SmartCIS: Integrating Digital and Physical Environments

Mengmeng Liu
Zachary G. Ives

Svilen R. Mihaylov
Boon Thau Loo

Zhuowei Bao Marie Jacob
Sudipto Guha

Computer and Information Science Department, University of Pennsylvania, Philadelphia, PA, U.S.A.
{mengmeng,svilen,zhuowei,majacob,zives,boonloo,sudipto}@cis.upenn.edu

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems and Software—distributed

systems,query processing; H.2.5 [Database Management]: Het-
erogeneous Databases—data translation

General Terms

Experimentation, Languages, Performance

Keywords

sensor, stream, data integration, intelligent building

1. INTRODUCTION

As networked sensors continue to grow in sophistication and de-
crease in cost, we are seeing a new class of applications: those that
combine data from the digital world with sensor readings, to fa-
cilitate environments that intelligently manage resources and assist
humans. Examples include intelligent power grids [15], smart hos-
pitals [14], home health monitors, energy efficient data centers, and
building visitor guides.

In all of these applications, there is a need to bring together
disparate data from databases (e.g., site information, patient treat-
ments, maps) with data from the Web (e.g., weather forecasts, cal-
endars), from streaming data sources (e.g., resource consumption
within a server), and from sensors embedded within an environ-
ment (e.g., generator temperature, RFID readings, energy levels)
— in order to support decision making by high-level application
logic. Today this sort of data integration, if done at all, is performed
by a proprietary software stack over fixed devices.

In order for intelligent environments to reach their full poten-
tial, what is necessary is an extensible, multi-purpose data acqui-
sition and integration substrate through which the application can
acquire data — without having to be coded with special support for
new device types, new network types, and new datatypes. Over the
past 20 years, the database community has developed a wealth of
techniques for performing data integration through queries, views,
and related formalisms [10]. Likewise, declarative queries have al-
ready been shown to be useful beyond databases, with extensions
for distributed data stream management [1, 2, 3, 8] and sensor net-
works [4, 5, 12]. The key question is how to develop a unified
declarative query and integration substrate, which supports a mul-
titude of stream and static data sources on heterogeneous, possibly
unreliable networks. Computation should be expressed in a single
query language and “pushed” to where it is most appropriate, tak-
ing into account capabilities, battery life, and network bandwidth.

Copyright is held by the author/owner(s).
SIGMOD’09, June 29-July 2, 2009, Providence, Rhode Island, USA.
ACM 978-1-60558-551-2/09/06.

The ASPEN (Abstraction-based Sensor Programming ENviron-
ment) project tackles these issues, focusing on extending formalisms
of data integration — schema mappings, views, queries — to the
distributed stream world. We are developing (1) new query pro-
cessing algorithms suitable for integrating highly distributed stream
data sources, both in low-power sensor devices [13] and more tra-
ditional PCs and servers [11], (2) query optimization techniques
for federations of stream processors specialized for sensor, wide
area, and LAN settings, and (3) new datatypes, query extensions,
and data description language abstractions for environmental mon-
itoring and for routing information to users. In support of smart
environments, we seek a single data access layer for integrating
sensor, stream, and database data, regardless of origins. This sin-
gle programming interface over heterogeneous sensors and stream
sources distinguishes us from from other sensor systems [6, 9, 12].

To evaluate our work, we have been developing a showcase ap-
plication: instrumenting our Computer and Information Science
buildings, labs, and data centers with devices and user interfaces to
improve energy efficiency, guide visitors to their desired destina-
tions, and find free desks and laboratories. Our application, Smart-
CIS (Smart Computer and Information Science Building), forms
the centerpiece of our demonstration. SmartCIS consists of a suite
of sensor devices deployed throughout a portion of Penn’s Moore
building (which holds most of our laboratories), a set of “soft sen-
sors” (monitors of logical state) running on computers, and a graph-
ical interface and control logic. Functionality is enabled via the
ASPEN data acquisition and integration substrate.

2. DEVELOPING A SMART BUILDING

One of the most compelling emerging applications of sensors is
intelligent building environments: they promise to make the ex-
perience of visiting a large building or a hospital less disorient-
ing, to make buildings or large datacenters more energy-efficient,
to help occupants remember to take their medications or make it
to a next meeting. A distinguishing feature of such environments,
when compared with other sensor network applications, is a need
to bring together database data with streaming data from the Web
or Internet and streaming data from sensor devices. The task of
designing a smart building can be separated into three tiers: data
acquisition and integration, control logic, and a user-interface view
(analogous to model-view-controller architectures).

As a testbed and showcase of intelligent environments and our
ASPEN substrate, we have been developing the SmartCIS appli-
cation, which monitors occupancy and locations, machine activity,
and machine physical state. It also incorporates data from databases
and the Web. We target two tasks: monitoring the space that people
(students) use in order to guide them to destinations, and monitor-
ing machines in order to facilitate adaptive power management or
to detect failures. SmartCIS has the following capabilities:

Room monitoring. Laboratories and offices can be monitored for
temperature and light on/off status. This can be used, e.g., to deter-
mine whether a laboratory is open or a room is occupied.

Machine-state monitoring. Servers and workstations run soft-
ware that monitors machine activity: jobs executing, users logged
in, CPU utilization, memory, number of requests being handled in
a Web server application. This helps determine machine usage, in-
cluding patterns across machines.

Workstation monitoring. Servers and workstations are plugged
into power distribution units (PDUs) with Web interfaces showing
current power consumption. A “wrapper” periodically (every 10s)
extracts this value and sends it along a data stream. IRIS or iMote2
sensors mounted on each machine monitor its temperature. At each
desk, the light-level sensor on a similar “mote” is used to detect if
someone is seated in the chair.

Detection of occupants. “Mote” sensors are embedded in the
hallways at major intersection points, and every 100 feet. These
sensors listen for a “beacon” transmission from an active RFID de-
vice (also a mote) carried by an occupant and determine where that
person is positioned in the building.

Databases and Web sources. We incorporate database informa-
tion specifying the coordinates on the map of each RFID detector
(the motes have no built-in positioning capability), a list of machine
configurations and locations in each laboratory, and a table of “rout-
ing points” describing possible path segments and distances in the
building in order to suggest routes to resources.

Based on these inputs, SmartCIS supports a variety of queries.
We can trigger alarm notifications if machines exceed a tempera-
ture or load factor. We can monitor the total resources used (energy,
memory, CPU) by any user or application, even across machines.
We can find available machines in the laboratories, even by capa-
bility. We can determine where a visitor is located. Finally, we
can do path routing in the buildings, in order to guide the visitor
to a destination. Our graphical displays are located on laptops with
wireless access, which may be virtually “mapped” to positions in
the building. At each display, the user may select a query by ad-
justing controls, e.g., double-click on a machine or laboratory to
monitor, or via a combo box choose a resource to locate.

3. SMARTCIS-ASPEN ARCHITECTURE

The SmartCIS system architecture consists of three major com-
ponents: a graphical interface for authoring queries and returning
results, which is deployed on machines in the environment; the AS-
PEN data integration and acquisition substrate, which includes two
query runtime systems (one that enables certain computations to
be “pushed” to sensor devices, and one that does distributed stream
processing over PC-style servers and workstations) plus a federated
query optimizer; and wrappers and interfaces over the actual sen-
sors, databases, and machines. (See Figure 1.) Components of the
ASPEN substrate are highlighted in boldface. (Ultimately ASPEN
will also include support for schema mappings and query reformu-
lation, but for SmartCIS these components are not necessary.)

Most of the research innovations are in the ASPEN modules.
ASPEN takes a query (Stream SQL with extensions for devices
and for routing query output to displays) and invokes a federated
query optimizer that partitions it into two portions (as in Fig. 1): a
subquery that will be “pushed” out to the sensor network and sensor
devices, and the remaining computations that will be executed on
our distributed stream engine for servers and workstations.

The distributed sensor engine, whose core features were described
in [13], is novel in supporting not only aggregation and selection
queries over sensor devices, but in-network joins between devices.

This is useful in SmartCIS, for instance, when we return machine
temperature data for workstations that are in use. We detect that a
workstation is being used by checking for a low light-level at the
adjacent chair. Hence, the most efficient query strategy is to per-
form a proximity-based join between temperature and light-level
sensors (with a threshold applied on the light level), and to only
route temperature data across the sensor network if the light thresh-
old is met. Our sensor engine’s query optimizer decides, on a
sensor-by-sensor basis, where to perform the join computation.

Our distributed stream engine, described in [11], supports not
only basic Stream SQL queries over windowed data, but also tran-
sitive closure queries that enable computation of neighborhoods
and paths. The stream engine performs most of the query process-
ing within SmartCIS, bringing together stream data, database data,
and data output by the subqueries sent to the sensor engine. It is
also responsible for computing suggested routes for building oc-
cupants to get to their destination — this can be done in real-time
based on the occupant’s current position and information about the
topology of the buildings (the routing points described previously).

The federated query optimizer supports multiple underlying het-
erogeneous distributed query engines. Somewhat along the lines
of the model established in the Garlic system [7], the federated
optimizer enumerates all possible plans, and partitions these plans
among the different query engines. It invokes the optimizer for
each query engine over its assigned partition, and determines (1)
whether this is a query plan the engine can actually execute, and
(2) what the cost of the query partition would be. The novelty in
ASPEN is that the cost models of the different sub-optimizers may
return different cost parameters: the sensor optimizer attempts to
minimize message traffic, whereas the stream optimizer attempts to
minimize latency to answers. The federated optimizer must convert
everything to one model, in part by making use of catalog informa-
tion about the sensor network diameter, sampling rates, etc.

4. SMARTCIS DEMONSTRATION

The demonstration will combine real, live components in Penn’s
buildings (primarily the Moore building with our computing labs)
with remote laptops on-site at the conference. See Figure 2 for a
screenshot of our graphical interface and deployment.

The physical configuration of the SmartCIS devices and moni-
toring software at Penn are as described in Section 2. We will use
laptops to display data and pose queries from the perspective of
different locations within the building. Local motes will be logi-
cally mapped to RFID sensors in the hallways of the building (i.e.,
their data will be used in lieu of the data from the actual device).
An additional mote device will perform as an active RFID beacon
(transmitting a signal with low power), and as visitor approaches
one of the local motes, this simulates moving in the building. The
visitor will then request a set of desired features for a free machine
(e.g., Fedora, Word, etc.). The SmartCIS application will plot on
the GUI a route to such a machine in the laboratories.

Additionally, a visitor may click on different graphical elements
of the GUI to see real-time information for the conditions in the
demo area, e.g., machine state or laboratory status. Finally, we will
include real-time information about the actual computations being
performed: the query plan and its partitioning across subsystems
and devices; wireless signal strength; remaining battery life; etc.

This demonstration will show the effectiveness of our ASPEN
system adn technologies in a real application, while simultaneously
highlighting the potential of intelligent buildings.

5 REFERENCES

[1] A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: semantic foundations and query execution. VLDB J.,
15(2), 2006.

GuI Stream Federated [select p.id, S.room, S.desk, r.path)
System ’ SQL |—» L __| | from Person p, Route r, OpenMachinelnfo O, Machines m
Interface Parser Optl mizer - where O.room = m.room ~ O.desk = m.desk ~ p.needed like m.software »
r.start = p.room ” r.end = O.room

order by p.id

—
—
Ve _ -
~
~
~

Query over federated system

7
< Source & Stream Sensor =
Ve . . . create view OpenMachinelnfo as (
7 Device Eng ine En gine select ss.room, ss.desk from AreaSensors sa, SeatSensors ss
Ve Catalo Optimizer Optimizer where sa.room = ss.room " sa.status = "open” " ss.status = "free"
7)
- i
7 Y
Sensor
p— Stream .
select p.id, ss.room, ss.desk, r.path Engine Englne
| from Person p, Route r, AreaSensors sa, SeatSensors ss, Machines m (on
| where r.start = p.room / r.end = sa.room ~ p.needed like m.software " (on PCs) devi
| sa.room = ss.room ” m.desk = ss.desk " sa.status = "open" " ? eVICBS)
| ss.status = "free" N -
| order by p.id Wrappers: Machine T
| state & data >
streams and tables 1

Figure 1: Architecture of SmartCIS, including ASPEN components in bold.

| 2) SmartIs Building Interface | =S
File Help
Please help locate a machine with:
| — —a D: [Fedora -
Q @ Q Q CPU utiization must be under 1
, < - & @ Show: @ Path to nearest £ ©) Al available
& q Information about highlighted machine:
0 ~ Machine ID: [dspcs | Type: [Core 2E6300
Py Q & Utiization: (2% Toptask [ampemmen
< Machine temperature: | 79 Occupied: false
‘ & q Power draw: [186W
& & Configuration of di
@ Q E Logically map display bor [Stairwel -
100B @ Person
o) Moore Hall .
L) ® o (r) RFID
5 i * Pant
oin
® v b
l Room
Temp
= Busy
e— ® ~D PC
. []
(r
Levine Hall [} Skirkanich Hall Free
PC

Figure 2: Screenshot of GUI showing building layout, open and closed (shaded with dashed lines) labs, free and unavailable machines,
and a path to and details about the nearest machine with Fedora Linux.

[2] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker.

Fault-tolerance in the Borealis distributed stream processing system.

ACM Trans. Database Syst., 33(1), 2008.
[3] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman,
F. Reiss, and M. A. Shah. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In CIDR, 2003.
[4] A.J.Demers, J. Gehrke, R. Rajaraman, A. Trigoni, and Y. Yao. The
Cougar project: a work-in-progress report. SSIGMOD Record, 32(3),
2003.
A. Deshpande and S. Madden. MauveDB: Supporting model-based
user views in database systems. In SIGMOD, 2006.
M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi,
E. W. 0002, O. Cooper, A. Edakkunni, and W. Hong. Design
considerations for high fan-in systems: The hifi approach. In CIDR,
2005.
[7]1 L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing
queries across diverse data sources. In VLDB, 1997.

[5

—_

[6

—_

[8] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and

1. Stoica. Quering the Internet with PIER. In VLDB, 2003.

[9] N. Khoussainova, E. Welbourne, M. Balazinska, G. Borriello,

G. Cole, J. Letchner, Y. Li, C. Ré, D. Suciu, and J. Walke. A
demonstration of cascadia through a digital diary application. In
SIGMOD, New York, NY, USA, 2008.

M. Lenzerini. Tutorial - data integration: A theoretical perspective. In
PODS, 2002.

M. Liu, W. Zhao, N. Taylor, Z. Ives, and B. T. Loo. Maintaining
recursive stream views with provenance. In ICDE, 2009.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Design of
an acquisitional query processor for sensor networks. In SIGMOD,
2003.

S. R. Mihaylov, M. Jacob, Z. G. Ives, and S. Guha. A substrate for
in-network sensor data integration. In DMSN, August 2008.

J. V. Sutherland, W.-J. van den Heuvel, T. Ganous, M. M. Burton,
and A. Kumar. Future of Intelligent and Extelligent Health
Environment, volume 118/2005, pages 278-312. I0S Press, 2005.

J. Taft. The intelligent power grid. Innovating for Transformation:
The Energy and Utilities Project, 6:74-76, 2006. Available from
www.utilitiesproject.com.

[10]
[11]

[12]

[13]

[14]

[15]

