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ABSTRACT 

 

STRUCTURAL, BIOCHEMICAL, AND CELL BIOLOGICAL 

CHARACTERIZATION OF RAB7 MUTANTS THAT CAUSE PERIPHERAL 

NEUROPATHY 

 

Brett A. McCray 

Supervisor: J. Paul Taylor 

 

Coordinated trafficking of intracellular vesicles is of critical importance for the 

maintenance of cellular health and homeostasis. Members of the Rab GTPase family 

serve as master regulators of vesicular trafficking, maturation, and fusion by reversibly 

associating with distinct target membranes and recruiting specific effector proteins. Rabs 

act as molecular switches by cycling between an active, GTP-bound form and an 

inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly 

controlled by regulatory proteins such as guanine nucleotide exchange factors and 

GTPase activating proteins. Rab7 specifically regulates the trafficking and maturation of 

vesicle populations that are involved in protein degradation including late endosomes, 

lysosomes, and autophagic vacuoles. Missense mutations of Rab7 cause a dominantly-

inherited axonal degeneration known as Charcot-Marie-Tooth type 2B (CMT2B) through 

an unknown mechanism. Patients with CMT2B present with length-dependent 

degeneration of peripheral sensory and motor neurons that leads to weakness and 

profound sensory loss. To gain insight into the pathogenesis of CMT2B, we undertook 
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extensive characterization of two disease-causing Rab7 mutants, L129F and V162M. We 

present the 2.8 Å crystal structure of GTP-bound L129F mutant Rab7 which reveals 

normal conformations of the effector binding regions and catalytic site, but an alteration 

to the nucleotide binding pocket that is predicted to alter GTP binding. We further 

demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase 

defect as previously suggested, but permit unregulated nucleotide exchange leading to 

both excessive activation and hydrolysis-independent inactivation. Using an unbiased 

proteomics approach, we characterize effector interactions in wild-type and mutant Rab7 

and identify several novel Rab7 interactors. Consistent with augmented activity, mutant 

Rab7 shows significantly enhanced interaction with a subset of effector proteins. In 

addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on 

target membranes. However, we show that increased activation of mutant Rab7 is 

counterbalanced by unregulated, GTP-hydrolysis-independent membrane cycling. Thus, 

we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal 

control normally imposed by regulatory proteins and cause disease by misregulation of 

native Rab7 activity. Future experiments will address the impact of Rab7 misregulation 

on neuronal trafficking and trophic signaling. 
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Chapter 1: Introduction 

 

This chapter was written by Brett McCray. 
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Intracellular vesicular dynamics 

Maintenance of cellular homeostasis requires regulation of the biogenesis and trafficking 

of diverse membranous subcellular organelles and vesicles. Membranous compartments 

such as the endoplasmic reticulum (ER), the Golgi apparatus, endosomes, lysosomes, and 

autophagic vacuoles are in constant flux and undergo considerable interconversion and 

crosstalk. The trafficking and regulation of membranous organelles within the cell is vital 

for coordinating the flow of plasma membrane proteins, nutrient and cholesterol uptake 

and homeostasis, regulation of secretion, immune function, anabolism and catabolism, 

and energetic homeostasis. Vesicular compartments are able to undergo directed 

trafficking, generally using the microtubule network and microtubule-specific motor 

complexes. In addition, vesicles undergo both homotypic and heterotypic fusion events. 

As the coordination of vesicular trafficking is of critical importance, cells have evolved 

multiple protein networks and complex, multifactorial regulatory mechanisms to regulate 

and carry out this vital task. In particular, members of the Rab family of small GTPases 

exert tremendous control over multiple aspects of vesicular identity and transport 

dynamics. The function and regulation of Rabs, and Rab7 specifically, will be the focus 

of this introduction.  

 

Microtubules and vesicular trafficking 

For directed movement throughout the cytoplasm, vesicles often travel along cytoskeletal 

tracks using various motor complexes. Actin, intermediate filaments, and microtubules 

constitute the major components of the cellular cytoskeleton, with microtubules being the 

most common cytoskeletal track used for regulated vesicular transport. Microtubules are 
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cylindrical structures. The end that elongates more rapidly is designated the plus end, 

while the other end, which associates with the microtubule organizing center (MTOC) 

and colocalizes with the centrosome, is designated the minus end.  

 

Microtubules are required for transport of various organelles and protein cargoes. 

Anterograde movement (towards the plus end) is mediated by the kinesin superfamily, 

whereas retrograde movement (towards the minus end) is primarily accomplished by 

dynein motor complexes (Caviston and Holzbaur, 2006). Although Rab GTPases regulate 

both anterograde and retrograde transport processes, this dissertation will focus on Rab7-

mediated retrograde microtubule transport. The retrograde transport machinery includes 

two multiprotein subcomplexes: the cytoplasmic dynein motor complex and its adaptor, 

the dynactin complex. The cytoplasmic dynein complex couples the hydrolysis of ATP to 

minus end-directed movement and is composed of two dynein heavy chains, two 

intermediate chains, four light intermediate chains, and several light chains (Kamal and 

Goldstein, 2002; Schroer, 2004). Cytoplasmic dynein not only plays a role in vesicular 

trafficking, but is also involved in many biological processes including mRNA 

localization, assembly of the mitotic spindle, and the transport of organelles and 

neurofilaments. Dynactin is a multiprotein complex that binds to cytoplasmic dynein to 

increase its processivity and mediate motor cargo binding (Schroer, 2004). Dynactin is 

composed of p150glued, which forms a projection arm that interacts with microtubules, 

Arp1, Arp11, p62, and various other components that interact with motor cargoes, and 

p50/dynamitin, which connects these two functional units (Schroer, 2004). The p150glued 

subunit links dynactin to cytoplasmic dynein by binding the intermediate chain subunit of 
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dynein (Waterman-Storer et al., 1995). In vesicular transport, dynactin functions as an 

adaptor by binding both to proteins in the vesicular membrane and the cytoplasmic 

dynein motor.  

 

Specification of organelle identity 

While at any given time specific vesicular compartments can be distinguished within the 

cell, it is currently unclear whether there is a predominance of stable vesicular 

compartments with carrier vesicles transporting among them (stable compartment 

model), or whether membranous vesicles are in a constant state of flux and maturation, 

interconverting among various vesicle identities (maturation model). Evidence suggests 

that aspects of both of these models are valid. Indeed, dynamic imaging has demonstrated 

that certain vesicle subtypes can mature and convert into other populations, consistent 

with the maturation model (Rink et al., 2005; Zoncu et al., 2009). However, ample 

evidence also exists to demonstrate budding of vesicles from relatively stable 

compartments before trafficking and fusion to another compartment (Gu and Gruenberg, 

1999). In addition, content mixing experiments have demonstrated that endocytic vesicles 

can undergo transient or protracted fusion with other vesicles, and lumenal contents can 

be shared by these brief contacts (Bright et al., 2005). Thus, in some cases, vesicles go 

through a stepwise maturation process, and in other cases transport and fusion events 

cause a change in vesicle identity.  

 

Organelle identity is largely determined by the content of phospholipids and proteins that 

reside within the limiting membrane. In particular, the presence of small GTPases and the 
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membrane composition of specific phosphoinositides are critical in regulating vesicle 

dynamics and in defining organelle identity. The coordination of vesicular trafficking and 

fusion and fission events is largely regulated by members of the Rab and Arf families of 

small GTPases which bind to the cytosolic face of specific membranous populations and 

recruit various effector proteins. The function and regulation of Rab GTPases will be 

discussed in detail in subsequent sections. Like Rabs, phosphoinositides reside within the 

limiting membranes of vesicles where they have diverse functions in the regulation of 

compartmental identity and recruitment of specific proteins (Di Paolo and De Camilli, 

2006). Phosphorylation and dephosphorylation of hydroxyl groups at the 3, 4, or 5 

position of the inositol ring generates distinct species that are recognized by protein 

motifs and localize specifically to certain vesicular populations. The head group of 

phosphoinositides binds to cytosolic proteins or the cytosolic face of membrane proteins; 

thus they can recruit proteins to specific membranes or organize resident membrane-

bound proteins. For example, early endosomes predominantly contain 

phosphatidylinositol 3-phosphate (PI(3)P), which is produced by the class III 

phosphoinositide 3-kinase (PI3K) Vps34 and is selectively bound by the FYVE and PX 

domains present in early-endosomal proteins. In contrast, late endosomes predominantly 

contain PI(3,5)P, which is largely generated from PI(3)P by Fab1p/PIKfyve kinase (Di 

Paolo and De Camilli, 2006). Phosphoinositide-protein interactions are generally of low 

affinity, but stable recruitment of proteins to specific membranes can be achieved through 

cooperativity of phosphoinositide binding and additional binding events with other 

proteins or lipids. In this way, phosphoinositide binding provides a mechanism of 

coincidence detection wherein proteins are recruited to specific membranes by the 
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cooperative action of multiple signals. Phosphoinositides and Rabs together coordinate 

vesicular trafficking and engage in reciprocal regulation of each other. Phosphoinositides 

can assist in the recruitment of Rabs to membranes and in the localization of Rab 

regulatory proteins, and proteins recruited by Rabs can lead to interconversion of 

phosphoinositides. Such dual regulation places Rab-phosphoinositide dynamics at the 

center of the specification of organelle identity and vesicular transport.  

 

The endo-lysosomal pathway 

The endosomal pathway consists of vesicles that are derived by various mechanisms of 

endocytosis, a process which involves invagination and subsequent fission of regions of 

the plasma membrane. Endosomes arise from diverse entry points such as clathrin- or 

caveolin-mediated endocytosis, macropinocytosis, and phagocytosis (Conner and 

Schmid, 2003). Endosomes then undergo a maturation and trafficking process with 

multiple potential outcomes (Fig. 1.1). Endosomes can undergo homotypic fusion and 

assimilation into the tubular endosome network, or they can be directed to a recycling 

endosome compartment for return to the plasma membrane. Portions of the tubular 

endosomal network can also bud and undergo maturation to late endosomes, which 

directs them to a lysosomal fate. The maturation of late endosomes involves acidification 

by delivery of vacuolar proton pump ATPases and fusion with other late endosomes. In 

some cases, early and late endosomes form multivesicular bodies (MVBs) which contain 

vesicles within the limiting membrane of the endosome whose contents are topologically 

equivalent to the cytosol. The formation of MVBs involves the stepwise recruitment of 

Hrs and three ESCRT (endosomal sorting complex required for transport) complexes  
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Figure 1.1. Intersection of the endocytic and autophagic pathways. Rab5 regulates 
endocytosis and early endosome maturation, whereas Rab7 regulates late endosome, 
lysosome, and autophagosome dynamics. Early endosomes can be recycled to the cell 
surface or mature into late endosomes, which can then form MVBs. The endocytic and 
autophagic pathways culminate in fusion with lysosomes where vesicle contents are 
degraded. 
 

which regulate the invagination and budding of the internalized vesicles (Raiborg et al., 

2003). Following maturation, late endosomes and MVBs are targeted to or mature into 

lysosomes, highly acidic vesicles that degrade their lumenal contents. Lysosomes are 

generated by the delivery of hydrolases to late endosomes by the mannose-6 phosphate 

receptor (MPR), and their acidic pH (~4.6-5.0) is maintained by vacuolar proton pump 

ATPases (Luzio et al., 2007). Lysosomes also fuse with vesicles in the autophagic 

pathway, a pathway which involves the sequestration of portions of cytosol into a double-

membrane structure. Thus, the lysosome marks a point of intersection for the endocytic 

and autophagic pathways and serves as the final common degradative compartment for 

both pathways.  
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The autophagy-lysosomal pathway 

The autophagy-lysosomal pathway is a relatively non-selective, bulk degradation process 

wherein long-lived proteins and organelles are delivered for lysosomal degradation 

through multiple pathways. In contrast, short-lived and misfolded proteins are degraded 

by the other major degradative pathway, the ubiquitin proteasome system (UPS) 

(Ciechanover et al., 1984). In the autophagy-lysosomal system, extracellular material can 

reach the lysosome through the endocytic pathway as described above, or through a 

process termed macroautophagy (hereafter referred to as autophagy). In this latter 

process, cytosolic materials are engulfed in crescent-shaped double-membrane structures 

that close to form autophagosomes which eventually fuse with lysosomes (Cuervo, 

2004). The activation of autophagosome membrane formation occurs through a ubiquitin-

like conjugation system involving various autophagy proteins (Ohsumi, 2001). One of the 

terminal steps in this pathway is the proteolytic cleavage of microtubule-associated 

protein light chain 3-I (LC3-I or atg8) to generate LC3-II which associates with 

autophagosome membranes. Autophagosomes can be monitored by the localization and 

amount of LC3-II present in a cell. In mammals, newly formed autophagosomes undergo 

a stepwise maturation process involving fusion with late endosomes and multivesicular 

bodies to form a structure termed an amphisome (Berg et al., 1998). Autolysosomes are 

formed when amphisomes ultimately fuse with lysosomes to deliver their contents for 

degradation by lysosomal hydrolases. Finally, the breakdown products from the 

autolysosome are translocated back across the lysosomal membrane for reuse in 

metabolic processes. Similar to most intracellular vesicles, autophagic vacuole 
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maturation seems to depend on the function of Rab GTPases (Gutierrez et al., 2004; Jager 

et al., 2004).  

 

Rab GTPases  

The Ras superfamily of small GTPases includes Ras, Rho, Ran, Arf, and Rab GTPases, 

which regulate diverse processes in intracellular transport, signaling, and cytoskeletal 

dynamics (Wennerberg et al., 2005). Members of the Rab (for Ras in brain) family of 

small GTPases are master regulators of vesicular trafficking, maturation, and fusion.  Rab 

GTPases function as molecular switches by cycling between active, GTP-bound states 

where they are reversibly associated with specific vesicular membranes and inactive, 

GDP-bound states in which they are predominantly cytosolic and dissociated from their 

target membranes.  

 

Nucleotide binding and specificity are determined by the five highly conserved G-loops, 

or G-boxes, of Rabs and related GTPases (Fig. 1.2). The first G-loop, which consists of 

the sequence GxxxxGK(S/T) and is often referred to as the phosphate loop or P-loop, 

makes polar contacts with the α- and β-phosphate groups of the nucleotide. GTP binding 

requires coordination of Mg++, which makes bonding contacts with the γ-phosphate group 

of GTP and a conserved threonine residue (G2) of Rab GTPases. G3 consists of the 

sequence DxxGQ which lies near the γ-phosphate group of GTP and provides a catalytic 

glutamine residue that facilitates GTP hydrolysis. Specificity for binding guanine 

nucleotides is largely conferred by the conserved G4 loop sequence NKxD, with the 

residues of this motif forming polar contacts with the guanine ring of the nucleotide. The 
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final G5 loop contains the consensus sequence SAK/L/T with the final residue directly 

participating in binding to the guanine ring (Paduch et al., 2001). 

 

Figure 1.2. Structure of the Rab GTPase Rab7. Rab GTPases contain five G-loops 
which participate in nucleotide binding. The two switch regions of Rabs change 
conformation depending on the identity of the bound nucleotide. In the GTP-bound state 
(shown above), the switch regions are capable of binding to specific effector proteins.  
 

Following membrane association and GTP binding, Rab GTPases recruit effector 

proteins that exert specific biological activities. In this way, Rab GTPases serve as 

adaptors to bring effector complexes to specific membrane compartments. Rab effector 

proteins mediate diverse cellular functions through the recruitment of proteins involved 

in vesicular trafficking, vesicle tethering and docking, homo- and heterotypic membrane 

fusion, and even the function of other Rab GTPases. Two “switch” regions of Rabs, 

designated switch I and II, are the only portions of Rabs that undergo conformational 

changes depending on the identity of the bound guanine nucleotide. Most Rab effector 

proteins specifically recognize the GTP-bound conformation of the switch regions and 

are therefore recruited only to activated Rabs. The effector-Rab GTPase binding interface 
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usually occurs between coiled-coil domains of the effector and the switch I or II region of 

the Rab. In most cases, effector binding serves to maintain the bound Rab in its active, 

GTP-bound state (Jordens et al., 2001), while some effectors seem to facilitate 

inactivation of their cognate Rabs. Although the tertiary structure of switch regions of 

Rabs are strikingly similar, effector proteins demonstrate remarkable specificity and 

minimal overlap in their binding to various Rabs. In fact, single amino acid changes to 

critical residues within the effector binding switch regions can dramatically alter affinity 

for effectors (Eathiraj et al., 2005).  

 

The most well-established function of Rab GTPases is the facilitation of vesicle fusion. 

The process of vesicle fusion can be subdivided into multiple steps: priming, tethering, 

docking, and fusion. In the priming step, soluble N-ethylmaleimide sensitive factor (NSF) 

attachment protein receptor (SNARE) proteins are activated in a process that requires 

ATP hydrolysis and NSF. Vesicle tethering is required for fusion and involves the 

formation of contacts between vesicle membranes mediated by sets of SNARE proteins 

that interact in trans via parallel helical bundles (Sudhof and Rothman, 2009). Docking 

defines a series of complex interactions that occur after tethering and prior to vesicle 

fusion. The mechanical force required for vesicle fusion can be entirely provided by 

trans-SNARE interactions in vitro (Weber et al., 1998), although multiple regulatory 

proteins such as Rabs likely control this process in vivo. Rab GTPases, including Rab7, 

generally facilitate vesicle fusion by recruiting protein complexes that are directly 

involved in steps of vesicle tethering, docking, and the final fusion event.  
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The Rab GTPase activity cycle 

For each of the more than 60 human Rabs, multiple regulatory proteins have evolved to 

modulate Rab membrane targeting and activity (Fig. 1.3). Membrane association of Rabs 

is mediated by a geranyl-geranyl group, also referred to as a prenyl group, which is added 

post-translationally to successive cysteine residues present at the extreme C-terminus. 

The addition of this lipid is coordinated by the activity of Rab geranyl-geranyl transferase 

(Rab GGT) and Rab escort protein-1 (REP-1). The C-terminal “hypervariable” region of 

Rabs is the least conserved region across members of the Rab family. This disordered 

region provides flexibility for the insertion of the geranyl-geranyl membrane anchor. 

Inactive Rabs are largely sequestered in the cytosol by Rab GDP-dissociation inhibitor 

(GDI) which recognizes GDP-bound Rabs and binds their C-terminal prenyl group 

(Sasaki et al., 1990; Rak et al., 2003). In humans, two forms of Rab GDI exist with GDI1 

being highly expressed in the central nervous system (CNS) and GDI2 being expressed 

ubiquitously. GDI proteins do not discriminate among different Rab proteins but function 

as general regulators of extraction and sequestration for all Rab GTPases. Aside from 

protecting the hydrophobic C-terminal lipids of Rabs, GDI also inhibits the dissociation 

of GDP from Rabs by inducing a conformational change that sterically blocks the 

opening to the nucleotide binding pocket (Rak et al., 2004). GDI is also important for 

delivery of inactive, GDP-bound Rabs to the appropriate membrane compartment 

(Ullrich et al., 1993; Soldati et al., 1994).  
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Figure 1.3. The Rab GTPase activity cycle. Inactive Rabs are sequestered in the cytosol 
by GDI. GDF facilitates extraction from GDI and membrane insertion. Membrane-bound 
Rabs are then activated by GEF proteins which catalyze GDP release and subsequent 
GTP binding. Hydrolysis of GTP is facilitated by GAP proteins and leads to Rab 
inactivation and membrane extraction by GDI.  
 

Activation of Rabs requires extraction from Rab GDI and insertion into membranes. 

Targeting of Rabs to the proper vesicular compartment is multifactorial and complex. 

The hypervariable C-terminal regions of Rabs may provide some specificity to Rab 

targeting, as substitution of hypervariable regions on different Rabs can partially redirect 

Rabs to the vesicle corresponding to the donor C-terminal protein (Chavrier et al., 1991). 

However, more extensive analysis of hybrid proteins suggests that the hypervariable 

domain is insufficient for membrane targeting and that additional determinants seem to 

work combinatorially (Ali et al., 2004). Extraction from GDI is often facilitated by GDI 

displacement factors (GDFs) which reside on vesicular membranes and catalyze the 

release of Rabs from GDI (Dirac-Svejstrup et al., 1997). Additional specificity for 

membrane targeting is likely mediated by the local concentration of regulatory proteins 
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such as GDF and guanine nucleotide exchange factors (GEFs) within specific target 

membranes.  

 

Once Rab GTPases are inserted into the membrane in their GDP-bound, inactive form, 

their activation requires the exchange of GTP for GDP. Spontaneous GDP dissociation 

rates for Rabs are typically very low making GDP dissociation the rate-limiting step in 

Rab activation. To facilitate GTP exchange, GEFs bind the GDP-bound conformation of 

Rabs and lead to structural alterations to the nucleotide binding pocket that facilitate GDP 

release (Itzen et al., 2006; Delprato and Lambright, 2007; Dong et al., 2007; Sato et al., 

2007; Cai et al., 2008). Evidence suggests that multiple individual GEFs can regulate the 

same Rab protein, perhaps imparting activation on a subset of vesicular populations or for 

specific cellular functions. For example, Rabex-5, ALS2 (Alsin), and RIN family 

members all exhibit GEF activity towards Rab5, and specificity of action of each GEF is 

further regulated by distinct protein complexes (Esters et al., 2001; Tall et al., 2001; 

Kajiho et al., 2003; Otomo et al., 2003). In general, structures determined from Rab 

proteins co-crystallized with GEF proteins demonstrate reorganization of switch I away 

from the bound nucleotide, thus opening the nucleotide binding pocket and specifically 

disrupting an edge-to-face aromatic interaction between the guanine ring and a conserved 

aromatic residue in switch I (Delprato and Lambright, 2007; Dong et al., 2007; Sato et 

al., 2007; Cai et al., 2008). In the case of the Rab GTPase Sec4p, which plays a role in 

exocytosis, the structural details of GEF-catalyzed GDP release have been described in 

detail. The GEF Sec2p adopts a coiled coil structure and binds the switch I and switch II 

regions of Sec4p. These contacts induce dramatic reorganization of switch I and 
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specifically two residues of switch I, F45 and P47, which make contacts with the guanine 

base and ribose, respectively (Dong et al., 2007; Sato et al., 2007). The Sec2p-induced 

structural rearrangements essentially open the nucleotide binding pocket and decrease 

affinity for GDP. After GDP release, the P-loop shifts to reside within the region 

normally occupied by the nucleotide, thus blocking GDP rebinding (Dong et al., 2007). 

Similar rearrangements to switch I and the P-loop are observed in the complex of Rab21 

and the GEF Rabex-5 and in the complex of Ypt1 and the GEF TRAPP (Delprato and 

Lambright, 2007; Cai et al., 2008), and these mechanisms for GDP release are quite 

similar to those described for Rho family GTPases (Worthylake et al., 2000). Presently, 

there is no structural information regarding the mechanism by which GTP binding is 

facilitated following GDP release. Since intracellular concentrations of GTP are generally 

10-fold higher than GDP (500 μM vs. 50 μM), a preference for GTP binding following 

GDP release may be favored simply based on increased relative abundance of GTP in 

vivo (Traut, 1994).   

 

Termination of Rab function is mediated through hydrolysis of the γ-phosphate of GTP to 

yield GDP, which allows extraction of GDP-bound Rabs by GDI (Ullrich et al., 1993).  

Intrinsic GTP hydrolysis rates of Rabs are characteristically low, and efficient hydrolysis 

generally requires the activity of a GTPase activating protein (GAP). GAPs accelerate the 

hydrolysis reaction by catalyzing the nucleophilic attack of a water molecule on the γ-

phosphate of GTP. Like other effector proteins, GAPs specifically recognize the GTP-

bound conformation of Rabs. GAP proteins typically display strong preference for 

specific Rabs, although promiscuity has been observed in cell-free conditions (Pan et al., 
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2006). While some GAPs have been paired with specific Rab GTPases (Haas et al., 

2005), the identities of many Rab-specific GAPs are unknown. In addition, it seems that 

each Rab may bind to a host of different GAPs that might each contribute to the 

inactivation of a subset of functions in specific compartments (Zhang et al., 2005; 

Seaman et al., 2009). Known GAPs for mammalian Rabs belong to multiple families, and 

the process of defining specific GAP-Rab pairs is only just beginning. Most known Rab 

GAPs belong to the Tre-2/Bub2/Cdc16 (TBC) domain containing family of proteins 

(Lanzetti et al., 2000; Pei et al., 2002), although non-TBC GAPs have been described 

(Fukui et al., 1997; Xiao et al., 1997). Although the glutamine residue of the DxxGQ 

(Q67 in Rab7) is generally considered to be catalytic in GTP hydrolysis, recent evidence 

suggests that this might not be the case in Rab GTPases that bind TBC family members. 

Instead, the conserved glutamine residue contributes to stabilization of the Rab-GAP 

interface, and the GAP provides arginine and glutamine fingers that catalyze GTP 

hydrolysis (Pan et al., 2006). While this mechanism has been verified in Ypt7, the yeast 

homolog of Rab7, it is currently unclear whether hydrolysis in mammalian forms of Rab7 

also occurs in this fashion.   

 

Notably, most Rab GTPases have intrinsically low rates of GDP dissociation and GTP 

hydrolysis. Because of these properties, both the spontaneous rates of activation and 

inactivation of Rab GTPases are usually quite slow and allow the Rab activity cycle to be 

under positive and negative modulatory influences of GEF and GAP proteins. As such, 

recruitment to target membranes and subsequent activation and inactivation are tightly 

regulated processes that occur under the control of multiple accessory proteins such as 
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GDI, GDFs, GEFs, and GAPs. The necessity of such tight regulation is underscored by 

the demonstration that mutations to activity cycle regulatory proteins (e.g. GDI, REP-1, 

GEFs)  have been found to cause multiple human diseases (D'Adamo et al., 1998; 

Hadano et al., 2001; Yang et al., 2001).  

 

Rab7 and vesicular trafficking 

Rab7 is a ubiquitously expressed protein that plays a vital role in the regulation of the 

trafficking, maturation, and fusion of endocytic and autophagic vesicles. Rab7 localizes 

primarily to acidic, pre-degradative, and degradative organelles such as late endosomes, 

lysosomes, MVBs, phagosomes, autophagosomes, and autophagolysosomes (Feng et al., 

1995; Vitelli et al., 1997; Bucci et al., 2000; Harrison et al., 2003). Rab7 specifically 

controls the transit of early endosomes into the late-endosomal/lysosomal system and 

subsequent degradation of cargoes associated with target vesicles. As such, Rab7 activity 

regulates the lysosome-mediated degradation of endocytic cargoes such as activated EGF 

receptors, internalized cholesterol, and neurotrophic factor receptors such as TrkA (Bucci 

et al., 2000; Saxena et al., 2005; Ceresa and Bahr, 2006). In general, loss of Rab7 activity 

leads to a failure in the maintenance of the juxtanuclear lysosomal compartment and 

dispersal of Rab7-related organelles (Feng et al., 1995; Bucci et al., 2000). Decreased 

Rab7 activity also slows the degradation of internalized cargoes such as cholesterol and 

EGF receptors (Bucci et al., 2000). Conversely, augmented Rab7 activity through 

overexpression of a constitutively active, GTPase deficient mutant (Q67L) leads to more 

rapid turnover of endocytosed molecules and enhanced juxtanuclear clustering of late 

endosomes and lysosomes (Bucci et al., 2000; Cantalupo et al., 2001).  
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In addition to its role in regulation of the endo-lysosomal system, Rab7 also regulates the 

autophagic pathway. The fusion of autophagic vacuoles with lysosomes requires Rab7 

(Gutierrez et al., 2004; Jager et al., 2004; Kimura et al., 2007), although it is unclear 

whether autophagic vacuole trafficking likewise depends on Rab7 function. Rab7 is not 

required for MVB formation, but is necessary for their proper maturation, fusion with 

lysosomes, and subsequent lysosomal degradation (Vanlandingham and Ceresa, 2009). 

Thus, Rab7 is critical in the trafficking and terminal maturation of vesicles in the late-

endosomal, lysosomal, and autophagic pathways.  

 

Similar to other Rabs, Rab7 functions by recruiting specific effector proteins to 

membranes when it is in the active, GTP-bound state. Known Rab7 effectors include Rab 

interacting lysosomal protein (RILP), Oxysterol-binding protein-related protein 1L 

(ORP1L), the homotypic vacuole fusion and vacuole protein sorting (HOPS) complex, 

Rabring7, the proteasomal subunit XAPC7, and components of the retromer complex 

(Seals et al., 2000; Cantalupo et al., 2001; Mizuno et al., 2003; Dong et al., 2004; 

Johansson et al., 2005; Rojas et al., 2008). These effectors have diverse roles in the 

regulation of Rab7-dependent processes such as recruitment of motor proteins and vesicle 

fusion machinery.  

 

RILP and ORP1L cooperate to regulate the maturation and retrograde microtubule 

transport of late endosomes and lysosomes (Cantalupo et al., 2001; Jordens et al., 2001; 

Johansson et al., 2005; Johansson et al., 2007). The coiled-coil region of RILP forms a 
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homodimer that can interact with two separate Rab7-GTP molecules (Wu et al., 2005).  

RILP then recruits cytoplasmic dynein by direct interaction with the extreme C-terminus 

of the p150glued subunit of dynactin, thereby acting as a linker between dynein motors and 

Rab7-positive late endosomes and lysosomes (Johansson et al., 2007). Overexpression of 

a dynactin-binding-deficient RILP causes peripheral redistribution of lysosomes from 

their usual perinuclear location (Bucci et al., 2000; Jordens et al., 2001). Conversely, 

overexpression of wild type RILP leads to clustering of lysosomes to a single 

juxtanuclear region (Cantalupo et al., 2001; Jordens et al., 2001). In addition to RILP, 

ORP1L is required for efficient retrograde trafficking of Rab7-positive vesicles. RILP 

and ORP1L bind noncompetitively to Rab7, and ORP1L facilitates the transfer of the 

RILP-dynein motor complex to the membrane-bound adaptor βIII spectrin, thereby 

ensuring stable docking of the dynein motor complex and efficient retrograde transport 

(Johansson et al., 2007).  

 

The HOPS complex is another well-characterized Rab7 effector that mediates the 

biological activity of Rab7. The molecular details of HOPS assembly and function have 

been largely elucidated in yeast using the Rab7 homolog Ypt7 and by examining the 

formation and function of the vacuole, the yeast equivalent of the lysosome. The HOPS 

complex includes the class C vacuolar protein sorting (Vps) proteins Vps11, 16, 18, 33, 

39, and 41, which are conserved from yeast to humans (Raymond et al., 1992; Seals et 

al., 2000). Loss of function of any of these proteins leads to disruption of vacuole 

formation and improper secretion of the normally vacuole-targeted protease 

carboxypeptidase Y (Raymond et al., 1992). The interaction of the HOPS complex with 
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Ypt7 is complex and illustrates the elegant coordination of Rab GTPase activation and 

effector recruitment. Through different subunits, HOPS can bind both the GDP-bound 

and GTP-bound forms of Ypt7 (Eitzen et al., 2000; Wurmser et al., 2000; Brett et al., 

2008). The Vps39 subunit of the HOPS complex binds GDP-bound Ypt7 and acts as a 

GEF to facilitate GDP release and subsequent GTP binding to Ypt7 (Wurmser et al., 

2000). Interestingly, the early endosomal Rab GTPase Rab5 also binds the HOPS subunit 

Vps11, which may localize the HOPS complex to early endosomes and facilitate the 

interaction of Ypt7 and Vps39 (Rink et al., 2005). In this way, Rab5 might coordinate the 

recruitment of Rab7 to vesicles and the subsequent transition from early endosomes to 

late endosomes. Once activated by Vps39 GEF activity, Ypt7 can interact with HOPS 

and facilitate more stable recruitment of HOPS to target membranes. Thus, through 

different protein subunits, HOPS both participates in the activation of Ypt7 on target 

membranes and is then itself recruited by active, GTP-bound Ypt7, creating a feed 

forward loop that serves to concentrate Ypt7 and HOPS together onto specific membrane 

domains. The activity of membrane-associated HOPS is further regulated by post-

translational modifications such as the phosphorylation state of various HOPS subunits. 

In particular, the vacuolar kinase Yck3p phosphorylates the HOPS subunit Vps41 and 

negatively regulates HOPS membrane binding (Brett et al., 2008; Cabrera et al., 2009). 

However, the phosphorylation and inactivation of Vps41 is inhibited by active Ypt7 

(Brett et al., 2008). Thus, Ypt7 plays a dual role in HOPS membrane recruitment through 

direct binding and through opposing the phosphorylation-dependent inactivation of 

HOPS. Once recruited to membranes, Ypt7 and HOPS coordinate the recruitment of 

multiple vacuolar SNAREs that facilitate vesicle fusion by tethering donor and acceptor 
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vesicles together in close proximity (Stroupe et al., 2006). While many of the details of 

Ypt7 and HOPS functions in vesicle fusion have been elucidated in yeast, it remains to be 

seen whether the functions and regulatory mechanisms of Rab7 and HOPS are conserved 

in higher organisms. 

 

The mammalian retromer complex is a recently discovered Rab7 effector complex whose 

function requires Rab7 activity (Rojas et al., 2008; Seaman et al., 2009). The retromer is 

a multiprotein complex that functions to retrieve transmembrane proteins, such as the 

MPR, from late endosomes and deliver them to the trans-Golgi network (Seaman et al., 

1998). Retromer is composed of two subcomplexes: a dimer of sorting nexins, and a 

heterotrimer consisting of Vps26, Vps29, and Vps35. Active, GTP-bound Rab7 binds 

directly to Vps35 and thereby recruits the retromer complex to late endosome 

compartments (Rojas et al., 2008). Impairment of Rab7 activity leads to dissociation of 

retromer from late-endosomal membranes, disruption of late endosome-Golgi trafficking, 

and inappropriate secretion of lysosomal hydrolases (Rojas et al., 2008; Seaman et al., 

2009). Thus, Rab7 seems to play a critical role in retromer membrane recruitment and in 

the sorting of lysosomal enzymes.  

 

Another Rab7-specific effector is the E3 ubiquitin ligase Rabring7, which regulates 

transit of EGFR through the late-endosomal/lysosomal pathway (Mizuno et al., 2003). As 

receptor internalization and the formation of MVBs depend on monoubiquitination, 

Rabring7 might serve to facilitate these processes through catalysis of ubiquitin 

conjugation. However, additional work is needed to determine the function of Rab7-
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Rabring7 interactions. 

 

In addition to the identified effector proteins for active Rab7, some of the proteins that 

regulate the activity cycle of Rab7 have been identified and characterized. Prenylated 

Rab acceptor1 (PRA1), the human homolog of Ypt-interacting protein-3 (Yip3) in yeast, 

is likely to be the GDF that mediates the extraction of Rab7 from GDI (Sivars et al., 

2003). PRA1 contains multiple transmembrane domains and is localized to late 

endosomes and the Golgi network (Sivars et al., 2003). In yeast, Vps39 clearly has GEF 

activity toward Ypt7, the yeast Rab7 homolog (Wurmser et al., 2000). However, 

evidence of conserved function in mammals is lacking. Knockdown of Vam6, the 

mammalian homolog of Vps39, was shown to inhibit the maturation of early endosomes 

into late endosomes (Rink et al., 2005), but another study failed to find a functional or 

physical interaction between Rab7 and Vam6 (Caplan et al., 2001). To date, no other 

putative GEF for Rab7 has been identified, and no evidence of Vam6 GEF activity 

towards Rab7 has been documented in mammalian systems. However, Vam6 does appear 

to play a role in late endosome and lysosome fusion, as overexpression leads to 

prominent vesicular clustering (Caplan et al., 2001). Clearly, further characterization is 

needed to elucidate the role Vam6 in Rab7-depedent pathways.  

 

In yeast, Ypt7 GTPase activity is stimulated roughly 40-fold by the GAP Gyp7 (Vollmer 

et al., 1999). Two TBC domain family members have been proposed as putative GAPs 

for mammalian Rab7 (Zhang et al., 2005; Seaman et al., 2009). TBC1D15, a putative 

mammalian homolog of Gyp7, shows a partial vesicular localization and has Rab7 GAP 
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activity in vitro (Zhang et al., 2005). However, a functional role in the regulation of 

Rab7-dependent processes for TBC1D15 has not been shown. TBC1D5 seems to be 

specifically recruited by the retromer complex and regulates Rab7 activity chiefly in the 

endosome-to-Golgi sorting pathway (Seaman et al., 2009). A broader role for TBC1D5 in 

Rab7 biology has not been demonstrated. Further study to define GEF and GAP proteins 

for Rab7 will likely provide useful tools for further characterization of the diverse 

functions of Rab7.  

 

Signaling endosomes and axonal transport 

In addition to a general role in vesicle trafficking and fusion, Rab7 has been implicated in 

the regulation of long-range vesicular trafficking in neurons (Deinhardt et al., 2006). In 

particular, Rab7 may regulate the transport and signaling of neurotrophic factor receptors 

within axons. Neurotrophins are signaling molecules that are secreted from neuronal 

target tissues and bind with high affinity to specific receptor tyrosine kinases (Trks). 

Mammalian neurotrophin receptors include nerve growth factor (NGF), brain-derived 

neurotrophic factor (BDNF), and neurotrophins 3 and 4/5 (NT3, NT4/5). Receptors for 

these factors include TrkA, which predominantly binds NGF, TrkB, which binds BDNF 

and NT4/5, and TrkC, which binds NT3 (Huang and Reichardt, 2001). TrkA is 

specifically expressed in sensory and sympathetic neurons, making NGF-TrkA signaling 

critical for the development and survival of these neuron subtypes. Once bound to their 

receptors, neurotrophins induce dimerization, endocytosis, and autophosphorylation of 

their cognate receptors (Zweifel et al., 2005). The activated, phosphorylated receptors 

then initiate pro-survival signaling cascades in the PI3K-Akt and Mitogen-activated 
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protein kinase-extracellular signal-related kinase (MAPK-ERK) pathways (Zweifel et al., 

2005). However, in many neurons, especially peripheral neurons, there is considerable 

distance between the distal axonal process and the cell body where survival signals must 

be transmitted. In cell culture paradigms, the requirement for retrograde trafficking of 

neurotrophin-receptor complexes has been elegantly documented using culture conditions 

in which the cell body of sympathetic neurons is isolated from the distal processes 

(Campenot, 1977). In these cultures, NGF applied exclusively to the distal process can 

provide trophic support and promote survival, but survival requires dynein-mediated 

axonal trafficking along microtubules (Heerssen et al., 2004). Transmission of target-

derived trophic support in these cases requires that the receptor-ligand complex be 

transported from the axon terminal to the cell body, as simple diffusion of the signal is 

insufficient. In addition, the complex must be transported intact, and its kinase activity 

must be maintained in order to promote survival (Ye et al., 2003). The process of 

transporting activated receptors is accomplished primarily by the “signaling endosome,” 

a specialized endocytic vesicle that harbors ligand-bound receptors within its membrane. 

Signaling endosome formation requires endocytosis of ligand-bound receptors at the 

plasma membrane and subsequent sorting of the receptors into carrier vesicles (Ye et al., 

2003). Once endocytosed to form signaling endosomes, the activated neurotrophin 

receptor is accessible to the cytosol and acts to phosphorylate downstream signaling 

proteins that generate survival signals (Zweifel et al., 2005). However, for trophic support 

to reach the nucleus and influence the transcription of pro-survival genes, the signaling 

endosome must be retrogradely transported over great distances using the microtubule 

network.  
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While the details of signaling endosome biology have been the focus of much research 

over recent decades, the exact nature and properties of the signaling endosome are still 

under intense debate. Isolated NGF-TrkA complexes have been found to reside in 

vesicles positive for both early endosomal antigen 1 (EEA1) and Rab5 suggesting that at 

least some signaling endosomes have properties of early endosomes (Delcroix et al., 

2003). Furthermore, experiments in cultured rat pheochromocytoma (PC12) cells, which 

depend on NGF-TrkA signaling for survival, have demonstrated that NGF, TrkA, and 

Rab5 colocalize to the same axonal vesicles (Cui et al., 2007). However, experiments 

using primary mouse motor and sensory neurons suggest that Rab5-positive vesicles only 

undergo short-range movements and that Rab5 may be responsible for early steps in 

signaling endosome biogenesis and not long-range trafficking. In these experiments, 

Rab7 seems to be the primary protein localized to vesicles undergoing long-range axonal 

trafficking (Deinhardt et al., 2006). Further supporting a role for Rab7, a dominant-

negative form of Rab7 inhibits trafficking of signaling endosomes (Deinhardt et al., 

2006). In addition to a potential role in axonal trafficking, Rab7 is also likely to play a 

role in the degradation of neurotrophic factor receptors. Indeed, disruption of Rab7 

activity sensitizes PC12 cells to low-dose NGF by delaying degradation of activated 

TrkA receptors (Saxena et al., 2005). Despite these conflicting reports of the role of Rab5 

and Rab7, it seems likely that both play some role in signaling endosome biogenesis and 

transport. Additional debate concerns whether signaling endosomes display features of 

MVBs. Electron microscopy demonstrates that immunolabeled NGF partially colocalizes 

to MVBs within sympathetic neurons (Sandow et al., 2000), although a subsequent study 



26 

 

reported that quantum dot-labeled NGF resides in vesicles without intralumenal vesicles 

(Cui et al., 2007). If neurotrophin-receptor complexes are found in internal vesicles of 

MVBs, an important outstanding question would be how the activated receptors could 

initiate downstream signaling events from within the lumen of MVBs.  

 

While the body of data available at this point does not provide definite characterization of 

the signaling endosome, it is clear that there is heterogeneity among vesicles that contain 

activated neurotrophin factor receptors (Cui et al., 2007). Such heterogeneity would 

account for the discrepancies in data across different systems and experimental 

paradigms. Even in the absence of a clear consensus on the nature of the signaling 

endosome, data suggest that signaling endosomes variably display features of early and 

late endosomes en route to the cell body where they are eventually targeted for 

degradation in lysosomes (Claude et al., 1982). It will be important for future work to 

dissect how differences in signaling endosome properties affect their trafficking and 

signaling and how these differences relate to the recruitment and activity of Rab 

GTPases.  

 

Retrograde axonal trafficking and disease 

Several lines of evidence have highlighted retrograde microtubule transport machinery as 

critical for maintaining neuronal homeostasis and survival. In mice, two mutant strains 

that display progressive degenerative motor symptoms (Legs at odd angles (Loa) and 

Cramping 1 (Cra1)) were found to have point mutations in dynein heavy chain 

(Hafezparast et al., 2003). While these mutants were originally reported to display 
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selective loss of lower motor neurons, further pathological examination demonstrated 

specific loss of proprioceptive sensory neurons and relative sparing of motor neurons 

(Ilieva et al., 2008; Dupuis et al., 2009). A third mouse strain with a mutation in dynein 

(Sprawling (Swl)) also displays a sensory neuropathy due to loss of proprioceptive 

neurons within the dorsal root ganglion and subsequent muscle spindle loss (Chen et al., 

2007). Together, the characterization of these mutants suggests that dynein mutations 

lead to selective degeneration of sensory neurons and that motor symptoms are a result of 

muscle spindle deficiency, not motor neuron loss. However, there is evidence to suggest 

that motor neurons are also sensitive to defects in retrograde trafficking: targeted 

disruption of microtubule transport specifically within motor neurons causes neuron loss 

and a late-onset neurodegenerative phenotype (LaMonte et al., 2002). Furthermore, the 

most compelling evidence for the involvement of dynein in motor neuron survival comes 

from the identification of a mutation in the p150glued subunit of dynactin (G59S) that 

leads to a human lower motor neuron degenerative disease (distal spinobulbar muscular 

atrophy) (Puls et al., 2003). Mice expressing the G59S mutant display age-related 

degeneration of motor neurons, altered morphology of lysosomes, abnormal 

accumulations of vesicles within axons and terminals, and dynactin-positive inclusions 

(Chevalier-Larsen et al., 2008; Laird et al., 2008). However, the G59S mutant protein 

shows only minimal defects in microtubule transport in cell culture (Levy et al., 2006), 

and no observable transport defect in vivo (Chevalier-Larsen et al., 2008). Thus, further 

elucidation of the functional consequences of the G59S mutation for vesicular trafficking 

will be required to understand the pathogenesis of this disease. 
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While it is clear from human and mouse genetic studies that disruption of dynein function 

can lead to degeneration of sensory or motor neurons, the mechanisms underlying such 

degeneration remain unclear. The involvement of dynein motors in multiple cellular 

processes raises numerous possibilities including disrupted ER-Golgi transport, 

mislocalization of mRNA, and impairment of the trafficking and function of protein 

degradation machinery. However, a prevailing hypothesis is that dysfunction of 

cytoplasmic dynein may compromise the efficient retrograde transport of signaling 

endosomes and attenuate trophic support in the soma. This hypothesis holds particular 

appeal given that mutations affecting transport often lead to a pattern of disease that is 

restricted to neurons with the longest axonal processes which are presumably more 

sensitive to subtle trafficking defects. As axonal transport of signaling endosomes 

proceeds at ~1-3 μm/s, transport between the distal process and the soma in the longest 

axons of the human body would be expected to take ~4-10 days (Ure and Campenot, 

1997; Cui et al., 2007). Thus, it is not surprising that such long neurons display a unique 

sensitivity to disruption of axonal transport pathways that could influence signaling 

endosome trafficking. Potentially related to this idea is the discovery that mutations in the 

axonal trafficking protein Rab7 cause a form of Charcot-Marie-Tooth (CMT) disease 

characterized by length-dependent axonal degeneration in motor and sensory neurons 

(Verhoeven et al., 2003). Although it has not been formally tested, it is tempting to 

speculate that the pathogenesis of this form of CMT may be related to defects in the 

axonal trafficking of Rab7-related organelles such as signaling endosomes. 

 

Charcot-Marie-Tooth disease 
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Charcot-Marie-Tooth disease, alternatively known as hereditary sensory and motor 

neuropathy (HSMN), is a broad clinical entity composed of a heterogeneous group of 

inherited forms of peripheral neuropathy (Barisic et al., 2008). CMT represents the most 

common form of hereditary peripheral neuropathy with a prevalence of approximately 1 

in 2500 (Zuchner and Vance, 2006). CMT diseases are generally autosomal dominant 

genetic diseases with complete penetrance. Patients with CMT present with length-

dependent sensory, motor, or autonomic dysfunction either alone or in combination 

(Barisic et al., 2008). Life expectancy is not affected, although patients can develop 

significant difficulty with ambulation. No effective treatments exist to alter the course of 

the disease, making treatment primarily supportive (Young and Suter, 2001). There are 

numerous subtypes of CMT that are recognized, and the associated clinical picture for 

each subtype is highly variable. To date, over 30 causative genes have been identified in 

various forms of CMT, and the list continues to grow rapidly. Depending on the form of 

CMT, patients can experience a range of symptoms including muscle wasting, weakness, 

sensory loss, parasthesias, decreased deep tendon reflexes, and deformities 

(Kuhlenbaumer et al., 2002). Symptoms occur in a symmetric distribution with the most 

distally innervated regions of the feet affected first. The time course and pattern of 

symptoms is highly correlated with axonal length; the longest axons in the body are 

affected first and involvement then spreads to shorter axons over time. Thus, disease 

progresses from distal to proximal regions of the lower limbs with the hands variably 

becoming affected later in the course of the disease. Differential loss of antagonistic 

muscles of the feet often leads to foot deformities such as pes cavus and hammer toes 

(Barisic et al., 2008). In some cases, severe sensory loss can lead to ulcero-mutilating 
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complications. Wasting of the muscles of the lower limbs is also prominent in many 

cases and can result in so called “stork leg” deformity from atrophy of peroneal muscles.  

 

Two major subtypes of CMT, designated CMT1 and CMT2, are recognized and 

distinguished by the primary pathology underlying symptoms. CMT1, which makes up a 

majority of cases of CMT, is characterized by prominent demyelination and is most 

commonly caused by mutations in myelin-specific proteins expressed in Schwann cells 

(Suter and Scherer, 2003). Electrophysiological examination demonstrates decreased 

nerve conduction velocities reflecting the loss of myelin in affected neurons. Repeated 

demyelination and remyelination events lead to characteristic onion bulb formation seen 

in pathological sections of affected nerves (Suter and Scherer, 2003). In some cases, this 

process leads to prominent enlargement of axonal processes that can be palpated on 

physical exam. Mutations in the gene coding for peripheral myelin protein 22 (PMP22) 

cause CMT1A, which accounts for the majority of cases of CMT1 (~60-90%) and 

roughly half of all cases of CMT (Valentijn et al., 1992a; Valentijn et al., 1992b). Other 

causative proteins in CMT1 include myelin protein zero (MPZ) (Hayasaka et al., 1993) 

which is the most abundant protein in peripheral myelin, small integral membrane protein 

of lysosome-late endosome (SIMPLE) (Street et al., 2003), the gap junction protein 

connexin 32 (GJB1) (Bergoffen et al., 1993), the myelin gene transcription factor early 

growth response element 2 (EGR2) (Warner et al., 1998), and neurofilament light chain 

(NEFL) (Jordanova et al., 2003).  
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In CMT2, the primary pathological feature is axonal degeneration with relative sparing of 

myelin sheaths. As a result, nerve conduction velocities are generally normal or only 

slightly reduced whereas compound action potential amplitudes are more markedly 

reduced. While genetic mutations that cause CMT2 affect a variety of cellular processes, 

defects in mitochondrial physiology, chaperone activity, and axonal transport pathways 

are most commonly implicated (Zuchner and Vance, 2006). Mutations in mitofusin 2 

(MFN2), a GTPase involved in mitochondrial fusion, cause CMT2A and account for 

roughly 20% of all cases of CMT2 (Zuchner et al., 2004; Zuchner and Vance, 2006). 

Other causative proteins in forms of CMT2 include the small heat shock proteins HSP22 

(Tang et al., 2005) and HSP27 (Evgrafov et al., 2004), NEFL (Mersiyanova et al., 2000), 

and the small GTPase Rab7 (Verhoeven et al., 2003). A form of dominant intermediate 

CMT, so-called for its features of both axonal degeneration and demyelination, is caused 

by mutations in the gene encoding dynamin 2, a GTPase which regulates membrane 

fission events (Zuchner et al., 2005).  

 

CMT is notable for marked phenotypic and genetic heterogeneity; different mutations in 

the same gene can lead to markedly different clinical phenotypes. For example, genetic 

studies have demonstrated that different mutations in the same gene can sometimes cause 

either CMT1 or CMT2. This phenomenon is demonstrated by NEFL, where different 

mutations cause either the demyelinating disease CMT1F or the axonal disease CMT2E 

(Mersiyanova et al., 2000; Jordanova et al., 2003). Similarly, more than 100 mutation in 

MPZ have been identified, and depending on the specific mutation, patients can present 

with demyelination (CMT1B) (Hayasaka et al., 1993) or axonal degeneration (CMT2I 
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(Marrosu et al., 1998) or CMT2J (De Jonghe et al., 1999)).  As an extreme example of 

phenotypic heterogeneity, the same recessive mutation in the gene for ganglioside-

induced differentiation-associated protein-1 (GDAP1) leads to clinically distinct 

neuropathies in different families (Nelis et al., 2002). Although in some cases 

inconsistency in classification due to mixed features of axonal degeneration and 

demyelination might contribute to the apparent genetic heterogeneity, it is quite clear that 

there can be very poor genotype-phenotype correlation in CMT.  

 

Charcot-Marie-Tooth disease type 2B 

Charcot-Marie-Tooth disease type 2B (CMT2B) is a rare form of axonal degeneration 

accounting for less than 1% of all cases of CMT. Inheritance of CMT2B is autosomal 

dominant with complete penetrance (Kwon et al., 1995). The clinical picture is notable 

for the occurrence of profound loss of distal pain sensation leading to recurrent ulcers, 

deformities, and frequent need for amputation of the lower limbs (Kwon et al., 1995; 

Auer-Grumbach et al., 2000b; Auer-Grumbach et al., 2000a). As such, CMT2B is 

alternatively classified as ulcero-mutilating neuropathy. Degeneration of motor neurons 

and prominent muscle weakness and atrophy are also associated with CMT2B (Auer-

Grumbach et al., 2000b). Muscles of the hands are much less affected than the distal 

muscles of the legs. Affected individuals usually develop symptoms in their second or 

third decade, although careful questioning can reveal onset of symptoms in childhood 

(Auer-Grumbach et al., 2000b; Auer-Grumbach et al., 2000a). Patients most commonly 

initially present with painless infections of the feet that are associated with enlarged 

inguinal lymph nodes and fevers, and many patients experience recurrent infections of 
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the feet that can be complicated by osteomyelitis and osteolysis (Auer-Grumbach et al., 

2000a). Sensory loss includes small and large fiber modalities. However, the extent of 

sensory loss across modalities varies in different pedigrees, with some families 

experiencing equal sensory loss across all modalities and others experiencing 

preservation of proprioception (Auer-Grumbach et al., 2000b; Auer-Grumbach et al., 

2000a). Patellar tendon reflexes are variable within pedigrees and range from brisk to 

diminished, but patients never display a positive Babinski sign (Auer-Grumbach et al., 

2000b; Auer-Grumbach et al., 2000a). In some cases, patients complain of excessive 

sweating on the distal limbs, but no other autonomic symptoms have been described 

(Auer-Grumbach et al., 2000b; Auer-Grumbach et al., 2000a). In electrophysiological 

studies, CMT2B patients show evidence of a primarily axonal degeneration with normal 

or only slightly reduced motor neuron conduction velocities, markedly reduced 

compound motor action potential amplitudes, absent or severely reduced action potentials 

amplitudes in sensory neurons, and electromyogram evidence of denervation in distal 

muscles (Kwon et al., 1995). Nerve biopsy studies demonstrate signs of axonal 

degeneration and regeneration and involvement of all fiber types (Auer-Grumbach et al., 

2000b). In late stages of the disease, evidence of demyelination and remyelination have 

been noted (Auer-Grumbach et al., 2000b).  

 

To date, four missense mutations in the RAB7 gene have been associated with CMT2B 

(Verhoeven et al., 2003; Houlden et al., 2004; Meggouh et al., 2006). A leucine to 

phenylalanine (L129F) and a valine to methionine substitution (V162M) have been found 

in multiple families with CMT2B (Verhoeven et al., 2003) whereas only single patients 
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with K157N (Meggouh et al., 2006) and N161T (Houlden et al., 2004) mutations have 

been described. All of the residues mutated in CMT2B are perfectly conserved from 

humans to worms, although the L129 residue demonstrates homology but not identity in 

yeast and Arabidopsis. CMT2B mutations cluster near the conserved G4 and G5 loops 

that participate in nucleotide binding (Fig. 1.4). The L129 residue immediately follows 

the NKxD G4 loop, and the K157 residue is part of the conserved SAK/L/T G5 motif. 

Residues N161 and V162 are positioned at the transition between the α4 helix and the G5 

loop.  

 

Figure 1.4. Localization of Rab7 disease mutations. CMT2B disease-causing 
mutations in Rab7 cluster near the highly conserved G4 and G5 loops which directly 
participate in guanine nucleotide binding. The mutations are localized at a distance from 
the switch regions and the conserved T22 and Q67 residues which are involved in Mg++ 
binding and GTP hydrolysis, respectively.  
 

At present it is unknown how mutations in Rab7 lead to axonal degeneration. There are 

currently no animal models of CMT2B, and pathological information regarding this 

disease is minimal. As Rab7 is a ubiquitously expressed protein that plays a general role 

in late-endosomal/lysosomal trafficking, one would expect Rab7 to be an essential 

protein for a variety of cellular processes. Indeed, overexpression of a constitutively 
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active Rab7 mutant (Q67L) leads to developmental defects in Drosophila (Entchev et al., 

2000; Wilkin et al., 2008). Given that Rab7 mutations cause a tissue-specific neuronal 

disease, the effect of these mutations on Rab7 function is likely to be subtle. Given the 

localization of mutations near G-loops, it is likely that some aspects of the nucleotide 

cycle are affected. A prior study suggested that disease mutations impair Rab7 GTPase 

activity and might lead to constitutive activation (Spinosa et al., 2008), but this result was 

enigmatic considering that none of the four known disease-causing mutations are located 

near the catalytic site of Rab7.  

 

In the present work, we undertook extensive characterization of Rab7 disease-causing 

proteins in order to elucidate the specific defects associated with CMT2B mutations. 

First, we present the high resolution crystal structure of the L129F Rab7 mutant which 

reveals changes to the nucleotide binding pocket that likely influence nucleotide binding. 

We follow up our structural studies through biochemical characterization of nucleotide 

dissociation rates and GTP hydrolysis in wild-type and disease mutant Rab7. We further 

demonstrate mutation-dependent misregulation of nucleotide exchange leading to 

excessive activation and shifts in effector binding. We use dynamic live-cell imaging to 

examine the activity cycle in Rab7 disease mutants and to demonstrate subtle changes in 

membrane association. Together, our analysis reveals mutation-dependent structural 

changes that correlate with biochemical and cellular abnormalities resulting in 

misregulation of the Rab7 activity cycle in disease mutants. We conclude that such 

misregulation forms the pathological basis of CMT2B and speculate on how such 

misregulation could lead to axonal trafficking defects and the specific pattern of axonal 
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degeneration seen in CMT2B. Finally, we present follow-up of proteomic analysis of 

Rab7 interactors that suggests that the vesicle-associated protein VapB is a novel Rab7 

effector. Also included in this dissertation is a review of the role of autophagy in 

neurodegeneration and specific contributions to a previous publication regarding HDAC6 

and autophagy-mediated degradation of misfolded disease proteins. 
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Chapter 2: Disease mutations in Rab7 result in unregulated 

nucleotide exchange and inappropriate activation 

 

All work presented in this chapter, except for structural analysis of Rab7 L129F, was 

performed by Brett McCray. Preparation of Rab7 L129F protein and crystallization of 

Rab7 L129F was performed by Brett McCray with help from Emmanuel Skordalakes 

(Wistar Institute). X-ray diffraction data sets were collected at the Brookhaven National 

Laboratory National Synchrotron Light Source. Structural determination and refinement 

were performed by Emmanuel Skordalakes. The chapter was written by Brett McCray 

and J. Paul Taylor with contributions from Emmanuel Skordalakes and is currently in 

press in Human Molecular Genetics (McCray et al., 2009).   
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Abstract 

Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation, 

and fusion by cycling between an active, GTP-bound form and an inactive, GDP-bound 

form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by 

regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly 

inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an 

unknown mechanism. We present the 2.8 Å crystal structure of GTP-bound L129F 

mutant Rab7 which reveals normal conformations of the effector binding regions and 

catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter 

GTP binding. Through extensive biochemical analysis, we demonstrate that disease-

associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit 

unregulated nucleotide exchange leading to both excessive activation and hydrolysis-

independent inactivation. Consistent with augmented activity, mutant Rab7 shows 

significantly enhanced interaction with a subset of effector proteins. In addition, dynamic 

imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. 

However, we show that increased activation of mutant Rab7 is counterbalanced by 

unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations 

are able to rescue the membrane cycling of a GTPase deficient mutant. Thus, we 

demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control 

normally imposed by regulatory proteins and cause disease not by a gain of novel toxic 

function, but by misregulation of native Rab7 activity. 

 



39 

 

Introduction 

Members of the Rab family of small GTPases such as Rab7 are master regulators of 

vesicular trafficking, maturation, and fusion.  Rab GTPases function as molecular 

switches by cycling between active, GTP-bound states in which they are reversibly 

associated with specific vesicular membranes and inactive, GDP-bound states in which 

they are predominantly cytosolic and dissociated from their target membranes. Following 

GTP binding, Rabs recruit specific effector proteins that are involved in vesicular 

transport and hetero- and homotypic fusion events. For each of the more than 60 human 

Rabs, multiple regulatory proteins have evolved to modulate Rab membrane targeting 

and activity. Inactive Rabs are largely sequestered in the cytosol by Rab GDP-

dissociation inhibitor (GDI) which recognizes GDP-bound Rabs and binds their C-

terminal geranyl geranyl group  (Sasaki et al., 1990; Rak et al., 2003). Activation of Rabs 

requires extraction from Rab GDI, insertion into membranes, and GTP exchange. To 

facilitate GTP exchange, guanine nucleotide exchange factors (GEFs) bind the GDP-

bound conformation of Rabs and lead to a structural alterations that facilitate GDP 

release and allow subsequent GTP binding  (Sato et al., 2007). Two “switch” regions of 

Rabs undergo conformational changes depending on the identity of the bound guanine 

nucleotide. Rab effector proteins specifically recognize the GTP-bound conformation of 

the switch regions and are therefore recruited only to activated Rabs. Termination of Rab 

function is mediated through hydrolysis of the γ-phosphate of GTP to yield GDP.  

GTPase activating proteins (GAPs) accelerate the hydrolysis reaction by catalyzing the 

nucleophilic attack of a water molecule on the γ-phosphate of GTP. Following 
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hydrolysis, GDP-bound Rabs are recognized and extracted from the membrane by GDI  

(Ullrich et al., 1993). Thus, GEF and GAP proteins along with GDI play a critical role in 

the regulation of the Rab activity cycle. 

 

Rab7 is a ubiquitously expressed protein that plays a vital role in the regulation of the 

trafficking, maturation, and fusion of endocytic and autophagic vesicles. Rab7 localizes 

primarily to acidic, pre-degradative, and degradative organelles such as late endosomes, 

lysosomes, multivesicular bodies, phagosomes, autophagosomes, and 

autophagolysosomes  (Feng et al., 1995; Vitelli et al., 1997; Bucci et al., 2000; Harrison 

et al., 2003). Rab7 specifically controls the transition of early endosomes into the late-

endosomal/lysosomal system and subsequent degradation of cargoes associated with 

target vesicles. As such, Rab7 activity regulates the lysosome-mediated degradation of 

endocytic cargoes such as activated EGF receptors, internalized cholesterol, and 

neurotrophic factor receptors such as TrkA  (Bucci et al., 2000; Saxena et al., 2005; 

Ceresa and Bahr, 2006). In addition, fusion of autophagic vacuoles with lysosomes 

requires Rab7 activity  (Gutierrez et al., 2004; Jager et al., 2004). Rab7 has also been 

implicated in the regulation of long-range axonal trafficking  (Deinhardt et al., 2006). 

Although there is no consensus as to the exact role of Rab7 in axonal transport, evidence 

suggests that Rab5 and Rab7 together regulate the retrograde trafficking of signaling 

endosomes that supply trophic support to neurons in the peripheral nervous system  

(Zweifel et al., 2005).  

 



41 

 

Charcot-Marie-Tooth disease comprises a heterogeneous group of inherited peripheral 

neuropathies  (Barisic et al., 2008). Patients with CMT present with length-dependent 

sensory, motor, or autonomic dysfunction either alone or in combination. Two major 

subtypes of CMT are recognized and distinguished by the primary pathology. CMT type 

1 is characterized by prominent demyelination and decreased nerve conduction velocities 

and is most commonly caused by mutations in myelin-specific proteins. In contrast, the 

primary pathological feature in CMT type 2 is axonal degeneration. While genetic 

mutations that cause CMT type 2 affect a variety of cellular processes, defects in 

mitochondrial physiology, chaperone activity, and axonal transport pathways are most 

commonly implicated  (Zuchner and Vance, 2006). To date, four missense mutations in 

Rab7 have been associated with Charcot-Marie-Tooth disease type 2B (OMIM 600882)  

(Verhoeven et al., 2003; Houlden et al., 2004; Meggouh et al., 2006). This subtype of 

CMT is distinguished by profound loss of pain sensation leading to recurrent ulcers, 

deformities, and frequent need for amputation of the lower limbs  (Auer-Grumbach et al., 

2000b). As such, CMT2B is alternatively classified as ulcero-mutilating neuropathy. 

Degeneration of motor neurons and subsequent muscle weakness are also associated with 

CMT2B  (Auer-Grumbach et al., 2000b).  

 

At present it is unknown how mutations in Rab7 lead to axonal degeneration. A prior 

study suggested that disease mutations reduce nucleotide affinity, impair Rab7 GTPase 

activity, and lead to constitutive activation  (Spinosa et al., 2008). However, the finding 

of decreased hydrolysis in disease mutants was enigmatic given that the mutations are not 

localized near the catalytic site. Therefore, we set out to precisely define the impact of 
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disease-causing mutations on Rab7 structure and function in order to illuminate the 

mechanism of pathogenesis. We determined the crystal structure of GTP-bound L129F 

mutant Rab7 at 2.8 Å resolution revealing an alteration to the nucleotide binding pocket, 

but no impact on the catalytic region of Rab7. These findings guided biochemical 

analyses in which we determined that disease-causing mutations in Rab7 do not lead to 

an intrinsic GTPase defect, but instead result in decreased nucleotide affinity and permit 

unregulated nucleotide exchange. We report that misregulation of Rab7 activation results 

in an increase in the active fraction of Rab7 and abnormal retention on target membranes. 

However, we also show that the excessive activation of Rab7 mutants is counterbalanced 

by unregulated, GTP hydrolysis-independent cycling, thus ruling out constitutive 

activation of mutant Rab7 as a pathogenic mechanism for CMT2B. We also used an 

unbiased approach to interrogate the protein interactors of wild-type and mutant forms of 

Rab7. As predicted by our structural data, the complement of interactors in wild-type and 

mutant Rab7 is qualitatively identical, although there is significantly enhanced interaction 

of mutant Rab7 with a subset of effector proteins. This study reveals a pathogenic 

mechanism wherein disease mutations uncouple Rab7 from normal spatial and temporal 

regulatory restraints resulting in toxic misregulation of Rab7 activity. 
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Materials and Methods 

Antibodies and Reagents 

The following primary antibodies were used: HA rabbit Y-11 (Santa Cruz), HA mouse 

(Covance), HA mouse M2 (Sigma-Aldrich), GFP mouse (Roche), GFP rabbit (Santa 

Cruz 8334), LAMP2 Clone H4B4 (Developmental Studies Hybridoma Bank), GDI2 

(Proteintech Group), VapB (Proteintech Group), SPG21 (Novus), Prohibitin (Proteintech 

Group), and Stomatin-like 2 (Proteintech Group). Secondary antibodies: goat anti-mouse 

IRDye 800CW, goat anti-rabbit IRDye 800CW, goat anti-mouse IRDye 680CW, goat 

anti-rabbit IRDye 680CW (LI-COR), and AlexaFluor 594 (Invitrogen). GTP and GDP 

were obtained from BioMol. All transfections were performed using Fugene6 (Roche) 

according to manufacturer protocols. 

Constructs 

Wild-type and L129F mutant HA-Rab7 in pcDNA3.1 expression vector were a generous 

gift from Vincent Timmerman. V162M, Q67L, and T22N mutations were introduced 

using the QuikChange Mutagenesis XLII kit (Stratagene). FLAG tag was substituted for 

the HA tag and subcloned into the EcoRI and XhoI sites of pcDNA3.1 by PCR. GFP-

Rab7 was obtained from Addgene and GFP-Rab7 mutants were generated by 

mutagenesis. All Rab7 epitope tags were added to the N-terminus. The following 

constructs were generous gifts from various researchers: GFP-RILP from Jacques 

Neefjes, dsRED-RILP from Zakaria Hmama, HA-RILP from Cecilia Bucci, GST-RILP 

and GST from Aimee Edinger, RFP-LC3 from Craig Thompson, and PA-GFP from 

Jennifer Lippincott-Schwartz. PA-GFP Rab7 mutants were generated by mutagenesis.  
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Primers 

Mutagenesis: 

V162M Forward: GGAGGCCATCAACATGGAGCAGGCGTTCC 

V162M Reverse: GGAACGCCTGCTCCATGTTGATGGCCTCC 

Q67L Forward: GGGACACAGCAGGACTGGAACGGTTCCAG  

Q67L Reverse: CTGGAACCGTTCCAGTCCTGCTGTGTCCC 

T22N Forward: GATTCTGGAGTCGGGAAGAACTCACTCATGAACCAGTATG  

T22N Reverse: CATACTGGTTCATGAGTGAGTTCTTCCCGACTCCAGAATC  

Addition of FLAG tag to Rab7:  

5'EcoFLAG:CGCCGAATTCATGGATTACAAGGATGACGACGATAAGACCTCTA

GGAAGAAAGTGTTGC  

3'Xho: GGTCCTCGAGTCAACAACTGCAGCTTTCTGCGGAGG 

 

Expression and purification of Rab7 L129F protein for crystallization  

The human full-length coding sequence of Rab7 was subcloned into pET-His-MBP 

vector (Novagen) using the NdeI and XhoI restriction sites. The L129F mutation was 

introduced by mutagenesis to generate His-MBP-Rab7 L129F. BL21-CodonPlus (DE3)-

RIPL Competent Cells (Stratagene) were transformed with His-MBP-Rab7 L129F and 

grown in 6L 2YT media to O.D.600 0.4-0.5. Protein expression was induced with 0.1 mM 

IPTG for 3hr at 30°C. Cells were harvested by centrifugation and the cell pellet was 

resuspended in Buffer A (5 mM Tris-HCl, 0.5 M KCl, 30 μM benzamidine, 5 mM 2-

mercaptoethanol, 10 mM imidazole, 10% glycerol, pH 7.5). Cells were lysed by 
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sonication and insoluble material was sedimented at 16,000 x g for 15 minutes. The 

supernatant was loaded onto Ni-NTA resin pre-equilibrated with Buffer A and the His-

MBP-Rab7 L129F protein was isolated using an imidazole gradient (10-300 mM) at 4ºC.  

The His-MBP tag was cleaved using TEV protease, and the Rab7 L129F–TEV mixture 

was passed over the Ni-NTA resin to remove the His-tagged products. The sample was 

further purified using anion exchange, cation exchange, and size exclusion columns. 

Purity of the protein was verified to be greater than 95% by SDS-PAGE and Coomassie 

stain.  

 

Crystallization  

The non-hydrolyzable GTP analog GppNHp (5 mM) (BioMol) and MgCl2 (5 mM) were 

added to purified Rab7 L129F and crystals were grown by the sitting drop method. 

Crystals appeared in 0.2 M sodium formate, 10mM trimethylamine hydrochloride, and 

20% polyethylene glycol 3,350, pH 7.2 at 18°C in 3 days and grew to a maximum size of 

100x10x10 μm in 2 weeks. Crystals were cryoprotected in 0.2 M sodium formate, 10 mM 

trimethylamine hydrochloride, 20% polyethylene glycol 3,350, pH 7.2 and 25% PEG400 

and flash frozen in liquid N2. X-ray diffraction data were collected at the National 

Synchrotron Light Source (NSLS) using the X6A beamline. 

 

Determination of the structure of L129F Rab7  

Phases were calculated by molecular replacement (MR) using PHASER (Potterton et al., 

2003) as implemented in CCP4 suite of programs using the substrate-free structure of 

Rab7 (PDB ID 1VG8) as a search model. Maps calculated after one cycle of refinement 
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by REFMAC followed by solvent flattening and five-fold multidomain, non-

crystallographic symmetry averaging using DM (Cowtan, 1994) revealed clear fo-fc 

density for the nucleotide substrate at 2.5 s contour level. Model building was carried out 

in COOT (Emsley and Cowtan, 2004), and the model was refined using both CNS-

SOLVE (Brunger et al., 1998) and REFMAC5 (Murshudov et al., 1997). The last cycles 

of refinement were carried out with TLS restraints as implemented in REFMAC5 and 

without NCS restraints (Table 1). 

 

GTP/GDP dissociation assays  

Wild-type, L129F, and V162M His-MBP-Rab7 fusion proteins were expressed and 

purified from bacteria as described above, but the His-MBP tag was not cleaved. Fusion 

proteins were bound to NiNTA beads (Sigma-Aldrich) for 30 minutes at 4°C in Buffer A 

(20 mM Tris-HCl, 100 mM NaCl, 5 mM MgCl2, 1 mM NaH2PO4, 10 mM 2-

mercaptoethanol, pH 7.8) followed by one wash with 1 M guanidine-HCl. Bound Rab7 

proteins were then incubated in Buffer A containing 0.1 μM 3H-GTP or 3H-GDP for 30 

minutes on ice and washed to remove unbound nucleotide. Proteins were incubated in 

Buffer A containing a 1000-fold excess of unlabeled GTP or GDP for 0, 15, 30, or 60 

minutes at 37°C. Samples were washed to remove dissociated nucleotide. To elute 

nucleotides, 10 μl of elution buffer (0.2% SDS, 5 mM EDTA, 5 mM GTP, and 5 mM 

GDP) was added, and samples were incubated at 65°C for 2 minutes. Eluted nucleotides 

were quantified using scintillation counting, and the amount of 3H-GTP or 3H-GDP 

bound at 15, 30, and 60 minutes was compared to the initial amount bound (0 time point).  
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GTPase assays  

His-MBP-Rab7 fusion proteins were bound to NiNTA beads as above followed by three 

washes with 1 M guanidine-HCl and three washes with Buffer A. Reactions were 

incubated with 30 μl of Buffer A containing 32P-GTP for 2 hours on ice to load GTP. 

Hydrolysis was initiated by moving the reactions to 37°C for 2 hours. In some reactions, 

1000-fold excess unlabeled GTP was added to the reaction during hydrolysis (“+excess 

unlabeled GTP” condition). Following hydrolysis, nucleotides were eluted as above. 

Samples were spotted on PEI cellulose and resolved in NaH2PO4 (pH 3.4) for ~1 hour. 

Signals for GTP and GDP were calculated using a PhosphorImager. The percentage of 

32P-GTP hydrolyzed in each experiment was calculated by dividing the GDP signal by 

the total signal from GTP and GDP, taking into account that the specific activity of 32P-

GDP is 2/3 that of 32P-GTP. 

 

GTP exchange assays  

For the cell-free exchange assay, recombinant MBP-His Rab7 proteins were bound, 

treated with guanidine HCl, and washed as above. To determine the maximum amount of 

3H-GTP that could be bound, His-MBP-Rab7 proteins were incubated in Buffer A 

containing 0.1 μM 3H-GTP for 30 minutes at 37°C. Following washes, bound 3H-GTP 

was eluted and quantified as above. To determine the GTP exchange rate, His-MBP-Rab7 

proteins were treated as above except incubated in Buffer A containing 0.2 mM unlabeled 

GDP before addition of 3H-GTP. Following washes, Buffer A containing 3H-GTP was 

added, and the proteins were incubated at 37°C for 10 or 30 minutes. Samples were 

washed and eluted nucleotide was quantified as above. The ratio of the amount of 3H-
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GTP bound at 10 or 30 minutes to the maximum amount bound without GDP pre-

incubation was calculated for wild-type, L129F, and V162M Rab7. For the exchange 

assay from cell lysates, HEK293T cells were transfected with FLAG-Rab7, and cells 

were harvested 48 hour post-transfection and lysed in IP buffer (20 mM HEPES, 10% 

glycerol, 0.5% Triton-X100, 150 mM NaCl, 2 mM MgCl2, 1 mM DTT, and Complete 

Mini Protease Inhibitor Cocktail EDTA-free (Roche)). Rab7 proteins were 

immunopurified using FLAG-M2 agarose (Sigma-Aldrich) and washed several times in 

IP buffer. Immunopurified Rab7 proteins were then incubated in IP buffer containing 0.1 

μM 3H-GTP for 10 minutes at 37°C. Following several washes, bound nucleotides were 

eluted and quantified as above.  

 

Coimmunoprecipitation  

HEK293T cells were transfected with FLAG-Rab7, HA-Rab7, or cotransfected with HA-

Rab7 and GFP-RILP. Cells were collected and lysed 48 hours post-transfection in IP 

Buffer (20mM HEPES, 10% glycerol, 0.5% Triton-X100, 150mM NaCl, 2 mM MgCl2, 1 

mM DTT, and Complete Mini Protease Inhibitor Cocktail EDTA-free (Roche)). Lysates 

were incubated with HA-agarose or FLAG-M2 agarose (Sigma-Aldrich) for 3 hours at 

4°C. After washing the beads four times with IP Buffer, bound proteins were eluted with 

200 μg/ml HA or FLAG peptide (Sigma-Aldrich). Immunoprecipitated proteins were 

separated by SDS-PAGE and transferred to nitrocellulose membranes (Invitrogen) for 

Western blotting. Signal was detected using fluorescent secondary antibodies (LI-COR) 

and the LI-COR Odyssey imaging system.  
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GST-RILP pulldown  

The protocol was performed as previously described  (Romero Rosales et al., 2009). 

Briefly, the Rab7-binding region of murine RILP (amino acids 220-299) fused to GST 

was expressed in bacteria and purified. HEK293T cells were transfected with GFP alone 

or GFP-Rab7, lysed, and incubated with GST-RILP overnight at 4°C. After extensive 

washing, bound proteins were eluted and separated by SDS-PAGE followed by Western 

blotting. 

 

LC-MS/MS protein identification 

Enzymatic Digest of Proteins: HEK293T cells were transfected with FLAG-Rab7 

constructs and immunoprecipitated as described above. Immunoprecipitated proteins 

were separated by SDS-PAGE and stained with SYPRO Ruby (Sigma-Aldrich). The 

protein bands of interest were excised from a 1D gel manually. In-gel digestion was then 

performed with sequencing-grade, modified trypsin supplied frozen (Promega). The 

protein band was excised, cut into small plugs, washed with 50% acetonitrile, and 

destained by several incubations in 100mM ammonium bicarbonate pH 8 containing 50% 

acetonitrile. After reduction (10 mM, DTT for 1hour at 37°C) and alkylation (50 mM 

iodoacetamide for 45 minutes at room temperature in the dark), the gel plugs were 

washed again with 50% acetonitrile in 50 mM ammonium bicarbonate followed by a 

second wash in 50% acetonitrile in 10 mM ammonium bicarbonate. The gel plugs were 

then dried using a speedvac (Savant) and rehydrated in 10 μl of 0.2 μg trypsin.  After 10 

minutes, 25 μL of 25 mM ammonium bicarbonate pH 8 was added to the tube. The 

enzymatic reaction was carried out overnight (approximately 12 hours) at 37°C, followed 
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by peptide elution from the gel plugs using 20 to 30 μL of 0.2% formic acid. The solution 

was then transferred to a sample vial for LC-MS/MS analysis.  

 

Electrospray Ionization Ion Trap Mass Spectrometry Analysis: LC-MS/MS analysis 

was carried out using a ThermoFisher LTQ XL linear ion trap mass spectrometer in line 

with a nanoAcquity ultra performance LC system (Waters Corporation). Tryptic peptides 

were loaded onto a “precolumn” (Symmetry C18, 180 µm i.d X 20 mm, 5 µm particle) 

(Waters Corporation) which was connected through a zero dead volume union to the 

analytical column (BEH C18, 75 µm i.d X 100 mm, 1.7 µm particle) (Waters 

Corporation). Tryptic peptides were eluted over a gradient (0-70% B in 60 minutes, 70-

100% B in 10 minutes, where B = 70% Acetonitrile, 0.2% formic acid) at a flow rate of 

250 nL/min and introduced online into a linear ion trap mass spectrometer 

(ThermoFisher) using electrospray ionization (ESI). Data dependent scanning was 

incorporated to select abundant precursor ions for fragmentation by acquisition of a full-

scan mass spectrum followed by MS/MS on the 10 most abundant ions (one microscan 

per spectra; precursor m/z ± 1.5Da, 35% collision energy, 30ms ion activation, 35s 

dynamic exclusion, repeat count 2).  

 

Database Searching: Product ions generated by fragmentation along the peptide 

backbone by collision activated dissociation (CAD) (b/y-type ions) were used in an 

automated database search against the NCBInr_20090524 (selected for Homo sapiens, 

222,717 entries) database using the Mascot search routine (Perkins et al., 1999) assuming 

the digestion enzyme trypsin (2 missed cleavages) with following residue modifications 
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being allowed: carbamidomethylation on cysteine and oxidation on methionine. Mascot 

was searched with a fragment ion tolerance of 0.6 Da and a parent ion tolerance of 1.5 

Da. The identifications from the automated search were further validated through 

Scaffold (Proteome Software) and manual inspection of the raw data. Peptide 

identifications were accepted if they could be established at greater than 95% probability 

as specified by the Peptide Prophet algorithm  (Keller et al., 2002). Protein identifications 

were accepted if they could be established at greater than 99% probability and contained 

at least 2 identified peptides.  Protein probabilities were assigned by the Protein Prophet 

algorithm (Nesvizhskii et al., 2003).  

 

Immunofluorescence  

HeLa cells were plated on 4-well chamber slides (Lab-Tek) and transfected with GFP-

Rab7. Cells were fixed 24 hours post-transfection with 4% paraformaldehyde for 10 

minutes and blocked with 5% normal goat serum for 1 hour. Cells were permeabilized 

using 0.2% saponin for 10 minutes. For LAMP2 staining, permeabilized cells were 

incubated in LAMP2 antibody (1:500) overnight at 4°C. Following washes, cells were 

incubated in AlexaFluor594 (1:500) for 1 hour. Vectashield + DAPI (Vector 

Laboratories) was added and cells were cover-slipped. Cells were visualized using a 

Leica DMIRE2 compound microscope under the 63x oil immersion lens, and images 

were acquired using SlideBook software.   
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Quantification of Rab7 subcellular localization  

HeLa cells were transfected with GFP-Rab7 and fixed 24 hours later. Random adjacent 

fields were imaged at 63x as described above, and individual GFP-Rab7 positive cells 

were cropped to new files using SlideBook software. The individual cell images were 

randomly ordered and presented to a blinded scorer. The predominant morphology and 

localization of GFP-Rab7 for each cell was characterized as “diffuse, small,” “diffuse, 

few enlarged,” “some clustering, many enlarged,” or “highly clustered, many enlarged” 

(see Supplementary Fig. S3.6 for scoring examples). The percentages of phenotypes for 

each Rab7 construct were calculated and graphed using Microsoft Excel.   

 

FRAP 

For Figure 5, HeLa cells were plated in 35 mm cover slip-bottom dishes (MatTek) and 

transfected with GFP-Rab7 constructs. Live-cell imaging was performed 24 hours post-

transfection using a FluoView FV1000 Olympus laser scanning confocal microscope 

under 60x oil immersion. Cells were imaged every 3 seconds for 15 seconds total using 

the Argon ion 488nm laser (30mW) at 1% excitation power to record the pre-bleach 

fluorescence levels. Small regions of the cytosol containing GFP-Rab7 vesicles were then 

bleached using the 488nm laser at 100% power for 2 seconds. Recovery of fluorescence 

was monitored every 3 seconds for 225 seconds using the 488nm laser at 1% power. 

Regions of interest (ROIs) were drawn around bleached Rab7 vesicles and the 

fluorescence intensity at each time point was calculated using Metamorph software. 

Fluorescence intensity values were exported to Microsoft Excel and fluorescence 

recovery curves from each condition were averaged and plotted. Pre-bleach fluorescence 
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was set to 1 and the first post-bleach time point was set to 0 for each ROI. For FRAP of 

compound mutants (Fig. 6), cells were plated and transfected as above, and imaged using 

a Nikon TE2000 microscope with a C1Si confocal using the 60x oil immersion 

objective.  Pre- and post-bleach excitation was performed with a 488nm diode laser at 2% 

power every 3 seconds for 5 frames and 50 frames, respectively. Photobleaching was 

performed at 100% laser power for 10 seconds. Data were analyzed using EZC1 

software, then exported to Microsoft Excel and graphed as above.  

 

FLAP  

HeLa cells were plated as in FRAP assays and transfected with PA-GFP-Rab7 constructs. 

Live-cell imaging was performed 24 hours post-transfection using a FluoView FV1000 

Olympus laser scanning confocal microscope. Regions of cytosol containing PA-GFP-

Rab7 vesicles were identified using the 488nm laser at 10% power. Small regions were 

then activated by a 2-second pulse with the violet diode 405nm laser (25mW) at 50% 

power. Loss of fluorescence was monitored every 3 seconds for 150 seconds using the 

488nm laser at 1% power (at this power, unactivated PA-GFP fluorescence is 

undetectable). ROIs were drawn around activated Rab7 vesicles and the fluorescence 

intensity was plotted over time as in FRAP assays. The first post-bleach time point was 

set to 1 for each ROI. Fluorescence loss curves from each condition were averaged and 

plotted. 
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Statistical analysis 

Two-tailed student’s t-tests (two sample equal variance) were used to determine p-values 

for GTPase, GTP exchange, and nucleotide dissociation experimental data. For FRAP 

and FLAP data, the baseline fluorescence measurement was fitted to the genotype and 

time point of measurement using conventional linear models. The p-values for the F-

statistic with measurement fitting to protein were calculated. P-values of less than 0.05 

were considered statistically significant. 
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Results 

The L129F mutation alters the nucleotide binding pocket of Rab7  

Rab GTPases cycle between activated, GTP-bound, membrane-associated states and 

inactive, GDP-bound, cytosolic states. Mutations in Rab7 that cause CMT2B cluster near 

the highly conserved G-loops that are involved in nucleotide binding. A previous study 

demonstrated decreased GTP hydrolysis in disease mutants (Spinosa et al., 2008). 

However, as residues mutated in CMT2B are not near the catalytic glutamine (Q67) or 

the hydrolyzed γ-phosphate of GTP, it was unclear how disease mutations could impair 

GTPase activity. To resolve this issue and provide mechanistic insight into CMT2B, we 

solved the crystal structure of the L129F Rab7 mutant in its active, GTP-bound form. The 

structure of full-length L129F Rab7 bound to the non-hydrolyzable GTP analog GppNHp 

was solved to 2.8 Å by molecular replacement using wild-type Rab7 as a search model 

(Table 2.1). The L129F substitution does not alter the overall structure of the molecule as 

compared to the published structure of wild-type Rab7 bound to GppNHp (PDB 1VG8) 

(Fig. 2.1A-C, Supplementary Fig. S2.1 for stereo views) (Rak et al., 2004). Notably, the 

conformation of the effector binding switch region of the protein closely approximates 

that of wild-type Rab7 and is therefore not predicted to alter effector binding. 

Furthermore, the catalytic glutamine (Q67) and the position of the γ-phosphate group of 

GppNHp were not significantly altered, providing no structural basis to predict decreased 

intrinsic GTPase activity (Fig. 2.1D, Supplementary Fig. S2.2 for an omit map of the 

nucleotide binding pocket). However, L129F substitution enlarges the hydrophobic group 

that lies adjacent to the guanine ring of GTP and leads to steric hindrance and subtle  
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Figure 2.1. Structural insights into the disease-causing Rab7 L129F mutant. (A) 
Structure of wild-type Rab7 bound to the non-hydrolyzable GTP analog GppNHp (PDB 
1VG8) (Rak et al., 2004). Switch regions are shown in dark green, L129 in orange, and 
Mg++ in black. (B) Structure of Rab7 L129F. Switch regions are shown in light green, 
F129 in red, and Mg++ in dark brown. (C) Overlay of wild-type and L129F Rab7 
demonstrates that the F129 mutation does not alter the overall structure of the protein. 
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Note the normal conformation of the switch regions in the L129F mutant. (D) Close-up, 
overlaid views of the binding pockets of wild-type (grey) and the F129 mutant (brown). 
The positions of the γ-phosphate group of GTP and the catalytic residue Q67 are 
unaltered by the F129 mutation. Note the shift of the guanine ring of GppNHp in F129 
and the displacement of the K157 and D128 residues. These changes suggest alterations 
in nucleotide binding affinity. (E) Detailed surface representation of the wild-type 
guanine nucleotide binding pocket showing GppNHp in ball and stick representation and 
L129 in orange. (F) Detailed surface representation of the F129 guanine nucleotide 
binding pocket showing GppNHp in ball and stick representation and F129 in red. Note 
the slight change in position of the guanine ring of the nucleotide and the altered 
conformation of the opening to the binding pocket.  
 

repositioning (~0.6 Å) of the guanine ring away from F129 (Fig. 2.1D-F, Supplementary 

Fig. S2.3 for stereo views). This also slightly modifies the position of the invariant D128 

and K157 residues that are directly involved in nucleotide binding (Fig. 2.1D). Of 

particular note is the repositioning of the carboxylate group of D128, which in the wild-

type Rab7 makes pseudo Watson-Crick pairing interactions with the guanine base of the 

nucleotide. In L129F this interaction appears to be partially altered leading to longer 

hydrogen bonds and in some cases (we have five molecules in the asymmetric unit and 

therefore five independent observations) complete disruption of one of the two hydrogen 

bonds. We predicted that these changes would alter affinity for guanine nucleotides and 

affect the rates of dissociation for GTP and/or GDP. Interestingly, K157, which is also 

directly involved in nucleotide binding and is shifted in the L129F mutant structure, is 

mutated to asparagine in a patient with CMT2B (Meggouh et al., 2006).  

 

Mutant Rab7 has decreased nucleotide affinity, but no intrinsic GTPase defect 

To determine how the steric hindrance imposed by the L129F mutation affects guanine 

nucleotide binding, we performed GTP and GDP dissociation assays using purified 
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recombinant wild-type and L129F Rab7. We also analyzed the V162M mutant to 

determine whether there are consistent biochemical alterations among different disease-

causing Rab7 mutants. Recombinant Rab7 proteins were loaded with 3H-GTP or 3H-GDP 

and the dissociation of nucleotide was followed over time. We found that Rab7 mutants 

have an increased rate of GTP dissociation relative to wild-type (Fig. 2.2A), and an even 

more rapid rate of GDP dissociation with almost complete dissociation within 15 minutes 

(Fig. 2B). These results are consistent with previous work showing increased dissociation 

of guanine nucleotides in Rab7 disease mutants (Spinosa et al., 2008). In Rab7 mutants, 

approximately 70% of initially-bound GTP dissociated over the course of 60 minutes.  

 

While Rab7 disease mutants were previously reported to have nearly complete loss of 

GTPase activity (Spinosa et al., 2008), we found no structural basis for altered GTP 

hydrolysis in the L129F mutant. To account for this discrepancy, we hypothesized that 

reduced hydrolysis might reflect increased rates of GTP dissociation rather than an 

intrinsic catalytic defect. To test this idea, we first performed GTPase assays using 

purified recombinant Rab7 as previously described (Spinosa et al., 2008). When Rab7 

was loaded with 32P-GTP and hydrolysis was initiated in the presence of excess unlabeled 

GTP, we saw a marked decrease in GTP hydrolysis in the L129F mutant that was similar 

to the Q67L mutant (which contains a targeted disruption of the catalytic residue; Fig. 

2.2C-D, left). However, this assay specifically measures the rate of GTP hydrolysis per 

GTP binding event since re-association of 32P-GTP is effectively precluded by the excess 

unlabeled GTP. We predicted that if we performed the assay with excess 32P-GTP and no 

unlabeled GTP, we could counteract the effect of decreased nucleotide affinity by 
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allowing for dissociation and re-association of radiolabeled GTP. Indeed, we found that 

the apparent GTPase defect in the L129F mutant could be partially rescued by omitting 

excess unlabeled GTP from the reaction, whereas this modification had no effect on the 

Q67L mutant (Fig. 2.2C, right and Fig. 2.2D). Furthermore, increasing the concentration 

of 32P-GTP further restored catalytic activity (Fig. 2.2E), indicating that dissociation and 

re-association of GTP happens rapidly in disease mutants and that catalytic activity of 

L129F Rab7 approaches that of wild-type Rab7. Thus, when GTP is in constant supply 

(as is the case in vivo), catalytic activity in disease mutants is not significantly impaired, 

and decreased GTP hydrolysis cannot account for the defects seen in mutant Rab7. 

 

Figure 2.2. Rab7 disease-causing mutants have increased guanine nucleotide 
dissociation, but nearly normal GTPase activity. (A-B) GTP (A) and GDP (B) 
dissociation rates of recombinant Rab7 proteins. Rab7 mutants were loaded with 3H-GTP 
or 3H-GDP, then washed and incubated with excess unlabeled GTP or GDP at 37°C for 0, 
15, 30, or 60 minutes. The remaining bound 3H-GTP or 3H-GDP was then eluted and 
quantified by scintillation counting. (C) Representative GTPase assay of wild-type, 
L129F, and Q67L Rab7. His-MBP-Rab7 proteins were loaded with 0.1 μM 32P-GTP on 
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ice, then moved to 37°C for 2 hour to allow for hydrolysis. Nucleotides were eluted and 
separated by thin layer chromatography. GTPase assays performed with excess unlabeled 
GTP during hydrolysis (left) reveal a marked reduction in hydrolysis in the L129F 
mutant. However, assays performed without excess unlabeled GTP during hydrolysis 
(right) demonstrate that catalytic activity in the L129F mutant is restored by a constant 
supply of 32P-GTP. Hydrolysis is virtually undetectable when no Rab7 is added to the 
reaction (left). (D) Quantification of GTPase assays demonstrates nearly complete 
restoration of catalytic activity in the L129F mutant when 32P-GTP is provided in 
constant supply. As expected, the GTPase-deficient Q67L mutant shows a marked 
hydrolysis defect in both conditions. (E) GTPase assays were performed with varying 
concentrations of 32P-GTP, and without excess unlabeled GTP. Increasing the GTP 
concentration restores the catalytic activity of the L129F mutant. This suggests that there 
is no intrinsic GTPase defect in disease mutants when GTP is in constant supply. Values 
plotted for A-D represent the average of at least three independent experiments. Error 
bars represent standard error of the mean. (*p<0.05, **p<0.01, ***p<0.001) 
 

Mutant Rab7 undergoes GEF-independent nucleotide exchange and excessive 

activation 

Normally, GDP is tightly bound by Rab GTPases, and the low intrinsic rate of GDP 

dissociation makes GDP release the rate-limiting step of nucleotide exchange and Rab 

activation. GEF proteins have evolved to facilitate GDP dissociation and the subsequent 

GTP loading of Rab proteins. Given the rapid rate of GDP dissociation in the Rab7 

disease mutants, we hypothesized that nucleotide exchange might be misregulated and 

occur independent of GEF activity. To test this hypothesis, we interrogated GTP 

exchange rates using purified, recombinant Rab7 proteins in the absence of any GEF 

activity. First, we determined that Rab7 wild-type and disease mutants bound roughly the 

same amount of GTP following stripping of endogenous bound nucleotide (Fig. 2.3A). 

Next, we tested GTP exchange by stripping endogenous nucleotide, then pre-loading the 

Rab7 proteins with GDP before incubation with 3H-GTP. In this assay, 3H-GTP binding 

requires dissociation of the pre-loaded GDP and thus represents the rate of GTP 
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exchange. The amount of 3H-GTP bound was compared to the maximum amount that 

could be bound without GDP pre-incubation. As expected, wild-type Rab7 showed a 

slow rate of GTP exchange in the absence of GEF activity (only 10-20% of maximal 

binding). However, disease-causing Rab7 mutants underwent GTP exchange significantly 

faster, achieving nearly 60% of maximal binding over 30 minutes (Fig. 2.3B). This 

suggests that GTP exchange in Rab7 mutants can occur in an unregulated, GEF-

independent manner. To determine if GTP exchange is also misregulated in a cellular 

context, we tested the ability of immunopurified Rab7 complexes to undergo guanine 

nucleotide exchange. FLAG-Rab7 was immunopurified from HEK293T cell lysates and 

then incubated with 3H-GTP. As in the cell-free system, Rab7 mutants were able to 

undergo nucleotide exchange more readily than wild-type Rab7 despite equal 

immunoprecipitation of Rab7 in each condition (Fig. 2.3C). These results indicate that 

the structural changes imposed by the L129F and V162M mutations lead to misregulation 

of GTP exchange and inappropriate activation of Rab7 mutants.  

 

Figure 2.3. Rab7 disease mutants lead to GEF-independent nucleotide exchange. (A) 
Top: Purified His-MBP-Rab7 proteins were stripped of endogenous nucleotide and then 
incubated with 3H-GTP for 30 minutes at 37°C to demonstrate equivalent maximal GTP 
binding. Bottom: Loading control shows equivalent amount of Rab7 protein in each 
condition. (B) Quantification of GTP exchange of Rab7 proteins. His-MBP-Rab7 
proteins were stripped, loaded with GDP, and then incubated with 3H-GTP for 10 or 30 



62 

 

minutes at 37°C. Disease mutants exchanged GTP for GDP much faster than wild-type 
Rab7 (*p<0.05, **p<0.01, ***p<0.005). (C) Top: GTP exchange assay using 
immunopurified FLAG-Rab7. FLAG-Rab7 proteins were immunopurified from 
HEK293T cells followed by incubation with 3H-GTP for 10 minutes at 37°C. Rab7 
disease mutants undergo greater nucleotide exchange compared to wild-type (*p<0.005). 
Bottom: Control immunoprecipitation performed in parallel demonstrates equal 
immunoprecipitation of FLAG-Rab7 constructs.  
 

Augmented GTP exchange in the disease mutants would be predicted to shift the ratio of 

the GTP and GDP-bound fractions of Rab7 in cells. To test this, we performed pulldown 

assays using an immobilized Rab7 binding region of the Rab7 effector Rab-interacting 

lysosomal protein (RILP) and lysates from HEK293T cells expressing GFP-Rab7  

(Romero Rosales et al., 2009). Since RILP specifically binds GTP-bound Rab7, the 

amount of Rab7 associated with RILP in this assay represents the GTP-bound fraction. 

GST-RILP showed increased interaction with the predominantly GTP-bound, GTPase 

deficient Q67L mutant and no interaction with the GTP-binding deficient T22N mutant, 

indicating that this experiment accurately reflects changes in the active pool of Rab7 (Fig. 

2.4A). The amount of Rab7 disease-causing mutants pulled down by GST-RILP was 

significantly increased compared to wild-type Rab7 (Fig. 2.4A-B). This finding indicates 

that accelerated GTP exchange in disease mutants leads to an increase in the active, GTP-

bound fraction of Rab7.   
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Figure 2.4. Rab7 disease mutants lead to an increase in the GTP-bound, active 
fraction. (A) Top: Representative immunoblot of GST-RILP pulldown from HEK293T 
lysates containing GFP-Rab7. GST-RILP pulls down more Rab7 disease mutant protein 
indicating an increase in the GTP-bound form. As expected, there is increased binding of 
Q67L and no binding of T22N Rab7. Bottom: Immunoblot of 2% of the pulldown input 
demonstrates equivalent expression of GFP-Rab7 in each condition. (B) Quantification of 
GST-RILP pulldown replicates (*p<0.02, **p<0.05, ***p<0.002). All values plotted 
represent the average of three independent experiments. Error bars represent standard 
error of the mean. e.v. = empty vector.  
 

Disease-causing mutations cause quantitative changes in Rab7 interactions 

To more broadly address the impact of disease-causing Rab7 mutations on interaction 

with binding partners, we used an unbiased proteomics approach to examine the protein-

protein interactions in wild-type and mutant Rab7. Rab7 effectors specifically recognize 

the switch regions when Rab GTPases are in the GTP-bound conformation. Based on the 

crystal structure, we predicted that the L129F Rab7 mutant would interact normally with 

Rab7 effectors. However, since Rab7 mutations increase the fraction of Rab7 in the 

active conformation and cause misregulation of the Rab7 activity cycle, we predicted that 

there may be quantitative differences in the type of Rab7 complexes that are formed. A 

number of Rab7-interacting proteins have been described, including RILP, Oxysterol 

binding protein-related protein 1L (ORP1L), Rabring7, Rab escort protein-1 (REP-1), 
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Rab GDI, the Vps34 subunit of PI3 kinase, and members of the retromer complex 

(Regazzi et al., 1992; Andres et al., 1993; Cantalupo et al., 2001; Mizuno et al., 2003; 

Stein et al., 2003; Johansson et al., 2005; Rojas et al., 2008).  

 

To examine Rab7 interactors, FLAG-Rab7 complexes were immunopurified from 

HEK293T cell lysates, separated by SDS-PAGE, and interacting proteins were then 

identified by mass spectrometry. The profiles of proteins identified in wild-type and 

mutant Rab7 were qualitatively identical suggesting that Rab7 mutants bind to the same 

complement of interactors as wild-type Rab7 (Fig. 2.5A-B, Supplementary Fig. S2.4). 

We identified several putative novel Rab7 interacting proteins as well as previously 

known Rab7 interactors (Table 2.2). To verify the specificity of our mass spectrometry 

protein identification, interactions with the known effectors RILP and GDI2 and the 

novel interactors VapB, SPG21, PHB, and stomatin-like 2 were confirmed by 

coimmunoprecipitation followed by Western blotting (Supplementary Fig. S2.5).  

 

Although the complement of effectors is largely unchanged by disease-causing 

mutations, we were able to detect quantitative differences in the amount of specific 

effectors coimmunoprecipitated with wild-type and mutant Rab7 (Fig. 2.5B and C). 

Specifically, Rab7 disease mutants L129F and V162M and the constitutively active 

mutant Q67L showed increased interaction with Vps13C and ORP1L, whereas only the 

disease mutants showed increased interaction with clathrin heavy chain, and all 

constructs interacted equally with REP-1 (Fig. 2.5C). These results suggest that the 

misregulation of the Rab7 activity cycle in disease mutants leads to augmentation of 
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specific effector interactions. Furthermore, the increased interaction with Vps13C and the 

GTP-dependent interactor ORP1L seen in disease mutants and in the Q67L mutant 

provides additional support for an increase in the active fraction of mutant Rab7.  

 

Figure 2.5. Rab7 disease mutants demonstrate quantitative changes in effector 
interactions. (A) FLAG-Rab7 was immunoprecipitated from HEK293T cells followed 
by SDS-PAGE and SYPRO Ruby protein stain. Interacting proteins were identified by 
LCMS/MS. (B) Rab7 wild-type and disease mutants have roughly similar band intensity 
profiles, although a subset of protein interactors show differential binding (compare 
intensity profiles for Vps13C and ORP1L). (C) Quantification of FLAG-Rab7 
coimmunoprecipitation replicates demonstrates increased interaction of Rab7 disease 
mutants with Vps13C, clathrin heavy chain, and ORP1L, and normal interaction with 
REP-1 (*p<0.05). Values plotted represent the average of five or six independent 
experiments. Error bars represent standard error of the mean. e.v. = empty vector 
 

Rab7 disease mutant localization is distinct from constitutively active Rab7 

We next assessed the consequences of the structural and biochemical alterations in 

mutant Rab7 on membrane targeting and exchange dynamics. To determine if disease 

mutations affect Rab7 subcellular localization, we analyzed the distribution of GFP-

tagged Rab7 in HeLa cells. Wild-type Rab7 reversibly associates with the cytosolic face 
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of late endosomes, lysosomes, and autophagosomes and shows a diffuse vesicular pattern 

that largely overlaps with the late-endosomal/lysosomal marker LAMP2 (Fig. 2.6A, top) 

and the acidotropic dye LysoTracker Red (data not shown) as expected (Bucci et al., 

2000). The dominant negative T22N mutant has a diffuse, reticular localization and leads 

to dispersal and altered morphology of late endosomes and lysosomes (Fig. 2.6A, 

bottom). In contrast, the constitutively active Q67L mutant Rab7 colocalizes with 

LAMP2, but leads to prominent accumulation of enlarged vesicles that cluster adjacent to 

the nucleus (Fig. 2.6A, middle). Surprisingly, despite evidence of unregulated activation, 

Rab7 disease mutants have normal subcellular localization and associate normally with 

LAMP2 (Fig. 2.6B) and LysoTracker Red (data not shown). Quantification of the cellular 

phenotypes verified our observation that disease mutants are similar to wild-type Rab7 

and distinct from the Q67L mutant (Fig. 2.6C, see Supplementary Fig. S2.6 for scoring 

examples). We also demonstrated that Rab7 disease mutations do not impair targeting to 

autophagosomes or flux through the autophagic pathway (Supplementary Fig. S2.7). 

Thus, even though Rab7 disease mutants show a marked increase in the active fraction, 

the cellular phenotype of disease mutants is clearly distinct from the Q67L mutant (Fig. 

2.6A-C), providing further evidence that a GTPase defect alone cannot account for the 

phenotype in Rab7 disease mutants.  
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Figure 2.6. Rab7 disease mutants have grossly normal subcellular localization. (A-B) 
HeLa cells transfected with GFP-Rab7 constructs were fixed and stained with anti-
LAMP2 antibody. Wild-type Rab7 and disease mutants colocalize with LAMP2-positive 
vesicles and do not cause any alteration in their morphology or localization. In contrast, 
constitutively active Q67L Rab7 causes clustering of LAMP2-positive vesicles, while 
dominant negative T22N Rab7 leads to their dispersal and enlargement. (C) 
Quantification of vesicular phenotypes in GFP-Rab7-expressing cells demonstrates that 
disease mutants are similar to wild-type and distinct from Q67L Rab7. Approximately 40 
cells were blindly scored for each Rab7 construct (see Supplementary Materials Fig. S6 
for scoring examples). 
 

Mutant Rab7 is abnormally retained on vesicular membranes 

Rab GTPases switch between the GTP-bound state in which they are active and 

membrane-associated and the GDP-bound state in which they are inactive and cytosolic. 

Our results suggest increased activation of Rab7 disease mutants which would be 

predicted to correlate with alterations in the activity cycle. To assess the net impact of 

Rab7 mutations on membrane cycling, we used dynamic live-cell imaging to characterize 

wild-type and mutant GFP-Rab7 in living cells. Time-lapse images demonstrate that 

disease-causing mutants of Rab7 associate with vesicular structures that are highly motile 
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and undergo multiple fusion and fission events similar to wild-type (Supplementary 

Movies S2.1-4). We next used dynamic live-cell imaging and a fluorescence recovery 

after photobleaching (FRAP) approach to examine how disease-causing mutations of 

Rab7 affect membrane cycling activity. HeLa cells were transfected with GFP-Rab7 and 

regions of cytosol containing GFP-Rab7 positive vesicles were bleached with a high 

intensity laser. Since recovery of fluorescence requires that the bleached GFP-Rab7 

molecules dissociate from the membrane to allow insertion of unbleached Rab7 from the 

surrounding cytosol, the rate of fluorescence recovery represents flux through the Rab7 

activity cycle  (Jordens et al., 2001). Rab7 disease mutants L129F and V162M showed a 

small but significant decrease in the rate of fluorescence recovery compared to wild-type, 

whereas the constitutively active Q67L mutant showed a nearly complete loss of 

fluorescence recovery due to the inability to hydrolyze GTP (Fig. 2.7A-B). These results 

indicate that disease-causing mutations in Rab7 cause a subtle decrease in the rate of 

membrane exchange. 

 

Decreased FRAP could result from decreased membrane extraction or from impaired 

recruitment of unbleached Rab7 onto target membranes. To distinguish between these 

possibilities, we developed a complementary approach utilizing a photoactivatable GFP 

variant (PA-GFP) (Patterson and Lippincott-Schwartz, 2002) fused to Rab7. Since PA-

GFP fluorescence is low until activation by brief high intensity laser stimulation, this 

construct permits selective activation of small regions of cytosol containing Rab7-

positive vesicles. In activated regions of the cell, a majority of the activated Rab7 is 
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Figure 2.7. Rab7 disease mutants have decreased membrane cycling. (A) FRAP of 
GFP-Rab7-positive vesicles in HeLa cells demonstrates that Rab7 disease mutants have a 
decreased rate of fluorescence recovery compared to wild-type. As expected, 
constitutively active Rab7 (Q67L) shows minimal fluorescence recovery due to the 
inability to hydrolyze GTP. (B) Representative time lapse images of GFP-Rab7 vesicles 
before and after photobleaching. (C) FLAP of photoactivatable-GFP (PA-GFP)-Rab7-
positive vesicles demonstrates that Rab7 disease mutants have a decreased rate of 
fluorescence loss compared to wild-type. As expected, constitutively active Rab7 (Q67L) 
shows minimal fluorescence loss due to the inability to hydrolyze GTP. (D) 
Representative time lapse images of PA-GFP-Rab7 vesicles after photoactivation. Values 
indicate average fluorescence for at least 20 ROIs in at least 10 cells for each condition 
(*p=1x10-15). Error bars represent standard error of the mean.  
 

membrane-bound and thus the fluorescence loss after photoactivation (FLAP) 

specifically measures the rate of extraction of Rab7 from its target vesicle membranes. 

Rab7 disease mutants L129F and V162M showed a decreased rate of fluorescence loss 

compared to wild-type Rab7, suggesting delayed membrane extraction (Fig. 2.7C-D). As 
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expected, constitutively active Rab7 (Q67L) showed a markedly decreased rate of 

fluorescence loss due to the inability to hydrolyze GTP. Taken together, the FRAP and 

FLAP data suggest that Rab7 disease-causing mutants are impaired in membrane 

exchange specifically due to slowed extraction from their target membranes. Notably, the 

decreased rate of FRAP and FLAP in disease mutants was much less pronounced than in 

the Q67L mutant (Fig. 2.7A-D). Thus, despite a profound increase in the active fraction 

similar to that seen in the Q67L mutant, the net impact of disease-causing mutations in 

vivo is surprisingly subtle.  

 

GTP dissociation inactivates mutant Rab7 

Our data demonstrate that despite accelerated nucleotide exchange and a marked increase 

in the active fraction similar to the Q67L mutant (Fig. 2.3-2.4), Rab7 disease mutants 

have normal subcellular localization and only subtle defects in membrane extraction (Fig. 

2.7). To reconcile these observations, we hypothesized that the excessive activation in 

mutant Rab7 is counterbalanced by unregulated, hydrolysis-independent termination of 

activity mediated by accelerated GTP dissociation (Fig. 2.2A). To test this, we generated 

compound mutants containing both the Q67L mutation (which inactivates the catalytic 

site) and a disease-causing mutation (either L129F or V162M).  We predicted that 

conversion from GTP-bound, active Rab7 to inactive Rab7 through GTP dissociation 

would rescue the function of these catalytically dead mutants. While transfected GFP-

Rab7 Q67L showed vesicular clustering in the majority of cells, the phenotype was 

largely reversed by introducing the disease-causing mutations to the Q67L background 

(Fig. 2.8A-B, See Supplementary Fig. S2.6 for scoring examples). To further demonstrate 
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Figure 2.8. Rab7 disease mutants lead to GTPase-independent membrane cycling. 
(A) HeLa cells transfected with GFP-Rab7 were fixed and imaged. Rab7 Q67L,L129F or 
Q67L,V162M compound mutants largely rescue the abnormal vesicular clustering seen 
in the GTPase-deficient Q67L mutant. (B) Quantification of vesicular phenotypes in 
GFP-Rab7-expressing cells. Approximately 40 cells were blindly scored for each Rab7 
construct (see Supplementary Materials Fig. S6 for scoring examples). (C) Compound 
mutants rescue the FRAP defect seen in the constitutively active Q67L mutant. Rab7 
Q67L shows minimal fluorescence loss due to the inability to hydrolyze GTP. Membrane 
release and fluorescence recovery is restored by combining the Q67L mutation with the 
L129F or V162M disease mutations. Values indicate average fluorescence for at least 30 
ROIs in at least 15 cells for each condition (*p<1x10-15). Error bars represent standard 
error of the mean. 
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 reversal of the Q67L phenotype in compound mutants, we performed FRAP assays to 

follow the extraction of the compound mutants from membranes. We found that the Rab7 

compound mutants largely rescued the FRAP defect seen in the Q67L mutant alone, 

suggesting that the Rab7 disease-causing mutations increase GTP dissociation and lead to 

GTPase-independent membrane cycling of Rab7 in vivo (Fig. 2.8C). These results further 

indicate that GTPase deficiency cannot account for the defects in disease mutants since 

these mutations are able to reverse the phenotype associated with a pure GTPase defect. 

Furthermore, these data demonstrate that disease mutants are not dependent on GTP 

hydrolysis for inactivation as is the case for nearly all Rab GTPases. Together with our 

GTP exchange assays, our results indicate that Rab7 mutations lead to misregulation of 

both activation of Rab7 by nucleotide exchange and inactivation of Rab7 by GTP 

dissociation. Therefore, GTP binding and membrane cycling of Rab7 mutants occur 

independent of the action of the normal regulatory controls that provide spatial and 

temporal specificity to Rab7 function.  
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Tables 

Table 2.1: Data collection and refinement statistics 

Data collection 
  

Space group P1 
Cell dimensions (a, b, c in Å) 35.6, 89.33, 89.38 
Resolution (Å) 20-2.8 (2.9-2.8)* 
Rsym or Rmerge 10.0 (41.7) 
I/σI 7.7 (1.7) 
Completeness (%) 98.7 (98.2) 
Redundancy 2 (2) 

Refinement 
  

Resolution (Å) 20-2.8  
No. Unique reflections 27713 
Rwork/Rfree 25.5/27.1 
No. atoms   
    Protein 6925 
    Ligands 155 
    Ions 5 
    Water 45 
R.m.s. deviations   
    Bond lengths (Å) 0.011 
    Bond angles (°) 1.16 
Ramachandran plot (%)   
    Most favored 87.6 
    Allowed 10.9 
    Generously allowed 1.2 
    Disallowed 0.2 
*Highest resolution shell shown in parentheses.  
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Table 2.2: Proteomics summary and statistics 

Protein name  MW (Da) Sequence count Coverage (%) Novelty

GDI2 51,088 370 76  

GDI1 51,177 255 70  

Prohibitin 2 (PHB2) 33,276 115 51 * 

Prohibitin (PHB) 29,843 84 51 * 

REP-1 (CHM) 74,740 77 39  

Vps13C 419,351 217 34 * 

ORP1L 109,739 71 29  

VapB (ALS8) 27,365 6 25 * 

Stomatin-like 2 (EPB72) 38,518 23 25 * 

Clathrin HC 193,703 44 24 * 

GNB2L1 (RACK1) 40,193 7 18 * 

ATP6V0A1 96,487 10 13 * 

Spastic paraplegia 21 (maspardin) 35,223 7 12 * 

IMMT (Mitofilin) 83,669 10 9 * 

RILP 44,375 3 8  

ANKFY1 128,489 4 4 * 
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Supplementary data 

 

Supplementary Figure S2.1. Stereo views of wild-type and L129F Rab7. (A) Overlay 
of wild-type Rab7 (grey) and L129F Rab7 (brown) bound to the GTP analog GppNHp. 
(B) Overlay of wild-type (grey) and L129F Rab7 (brown) GTP binding pockets. See 
Figure 1D for amino acid side chain identities.  
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Supplementary Figure S2.2. L129F Rab7 omit map. Simulated annealed omit map of 
the nucleotide GppNHp and active site residues (stick) at 1.0 sigma contour level. F129 
side chain is shown in red, and Mg++ is shown in dark brown.  
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Supplementary Figure S2.3. Stereo views of the wild-type and L129F Rab7 GTP 
binding pocket. (A) Surface view of wild-type Rab7 nucleotide binding pocket. L129 is 
shown in orange. (B) Surface view of L129F Rab7 nucleotide binding pocket. F129 is 
shown in red. 
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Supplementary Figure S2.4. Analysis of Rab7 interacting proteins. HEK293T cells 
transfected with FLAG-Rab7 were collected and lysed 48 hours post-transfection and 
immunoprecipitated with FLAG-agarose. Proteins were separated by SDS-PAGE and 
stained with SYPRO Ruby. (A-D) Five replicates of the experiment shown in Figure 4A. 
Protein identities were determined by LC-MS/MS as described in Supplementary 
Methods. e.v. = empty vector 
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Supplementary Figure S2.5. Verification of interaction with proteins identified by 
LC-MS/MS. HEK293T cells were transfected with epitope-tagged Rab7 (HA or FLAG) 
or cotransfected with HA-Rab7 and GFP-RILP. Cells were collected and lysed 48 hours 
post-transfection and immunoprecipitated with HA-agarose or FLAG-agarose. Rab7 
wild-type and disease mutants interact normally with overexpressed GFP-RILP (A), 
endogenous GDI2 (B), and the novel interactors PHB (C), VapB (D), SPG21 (E), and 
Stomatin-like 2 (F). e.v. = empty vector 
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Supplementary Figure S2.6. Examples of vesicular phenotypes in cells expressing 
GFP-Rab7 constructs. (A) Examples of cells with a “diffuse, small” phenotype which 
display mostly diffuse and discrete small vesicles. (B) Examples of cells with a “diffuse, 
few enlarged” phenotype which display mostly small vesicles with a small number of 
enlarged vesicles. (C) Examples of cells with a “some clustering, many enlarged” 
phenotype which display many enlarged, clustered vesicles, but also many small vesicles. 
(D) Examples of cells with a “highly clustered, many enlarged” phenotype which display 
many prominent, large clusters of vesicles. Green = GFP-Rab7, Blue = DAPI.  
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Supplementary Figure S2.7. Rab7 mutants associate with autophagosomes and do 
not alter autophagic flux. (A) HeLa cells were transfected with GFP-Rab7 constructs 
and RFP-LC3, a specific marker of autophagic vacuoles (Kabeya et al., 2000). To 
stabilize autophagolysosomes, cells were treated for 2 hours prior to fixation with the 
vacuolar proton pump inhibitor Bafilomycin A1 which prevents acidification and 
degradation of autophagolysosome contents (Klionsky et al., 2008). Wild-type Rab7 and 
disease mutants colocalize with RFP-LC3-positive vesicles and do not cause any 
significant alteration in their morphology or localization. (B) HeLa cells were transfected 
with Rab7-HA constructs and endogenous LC3-I and LC3-II levels were assessed by 
Western blot. Cells were also treated with Bafilomycin A1 for 2 hours prior to lysis to 
stabilize autophagolysosomes. Rab7 disease mutants do not cause an increase in LC3-II 
accumulation, suggesting that autophagy is neither induced nor inhibited by 
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overexpression of Rab7 disease mutants. Red = RFP-LC3, Green = GFP-Rab7, Blue = 
DAPI.  
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Discussion 

In this study we characterized the structural, biochemical, and cell biological 

consequences of mutations in the small GTPase Rab7 that cause the dominantly inherited 

axonal degeneration CMT2B.  Examination of the crystal structure of the L129F Rab7 

mutant revealed alteration of the nucleotide binding pocket but no significant alteration to 

the catalytic site. We demonstrated that despite rapid GTP dissociation and re-

association, GTPase activity in disease mutants is not significantly reduced. We showed 

that disease mutations result in an increase in the active fraction of Rab7 and a 

corresponding increase in binding to a subset of effector proteins. In addition, we 

demonstrated that increased activation in disease mutants is due to unregulated nucleotide 

exchange and not due to a hydrolysis defect. Surprisingly, the cellular phenotype of 

mutant Rab7 is milder than expected given the prominent, unregulated GTP exchange 

and marked increase in the active fraction. To account for this, we documented that 

unregulated activation of Rab7 disease mutants is mitigated by unregulated inactivation. 

Thus, our data reveal how misregulation of multiple steps of the Rab7 activity cycle leads 

to alteration of Rab7 activity. A previous publication suggested that Rab7 disease 

mutants lead to constitutive activation and a nearly complete loss of catalytic activity  

(Spinosa et al., 2008). However, such a severe alteration of activity would be predicted to 

have far-reaching effects on Rab7-dependent pathways. Indeed, overexpression of 

constitutively active Rab7 leads to developmental defects in Drosophila (Entchev et al., 

2000; Wilkin et al., 2008). Although Rab7 is ubiquitously expressed, disease mutations 

cause adult-onset, slowly progressive disease that is restricted to the neurons with the 
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longest axonal projections. Our findings of subtle changes in Rab7 activity are consistent 

with this pattern of disease in which a slight underlying defect becomes pathological only 

in a subset of vulnerable neurons. 

 

Unregulated Rab7 cycling and accumulation of activated Rab7 

Almost all Rab GTPases share two physiological properties, slow GDP dissociation and 

low intrinsic GTPase activity. These properties render Rabs, including Rab7, dependent 

on the positive and negative influences of regulatory GEF and GAP proteins. In Rab7 

disease mutants, these two critical properties are absent, and Rab7 mutants are able to 

circumvent normal regulatory controls (Fig. 2.9). Specifically, we provide evidence that 

Rab7 mutants are able to become activated independent of GEF activity due to rapid, 

unregulated GTP exchange, but this activation is counterbalanced by unregulated, 

GTPase-independent termination of activity (Fig. 2.8). The net effect of unregulated 

activation and inactivation is a subtle increase in the duration of association of active 

Rab7 with target membranes and an increase in the GTP-bound, active fraction.  

 

Membrane cycling in mutant Rab7 is uncoupled from GTP hydrolysis  

Although a previous report concluded that disease mutants have a GTPase defect 

(Spinosa et al., 2008), we demonstrate that this apparent defect is largely a reflection of 

increased GTP dissociation. Under conditions where GTP is provided in excess, the 

hydrolysis rate of disease mutants approaches that of wild-type Rab7 (Fig. 2.2C-E). As 

the physiologic concentration of GTP (~500uM) is higher than the concentrations we 

used in our assays (Traut, 1994), we predict that in vivo, dissociation of GTP would be 



85 

 

followed by re-association and subsequent hydrolysis. Indeed, the observation that the 

phenotype of disease mutants is somewhat altered by adding the Q67L mutation (Fig. 

2.8A-C) provides indirect evidence that a modest amount of GTP hydrolysis does occur 

in disease mutants in vivo. Otherwise, adding the GTPase mutation to the disease mutant 

background would have no effect on their cellular phenotype. In addition, disease 

mutations are also able to rescue membrane cycling in the GTPase-deficient mutant (Fig. 

2.8C), suggesting hydrolysis-independent inactivation as a result of disease mutations. 

Based on these results, we propose that Rab7 disease mutants are able to become 

inactivated by two routes: 1) rapid dissociation and re-association of GTP with eventual 

GTP hydrolysis, and 2) dissociation of GTP and association of GDP.  Both of these 

mechanisms of inactivation are distinct from inactivation in wild-type Rab7 and highlight 

how disease mutations lead to misregulation of Rab7 activity.  

 

Figure 2.9. Model of how Rab7 disease mutants cause misregulation of the 
activation cycle. Activation of membrane-associated Rab7 normally requires GEF 
activity due to very slow dissociation of GDP. Following GTP binding, GAP-catalyzed 
hydrolysis inactivates Rab7 and allows extraction from the membrane by GDI. In Rab7 
disease mutants, the regulation of the activity cycle is disrupted. Decreased affinity for 
GDP allows GTP exchange to occur independent of GEF activity, and GTP dissociation 
allows hydrolysis-independent inactivation of Rab7. Following GTP dissociation, Rab7 
mutants can either become reactivated by binding GTP, or can bind GDP and become 
extracted by GDI. Since the relative affinity for GTP is greater than for GDP, Rab7 
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mutants are more likely to rebind GTP and undergo multiple activation cycles on target 
membranes before they are extracted. Thus, disease mutants cause misregulation of 
activation and inactivation of Rab7 resulting in alteration of the GTP-GDP ratio and a 
subtle increase in residence on target membranes. In the GTP-bound state, we predict that 
Rab7 disease mutants are largely bound to effectors, although it is possible that some 
fraction is not associated with effector proteins. 
 

Rab7 mutations cause a quantitative but not qualitative change in interaction with 

effector proteins 

Using LC-MS/MS, we demonstrate that disease-causing mutations do not qualitatively 

alter the complement of Rab7 interactors but cause quantitative changes in specific 

interactions (Fig. 2.5). This observation is consistent with our structural studies that 

reveal that the overall structure of mutant Rab7, and in particular the effector binding 

region, is unchanged from wild-type (Fig. 2.1). Specifically, we demonstrate significantly 

increased interaction of both Rab7 disease mutants with ORP1L, a well-characterized 

effector of active Rab7 that facilitates retrograde trafficking of late endosomes 

(Johansson et al., 2007), and Vps13C, which also shows increased binding to the Q67L 

mutant and is likely a mediator of active Rab7 function. Vps13C is an as yet 

uncharacterized protein whose yeast homolog regulates trafficking to the vacuole 

(Brickner and Fuller, 1997). Our analysis also identified several previously unidentified 

potential interactors of Rab7 (Table 2.2). Of particular note are VapB, the FYVE 

containing-protein ANKFY1, and SPG21, which localize to membranes and potentially 

play a role in vesicular transport (Soussan et al., 1999; Kuriyama et al., 2000; Hanna and 

Blackstone, 2009). A recent study elegantly demonstrated a role for VapB and VapA in 

regulating the cholesterol-dependent microtubule trafficking of Rab7-positive late 

endosomes (Rocha et al., 2009). High cholesterol levels on the cytosolic face of vesicles 
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activate ORP1L leading to stable recruitment of dynein, whereas low cholesterol levels 

allow the extraction of motor proteins from Rab7-RILP complexes by VapA and B. Our 

data suggest that misregulation of the Rab7 activity cycle in disease mutants may perturb 

such carefully orchestrated vesicular trafficking pathways.  

 

Notably, two of the novel Rab7 interacting proteins we identified have been implicated in 

human diseases affecting the nervous system. VapB mutations cause a familial type of 

amyotrophic lateral sclerosis (ALS8) (Nishimura et al., 2004), and SPG21/maspardin 

mutations cause spastic paraplegia 21 (Simpson et al., 2003). In addition, mutations in 

previously known Rab7 interactors have been implicated in multiple neurological 

diseases: REP-1 in choroideremia (van den Hurk et al., 1992; Seabra et al., 1993), GDI in 

X-linked mental retardation (D'Adamo et al., 1998), p150glued in distal spinobulbar 

muscular atrophy (Puls et al., 2003), βIII spectrin in spinocerebellar ataxia 5 (Ikeda et al., 

2006), and RILP as a gene deleted in Miller-Dieker syndrome (Cardoso et al., 2003). 

These results reveal a nexus of Rab7-associated proteins involved in human neurological 

disease and suggest that neurons are particularly vulnerable to mutations that impair 

protein trafficking through the endo-lysosomal system. Furthermore, the frequency with 

which function of the endo-lysosomal system is disrupted in familial and sporadic 

neurodegenerative diseases suggests overlapping mechanisms of pathogenesis, as has 

been suggested previously (Nixon et al., 2008).  

 

Functional consequences of Rab7 mutations 
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Dominantly inherited neurodegenerative diseases are typically attributed to gain-of-

function mechanisms.  At present, prevailing hypotheses suggest that disease results from 

gain of a novel toxic function that is unrelated to the normal function of the mutant 

protein. For example, many neurodegenerative diseases are caused by mutations that 

disrupt protein folding leading to the formation of aggregates that are potentially 

neurotoxic. In other cases a dominant-negative mechanism leads to loss of function of the 

mutant protein and its associated complexes. Our elucidation of the molecular defect 

caused by mutations in Rab7 illustrates an alternative mechanism: toxic misregulation of 

native function. While there is precedent for this mechanism underlying tumorigenesis, to 

our knowledge, this is the first example of this type of mechanism underlying 

neurodegenerative disease.  

 

How might misregulation of Rab7 lead to axonal degeneration? Rab7 specifically 

regulates transport, docking, and fusion of late endosomes, autophagosomes, and 

lysosomes. As such, Rab7 plays an important role in determining the fate of endocytic 

vesicles by regulating their fusion and subsequent degradation by lysosomes. In cultured 

neurons, over-expression of dominant-negative Rab7 reduces the degradation of TrkA-

containing signaling endosomes leading to increased trophic signaling and excessive 

neurite outgrowth (Saxena et al., 2005). Misregulation of Rab7 function as seen in 

CMT2B may have the opposite effect, resulting in premature lysosomal degradation of 

endocytic vesicles. CMT2B is characterized by length-dependent axonal degeneration 

that most prominently affects pain sensation. Notably, there is significant clinical overlap 

between CMT2B and familial insensitivity to pain (HSAN5, OMIM 608654) caused by 
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loss-of-function mutations in nerve growth factor beta (NGFB) and also congenital 

insensitivity to pain with anhydrosis (CIPA, OMIM 256800), which is caused by loss-of-

function mutations in the NGFB receptor TrkA (Indo et al., 1996; Einarsdottir et al., 

2004). The phenotypic similarity of CMT2B to these syndromes leads us to speculate that 

Rab7 mutations may cause premature degradation of TrkA-containing signaling 

endosomes with resulting attenuation of neurotrophic support and selective axonal 

degeneration in a length-dependent manner. Our results provide a framework for future 

work examining how Rab7 mutants influence signaling endosome dynamics and 

vesicular trafficking in cultured neurons and animal models.  
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Chapter 3: Conclusions and Future Directions 

 

Work presented in this chapter was performed by Brett McCray, Eran Perlson from Erika 

Holzbaur’s laboratory (University of Pennsylvania), and Christopher Deppmann from 

David Ginty’s laboratory (Johns Hopkins University). The chapter was written by Brett 

McCray.
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CMT2B disease mutations and misregulation of the Rab7 activity cycle 

As described in Chapter 1, Rab GTPases undergo a cycle of activation and inactivation 

that is coupled to reversible membrane association. In the active state, Rabs bind GTP, 

associate with membranes, and recruit effector complexes that exert diverse biological 

functions. Multiple proteins regulate the localization, membrane targeting, nucleotide 

exchange, and catalytic activity of Rab GTPases. As Rabs are master regulators of 

vesicular trafficking, they play a critical role in multiple regulated cellular processes from 

secretion of bioactive molecules, to protein degradation, to trophic signaling. Appropriate 

vesicular trafficking requires precise spatial and temporal coordination of Rab GTPase 

activity. As such, it is no wonder that Rab GTPases have evolved complex and 

multifactorial regulatory mechanisms. Highlighting the importance of these regulatory 

pathways, mutations that affect Rab regulatory proteins have been found to underlie 

various human diseases. For example, mutations in the GDP-dependent Rab chaperone 

Rab GDI lead to mental retardation (D'Adamo et al., 1998), and mutations in the Rab5 

GEF protein Alsin cause a form of amyotrophic lateral sclerosis (Hadano et al., 2001; 

Yang et al., 2001).  

 

While the mechanisms of targeting of Rab GTPases to specific vesicular compartments 

are rather poorly understood, targeting likely depends on a complex interplay of 

phosphoinositide and regulatory protein concentrations within vesicle membranes. In 

particular, the presence of factors such as the specific GDF and GEF proteins for a given 

Rab GTPase likely aid in the membrane recruitment and stable activation of Rabs. Once 

targeted to the appropriate membrane, other accessory proteins regulate activation and 
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inactivation of Rabs. Nearly all characterized Rab GTPases demonstrate intrinsically low 

rates of spontaneous nucleotide exchange and low rates of GTP hydrolysis. Thus, 

uncatalyzed activation and deactivation of Rabs occurs with slow kinetics. This property 

allows Rab activity to be exquisitely sensitive to both GEF activity that regulates GDP-

GTP exchange and GAP activity that regulates GTP hydrolysis. Our results presented in 

Chapter 3 highlight how CMT2B mutations cause misregulation of these critical steps in 

the Rab7 activity cycle. 

 

As GEF activity is likely to be critical for the specific and temporally appropriate 

recruitment of Rabs onto target membranes, misregulation of Rab7 activation is likely to 

lead to inappropriate membrane targeting. In the absence of GEF activity, membrane 

targeted Rabs are rapidly extracted by the action of GDI, which recognizes the GDP-

bound conformation. Thus, delivery of Rabs to a target membrane is normally 

insufficient for their activation and stable association. In the CMT2B disease mutants, we 

demonstrate a marked decrease in GDP affinity that favors GEF-independent GTP 

exchange. Thus, by eliminating the normally slow rate of GDP dissociation, disease 

mutations lead to unregulated and inappropriate activation of Rab7 that effectively 

eliminates the role of GEF activity in providing regulation of membrane recruitment. 

Disrupted regulation of membrane recruitment and activation could potentially lead to 

temporally or spatially inappropriate accumulation of Rab7 on target membranes. Indeed, 

we show that excessive activation directly leads to an increase in the membrane-bound 

fraction and shifts in effector binding.  
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The interval between GTP binding and hydrolysis represents the window of time during 

which Rabs are active and able to exert specific biological activity. While the kinetics of 

GTP hydrolysis on membranes are still relatively poorly understood, it is clear that GTP 

hydrolysis is tightly regulated by GAP proteins in order to limit the biological activity of 

membrane-bound Rabs. In Rab7 disease mutants, rapid GTP dissociation provides an 

alternative route to GTP hydrolysis for inactivation and membrane release. Thus, disease 

mutations partially negate the regulatory action of GAP proteins and cause uncoupling of 

GTP hydrolysis and membrane extraction. Particularly in situations where sustained 

Rab7 activity is required, such misregulation in Rab7 disease mutants could lead to 

premature and inappropriate silencing that interferes with proper Rab7 function. 

Together, our data indicate that disease-associated mutations in Rab7 lead to 

misregulation of activation and inactivation and likely circumvent regulatory mechanisms 

responsible for specifying the spatial and temporal pattern of Rab7 activity. Such 

misregulation could have a profound impact on endo-lysosomal dynamics, especially in 

the axons of peripheral neurons.  

 

Rab7 disease mutations and trafficking of signaling endosomes 

The misregulation of the Rab7 activity cycle in disease mutants suggests that the precise 

regulatory controls normally imposed on Rab7 are critical for neuronal health and 

maintenance. However, the question remains of how such misregulation leads to the 

specific pattern of axonal degeneration seen in CMT2B patients. As previously described, 

Rab7 has been implicated in the long-range axonal trafficking of Trk receptors, both in 

motor and sensory neurons (Deinhardt et al., 2006). Thus, it is possible that misregulation 
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of Rab7 activity leads to a defect in the transport of signaling endosomes that 

compromises the fidelity of neurotrophic signaling. Inappropriate, GTPase-independent 

inactivation of Rab7 disease mutants could lead to premature dissociation of Rab7 

effector complexes that are required for efficient retrograde transport of signaling 

endosomes. Preliminary evidence from cultured hippocampal neurons suggests 

generalized transport defects with an increase in the number of stationary vesicles in 

neurons expressing Rab7 disease mutants (work done in collaboration with Eran Perelson 

and Erika Holzbaur, U. of Pennsylvania, Fig. 3.1). This observation raises the possibility 

that disease mutations may lead to slowing of axonal trafficking. Specifically, a transport 

defect could result in length-dependent decreases in effective delivery of Trk signaling 

endosomes to the cell body and could thereby account for the specific pattern of 

degeneration in CMT2B. However, additional work characterizing the transport of Rab7-

positive vesicles in neurons will be needed to support this claim.  

 

Figure 3.1. Rab7 disease mutants disrupt axonal trafficking. Primary hippocampal 
neurons were transfected with GFP-Rab7 constructs, and vesicular movement was 
followed using phase contrast dynamic live-cell imaging. Images were acquired every 3s 
for a total of 120s. Vesicle movements were tracked using the manual tracking plugin for 
ImageJ. The average velocities for all vesicles over the course of the experiment were 
calculated, and vesicle velocities were grouped into 0.6 μm/s bins. The histogram 
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demonstrates an increase in slow moving and stationary vesicles (velocities from 0.3 to -
0.3) in neurons expressing Rab7 disease mutants. These results are consistent with a 
generalized trafficking defect caused by Rab7 mutations.  
 

The hypothesis presented above regarding Rab7 mutants and axonal trafficking follows 

from the assumption that Rab7 is the primary Rab GTPase responsible for the delivery of 

signaling endosomes from distal neuronal processes back to the cell body. While 

evidence of such a role for Rab7 exists (Deinhardt et al., 2006), other experimental 

results suggest that signaling endosomes are primarily transported by Rab5 rather than 

Rab7 (Delcroix et al., 2003; Ye et al., 2003; Cui et al., 2007). If Rab5 were the primary 

signaling endosome-related GTPase, then we envision an alternative explanation for how 

Rab7 disease mutations lead to axonal degeneration. In this scenario, Rab7 localization to 

signaling endosomes may represent a degradative signal that diverts endosomes from 

trophic support to a lysosomal fate (Fig. 3.2, top). In fact, Rab7 activity in PC12 cells has 

been shown to regulate the duration of signaling of NGF-TrkA receptor complexes by 

controlling their rate of degradation (Saxena et al., 2005). In this system, inhibition of 

Rab7 activity prolonged TrkA signaling in response to low dose NGF, and constitutively 

active Rab7 led to more rapid silencing of signaling (Saxena et al., 2005). Thus, the 

specific function of Rab7 in the signaling endosome pathway may be to facilitate 

lysosomal targeting and degradation. This raises the question of how signaling 

endosomes are normally targeted for degradation, and where in the axon this normally 

occurs. 
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Figure 3.2. Model of disruption of TrkA signaling in Rab7 disease mutants. 
Normally, NGF binds TrkA receptors at the synapse and leads to dimerization, 
internalization, and transport of activated receptors to the cell body. Such transport is 
proposed to be Rab5-dependent, although this is controversial. In this scenario, 
recruitment of Rab7 to signaling endosomes leads to their degradation, but such 
recruitment is largely inhibited until the vesicles have successfully trafficked to the soma. 
In Rab7 disease mutants however, misregulation of activity could lead to premature 
recruitment of Rab7 to signaling endosomes, inappropriate degradation, and attenuation 
of trophic support.  
 

Ultrastructural examination of NGF localization in cell bodies of cultured sympathetic 

neurons revealed that the majority of NGF resides within degradative organelles such as 

lysosomes and MVBs, thus indicating that signaling endosomes are ultimately targeted to 

acidic degradative vesicles (Claude et al., 1982). However, degradation of NGF-TrkA 

complexes within axonal process is virtually undetectable (Ure and Campenot, 1997), 

suggesting that most signaling endosomes evade lysosomal targeting until they reach the 

cell body. There is a continuous presence of acidified vesicles throughout axonal 

processes, although the concentration increases from distal to proximal (Overly and 
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Hollenbeck, 1996). Thus, the fact that signaling endosomes largely avoid degradation in 

the axons cannot be accounted for a lack of degradative vesicles within axons. Instead, 

these results suggest that signaling endosome degradation is tightly regulated and 

initiated only once signaling endosomes have successfully trafficked from the distal 

axonal processes back to the soma. If Rab7 targeting to signaling endosomes serves as a 

degradation signal, Rab7 recruitment to signaling endosomes must be actively inhibited 

prior to delivery to the cell body.  

 

As described above, GEF proteins play a critical role in the stable activation of Rabs on 

target membranes. In Rab7 disease mutants, however, unregulated, GEF-independent 

activation might lead to improper targeting of active Rab7 to signaling endosomes within 

axons and premature lysosomal degradation rather than long-range trafficking (Fig. 3.2, 

bottom). Thus, misregulation of Rab7 activation could lead to attenuation of neurotrophic 

signaling. One might predict that such premature degradation of signaling endosome 

would be a stochastic event, and therefore the cumulative probability of mistargeting of 

signaling endosomes to lysosomes would increase in longer axonal processes. Therefore, 

reduction in trophic signaling would be directly correlated to axon length and could 

presumably lead to a pattern of disease consistent with that seen in CMT2B. We have 

begun to address this question using cultures of primary sympathetic neurons transfected 

with wild-type or disease mutant Rab7. In these neurons, overexpression of Rab7 disease 

mutants leads to prominent accumulation of large, LysoTracker Red-containing vesicles 

in the cell body (work done in collaboration with Chris Deppmann, U. of Virginia, and 

David Ginty, Johns Hopkins, Fig. 3.3). This finding is consistent with the previously 
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presented model and could indicate excessive targeting of vesicles for degradation in 

neurons expressing Rab7 disease mutants.  

 

Figure 3.3. Rab7 disease mutants cause accumulation of enlarged acidic vesicles in 
sympathetic neurons. Primary mouse sympathetic neurons were transfected with GFP-
Rab7 constructs and imaged 48hr post-transfection. LysoTracker Red DND-99 
(Invitrogen) was added to visualize acidic vesicles. L129F and V162M Rab7 mutants 
induce the abnormal formation of enlarged, LysoTracker-positive vesicles in the soma. 
These structures were never seen in cells expressing wild-type Rab7.  
 

Characterization of Rab7-effector interactions in neurons  

To test whether misregulation of Rab7 disease mutants led to changes in protein-protein 

interactions, we performed an unbiased proteomic characterization of interactions in 

wild-type and mutant Rab7. Using extracts from HEK293T cells, we identified several 

previously known Rab7 interacting proteins as well as several novel putative interactors 

(Chapter 2, Fig. 3.5). In addition, we saw quantitative differences in the amounts of 
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specific effectors that were immunoprecipitated by wild-type Rab7 and Rab7 disease 

mutants. It is possible that some of these altered interactions could play an important role 

in the pathogenesis of CMT2B, and future studies will address the functional impact of 

these Rab7-effector interactions. The mutation-dependent association of Rab7 with the 

endo-lysosomal protein Vps13C is particularly intriguing, and it will be important to 

determine the function of Vps13C in Rab7-dependent pathways and to assess whether 

Vps13C activity is related to CMT2B pathogenesis. The membrane trafficking protein 

VapB was also identified as an interactor of Rab7 and will be discussed separately. 

 

There are two caveats to our proteomic characterization of Rab7 that deserve mention. 

First, our original choice to use HEK293T cells for expression of Rab7 constructs was 

made primarily because of the high transfectability of these cells. However, while strong 

expression of Rab7 was optimal for producing large amounts of immunoprecipitated 

protein, dramatic overexpression of Rab7 could have led to non-physiologic interactions. 

Thus, verification of interactions done under more physiologic conditions would increase 

the reliability of our results. Second, it is important to note that despite ubiquitous 

expression of Rab7, CMT2B disease mutations cause disease that is entirely restricted to 

peripheral neurons. This pattern of vulnerability indicates that neurons are uniquely 

sensitive to the specific defects imposed by Rab7 disease mutations. Thus, it is possible 

that the biological basis of CMT2B is related to neuron-specific Rab7-effector 

interactions that would not have been detected in our experiments using non-neuronal 

cells. We have now produced GFP-Rab7 lentivirus which will allow high-efficiency 

infection of various neuronal cell types and allow assessment of Rab7 interactions in 
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neuronal cells. A neuronal proteomics approach using differentiated PC12 cells, or 

primary sensory, motor, or sympathetic neurons might uncover tissue-specific changes in 

effector interactions that are particularly relevant to CMT2B pathogenesis. 

 

Functional characterization of the Rab7-VapB interaction 

We originally identified VapB (VAMP (vesicle associated membrane protein)-associated 

protein B and C) as a potential interactor of Rab7 through an unbiased proteomics screen 

(Chapter 3, Table 3.2, Fig 3.5, and Fig. S3.5). A P56S mutation in VapB leads to a 

familial, autosomal-dominant form of amyotrophic lateral sclerosis (ALS) designated 

ALS8 (Nishimura et al., 2004). ALS8 patients display the hallmark ALS signs of upper 

and lower motor neuron involvement associated with weakness, fasciculations, muscle 

wasting, spasticity, and hyperreflexia (Nishimura et al., 2004; Landers et al., 2008). The 

mechanisms by which mutations in VapB lead to motor neuron degeneration are 

currently unknown.  

 

VapB is a ubiquitously expressed 33kD type II integral membrane protein that localizes 

to multiple intracellular membranes (Weir et al., 1998). VapB was originally identified in 

Aplysia as a specific interacting protein of VAMP, also known as synaptobrevin, and this 

interaction was shown to be important for neurotransmitter release at the synapse (Skehel 

et al., 1995). VapB is highly conserved in eukaryotes and exhibits 63% sequence identity 

with the functionally and structurally related protein VapA (Lev et al., 2008). The 

functional domains of Vap proteins include a major sperm protein (MSP) domain at the 

N-terminus, a coiled-coil domain, and a transmembrane domain at the extreme C-
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terminus. The MSP is an immunoglobulin-like domain that interacts with FFAT (two 

phenylalanines in an acid tract) motifs found within various membrane interacting 

proteins, particularly oxysterol binding proteins (OBPs), OBP-related proteins (ORPs), 

and SNAREs (Loewen et al., 2003). The transmembrane domain anchors VapB within 

specific membranes and also mediates homodimerization and VapA-VapB 

heterodimerization (Nishimura et al., 1999). VapB is primarily localized to the ER and 

Golgi, although localization within synaptic vesicles, the plasma membrane, and 

endocytic vesicles has been suggested (Lapierre et al., 1999; Pennetta et al., 2002; 

Nishimura et al., 2004). Evidence suggests that VapB has diverse functions including 

regulation of membrane trafficking, membrane fusion, and lipid transport and metabolism 

(Lev et al., 2008). 

 

The function of VapB has been most extensively characterized using the Drosophila 

homolog Vap-33. Levels of Vap-33 regulate bouton number and size at the Drosophila 

neuromuscular junction (NMJ), possibly through the cleavage and secretion of the MSP 

domain (Pennetta et al., 2002; Chai et al., 2008; Tsuda et al., 2008). The ALS-causing 

P56S mutation in VapB localizes to the MSP domain and induces aggregation of VapB 

(Nishimura et al., 2004). In addition, the P56S mutant suppresses cleavage and secretion 

of Vap-33 and leads to the formation of inclusions in the ER and in motor neuron axons 

(Chai et al., 2008; Tsuda et al., 2008). These inclusions sequester wild-type Vap-33 and 

may lead to Vap-33 loss of function and subsequent interference with BMP signaling at 

the NMJ (Chai et al., 2008; Ratnaparkhi et al., 2008). Thus, mutations in VapB may lead 
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to a toxic gain of function through misfolding and aggregation, or a loss of function 

through sequestration of wild-type VapB. 

 

To follow up our initial identification of VapB as a potential interactor of Rab7, we 

sought to confirm this interaction using coimmunoprecipitation. FLAG-Rab7 

coimmunoprecipitated endogenous VapB from HEK293T cells, and this reaction was 

specific in that no immunoprecipitation of VapB was evident in control lysates (Fig. 

3.4A). To determine whether VapB is a general Rab GTPase binding protein, we 

examined VapB interactions in cells expressing FLAG-Rab7 or FLAG-Rab4. Rab4 is a 

Rab GTPase that regulates trafficking from recycling endosomes to the plasma 

membrane and shares significant homology with Rab7 (van der Sluijs et al., 1992). 

However, despite partially overlapping distributions and similar three dimensional 

structures, Rab4 and Rab7 interact with distinct sets of effector proteins. While FLAG-

Rab7 was again able to coimmunoprecipitate endogenous VapB, no interaction of VapB 

with FLAG-Rab4 was detected (Fig. 3.4B). We also saw no interaction with Rab11-

FLAG, another early endosomal Rab protein (data not shown). We next determined 

whether the interaction with Rab7 was altered in CMT2B Rab7 disease mutants. Rab7 

L129F and V162M disease mutants interacted normally with VapB and at roughly the 

same level as wild-type Rab7 (Fig. 3.4C). However, the predominantly GTP-bound 

mutant Q67L showed somewhat augmented interaction with VapB, and the GDP-locked, 

dominant-negative Rab7 mutant T22N failed to coimmunoprecipitate VapB. These 

results suggest that the Rab7 interaction with VapB is nucleotide-dependent and indicate 

that VapB is a bona fide Rab7 effector protein.  
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Figure 3.4. Rab7 specifically interacts with VapB. (A-C) HEK293T cells were 
transfected with FLAG-tagged constructs and subjected to immunoprecipitation with 
FLAG-agarose (Sigma). (A) VapB is specifically coimmunoprecipitated from cell lysates 
expressing FLAG-Rab7 and not from cells transfected with empty vector. (B) VapB is 
coimmunoprecipitated by FLAG-Rab7, but not by FLAG-Rab4, indicating that VapB is a 
specific interactor of Rab7 and not a general interactor of Rab GTPases. (C) VapB 
interacts with wild-type and disease mutant Rab7 and shows somewhat enhanced 
interaction with the constitutively active Q67L mutant. In contrast, VapB does not 
interact with the dominant-negative, GDP-locked T22N Rab7 mutant. 
 

A recent study identified VapA and VapB as regulators of the Rab7-RILP-ORP1L 

retrograde vesicular trafficking complex (Rocha et al., 2009). ER-resident Vap proteins 

were found to facilitate the dissociation of RILP from Rab7 under conditions of low 

cholesterol content. Thus, it is possible that the interaction of Rab7 and VapB we 

describe occurs in the context of cholesterol-dependent vesicular trafficking. Further 

work will be needed to elucidate the functional and structural details of the interaction 

between Rab7 and VapB. 
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Concluding remarks 

Our results demonstrate that disease-causing mutations in Rab7 lead to misregulation of 

the activity cycle. Furthermore, we document that such misregulation has multiple effects 

including an increase in the active fraction of Rab7, prolonged interaction with target 

membranes, and shifts in effector protein binding. Given that Rab7 mutations lead to a 

length dependent neuropathy of sensory and motor neurons, future experiments will be 

needed to elucidate how the general defects we describe in Rab7 mutants translate to the 

specific pattern of neuronal pathology seen in CMT2B.  

 

The basis of tissue specificity is a fundamental and difficult question not only in CMT2B, 

but in the field of neurodegeneration in general. As the genetic bases for more and more 

neurologic diseases are uncovered, it is becoming apparent that neurons are particularly 

vulnerable to disruption of trafficking through the endo-lysosomal and autophagic 

pathways (Fig. 3.5). Defects in vesicular transport and biogenesis underlie a variety of 

diseases, and these diseases display heterogeneous patterns of degeneration of neurons 

within the brain, spinal cord, or periphery leading to symptoms that range from cognitive 

decline to ataxia, weakness, and numbness. Notably, the causative proteins in many of 

these diseases are widely expressed, but the pattern of degeneration is often highly 

restricted and distinct across different diseases. While in some cases this reflects that 

mutations perturb very specific pathways, mutations in various proteins in the same 

pathway can lead to distinct diseases with non-overlapping patterns of neuronal 

degeneration. For example, Rab7, p150glued, and βIII spectrin are part of a common 

complex that regulates retrograde transport of late endosomes and lysosomes. However, 
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mutations in these proteins cause degeneration in specific patterns and therefore cause 

distinct clinical syndromes: CMT2B with length-dependent degeneration of motor and 

sensory neurons, distal SBMA with loss of motor neurons and prominent vocal cord 

paresis, and spinocerebellar ataxia 5 with loss of deep cerebellar nuclei. Such 

heterogeneity and variable tissue specificity have puzzled neuroscientists and suggest that 

a simple, generalized transport defect is insufficient to explain the diverse pathological 

features among neurodegenerative diseases.  

 

Figure 3.5. The vesicular transport pathway is a hotspot for genetic neurologic 
diseases. Multiple neurological diseases are caused by mutations in proteins involved in 
endocytic, autophagic, and lysosomal transport pathways. Shown in red are specific 
proteins and the disease associated with mutant forms of the protein. DI-CMTB, 
dominant intermediate Charcot-Marie Tooth (CMT) disease type B; CMT, Charcot-
Marie-Tooth disease; SCA5, spinocerebellar ataxia 5; HD, Huntington’s disease; AD, 
Alzheimer’s disease; IBMPFD, inclusion body myopathy with Paget’s disease of bone 
and frontotemporal dementia; FTD, frontotemporal dementia; PD, Parkinson’s disease; 
ALS, amyotrophic lateral sclerosis; SBMA, spinobulbar muscular atrophy 
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Instead, the phenotypic heterogeneity in neurodegeneration suggests that disease-causing 

mutations perturb very specific pathways that lead to selective degeneration of specific 

neuron subsets. Perhaps tissue specific pathology reflects the dependence of specific 

neurons on pathways that are either non-existent or are less central to homeostasis and 

survival in other neuron subtypes. For example, perturbation of signaling molecules 

necessary for proprioceptive neuron development would be predicted to cause specific 

loss of proprioception with sparing of touch and pain sensation. While this concept makes 

intuitive sense, such obvious mutation-phenotype correlations are rarely seen in 

neurological diseases.  

 

While it is clear that several common pathways are required for neuronal survival 

regardless of the neuron subtype, clues to the question of specific neuronal degeneration 

will likely come from a better understanding of the unique pathways that govern 

developmental and survival signaling in various neuron subtypes. While the molecular 

and proteomic characterization of signaling endosome regulatory proteins and cargos is 

in its infancy, it has already become clear that there is tremendous complexity in the 

regulation of retrograde axonal transport and downstream endosomal signaling events. 

Sensory, motor, and autonomic neurons have distinct developmental programs, respond 

to unique trophic signals, and rely on signaling through distinct protein complexes 

(Zweifel et al., 2005). In addition, while all neurons undergo directed transport of 

vesicles and signaling complexes, the cargos transported are likely to be highly 

heterogeneous in space, time, and among different neuronal types. Indeed, retrogradely 
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transported vesicles can carry cargos that initiate pro-survival signaling or apoptotic 

signaling depending on the circumstance (Perlson et al., 2009).  

 

Other potential mechanisms for defining specific neuronal vulnerabilities will likely be 

uncovered by future studies. For example, competition among neurons for limited trophic 

support might make certain neuronal subtypes more sensitive to subtle defects in 

signaling endosome trafficking (Deppmann et al., 2008). Alternatively, differential 

neuron-specific expression levels of antagonistic proteins could shift the balance of 

transport and degradation of certain endosomes and their cargo. For example, Rab5 and 

Rab7 may subserve opposing roles in regulating the targeting of signaling endosomes to 

degradative compartments, and variations in expression levels or activity in different cell 

types could influence endosomal degradation rates (Bucci et al., 2000). It is also likely 

that multiple transport-related protein complexes exist with unique stoichiometries and 

components, and tissue-specific heterogeneity of such complexes could lead to unique 

transport properties among different neurons. Finally, neuronal heterogeneity could arise 

from different combinations and concentrations of neurotrophin receptors expressed 

within synapses. Thus, neurons could be intrinsically tuned to be sensitive to variations in 

specific neurotrophin concentrations, and subtle disruption of such pathways could be 

uniquely toxic to a subset of neurons. Further investigation into the molecular details of 

signaling endosome transport and the pathogenic mechanisms of specific 

neurodegenerative diseases will likely reveal multiple potential mechanisms that could 

account for neuron-specific vulnerabilities. 
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We believe that our work characterizing the structural, biochemical, and cell biological 

properties of Rab7 disease mutants provides a framework for future work assessing the 

consequences of Rab7 mutations for axonal trafficking and the pathogenesis of CMT2B. 

Furthermore, elucidating the precise defects underlying CMT2B could lead to 

fundamental advances in our understanding of neuronal homeostasis and the well-

documented connection between trafficking defects and human neurological disease. 

Based on our work, we hypothesize that Rab7 mutations might specifically disrupt proper 

trafficking and signaling of endosomes containing activated TrkA receptors, and such 

disruption could account for length-dependent degeneration of sensory neurons that are 

dependent on NGF-TrkA signaling for survival. The subtle nature of the mutations in 

CMT2B likely allows for proper development of sensory neurons, but leads to an 

insidious process of axonal degeneration that occurs progressively with aging. An 

interesting implication of our results and our working hypothesis regarding CMT2B is 

that pharmacologic augmentation of NGF-TrkA signaling might provide therapeutic 

benefit in affected patients. Trials have been conducted to test whether exogenous NGF 

could improve symptoms in a number of neurological diseases, including diabetic 

neuropathy, but these trials have uniformly shown no significant benefit in these patient 

populations (Schulte-Herbruggen et al., 2007). However, in the diseases tested, there was 

no apparent link between the disease pathogenesis and decreased NGF-TrkA signaling. In 

contrast, we believe that a primary feature of CMT2B may be decreased transport of 

active TrkA to cell bodies in sensory neurons, and administration of exogenous NGF 

could potentially compensate for Rab7 mutation-dependent attenuation of trophic 

support. No animal models of CMT2B currently exist, but generation of transgenic mice 
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expressing mutant Rab7 in sensory and motor neurons could allow for more direct 

characterization of the pathological features of the disease. It will also be interesting to 

determine whether exogenous administration of NGF can diminish axonal loss in animal 

models of CMT2B, or whether patients with the disease will respond to such therapy. 
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Appendix 1: The role of autophagy in age-related 

neurodegeneration 

 

This section includes the following published review with some modifications: 

McCray, B.A., and Taylor, J.P. The role of autophagy in age-related neurodegeneration. 

Neurosignals 16, 75-84 (2008). 
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Abstract 

Most age-related neurodegenerative diseases are characterized by accumulation of 

aberrant protein aggregates in affected brain regions. In many cases, these proteinaceous 

deposits are composed of ubiquitin conjugates, suggesting a failure in the clearance of 

proteins targeted for degradation. The two principle routes of intracellular protein 

degradation are the ubiquitin-proteasome system (UPS) and the autophagy-lysosome 

system (autophagy), and both of these degradation pathways have been implicated in the 

pathogenesis of neurodegenerative disease. Converging evidence now suggests that 

impairment of autophagy contributes to the initiation or progression of age-related 

neurodegeneration. Moreover, many misfolded neurodegenerative proteins can be 

specifically degraded by autophagy, indicating that autophagic degradation may be 

exploited to remove toxic protein species. These observations suggests that manipulation 

of autophagy may provide novel strategies for therapeutic intervention for a class of 

diseases for which no effective treatments presently exist. 
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Living may be hazardous to your health 

Attendant to the process of protein synthesis is the risk of producing defective 

polypeptides that are prone to misfolding and aggregation. Indeed, it has been estimated 

that in excess of 25% of nascent peptides are faulty and rapidly removed by proteasomal 

degradation (Schubert et al., 2000). Even with correctly synthesized proteins there is 

competition between alternative folding pathways, some terminating in kinetically 

trapped and incorrectly folded conformers. Post-synthetic damage, cleavage events, or an 

imbalance of necessary co-factors or components of multimeric complexes also 

contribute to the burden of misfolded proteins (Taylor et al., 2002). More than simply 

being functionally deficient, misfolded proteins are prone to aberrant interactions, the 

formation of insoluble protein aggregates, and the acquisition of toxic properties. Thus, 

the importance of a vigilant quality control system to prevent the cytotoxic accumulation 

of misfolded proteins. This may be of particular importance to neurons, which are post-

mitotic and unable to dilute cytotoxic misfolded proteins through cell division. Protein 

quality surveillance takes place at many levels in the synthetic and folding processes 

(Muchowski and Wacker, 2005).  

 

In many cases, the ultimate fate of defective proteins identified by quality control systems 

is degradation by either of two intracellular catabolic pathways, the ubiquitin proteasome 

system (UPS) or the autophagy-lysosome system (Rubinsztein, 2006). The UPS 

accomplishes selective degradation of short-lived proteins. Degradation by the 

proteasome is spatially and temporally controlled largely by highly specific targeting of 

proteins by conjugation with polyubiquitin chains (Ciechanover, 2005). As such, 
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proteasomal degradation contributes to fine tuning the expression levels of select proteins 

and participates in the regulation of diverse cellular functions including cell cycling, 

signal transduction, and transcription regulation. The UPS also plays an important role in 

clearance of defective or misfolded proteins. Many neurodegenerative diseases are 

characterized pathologically by the accumulation of ubiquitin conjugates in affected 

neurons, suggesting that a defect in UPS function contributes to pathogenesis. This 

hypothesis has been bolstered by the identification of disease-causing mutations in 

several UPS components, but remains controversial (Ciechanover and Brundin, 2003). 

 

By contrast with the UPS, autophagy is a less selective, bulk degradation process that is 

largely responsible for the turnover of longer lived proteins (Levine and Klionsky, 2004). 

Autophagy plays a vital role in neuronal homeostasis by removing aged and potentially 

damaged proteins and providing a steady supply of macromolecules for further synthesis. 

Increasingly, defects in autophagy have been implicated as contributing to the initiation 

or progression of neurodegenerative disease. Here we will (i) describe the process of 

autophagy, (ii) review the evidence implicating a role for autophagy in neurodegenerative 

disease, (iii) address the controversy of whether autophagy is helpful or harmful in the 

context of neurodegenerative disease, and (iv) discuss the prospects of harnessing 

autophagy for therapeutic benefit. 

 

The autophagy-lysosome system  

The term “autophagy” describes a catabolic process in which cytoplasmic components 

such as organelles and proteins are delivered to the lysosomal compartment for 
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degradation. Several specialized forms of autophagy exist, and they are distinguished by 

the way in which cytosolic constituents reach lysosomes (Fig. A1.1). Microautophagy  

 

 

 

 

 

 

 

 

 

Figure A1.1. Intracellular protein degradation pathways. Cytosolic proteins can be 
degraded by the UPS or autophagy-lysosome system. Multiple forms of autophagy 
involve distinct routes by which cytoplasmic components are delivered for lysosome-
mediated degradation. (a) Proteasome-mediated degradation involves covalent addition 
of ubiquitin chains to target proteins followed by proteolytic cleavage within the catalytic 
barrel of the proteasome. (b) Macroautophagy is a multistep process by which cytosolic 
components are engulfed by an isolation membrane to form autophagosomes that are 
delivered to lysosomes. (c) In pexophagy, peroxisomes are surrounded by autophagic 
membranes and delivered to lysosomes. (d) Chaperone-mediated autophagy involves 
recognition of a peptide signal that induces receptor-mediated translocation into the 
lysosome. (e) In microautophagy, cytosolic contents are directly engulfed by lysosomes.  
 

involves direct engulfment of small volumes of cytosol by lysosomes (Ahlberg et al., 

1982). Pexophagy is a specialized form of autophagy for selective degradation of 

peroxisomes (Dunn et al., 2005). Chaperone-mediated autophagy is a regulated process in 

which proteins harboring a pentapeptide motif are specifically targeted for receptor-

mediated translocation into the lysosome, and is a significant catabolic pathway that may 
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account for degradation of up to 30% of all cytosolic proteins (Dice, 1990; Cuervo and 

Dice, 1996). These processes are distinguished from macroautophagy (hereafter referred 

to as autophagy), in which a membranous structure termed the isolation membrane or 

phagophore expands as a cup-shaped organelle to engulf a portion of cytoplasm, 

eventually fusing to form a new vacuole known as an autophagosome that 

compartmentalizes the cytosolic components (Arstila and Trump, 1968). In mammals, 

newly formed autophagosomes undergo a stepwise maturation process involving fusion 

with late endosomes and multivesicular bodies to form a structure termed an amphisome 

(Berg et al., 1998). Autolysosomes are formed when amphisomes ultimately fuse with 

lysosomes to deliver their contents for degradation by lysosomal hydrolases (Fig. A1.2). 

Finally, the breakdown products from the autolysosome are translocated back across the 

lysosomal membrane for reuse in metabolic processes.  

Figure A1.2. The process of macroautophagy. Macroautophagy begins with the 
formation of an isolation membrane (phagophore) that surrounds cytoplasmic 
constituents. This membrane elongates and then fuses with itself to create a sealed 
vesicle, termed the autophagosome, which encloses a portion of cytosol. In mammalian 
cells, autophagosomes undergo a maturation process that involves fusion events with late 
endosomes and multivesicular bodies. The products of these fusions are termed 
amphisomes. Finally, amphisomes fuse with lysosomes to generate degradative 
autolysosomes which complete the digestion of amphisome contents.   
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Induction and maturation of autophagosomes 

Autophagosome formation involves the coordinated activity of a large number of 

autophagy-related genes (Atg genes). Initially identified in yeast, the Atg genes are 

highly conserved in metazoans, including mammals (Wang and Klionsky, 2003). These 

genes function in two independent ubiquitin-like conjugation systems that each culminate 

in the formation of membrane-associated complexes that carry out the process of 

autophagosome formation (Fig. A1.3) (Ohsumi, 2001). In one arm of the conjugation 

system, sequential action of an E1 ligase-like protein (Atg7) and an E2 ligase-like protein 

(Atg10) generate a covalent isopeptide linkage of the C-terminal glycine of a ubiquitin-

like protein (Atg12) with a lysine residue of Atg5. Multiple Atg5-Atg12 conjugates are 

then cross-linked by Atg16 to form large Atg5-Atg12-Atg16 that contributes to 

phagophore membrane elongation. In the other arm of the conjugation pathway, Atg8 is 

proteolytically processed by Atg4 before interacting with the E1-like enzyme Atg7. Next, 

Atg8 is transferred to the E2-like protein Atg3 which ultimately catalyzes the conjugation 

of Atg8 to the lipid phosphotidylethanolamine (PE). This lipidation reaction allows Atg8-

PE to associate with both the outer and inner membranes of the forming autophagosome 

(Kabeya et al., 2000). The mammalian homolog of Atg8 is known as microtubule 

associated protein 1 light chain 3, or LC3. During activation of autophagy in mammals, a 

processed form of LC3, denoted LC3-I, is further cleaved to generate LC3-II, which is 

conjugated to PE and inserted into the phagophore (Kabeya et al., 2000). LC3 is the only 

protein in higher eukaryotes that is known to remain associated with the completed 

autophagosome, and consequently LC3 staining is used extensively as a histological 

marker of autophagosomes, and accumulation of LC3-II as an index of autophagic 
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activity and/or flux (Klionsky et al., 2007). In addition, increased LC3-II levels correlate 

with induction of autophagosome formation, a defect in their maturation, or both.   

 

Figure A1.3. Ubiquitin-like conjugation systems in autophagosome formation. 
Formation of autophagosome membranes occurs through two ubiquitin-like systems In 
the first conjugation cascade, Atg7 and Atg10 coordinate the covalent binding of Atg5, 
Atg12, and Atg16. In the second arm, Atg8 is cleaved to generate LC3-I, which is then 
conjugated to the lipid PE by the action of Atg7 and Atg3. The lipid-bound form of Atg8 
is known as LC3-II. 
 

Regulation of autophagy 

Autophagy is an evolutionarily conserved process whose primary task in lower organisms 

is the maintenance of metabolic homeostasis in the face of changing nutrient availability. 

Induction of autophagy leads to the degradation of non-essential cytoplasmic constituents 

into basic materials that can be reused for anabolism or energy production. As such, 

autophagy is tightly regulated by the nutrient supply via nutrient signaling pathways. In 

yeast, autophagy is situated downstream of the nutrient sensor phosphatidylinositol 3-

kinase (PI3K), and its downstream effecter Akt controls the activity of the kinase TOR 
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(target of rapamycin), a negative regulator of autophagy (Petiot et al., 2000; Arico et al., 

2001). Thus, activation of insulin-like receptors and PI3K leads to stimulation of TOR 

activity and suppression of autophagy. Conversely, autophagy is induced by signals that 

indicate decreased nutrients such as growth factor removal, serum starvation, and amino 

acid depletion. Inhibition of TOR, either through decreased signaling through PI3K and 

Akt, or pharmacologically by the macrolide antibiotic rapamycin, also leads to up-

regulation of autophagy (Noda and Ohsumi, 1998). In multicellular organisms, this 

general arrangement is conserved and nutrient sensing is subserved by PI3K Class I, 

although additional modes of regulation have also evolved, including activation by Class 

III PI3K which likely induces autophagy through interaction with Atg6 (Petiot et al., 

2000). 

 

Multiple roles for autophagy:  matters of life and death 

In yeast, the primary function of autophagy is to maintain viability during times of 

starvation. In multicellular organisms, autophagy is also critical to maintaining metabolic 

homeostasis, but has taken on additional, pleiotropic cellular functions. Autophagy is 

protective in stressful conditions such as nutrient or growth factor depletion, and also 

defends cells from invasion by certain pathogenic bacteria and viruses (Kirkegaard et al., 

2004). Constitutive clearance of cytosolic proteins by low-level basal autophagy is an 

additional important cytoprotective function, particularly to neurons, as evidenced by 

accumulation of ubiquitinated proteinaceous deposits and the development of 

neurodegeneration in mice deficient for basal autophagy  (Hara et al., 2006; Komatsu et 

al., 2006). Autophagy also plays a vital role in protecting cells from oxidative stress by 
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selectively eliminating damaged mitochondria, the most important source of free radicals 

in the cell  (Kim et al., 2007).  

 

In addition to this cytoprotective role, induction of autophagy can be detrimental. For 

example, some cancer cells use autophagy for protection against radiation therapy 

(Kondo et al., 2005), and various pathogens have evolved mechanisms to subvert 

autophagy for their own purposes  (Kirkegaard et al., 2004). In some paradigms, 

activation of autophagy has been associated with non-apoptotic cell death, termed type II 

programmed cell death  (Bursch, 2001; Gozuacik and Kimchi, 2004; Yu et al., 2004). 

Autophagy was initially implicated in cell death by work demonstrating a role for beclin-

1 (a positive regulator of autophagy that is homologous to yeast ATG6) as a potential 

tumor suppressor. Beclin-1 directly associates with the anti-apoptotic protein Bcl-2 

(Liang et al., 1998), and loss of beclin-1 activity predisposes to malignant transformation 

in animal models (Qu et al., 2003; Yue et al., 2003). Furthermore, beclin-1 mutations 

have been identified in human breast cancers (Aita et al., 1999). However, the precise 

relationship of beclin-1, induction of autophagy, and cell death remains obscure.  

Neuronal cell death is frequently accompanied by autophagic features (Florez-McClure et 

al., 2004), although evidence of a role for autophagy in mediating cell death is limited to 

a few studies. In the nematode C. elegans, gain-of-function mutations in genes that 

encode specific ion channel subunits such as the degenerins DEG-1 and MEC-4, and the 

acetylcholine receptor subunit DEG-3 lead to a necrotic-like degeneration of a subset of 

neurons which is suppressed by genetic inhibition of autophagy genes (Toth et al., 2007). 

Similarly, in the Lurcher mouse model of cerebellar degeneration, autophagic neuronal 
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death was implicated as mediating the pathological effects of mutations in the GluR2Lc 

glutamate receptor (Yue et al., 2002).  The observation in Lurcher pathogenesis may have 

broad implications regarding the possibility that autophagy may be a common mediator 

of cell death initiated by excitotoxicity (Orr, 2002), but this remains to be established.  

However, a general role for autophagy in neuronal death remains speculative. In most 

instances in which autophagic morphology has been found to accompany neuronal cell 

death, it remains indeterminate whether autophagy is the culprit, whether autophagy was 

induced secondarily to facilitate the removal of cellular components, or whether 

autophagy was induced as a cytoprotective response to cellular stress. It is quite possible 

that autophagic induction has the potential to be either protective or destructive, and the 

influence of autophagy depends on the type, degree, and duration of the inciting cellular 

stress. 

  

Decline of autophagy with aging 

The autophagy-lysosome system undergoes striking changes in aging cells.  Aging leads 

to reductions in autophagosome formation and autophagosome-lysosome fusion, both of 

which are consistent with decreased macroautophagy (Terman, 1995). There are also 

notable changes in lysosomes themselves, including increased lysosome volume, 

decreased lysosomal stability, altered activity of hydrolases, and intra-lysosomal 

accumulation of the indigestible material lipofuscin (Terman and Brunk, 2004). The 

precise molecular defects remain unknown, but these changes correlate with a decrease in 

the total capacity for degradation of long-lived proteins in many tissues of aged animals 

(Terman, 1995; Donati et al., 2001). Studies in aged rodents and senescent cells in culture 
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have revealed that aging is also associated with reduced rates of translocation of substrate 

proteins into lysosomes through chaperone-mediated autophagy (Cuervo and Dice, 

2000). This reduction is caused by age-related changes including increased degradation 

of the lysosomal membrane protein LAMP-2A and reduced ability of LAMP-2A to 

reinsert into the lysosomal membrane (Dice, 2007). 

 

The consequence of age-related decline in autophagy is diminished turnover of 

intracellular components and the reduced ability of cells to adapt to changes in the 

extracellular environment (Ward, 2002). Compromised clearance of old and/or damaged 

mitochondria by macroautophagy coupled with reduced turnover of long-lived proteins 

likely contribute to the intracellular accumulation of oxidized proteins in aged organisms  

(Kim et al., 2007). Age-related decline in autophagy may be particularly detrimental to 

the nervous system as post-mitotic cells such as neurons are vulnerable to the 

accumulation of undegraded metabolic products over the lifetime of the organism 

(Terman et al., 1999). Neuronal homeostasis uniquely depends on balanced, bidirectional 

trafficking of intracellular constituents between distal neurites and the cell soma. In 

neurons, autophagosomes and endosomes that fuse in the distal axon must be 

retrogradely transported, often over great distances, to the soma in order to fuse with 

lysosomes and degrade their contents (Hollenbeck, 1993; Yue, 2007). Thus, subtle 

disruptions of autophagosome formation, maturation, or trafficking would be predicted to 

have dire consequences for autophagic flux and neuronal homeostasis. Indeed, evidence 

is mounting that autophagic pathways are vitally important for the maintenance of 

neuronal health, particularly in the context of degenerative disease states. 
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Accumulation of autophagic vacuoles in patients and models of neurodegenerative 

disease 

Autophagic vacuoles are rare in neurons of the normal adult brain (Nixon et al., 2005). 

Increasingly, however, accumulation of autophagic vacuoles has been appreciated in the 

affected brain regions of a wide variety of neurodegenerative diseases. In Alzheimer’s 

disease, autophagic vacuoles appear in neocortical and hippocampal pyramidal neurons 

and accumulate markedly within the dendritic arbors of these affected cells (Nixon et al., 

2005) (See Fig. A1.4 for images and additional description of altered autophagy in 

Alzheimer’s disease). Autophagic vacuoles have also been described in melanized 

neurons of the substantia nigra in Parkinson’s disease (Anglade et al., 1997), and in 

affected brain regions in a variety of prion diseases including Creutzfeldt-Jakob disease, 

Gerstmann-Straussler-Scheinker disease, and fatal familial insomnia, where prominent 

changes in axon terminals include the accumulation of autophagic vacuoles and features 

consistent with axonal degeneration (Sikorska et al., 2004). Accumulation of autophagic 

vacuoles has also been described in pathological evaluation of tissue from polyglutamine 

disease patients. For example, cathepsin D immunopositive autophagic vacuoles that 

contain remnants of polyglutamine-expanded huntingtin protein are found in 

lymphoblasts derived from Huntington’s disease patients, while examination of cortical 

neurons by immunoelectron microscopy shows huntingtin-immunoreactive bodies that 

resemble multivesicular bodies, but are also cathepsin D positive and may be 

amphisomes or autolysosomes (Sapp et al., 1997). 
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Figure A1.4. Accumulation of autophagic structures in Alzheimer’s disease brain. 
(a) Ultrastructural appearance of dystrophic neurites from Alzheimer’s disease brain 
demonstrating autophagic structures that are similar to autophagic structures from highly 
purified subcellular fractions from mouse liver (b, c). Autophagic structures 
morphologies in Alzheimer’s brain include large double-membrane-limited vesicles 
containing multiple smaller double-membrane vesicles exhibiting heterogeneous 
intralumenal contents (d). Multilamellar bodies, another variant of autophagic structures, 
are also common in dystrophic neurites (e). This figure is adapted with permission from 
Nixon et al., 2005.  
 

In many cases, the accumulation of autophagic vacuoles observed in patients with 

neurodegeneration has been recapitulated in respective disease models. For example, 

exogenous expression of a variety of polyglutamine-expanded disease proteins leads to 

an increase in biochemical and morphological markers of autophagy in vitro (Kegel et al., 

2000; Taylor et al., 2003; Ravikumar et al., 2004; Iwata et al., 2005a) as well as in fly 

(Pandey et al., 2007) and mouse (Petersen et al., 2001; Skinner et al., 2001) models of 

polyglutamine diseases. However, from these descriptive studies it is not possible to 

distinguish whether accumulation of autophagic vacuoles is due to induction of 

autophagosome formation or a defect in clearance of autophagic vacuoles, such as might 
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occur with failure of autophagosome-lysosome fusion. If the accumulation of autophagic 

vacuoles observed in neurodegenerative disease is due to autophagy induction, 

descriptive studies also do not permit determination whether increased autophagy is 

helpful (e.g., an adaptive response to misfolded protein stress) or harmful (e.g., 

autophagic cell death). Of course, autophagy is not necessarily performing the same 

function in all diseases or at all stages within a single disease. Nevertheless, recognition 

of morphological features of altered autophagy in neurodegeneration set the stage for 

experimental studies of the functional role of autophagy in neurodegenerative diseases. 

Substantial progress has been made in sorting among these possibilities from studies of 

model systems of disease. 

 

Autophagy is neuroprotective 

Evidence suggesting a protective role for autophagy in the context of disease was initially 

provided by a series of in vitro studies demonstrating that disease-causing proteins are 

frequently degraded by autophagy. For example, pharmacological induction or inhibition 

of macroautophagy alters the rate of turnover of a polyglutamine-expanded protein, 

polyalanine-expanded protein, as well as wild type and mutant forms of α-synuclein 

(Ravikumar et al., 2002; Kabuta et al., 2006). Moreover, ultrastructural analysis by 

immuno-electron microscopy has demonstrated delivery of polyglutamine-expanded 

proteins to autophagic vacuoles (Kegel et al., 2000; Taylor et al., 2003). Chaperone-

mediated autophagy has also been found to contribute to the degradation of α-synuclein, 

a process that is impaired by disease-causing mutations (Cuervo et al., 2004). An 

interesting observation is the recruitment of Atg proteins including LC3, Atg5, Atg12, 
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and Atg16 into mutant huntingtin aggregates, suggesting autophagic activity in the 

vicinity of protein inclusions (Iwata et al., 2005b; Yamamoto et al., 2006). However, as 

protein aggregates have recently been found to nonspecifically sequester autophagy 

components, these particular results should be interpreted with caution (Kuma et al., 

2007). Collectively, these studies suggested that autophagy contributes to the degradation 

of multiple disease proteins and raised the possibility that induction of autophagy could 

be a protective pathway in the context of misfolded protein accumulation.  

 

Compelling evidence that autophagy is neuroprotective was provided by a series of 

animal studies in which impairment of the autophagy-lysosomal system was consistently 

found to induce neurodegeneration. Knockout of cathepsin D, a lysosomal protease 

highly expressed in the nervous system, in mice caused accumulation of autophagosomes 

and lysosomes with accompanying neural dysfunction and degeneration (Koike et al., 

2000; Koike et al., 2005; Shacka et al., 2007). Interestingly, signs of autophagic stress 

occur at very early ages in these mice and precede cell death (Koike et al., 2000). A 

Drosophila cathepsin D mutant also shows accumulation of indigestible pigments and 

modest neurodegeneration (Myllykangas et al., 2005). The importance of autophagy in 

neurodegeneration was further underscored by two studies examining conditional CNS 

knockout of autophagy in mice. Deficiency of Atg5 or Atg7, both critical genes for 

autophagosome formation, caused neurodegeneration characterized by ubiquitin-positive 

neuropathology (Hara et al., 2006; Komatsu et al., 2006). No evidence of proteasome 

impairment was detected, suggesting that loss of basal autophagy alone leads to 

ubiquitinated protein accumulation even in the context of normal UPS function. In 
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addition to highlighting the importance of autophagy in protecting neurons from toxic 

protein accumulation, these studies suggested the possibility of functional cross talk 

between autophagy and the UPS. Subsequent studies using Drosophila genetics provided 

direct evidence of a compensatory relationship between autophagy and the UPS (Pandey 

et al., 2007). 

 

But what of autophagy in the context of neurodegenerative disease in vivo? In all of the 

studies published to date, autophagy has been found to be neuroprotective in the context 

of disease. In several different Drosophila models of neurodegeneration based on 

misexpression of disease related proteins, genetic inhibition of autophagy is detrimental 

while pharmacologic induction of autophagy with rapamycin is protective (Ravikumar et 

al., 2004; Ravikumar et al., 2006; Pandey et al., 2007). While the effect of TOR 

inhibition by rapamycin is pleiotropic, in two of these studies it was verified that the 

beneficial effect of rapamycin was autophagy-dependent (Ravikumar et al., 2005; Pandey 

et al., 2007). Consistent results were obtained in a C. elegans model expressing a 

pathologic huntingtin fragment, in which degeneration was enhanced by genetic 

inhibition of autophagy (Jia et al., 2007). Perhaps the most exciting result was the finding 

that treatment of a transgenic mouse model with CCI-779, an analog of rapamycin, 

ameliorated several metrics of neurodegeneration including tremor prevalence, grip 

strength, body and brain weight, and rotarod performance, thus extending observations to 

mammals (Ravikumar et al., 2004).  
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Can autophagy be co-opted for therapeutic benefit? 

The evidence indicating that induction of autophagy is cytoprotective in 

neurodegenerative disease models raises the tantalizing possibility that this intracellular 

catabolic pathway may be exploited to clear toxic disease proteins and provide 

therapeutic benefit for patients. While rapamycin is an FDA-approved drug that has been 

used extensively in renal transplant patients, it is a less than optimal choice for 

therapeutic induction of autophagy as it is associated with serious adverse effects, most of 

which are related to long-term immunosuppression. Consequently, novel approaches to 

manipulating autophagy in human patients are desirable. Using a yeast screen, one recent 

study identified several small molecules capable of augmenting autophagy in mammalian 

cells and further demonstrated therapeutic benefit of these compounds in a Drosophila 

model of neurodegeneration (Sarkar et al., 2007). However, it remains to be seen whether 

any of these compounds will have clinical benefit and a favorable adverse effect profile 

in mammalian neurodegeneration models. Recently, overexpression of histone 

deacetylase 6 (HDAC6), a cytoplasmic deacetylase containing a ubiquitin binding 

domain, was found to suppress neurodegeneration in a model of polyglutamine disease 

and to compensate for defects in the UPS by facilitating  autophagic protein degradation 

(Pandey et al., 2007). These results suggest that HDAC6 functions at the intersection of 

the UPS and autophagy and identify HDAC6 as a promising target for pharmacologic 

manipulation in neurodegeneration. Future studies defining the molecular details of 

autophagic degradation of misfolded proteins will likely provide additional targets for 

therapeutic intervention in neurodegenerative diseases.  
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Unanswered questions and future directions 

While we now know that misfolded protein accumulation induces autophagy, and that 

autophagy suppresses neurodegeneration by assisting in the clearance of toxic protein 

species, unresolved questions remain. For instance, why is endogenous upregulation of 

autophagy insufficient to protect against the accumulation of proteotoxic species? Studies 

of autophagy and degeneration also underscore larger questions relating to fundamental 

issues in neurodegenerative disease. For instance, why do mutations that affect often 

ubiquitously expressed proteins specifically cause the demise of specific subpopulations 

of neurons? And finally, why is the onset of many neurodegenerative diseases age-

dependent in spite of expression of toxic protein species throughout the lifespan? While 

the answers to these questions are sure to be multifactorial and complex, perhaps some of 

the answers are related to the changing nature of autophagy with age. It is possible that 

upregulation of autophagy is sufficient to effectively clear misfolded proteins and 

forestall neurodegeneration early in life, but that diminished autophagic protein 

degradation with age might allow toxic protein accumulation and late-onset development 

of neurodegenerative pathology. Postmitotic cells such as neurons are likely to be 

particularly vulnerable to subtle disruptions in protein degradation pathways and 

membrane homeostasis as they require massive coordination of long-distance trafficking 

of vesicles and trophic factors. Therefore, a neuronal age-related decline in autophagy 

combined with the unique homeostatic demands of neurons might largely contribute to 

the selective sensitivity of neurons to the accumulation of proteotoxins. Support for these 

notions has come from manipulation of aging pathways in model organisms. Inhibition of 

insulin signaling pathways prolongs lifespan in multiple species (Kenyon, 2005). 
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Strikingly, these pathways involve repression of PI3K and Akt signaling, manipulations 

which lead to upregulation of autophagy. Furthermore, autophagy is required for 

extension of lifespan in worms that are deficient in insulin-like signaling pathways, 

suggesting that mutations that extend lifespan might work by activating autophagy 

(Melendez et al., 2003). Recent evidence has now directly linked neurodegeneration to 

aging by demonstrating that aging pathways strongly influence the onset of disease in C. 

elegans models of neurodegeneration. Expression of Aβ in muscle causes the progressive 

development of motor degeneration, but by delaying the aging process, aggregation of Aβ 

and the onset of symptoms is also delayed (Cohen et al., 2006). In addition, knockdown 

of autophagy blocks the protective effects of delayed aging, suggesting that 

neuroprotection associated with manipulation of aging pathways is autophagy-dependent 

(Florez-McClure et al., 2007). These results are consistent with the notion that protein 

aggregation and accompanying neuronal dysfunction might occur coincident with age-

related decline in cellular mechanisms to deal with misfolded protein species. Thus, the 

age-related onset of pathology in neurodegenerative conditions might be correlated with a 

decline in autophagic capacity beyond a critical threshold. However, additional studies 

will be required to define the precise relationship of aging, autophagy, and 

neurodegeneration. 

 

The result suggesting that autophagy contributes to basal turnover of ubiquitinated 

proteins is a fascinating finding that provokes additional questions. Presently, it is not 

known whether autophagy contributes nonspecifically to bulk degradation of 

ubiquitinated proteins, whether a certain subset of ubiquitinated proteins is selectively 
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identified for autophagic degradation, or whether undigested autophagy substrates are 

futilely ubiquitinated after deposition. And how precisely does CNS knockout of 

autophagy lead to degeneration? Defects in basal autophagy could lead to altered 

neuronal homeostasis and degeneration through impaired utilization of nutrients or an 

imbalance of vesicular biogenesis and turnover. Alternatively, neuronal dysfunction 

might be a more direct result of failed protein degradation with resultant accumulation of 

ubiquitinated protein aggregates. A final question: is autophagy universally protective in 

the context of neurodegenerative disease? A recent provocative study has implicated 

autophagy as a contributor to the production of toxic Aβ species in Alzheimer’s disease 

suggests that this is not necessarily so (Yu et al., 2005). Perhaps in the case of some 

diseases autophagy is initially induced as a neuroprotective response in stressed or 

injured neurons but is subsequently overwhelmed or impaired by disease-related factors. 

This could partly account for evidence that autophagy seems to be both induced and 

impaired in several major neurodegenerative diseases. Interestingly, mutations in Fig4, a 

protein which regulates levels of PI(3,5)P, have been found to cause an autosomal 

recessive form of Charcot-Marie-Tooth disease known as CMT4J (Chow et al., 2007). 

These mutations were subsequently shown to inhibit autophagy within axons, suggesting 

that defects in the autophagy-lysosomal pathway might underlie peripheral neuropathy in 

addition to loss of neurons in the brain and spinal cord (Ferguson et al., 2009). Future 

experiments will be needed to address whether such disruption of autophagy leads to the 

pathological accumulation of toxic, misfolded proteins, or whether blockage of 

autophagic flux causes disease through an as yet unidentified mechanism.  
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Appendix 2: HDAC6 regulates the steady-state levels and 

turnover of polyglutamine-expanded androgen receptor 

 

This section summarizes work that was included as part of the following publication: 

Pandey, U.B., Nie, Z., Batlevi, Y., McCray, B.A., Ritson, G.P., Nedelsky, N.B., 

Schwartz, S.L., DiProspero, N.A., Knight, M.A., Schuldiner, O., Padmanabhan, R., Hild, 

M., Berry, D.L., Garza, D., Hubbert, C.C., Yao, T.P., Baehrecke, E.H., and Taylor, J.P. 

HDAC6 rescues neurodegeneration and provides an essential link between autophagy and 

the UPS. Nature 447, 859-63 (2007). 
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Abstract 

A prominent feature of late-onset neurodegenerative diseases is accumulation of 

misfolded protein in vulnerable neurons (Taylor et al., 2002). When levels of misfolded 

protein overwhelm degradative pathways, the result is cellular toxicity and 

neurodegeneration (Trojanowski and Lee, 2000). Cellular mechanisms for degrading 

misfolded protein include the ubiquitin-proteasome system (UPS), the main non-

lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-

mediated degradative pathway (Rubinsztein, 2006). The UPS and autophagy have long 

been viewed as complementary degradation systems with no point of intersection 

(Ciechanover et al., 1984; Pickart, 2004). This view has been challenged by two 

observations suggesting an apparent interaction: impairment of the UPS induces 

autophagy in vitro, and conditional knockout of autophagy in the mouse brain leads to 

neurodegeneration with ubiquitin-positive pathology (Rideout et al., 2004; Iwata et al., 

2005a; Hara et al., 2006; Komatsu et al., 2006). It is not known whether autophagy is 

strictly a parallel degradation system, or whether it is a compensatory degradation system 

when the UPS is impaired; furthermore, if there is a compensatory interaction between 

these systems, the molecular link is not known. Pandey et al. show that autophagy acts as 

a compensatory degradation system when the UPS is impaired in Drosophila 

melanogaster, and that histone deacetylase 6 (HDAC6), a microtubule-associated 

deacetylase that interacts with polyubiquitinated proteins (Kawaguchi et al., 2003), is an 

essential mechanistic link in this compensatory interaction. The data presented in Pandey 

et al. show that compensatory autophagy is induced in response to mutations affecting the 
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proteasome and in response to UPS impairment in a fly model of the neurodegenerative 

disease spinobulbar muscular atrophy caused by polyglutamine tract expansion in the 

androgen receptor (AR). Furthermore, expression of HDAC6 is sufficient to rescue 

degeneration associated with UPS dysfunction in vivo in an autophagy-dependent 

manner. The work presented in this appendix specifically demonstrates that HDAC6 

rescues degeneration in flies expressing polyglutamine-expanded AR by facilitating AR 

turnover. 
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Introduction 

Neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, familial 

amyotrophic lateral sclerosis, and the polyglutamine diseases are characterized by the 

accumulation of toxic misfolded protein species  (Ross and Poirier, 2004). These 

misfolded proteins result in cytotoxicity and neuronal death through mechanisms that are 

poorly understood. Polyglutamine diseases constitute a family of nine dominantly-

inherited neurodegenerative diseases caused by expansion of a polymorphic 

polyglutamine (CAG) tract within the disease protein (Zoghbi and Orr, 2000). 

Spinobulbar muscular atrophy (SBMA) belongs to the polyglutamine disease family and 

results from polyglutamine expansion within the androgen receptor (AR) gene (La Spada 

et al., 1991). Polyglutamine disease manifests when the glutamine repeat reaches a 

critical threshold, and polyglutamine repeat length is strongly correlated with disease 

severity (Doyu et al., 1992). The expanded polyglutamine repeat confers a toxic gain of 

function to the normal gene product (Warrick et al., 1998; Moulder et al., 1999; Marsh et 

al., 2000). Expanded polyglutamine proteins form intracellular aggregates that can 

coalesce into ubiquitin-positive protein inclusions (Taylor et al., 2003). Although it is 

unclear which species in the aggregation/inclusion process is toxic, it is likely that 

interventions directed at augmenting turnover of polyglutamine proteins will have 

therapeutic value (Taylor et al., 2003; Arrasate et al., 2004).  

 

HDAC6 is a cytoplasmic deacetylase that contains two deacetylase domains, a ubiquitin-

binding zinc finger domain, and a dynein-binding domain (Seigneurin-Berny et al., 2001; 
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Kawaguchi et al., 2003). Deacetylase targets of HDAC6 include HSP90, α-tubulin, and 

the actin binding protein cortactin (Hubbert et al., 2002; Kovacs et al., 2005; Zhang et al., 

2007). HDAC6 binds misfolded, ubiquitinated proteins and facilitates their retrograde 

microtubule trafficking into specialized cellular structures termed “aggresomes” 

(Johnston et al., 1998; Kawaguchi et al., 2003). Aggresomes form in response to 

misfolded protein stress and represent an adaptive response that serves to sequester toxic 

proteins and facilitate their degradation (Taylor et al., 2003; Arrasate et al., 2004; Tanaka 

et al., 2004; Burnett and Pittman, 2005). HDAC6 has been shown to be required for 

aggresome formation, and its activity can protect against misfolded protein stress in vitro 

(Kawaguchi et al., 2003). However, aggresomes are primarily a cell culture phenomenon 

and their relevance to misfolded protein disease pathogenesis remains unclear. 

Furthermore, the role of HDAC6 in mediating misfolded protein turnover has not been 

explored in vivo. In the present study, we investigated the role of HDAC6 in the 

autophagic pathway and examined how HDAC6 levels influence the phenotypes 

associated with expression of misfolded, toxic proteins.  
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Materials and Methods 

Fly stocks 

All Drosophila stocks were maintained on standard media in 25oC incubators unless 

otherwise noted.  DHT (Steraloids) was mixed with freshly made food once it had cooled 

to <50oC to a final concentration of 1 mM. To generate AR transgenic flies, cDNA 

encoding full length human AR with 12, 77, or 121 CAG repeats was subcloned into 

pUAST (Brand and Perrimon, 1993). The cDNA for dHDAC6 was generated from EST 

LD43531 which encodes 1128 amino acids corresponding to HDAC6-RA on Flybase.  

Kpn1 and Xba1 restriction sites were included in the 5’ and 3’ primers, respectively for 

subcloning into the vector pAc5.1/V5 (Invitrogen). The dHDAC6 cDNA plus in-frame 

V5 tag was subsequently subcloned into pUAST. UAS-atg6-IR flies were described 

previously (Scott et al., 2004). Inverted repeats for UAS-atg12-IR flies were generated 

with primers 5’-ggcgcgccTATCC TTCTGAACGCCACTG-3’ and 5’-

gcggaattcCTTAGCAAAGTCATGTGCG TATCG-3’ as described previously  (Scott et 

al., 2004).   

 

Transgenic Drosophila lines were generated using standard techniques (Rubin and 

Spradling, 1982). The GMR-GAL4 line was obtained from the Bloomington Stock 

Center (Bloomington).  AR20Q and AR52Q flies were provided by Kenichi Takeyama. 

Elav-GeneSwitch flies were described previously (Osterwalder et al., 2001). Eye 

phenotypes of 1-day-old anesthetized flies were evaluated with a Leica MZ APO 

stereomicroscope and photographed with a Leica DFC320 digital camera.  



137 

 

 

SEM 

SEM samples were collected and fixed in 2.5% gluteraldehyde (EMSin PBS, and post-

fixed for 15-30 minutes in 1.5% osmium tetroxide (Stevens Metallurgical) in PBS. 

Samples were then dehydrated in ethanol, immersed in hexamethyldisilazane 

(Polysciences Inc.) and dried in a desiccator for three days. Specimens were then coated 

with gold:palladium using a Denton DV-503 vacuum evaporator, and analyzed using an 

AMRAY 1820D scanning electron microscope.      

 

Protein turnover assay 

UAS-AR or UAS-AR; UAS-dHDAC6-V5 transgenic flies were combined with flies 

expressing GeneSwitch GAL4 under the elav pan-neuronal enhancer. All flies were 

maintained at 25°C for the duration of the experiment. To monitor protein turnover in 

vivo, 1-day-old adult flies of the appropriate genotype were collected and starved for 12 

hours in a vial that contained only a kimwipe soaked with 3 ml of water.  After 

starvation, flies were placed in a vial that contained a kimwipe soaked with 3 ml of 500 

μM RU486 dissolved in a 2% sucrose solution (minus DHT condition) or 500 μM RU486 

and 1 mM DHT in a 2% sucrose solution (plus DHT condition) for 1 hour, and then 

transferred to a vial containing normal food (minus DHT condition) or food containing 1 

mM DHT (plus DHT condition) until collected for extract preparation. Five flies were 

collected every 2.5 hours up to 20 hours, heads were removed, crushed in RIPA buffer, 

sonicated, and analyzed by Western blot. AR, actin, and V5-tagged HDAC6 protein 

levels were assessed by immunoblot using antibodies against AR (N20, Santa Cruz 
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Biotech), 119 α-actin (119, Santa Cruz Biotech), and V5 epitope (Sigma). Quantification 

of luminescence was performed with a Kodak IS2000RT instrument and Kodak 

Molecular Imaging software. Minus DHT experiments were performed in quadruplicate 

and plus DHT experiments in triplicate. Mean AR/actin ratios and standard error of the 

mean were plotted on a logarithmic scale.  
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Results and Discussion 

HDAC6 suppresses degeneration associated with misfolded protein stress 

To determine whether overexpression of histone deacetylase 6 (HDAC6) could suppress 

degeneration associated with misfolded protein stress, flies expressing polyglutamine-

expanded androgen receptor (AR) in eye tissue were crossed to flies expressing 

Drosophila HDAC6 (dHDAC6).  As the ligand for AR is required for toxicity, AR52-

expressing flies reared on food without ligand showed no degenerative phenotype (Fig. 

A2.1.A). However, flies reared on food containing dihydrotestosterone (DHT), the ligand 

for AR, demonstrate a degenerative rough-eye phenotype characterized by 

supernumerary bristles and ommatidial disorganization, collapse, and pitting (Fig. 

A2.1.B). Ectopic expression of dHDAC6 strongly suppressed the ligand-dependent 

degenerative phenotype in flies expressing polyglutamine-expanded AR (Fig. A2.1.C). 

Thus, overexpression of dHDAC6 protects cells from polyglutamine toxicity in vivo.  

Figure A2.1. HDAC6 rescues degeneration in SBMA flies. SEM images of fly eyes 
expressing the indicated transgenes. Flies were reared either with or without DHT as 
indicated. (A) Normal eyes in AR52 flies reared without DHT. (B) Rough eyes in AR52 
flies reared with DHT. (C) Degeneration was suppressed by expression of dHDAC6. 
DHT = dihydrotestosterone. 
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HDAC6 accelerates the turnover of misfolded proteins 

We hypothesized that ectopic dHDAC6 suppressed degeneration in AR-expressing flies 

by promoting autophagic degradation of aberrant protein. Thus, we examined AR-

expressing flies and determined that overexpression of dHDAC6 led to lower steady-state 

levels of polyglutamine-expanded AR (Fig. A2.2.A). In contrast, inhibition of autophagy 

by knockdown of the autophagy genes atg6 or atg12 resulted in higher steady state levels 

of AR (Fig. A2.2.A). Altered steady-state levels occurred despite no significant change in 

RNA levels (data not shown), suggesting that dHDAC6 accelerates the rate of AR 

degradation. To investigate this further, we adapted the inducible GeneSwitch (GS) 

expression system to monitor protein turnover in vivo. This system utilizes a GAL4-

progesterone receptor fusion protein that is only active and able to induce expression of 

UAS-driven transgenes when a progesterone receptor ligand such as RU486 is 

administered (Osterwalder et al., 2001). Using this system, we tested whether dHDAC6 

overexpression increases the rate of turnover of AR52 in Drosophila neuronal tissue in 

vivo. In elav-GS;UAS-AR52 flies, no RU486-mediated expression was detected prior to 

induction of protein expression (data not shown). To induce expression, starved flies 

were fed sucrose media containing RU486 for one hour, which resulted in a pulse of 

expression that became detectable within 2 hours, peaked after approximately 10 hours, 

and then gradually decayed (Fig. A2.2.B-C). In elav-GS;UAS-AR52;UAS-dHADC6 

flies, there was a parallel induction of AR52 expression, but an accelerated rate of decay 

(Fig. A2.2.C-D). We estimated the half-life of AR52 in vivo by regression analysis using 

AR52 levels between 10-20 hours post-induction and determined that co-expression of 
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dHDAC6 reduced the half-life by approximately 2-fold (Fig. A2.2.C). Importantly, co-

expression of dHDAC6 not only accelerated the turnover of AR52 monomers, but also 

high molecular weight aggregates that were trapped in the stacking gel (Fig. A2.2.B, D). 

This suggests augmented turnover of AR when dHDAC6 levels are increased.  

 

Figure A2.2. HDAC6 accelerates the turnover of polyglutamine-expanded AR. (A, 
B, D) Western blots from flies expressing the indicated transgenes. (A) Steady-state 
levels of AR52 protein are reduced in flies overexpressing dHDAC6, but are elevated in 
flies in which atg6 or atg12 has been knocked down. (B) Western blots showing the 
temporal profile of AR52 protein monomer and high molecular weight aggregate levels 
after a brief pulse of expression. (C) A logarithmic plot of AR52/actin ratios was used to 
determine the line of best fit by regression analysis (y=Ae-Kx). R2=0.9117 (AR52 -DHT), 
R2=0.7808 (AR52 +DHT), R2=0.9719 (HDAC6 + (AR52 -DHT)), R2=0.9644 (HDAC6 + 
(AR52 +DHT)). Half-life was determined by the slope of the best fit line with the 
equation t1/2 = 0.693/K. Half-life of AR52 in vivo was reduced ~2-fold in flies co-
expressing dHDAC6 and did not differ significantly in the presence (broken lines) or 
absence (solid lines) of DHT. (D) Flies co-expressing dHDAC6 showed a nearly identical 
profile of induced expression as in (B), but AR protein decayed at an accelerated rate. 
Exogenous dHDAC6 was detected by immunoblot against the V5 epitope. 
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Together, these results suggest that HDAC6 can dramatically suppress degeneration 

associated with overexpression of toxic, misfolded proteins in vivo. Furthermore, our 

results suggest that the suppressing effect of HDAC6 is mediated by acceleration of 

protein turnover through the autophagic pathway since HDAC6-mediated suppression of 

degeneration requires autophagy (data not shown). As HDAC6 both binds ubiquitinated 

proteins and is able to traffic along microtubules, HDAC6 may play a role in directing 

misfolded proteins to autophagic machinery or may more directly regulate autophagic 

vacuole maturation, trafficking, or fusion. Future experiments will address the specific 

role of HDAC6 in facilitating the autophagic degradation of misfolded proteins.  
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