consider the 2" graphs G which can be formed by ei-

ther taking (as occupied) or rejecting (as vacant) each
bond in y. There is obviously a one-to-one correspon-
dence between each graph G and the 2" terms one ob-
tains by expandmg the product for Z(y) in Eq. (2.12a),
H[1+(e 75 18 nx).rix s in powers of
(¥ _ 1)&x),nx)- In this correspondence we identify
the factor 8.x),+x) With an occupied bond between sites x
and x' and absence of this factor with a vacant bond.
Each graph G (on ¥) can be decomposed into subclusters
ap, Az, - - -, An (61 of the cluster y. A subcluster is de-

fined as a set of site(s) on ¥ connected (for the graph G)
with respect to occupied bonds. Each graph G will, of
course, give rise to its own system of n,(G) subclusters «,
as shown in Fig. 1. Now we interpret Eq. (2.12a) for
Z(y) in this graphical manner. We regard Z(y) as being
given by the sum over contributions from each of the
2" graphs G. In the graphical interpretation each bond
in G will carry a factor e¥—1 and since the 7’s within
each subcluster a of G, consisting of one or more sites,
are constrained by the 8 functions to be the same, the
trace will give a factor s for each subcluster. Thus if G
has b,..(G) occupied bonds and consists of nc(G) clus-
ters, we have

Ziy=3Tr [I [7°

G (xx)€EG

=zan](G)H(esJal‘x'_l) ’

G occ

X — 18 7x), x)]
(2.13)

where [],.. indicates that the product is over the b,..(G)
bonds which are occupied in the graph G. Now we con-
sider the limit s —0, so that

s/o

e *—1lmsJog,, s—0. (2.14)
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FIG. 1. Graphical interpretation of Z(y), where y is the

cluster comprising the set of bonds (indicated by dashed lines)
shown on the left. Note that a bond connecting two sites in the
cluster ¥ need not be in ¥. On the right we show a particular
graph G on the cluster y. The subclusters a; for this G are en-
closed by dashed lines. For the case shown here the total num-
ber of bonds in y is ng(y)=25, the total number of sites in y is
ng(y)=20, the number of bonds occupied for the graph G is
boce(G)=15, and the number of clusters for the graph G is
ny(G)=5. We show here a graph G with no loops, so that
bocc+ncl =ns('}’ ).

From Eq. (2.13) we see that the s-dependence of the term
corresponding to G in this limit is of the form
st @ F Poccl O Clearly, in the sum over G we only need to
consider those graphs which correspond to the smallest
power of s, i.e. to the minimum value of n4(G)+by.(G).
If G contains no bonds, each site forms a cluster and this
exponent assumes the value ng(y), the total number of
sites in Y. Adding bonds, as long as no loops are formed,
does not alter this exponent, because each added bond in-
creases b,..(G) by unity and decreases n4(G) by the same
amount. Diagrams with loops correspond to larger values
of the exponent, [n(G)+Db...(G)], and therefore are to be
discarded. Thus the lowest power of s in Eq. (2.11) is as-
sociated with graphs which consist of one or more trees.
A “tree” is defined to be a connected graph with no loops.
Now we consider the limit J >>1 [but still within the re-
quirement of Eq. (2.14) that sJ—0]. Since from Eq.
(2.14) each bond carries a factor of J, we see that for large
J the sum over G is restricted to those graphs which con-
sist of trees having the maximum number of bonds. For
these maximal, or spanning, trees, the number of bonds is
simply equal to n(y)—1. If 3 ¢ denotes a sum over G
restricted to be spanning trees, then we have

Z(y)=s ZHo” .

ST occ

sy (2.15)

We can similarly analyze the term C,(y,y’) in the
numerator in Eq. (2.10). The effect of the additional fac-
tor not present in Z(y), s8,y) ~y), is to restrict the sum
over G to graphs which would be spanning trees if the
points y and y’ were imagined to be connected. We shall

indicate this restricted sum by . In comparison to the
ST

denominator we will have one less factor of sJ but an ad-

ditional factor of s. Consequently, we may write Eg.

(2.10) as
s() pns(y) = 22H0xx—2(7’
gr(y,y’)= SZT(;C)C (2.16a)
s% g Txx R (y,y’)
= JEHU” = 1+4J’ . (2.16b)
ST occ

In Eq. (2.16b) appears the celebrated formula'®!® for the
resistance between two sites y and y’ in a resistor network
in terms of spanning trees. To illustrate this formula we
give the resistance, R, ,, between the points 1 and 2 in
Fig. 2 in terms of the conductances shown:

ac +ad +ae +bd +cd +bc +be +ce
abc +abd +abe +-ace +ade + bed +bde +cde
(2.17)
This result can be verified using the equivalent circuit of
resistances shown in Fig. 2c. We can incorporate the re-
sults for the cases when the points may or may not be in
the same cluster by writing

Ry ,=

Xr(y,y')Elin%(s — 1) grly,y)

=v(y,y)[1—R(y,y')/J], (2.18)
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FIG. 2. A simple circuit to illustrate the formula for the
resistance between two nodes, 1 and 2, in a network in terms of
spanning trees. (a) shows the network of conductances a, b, c,
d, and e, over which the sum of all spanning trees gives the
denominator in Eq. (2.17). (b) The numerator in Eq. (2.17) is ob-
tained as the sum of all spanning trees which include the con-
nection shown between nodes 1 and 2. (c) Resistances in the
equivalent circuit obtained via the star-triangle transformation
on the conductances, a, ¢, and d of the original network. Here

=ad/(a+y+98), ra=ay/(a+y+8), and ri=y8/(a+y
+8), wherea=a~!, B=b""!, y=c~!,6=d !, and e=e~".

where v(y,y’) is unity if the sites y and y’ are connected,
and vanishes otherwise, and vR is interpreted to be zero if
v is zero. Note that it is essential that the limits s—0 and
J— o be taken in such a way that sJ is small and Eq.
(2.14) holds. That is, we should first let s—0 and then let
J— .

We now extend the above formulation to random net-
works in which each conductance is a random variable
and averages over this distribution of conductances are in-
dicated by [ ],. For this purpose we introduce the n-
replicated Hamiltonian H™ defined by

: (y)
xXPy,y’ )_hm hm([(s——l )" le T(y) eI‘(y )][(s—l)_le22y~
=lim[({ —e™-e™") 4 )],
s—0
1 1 !
= , 1——R(y,y)+—S(y,y') - - -
vy, y') JR(yy)+J2 (y,y") )

7,(y")
€
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ef(x) ecfl(x )

H(n)

J n
32 zaxx

XXG:

exp(

(2.19)
We note that the partition function associated with H™ is
Trlexp(—H'™)]=[Z"], . (2.20)

Following the usual formulation in terms of replicas we
have the desired result:

X(y,y')=lim lim (s — 1)~ {el"-elY")

5—0n—0 H™
- o
= s“i’é (=€) piplo (2.21b)
=[v(x,x")—J “"(x,x')R (x,x")], + O (J~2) .
(2.21c¢)

Here again vR is interpreted to be zero if v vanishes.
Note that it is important to take the limit n — O before
s —0 because only then will the factor Z” which is of or-
der s s(0) be unity. Also, it is necessary to take the limit
s—0 before allowing J >>1 in order that Eq. (2.12) be
valid. Thus it is essential that the order of limits be such
that first n, then s, and finally J~! be taken to zero. In
particular, this will be reflected in our calculation when
we encounter the factor s” which will be unity in the re-
quired limit.

More generally, we can define arbitrary-order two-point
correlation functions:

1 ‘r[(y) 1'1

1o [s—1) D (2.22a)

(2.22b)

(2.22c¢)

where S(y,y’) is a correlation function for tree connections between y and y’. This correlation function is not related in
any obvious way to resistance properties and its form will not be needed in what follows. From Eq. (2.22¢) we see that

xPy, y)=

— =)

l
1——CWy,y’; )+
AR A

where C'*(y,y’;J)—>RX(y,y') as J— . Thus, if we cal-
culate X' as a power series in [ and keep only the leading
contributions as J— oo to the coefficient of /¥, we have

Xy, y")=[wy,y )exp{ —IR (y,y)/J}], - (2.24)

However, this result reproduces the susceptibility for the
xy model analyzed in detail in the accompanying paper if
the 1dentxﬁcatlon is made that //J in Eq. (2.24) corre-
sponds to k2 in the xy model. Consequently, we expect

Cy,y’;J) - -

) (2.23)

l
that to leading order in 1/J the field theory and the recur-
sion relations should be identical for both models. This
identity will be shown in Sec. IV.

III. FIELD THEORY

In this section we will derive a continuum field
theory'>17—1° for the replicated s-state Potts model of Eq.
(2.19). Each step in this procedure is straightforward and
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well established, but is rendered quite complex by the
large number of variables and the subtleties of the limiting
procedures as discussed in the preceding section. We be-
gin by performing the average over occupied and unoccu-
|

pied bonds implicit in Eq. (2.19). For each nearest-
neighbor bond {x,x’) we assume that the conductance,
04 x takes the values O with probability 1—p and o with
probability p, as usual for percolation. Thus we obtain

exp(—H™)= § [1—p +p exp chrz ), 7 1)] ] (3.1
X x
T
—t

or N D 1

(n)_ (n) 4= ] v+ o , (3.5)
H"™= 3 H{& (3.2a) =1
(x,x')

. where v =p /(1—p). Here (T)=(t,a,l) is a composite in-
with dex specifying the number of replicas ¢, the specific set of
H(G)x') replicas a=(ay,ay, ...,qa,), with a¢;<a,, ..., <a,, and

=—In [l—p—f-pexp

IO 28 iy pauy— 1) ” :
(3.2b)

This expression can be developed in terms of products
over different replicas of the unit vectors e. In Appendix
A, we derive the following expression for H '™

H"=— 3 3 4,57x)s"x"), 3.3)
(x,x') (T)
where
SM(x)= el‘r Ix) | e]Ta‘(X) (3.4)

1 t

and

the specific components 1=(/,,l,,...1,). The state with no
replicas t =0 is not included in (7). The sum over (T),
therefore, includes the sum over all possible distinct
groups of ¢ different replicas from the ensemble of n pos-
sible replicas, as well as over the number of replicas t.
Note that A depends only on ¢ and not on a or 1.

In the expression for A4,, we have taken the limits in the
correct order, viz. n—0 first and then s —0, although, as
noted in Appendix A these limits commute with regard to
the evaluation of A4,. The sensitivity of the calculation to
this order of limits will become apparent in the
renormalization-group (RG) recursion relations to be de-
rived in the next section. To obtain the limit J— o0, we
can expand 4, in powers of J ~! as

& (=D, & (=D* (¢ +k—1) —k ot 1
A= —vv' |1 I =In(1— - t(t Cy: - .6
where
) (_1)1
Ce= 2 " v'. (3.7
I=1
The terms in this series can be regrouped in the form of a power series in t:
A, =In(1—p)~'+ 2 —”k L (3.8)
 ki(Jo)¥ Jo
where C(z)—Cj as z—0.
Note that A, is independent of ¢ in the limit J ~!=0, and H" becomes
H"| S n(1—p)~ 'S PxsT(x)], (3.92)
(x,x") (7
n
S m(-p~ ' I 1+2e, e, -1, (3.9b)
(x,x") a=1
=— 3 In(1—p)! (II 587X ‘”) 1]. (3.90)
x,x")

The first term in square brackets in Eq. (3.9¢) is s"Py(x,x’) where Py(x,x’) is the projection operator onto states with
To(X)=74(x") for every a. In other words, Eq. (3.9¢) is an s"-state Potts model, which in the limit n —0 before s —0 be-
comes a one-state model. Smce such a model is known to be a representation of the percolation problem,'* we indeed do
recover percolation for J ~'=0.
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The replicated Hamiltonian is a quadratic form whose partition function can be expressed as an integral over fields
W T (x) via the Hubbard-Stratonovich transformation. Thereby we obtain

ZMW=Tre—H" = fD‘I/mexp 3+ 3 r Uxx)4, 'V xw D(x)

x,x',(T)

2 W(T)(X)S(T)(x)
x,(T)

Trexp , (3.10)

where y(x,x’) is a matrix in the scripts x and x’ which is unity if x and x’ are nearest neighbors and zero otherwise,
DW¥'D denotes integration over all fields W'T, and ( T) again denotes the multiple index (t,a,1).
Expanding Eq. (3.10) in powers of ¥'?” and retaining only terms relevant to the long-wavelength limit, we obtain

T —HWYD
Z‘”)sz\P‘ e —HWT)

where
H(\P(T)):‘;‘E f(rl+clq2)q/(T)(q)w(T)(_q)
(7) q
1 ) ”
-3!‘“( > fql,qu(T)(T‘)(T”)\P(T)(QI)‘I/(T)(qZ)W(T (—q1—qy),

T'(T")

where (T') and (T"') are composite indices like ( T),

¥ (q)= 3 e ¥ (x), (3.13a)
X
oL =, (3.13b)
() — ZA, =Tt .
c,=a’q?*/(2%4,) , (3.13¢)
and

1 T T, T LA 7"
Firryam=—y 2 el -eley relfel el

s Tre-os Tn
(3.14)

In writing Eqgs. (3.13b) and (3.13c) we used the long-
wavelength  expansion of the Fourier transform
y(q)=z —a?q? where a is the lattice constant. As usual,
we will rescale the fields W'7(q) so that ¢, =1. This leads
to rescalings of 7, and u which, since they do not affect
any of our results, we will ignore. Just as in the case of
A,, r; can be expanded in powers of

re=r+ Swtk, (3.15)
k

where r~(p,—p) and wy~(Jo)~* in the limit J— oo.

Note that r, becomes independent of ¢ for J =0, in

which case the model becomes an s”"-state Potts model

describing percolation?® in the limit n—0, as we showed

above.
|

Fopryry= 11

i€n,

1
L3eierer,
s T

JEn, kEny

where the product over i, j, k, m is over indices belong-
ing to the respective sets of ny, ... ,n, replicas, described
above. A diagrammatic representation of this vertex is
useful. Each incoming line breaks up into three parts
which flow either through both of the other legs or
through only one of the other legs as shown in Fig. 3.
Thus each diagram is a sort of “direct product” of dia-
grams labelled within each replica.?!"??

(3.11)

(3.12)

f

118, 11 8y XX 80,

meEn,

The vertex F(r (1)) requires further comment. We
consider the effect of the normalized trace operation,
s ~1Tr within each replica space. A given replica, say a,
can appear in all three of the indices, (T), (7"), and (T"),
in any two of them, in only one of them, or not at all. If
a appears in only one index, the normalized trace over 7,
will give zero. Such a term will therefore not appear in
Firy(ry.r. If a appears in no index, the normalized
trace, i. e., the sum over 7, divided by s, will give unity.
If a appears in all three indices, the normalized trace in
this replica will contribute a factor

—;—ze[eﬁe{u (3.16)

.

to F, where [ is the vector index associated with «a in (T)
and similarly for /' and !”’. Finally, if a appears in (T)
and (T"), but not in (7""), it will contribute a factor &, ;- to
F. Accordingly, we let n, be the number of replicas com-
mon to (T), (T'), and (T"'), n, the number common only
to (T) and (T’), n; the number common only to (7T) and

(T"), and n4 the number common only to (7”) and (T"').
Then

t=n1+n2+n3 N (3173)
t'znl+n2+n4 5 (317b)
t"=n,+n3+n,, (3.17¢)

and
(3.18)

IV. e EXPANSION

As discussed in Secs. I and I, the average resistance be-
tween sites x and x’ can be obtained from
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FIG. 3. Schematic representation of the three-point vertex
described by Eq. (3.18). The replica indices of each leg are di-
vided into three sets: one set shared by both the other legs and
two sets shared by only one of the other legs. Replica indices
that are the same in two or more legs are associated with the
same kind of line, either solid, dashed, dotted, or wavy.

We are, therefore, interested in crossover with respect to
J~!in the vicinity of the percolation critical point where
J~'=0. In this section, we will study this crossover, and
the crossover with respect to higher powers of J !, via an
€ expansion about six dimensions to first order in
€e=6—d.

As discussed in the preceding section, the model under
consideration is identical to percolation when J~!'=0.
We can, therefore, use well-established results for the € ex-
pansion for percolation as a basis for the calculation of

the crossover with respect to powers of J~!. In particu-

lar, at the percolation critical point, we have!’—1°
Kj(u*Y=g*=2e/7, (4.1a)
n=—e€/21, (4.1b)
v=145€/84, (4.1¢)

where K;=Q,/(27)% where Q is the area of a sphere of
unit radius in d dimensions, and 7 and v are, respectively,
the anomalous dimension and correlation length ex-
ponents for percolation.

Recursion relations for r, can be obtained in the usual
way by integrating out degrees of freedom with wave
number in the annulus b“A<q <A=1, where A is a
cutoff determined by the lattice constant a such that
a A ~unity, and rescaling fields via

\I’(')(q/b)—>b(d“2+”)/2\P(”(q) .

Eliminating an infinitesimal shell at each iteration with
b=e® we obtain the differential recursion relation? for
the quadratic coefficient, r,, of Eq. (3.12) as

dr,
dl

=Q2—nr,— 5g*1,, 4.2)

FIG. 4. Diagram which contributes to =, of Eq. (4.2). The
momentum shell integration is over the internal propagators in-
dicated by solid lines.

where we set g =g* and II, is the contribution from the
diagram in Fig. 4. It can be expressed formally as

,= 3 FinaanGeGe, (4.3)
(THNT)

where G,=(1+r,)~! is the bare propagator evaluated at
g =A=1. Throughout this development we have used the
fact that r ;) depends only on ¢, the number of replicas.
This same property is shared also by Il and G. To evalu-
ate I1,, we could evaluate the sums in Eq. (4.3) directly us-
ing the explicit forms of F ()77~ given in the preceding
section. A somewhat more direct evaluation, which is
generalized elsewhere?! to higher order diagrams, can be
obtained as a result of the following observations: Each
replica a which enters a graph for II on the left must fol-
low a continuous path to emerge on the right. There are
three ways a replica can run continuously through the one
loop graph shown in Fig. 4: It can run through either both
legs in the loops or else through only the top or only the
bottom leg of the loop. These possibilities are shown in
Figs. 5(a) — 5(c). In addition, if ¢ replicas enter, then any
of the n —t of the remaining replicas can cover both the
top and bottom legs of the loop as shown in Fig. 5(d).
Thus, II, is obtained by summing over all possible ways
each replica can appear, either as in Figs. 5(a) — 5(c) if it
appears in an external propagator, or not at all as in Fig.
5(d) if it does not appear in an external propagator. How-
ever at least one replica must appear in each leg of the
graph for it to actually correspond to the diagram of Fig.
4. The matrix element for Fig. 4 is thus constructed as

(a) (b)
(c) (d)

—

FIG. 5. Ways in which a single replica can “cover” the dia-
gram of Fig. 4.
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the product of matrix elements for each replica. Each re-
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values a, b, c, or d, be the number of replicas correspond-

plica as in Fig. 5(a) contributes a factor s —2, each as in ing to Figs. 5(a)—5(d), respectively. Then ¢=n,
Fig. 5(b) or 5(c) a factor unity, and for each replica as in +ny+n,, t'=n;+n,+ng=t+nyg—n,, and t'=n,
Fig. 5(d) a factor s —1. Let n;, where i assumes the +n,+ng =t +ny—n,. We therefore obtain
J
—n— t! (n —1)!
" = —2G,G s —2) TP (s —1)™ »G , 4.4
t 0 z+nb‘n2und( ) N npn Nt —np—n)! ngln —t —ny)! t+ng—n.t+ny—n, (4.4)

where Go=(1+7r,_o)=(1+7)""!, and where we have add-
ed the superscript (#) to indicate that the » —0 limit has
not yet been taken. The second term in Eq. (4.4) contains
an unrestricted sum over all values of n,, n,, and ny; and
includes the cases ¢t =0 and ?'=0 in which one of the legs
of the bubble are covered by no replicas. These unwanted
contributions are removed by the first term in Eq. (4.4).
It is convenient to write Eq. (4.4) as

M"=G63-2G6,G,+8I11\", (4.5)

where we have separated II into a ‘“normal” part,
G3— 2GoG,, which gives all crossover exponents, ¢,,
equal to unity, and an “anomalous” part, 8II given by

6H£n)=—G(2)+ 2 (s_z)t-—k—l(s_l)m
k,I,m

—kn—
X CyCi{ *Cp, th+m—th+m —~1 -

(4.6)

where Cj is the binomial factor ¢!/[k!(t —k)!] In Appen-
dix B we show that Eq. (4.6) can be put into the form

8IL,= 3 (—1/C/ S CEH ' (1—sPNG,?,  (4.7)
r=1 p=0

where A" is the rth-order finite-difference operator:

,
AG,=3 (—1)C[G, ;=" —1)G) | h—p - (4.8)
1=0

To see the meaning of this result, note that 811, is clear-
ly zero when all of the wy’s are zero, since AG, =0 in this
case. Secondly, since AG), is at least of linear order in the
w’s, each term in the sum over p is at least of quadratic
order in the w’s provided that this sum converges, as it
does for O <s <2. (This conclusion can no doubt be ex-
tended to s >2 by further analysis.) Thus 8II, does not
contribute to the crossover exponents for w; for any s > 0.
Consequently, for s >0

3,=—2GoG,+Gi~—1+2r, (4.9)
and

drt - *

i =2—n—-2¢g ), +g , (4.10

from which we determine the stability exponent A,=1/v
and a crossover exponent ¢, =A,v=1 for all ¢ in agree-
ment with the calculation to first order in € of Stephen
and Grest®* (for the Ising model, s =2) and with the
proofs of Wallace and Young? (for the general s-state

I

Potts model), and of Coniglio®® (which is expected to hold
for discrete-spin models with an energy gap).

As mentioned above, the energy gap vanishes as s —0,
and this phenomenon reflects itself in our calculation:
when s—0 the factor (1—s)” no longer ensures the con-
vergence of the integrals in Eq. (4.7), and a more careful
analysis is necessary. To see what Eq. (4.9) implies for
s =0, we write it more explicitly as

SI,=—1 3 (AlG,)?+ L’;ﬁ S (p + 1)(A2G,)?
p=0

p=0

-1t =2) & P+DP+2) 342, ...
T 2 2 Me
(4.11a)
S (=D
=2 G rowr e (4.11b)

As in Eq. (2.23) to treat resistance properties we should
keep only the leading dependence on J within a given
power of . Corrections of relative order (1/JY for j >0
do not affect the moments of the resistance discussed in
Sec. II. Recall that w, ~J 7, S0 that
G,=(1+r + 3 ,wep*)~" is a function of (p/J). There-
fore the sums will be dominated by values of p which are
of order J. Thus to leading order in 1/J we set
(p+k —1!/p!=p*—" and replace the sums by integrals,
so that

e — 1)
X, = 2 LP——M(AI‘GP)Z

o plk—1)
1 ¥aG, |’
- ®© k- P
=T [, pt o dp . (4.12)

Since G, is a function of p/J, one sees from this form
that X; ~J ~k. When it is expanded in powers of t, Eq.
(4.11b) becomes

ok
t

I, = 3 (= S [Xe+ai Xie 1 +ai Xie o+ 1.
. !

(4.13)

Within the square brackets of this equation the leading
dependence on 1/J comes from the first term, X;. Drop-
ping higher order in 1/J corrections we may therefore
write
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811, = 3 6114

=1

(4.14)

with

s — L (=1 f°°yk-—1 3G,
k! (k—1) Jo Ay

The above result is identical to that obtained in the ac-
companying paper [Eq. (4.25)] for the diluted xy model.
We therefore, stop the analysis here and refer the reader
to the accompanying paper!! for the calculation of the
crossover exponents and scaling functions. The main ad-
ditional result is an explicit calculations of a class of
universal amplitude ratios which can be formed by the
susceptibilities associated with the moments of the resis-
tance. The reader perhaps should also be alerted to the
fact that the results for the subsidiary crossover ex-
ponents, which describe corrections to scaling, differ from

those previously announced.'%!*

dy . (415

V. DISCUSSION AND CONCLUSION

The principle purpose of this paper was to derive the
scaling properties of the probability distribution of the
two-point resistance R (X,X’) between sites x and x’ on the
same cluster at the percolation threshold. We showed
here in detail that the critical properties (in particular the
e-expansion recursion relations) are the same as for the
randomly diluted xy model treated in the accompanying
paper.!! The detailed calculations of the crossover ex-
ponents, the scaling functions, and the universal ampli-
tude ratios which are obtained via the e-expansion recur-
sion relations in the accompanying paper!! could therefore
just as well be obtained from the Potts-model formulation
presented here. The conclusions mentioned in the abstract
follow from the analysis in the accompanying paper and
are discussed there.
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APPENDIX A: DERIVATION
OF THE COEFFICIENTS 4,

In this appendix, we will derive Eq.(3.3). To do so, we
introduce an Abelian representation?’ for the s-state Potts
model. Let

,‘l}k(x):eZﬂik'r(x)/s . (Al)
where k=0, ...,s —1 is an integer. Then

1 — *

5 2 Ui (XYr(x) =8.x), nx) (A2)

1 — 1 ka-r/s

?Trtpk(x):—s—z =640, (A3)

T=1

and
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s—1

S UK (x) =€) = (58,5, nxn— 1) - (A4)
K=

The Hamiltonian of Eq.(3.2) can be expanded in powers of
v=p/(1—p):

sIan(STa(x) sz~

H™, — 1 2 (=1)
rr=—In(1—p)+ 3 ] vle
=1

(AS)

The exponential factor in this equation can be expanded
in terms of

U= [T ¥, (A6)
a=1

with k=(k,, k,,..., k,). We obtain

= 3 (XY (x")Fy
x

(A7)

7(x’), we deter-
(A7) by
summing  over

exp [31012(5,#(”,,:1(,')_1)
a

Since both sides are functions of 7%(x)—
mine Fy by multiplying both sides of Eq.
exp{ —2mik-[7(x)—7(x')]/s} and
7(x)—7(x’')=y. Thereby we obtain

sloJ 2, (8 -1
F,— ~n, —2mwik-y/s % y%,0
v=25""e e
y
1

—2mik y®/s loJ
+_ e a e—so
. 2

ya;éO

’
a

Mlv—-

[1+(S—l)e_sla']]ska,o—l—%(I—Q—SIOJ)] ,

1|

X

sTM1—e S9N [14(s

=0

—1e —sIaJ]n —IP(t)

-~

(A8)

where

P= 2[1 18k, o) I & . (A9)

j=t+1 %’

is the projection operator onto the state with any ¢ of the
n components of k nonzero and the other n —¢ com-
ponents zero. The sum in the last equation is over all of
the C;' ways of selecting ¢ of n components to be nonzero.
Taking the limit n —0 and using Eq. (A8) in Eq. (A5), we
obtain

H!"). = _Inp— 2 A, Edzk Yi(x' )P (A10)

t=1

where
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t —t
© (_1)1+1 ! l_e—slaJ 1
A, = — —0. All
‘ E] I U it —ne | 7 |los | *° (A1D
|
Note that Eq. (4.6), we use
SPOx(x)= 3 STxST(x) . (A12) Ge=[Tan [~ 40 G eith—ko | (BI)
k {al, {1} 0 e 27
Thus, apart from the Inp term which we drop, Eq. (A 10) S cici ARyl =(14x +y), (B2)
is identical to Eq. (3.3). k1
and
APPENDIX B: DERIVATION OF Eq. 4.7) ]in})z C,',',—'x'":( 14+x)~" (B3)
n-—
In this appendix we derive Eq. (4.7) starting from Eq. "
(4.6). In order to perform the sums over k, /, and m in to obtain
J
® ® o dwy pe do (' 1)~ 1) ' i(h o) +hy0,)
M = [ “ah, [ dhy [T S [0S GGy, | 1= ~1le : (B4)
i e +s—1
We denote the term within square brackets in this equation by X. Expanding X we obtain
X=3 (—1/Cle™ — 1) —1)(e" " ys—1)~" (BSa)
r=1
=3 3 Cle™ 1y =1y C, (s — 1" 1T T (BSb)
r=1p=0
Now use C, "= ( —l)pCI‘,’““l, whence
X=3 3 e P—e e P 1—e Ty (1 —sPCiCE T (— 1) (B6)
r=1p=0
-
Now the integrals over h,, h,, w;, and w, can be per- where A" is the rth-order finite difference operator:
formed using Eq. (B1) to obtain Eq. (4.7): ,
A'G, =3 (—1'C[G, ;. (B8)
=0

811, = 2(—1)’C,’20C[§’+'_1(l—s)p(A’Gp)z,
r=1 p=

(B7)
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