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ABSTRACT 

 

THE ROLE OF THE VENTROMEDIAL PREFRONTAL CORTEX IN VALUE-

BASED DECISION-MAKING 

Linda Q. Yu 

Joseph W. Kable 

The ventromedial prefrontal cortex (vmPFC) has been shown to correlate with the 

subjective value for options, across reward type and across hundreds of functional 

neuroimaging studies. Despite the prominence of its role in preference-based decision-

making, its specific contributions to how decisions are made have not yet been well-

characterised. Study 1 addresses what the vmPFC signal represents during decision-

making. While the vmPFC signal has been shown to correlate highly with subjective 

value in past studies, this signal is also consistent with mental navigation through a 

conceptual attribute space using a grid-like code. We found that the mental navigation 

model lacked support in the evidence, and the subjective value model remains the best 

explanation for vmPFC signal during decision-making. After having established that the 

signal in vmPFC reflects subjective value, Study 2 addresses whether subjective value 

representations remain consistent for non-choice preference tasks, and when this 

representation comes online during the decision process. This study shows that the value 

network seen previously for choice tasks also is active during a matching bidding task, 

and that the vmPFC, interestingly, represents value only at the time of the final choice. 

Finally, in Study 3, I address the question of how the vmPFC is necessary for subjective 

value in my third chapter. Transitivity (the idea that if A > B, and B > C, then A > C) is a 
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key property of a value-based system. Individuals with ventromedial frontal lobe damage 

have been found to make more transitivity errors in the past, but it is not known whether 

vmPFC damage causes fundamentally intransitive choices (implying abolishment of 

value), or transitive but noisier choices (implying preservation of value but increased 

instability). We found strong evidence for the second case, demonstrating that vmPFC 

damage adds instability to valuation but does not abolish it.  The evidence I present here 

is consistent with the theory that vmPFC is involved in a subjective value-based process 

during decision-making, yet that value is a distributed process over many brain regions 

where other regions may compensate for the loss of the vmPFC in calculating value. 
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Chapter 1 – Introduction 
 

Our primate ancestors must be very jealous of us. We have a buffet of choices 

before us in the supermarket, endless aisles of protein, fat and sugar available with the 

single reach of the hand. The biggest problems we face (in rich, industrialized countries, 

anyway) these days is which restaurant we want to tap on our phone so they can deliver 

us dinner, and then what multi-million-dollar entertainment franchise to tap on next that 

we can watch while we eat. We have so many choices that, in fact, we are often paralyzed 

by them – a cacophony of multi-sensory influences competing for our hand. When you 

can have anything you desire, what do you desire?   

The central question of this dissertation is to figure out how our brain deals with 

all this noise, and how we extract that precious thing called desire from them. This brain 

of ours originates not just from those unlucky primate ancestors; from the earliest days as 

a mere few cells strung together, it has had the task of keeping itself alive from when life 

begun. To do so in the eons before smartphones, it had to figure out what actions to take 

to feed itself and procreate. How does it do so in a way that would maximize its chances 

of perpetuating itself? One way, economists thought, was that it should maximize utility, 

which is essentially the usefulness of something in advancing one’s goals (Baron, 2008). 

Utility is like a summary of the attributes (either benefits or drawbacks) of an item or 

action, which can then be compared to those of another. Because utility is something that 

is abstracted from the attributes of the individual options, dissimilar items like apples and 

orange play-dough can be compared. Another important property of utility is that 
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preferences should be transitive (Samuelson, 1937). If a slime mold prefers agar patch A 

to agar patch B, and a.p. B to a.p. C, then it ought to prefer A to C. The reason to do so is 

to maximize utility towards towards its goal, which, for a slime mold, is to maximize 

metabolic energy and avoid light (Devi, Guttes, & Guttes, 1968). 

An alternative to using an integrated value representation to adjudicate among 

options is using heuristics. For example, one could impose a rule that, when choosing 

among two different agar patches, if the light exposure is similar enough, one should 

choose the patch with more agar. Such a rule seems reasonable on its face, but would run 

into problems of violating transitivity under certain conditions (Tversky, 1967) and 

therefore would not maximize utility. Nevertheless, heuristics have been shown to be 

used when people’s preferences are not well-formed, and/or if the decision-maker wishes 

to avoid making trade-offs (Tversky, Sattath, & Slovic, 1988). 

 A topic of study over the years has been if, and how, preferences are constructed. 

A utility signal that is invariant to context and mode of elicitation should give rise to the 

same preference for the same option no matter how the question is couched. This 

concept, called procedure invariance, has been clearly shown not to be the case, and 

people do change their preferences depending on how the question is asked, and even 

slime molds change preferences based on what other options are available (for review on 

humans see Payne, Bettman, and Johnson (1992); for slime mold see Latty and Beekman 

(2010)). However, it is debated as to how people construct their preferences – whether 

such a signal is more utility-like, but just influenced by context at the time, or something 

closer to heuristics, in which case it would be rule-based and not dependent on utility 

(Fischer & Hawkins, 1993; Mellers, Ordoñez, & Birnbaum, 1992).  
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 Behavioral economic concepts of value were intended as as-if models (meaning 

people behave as if they are maximizing utility), and not as a way of describing how 

things actually worked in their heads (Kable & Glimcher, 2009). Similarly, behavioral 

studies are limited in their ability to assess the process by which people construct 

preferences. For organisms more complex than our single-celled mold friend, we can use 

neuroscience tools to investigate how this utility concept is actually implemented in the 

brain, and reveal the timing of such representations during the decision process. In 

humans, meta-analyses show a well-established network of regions known to be involved 

in representing reward and preference, including the ventral striatum, posterior cingulate 

cortex, and ventromedial prefrontal cortex, or vmPFC (Bartra, McGuire, & Kable, 2013; 

Levy & Glimcher, 2012; J. Peters & Büchel, 2010). The focus of this dissertation will be 

on the vmPFC (an area of the frontal lobes around eye-level), and its involvement in 

decision-making.  

The Ventromedial Prefrontal Cortex 

 The definition of the vmPFC can vary based on the paper or method of 

investigation. In the fMRI literature, it generally refers to the anterior cingulate cortex 

(ACC) below the genu of the corpus callosum [ventral portions of areas 24, 25, 32, --as 

defined by Petrides and Pandya (1994)], the frontal pole (area 10), as well as medial 

orbitofrontal cortex (area 14). In the lesion literature, it often additionally includes central 

and lateral parts of the orbitofrontal cortex (areas 11, 13, and 12/47), and moreover the 

white matter as well as the grey matter. In this thesis, we will refer to this broader 

definition as “ventromedial frontal lobes”, in relation to discussions of studies of 

individuals with lesions. 
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 The vmPFC and orbitofrontal cortex (OFC) contain two distinct patterns of 

connections, the medial network and the orbital network (Öngür & Price, 2000). The 

medial network, which includes the aforementioned ACC areas and medial OFC, is 

densely connected to limbic structures (e.g., amygdala, entorhinal cortex, hippocampus), 

as well as projecting to the ventral striatum. The orbital network, on the other hand, 

consists of the central and lateral OFC, and is characterised by connections to sensory 

inputs, primarily olfactory, gustatory, visual, and somatosensory, in addition to being 

connected to perirhinal cortex and more central parts of the striatum. The medial and 

orbital networks share connections with each other, particularly through intermediary 

areas like area 13 and posterior area 14.    

 The connections with limbic structures, then, puts the vmPFC at a particularly 

suitable position to represent preferences, gaining inputs from structures involved in 

emotion and memory, while projecting to reward-related centers like the nucleus 

accumbens. At the same time, the multiple sensory inputs in orbitofrontal cortex, and its 

connections to regions involved in recognition memory and action-learning, puts it in a 

position to represent learning and linking sensory inputs to outcomes (Haber, 2016). 

  Activity within overlapping regions of the vmPFC has been found to correlate 

with preferences for different categories of objects, suggesting that this region integrates 

value information for different types of stimuli into a common scale (Bartra et al., 2013; 

Chib, Rangel, Shimojo, & O'Doherty, 2009; Levy & Glimcher, 2012). The vmPFC’s 

signal, moreover, describes a subjective assessment of the value of the options, which 

integrates dimensions of costs and benefits into a single representation that reflect 

individual differences (Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; Kable & 
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Glimcher, 2007; Plassmann, O'Doherty, & Rangel, 2007; Tom, Fox, Trepel, & Poldrack, 

2007). More recently, it has been shown with multivariate methods that vmPFC 

represents a domain-general value signal, while central orbitofrontal cortex instead 

represents identity category-specific value (Howard, Gottfried, Tobler, & Kahnt, 2015; 

Howard & Kahnt, 2017; Pegors, Kable, Chatterjee, & Epstein, 2015). Individuals with 

damage to the vmPFC have been repeatedly found to be less consistent in preference-

based choices between multiple kinds of goods (Fellows and Farah, 2007; Camille et al., 

2011; Henri-Bhargava et al., 2012), suggesting a critical, general role for this region in 

valuation of stimuli. 

Open Questions 

 Though the above evidence might show that value is robustly associated with the 

vmPFC, the opposite inference cannot be made. The vmPFC is involved in many other 

domains of cognition, a prominent one of which is schematic memory. fMRI studies have 

shown that vmPFC activity represents implicit relationships between elements within a 

task (Schuck, Cai, Wilson, & Niv, 2016; Zeithamova, Dominick, & Preston, 2012), and 

damage to the vmPFC has been shown to disrupt and weaken processing of semantic 

associations (Spalding, Jones, Duff, Tranel, & Warren, 2015; Spalding et al., 2018). One 

way of representing and inferring relationships between concepts is by situating them 

within a mental map, like one would buildings in a city – a theory known as the cognitive 

map (Tolman, 1948). Recently, fMRI studies have found that vmPFC appears to be 

involved in navigation through physical and conceptual space (Constantinescu, O’Reilly, 

& Behrens, 2016; Doeller, Barry, & Burgess, 2010), using the same mechanism of grid-

like coding as the entorhinal cortex for spatial navigation (Hafting, Fyhn, Molden, Moser, 
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& Moser, 2005).This grid-like code has been proposed to underlie cognition broadly, 

including decision-making (Bellmund, Gärdenfors, Moser, & Doeller, 2018). In other 

words, making decisions between two movies would be like mentally traversing in a 

space made out of its attributes, e.g., genre and critical rating. Thus, though subjective 

value has been found to correlate with activity in the vmPFC, conceptual navigation 

represents a model of choice that could conceivably mimic such a signal that would not 

be value-based at all. The plausibility of such a model in decision-making has not yet 

been tested, and remains an open question. 

Secondly, while there is an extensive literature on the vmPFC’s role in 

preferences for choice tasks, it is not well-established as to how this process is conducted 

in the brain in preference tasks other than choice. That the same neural network would be 

active for a non-choice preference task is not to be taken for granted, given that people 

may change their preferences between choice and matching tasks (where one must come 

up with an amount for an attribute that would make one option equivalent to another), 

and it is thought that different strategies underlie choice in these different paradigms 

(Fischer & Hawkins, 1993; Tversky et al., 1988). In addition, there is little known about 

the temporal evolution of preferences in human vmPFC, and once again the available 

evidence is only on choice tasks (Harris, Adolphs, Camerer, & Rangel, 2011; Harris, 

Clithero, & Hutcherson, 2018). Thus, it is an open question as to how preferences are 

represented in non-choice preference tasks, and when this information arises during the 

decision process. 

Finally, though individuals with vmPFC damage has been shown in the past to 

make more transitivity errors (Camille, Griffiths, Vo, Fellows, & Kable, 2011; Fellows & 
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Farah, 2007; Henri-Bhargava, Simioni, & Fellows, 2012), it is unknown if vmPFC 

damage causes fundamentally intransitive choices, or transitive but noisier choices. This 

distinction is important because the first possibility would imply that the vmPFC is 

necessary for value-based decisions per se (in which case decisions would be made 

without value, for example relying on heuristics), while the second would imply that the 

vmPFC is necessary for an aspect of value-based choice. This question has implications 

for whether the idea of value is a distributed system where each region of the frontal 

lobes computes attributes in a similar fashion, but contributes distinct aspects of value to 

the whole representation (Hunt & Hayden, 2017), or if the vmPFC represents the final 

common pathway for value representation. 

My dissertation aims to describe vmPFC function during decision-making. It will 

address three questions: 1) does the vmPFC signal during decision-making truly reflect 

subjective value, or is it instead reflective of the conceptual navigation model? 2) how are 

preferences represented in the brain in a non-choice task, and when does it do so during 

the decision-process? 3) in what way is the VMF necessary to value-based choice?  

 

General Methods 

In this dissertation, I will use two cognitive neuroscience methods: analysis of 

neural data from functional magnetic resonance imaging (fMRI), and the study of the 

behavior of individuals who have sustained focal damage to specific brain areas. fMRI is 

an observational method in which participants perform cognitive tasks while lying in a 

scanner that measures the oxygenation level in blood flow (blood-oxygen-level 
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dependent, or BOLD, signal) throughout the brain. If the task elicits more activity in a 

certain brain region, then that region will consume more oxygen, therefore prompting 

more oxygenated blood flow there and increasing the BOLD signal. The evidence this 

method provides is correlational, meaning that the BOLD signal is correlated with neural 

activity — and hence an fMRI study tests the association of this activity with some task 

variable, or behavior. The advantage of this method is that it provides a relatively high 

resolution, whole-brain picture of activity. As such, it is possible to test various cognitive 

models and statistically assess how well they describe actual brain function. However, 

fMRI evidence does not tell us whether any brain region is necessary for the function in 

question.  

My second method, study of individuals with focal lesions, provides evidence for 

necessity. A lesion study involves comparing the behavior of a group of individuals with 

damage to a target region (here vmPFC) against two control groups: an age and education 

matched healthy control group, and a group of individuals with damage to other parts of 

the brain (in this case, the frontal lobes) sparing the target region. The second control 

group is intended to rule out both that any observed behavioral differences are an effect 

of sustaining frontal lobe damage or having undergone a major medical event. If the 

vmPFC-damaged group performs worse than both control groups on a certain measure, it 

is taken as evidence that the vmPFC is specifically necessary for normal performance on 

that measure. This technique is inferentially powerful, but spatially imprecise (as there is 

no control over the extent or location of brain damage each individual sustains).  
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By combining the advantages of both methods in my dissertation, I will both be 

able to investigate models of representation and process in decision-making, as well as 

able to assess the necessity of the vmPFC to decision-making.  

Research Overview 

Chapter 2 addresses what the vmPFC signal represents during decision-making. 

While the vmPFC signal has been shown to correlate highly with subjective value in past 

studies, neural models inspired by spatial navigation have recently suggested that the 

vmPFC may be involved in navigation through conceptual space (Constantinescu et al., 

2016). This has led to proposals that decision-making and other cognitive processes 

operate via mental navigation through a conceptual space made out of attributes (Behrens 

et al., 2018; Bellmund et al., 2018). Thus, in this chapter we assess both the theoretical 

plausibility and empirical fitness of this conceptual navigation model to vmPFC activity 

during decision-making. We find that the conceptual navigation model and subjective 

value model are highly correlated, so it is theoretically possible that the signal previously 

interpreted as subjective value could actually instead be reflective of mental navigation 

through conceptual space consisting of option attributes. We then sought to distinguish 

these two possibilities in a large dataset of 106 participants that performed an delay 

discounting task while going under functional neuroimaging. We found that the mental 

navigation model lacked support in the evidence, and the subjective value model remains 

the best explanation for vmPFC signal during decision-making.  

After having established that the signal in vmPFC reflects subjective value, 

Chapter 3 addresses both how value is represented in a non-choice-based preference 
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paradigm, and when does this representation comes online during the decision process. 

We analysed the data of 37 participants who performed a bidding delay discounting task, 

where they were asked to decide the amount of money they would accept to receive 

immediately, in exchange for $75 offered at varying delays. Participants entered their bid 

by scrolling through descending possible amounts of money and submitting their final 

decision.  We found that first, that the brain does represent a similar pattern of value-

related activity as found in choice tasks, and second, that the vmPFC represented the final 

bid only at the very end of the decision period, when the participants submitted their 

answers, and not any time prior. These results both support the idea of preference 

construction late into the decision, and demonstrates that neural representation between 

choice tasks and other types of preference-based tasks share common characteristics. 

Finally, though evidence from both fMRI and past lesion studies show that 

vmPFC is critically involved in valuation, it is not known how it is necessary for 

subjective value. Specifically, is value abolished altogether in vmPFC damage, or does it 

remain but is altered in some way? I address this question in Chapter 4, by leveraging the 

idea that transitivity is a fundamental feature of value. Past studies have only presented 

choices between options once, so that violations of transitivity are considered in a 

deterministic way, which does not make clear whether the subject would always make 

such an error if given the same options again. To look at the question of whether VMF 

subjects are fundamentally transitive, it is necessary to present subjects with repeated 

pairs of choices, and look at whether they are consistent with transitivity in a probabilistic 

way, over the repetitions. We presented individuals with VMF damage, individuals with 

frontal damage sparing the VMF, and healthy controls with complete sets of pairwise 
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choices in three categories (art, chocolate brand, and gambles), where some of the pairs 

are repeated (to test probabilistic transitivity) and others were not (to test deterministic 

transitivity).  We found strong evidence for the second possibility, where individuals with 

VMF damage were fundamentally transitive in tests of probabilistic transitivity, but still 

made more errors relative to control groups in deterministic definitions of transitivity.  

This finding is consistent with the theory that value is a distributed process over many 

brain regions, where other regions can compensate for the loss of VMF in calculating 

value. However, the VMF is necessary for stability in choices. 

In conclusion, my three chapters advance the state of knowledge of the vmPFC’s 

role in decision-making, by showing that 1) its signals are consistent with subjective 

value over an alternative model, 2) that value representations in vmPFC come online at 

the end of a decision process and not prior, and 3) that it is necessary for the stability and 

fidelity of decisions.  The evidence I present here is consistent with the idea that vmPFC 

is involved in a value-based process during decision-making, yet that it cannot be the 

critical region solely responsible for value-based choice.  
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Chapter 2 -- Subjective value, not a grid-like code, describes 
neural activity in ventromedial prefrontal cortex during 
decision-making  

 

Abstract 
 Recently, activity in the ventromedial frontal and entorhinal cortices has been 

shown to be modulated in a grid-like manner for navigation through conceptual as well as 

physical space. These findings have led to proposals that such a grid-like code could 

broadly underlie complex cognition, and specifically may be used for comparisons 

between multi-attribute objects in decision-making. We first assess the plausibility of this 

claim, showing theoretically that the activity correlated with subjective value observed in 

vmPFC in previous fMRI studies of decision-making could, in principle, reflect 

navigation through a conceptual space defined by the option attributes. We then 

empirically test for grid-like modulation in a large fMRI dataset of individuals making 

intertemporal choices. Here, though, we find that grid-like model fails confirmatory tests 

and does not provide the best description of the neural activity during decision-making. 

Our results constrain the type of tasks for which grid-like modulation is observed in 

vmPFC and further confirm that subjective value remains a good description of neural 

activity in vmPFC during decision-making. 
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Introduction 
 

Neural activity in the ventromedial prefrontal cortex (vmPFC) has been shown to 

correlate with the subjective value of expected or experienced outcomes across a wide 

variety of decision-making tasks and categories of outcomes (Bartra et al., 2013; Clithero 

& Rangel, 2013; Levy & Glimcher, 2012). Neural correlates of subjective value have 

been found in vmPFC using both functional neuroimaging in humans as well as single 

cell recording in non-human animals (Kable & Glimcher, 2007; Strait, Blanchard, & 

Hayden, 2014; Yamada, Louie, Tymula, & Glimcher, 2018). One potential explanation 

for these correlates is that vmPFC encodes a representation of expected subjective value 

that could be used to make decisions or to guide learning (Kable & Glimcher, 2009).  

However, recent studies have suggested that the similar area of vmPFC observed 

in human neuroimaging studies of decision-making encodes representations important for 

navigation through real and conceptual spaces (Constantinescu et al., 2016; Doeller et al., 

2010; Jacobs et al., 2013). Both intracortical recordings and fMRI studies have revealed 

activity in medial prefrontal cortex while humans navigated virtual arenas that reflected a 

hexagonal spatial pattern characteristic of grid cells (Doeller et al., 2010; Jacobs et al., 

2013). Grid cells were first discovered in entorhinal cortex during spatial navigation and 

can provide an efficient representation of two-dimensional space (Hafting et al., 2005). 

Furthermore, the same potential fMRI signature of grid cells has been observed in 

vmPFC during navigation in a purely conceptual space (Constantinescu et al., 2016). 

Specifically, stimuli in that study could be characterized by two dimensions, and when 

subjects imagined traversing the stimulus space defined by those two dimensions, activity 
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in vmPFC showed a similar response pattern as that observed during two-dimensional 

spatial navigation.  

These results raise the intriguing question of whether the patterns of activity 

observed in vmPFC during conceptual navigation might explain the engagement of this 

region during decision-making tasks. Many decisions involve a choice between two 

options that differ along multiple dimensions or attributes. For example, choices can be 

between foods that differ in their taste and health or between monetary options that differ 

in their amount and probability or amount and delay. In the same way that spatial 

navigation involves moving through the two dimensions of longitude and latitude, and 

the conceptual navigation studied in Constantinescu et al. (2016) involves moving 

through a space defined by two stimulus attributes, might decisions involve navigating a 

conceptual space defined by the attribute dimensions of the choice options?  

Here we aim to assess whether grid cell-like activity reflecting conceptual 

navigation through attribute space can account for the value correlates previously 

observed in vmPFC during decision making. If true, this would demonstrate that these 

signals do not reflect any encoding of value, and instead can be subsumed under an 

account of vmPFC function in terms of grid cell-like activity and more broadly in terms 

of encoding a cognitive map of decision space. We first show theoretically that grid cell-

like activity could in principle explain subjective value correlates, as a plausible 

construction of grid-like regressors for a two-attribute choice task is highly correlated 

with subjective value. We then empirically test which of these two models better explains 

BOLD activity in vmPFC, using a large pre-existing dataset of subjects performing a 

standard intertemporal choice task (Kable et al., 2017). Our results unambiguously show 
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that vmPFC activity in this task is correlated with subjective value and cannot be 

explained by grid cell-like modulation. 

  

Methods 
Task. 

 We used the intertemporal task from Kable et al. (2017) as the decision-making 

task in the following analyses. Participant chose between a smaller immediate reward and 

a larger later reward. The smaller immediate reward was held constant at $20 today while 

the larger later reward varied in amount (A: $21 ~ $85) and delay (D: 20 days ~ 180 days) 

from trial to trial. Each trial displayed the amount and delay of the delayed option; the 

immediate option as not displayed. Participants had 4 seconds to make their choice. 

Theoretical correlation between subjective value and grid regressors.  

 Firstly, we sought to show that, in theory, hexagonal grid modulation could mimic 

or account for activity correlated with subjective value (SV) during decision making. To 

do this, we calculated the SV signal at a given discount rate for a given range of amounts 

and delays, and then estimated the best-fitting hexagonal grid modulation for this signal. 

The correlation between the SV signal and its best-fitting hexagonal grid modulation was 

taken as a measure of the highest potential similarity between the two signals. This 

correlation was examined across a range of discount rates. 

 For a given discount rate, the SVs of delayed monetary outcomes were calculated 

using the hyperbolic model: 
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where k is the discount rate. The amount A varied from 20 to 80 in increments of 5 (13 

levels) and the delay D varied from 20 to 180 in increments of 5 (33 levels) resulting in a 

total of 429 SVs for a given k. This 429-element vector of SV was then regressed against 

two hexagonal grid modulation regressors in order to estimate the best-fitting hexagonal 

modulation signal: 

 

 

 In words, the grid-like model contains a linear combination of sine and cosine of 

the direction of the trajectory angle  with 60° periodicity. The trajectory angle  is taken 

as the angle between the immediate option ($20 now) and the delayed option on each 

trial. This model implicitly assumes that the direction of “navigation” is a straight line 

between the immediate and the delayed option. 

The Pearson correlation between SV and the fitted signal (i.e., 

) was assessed as the similarity statistic between the two signals. 

This procedure was repeated for 51 levels of k whose base-10 log ranged from -5 (i.e., k = 

0.00001) to 0 (i.e., k = 1) in 0.1 increments. 

 

Dataset. 



17 
 

In order to empirically test whether hexagonal grid modulation can better explain 

activity patterns previously attributed to SV during decision making, we used the 

intertemporal choice fMRI dataset from Kable et al. (2017). 107 participants (between the 

ages of 18-35) completed two sessions of scans 10 weeks apart. Each scan session 

contained 120 binary choices. 5 participants whose choices were entirely one-sided in a 

session (i.e., always choosing the immediate option or always choosing the delayed 

option) were removed from further analyses, making the total count of subjects 102. 

Participants were scanned with a Siemens 3T Trio scanner with a 32-channel head 

coil. T1-weighted anatomical images were acquired using an MPRAGE sequence (T1 = 

1100ms; 160 axial slices, 0.9375 x 0.9375 x 1.000 mm; 192 x 256 matrix). T2*-weighted 

functional images were acquired using an EPI sequence with 3mm isotropic voxels, (64 x 

64 matrix, TR = 3,000ms, TE = 25ms; tilt angle = 30°) involving 53 axial slices with 104 

volumes. B0 fieldmap images were also collected for distortion correction (TR = 1270ms, 

TE = 5 and 7.46ms). The datasets were preprocessed via FSL FEAT (FMRIB fMRI 

Expert Analysis Tool). Functional images were skull stripped with BET (FMRIB Brain 

Extraction Tool), motion corrected and aligned with MCFLIRT (FMRIB Linear Image 

Restoration Tool with Motion Correction), spatially smoothed with a FWHM 9mm 

Gaussian Kernel, and high pass filtered (104sec cutoff). Registration was performed with 

FNIRT  with warp resolution of 20mm (FMRIB’s Non-linear Image Registration Tool) to 

a 2mm MNI standard brain template. 

Data analysis. 
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 Empirical demonstration of hexagonal grid modulation involves two steps 

(Constantinescu et al., 2016). The first step is to identify regions in the brain where 

variance in activity is significantly explained by two grid-angle regressors (i.e., 

). The second step is to show that a given person’s unique grid angle, 

calculated from these two hexagonal regressors, is consistent across time, and that such 

consistency is only observed for 6-fold modulation and not for other numbers of folds 

(e.g., 4, 5, 7, 8). 

 For the first step, we ran a whole-brain GLM using FSL FEAT on the first 

session’s data. Three regressors of interest were used: the event regressor that modeled 

average activity of all trials, and the two hexagonal grid angle regressors 

( ). All three regressors were time-locked to the 

beginning of the trial with 0.1 duration. Standard 6-parameter motion regressors were 

also included as nuisance variables. We calculated the f-stat for the two hexagonal 

regressors and converted it to a z-stat1. We performed group-level permutation testing 

using the 102 subjects’ z-transformed f-stat map with threshold-free cluster enhancement 

to identify brain regions that are well explained by the two grid angle regressors. 

 For the second step, we identified ROIs in which we calculated each individual’s 

grid angle and evaluated angle consistency across sessions. We created two spherical 

ROIs of 33 voxels (2mm voxels) from the peak activation coordinates reported by 

                                                
1 The conversion to a z-stat provided three benefits: 1) z-stats are more easily 
interpretable as they are from a standard normal distribution, 2) z-stats do not depend on 
degrees of freedom to calculate probabilities, and, most importantly, 3) the null 
distribution of z-stats is centered around 0 which allows for simple permutation testing by 
sign-flipping. 
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Constantinescu et al. (2016) in mPFC and ERC. To address any concerns that the loci of 

grid activation are different in our dataset from those of Constantinescu et al. (2016), we 

also defined two spherical ROIs of 33 voxels based on our peak activation coordinates 

from the GLM above, choosing the peaks in mPFC and ERC that were closest to the 

coordinates in Constantinescu et al. (2016). Finally, we also adopted the mPFC and 

ventral striatum (VS) ROI from Bartra et al. (2013), which identified consistent SV 

effects across hundreds of studies through meta-analysis.  

 In order to test for the consistency of hexagonal grid angles, we first needed to 

calculate the individual’s unique grid angle. For a n-fold modulation, the individual’s grid 

angle was calculated by first running a GLM on the first session’s data with  and 

 as the modulators. Then we calculated the average coefficients for the cosine and 

sine regressors within the ROI ( ). The n-fold grid angle was then 

calculated: 

 

Subsequently, the consistency of the grid angle was tested on the second session by 

calculating the ROI’s z-stat (converted from t-stat) for the following GLM regressor: 

 

If there is significant hexagonal modulation in an ROI, the average coefficient for this 

regressor when  should be significantly positive, but not so when .  
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Results 
Theoretical correlation between subjective value and grid regressors  

We first show via simulation that hexagonal grid modulation, of the form 

previously reported in medial prefrontal cortex, could account in theory for previously 

reported activity correlated with SV in this region. Using an intertemporal choice task as 

an example, we calculated the best-fitting hexagonal modulation for different theoretical 

SV signals that assumed different discount rates. Figure 1 shows the correlation between 

an SV signal and its most similar hexagonal modulation signal at various discount rates.  
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Figure 2-1. Correlation between subjective value signal and its most similar 

hexagonal modulation signal. The top three panels show simulated SV signal for 

various delayed amounts at various discount rates and the bottom three panels show the 

best fitting hexagonal grid modulations. The correlation between the two signals are 

provided below at various discount rates. 

The correlation between the two signals ranges between r = 0.5 and r = 0.7 depending on 

the discount rate. These correlations show that it is possible for hexagonal grid 

modulation and a SV signal to be confused with each other, and therefore hexagonal grid 
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modulation provides a possible alternative theoretical account of previously reported 

activity correlated with SV. 

Data. 

We then examined whether hexagonal grid modulation does account for SV-

related activity in actual data, using an intertemporal choice fMRI dataset from Kable et 

al. (2017). As previously reported, widespread regions show activity correlated with SV, 

calculated for each subject individually using their discount rate. These activations are 

consistent across two scanning sessions separated by 10 weeks (Figure 2). 

 

 

 

Figure 2-2. Regions with significant SV correlation in session 1 and session 2. Top 

panel shows the t-statistics (estimated from permutation) of regions that show significant 

correlation with SV signal (p < 0.05 with permutation testing). Bottom panel shows the t-

statistics (estimated from permutation) of regions that show significant correlation with 
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SV signal (p < 0.05 with permutation testing). Bottom right brains show overlays of the 

two ROIs from Bartra et al. (2013). 

 

Though hexagonal grid modulation could in theory account for this SV-correlated 

activity, we do not find that it does so in this dataset. Testing the hexagonal grid 

modulation hypothesis requires two steps: (1) showing that activity in a region is 

significantly explained by hexagonal grid regressors, and (2) showing that the grid angle 

implied by those regressors is consistent across time. There are many brain regions in this 

dataset where activity was significantly explained by the combination of two grid angle 

regressors ( ). In fact, almost the entire brain reaches statistical 

significance for the F-test of these two regressors (Fig. 2). The peaks in this map include 

mPFC and ERC, as well as several other regions including somatosensory cortex, right 

TPJ, and dmPFC. 

 

Figure 2-3. Z-transformed F-statistics of brain regions that are significantly 

explained by two hexagonal grid modulation regressors. Most brain regions were 

significant at p < 0.05 level. The right panel shows overlays of grid-cell ROIs: two 

spherical ROIs defined from peak coordinates of Constantinescu et al. (2016) and two 
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spherical ROIs defined from peak F-statistic activation that was closest to the coordinates 

of Constantinescu et al. (2016). 

 

 However, though the two grid angle regressors account for significant variance in 

activity in widespread regions including MPFC and ERC, the grid angle implied by these 

regressors is not consistent across time as required by grid cell hypothesis. We evaluated 

grid angle consistency in 4 ROIs in MPFC or ERC. These ROIs were defined based on 

the peaks in the above analyses (Figure 3) or previous reports of grid cell like activity 

(Constantinescu et al., 2016). We calculated the average grid angle in the first session’s 

data in a given ROI, and then tested whether the activity in the second session was well 

aligned with the first session’s grid angle. The grid angle consistency effect for hexagonal 

modulation was not significant in any ROI, nor was this effect larger in size for the 6-fold 

regressor than that observed for modulation at other folds (4 fold, 5-fold, 7-fold and 8-

fold). (Figure 4). Note that the pattern observed in MPFC, of decreasing grid angle 

consistency from 4-8 fold modulation, is predicted of a signal that is correlated with SV 

(Supplementary figure 2). 
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Figure 2-4. Effect of grid-angle consistency and SV in grid cell ROIs. The top two 

panels show consistency effects and SV effects in ROIs defined by a previous study by 

Constantinescu et al. (2016), the middle two show consistency effects and SV effects in 

ROIs defined by the closest F-statistic peaks to coordinates of Constantinescu et al. 

(2016). The left panels show ROIs in mPFC and the right two panels show ROIs in ERC. 

** p < 0.01, *** p < 0.001 (uncorrected t-test against zero). 
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 We also checked for grid angle consistency in regions previously associated with 

SV via meta analysis by Bartra et al. (2013). In both mPFC and VS,  there is no evidence 

of hexagonal grid consistency and rather a similar pattern as in other mPFC ROIs: 

decreasing grid angle consistency from 4-8 fold manipulation (Fig. 5). 

 
Figure 2-5. Effect of grid-angle consistency and SV in SV-defined ROIs. The left 

panel shows consistency effects and SV effects in mPFC ROI from Bartra et al. (2013) 

and the right panel shows them in VS ROI from Bartra et al. (2013). * p < 0.05, ** p < 

0.01, *** p < 0.001 (uncorrected t-test against zero). 

 

 

 

Discussion 
 

 In this paper, we assessed the idea that vmPFC activity during decision-making, 

commonly interpreted as subjective value, could be explained by a grid-like signal 

reflecting conceptual navigation through option attribute space.  We showed that this idea 
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is theoretically plausible, in that regressors from a subjective value model are highly 

correlated with those of a grid-like navigational model, implying that past findings of 

subjective value-related activity could in principle be consistent with the conceptual 

navigational explanation.  Thus, it was necessary to empirically test whether the 

conceptual navigation model can, in fact, appropriately describe activity during decision-

making.  We assessed the fit of this model, replicating the methods of Constantinescu et 

al. (2016), to the fMRI data of a large dataset of subjects performing a standard two-

attribute decision task (intertemporal choice) across two sessions. In the critical analysis, 

we assessed the consistency of subject-specific navigational angle within a region of 

interest between two days of data collection, as well as whether 6-fold modulation (a 

characteristic of grid cell activity) can describe activity better than modulations at other 

frequencies. We found neither to be the case: the subject-specific navigational angle was 

not consistent between two days of data collection, and 6-fold modulation did not 

outperform control models with modulations at other frequencies. Thus, there is no 

evidence that the grid-like conceptual navigational model explains vmPFC activity during 

decision-making, and subjective value remains the best description of this activity. 

 Our results constrain the implications of Constantinescu et al. (2016), by limiting 

the conditions under which grid-like activity is observed in the vmPFC. Our standard 

intertemporal choice task is obviously very different from the sort of mental navigation 

demanded in Constantinescu et al. (2016). Their study involved extensive learning of a 

novel conceptual space by the participants prior to the navigational task; ours takes 

advantage of a spontaneous one created by the option attributes as they are presented. 

Their navigational task involved a period of mental simulation where the participants are 
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asked to “imagine” the progress of the stimulus, similar to spatial navigation tasks, 

whereas we simply ask participants to make a choice. Nevertheless, the two tasks share 

important similarities in the sense that both operate within a two-dimensional space 

where grid-like representation of the task structure might be expected (Behrens et al., 

2018). Our finding means that the task space required when making decisions between 

options is one scenario that does not provoke grid-like representations, and thus grid-like 

coding cannot explain all cognitive activity in the vmPFC during such tasks.  

 One potential objection to our results might be that we do not see grid-like 

representations because we are not considering either the appropriate two-dimensional 

mental space or method of mental travel. One assumption made in our analyses was 

linear spacing between each unit in amount and delay. As we know that human beings do 

not generally perceive numbers in a linear way, but rather loglinearly as numbers become 

larger (Zauberman, Kim, Malkoc, & Bettman, 2009), perhaps loglinear spacing would be 

more appropriate. Indeed, in loglinear space, the grid-like model correlates even more 

highly with the subjective value model (see Supplementary materials). However, when 

tested empirically, the grid-like model with loglinear spacing also fails to account for 

BOLD activity. Another assumption we made in our grid-like model was that the subjects 

would “navigate” in a straight line between the immediate and delayed options. There are 

other conceivable assumptions such an analysis could make; however, we chose these 

assumptions precisely because they resulted in high correlations between the subjective 

value and grid-like regressors, meaning that the latter could plausibly mimic past results 

seen with the former. Thus, we have shown that the most plausible forms of grid-like 

model did not describe decision-making activity in the brain. Finally, an inherent 
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limitation of the intertemporal choice paradigm is that choices with tradeoffs necessarily 

preclude “no-brainer” pairs (i.e., strictly dominated options), and therefore many of the 

possible angles of conceptual travel in the attribute space. However, we could have 

sufficiently detected evidence of sixfold modulation in the quadrant of angles we were 

able to test.  

 The vmPFC is important for a wide variety of functions, from learning and 

decision-making to schematic memory and social cognition. A possible explanation for 

its diverse function is that different subregions of the vmPFC serve different functions. 

Though we used the same ROI as in Constantinescu et al. (2016) for our analysis, fMRI 

does not allow for the resolution necessary to differentiate between populations of 

neurons that may have different functions.  Another possibility that has been raised is that 

the vmPFC represents a cognitive map of the inferred, hidden structure of the current task 

(Behrens et al., 2018; Wilson, Takahashi, Schoenbaum, & Niv, 2014). We have presented 

here evidence against the cognitive map based on a grid-like code during decision-

making. However, the nature of the coding scheme in vmPFC may instead depend on the 

demands of the task at hand. Subjective value is a representation that has long been 

known to afford useful features for decision-making; for example, using such a 

representation of multi-attribute options and choosing the maximal valued option is 

guaranteed to result in transitive, non-cyclical choices (Samuelson, 1937). Subjective 

value may therefore be the most efficient representation of the option space for the kind 

of decision tasks we studied here.  

 

 



30 
 

Supplemental Materials 
Methods. 

Theoretical correlation between subjective value and grid regressors in 

logarithmic space. 

 In addition to grid angle analyses in the manuscript, we also considered the 

possibility that the cognitive map may be represented in logarithmic scale such that the 

hexagonal grid angle only manifests when one scales both axes of the space 

logarithmically. Hence, we re-did all the analyses in the manuscript with logarithmic grid 

angle calculations. All methods are as described in the manuscript except for the 

calculation of angles which is now  instead of 

. 

 We first assessed the theoretical correlation between SV signal and hexagonal 

grid modulation signal in logarithmic space. This was done by calculating a range of SVs 

for a given discount rate and then fitting the best hexagonal modulation signal (methods 

in main manuscript). The Pearson correlation between the SV and the fitted signal was 

assessed as the similarity between the two signals. 

Simulation of angle consistency in grid space assuming subjective value signal 

 We were interested in finding out how the grid-like regressor would behave in 

within-subject, inter-session angle consistency analyses if the true underlying signal 

actually represented subjective value. This simulation would be useful to compare against 

our analyses in real data, to better assess how subjective value describes the pattern of 

results. Thus, an additional simulation was performed to predict the pattern of grid angle 
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consistency analyses if we assume the true signal actually represented SV, in both regular 

and logarithmic space. First, we calculated the SVs of 102 people in our dataset for both 

session 1 and session 2. A Gaussian noise with  was added on to the SV to 

simulate fMRI noise in signal. Then, we estimated each individual’s grid angle based on 

the first session’s simulated SV signal by running the following regression: 

 

 

 

Based on the grid angle calculated from session 1 , we used the following regression 

to assess the consistency effect: 

 

The resulting t-statistic of  was converted to a z-statistic and then compared across 

different number of folds (n = 4 ~ 8). 

Analysis of data 

 We proceeded largely in the same manner as the main manuscript. The only 

difference being the calculation of grid angles (described above). 

Results. 

Theoretical correlation between subjective value and grid regressors in 

logarithmic space. 
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Firstly, our simulations show that it is quite possible for logarithmic hexagonal 

grid activity to mimic SV signal, even more so than non-logarithmic hexagonal grid 

activity. Across different discount rates, we found that the correlation between 

logarithmic grid angle activity and SV activity was very high (r = 0.8~1.0) and always 

higher than the correlation between non-logarithmic grid angle activity and SV (Suppl. 

Figure 1).  
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Supplementary figure 1. Correlation between SV signal and its most similar 

hexagonal modulation signal in regular and logarithmic space. The top three panels 

show simulated SV signal for various delayed amounts at various discount rates and the 

middle three panels show the best fitting hexagonal grid modulations in regular space. 

The bottom three panels show the best fitting hexagonal grid modulations in logarithmic 
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space. The correlation between the two signals are provided below at various discount 

rates. 

Simulation of angle consistency in grid space assuming true subjective value 

signal. 

 Our simulations of fMRI data that posit a true underlying SV signal shows that, in 

this scenario, the grid regressors in regular, non-logarithmic space would show a pattern 

of decreasing inter-session angle consistency as the folds of modulation of the angles 

grow. The consistency is highest for the four-fold regressor, which is the regressor that 

most closely resembles the pattern of subjective value (i.e., highest for low delays and 

high amounts, then decreases as the delays grow). The six-fold regressor, in this case, 

would not be the model with the highest angle consistency. In logarithmic space, the 

inter-session angle consistency would be flat across modulations of folds, and the six-fold 

regressor would once again not be the model with the highest consistency (Suppl. Figure 

2).  
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Supplementary figure 2. Angle consistency in simulated fMRI data positing 

subjective value in non-logarithmic and logarithmic space. The left panel shows 

results of the inter-session angle consistency analysis for simulated fMRI data that 

assume underlying subjective value in non-logarithmic space, for the 6-fold grid 

regressor and the control folds. The right panel shows the same in logarithmic space. In 

both cases, the 6-fold regressor does not outperform the other folds for high angle 

consistency. 

 

Analysis of data. 

 Just like non-logarithmic grid angle regressors, the logarithmic grid angle 

regressors (  and ) together were able to significantly explain variance in 

most of the brain regions (Suppl. Figure 3).  
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Supplementary figure 3. Z-transformed F-statistics of Brain regions that are 

significantly explained by two logarithmic hexagonal grid modulation regressors. 

Most brain regions were significant at p < 0.05 level. The right panel shows overlays of 

grid-cell ROIs: two spherical ROIs defined from peak coordinates of Constantinescu et 

al. (2016) and two spherical ROIs defined from peak F-statistic activation that was 

closest to the coordinates of Constantinescu et al. (2016). 

 

We then repeated our analyses for inter-session, within-subject angle consistency 

analyses for each ROI, but this time in logarithmic space (MPFC and ERC ROIs defined 

from peak activation in Constantinescu et al., 2016 and from peak activation in our own 

GLM analysis above; the MPFC and VS ROIs from Bartra et al., 2013). Just like in 

analyses from non-logarithmic space, the grid angle consistency effect for hexagonal 

modulation was not significant in any ROI for logarithmic space, nor was this effect 

larger in size for the 6-fold regressor than that observed for modulation at other 

modulations (Suppl. Figure 4; Suppl. Figure 5). 
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Supplementary figure 4. Effect of grid-angle consistency and SV in grid cell ROIs. 

The top two panels show consistency effects and SV effects in ROIs defined by a 

previous study by Constantinescu et al. (2016), the middle two show consistency effects 

and SV effects in ROIs defined by the closest F-statistic peaks to coordinates of 

Constantinescu et al. (2016). The left panels show ROIs in mPFC and the right two 

panels show ROIs in ERC. 
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Supplementary figure 5. Effect of grid-angle consistency and SV in SV-defined 

ROIs. The left panel shows consistency effects and SV effects in mPFC ROI from Bartra 

et al. (2013) and the right panel shows them in VS ROI from Bartra et al. (2013). 
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Chapter 3 -- Timing of value representation in ventromedial 
prefrontal cortex in a complex auction task 

Abstract 
 The ventromedial prefrontal cortex (vmPFC) has been shown to be involved in 

value representations in many studies of decision-making. However, these past studies 

have mostly focused on choices between options, with very little work concerning 

preference tasks other than choice (such as ratings or auction tasks). As psychological 

theories have posited that those types of tasks involve different cognitive mechanisms 

compared to choice tasks, it is necessary to investigate whether the neural response to 

decisions in auction tasks would reflect the same value-related representations as have 

been found in choice tasks, and when those representations might occur. We conduct a 

study where participants play an auction task in which they selected the amount they 

would be willing to receive in exchange for a fixed amount of $75 at a variable delay. We 

find that vmPFC and other regions in the value network correlated with the participant’s 

bid, and that this representation occurred only at the end of the bidding period – i.e., the 

time of the bid submission. Our study shows that vmPFC activity reflects the same value-

based process in a complex auction task as in choice tasks, and supports the view that 

value is constructed. 
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Introduction 
 

 Previous fMRI studies have shown that activity in the ventromedial prefrontal 

cortex is correlated with value across many different domains. Typically, participants in 

these experiments are given a choice, usually between two options (Levy & Glimcher, 

2012). These studies have shown that the ventromedial prefrontal cortex is a region that 

appears to overlap in reward representation for various categories of rewards including 

foods, trinkets, attractive faces, and monetary gambles, with support for domain-general 

valuation across both univariate studies and multivariate studies (Chib et al., 2009; 

Howard et al., 2015; Pegors et al., 2015). This region thus may make common 

comparisons between dissimilar goods (Bartra et al., 2013), and this representation scales 

with a participant’s subjective preferences (Kable & Glimcher, 2007; Tom et al., 2007).  

Choices are, of course, not the only way people make decisions. We haggle over 

treasures at a flea market, put a bid on a house, and rate products or services online. 

These other forms of decisions have been studied in the laboratory using different kind of 

auction, rating or matching tasks. Such studies have demonstrated that different cognitive 

mechanisms can be engaged depending on the form of the decision. For instance, 

participants assign greater weight to an attribute when it is compatible with the response 

scale , or use a lexicographic step in choice but not matching tasks (Fischer & Hawkins, 

1993; Tversky et al., 1988). Though this literature has made a clear case that decisions 

can depend on the manner in which they are elicited, little is known about how preference 

is expressed in the brain in tasks other than choice. Though several fMRI studies 

technically involve ratings (Hare, Camerer, & Rangel, 2009) or auctions (Plassmann et 

al., 2007), in these tasks there were only a few discrete responses (e.g., 5 point scale, or 
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$0-$4) making them similar to a choice between four or five options. Whether the same 

neural mechanisms are active in more complex and cognitively demanding auction or 

matching tasks therefore remains an open question. Answering this question would 

inform our understanding of how decisions may be constructed depending on the task 

demands. 

In this study, we ask participants to bid on monetary rewards at different delays 

while measuring functional activity with BOLD fMRI. This task has two features of 

interest that are novel. First, in this complex auction task there were a large array of 

possible responses (from $0-$75; Cooper, Kable, Kim, and Zauberman (2013)), making 

the task similar to bidding and matching tasks studied behaviorally. Second, the response 

period for up to 10 seconds, so that the timing of neural signals within the task can be 

reasonably studied given the temporal resolution of fMRI. Thus, we have a valuable 

paradigm that is set to reveal the a) manner of value representation in a complex bidding 

task and b) its onset during the decision process. With this task, we seek to answer two 

questions: does the valuation network in the brain respond in a similar manner in this 

auction task as it does during choice?  And, if so, at which point in time during the task 

does this signal occur?  

 

 

Materials and Methods 
Subjects.  
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Forty participants (16 male; 88% right handed) were recruited for this study from 

University of Pennsylvania and surrounding community. Participants had a mean age of 

21.75 years (SD = 3.27 years). Participants were compensated for their time on two 

testing sessions; they also received incentive payments based on their decisions in auction 

task. All participants provided consent in accordance with the Institutional Review Board 

of the University of Pennsylvania. 

Task.  

All subjects completed two sessions involving different tasks: a subjective time 

estimation task (first session) and intertemporal decision-making task (second session). 

The two sessions were separated by an average of 10 d (SD 5 d, range, 4-21 d). Only the 

analysis of the latter task is discussed in this paper. For discussion of the subjective time 

estimation task, as well as behavioral results from the intertemporal decison task, see 

Cooper et al. (2013).  

 In the intertemporal decision task, participants bid on delayed monetary rewards. 

They selected the amount they would be willing to receive immediately in exchange for a 

fixed amount of $75 at a variable delay (e.g., “I feel indifferent between receiving $75 in 

28d and receiving $? now”). Bids were entered using an interface that allowed subjects to 

scroll through possible values. The bid amount always began at the maximum amount of 

$75 now. Participant used two buttons to increase or decrease their bid and a third button 

to submit their bid.  

 The intertrial interval was variable, between 0.5 and 13.5s. In the “question 

period”, lasting 3s to 5s in duration, participants saw the delayed option they were asked 
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to evaluate. They were not able to respond at this time. After this period terminated, 

participants saw “$75 now” on the screen and could begin to adjust this amount and 

select their bid. This “bidding period” lasted up to 10s. The amount on the screen when 

the participants pressed the ‘submit’ key or when the 10s timed out was registered as the 

participant’s response. 

 Participants knew that there was no penalty for not pressing the ‘submit’ key. 

Because of this, several participants adopted the strategy of not pressing the ‘submit’ key 

on some trials (22% of trials overall). Because the imaging analysis depended on having 

accurate response time data, we excluded the trials in which no ‘submit’ key was pressed.  

Three participants were excluded from analysis entirely due to a lack of sufficient valid 

trials (two participants had below 13% of trials in which the ‘submit key’ was pressed; 

the third participant had the same response of “$75 now” for every single trial). 

Payments.  

In addition to a flat $15 fee for participation, participants were paid according to 

their bidding decisions using a incentive-compatible Becker-DeGroot-Marschak protocol 

(Becker, DeGroot, & Marschak, 1964). A random trial was selected, and a random 

“counteroffer” (between $0 and $75) was generated for that trial. If the participant’s bid 

on that trial was greater than the counteroffer, they received $75 at the specified delay. If 

the participant’s bid was below the counteroffer, they received the counteroffer amount 

immediately. Using such a protocol, participants are incentivized to bid their true 

valuations, as their bid affects the likelihood they will receive the item but not the price 



44 
 

they will pay for it. All payments were made using prepaid debit cards (described in 

Kable & Glimcher, 2007; Cooper et al., 2013).  

 

MRI image acquisition.  

Functional and anatomical images were collected using a 3T Siemens Trio scanner 

equipped with an eight-channel head coil. T2*-weighted functional images were 

collected using an EPI sequence (TR = 3s; TE = 30ms; 45 axial sices, 3 x 3 x 3mm; 64 x 

64 matrix). Each scan consists of 150-152 images. All participants completed four scans 

in each session. High resolution T1 weighted anatomical images were collected using an 

MPRAGE sequence (TI = 1100ms; 160 axial slices, 0.9375 x 0.9375 x 1.000mm; 192 x 

256 matrix). 

Imaging data analysis. 

Functional images were analyzed using FSL (Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012). Functional images were first interpolated in time to correct for 

staggered slice acquisitions, corrected for head motion using a six-parameter rigid-body 

transformations, and detrended and high-pass filtered (cutoff of 3 cycles/scan, or 0.0066 

Hz) to remove low frequency drift in fMRI signal. Images were coregistered with each 

subject’s high-resolution anatomical scan, and normalized into MNI space. Normalized 

data were spatially smoothed (kernel FWHM = 5mm) and thresholded.  

To further control for excessive motion, we discarded any functional run in which 

> 5% of TRs exhibited > 0.5mm image-to-image displacement, and we discarded any 
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subjects with fewer than 2 functional runs passing this quality control criterion.  Four 

additional subjects were excluded in this manner. 

The general linear model for the intertemporal decision task contained 8 

covariates of interest. These covariates modeled activity at the following four different 

time points in the trial: 1) onset of the question period (Qon), the onset of the response 

period (Ron), mid-point of the participant’s response (Rmid), and the time at which the 

participant submitted the response (Roff). The first four regressors modeled the average 

activity at each of these time points, while the next four included the participant’s bid on 

each trial as a parametric modulator at these time points. The bid values were mean-

centered, and all regressors were convolved with a hemodynamic function included with 

the FSL package. All of these regressors only included trials in which the participant 

pressed the submit button. The model also included an additional 8 regressors of no 

interest that duplicated the regressors named above, but for trials in which the participant 

did not press the submit button.   

 Whole brain group analyses were assessed for significance using permutation 

testing implemented by FSL’s randomise function. Corrected p-values were calculated by 

sign-flipping the entire map with 5000 iterations, and the threshold-free-cluster-

enhancement (TFCE) method was used to form clusters without the need for an 

arbitrarily defined cluster forming threshold (Smith & Nichols, 2009). Results were then 

thresholded at the p = 0.05 level (two-tailed).  

 

Region of interest analysis.  
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We used regions of interest (ROIs) from Bartra et al. (2013), a quantitative meta-analysis 

reporting value-related neural signals during decision-making. Our region of interest was 

ventromedial prefrontal cortex (609 voxels at 3 x 3 x 3mm, centred on MNI coordinates -

2, 40, and -8). We extracted the average z-value from each participant within the ROI, 

and performed a one-sample t-test against 0.  

 

Results 
 

Whole brain analysis. 

 We first performed a whole-brain analysis testing for activity correlated with the 

participant’s bid across four different time points within the auction task. We only found 

neural correlates of value similar to those observed during choice tasks at the end of an 

auction trial. At the first time point, that of question onset, we did not find any significant 

activity. At the second time point, that of onset of the bid response period, we found 

activity negatively correlated with the participant’s eventual bid in the occipital cortex. 

At the third time point, midway through the bid response period, we found effects in both 

visual and motor regions. Only at the final time point, that of response submission, did 

we find widespread neural activity that was correlated with the participant’s bid, 

including positive effects in classical areas of the valuation network, vmPFC and 

posterior cingulate cortex (PCC) (Figure 1).   
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Table 3-1: Peak foci of BOLD 

effects         

 

MNI coordinates 

  

Region x  y z # voxels 

peak value 

(z) 

Response onset           

Negative effects           

R. inf. Occipital 34 -90 -6 644 1.04 

L. inf. Occipital  -28 94 -6 374 1.07 

L. mid. Occipital -44 -74 2 43 0.81 

R. mid. temporal 48 -70 0 173 0.95 

R. mid. Temporal pole 48 10 -32 7 0.75 

            

Response midperiod 

 

  

 

  

 
Positive effects 

 

      

 
L. Precentral gyrus -36 -18 50 2473 0.88 

L. sup. frontal gyrus 18 -10 70 404 0.85 
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L. Rolandic operculum -44 -2 10 88 0.75 

L. mid cingulate  -8 14 34 24 0.62 

L. inf. Operculum -40 10 18 23 0.7 

Negative effects           

L. inf. Occipital  -28 -96 -6 570 1.38  

R. inf. Occipital 30 -94 -4 340 1.44 

R. mid. temporal 50 -72 4 38 1.04 

            

Response offset 

  

      

Positive effects 

  

      

VMPFC 2 50 16 6911 1.00 

Cuneus 2 -84 34 1948 1.12 

L. angular  gyrus 52 -60 42 1209 0.96 

R. angular gyrus -54 -54 32 1115 1.13 

R. inf. orbital gyrus 54 38 -6 554 0.86 

R. mid temporal gyrus 60 -34 -6 531 0.94 
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L. mid temporal gyrus -62 -34 -8 268 0.85 

PCC -2 -44 34 238 0.93 

L. Caudate -18 18 18 63 0.73 

L. superior temporal pole -16 -42 18 30 0.82 

R. SMA 8 18 68 9 0.65 

Negative effects     

 

  

 
L. Precentral gyrus -58 8 24 20070 1.64 

R. Occipital  26 -92 -6 2038 1.49 

L. Occipital -32 -92 -6 1013 1.49 
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Figure 3-1 .Whole brain effects correlated with participants’ bid response on each 

trial at the four time points in the trial. The boxes below each time point constitute 

example screens of the event the participant sees at that time point, and the arrows in 

between each event represent the average (with standard deviation in brackets) of the 

intervals subjects experienced between each time point. The “Bid mid-period” event 

represents the middle of the subject trial reaction time.  

 

 

ROI results. 

Region-of-interest analyses recapitulated these results, as activity in ventromedial 

prefrontal cortex tracked the participant’s bid, but only near the completion of the trial 

when the decision was registered. Across subjects, activity in ventromedial prefrontal 

cortex was significantly correlated with the subject’s bid only at the time of bid 

submission Roff; t(32) = 3.86; p = 0.0005), and not at any of the earlier time points in the 

trial (Qon, (p = 0.16),  Ron (p = 0.15), or Rmid (p=0.78)). 
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Figure 3-2. Activity in the vmPFC ROI related to participant’s bid is only 

significant at the final time point, that of bid response submission.  Asterisks denote 

significance at p < 0.001. 

Discussion 
 In this paper, we measured neural activity during a complex auction task. Our 

goals were twofold: first, to see whether the neural correlates of value routinely observed 

in simpler choice tasks were also present during this form of decision; and, if so, 

secondly to test when during the decision task such value correlates were observed. We 

found that activity in the valuation network, including the ventromedial prefrontal cortex 

(vmPFC) and posterior cingulate cortex (PCC), was correlated with the participant’s bid, 

but only late in the trial at the time of response submission.  This result shows that the 

brain’s valuation network does respond in a similar manner during an auction task as 

during choice, but only does so near the conclusion of the decision process. 

      *** 
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 Intriguingly, our results regarding the timing of value correlates at a longer 

timescale during auctions mirrors those observed on a shorter timescale during choices. 

Harris and colleagues have recorded EEG in several studies while participants made 

value-based choices and found that value signals, putatively linked to the vmPFC, 

typically appear late in the trial, around 500ms-800ms after stimulus onset (Harris et al., 

2011; Harris et al., 2018). Similarly, studies that have argued that vmPFC arrives at 

choice through mutual inhibition between options have shown that activity in this region 

reflects the comparison of values only at the end of the trial (Hunt et al., 2012; Hunt, 

Woolrich, Rushworth, & Behrens, 2013; Jocham, Hunt, Near, & Behrens, 2012; Strait et 

al., 2014). Thus, though our task involves a very different paradigm and takes place over 

a longer period, our results are consistent with this body of evidence that signals related 

to value are only manifest in vmPFC near the end of the decision process. To date there 

are no neural models that would address the valuation mechanism in matching tasks. A 

model from computational psychology, decision field theory (Johnson & Busemeyer, 

2005), posits that, in matching tasks, participants mentally sample bid amounts and then 

adjust them either downward (if the generated bid is too high) or upward (if bid is too 

low) until an indifference threshold is reached. In the future, more work should be done 

to investigate the neural evidence behind this theory. 

Such a conclusion is broadly consistent with theories that value is computed or 

constructed online during decision-making, instead of being “read off some master list” 

(Tversky et al., 1988). However, Tversky et al. (1988) and much other work on 

“constructed preferences” has also focused on how different modes of preference 

elicitation – for example, choices versus auctions – occasion different types of cognitive 
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processes (Payne et al., 1992). Even more dramatically, this work has shown violations of 

procedural invariance, the principle that one’s preference between two options ought to 

be the same no matter how you assess this.  Instead, decision-makers can sometimes 

express different contradictory, preferences in different response modes. One limitation 

of our study is that we do not directly compare choice and auction tasks in the same 

participants, so we cannot assess whether there are any differences in preferences across 

the two response modes, nor can we link any such behavioral differences to changes in 

activation in different brain regions. Clearly such investigations should be a priority for 

future work.  

Contrasting the results we observed in the vmPFC, we did not find value-

correlated activity in ventral striatum in our auction task, which we would have expected 

based on its status in the valuation network (Bartra et al., 2013; J. Peters & Büchel, 

2010). The lack of signals in the ventral striatum may be due to the temporally extended 

nature of our task. For instance, the persistence task in McGuire and Kable (2015) also 

involves a prolonged period of waiting, and did not elicit value-correlated activity in 

ventral striatum. These results add to a growing list of findings suggesting some 

dissociations between vmPFC and ventral striatum during decision-making tasks (Hare et 

al., 2008; Knutson, Rick, Wimmer, Prelec, & Loewenstein, 2007).  

Critically, though, our results do convincingly show that there are some neural 

processes in common across choice and auction tasks. We found that much of the same 

core valuation network that exhibits value-correlated activity in choice tasks (Kable & 

Glimcher, 2007), including regions like vmPFC and PCC, also exhibits activity correlated 



54 
 

with the subject’s bid in this auction task. These results further establish the generality of 

this network’s role in decision-making across a variety of tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

Chapter 4 -- Individuals with ventromedial frontal damage 
have more unstable but still fundamentally transitive 
preferences  

 

Yu, L.Q., Dana, J., & Kable, J.W. (2018). bioRxiv, 384024. 

Abstract 
 Transitivity of preferences (i.e., if one prefers A over B, and B over C, one should 

prefer A over C) is a hallmark of making rational, value-based decisions. Damage to the 

ventromedial frontal lobes (VMF) has been shown in previous studies to increase 

intransitive choice cycles (i.e., choosing A over B and B over C, but C over A). However, 

past studies have examined transitivity by treating preferences as deterministic rather 

than probabilistic, which could mask an important distinction in the critical role of the 

VMF in value-based choices: are individuals with VMF damage prone to choosing 

irrationally, or are they transitive, but simply more variable in what they prefer? We 

present individuals with focal VMF damage, controls with other frontal damage, and 

healthy controls with incentive compatible stimuli (artwork, brands of chocolate, and 

gambles) and have them make repeated choices between all possible pairs. Using cutting 

edge tests of a model of stochastic transitivity, and replicating previous analyses of 

transitivity that treat preferences as deterministic, we find that individuals with VMF 

damage made decisions consistent with stochastic transitivity. We also replicate previous 

findings that these individuals more frequently violate deterministic notions of 

transitivity. Our results are consistent with the hypothesis that individuals with VMF 

damage are not, in fact, more irrational, but do have noisier preferences. The implication 

is that the VMF is critical to maintaining the stability of preferences across time and 
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context during decision-making, rather than for the ability for choices to reflect 

preferences at all. 

 

Introduction 
A central assumption of many theories of choice is that decision-makers compare 

different options on a single dimension of subjective value and choose the highest valued 

option. Satisfying this assumption is equivalent to the observed choices being transitive 

(Samuelson, 1937). An example of transitivity is the following: if you choose to listen to 

Adele (A) over Britney Spears (B), and Britney over Celine Dion (C), then you would 

also choose Adele (A) over Celine (C). There is a strong argument that choices ought to 

be transitive, as an intransitive chooser could be exploited (e.g., as a “money pump”) and 

would get caught in choice cycles that do not advance towards any goal. Given this, one 

might expect that organisms develop internal representations of subjective value to 

ensure transitivity. Key studies in neuroeconomics have identified neural signals in the 

ventromedial frontal lobe (VMF) that scale with subjective value across different goods, 

in the firing rate of single neurons in the orbitofrontal cortex in monkeys (Padoa-

Schioppa & Assad, 2006) and in the BOLD signal of ventromedial prefrontal cortex in 

humans (Bartra et al., 2013; Levy & Glimcher, 2012). 

Consistent with the idea that neural signals in the VMF support value 

maximization, inconsistency has long been recognized as a hallmark of VMF damage: 

Phineas Gage was “capricious and vacillating” (Harlow, 1868) and EVR would drive on 

a single street for hours trying to decide on a restaurant (Eslinger & Damasio, 1985). 

More recently, individuals with VMF damage have been shown to make more 
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intransitive choices than healthy controls or individuals with damage elsewhere in the 

frontal lobe (Camille et al., 2011; Fellows & Farah, 2007; Henri-Bhargava et al., 2012). 

In the above example with the songstresses, an individual with VMF damage would be 

more likely to choose C(eline) over A(dele).   

Axioms of rational choice, like transitivity, are usually stated deterministically. In 

contrast, behavior in experiments is probabilistic, because people can make different 

choices given the same pair of options over time (Luce, 1959; McFadden, 1980; 

Regenwetter, Dana, & Davis-Stober, 2011; Tversky, 1969). There are different ways to 

recast transitivity in probabilistic terms (Regenwetter et al., 2011; Tversky, 1969); 

however, testing any probabilistic model requires observing repeated choices over many 

instances of the same stimulus pairs. Noting a cycle (e.g., choosing C over A when one 

has chosen A over B and B over C) is not sufficient to disentangle whether one has 

fundamentally intransitive preferences versus variable preferences.  

Previous studies have only asked individuals with VMF damage about their 

preferences between each pair of stimuli a single time. Therefore, the greater tendency of 

individuals with VMF damage to make intransitive choices in these experiments is 

consistent with two very different possibilities from a probabilistic perspective. One 

possibility is that the choices of individuals with VMF damage are fundamentally 

intransitive. In this case, their choices would not satisfy probabilistic notions of 

transitivity (e.g., by consistently and reliably choosing C > A above). This could occur if 

individuals with VMF damage chose according to stimulus-response associations or rules 

that lack any higher order transitive structure, such as the lexicographic semiorder 

heuristic (Tversky, 1969). A second possibility is that the choices of individuals with 
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VMF damage are fundamentally transitive, but noisier. In this case, their choices would 

satisfy probabilistic notions of transitivity despite violating deterministic notions more 

often (e.g., they might choose A over C above with greater than 50% probability, but not 

100% of the time). This could occur if individuals with VMF damage chose according to 

underlying values, but did so less reliably. 

Here we test which of these two possibilities holds. The answer is both clinically 

relevant, as it sheds light on the nature of “capricious and vacillating” behavior after 

VMF damage, and theoretically relevant, as it determines whether VMF is necessary for 

choices to reliably reflect underlying values or for choices to be value-based at all.  

 

Materials and Methods 
Experimental design. 

Participants. Fourteen individuals with focal damage to the frontal lobes were 

recruited from the Focal Lesion Database (FoLD) at the University of Pennsylvania, and 

ten were recruited from the Cognitive Neuroscience Research Registry at McGill 

University (Fellows, Stark, Berg, & Chatterjee, 2008). Individuals were eligible to 

participate if they had a lesion primarily affecting the frontal lobes. One individual was 

excluded due to incomplete data collection (the individual completed one session and was 

not able to be scheduled for the second). Fourteen females and 9 males were included in 

the final sample. Participants were tested a minimum of 5 months after injury (median = 

10.29 years, range: 5 months to 17.75 years).  
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Participants were divided into two groups a priori based on location of damage, 

assessed with MR or computed tomography images by a neurologist blind to task 

performance. The ventromedial frontal lobe (VMF) group consisted of individuals who 

sustained damage to the VMF, while the frontal control group (FC) consisted of 

individuals who sustained damage to the frontal lobe sparing the VMF. Lesions were 

drawn on a common space [Montreal Neurological Institute (MNI) brain] by neurologists 

at the research sites blind to task performance. The overlap images for the groups are 

found in Figure 1. Damage in the VMF group was caused by aneurysm or subarachnoid 

hemorrhage in 5 cases, stroke in 2 cases, tumor resection in 3 cases, glioma in one case, 

and meningioma in 2 cases. Damage in the FC group was caused by hemorrhage, stroke 

or infarct in 7 cases, glioma in 2 cases, and meningioma in one case.  

 Age and education matched healthy controls (HC) were recruited from the 

corresponding Normal Control Databases of the University of Pennsylvania (N = 14) and 

McGill University (N = 6), including 15 females and 5 males (Table 1). They were free 

of neurological and psychiatric disorders. All subjects provided informed consent and 

were compensated for their time. The study protocol was approved by the institutional 

review boards of both the University of Pennsylvania and McGill University. 
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Figure 4-1. Overlap images of the VMF and frontal control lesion groups. Numbers 

below slices indicate the MNI z-coordinates. Colors indicate extent of overlap. L = left; R 

= right. 
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Table 4-1. Demographics of participants. 

 
  

Group 
(n) Gender Mean age (sd) 

Education in 
yrs 

  
   

VMF (13) 7F:6M 59 (15) 14 

        

FC (10) 7F:3M 66 (8) 14 

        

HC (12) 15F:5M 62 (8) 15 

 

Apparatus. All tasks were programmed using EPrime 2.0 (Psychology Software 

Tools). Participants were tested at the Hospital of the University of Pennsylvania, at the 

MNI, or at their own home in the greater Philadelphia or Montreal area. Participants saw 

stimuli on a laptop monitor and responded using the 1 and 0 keys of the keyboard. 

Stimuli. Stimuli consisted of images of artwork, chocolate bars, and pie charts 

representing gambles. There were two sets of stimuli: 10-11 stimuli for each of the 

categories (10 for chocolate bar brands, 11 for art and gambles) used in non-repeated 

choices that allow deterministic tests of transitivity (set A), and 5 stimuli for each of the 

categories (art, chocolate bar brands, gambles) used in repeated choices that allow 

probabilistic tests of transitivity (set B). Choices constructed using set A and set B stimuli 

were intermingled in each block. For each category, we strove to design option sets in 



62 
 

which the options were close in preference, as intransitive choices are less likely between 

items that have widely different values. 

 The artwork stimuli were paintings that were rated highly by participants in 

Vaidya and Fellows (2015a). The set B stimuli consisted of 5 paintings by Monet, which 

were all within the top 20 most highly rated paintings by those subjects. We selected 

Monet as he was the artist that occurred most frequently in the top 20 rated paintings of 

Vaidya and Fellows (2015a). The 5 selected paintings were roughly similarly preferred 

(i.e., chosen with close to the same frequency in pair-wise choices across the whole 

sample) in a sample of 107 participants recruited from Amazon Mechanical Turk. Set A 

consisted of paintings of the similar style/era (Impressionist, Romantic periods) in the top 

40 ranked paintings of the Vaidya and Fellows (2015a) stimuli set. 

 The chocolate bars were from five brands (Lindt, Godiva, Ghirardelli, Dove, and 

Cadbury). We selected five brands that were roughly similarly preferred across the 

population.  These brands were being sold for similar prices, were rated similarly on a 

seven-point scale by a sample of 103 participants from Amazon Mechanical Turk (mean 

rating = 5.76), and were selected at roughly similar frequencies in pair-wise choices 

across another sample of 101 Mechanical Turk participants. Milk chocolate bars from 

each of the 5 brands were in set B, while dark chocolate and dark chocolate almond bars 

from each brand were in set A. The stimuli consisted of publicly available pictures of the 

front side of the chocolate bar packaging. 

 We used sixteen gambles of equal expected value ($8.80). The stimuli consisted 

of a pie chart showing the probability of winning, with text on top indicating both the 
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cash amount to be won and the probability of winning. The five set B gambles were the 

“Cash II” set in Regenwetter et al. (2011), which used contemporary monetary 

equivalents of the Tversky (1969) five gamble set. The probabilities were 28%, 32%, 

36%, 40%, and 44%. Set A consisted of 11 other gambles with the same expected value 

(probabilities of 8%, 17%, 25%, 33%, 42%, 50%, 58%, 67%, 75%, 83%, 92%).  

Procedure. Participants completed a binary forced choice task. On each trial, 

participants first saw a central fixation point for 1s, then a screen with two choice stimuli 

(placed to the left and the right of the center). Participants indicated which stimulus they 

preferred, by pressing buttons for left or right. Participants had as much time as they 

needed to make their selection. Following their selection, there was an inter-trial interval 

of 1s where a black screen was presented. 

 For set A stimuli, participants faced all possible pairings of either 10 (for brands) 

or 11 (for art and gambles) options, constituting 45 and 55 pairs in total, respectively. 

Each pair was faced once. For set B stimuli, participants faced all possible pairings of 5 

options, constituting 10 pairs, and each pair was repeated 15 times. Therefore, there were 

195 (for brands) or 205 (for art and gambles) total choices in each category across the 

entire experiment. 

 Choice trials were presented in blocks, in which participants made choices 

between items within a single category (art, brands, gambles).  There were five blocks of 

choices for each category, containing 39 (for brands) or 41 (for art and gambles) trials 

each. Each block contained 9 or 11 choices composed from set A and 30 choices 

composed from set B. Choices from set A and set B were intermingled with each other 
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within a block, with the set A stimuli inserted into a block of B stimuli in positions 

randomly selected from a uniform distribution. 

We took a number steps to reduce any potential memory effects for choices constructed 

with set B stimuli. We designed the sequence of trials so that: (1) the same pairing was 

not repeated within a minimum of 3 trials; (2) the same stimulus rarely appeared on 

immediately adjacent trials (no more than 9 times throughout the entire experiment); and 

(3) when the same pairing was repeated the choices immediately preceding and following 

that pairing differed from its previous occurrence (to minimize contextual memory). 

Furthermore, the side on which stimuli were presented was counterbalanced across 

repetitions. Finally, we divided the experiment into two sessions, held on separate days 

for every subject except two (due to scheduling constraints). The two sessions were held 

on average 8.09 (sd = 11.73) days apart (excepting the two who were tested on the same 

day, the sessions ranged from 1 day to 57 days apart). We did not observe a significant 

correlation between total number of intransitive choices made across all participants (see 

explanation of measure below) and days between the two sessions (r = 0.24, p = 0.12). 

Statistical analysis. 

Deterministic tests of transitivity. All data was analyzed with MATLAB 

(Mathworks). We used the set A choices to perform deterministic tests of transitivity, 

replicating previous studies. We first determined the preference ordering within each 

category for each subject. The 10 or 11 options within each category were ranked 

according to how many times each was chosen by that subject. Then, for each trial, a 

choice was counted as intransitive if a lower-ranked item was chosen over a higher-

ranked item. Following Henri-Bhargava et al. (2012), ties were maintained in the 
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rankings (i.e., more than option could have the same rank) to provide a more conservative 

definition of intransitive choices. Because the intransitive choice counts are not normally 

distributed, we used non-parametric statistics to test for group differences. We used 

Kruskal-Wallis tests to detect effects between groups, followed by one-tailed Wilcoxon 

ranked sum post hoc pairwise tests as appropriate (as several previous studies have found 

increased intransitive choices after VMF damage, we had strong hypotheses about the 

direction of the results). To test for within-subject effects, we used repeated measures 

analysis of variance (ANOVA) on rank-transformed data for the omnibus test and 

Wilcoxon signed-rank post hoc tests as appropriate.   

Probabilistic tests of transitivity. We used the set B choices to perform 

probabilistic tests of transitivity, extending on previous studies. We first obtained the 

proportion of choices (out of a possible total of 15 choices) for each of the 10 choice 

pairs afforded by all possible pairings of the 5 options in each category. We then tested 

the random mixture model of preference by noting whether the choices violated the linear 

ordering polytope (LOP) (Regenwetter et al., 2011). The random mixture model states 

that a person’s response comes from a probability distribution over all possible orderings 

of the stimuli. Thus, at any one time, preferences are transitive, but the transitive state 

that one is in can vary. The probability of a person choosing one option (X) over another 

(Y) in a binary choice is the sum of all the preference states in which X is preferred to Y. 

In a two alternative forced choice task, this is constrained by the triangle inequalities. For 

every distinct X, Y, and Z in a choice set: 

Pxy + P yz – P xz £ 1 
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Where Pxy denotes the probability of choosing X over Y, etc. For up to 5 options in a 

2AFC task, satisfying the triangle inequalities, which together define the LOP, is 

necessary and sufficient for a set of choices to be consistent with the random mixture 

model.  

For choice probabilities that did not satisfy the triangle inequalities, we used the Q-test 

(Regenwetter et al., 2014) software to determine whether the data were significantly 

outside of the LOP. Q-test uses maximum likelihood estimation to find the goodness of 

fit of the data at each vertex in the polytope, using a chi-squared bar distribution with 

simulated weights (Regenwetter, Dana, & Davis-Stober, 2010; Regenwetter et al., 2014). 

Any subject with choices in a category that produced  p < 0.05 in this test were 

considered as significantly violating the LOP and thus, the random mixture model of 

preference. 

Sensitivity of probabilistic tests. We performed several simulations to determine 

the sensitivity of the probabilistic test of transitivity, i.e., the rate at which this test would 

declare different forms of random or heuristic-based choice to be transitive.  First, 

following Regenwetter et al. (2011), we randomly picked a choice probability for every 

pair from a uniform distribution (from 0 to 100%). As previously shown in Regenwetter 

et al. (2011), only about 5% of the choice datasets simulated in this manner satisfy the 

triangle inequalities. That is, only 5% of the possible set of choice proportions for 10 

pairs/5 stimuli satisfy the random mixture model.   

Second, we simulated an intransitive chooser who has an entirely consistent 

preference within each pair (i.e., choosing A 100% of time when it is paired with B) that 
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is unconstrained by any higher order transitive structure (i.e., the preference in each pair 

is independent from that of all other pairs). This type of intransitive chooser only satisfies 

the triangle inequalities about 12% of the time for choice proportions for 10 pairs/5 

stimuli as in our dataset. 

Third, we simulated an intransitive chooser using the lexicographic semiorder 

heuristic (LS; Tversky, 1969). The LS heuristic is easiest to demonstrate with the 

gambles stimulus set. Following Tversky (1969), we defined our LS rule as follows: if 

two gambles are adjacent (i.e., next to each other in the set in terms of 

probabilities/payouts), always choose the gamble with the higher payout (amount); for all 

other (non-adjacent) gamble pairs, always select the gamble with the higher probability. 

Such a chooser would never satisfy the triangle inequalities in our dataset. Together, the 

first three sets of simulations show that our probabilistic test is very sensitive to different 

forms of intransitive choice.   

Finally, we simulated a completely random chooser (i.e., someone who flips a 

coin on every single trial). The choice proportions for such a random chooser are given 

by the binomial probabilities with p=0.5. Such a chooser satisfies the triangle inequalities 

80% of the time in our dataset (5 stimuli, 10 choice pairs repeated 15 times). This high 

percentage is not unexpected, as 50% choice probabilities across all pairs is consistent 

with the random mixture model (i.e., 0.5 + 0.5 -0.5 < 1). We use this rate below to assess 

whether the behavior of VMF subjects is consistent with completely random choice.   

Drift diffusion modelling and analysis of reaction times. We calculated ranks of 

options similar to the method we used in the set A (deterministic transitivity) above, 
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where the option that was chosen most often overall was ranked first, and the option 

chosen second-most was ranked second, etc., and broke ties by looking at which options 

were more often chosen more than half of the time in every pair (Henri-Bhargava et al., 

2012). It was necessary to break ties here for the purposes of calculating the effect of 

value distance on reaction times (RTs). Three subjects still had tied ranks after this 

process, in one category each: two are HC subjects in the gambles domain, the other is a 

VMF patient from the Art domain. These subjects in these categories only are dropped 

from the ANOVA analysis and drift diffusion modelling below.  

We fit a drift diffusion model (Ratcliff, 1978) to the choices and RTs from all set B 

choices for every other subject and category in our experiment. We modelled the decision 

process as a decision variable (DV) that increased linearly with a slope d*va, where d 

was the drift rate, v was the value difference of the options (expressed as the absolute 

rank difference between the two items for that individual), and a was an exponent 

accounting for potential non-linearities in the effect of rank difference. We also assume 

that at each time step there is Gaussian noise added to the DV, with a standard deviation 

of e. We assumed 10ms time steps. We also assume there is a non-decision time (ndt) 

before accumulation begins, and an initial value (int) of the DV that is constant across 

trials. Choices are made when the DV crosses a threshold. 

Thus there are five free parameters: d, a, e , int and ndt. Note that the threshold was a 

fixed parameter across subjects, as one of the threshold, d, or e must be fixed for the other 

two parameters to be estimable. We chose to fix threshold after a model-comparison 

process showed that option to provide the best model fits. Threshold was held constant at 
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(+/-) 0.15. Values for d are sampled between 0 and 1,  for e are sampled between 0 and 1, 

for a are sampled between 0 and 3, for int are sampled between the threshold bounds, 

and for ndt are sampled between 0 and the minimum RT minus 10ms for that subject. 

To fit these free parameters, we first calculated the cumulative probability that the DV 

crossed the threshold for the subject’s choice (Tcorrect or Tincorrect, where “correct” was 

defined as choosing the option of higher rank) across all time steps. For each trial, we 

then calculated the joint likelihood of the subject’s choice at the time which they made 

that choice (their trial RT, minus ndt), by taking the derivative of this cumulative 

probability at the timestep of the subject’s choice (every 10ms to the maximum RT for 

the subject). The model was then fit using the MATLAB function fmincon, where the 

cost function was defined as the sum of the negative log likelihoods of the instantaneous 

probabilities of the subject’s choices and RTs in all trials.  The fitting procedure was 

repeated 10 times for each subject, with each iteration varying in randomly sampled 

starting values for the free parameters as specified above; the parameters with the lowest 

log likelihood out of the 10 was taken for that subject. The model was fit individually to 

each of the three reward categories (art, brands, gambles) for each subject. 

To look at differences in DDM parameters between groups across categories, we 

performed a mixed ANOVA on each of the free parameters, with group as the cross-

subject factor and reward category as the within-subject factor. 

 Finally, we performed a mixed ANOVA with group and value distance as factors 

to look for the effect of value distance on RTs across groups.  
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Results 
Deterministic tests of transitivity. 

Individuals with frontal damage exhibit more choice cycles. A subset of the choices in 

our experiment, Set A, consists of a single instance of all pairwise choices from a total of 

nine or ten items within a category, which allows us to first replicate two previous studies 

of transitivity (Fellows and Farah, 2007; Henri-Bhargava et al., 2012). Combining all 

three categories (art, brands, gambles) in our experiment, we replicate the finding that 

individuals with VMF damage make more intransitive choices, though we do not 

replicate that this effect is selective to VMF damage in the frontal lobe (Figure 2). There 

was a moderate difference in intransitive choices in set A summed across all three 

categories (Kruskal-Wallis H = 5.05, p = 0.08). Because three previous studies have 

found increased intransitive choices after VMF damage (Fellows and Farah, 2007; Henri-

Bhargava et al., 2012; Camille et al., 2011), we conducted planned comparisons between 

groups. Similar to previous studies, our VMF group (mean = 9.93%, sd =6.65) made 

more intransitive choices than the HC group (mean = 5.71%, sd = 4.05; Wilcoxon ranked 

sums Z = 1.64, p = 0.05). Unlike previous studies though, our FC group (mean = 9.09%, 

sd = 3.74) also made more intransitive choices than the HC group (Z = 2.05, p = 0.02) 

and the difference between VMF and FC and was not significant (Z = 0.12, p = 0.45).  
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Figure 4-2. Group average and individually plotted intransitive choices in 

(deterministic) set A across a) all domains, and b-c) in each reward domain. Filled-in 

dots encircled in gray denote the VMF subjects whose errors were significantly higher 

compared to the HC group, and whose lesion extents are depicted in Figure 3. Error bars 

are standard errors of the mean. 
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Differences among reward categories. However, the analysis above obscures 

differences across individuals and choice categories that point to more specific effects of 

VMF damage. We first examined how intransitive choices in set A differ across choice 

categories. In the one choice category used in previous studies of transitivity, art, there 

was significant difference in intransitive choices across groups (Kruskal-Wallis H = 7.62, 

p = 0.02), which replicated the previously reported pattern of selective VMF deficit. The 

VMF group (mean = 9.93%, sd = 1.86) made significantly more intransitive choices in 

the art category than both the FC group (mean = 4.73%, sd = 1.36; Wilcoxon ranked sum 

Z = 1.91, p = 0.03) and the HC group (mean = 3.64%, sd = 0.97; Wilcoxon ranked sum Z 

= 2.62, p = 0.004). In contrast, in the two categories that have not been used in previous 

studies, brands and gambles, we did not find significant differences between the three 

groups (brands, H = 2.42, p = 0.29; gambles, H = 3.01, p = .22 respectively). 

In Figure 2b-d, it appears that number of intransitive choices is relatively stable 

across categories in the VMF and HC groups, but variable across categories in the FC 

group. Indeed, the effect of reward category is significant for the FC group (F(2,18) = 

3.88, p = 0.04), but not for the VMF (p = 0.92) or the HC group (p = 0.27). In the FC 

group, the number of intransitive choices in the gamble category was significantly greater 

than in the art category (Z = 2.40, p = 0.02), while the differences between gambles and 

brands (p = 0.19) and art and brands (p = 0.18) were not significant.  
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Differences among individuals. We then examined how intransitive choices in 

set A differ across individuals. To do this, we considered each individual with a VMF or 

FC lesion as a single case, and compared their total number of intransitive choices (i.e., 

across all three categories) against healthy controls. We made this comparison using 

case-control t-tests (Crawford & Howell, 1998) which are modified to compare an 

individual against a normative group when the sample size is small. In the VMF group, 

four individuals made significantly more intransitive choices than healthy controls, 

before corrections for multiple comparisons (Subject 350: t(19) = 2.04, p = 0.03;  Subject 

10403: t(19) = 3.28,p = 0.002, Subject 12402: t(19) = 3.13, p = 0.003; Subject 775: t(19) 

= 3.13, p = 0.003). These differences remained significant in the latter three individuals 

after correcting for multiple comparisons using FDR (corrected p = 0.023 for all three 

individuals). Lesion extent of these three subjects are shown in Figure 3. In contrast, in 

the FC group, none of the individuals made significantly more intransitive choices than 

healthy controls (all p >= 0.05 before multiple comparison correction).  

 This result suggests that a subset of individuals with VMF damage show the most 

pronounced increase in intransitive choices. However, we did not find evidence to 

support any particular account of this heterogeneity. The total number of intransitive 

choices (i.e., across all three categories) was not significantly correlated with lesion size 

(in cc’s), whether considering all subjects with lesions (Spearman’s rho  = -0.14, p = 

0.51) or only those with VMF damage (rho = -0.13, p = 0.67). Within the VMF group, 

the total number of intransitive choices was also not significantly correlated with lesion 

volume within a vmPFC mask defined based on value effects in fMRI studies (Bartra, 

McGuire & Kable, 2013; rho = -0.06, p = 0.83). Finally, across all subjects, the total 
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number of intransitive choices was not significantly correlated with any of the 

demographic variables (gender, point biserial r = 0.13, p = 0.39; age, rho = 0.14, p = 

0.35; education, rho = 0.24, p = 0.11). 
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Figure 4-3. Lesion tracings of the three individuals with VMF lesions who had 

significantly more intransitive choices compared to healthy control subjects, as 

determined by case-control t-tests. Red denotes areas where at least one of these 

subjects had a lesion; yellow denotes the areas where at least one of these subjects had 

lesions outside of all other lesion subjects. There was very little overlap in lesions within 

the three subjects (only maximally two out of three on only in a small number of voxels).  

Numbers below axial slices indicate the MNI z-coordinates. 
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Probabilistic tests of transitivity. Individuals with VMF damage make choices 

consistent with probabilistic models of transitivity. After replicating the finding that 

individuals with VMF damage make an increased number of intransitive choices, we next 

turned to the central question motivating our study, which is whether or not the choices of 

these individuals violate probabilistic notions of transitivity. To do this, we examined the 

subset of choices in our experiment, Set B, which involve 15 repetitions each of 10 

different binary choices in each of the three categories. Set B provides sufficient data for 

evaluating whether the choices each participant made are consistent with the random 

mixture model, a probabilistic model of transitive choice. None of the individuals with 

VMF damage violated the random mixture model in any of the three domains (a total of 

39 tests, see Table 2). Similarly, none of the individuals with frontal damage outside the 

VMF violated the random mixture model in any of the three domains (a total of 36 tests).  
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Table 4-2. Results of LOP analysis, by category 

     
      

 
Art Brands   Gambles 

Respondent p-value p-value   p-value 

Individuals with VMF lesions       

1 ✓ ✓   ✓ 

2 ✓ ✓   0.64 

3 ✓ ✓   0.83 

4 ✓ ✓   ✓ 

5 ✓ ✓   ✓ 

6 ✓ ✓   ✓ 

7 ✓ 0.57   ✓ 

8 ✓ ✓   ✓ 

9 ✓ ✓   0.92 

10 ✓ ✓   ✓ 

11 ✓ ✓   ✓ 

12 ✓ ✓   ✓ 

Frontal controls 
 

  
 

  

1 0.2 ✓   ✓ 

2 ✓ ✓   ✓ 

3 ✓ ✓   ✓ 

4 ✓ ✓   ✓ 

5 ✓ ✓   0.57 

6 ✓ ✓   ✓ 

7 ✓ ✓   0.48 
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8 ✓ ✓   0.36 

9 ✓ ✓   0.14 

10 ✓ ✓   ✓ 

Healthy controls 
   

1 ✓ 0.71 
 

0.0016 

2 ✓ ✓ 
 

0.9 

3 ✓ ✓   ✓ 

4 ✓ ✓   ✓ 

5 ✓ ✓   ✓ 

6 ✓ ✓   ✓ 

7 ✓ ✓   ✓ 

8 ✓ ✓ 
 

0.95 

9 ✓ ✓ 
 

0.01 

10 ✓ ✓ 
 

0.55 

11 ✓ ✓ 
 

✓ 

12 ✓ ✓ 
 

0.09 

13 ✓ ✓ 
 

✓ 

14 ✓ ✓ 
 

✓ 

15 0.24 ✓ 
 

✓ 

16 ✓ 0.87 
 

0.27 

17 ✓ ✓ 
 

✓ 

18 ✓ 0.36 
 

✓ 

19 ✓ ✓ 
 

0.26 

20 ✓ ✓   ✓ 

Note: Each participant participated in choices for all three categories.  

Checkmark indicates subject fulfilled triangle inequalities for that category. Significant 
violations of linear ordering polytope are marked in bold. 



79 
 

 

 

Interestingly, two healthy controls significantly violated the random mixture 

model in the gambles domain (p = 0.002 and p = 0.01, respectively). One of these 

individuals followed Tversky’s (1969) lexicographic semiorder heuristic exactly and the 

other followed this heuristic partially. Their results demonstrate the sensitivity of our test 

to detect individuals choosing on the basis of attribute-based heuristics that lack higher 

order transitive structure.  

Individuals with VMF damage are not choosing randomly. One possible 

explanation for why individuals with VMF damage conform to probabilistic models of 

transitivity despite making a greater number of individual intransitive choices is that they 

are simply choosing randomly, as completely random choices fulfill the random mixture 

model 80% of the time in our experimental design (see methods). However, individuals 

with VMF damage are not simply choosing randomly. First, the probability that a group 

of random choosers the size of the VMF group (N=13) would all make choices consistent 

with the random mixture model in all three domains is extremely low, p = 1.66e-04. 

Second, we can evaluate directly the likelihood that an individual is choosing randomly 

by comparing their choice proportions (N=10 in each category) against those expected 

under the binomial distribution. For every single individual with VMF damage, and in all 

three domains, the likelihood that their choice proportions arose from completely random 

choice was extremely low (all p < 1e-06). 
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Individuals with VMF damage do not have systematically different 

preferences. A second possible explanation for why individuals with VMF damage 

conform to probabilistic models of transitivity despite making a greater number of 

individual intransitive choices is that they have systematically different preferences. For 

example, we might expect that a risk-neutral chooser would be more likely to make 

occasional intransitive choices in our gambles category than a strongly risk averse 

chooser.  However, individuals in the VMF group did not make systematically different 

types of choices than individuals in the other groups. In a MANOVA on the choice 

proportions for each of the 10 binary choices the participants faced in each category, 

there were no significant differences between groups in the art category [Wilks’ Lambda 

= 0.64, F(18,64) = 0.9, p = 0.58], the brand category [Wilks = 0.64, F(18,64)=0.90, p = 

0.58], or the gambles category [Wilks = 0.46, F(18,64) = 1.67, p = 0.07].  

Individuals with VMF damage have noisier preferences. A third possible 

explanation for why individuals with VMF damage conform to probabilistic models of 

transitivity despite making a greater number of individual intransitive choices is that they 

are noisier choosers. That is, their choices reflect underlying transitive preference 

orderings, but they vacillate among preference orderings more than other choosers. To 

further test this possibility, we fit each individual’s choices and RTs in Set B to a drift 

diffusion model (DDM), which assumed that choices and RTs were a probabilistic 

function of the rank distance in preference ordering between the two options. These fits 

revealed that individuals with VMF damage were noisier choosers. The only parameter of 

the DDM that was significantly different across groups was the noise parameter e 

[F(2,37) = 6.25, p = 0.005]. Specifically, the VMF group (mean = 0.12, sd = 0.03) had 
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significantly higher e than HC (mean = 0.09, sd = 0.04)[t(28) = 2.08, p = 0.047] and FC 

(mean = 0.07, sd = 0.02) [t(20) = 3.94, p < 0.001]. No other parameters differed between 

the three groups (Figure 4). 

 

 

         

Figure 4-4. DDM parameter fits: noise, drift rate, initial starting point, non-decision 

time, and alpha (exponent on rank distance). Error bars are standard errors of the 

mean. 
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Individuals with VMF damage show a less pronounced effect of value on 

reaction times. RTs in individuals with VMF damage also showed a less pronounced 

effect of ranked value distance, consistent with the increased noise parameter observed in 

the DDM fits. We performed a mixed ANOVA on median RTs with value distance and 

group as factors. We found a significant main effect of value distance [F(3, 111) = 28.63, 

p < 0.0001], a significant main effect of group [F(2,37) = 4.93; p = 0.01], and a 

significant interaction between the two [F(6,111) = 3.76; p = 0.002].  

The significant effect of value distance reflected the expected decrease in RTs as the 

distance in preference ordering rank gets larger. The average median RT for a rank 

difference of 1 (mean = 2800ms, sd = 1458) was significantly slower than a rank 

difference of 2 (mean = 2500ms, sd = 1211) [Z = 4.86, p <0.0001], which in turn was 

slower than the rank difference of 3 (mean = 2300ms, sd = 1166) [Z = 3.59, p <0.001], 

which in turn was slower than a rank difference of 4 (mean = 2180ms, sd = 1045) [Z = 

2.78, p=0.005]. 

The effect of group reflected longer RTs in the FC group. RTs in the FC group 

(mean = 3380ms, sd = 1596 ms) were significantly slower than in VMF group (mean = 

1883ms, sd = 469ms) (Z = 3.13, p = 0.002), and a similar slowing relative to the HC 

group (mean = 2439ms, sd = 1116ms) exhibited a non-significant trend (Z = 1.70, p = 

0.09). RTs in the VMF and HC groups were not significantly different (Z = 1.16, p = 

0.24).  
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The interaction between value distance and group reflected a reduced effect of 

value distance on RTs in the VMF group. We took the Spearman correlation between RT 

and the difference in preference ordering rank as an index of the value distance effect. 

The VMF group (mean rho = -0.16) exhibited a flatter value distance-RT relationship 

than the HC group (mean rho = -0.22) [t(28) = 2.20; p = 0.04]. The value distance-RT 

relationship in the FC group (mean rho = -0.19) was intermediate and not significantly 

different from the VMF (p = 0.42) or HC (p = 0.61) groups. As shown in Figure 5, these 

differences can be accounted for by the DDM fits described above.  
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Figure 4-5. Value distance effect on RT, by group. Dotted line are simulated RTs from 

DDM parameter fits. Error bars are standard errors of the mean. 
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Discussion  

Individuals with damage to the ventromedial frontal lobes (VMF) have been 

shown previously to be more inconsistent in their choices (Camille et al., 2011; Fellows 

& Farah, 2007; Henri-Bhargava et al., 2012). These previous findings, however, are 

consistent with two possible patterns of behavior, with very different implications for the 

function of the VMF. One possibility is that individuals with VMF damage are 

fundamentally intransitive: that they reliably choose in an intransitive manner when given 

the same choice between the same options repeatedly. A second possibility is that 

individuals with VMF damage are more variable in their choices, yet still fundamentally 

transitive. Here we distinguished between these two possibilities by testing whether the 

choices of individuals with VMF damage satisfy probabilistic notions of transitivity, as 

the first possibility predicts they do not and second predicts they do. We overwhelmingly 

find evidence for the second possibility, as all individuals with VMF damage make 

choices in all domains that are consistent with probabilistic models of transitivity.  

The first possibility, that individuals with VMF damage are fundamentally 

intransitive choosers, implies that the VMF is necessary for choices to be value-based, as 

transitivity is the key hallmark of a value-based choice (Samuelson, 1937; Von Neumann 

& Morgenstern, 1945). According to this view, individuals with VMF damage would 

only be able to choose in a non-value-based manner, for example, according to rules or 

heuristics. Our data, however, provide strong evidence against this possibility. This result 

is difficult to reconcile with the view that VMF is the critical substrate for value-based 

choice.  



86 
 

In contrast, we found strong evidence for the second possibility, that individuals 

with VMF damage are fundamentally transitive, that is their choices satisfy probabilistic 

models of transitivity, even though they make more intransitive choices according to 

deterministic notions of transitivity. Furthermore, we showed that this pattern was not 

due to individuals with VMF damage choosing in an entirely randomly manner, nor was 

it due to these individuals having preferences that were systematically different from 

those of the other groups. Rather, this pattern was due to individuals with VMF damage 

being noisier or more variable choosers. This is consistent with the suggestion of Henri-

Bhargava et al. (2012), that “values are unstable, fluctuating from trial to trial in those 

with VMF damage.” We illustrated this by fitting a drift diffusion model (Ratcliff, 1978) 

to each individual’s choices. In this model, the VMF group had a significantly higher 

noise term, i.e., more variance around the decision variable, than healthy individuals or 

those with frontal damage outside the VMF. Importantly, the VMF group did not differ 

on the value of any other parameters. Reaction times in the VMF group were also similar 

to healthy controls, arguing against accounts of their behavior based on impulsivity 

(faster RTs) or indecision (slower RTs). Overall our modeling further strengthens the 

conclusion that the VMF serves to make preferences more stable, so that individuals 

would be less likely to select an option that is typically less preferred.  

These results are easier to reconcile with a framework in which valuation and 

value-based choice are distributed processes, to which multiple regions of the brain 

contribute in some respect (Hunt & Hayden, 2017). This framework would predict that 

others regions can compensate for damage to the VMF, so that such damage does not 

fundamentally abolish the transitivity of preferences. The modest effect size in 
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deterministic tests, which is typically an increase of around 5% in the number of 

intransitive choices in the VMF group relative to control groups in our study and previous 

ones (Fellows & Farah, 2007; Henri-Bhargava et al., 2012), is also more consistent with 

this view. As making transitive choices that maximize value is incredibly important to the 

survival of an organism, it would make sense that value is a highly conserved process that 

is not abolished by damage to one part of the cortex. Future studies could more directly 

test hypotheses about compensation by examining activity in inconsistent individuals 

with fMRI, as it is also possible that regions that compensate are in the still intact parts of 

VMF rather than in other regions entirely.  

Our results do not speak to how exactly the VMF supports choice stability. One 

possibility is that VMF contributes some part of the composition of subjective value. If 

subjective value is computed through the interaction of several brain regions, the loss of 

VMF may make this computation noisier and less reliable, akin to the greater noise we 

see in our DDM results. Alternatively, as a flattening of the value distance-RT 

relationship is consistent with greater indifference between options, the VMF could 

amplify or enhance the differences in value between different options (Henri-Bhargava et 

al., 2012). It is also possible that the VMF contributes a unique, specific component to 

valuation. For example, it has been suggested that the VMF contributes emotional content 

when making aesthetic judgments (Vaidya, Sefranek, & Fellows, 2017), and in other 

contexts that it contributes motivational salience that can distinguish close options from 

one another more clearly (Manohar & Husain, 2016; Pujara, Philippi, Motzkin, Baskaya, 

& Koenigs, 2016; Vaidya & Fellows, 2015b).  



88 
 

Another broad set of possibilities can be generated by considering the nature of 

the random mixture model that individuals with VMF damage satisfy. In this model, 

choosers are allowed to have different preference orderings in different contexts or at 

different points in time. It is possible, therefore, that VMF somehow contributes to the 

same preference ordering being repeated reliably. For example, individuals might use 

episodic memories of their previous choices (e.g., “I remember choosing A over B 

before”) to guide their decisions. Although we tried to reduce the influence of such 

memories, it is difficult to eliminate their influence entirely (Birnbaum, 2011) and VMF 

has been implicated in episodic memory processes (Bertossi, Tesini, Cappelli, & 

Ciaramelli, 2016). Alternatively, VMF could support a representation of the context of 

the experiment that in turn activates a specific set of preferences, such as in a schematic 

network. Consistent with this idea, previous work has shown VMF involvement in 

schema formation (Schlichting & Preston, 2016; Spalding et al., 2018).  

Finally, we extended previous studies that considered only deterministic notions 

of transitivity by identifying heterogeneity in these effects both across individuals and 

across domains. There was considerable heterogeneity within the VMF group, where 

some participants made as few intransitive choices as healthy controls, while other 

participants made significantly more intransitive choices. We did not find any systematic 

differences in lesion location or size that accounted for this heterogeneity. The lesions of 

the three individuals in the VMF group who made significantly more intransitive choices 

overall did not overlap much in their location, and the overlap areas were in the same 

location where other individuals had sustained lesions. The lesions of the three most 

inconsistent individuals in the VMF group did tend to extend more posteriorly towards 
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the basal forebrain and ventral striatum, though given the sample size in our study this 

potential explanation will need to be rigorously evaluated in future work with a larger 

number of subjects. Future studies could also test alternative explanations that we were 

unable to assess by using more advanced imaging to test whether damage to specific 

white matter tracts or disruptions in specific connectivity networks are linked to making 

more intransitive choices.  

There was also considerable heterogeneity across domains, with the pattern of 

intransitive choices being most consistent with previous studies (i.e., showing a deficit 

selective to VMF damage) in the one the domain, art, that had been used in those studies. 

The greatest heterogeneity across domains, though, was in the frontal control group. This 

group looked similar to healthy controls in the art domain but made the most number of 

intransitive choices in the gamble domain. The frontal control group includes individuals 

with damage to the dorsomedial or dorsolateral prefrontal cortex, and both of these 

regions have been previously shown to be involved in decisions about risk 

(Christopoulos, Tobler, Bossaerts, Dolan, & Schultz, 2009; Hsu, Krajbich, Zhao, & 

Camerer, 2009). Previous studies have started to consider how the brain regions 

necessary for preference consistency may vary across domains (Fellows & Farah, 2007; 

Henri-Bhargava et al., 2012), and our results further highlight the need to examine a 

variety of domains in future work.   

In conclusion, we found that individuals with VMF damage make choices that are 

noisier, but still fundamentally transitive. This result both characterizes how erratic 

choices manifest after damage to the VMF (Eslinger & Damasio, 1985; Harlow, 1868), as 

well as potentially explains why studies using similar decision-making paradigms in 
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individuals with VMF-damage can yield different results (Fellows, 2011). In addition, 

our findings further clarify and define the necessary role the VMF plays in value-based 

decision-making. Specifically, though each choice still reflects some subjective 

preference ordering after VMF damage, an intact VMF is necessary for preference 

orderings to remain stable and reliable across time and contexts.  
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Chapter 5 – General Discussion  
 

Whether you are swiping between potential mates on a dating app, rating a pair of 

winter boots you just bought, or putting a bid on a house, there are many factors in your 

valuation of those options. However, we seem to be able to, most of the time, 

successfully and quickly resolve these factors into a preference. This dissertation sought 

to explore how the brain arrives at preferences across several different types of tasks. In 

Chapter 2, we assessed a model of decision-making that posited that choosing between 

options is akin to navigating a mental space made of option attributes. We found that this 

model did not have support in neural responses to a standard choice task, and that 

subjective value instead remains a better explanation for the data. In Chapter 3, we 

looked for the neural correlates of valuation in a different type of preference task, the 

matching task, which featured a longer response period. We found that the valuation 

network in the brain responded in much the same way as in choice tasks, and late into the 

response period. In Chapter 4, we tested whether the vmPFC is necessary for valuation by 

using a probabilistic model of transitivity. We found that vmPFC damage increased noise 

in the consistency of preferences, but did not make preferences fundamentally 

intransitive. This result shows that though vmPFC is critical for a component of 

valuation, multiple neural regions are likely needed to contribute to the valuation process. 

 This dissertation affirms subjective value as a model of neural representation in 

vmPFC during decision-making, that it is robust to the type of preference elicitation and 

represents value late into the decision process, and it is likely part of a distributed 

network of regions necessary for value construction. These studies confirm some pre-

existing theories and challenges others. It supports the prevalent subjective value theory 
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of vmPFC function (Kable & Glimcher, 2009), but it limits the role of the vmPFC to 

being necessary for an aspect of value, rather than valuation as a whole. This dissertation 

is also the first to assess, and challenge, a conceptual navigation account of decision-

making (Behrens et al., 2018; Bellmund et al., 2018). 

Open Questions 

  This dissertation raises two important questions. In the following section, I will 

discuss these questions, and some future directions that could address them. The first 

question is, what role does vmPFC play in subjective value? Chapter 4 showed it is 

necessary for some aspect of value that reduces noise in valuation – so what could those 

aspects be?  Relatedly, what models could account for the representations of value at the 

end of consideration period? The second question is, what role does the vmPFC play in 

other cognitive tasks that could relate to its role in decision-making? For instance, can 

our studies that support a view of vmPFC’s involvement in subjective value in decision-

making, be reconciled with the studies that show that it is involved in spatial or 

conceptual navigation (Constantinescu et al., 2016; Doeller et al., 2010)? These two 

questions are intertwined, and feed into the main question of what does the vmPFC do?  

First, what is the role of the vmPFC in valuation? The results of Chapter 4 support 

a view of value as a distributed network. Hunt and Hayden (2017) posit that multiple 

regions of the prefrontal cortex compute similar variables (e.g., the attributes of the 

options) simultaneously, and feedback into each other in a recurrent, hierarchical 

network. Each region of the prefrontal network (such as anterior cingulate cortex, 

orbitofrontal cortex, and dorsolateral cortex) computes similar calculations, but receive 
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unique inputs to contribute to the overall representation (for example, the OFC receives 

sensory inputs, while the vmPFC receives limbic inputs, etc.). Thus, no one region 

conducts one part of the valuation process; rather, all regions do so simultaneously. This 

theory is supported by single cell literature showing that virtually all regions of the 

frontal cortex compute similar decision variables (Hosokawa, Kennerley, Sloan, & 

Wallis, 2013; Hunt, Behrens, Hosokawa, Wallis, & Kennerley, 2015), and the dense 

reciprocal interconnections within regions of the frontal cortex (Felleman & Van Essen, 

1991; Jbabdi, Sotiropoulos, Haber, Van Essen, & Behrens, 2015). Another prevalent 

distributed model of decision-making, the affordance competition hypothesis (Cisek, 

2007), posits that goals and action plans for multiple options are prepared simultaneously 

and compete against each other. In this framework, competition between different action 

plans take place across the frontal-parietal dorsal regions, which is influenced by biasing 

factors from prefrontal cortex and basal ganglia. Both of these theories provide 

mechanisms by which the valuation representations are presented later into the decision 

(e.g., mutual inhibition between options, or competition between action plans) (Hunt et 

al., 2012; Jocham et al., 2012; Pastor-Bernier & Cisek, 2011). However, neither of them 

address scenarios where valuation is required, but there are no competing options, as in 

matching or rating tasks. Though there is a cognitive model from decision field theory 

which addresses matching tasks (Johnson & Busemeyer, 2005), there are to date no 

neural evidence or mechanisms proposed for this process. This is a gap in the literature 

that should be addressed. 

Secondly, can vmPFC’s role in subjective value be reconciled with its role in non-

value-based cognitive domains, from memory, emotional and social cognition, and 
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valuation (Roy, Shohamy, & Wager, 2012)? One possibility is that different neural 

populations of vmPFC subserve these different functions, beyond the resolution that 

fMRI can provide. Conversely, however, there could be a broad functionality underlying 

these different domains. vmPFC and OFC is thought to represent the underlying structure 

of the task (Stalnaker, Cooch, & Schoenbaum, 2015; Wilson et al., 2014). For example, 

vmPFC could represent subjective value in decision-making tasks because subjective 

value is the most efficient and useful representation for preference tasks, and it could 

represent grid-like coding in navigation tasks because that form is the most efficient for 

representing a two-dimensional space for that purpose (Behrens et al., 2018). The reason 

knowing underlying task structure is useful is because when you are able to represent 

different states of the world (beyond just simple response-outcome associations), you can 

simulate future events and make predictions. Hippocampus, an area involved in 

prospective thinking, projects to the vmPFC, and lesions of the vmPFC causes deficits in 

both prospective memory and planning (Bertossi et al., 2016; Fellows & Farah, 2005; S. 

L. Peters, Fellows, & Sheldon, 2017). Additionally, both fMRI and lesion evidence have 

shown that vmPFC is involved in inferring unseen associations between objects, and for 

representing the underlying context of a task, and likely works with the hippocampus to 

do so (Zeithamova et al., 2012; Schuck et al., 2016; Spalding et al., 2018). However, 

though there have been computational models proposed of how these hidden attributes 

can be computed, as well as a role for vmPFC in this function (Gershman, 2018; 

Momennejad, Otto, Daw, & Norman, 2017), much work still needs to be done to uncover 

the processes behind them. I will discuss some of the potential future avenues of research 

now.  
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Future Directions 

As Chapter 4 suggests that vmPFC is critical for some aspect of valuation, one 

main avenue of research would be to figure out precisely those aspects are. The 

perspective in Hunt and Hayden (2017) suggests that vmPFC would contribute 

components related to its limbic connections (e.g., memory or emotional aspects) to an 

overall value representation. There has been some work done that show that individuals 

with VMF damage use emotional or social information less in preference judgments of 

art and politicians (Vaidya et al., 2017; Xia, Stolle, Gidengil, & Fellows, 2015). These 

studies hint at the vmPFC contributing an emotional or contextual component to 

valuation, which could be further investigated with more systematic examination of the 

components of options. For instance, in studies of consumer products, art, or social 

stimuli, it would be a good idea to have the participants rate these items on various 

attributes of those items, and then subsequently ask about their preferences among those 

items (preferably in a way so that transitivity can be assessed, to check for 

inconsistencies). Having both the attribute rating and the subsequent preference 

assessment is important because it would show whether the differences in the VMF group 

come from a deficit in assessing certain attributes, or if they come from the failure to take 

attributes into account during preference assessments. 

Secondly, another major research direction would be to test theories of vmPFC 

function that can account for its role in both value and non-value based tasks. More work 

should be done on both the nature of the vmPFC’s involvement in tasks that require 

structure learning, as well as its necessity in these tasks. Specifically, the vmPFC and 

OFC have been shown to be critical in devaluation, as well as being involved in 
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revaluation tasks in humans (Momennejad et al., 2017; Reber et al., 2017). These tasks 

require the participant to learn about direct associations between conditioned stimuli and 

reinforcers (e.g., different types of food, or monetary outcomes), learning that the 

reinforcer’s value change in some way separately from conditioned stimulus (either 

devalued through satiation, or changed in monetary amounts), and then querying the 

value of the conditioned stimuli to see if those have changed along with the values of 

their associated reinforcers. Neural evidence has suggested that offline replay, that is, 

hippocampal activity during rest periods in the middle of the task, supported later 

revaluation (Momennejad et al., 2017). Thus, it would be useful to look at the functional 

connectivity between hippocampus and vmPFC/OFC regions during periods of structure 

learning. Additionally, the OFC has been shown to encode the changes in the latent state 

of a task with probabilistic outcomes (Nassar, McGuire, Ritz, & Kable, 2018). This type 

of task is analogous to our anthropoid ancestors learning about the weather shifts which 

determine the probabilistic flowering of individual fruit trees. Successful performance is 

predicated on determining the true source of the outcomes, and when this source changes. 

Future directions for this research include finding out whether this latent state 

representation includes recognition of previously learnt states when the environment 

returns to them, as well as whether the OFC is necessary for this type of learning in lesion 

experiments.  

Finally, as alluded to above, very little work has been done on modelling the 

mechanisms by which valuation occurs in the absence of competition between options, as 

in matching or rating tasks. One obvious direction is to find neural correlates for the 

decision field theory model proposed by Johnson and Busemeyer (2005), which posits 
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that sampled values are adjusted up or down until an indifference decision threshold is 

crossed. Similar accumulation-to-bound models for choice tasks (e.g., the drift diffusion 

model) has support in the firing in areas like the lateral intraparietal area in primates 

(Shadlen & Newsome, 1996), which may be a candidate for this modified choice model.  

 In summary, this dissertation refines our understanding of the vmPFC’s role 

during decision-making. It shows that subjective value remains the best explanation of its 

role in determining preferences, whether for choice or for matching tasks, but also limits 

it to a role later in the decision-process. It furthermore clarifies that the vmPFC is 

necessary for a component of the valuation process that maintains the stability of 

preferences, but a lesion of the vmPFC does not abolish valuation. This work points to 

ways that our understanding of the vmPFC can be further advanced, not just for decision-

making, but for its role in cognition more broadly as well. 
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