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Critical behavior of the random-field Ising model
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We study the critical properties of the random field Ising model in general dimemsiasing high-
temperature expansions for the susceptibiligp=3[(oi0j)r—(oi)w(o;)t]n and the structure factor,
G=Z[(oj0;)1]n, where()t indicates a canonical average at temperalufer an arbitrary configuration of
random fields andl];, indicates an average over random fields. We treated two distributions of random fields,
the bimodal in which each; = +h, and a Gaussian distribution in which edgthas variancé?. We obtained
series fory andG in the form=,_, 15,(9,d)(J/T)", wherelJ is the exchange constant and the coefficients
a,(g,d) are polynomials irgEhSLJ2 and ind. We assume that & approaches its critical valug&;, one has
x~(T—T,) YandG~(T—T,) ?. For dimensions above=2 we find a range of values af for which the
critical exponents obtained from our series seem not to depeigd Bor large values of our results show a
g dependence which is attributable to either a tricritical point or a first-order transition. All our results for
critical exponents suggest that 2y, in agreement with the two-exponent scaling picture. In addition we have
also constructed series for the amplitude rafies (G/x?)(T?)/(gJ?). We find thatA approaches a constant
value asT— T, (consistent withy=2v) with A~1. It appears thaA is somewhat larger for the bimodal than
for the Gaussian model, in agreement with a recent analysis atchigh

. INTRODUCTION whereZ=Tr exp(—B7) is the partition function associated
with the Hamiltonian of Eq(1). Here we consider two dis-
In this paper we study the critical properties of the ran-tributions for theh;, namely the Gaussian, for which
dom field Ising mode[RFIM). This model is defined by the

Hamiltonian P(hi)=(277h(2))’1’2exp:—hi2/(2h§)] )

e o . and the bimodal, for whicl; = = hgy with equal probability.
7 J% 719 2." hii @ We will express results in terms of the variablgs h3/J?
o . . andK=BJ. As we shall discuss in more detail below, this
where (ij) indicates that the sum is over pairs of nearestsystem is interesting theoretically. Experimentally, it was not
neighboring sites andrj=+1. We consider a hypercubic clear how one could obtain a random field whose spatial
lattice ind spatial dimensions and the fiellsare quenched correlations were on the length scale of a lattice constant.
random variables with no correlations between fields on dif+{owever Fishman and Aharohghowed that a physical re-
ferent sites. Quenched thermodynamic averages are defing@lzation of the RFIM can be achieved by applying a uniform
by external field to a diluted Ising antiferromagnéDIAF).
Other experimental realizations of the RFIM are the diluted
Tr(exp(— BA)A) @) frustrated antiferromagrfetand binary liquids in porous
Tr exp( — B.77) media®~®
The properties of the RFIM have been a subject of intense
whereB=1/T (kg=1) and[ ], indicates an average over the interest and much controversy both theoreti¢aifand ex-
distribution of the random fields at all sites. A similar defi- perimentally. We will not discuss the experimental results,
nition gives the quenched free ener§y, asF=[—TInZ],,  since many of them, especially those from the early 1980’s,

[(A)r]n=

h
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used mean-field theory to show that when the random field
distribution has a relative minimum at zero field, the RFIM
I TCP P undergoes a first-order transition at sufficiently low tempera-
oo ture, and hence that there exists a tricritical p¢sete Fig. 1
For the bimodal distribution he found that the tricritical point
occurs atBzJ=3/2, tanf(Bhy)=1/3. Galam and Birmdfi
later argued that even some distributions which had a local
< mmmmm e maximum ath=0 (but not the Gaussiarcould give rise to a
tricritical point. One would expect mean-field theory to be
valid in high dimensions. However, the bimodal distribution
on the Bethe lattice of coordination number 3 was found
notto have a tricritical poinf® But later work of Galam and
FIG. 1. Mean-field phase diagram for the random field Isingsalinaét3 showed that foz>3 the bimodal distribution on a
model. F (P) labels the ferromagneti(paramagneticphase. For ~ Bethe lattice did have a tricritical point and that its location
the bimodel distribution there is a tricritical poifTCP) below in the limitz—c was given by Aharony’s resuff However,
which temperature the transition becomes discontinuous, as indthe existence of the tricritical point in finite dimensions need
cated by the dashed line. For the Gaussian model there is no TCP &t follow the mean-field theory result.

nonzero temperature. The dashed line parallel toTthexis indi- The results of various numerical techniquesostly for
cates the way the critical line is approached by a high-temperaturd=3) are not entirely clear. Young and Nauentfésfudied
series. systems of size &4spins with a bimodal distribution of ran-

dom fields. Because their exponents violated some exact

are vitiated by the failure to achieve thermal hounds they inferred a first order transition and suggested
equilibrium>~** This phenomenon has been treatedthat the transition remained discontinuous even in the limit
theoretically*~*® and by simulations/~** Here we review of small random fields. Ogielski and H#8estudying sys-
only those aspects of this model relevant to this paper. For gems of size up to 32found the transition to be continuous
more general review of the RFIM, see Ref. 41. The mosfor the Gaussian model. They did not reach any firm conclu-
important problem is to clarify the behavior of this model in sjon for the bimodal distribution. Houghtcet al*° tried to
the limit of small but nonzerg. In a seminal work, Imry and  resolve this issue for generdlby analyzing their seven-term
Ma® argued that long-range ferromagnetic order was dehigh-temperature series expansion, whose coefficients were
stroyed by the random field whehdecreased below a criti- evaluated exactly in terms of the random field distribution,
cal valued - with d-=2. They showed that the upper critical so that they could study, as a function oH.. They inter-
dimensiond.. , above which the critical behavior was mean- preted that ifH, ceased to increase & decreased, that
field like, was 6 and they gave results of the renormalizatiorhehavior indicated the presence of a tricritical point. Their
group € expansion to first order ie=6—d. Shortly there-  results based on this ansatz fitted nicely with the mean-field
after, systematic studies of tkeexpansiofi *°showed that it results: for the bimodal distribution they found a tricritical
predicted that the critical exponents of the random systemoint in all d=3. For the Gaussian distribution they found a
should be equal to those of the pure system but in a dimenyricritical point for d=3, whereas for d# they claimed that
sion lower by two —d—2). This conclusion was earlier there was no tricritical point, but their evidence does not
obtained exactly for the special case of the spherical mddel. seem definitive. More recently Rieger and Yotthgtudied
For a while it seemed that the problem had been solved byhany realizations of systems of size’#hd for small values
this idea of dimensional reduction. But difficulties with this (h,=0.3) of the random fieldso as to make it easier to
picture became apparent. According to the Imry-Ma arguachieve equilibrium). From this work they concluded that the
ment the lower critical dimension for the RFIM is two, transition for the bimodal distribution was continuous for
whereas according to dimensional reducti@h{d—2) it  this value ofh,. There have also been suggestions that at
ought to be three. A careful confirmation of the Imry-Ma syfficiently large random fields the system might have a
result d-=2) was given in Refs. 12, 13, and 14. More spin-glas¥SG)phase. Specifically, deAlmeida and Bruinsma
recently it has been proven rigorously by Imbfié°that the  (DAB) (Ref. 51)found such a phase at largefor a DIAF in
three-dimensional RFIM exhibits long-range orderTatO0 g uniform field, which Fishman and Ahardhiyad shown to
and by Bricmont and Kupiainéf'® that the ordered phase be in the same universality class as the RFIM. However, that
does exist for a nonzero range of low temperatures foequivalence does not exclude the possibility that the regime
d=3. It is commonly believed that there is no long rangein which this happens could be different for the DIAF than
order or any phase transition in two dimensionsdor0. for the RFIM. Working to second order in a parameter

As we shall see, the qualitative features of the phase diaoughly equivalent toT./(zT), whereT, is the transition
gram in theT-g plane are of some relevance to our work. In temperature of the pure system, DAB found a multicritical
an early study of the phase diagram, based on mean-fielgoint where antiferromagnetitAF), SG, and paramagnetic
theory, Schneider and Pytfeconsidered a Gaussian distri- phases coexist. A similar result was found numerically for
bution of random fields and found that the transition re-d=3 in Ref. 40, for the dilute AF in a uniform fieldd, but
mained continuous along the whole phase boundseg Fig.  the fact that the SG phase appears everHfer0 casts some
1). As hS increases, they found that the transition temperadoubt on that work.
ture decreases until it becomes zerdgtzJ =\/2/7, where Next we review briefly the situation with regard to critical
z is the coordination number of the lattice. Aharfhglso  exponents in the regime where the transition is continuous.
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Although there is controversy about the nature of the scalinddowever, recent work of Bergest al>3 shows that in high

at the critical point, there are some exact inequalities whicldimensions,A is always finite and close, but not exactly
the critical exponents must obey. These inequalities arequal, to unity. As discussed below, our series confirm the
phrased in terms of correlation functions at criticality for latter conclusion. The fact th& shows no tendency to di-
n-component spins. Strictly speaking these inequalities areerge or vanish neaf, still implies that y=27y. Another
obtained for a Gaussian distribution of random fields, butexact inequality involves the critical exponent, for the
they are believed to apply to other distributions, such as theivergence of the specific he#t:

bimodal. One defines the following correlation functions and

associated critical exponents. The structure factor behaves as 2—asvd—y=v(d—2+7). (14)

=T(d . 7 (4= Next we turn to evaluations of the critical exponents.
S@=[{g ¢-g)7ln~a ’ @ Roughly speaking there are two classes of theories. In the
for g—0. Here <Zq is the spatial Fourier transform of the first of these classes one has so-called traditional “two-
n-component spin variable which is the generalization ofexponent scaling,” in which a knowledge of two critical ex-
o; in the discrete model of Eq(1). For smallg, the ponentgusually taken to be and ) determine all the other
g-dependent susceptibility behaves as exponents. In the other class are theories which invoke a
R third independent exponent usually associated with a droplet
qu[<$q~ gZ_q)T—(d)q)T (gZ_q)T]hAaq*(Z*’?). (5)  picture. Many theories generate some version of dimensional
reduction, in that hyperscaling relatiofhich involve the
dimensionality) for the random field system contain the
shifted value ¢ — 6) instead ofd. If @ is not an independent
exponent, then one has two-exponent scaling. However, the
X(T,g)zz_ [(oigj)r—(o){oj)r]n=x(q=0) (6) literature contains an open controversy concerning the expo-
! nent 6, which describes the singular part of the free energy,
and the structure factor F¢, ina correlation volume .= F&d~ g9 (F is the singular
free energy per unit volume.Dne can sho®’ =28 that
#=2—n+ 5. Therefore, if there are three independent ex-
ponents we may take the third one to be eithesr 7. The
most important result of the present work, a brief summary
of which was given previousR# is to establish that the criti-
cal point of the random field model is described by two-

In this paper we will focus our attention on the
susceptibility?

G(T.g)z$ [(oio)1]n="S(q=0). (7)

If one assumes a single correlation lengththen in the
critical regime one has

T_T |- exponent scaling, through the relatign=2 7.
X(T,9)~[T=Tel ® The d—d—2 dimensional reductidhi’® was the first of
with y=(2—7)v and the “two exponent” theories, since it implies a relation be-
_ tween 7 and 7, namely 7= 7.%° The discrepancy between
G(T,o)~|T-T (9 d_=2 according to the Imry-Ma argumérandd_=3 ac-

—_ — . . . - 8-10 :
with y=(4—7)v, wherew is the critical exponent defined cording to thed—d—2 dimensional reductiéh™® in the
by é~|T—T.~*. Some exact inequalities among exponents'Sing case led to a conjecture concerninglready given in

were obtained by Schwartz and Sofféfor the critical ex- Ref. 8. It is maintained there thé, behaves agy. Since
ponentz they found x~ &7, this ansatz leads to the relatiéi-2— 7. The re-

lation betweerd and » implies again a two exponent picture,
4—d although now the relation betweepand 5 is 7=27%. The
n=5 (10) " method of equivalent annealing, developed by Schhitz
yielded a modified dimensional reducti¢éexplicitly consid-
and ered for the exponeny), namely that thel’=d— 2 rule has
<27 (11) to be replacedat least fory) by

In fact, it has been asserféd® that =27 is an exact re- d'=d—2+ny(d")=d—-2+7(d), (15)
sult.

where , and » are the values of; for the system in zero
Comparing Egs(6) and(7), one sees that 0 7 Y y

random field and the random field system, respectively. The
lower critical dimension turned out to be two and four for
G(T,9)=x(T.9)+>, [(o)(o)T]h- (12) Ising and Of) models, respectively, in accordance with
] Imry and Ma® Theoretical arguments in favor af=27 are
Schwartz and Soffé? showed that with some assumptions, Summarized in Ref. 23. As mentioned above, our redlits
the second term in Eq12) is equal tos2y?hZ. If this were ~ Support this suggestion. Subsequently Vojta and Sghf’&ber
exact, then we would conclude tHat- y scales likey2, and have analyzed a variant of the spherical model with long-

hence thaty=2y. Furthermore, this would also imply tf&t ~ ranged interactions  J(;~R;;°) and found
nl2=n=d+2—s for d<s<d+2. (For s>d+2, one has

. G(T,9)—x(T.9) n=27=0.)
A= I|n+1 TK2x(T.9)7 =1. (13) In contrast, an alternative approatt® starts from a

T=Te (9) droplet picture and maintains thatis a new independent
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TABLE |. Critical exponents for the three-dimensional random field Ising model.

Method? Ref. v v 7 7
Series 57 1.7
Exact ground state 60 1.1
Domain-wall RG 62 1.58-1.60 0.5-0.72
Real space RG 63 1.9-2.2
Sim. DAFF 48 0.5-0.1 1.040.3
Sim. 47 1.720.2 0.2520.03 0.8
Sim. Gaussian 50 170.2 3.340.6 0.50+0.05 1.0320.05
Sim. bimodal 61 2.30.3 4.840.9 0.56+0.03 1.0020.06
Series This work 210.2 4.240.4

aSim. denotes simulation.

exponent, so that one needs three independent exponentssion in powers of J/T) whose coefficients were given as
describe the critical behavior. For instance, Bray andexplicit exactly evaluated functions dfy/T. In principle,
Moore?” derived scaling laws for the RFIM, based on thethere should be a plateau regiongnwhere the results are
idea that the thermal phase transition is controlled by théndependent ofg. However, their series were not long
zero-temperature fixed point. They showed that, except foenough to obtain a recognizable plateau region. As a result,
hyperscaling, all the usual scaling laws of the pure Isingthey did not obtain reliable estimates of the critical expo-
model applied to the random field case. They claimed thahents for dimensiond=3 andd=4.

the number of independent exponents is three, that there is Monte Carlo simulations have been used to obtain critical
no dimensional reduction, and in particular, that their theoryexponents for the random field system, especially in three
is inconsistent with the modified dimensional reduction ofdimensions. As mentioned, Young and Nauenffeaitrib-

Eqg. (15). However, they did calculatg and 7 in a 2+ € uted the fact that their exponents violated some of the exact
expansion and foung=27=2—¢, to all orders ine. Itwas  bounds for a continuous transition to the fact that the transi-
showr® that the modified dimensional reduction of E§5)  tion was discontinuous. Ogielski and H%éund a con-
gives exactly the same result. Bray and Moore also foundinuous transition for the bimodal distribution and gave
that hyperscaling is obeyed with the modified reduced dip=0.5+0.1, andy=1.0+0.3. Ogielski® obtained the criti-
mension replacingl. Their claim of inconsistency with Eq. cal behavior of the RFIM in three dimensions from correla-
(15) is based on a calculation @fin 2+ e dimensions. Their tion functions averaged over an ensemble of exact ground
calculation ofv depends on an unproved assumption. Indeedstates. He foundy~1.1, »~1.0, and 8~0.05. In work

a different assumption by Villaffi leads to a different result shortly after Ref. 54, Rieger and Youtigcarried out simu-

for v [and one which is also not consistent with Et5)]. In  lations which yielded bothy and G and obtained
any case, Bray and Modreactually obtain(to all orders in  7=0.60+0.03 (or 0.56+ 0.03) and 7=0.97+0.08 (or 1.00

€) that the number of independent exponents is two. Con== 0.06)for Bhy = 0.25(or 0.35). Thus, although the results
tinuing the ideas of Bray and MacKafA& Mezard and of Monte Carlo simulationgfor similar values ofg) sug-
Young? have proposed a version of tieeexpansion to take gested that perhaps=27, at the time of this work they
account of the multiple minima in the energy landscape ofvere not yet completely convincirfd.

the random field model. Within a replica formalism they = The numerical domain-wall renormalization group analy-
found an instability which has to be removed by replica sym-sis for the three-dimensional RFIM performed by Chéting
metry breaking. This instability implies that the replica- gave values of the critical exponents, some of which are
symmetric fixed point, which leads to the usuallisted in Table |. Dayaret al®® applied real space renormal-
e-expansion result §= 7), is unstable. Depending on the ization group(RG) analysis to the three-dimensional RFIM
nature of the replica symmetry breaking, their theory givesand obtained 1.95<2.2.

7 in the rangep< n<27. The resulty=27 corresponds to In view of this history, we decided to extend the high-
maximal replica symmetry breaking and saturates the exatemperature expansion. This extension became possible be-
inequality n<27. cause of the existence of a tabulation of the weight factors

There have been a number of attempts to obtain the criticor the embedding constant®r arbitrary diagrams of up to
cal exponents numerically and those resultsder3 which 13 bonds on a hypercubic lattié&Also, as we discuss in
are most relevant to our work are summarized in Table Imore detail below, we developed a number of algorithms to
Shapir and Aharory} derived and analyzed the seventh- shorten the calculations. Normally, the determination of an
order high-temperature serig=., in (3/T) and H?/T?)]for  exponent likey, which is not very large, is a difficult task.
the susceptibility of the RFIM on the FCC and general di-Here we took advantage of an aspect of the problem, not
mension hypercubic lattices. Besides verifying tdat=6,  previously addressed by series, namely we focussed on test-
they found(from the FCC series, which was the better be-ing the proposed relatiop=2 7, which is equivalent to the
haved one)that y=1.7 for d=3. Khuranaetal® and relation y=2v. This involved constructingto our knowl-
Houghtonet al®**° derived the seventh order series for theedge, for the first timea series for the structure factor and
same quantity on a hypercubic lattice in general dimensiomomparing it with the series for the susceptibility. We were
as well. They expressed the series in terms of a series expaalso able to construct a series for the amplitude raiamf
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Eq. (13). The fact that we fourd this ratio to be neither techniques used to generate these series, which are discussed
divergent nor vanishing a§— T, indicates thaty=27. In below, represent an extension of those of Ref. 57.
addition, the value of was found to be quite close to unity
in all dimensions, as was suggested on theoretical grotinds.
The purpose of this paper is to give the details of the con-
struction of these series and their analysis, the results of To generate the susceptibility series, it is useful to relate it
which were summarized previousty.This avenue of re- to the free energy. It is convenient to introduce various di-
search is presently continuing. Elsewténee will describe  mensionless or reduced quantities. For instance, we write the
a study in high dimension which complements some of theéxctual partition functionZ(K,{\;}) in terms of a reduced
results given here. In fact, the latter study led us to find arpartition function ZR(K,{\}) via Z(K,{\})=Z®(K,{\;})
error in the last 2 terms of the series as reported in Ref. 54% (coshK)eTl;[2coshph)], where the product is over all
The correct terms are given below, and all the series wersitesi andNp is the total number of nearest—neighbor bonds
reanalyzed yielding somewhat revised estimates for the exn the lattice. Then
ponents and amplitude ratio, as listed below. The corrections
do not change the basic qualitative conclusions of Ref. 54. 1
Briefly, this paper is organized as follows. In Sec. ll we  ZR(K,{\})= oNIT H (1+wss)[] (1+TiSi)>,
discuss how the various series were constructed. In Sec. lll (.0 !
we discuss briefly the way we analyzed the various series to
get exponents and amplitude ratios. Data for the actual series . . . .
coefficients are given in a set of Appendixes. Section IVWhere N is the total number of sites in thellattlce,
contains a discussion of our results as a functiog ahdd. w=tanhJ, 7 =tanhk, wherex; = Sh;, and the trace is over
Here we obtain values of the exponentsaind y, alone and §==1. Note tha_t bOth.N and7; can be easily gxpand_ed in
in combination, and also of the amplitude ratopropor- POWeErs ofp starting with a term of ordep. It is I|k§aW|§e
tional to (G— x)/x2. A discussion of these results is given in cpnven!ent to define the reRduced free ene(gyFre site)in
Sec. V. dimensionless form asF"~(K,{\;})=(1/N)InZ¥KJ\}D).
Later onZF and FR(K,{\;}) will denote the similarly de-
fined reduced partition function and reduced free energy, re-
spectively, of a system consisting of a detof nearest-
We have generated high temperature series for two quameighbor bonds. Also the susceptibility(T,g) and the
tities: the susceptibilityy and the structure facto®. The reduced susceptibilityy*(T,g) obey

A. Series for the susceptibility

(16)

I. FORMULATION

X(T,9)=(LIN) X, [PINZ(K NN 0N ) Tn=(1IN) X, [2INZR(K N/ (INi9N)) ]+ [sechin Ty
i i

= .2, [2FRK AN D/ (NN ) Tn+ [sechN 1= xR(T,g) + [sechA ], (17)

Note that[secif\;],, does not depend on due to the con- where the sum oveF,, is over allconnectedliagrams having
figurational averaging. Clearly, sing& andy differ only by  n bonds and¢pn(K,{)\i}) is the weight associated with

a local quantity, they have the same critical properties. Thg" . This weight is simply the cumulant free energy associ-

diagrammatics naturally produce a series ¥8(T,g) which  ated with the set of bonds &F:
we then convert into a series fg(T,g) using the above.

Becauses’=1 we may writeZ® in the form dr(KAND =FR(K AN}, (20)
where the cumulantindicated by the superscriptc”) is
” defined recursively via
ZRK D=2 X (_H n)wn, (18)
n=0 C, \iesg,

FEOGIVD =FRIGIND = 2 FS(K D, (D)
where C, is a configuration ofn bonds on the lattice and e
SG, is the set of end points of those bonds that are commomhere the sum is over sets of bongsvhich represent proper
to an odd number of bonds belonging to the configurationsubsets of the bonds &f (y=TI" is not allowed. From the
Then the reduced free energy is given by property of cumulantsi.e., thatF}. vanishes if any bond
in I' is set equal to zejp one can show that the series ex-
1 pansion ofF}. in powers ofK begins at ordeKP, wherep is
R o = _ the number of bonds il'. Note that¢ depends on the po-
FAK D Nn§=:1 % Sr(Kikid), (19) sition and orientation of the diagram on the lattice through its
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dependence on the local fields. Thus the sum in Eq.19) 3 2 1
counts separately diagrams which differ only in their location
and/or orientation on the lattice.

The reduced susceptibility is given by

x(T.9)= 2 FE’W(MZJ, [9?FF, (KAND/ (OO )T, s 5
(22)

whereX’ denotes that the summation here is only over topo-
logically distinct diagrams andlV(I",) is the weak embed-
ding constant which gives the number of ways per site f:f .
diagram topologically equivalent 10 can be embedded in an 'e"?'s It Is no longer necessary to sum separately over topo-
infinite lattice.(Two diagrams are topologically equivalent to '09ically equivalent diagrams. _

one another if their sites can be relabeled so that they both TO clarify our approach, we discuss the calculations for
have the same nearest neighbor bonds. Thus all self-avoidirte diagraml’ shown in Fig. 2. The reduced partition func-
walks of lengthn are topologically equivalent to one an- tion for that diagram is given by

FIG. 2. A diagram for the high-temperature series.

ther.) After the average over the distribution of random

Z?(K,{)\i})] =1+W(T 7o+ ToTg+ T34+ ToT5+ T47s5) +W2( TiT3t 2 ToTg+ T4 T5+2 T3T5+ T{ToT3Ta+ T1ToTaTs
+2 757374 75) +W3( ToTa+2 T1Tat+ T3Tat+ ToTs+ T4T5+2 T4 ToT3T5+ 2 7'17'37'47'5)+W4(1+ TIT3+ T4 75
+ T ToT3 Tyt 7'17'27'47'5)+W57'17'2. (23)

Next we expand F§ in powers of w. Eventually we want to obtain a series up to, sagh order in K for
[aZFF{/(&)\ia)\j)]h. The following points which simplify the calculation should be noted.

(a) The highest order needed in the expansiofFBfin w is clearlyp.

(b) As a result of the expansion &} we obtain a polynomial iw with coefficients which are polynomials in the's.

Since eachr; carries at least one factor af= gh;, one sees thdakeeping in mind that two derivatives with respectxt@re
needed}he total number ofr;’s plus the power ofv in a term should not excequ+ 2.

(c) Furthermore, there is a part of the series that vanishes when all the fields are set to zero. In that part the lowest order
contribution to7; is \;. The process of averaging will yield a nonzero resulk ifappears in the product, after taking the
second derivative, an even number of times. Therefore, each term that vanishgsimitie coefficient ofv" carries at least
a factork? coming from ther’s, so that if we are interested only in expanding to omdén K, the coefficients ofv?~* and
wP can be taken witly=0. Thus the coefficients of°~* andwP are those of the pure system.

We proceed now to calculater from Eq. (23). Since its expansion is quite complicated, and since we are interested in
showing the simplifications obtainable by deleting terms that do not survive “averaging,” we colAsidéne coefficient of
w#, and work up to ordeK’. (By “averaging” we mean taking two derivatives with respect to & and then averaging
over the distribution of random fields.)

We find that
S T 2 2 22 2__2_2
A4:1+7'17'3_T17'2 7'3_ 2 _7'2 7'3 _27'1 7'27'4_47'17'27'37'4_27'2T3 7'4_27'2 T4 _27'17'3T4 _7'3 T4 +7'17'5
2
T12'T5
_7'17'227'5_7'127'37'5_27'227'37'5_27'17'327'5_4 TlT27'47'5_8 7'27'37'47'5_2T1’7'427'5_27'3’T427'5_ 2 — T2 7'52
-2 7'17'37'52_2 7'32’7'52_2 7'27'47'52_ 7'427'52. (24)
[
In the above expression we have already deleted terms with TIT4>Ts, T1T3T52 (26)

six or more7’s, since such terms would contribute to order o ]
K8 and higher. Now, terms in E§24) that contain more than 9ive the same contribution after “averaging.” We tabulate all
two odd powers ofr’s, such as the different combinations of's that give nonzero contribu-
tion. For instance,
T1T2T3Ty (25)
] ) ] o . ty=77j, tzzrizrjrk, t3=7'i27'j2, etc., (27)
in the last expression, give zero contribution after “averag-
ing.” Also, terms which only differ by labeling of variables, with i#j#k# ... . The full list of t;'s can be found in
for example Appendix A. Thus, Eq(24) becomes
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A,=1+2t,—21t,— 9ty (28)  note that for any diagram we can wrifg in a form that is
illustrated by the following expression, for the 5-bond dia-
and .
gram:
> [PA41(0NoN)) Tn=4([d 7 /d\]p)? Zr=1+wc(1,2+wqc(2,2+c(2,4]+wc(3,2 +¢c(3,4)
]
+¢(3,6]+w*c(4,0+c(4,2 +c(4,4]+w5c(5,2),

—42[tan|’?)\i]h([d7'i /d)\i]h)z
—1g tant?n; ][ d? 74/ dA 2], .

(30)

where inc(m,n) m is the power ofw and n denotes the
(29)  number of7’s. It should be noted that(m,n) is the sum of
All the quantities appearing here can easily be calculate@ll terms with a given number of's and as such it is a
given the distribution of random fields and then a series exfunction of ther’s that depends on the specific diagram. For
pansion in powers o3 can be constructed. Therefore, the instance for the diagram shown in Fig. 2, we have
problem is reduced to the identification of this and calcu-
lation of the number of times eadh appears in the expan- C(2,d) =Ty ToT3T4t T1ToT4Ts+ 279737475 . (31)
sion of F from each diagram.
The main problem now is how to construct an automatic The point is that we can write down directly the power
procedure to evaluate for an arbitrary diagranl’. We  series inw for Fr- in terms of thec(m,n)’s. Now we obtain

_ 2 3
Fr=wc(1,2) +w? ¥+c(2,2)+c(2,4) +w? C(léz) —c(1,2¢(2,2—c(1,2)c(2,4 +¢(3,2) +¢(3,4) +¢(3,6)
—c(2,2?
w? T—c(1,2)c(3,2)+c(4,0)+c(4,2)+c(4,4) +w¥ —¢(2,2)¢(3,2 —c(1,2¢c(4,00—c(1,2)c(4,2)
+¢(5,2)]. (32)

This result looks simpler than the terms of or@érfor A, given in Eq.(24), because it is written in terms of taém,n)’s that

are functions of the’'s. The expression may be further simplified by deleting all those terms that will obviously not survive
“averaging.” First, terms where the(m,n)’s appear linearly ifF with n exceeding two must vanish after “averaging.” The
reason is that each of th'¥m,n)’s viewed as a function of one of thes, say r;, is @ monom. Namely, it is of the form
A+Br,, where A and B do not depend orr; but only on the otherr’s. Also, a productll;c(m;,n;) must vanish after
“averaging” if s=n,—2,.,n;>2, wheren, is the maximah. (The quantitys— 2 is the minimum number of monoms which
must remain after two derivatives with respect to the random field are jakfar deleting the terms discussed above, we
obtain

& ,[—c(1,2? o c(1,2° A —c(2,2)?
Fr=wc(1,2)+w T+C(2’2) +w 3 —c(1,2¢c(2,2 —c(1,29c(2,4H+c(3,2 | +w T—c(l,Z)c(S,Z)
+c¢(4,0+c¢(4,2 |+W[—c(2,2¢(3,2 —c(1,2¢(4,00—c(1,2c(4,2+¢(5,2)]. (33)

This result is much simpler than that of E&2). In the last stage thés in the function of the specific’s for each diagram
are identified and then after taking the second derivative with respagtand\; each expression is replaced by its average
to the required order df.

There were two stages of code development. At firsMREHEMATICA program that goes through all the stages described
above, was developed. The weakness ofMAEHEMATICA program is that it is too slow when an actual calculation of the
contribution of a diagram is performed. Namely in that part where the spe&dfibave to be multiplied out, written as a
function of the's, t's are to be identified and replaced by the proper averages. TherefofoR8RAN program has been
written to speed up the calculations. The main idea is to introduce an array of 15 columns fa{egaah. Each row(of
length 15) contains ones and zeros and stands for a given produst (Remember that each product either contains a given
7 or not.) The first number in each row shows the number of identical products. This enables simple manipulations with the
c(m,n)’s in a FORTRAN integer program. The fact that we have two different programs that perform equivalent calculations
provides us with a powerful checking tool, that was used on a number of high order diagrams. The actual series for the
susceptibility are given in Appendixes C and E for the Gaussian and bimodal distributions, respectively.
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B. Series for the structure factor
The calculation ofG involves the calculation of the correlation function
Tr(SkS|H<iJ)(l‘f’WSSJ)Hi(l+TiSi))= N(k,l)
Tr(I; (1 +wssp)IL(1+7s))) D

In principle, the correlation function can also be obtained by adding the interaetiqis,s, to the dimensionless Hamiltonian
(B.7) and then taking the derivative of the free ene(g9) with respect tow, :

G(k,)=(ss))7=

(34)

J
<SkSI>T:mF(MkI) ,uk|:0. (35)

Therefore, we conclude that only connected diagrams will contribute td3q. Furthermore the contribution from each
connected diagram can be calculated by taking the cumulant just as we did for the susceptibility. In actuality we (8&d Eq.
to evaluateG(k,l). Consider first the numerator of this expression. It is a polynomial imith coefficients that are polyno-
mials in ther’s and that are monoms for eaetseparately. The numerator on a five bond diagram, for example, is generally
written as

Nr(k,D=Tr| s 11 (1+wss)I] (l+risi)>=s(0,2)+W[s(1,0)+s(1,2)+s(1,4)]+W2[s(2,0)+s(2,2)+s(2,4)]
) i

+w¥[s(3,00+5(3,2) +5(3,4) +5(3,6) ]+ W s(4,0) +5(4,2) +5(4,4) +5(4,6) ]+ W[ 5(5,0 +5(5,2) +5(5,9)].
(36)

Here thes(m,n)’s are the analogs of thg{m,n)’s appearing in the calculation of the partition function and of course depend
on the diagram. A specific example for the diagrBnof Fig. 2 is

Nr(2,3)= 1o+ W(1+ 7973+ 79Tyt T3T5+ ToT3T4Ts5) +W2( TiTot TiTa+ 2 T3Ta+2 ToTs+ Ty ToTaTs+ 2 TaTg+ T4 T3T4Ts)
+W3(1+ ToTyt 2 TToTaTyt 2 71T+ T3T5+ 2 T{To T4 T5+ ToT3T4Ts) +W4( T Tyt ToTa+ T T4+ T ToT3Ty

+7'17'3T47'5)+W57'1T3. (37)

Next we expand the numerator over the denominator as diagrams with 15 bonds is only 842. The occurrence factors
polynomial inw with coefficients that are functions of the (weak embedding constapfer these diagrams are given for
c(m,n)’s and thes(m,n)’s. In this procedure we already general dimension in Ref. 66.
discard terms that will not contribute to the desired order in  The application of this method for the calculation of the
K. The simplification procedure and identification of termssusceptibility of the Ising model is given in Refs. 65 and 67.
that will contribute to the average is much the same as in th@here the result is written as
previous section. The corresponding list of contributing
products is given in Appendix B.

The actual series for the structure factor are given in Ap- x=(1+t)xo+ E w(T)x%(T), (38)
pendixes D and F for the Gaussian and bimodal distributions, r
respectively.

where yo=(1—ot) "1, o=2d—1, and the superscriptc”
) ] ) ) ) indicates the cumulant. The cumulant is recursively defined

C. Series for the pure Ising model in general dimension by Eg.(21). Here the bare susceptibility(T") is defined to

As described in the previous sections, tpalependent be
coefficients contribute only up to ordep{ 2) in the expan-
sion to ordep in K. The (p—1)th andpth order come from
the expansion of the pure system. Therefore, we required a x(T)=x3 tzz z(T')2=2ny(D)t(1+1)
fifteenth order expansion iK of the pure system for general !
d. We have constructed this expansion up to okiEtusing
the method proposed by Hafiswhich uses only the no- +2 > ¥i(F) () xi; (), (39)
free-end(NFE) diagrams. Although the calculations for each i<jel
diagram are somewhat more complicated than in the tradi-
tional method, the amount of computer time saved is largavhere z(I") is the number of sites id” which are con-
because there are very many fewer diagrams. For instancsfrained to be nearest neighbors of siie Also
the total number of diagrams with at most 13 bonds on ay;(I')=1+[z—z(I')Jtxo, and x;;(I') is the two-point sus-
hypercubic lattice is 20724, whereas the number of the NFEeptibility of the clusted:
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Tr{ojojexd BIZ iy rowor 1} ferent [L/M] Pade approximant. The correct estimate of
(D)= : 40 i i i i i
xij(I') Tr{ext BIZ o) crowar ]} (40) gﬁcrfgcéé) will be given by the intersection point of all these

Besides usual internal checks like cumulant subtraction, 1n€ M2 method. In thé12 method one first transforms

the final check was a comparison with existing series fotl® Seriesf(x)==2,a,x" into a series in the variabfe
squaré® and simple cubic lattic&2 as well as with some

earlier results in higher dimensiofOur results also agree y=1-
with a previous work' specialized to 5 and 6 dimensions

which was based on the same tabulation of diagrams. Thesghere A is now an adjustable parameter. We then derive a
results were reported and analyzed elsewléfewithout  series for

any derivation.

A
: (46)

X
1— —
X

C

d
IIl. ANALYSIS METHODS FA(y):A(l_y)@mf(x(y))

In this section we describe briefly some of the methods of AjA(1—y)d1/8 4. ..
analysis used in this work. The three series presented above =v- T+A(1—y)Ssr (47)
are expected to take the foffn

where the higher confluent corrections have been dropped.

f(X)~A(L—X/Xe) ™ {1+ A(1—x/xc) 1+ Ay(1—x/x.)A2 Now v is calculated as a function df using different Pade
approximants td~,(y) at y=1. This construction yields a
tooh (XX, (41)  family of y(A) curves in the §,A) plane andy(A,x.) sur-

. : . . aces in the X;,A,y) space. The correct estimate of
except at the upper critical dimension, where the right-han . ooe ) . )
P bp g {xc,Al,y) is given by the intersection point of all these

side may involve logarithmic correctiori3In all our meth- i
ods we approximate a function of interels(x), by the Pade ;L;r;iﬁest'hglgte that wheA =1 we recover the usual Dlog

approximant® [L/M]: In what follows, we replac& andx; by K andK.. The

analysis of series at fixed values dfand g proceeds as
[L/IM]= w. (42)  follows. At first we use the conventional Dlog Paalealysis

Qum(X) 140X+ -+ +quX to select a region in theK(.,y) space for closer analysis.

The coefficients of the polynomiaR andQ are chosen so | 1€n. within this region, we run thM1 andMz2 routines
that the expansion df(x) to orderN=L+M agrees with Wh_lch prepare the datg for flve'trlal valu.eslog (five slices)

the corresponding expansion of the approximan]. For ~ USing 10_—15 of the highest Pa@pproximants for seV(_araI
example, if f(x) has an assumed singularity of the form Nundred input values of or A,. There are two graphical
f(x)~A(1—x/x) " then the Dlog Padenalysis considers routines wh|qh produce .the output. Th_e f|rs_t one provides
the functionh(x)=dInf(x)/dx. The functionh(x) presum- three-dimensional graphics for all the five slic@syhereas
ably has a simple pole at=x. with residue— y. Since it is the second one draws a two-dimensional plot for the central
expected to be a rational fuﬁlctiolm(x) is reasonably repre- value of temperaturé&he central slice). It is useful to use the
sented by thell/M] approximant of Eq(42). Accordingly. two methods in conjunction with one another: both methods
the location of the physical pole and thé residue of' theshould lead to the same values of the exponents. To illustrate

[L/M] Padeapproximant provide estimates for the desiredthesfa analyses, We now show some examples and explain in
quantities,x, and y. We also used two other methodd,1 detail the conclusions that we draw from the graphs. Figures
and M2 V\'/hciCh we now describe brieffy:® ' 3 and 4 show plots from method41 andM 2, respectively,

: : for the susceptibility series gt=10 and the Gaussian distri-
The M1 method. Th ks best wh I to 1.
© metho is works best whe is close to bution for d=8. For d>6, theory predicts thay=1 and
We approximate (x) by . )
A,=(d—6)/2. Looking at the graphs, one can locate a point

PL(X +paX+ - +pxt
h(x)~ L( ): PoT P1 PL

A(l—x/xc)‘“/[1+A1(l—X/xc)Al], (43) of i_nterse_ction(i.e., a point from which curves _emanate in
various directions)n each plot. In test series, this is always
and construct a function very clear. In real systems, this point is sometimes less
clearly identified. Sometimes one finds more than one inter-
df section region in one of the analyses. In such cases, we use
H(X)=yf(X) = (Xe=%) 55 (44)  the degree to whicM1 andM2 give consistent values for
the exponents as an indication for the uncertainty in the re-
whose critical behavior is of the form sults. There are also some rule-of-thumb features that recur
frequently and aid in our deductions. In thel method, Fig.
x| vt 3, we can see that in plot(&), drawn at a triaK, value of
H()~B| 1- X_c) ' (45 0.070653 14, there is a nice intersection region at

v=1.002+0.003 andA ;=0.95+0.15. The convergence re-
whereB=A,AA, . For trial values ok. andy we obtain the gion is indicated by a box in the figure, and the estimates are
correspondingA; from a Padeapproximant [/M] to in pleasing agreement with the exact values of 1 for both
(d/dx)InH(x). Changing the trial value of, gives surfaces exponents. As we reduce the. value very slightly, to
in the (x.,v,A) space, each surface corresponding to a difK.=0.070 645 62, we see that th1 intersection region in



point), but here the best exponent values are seen in plot
3(a), while the central exponent estimates deduced frdm 3
and 3(c)are slightly lower. We conclude that the best esti-
mates forK, lie between 3(apnd 3(b), and include the dif-
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8 o) FIG. 4. M2 for same series as in Fig. 3, &t=0.070 653 14.
i S S (b
8_\ shows that theM 1 analysis is of a superior quality to the
1IN M2. TheM2 curve atk,=0.070 653 14, shown in Fig. 4,
3 o gives consistent results for comparison purposes. If we over-
P\H ] SRR lap the plots 3(ajand 4 we find that the two intersection
2 ] C points overlap, givingy=A,= 1. Since the best numbers are
S seen just a little above the crossover point, this gives us an
5 idea of the error induced by the finite length of our series.
S Overall we deduc&.=0.070 646-0.000 010 for this case.
1 A representative plot of data from a lower dimension is
S T given in Fig. 5, where we illustrate thd 1 andM 2 analyses
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©
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FIG. 3. M1 analysis of thed=8, g=10 Gaussian distribution ©
susceptibility series(a) K.=0.070 653 14;(b) K.=0.070 645 62; — ]
(c) K,=0.070 638 10.
=]
plot 3(b) is far more symmetrical with curves facing all di- 1
rections, not merely to the right of the figure. In pldtB at e
K.=0.070 638 10, the curves face leftwards. This change of o]
curve direction inM1 graphs is one rule of thumb used to
identify the correct critical poinffor example, it occurs in o ]
the exactly soluble Baxter-Wu modglat the exact critical T L I A B B
0.0 05 1.0 15 20 25

FIG. 5. Analysis of thed=4, g=6 Gaussian distribution, at
ference in the errors. In this case, sinkg=1, experience K.=0.1894.(a) M1; (b) M2.
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in Figs. 5(a)and 5(b), respectively, fod=4, g=6 and a TABLE Il. Values of critical exponent obtained from series.
Gaussian distribution & .= 0.1894. In the former, we see a q

clear intersection neap=1.44 andA;=0.7. In the latter Y

there is a broader intersection region, spread out over 8 1.00+0.01

1.46>y>1.42 and 0.5A;<1.0, but sharpening near 5 1.13+0.03

A,=0.8, and a very fine one at=1.4 andA;=1.7. Since 4 1.45+0.05

only one region is common to both methods, and the left- 3 21+0.2

most region is the correct one in test-series where both re-

gions do not give the same dominant exponent, we conclude

here thaty=1.44+0.02 andA ;=0.7+0.2 for this tempera- In the second stage, we combined recently developed ef-
ture choice. ficient visualization method® with the M1 andM2 algo-

For d>6 the series gave a sufficiently clear confirmationrithms (see abovefo study series foy andG in the abovey
of the mean field values of the exponents, so that we used theindows. We obtained the critical valués.(g) and values
M1 andM2 methods directly. For lowed, to obtain results of the exponents, at selectedvalues in different dimen-
for exponents and for the amplitude rathoof Eq. (13) we  sions. We give a discussion for each dimension below.
proceeded in four stages. We assume that Egjsand (9) In the third stage, we addressed the issue of two versus
describe the asymptotic behavior gfand G, respectively, three independent exponentdy studying the amplitude ra-
near the critical point aT.(g). Universality implies thaty  tio, A of Eq. (13). To evaluaté\ we obtained Padepproxi-
andy are independent af over the range off in which the  mants for Eq(13) atK.(g) (as obtained aboyeAs found in
transition remains continuous. However, the finite series uswsther studie§?® the Padeestimate of such ratios, which
ally lead to parameter—dependent exponése, e.g., Ref. involve only amplitudes on the same side of the transition,
57). are very stable to errors i, and to correction terms. We

In the first stage of analysis our goal was to find a rangdound thatA also exhibited a “plateau” irg which was even
of g, where this dependence of the exponentsgas very  flatter than that found for the difference/{ y) mentioned
weak. For the purpose of defining this rangeginwe found  above. The value oA was always close to unity. As already
it convenient to use a method of estimating the critical ex-stated, the fact thak neither diverges nor vanishes né&r
ponents which avoided the uncertainties associated with thienplies thaty=2y.
fact that we did not have a precise determinatiorkKefg). In the final stage, we deduced overall exponent estimates.
Accordingly, we used a Dlog Padmalysis of series obtained Having identified the range af values for whichA is prac-
from term-by-term divisioff"®! of the coefficients of the se- tically constantGaussian distribution), or varies slowlgi-
ries for G by those ofy. By term-by-term divided series we modal case), we looked back at the valuesyaind y, mea-
mean the following. Suppose the series fprand G are  sured at the second stage. The seriesGocontain more
given by y=3a;K' and G=Xb;K', respectively. Then we correction termgarising from corrections to Eq13) (Ref.
define the term by term divided seri¢&/ x| by 22)] and generally behave less well than thosefoiGiven
our result thatA~1, we consider it established that=21,
and therefore we will quote only values fgr. Eventually,
we averaged over the gradual increase in the exponents with
g, and included the appropriate range in the error bars. The

An advantage of this analysis is that as Iong)(asmd G ~final estimates are summarized in Table I.
diverge at the same point, the term-by-term divided series

[G/x]=> gxi~(1—x)—<?—v+1>. (48)

diverge atx=1. The resulting approximate estimates for IV RESULTS FROM ANALYSIS OF SERIES

(y— ) showed a very rapid increasat g<<0.1) from zero '

(atg=0) to values of fy— y) which are close to estimates of A. Above six dimensions

y found by later direct analysesee below). Asg is in- Mean field theory predicts that above the upper critical

creased further,{— ) exhibits a very slow increase, over a dimensiond- =6 one hasy=2y=2 andA,=(d—6)/2. We
wide range ing. This range, which is almost a plateau, is siarted by checking this relation faf>6. Since the series
much larger than observed before with the much shortefapayed quite well, we used thd1 andM2 methods of

: 7,49 : N X ! i N N A
series"** At still larger g>g, we saw a second crossover, analysis, as illustrated in Figs. 3 and 4 and as discussed in

with an apparent rapid increase(ip— ). We have thus con- e previous section. Similar analyses over a rangg -
centrated on the “plateau” region. It should be emphasizeq,os |ed us to the overall results

that the term-by-term divided analysis was used just to ob-
tain a rough estimate ofy(— v) and the plateau region. y=1+0.01, y=2+0.01, A;=1.0+0.2 (49)

TABLE lll. Values of the amplitude ratié [Eq. (13)]for d=8, g=10.

d=8,g=10
Values of Pad@approximants forA
g Distribution K [7/6] [6/7] [6/6] [5/6] [6/5]
10 Gaussian 0.0706375 1.00171 1.00171 1.00176 1.00167 1.00167

10 Bimodal 0.070865 1.06787 1.06808 1.06771 1.06773 1.06773
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FIG. 6. Term-by-term divided series. Gaussian distribution. FIG. 8. Term-by-term divided series. Gaussian distribution.
d=5. d=4.

for both Gaqssian anq bimodal di'stributions &t 8, in tially, as above, the “plateau” region was establishsge
agreement with theoretical expectations. Some valuds,of Figs. 10, 11 We found the “plateau” as 0Zg<1.0 for

and the amplitude ratiod, are presented in Table lll. The ), gisributions. A similar plateau was found for the am-
comparison of égese values with thedléxpansion will be iy e ratioA and data for this region is given in Table VIII.
given elsewhere. Preliminary analysis of 13 terms of theand G series indi-
cated a divergence with the same exponent for both quanti-

ties. Note that fod=3 the plateau occurs for smaller values

We commence with the results of the biased Dlog 'Pgd%f g than in higher dimension. Also, from E¢L2) one ob-
analysis of the term-by-term divided series for the two dis-iajns

tributions of random fields in Figs. 6 and 7 fde=5 and in

Figs. 8 a_nd 9 fod=4. We deduce that the “plateau” region G=yx+gK%%+---. (50)

(the region betweerg-small and g-large crossovers)s

0.1<g<15 (0.1<g<®6) for the Gaussian distribution, and Thus for smallgK?, the two quantitiess and y are nearly
0.1<g<10 (0.1<g<4) for the bimodal distribution for the same until one gets quite close to the critical point where
d=5 (d=4). Tables IV and VI present the results of tilel all the quantities diverge. To overcome this problem we con-
andM2 analysis of they andG series. We observe that the structedG— x, divided outg K2, and analyzed the resulting
values ofy— vy obtained from the independent analysis of theseries. In this wayy~2y was recovered. A similar proce-

x and G series are in accord with the values pf y ob-  dure could be done in higher dimensions, Wsince the
tained from the term-by-term divided series, E48). Tables  physical interest is at largegy values)we found that this was

V and VIl exhibit several near-diagonal high-order approxi-not necessary; at higher dimensio@sand G— x exhibited
mants forA for both distributions. Our final estimates for the similar behavior. Since additional operations degrade conver-

B. Five and four dimensions

critical exponenty are given in Table II. gence, we did not make this the standard procedure in higher
dimensions.
C. Three dimensions In the x analysis here, we had to take derivative with

The analysis of the three dimensional series was somd€SPect toK twice to reconcile the<. values obtained ini-

what more complicated than that at higher dimensions. Inilidlly from the analysis of both seriegSuch a small differ-
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FIG. 7. Term-by-term divided series. Bimodal distribution. FIG. 9. Term-by-term divided series. Bimodal distribution.
d=5. d=4.
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TABLE IV. A selection of estimates of K., vy and 7y for d=5. Average

y=y=UA(v=Nut(y—Vwmal.
Divided?®
Y v v v Average y—y+1 Average
g K=pJ M1 M2 M1 M2 y—v M1 M2 v—y
Gaussian variabld=5
8 K.=0.1315 1.12 1.12 2.2 2.25 1.105 2.05 2.1 1.075
10 K.=0.136875 1.13 1.135 2.25 2.25 1.1175 21 2.12 111
12 K.=0.142813 1.14 1.14 2.32 2.32 1.18 2.16 2.16 1.16
14 K.=0.149298 1.142 1.142 24 24 1.258 2.26 2.23 1.245
15 K.=0.152844 1.144 1.144 2.45 2.45 1.306 2.3 2.28 1.29
18 K.=0.1665 1.245 1.244
20 K.=0.177 1.28 1.28
25 K.=0.213 1.30 1.36
Bimodal variabled=5

5 K.=0.125313 1.0 1.08 2.15 2.1 1.085 2.07 2.12 1.095
7 K.=0.131375 11 1.097 2.15 2.2 1.0765 2.08 2.12 11
8 K.=0.134918 111 1.105 2.2 2.2 1.0925 21 2.12 1.11
9 K.=0.138875 111 1.11 2.25 2.25 1.14 2.13 2.13 1.13
10 K.=0.1435 1.135 1.135 2.3 2.35 1.19 2.2 22 1.2
11 K.=0.148813 1.15 1.15
12 K.=0.155248 1.18 1.18

&Divided” refers to G/y.

ence in theK; values obtained from the independent analysissituation at lowd (viz. d<d. =6) remains unclear.
for the quantities which are known to be divergent at the Our results for the characterization of the second order
same point usually comes from a big analytic additive termiransition are now quite complete. In three dimensions, we
and can be eliminated by taking derivatiyeBhe results of found good convergence at lower values compared to
the M1-M2 analysis in dimension three are given in Tablewhere previous studies focused on. The crossover to this
VIIl. The values of amplitude ratid\ estimated at some of behavior from the usual Ising model gt 0 was very sharp
theg values are given in Table IX. The critical expongnis ~ indeed. The behavior for largey values, where the expo-
listed in Table II. nents begin to increase with, remains to be explained by
future studies. The simplest explanation for this may be re-
lated to the fact that we derive the coefficients in our series
as truncated power series in powersgofThese truncations
Basically, our estimates fok were always close to unity. may fail for largeg. This increase may also simply arise due
The fact thatA was neither zero nor infinite, proves that to the shortness of our series, and the large values of the
y=2v, i.e., that there exist only two independent exponentscoefficients for largerg. Another possibility is that there
The fact thatA is close to one in all dimensions may seemmight be a crossover to tricritical behavi@s found in mean
like a confirmation of Eq(13). Indeed, this was our prelimi- field theory). Series expansion methods do not handle tri-
nary conclusion in Ref. 54, based on some arguments frororitical points very easily when no low-temperature series are
Ref. 22. However, although the deviations Affrom unity  avaliable. A start on developing methods suited to the analy-
are small, they are definitely nonzero, and they are larger fogis of tricritical points has been made by Adler and
the bimodal distribution as compared to the Gaussian one. ABrivman® and some analysis using partial differential ap-
discussed elsewherd these results foA agree with those proximants will probably be required. Yet another possible
obtained from a I expansion forA in high dimensions. explanation for the different behavior at largenay relate to
Thus, A is not universal, and the arguments of Ref. 22the approach of the critical line to the zero temperature fixed
clearly need revision at high dimensions. The theoreticapoint®

V. DISCUSSION AND CONCLUSIONS

TABLE V. Values of the amplitude ratié [Eq. (13)] for selected choices af at d=5.

d=5
Values of Pad@pproximants forA
g Distribution Ke [7/6] [6/7] [6/6] [5/6] [6/5]
8 Gaussian 0.1315 1.01201 1.01201 1.01201 1.01200 1.01200
10 Gaussian 0.136875 1.01897 1.01897 1.01881 1.01836 1.01835
5 Bimodal 0.125313 1.10313 1.10313 1.10314 1.10313 1.10313
8 Bimodal 0.134918 1.18789 1.18807 1.17076 1.18681 1.18665
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FIG. 10. Term-by-term divided series. Gaussian distribution.

d=3.

In summary, our main achievements in this paper has
been to derive 15 terms in the series for b@rand y for-
general dimension angl and for both Gaussian and bimodal
field distributions, and to show that the critical behavior is
determined by only two exponents. Our analysis of these
series gave rather accurate values of the critical exponents
v andy, as summarized in Table III.
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_TABLE VL. A selection of estimates of K., vy, and vy for d=4. Average
y=y=U2A(y= Vvt (y=VImal-

Divided
v Y v v Average y—y+1 Average
g K=pJ M1 M2 M1 M2 y—v M1 M2 y—y
Gaussian variabld=4
35 K=0.170625 1.44 1.44 2.65 2.65 1.21 2.32 2.36 1.34
4 K=0.1739 1.39 1.39 2.68 2.72 131 2.35 24 1.35
5 K=0.1815 1.47 1.47 2.84 2.84 1.37 2.42 2.42 142
6 K=0.1895 1.45 1.45 2.9 2.9 1.45 244 2.44 1.44
7 K=0.199 1.52 1.52 3.05 3.05 1.53 2,52 2.54 1.53
Bimodal variabled=4
3 K=0.1691 1.38 1.38 2.62 2.65 1.255 2.3 2.4 1.35
TABLE VII. Values of the amplitude ratid\ [Eq. (13)] for selected choices @ atd=4.
d=4
Values of Pad@approximants foA
g Distribution Ke [7/6] [6/7] [6/6] [5/6] [6/5]
35 Gaussian 0.170625 0.998679 0.998757 1.00605 1.04432 1.04229
6 Gaussian 0.1895 1.03960 1.03962 1.03750 1.03708 1.03708
3 Bimodal 0.1691 1.10827 1.10901 1.10721 1.10726 1.10726

_ TABLE VIIl. A selection of estimates of K., vy and vy for d=3. Average
Y= y=UL(y=VImit (y=VImzl-

Divided
v v v ¥ Average y—vy+1 Average

g K=pJ M1 M2 M1 M2 Y=y M1 M2 Y-y

Gaussian variabld=3
0.15 K=0.2268 1.7 3.55 1.85 2.3 1.3
0.25 K=0.2305 2.1 3.7 1.6 2.32 1.32
0.50 K=0.238 2.1 3.85 1.75 2.32 1.32
0.75 K=0.24675 2.2 4.2 2.0 2.6 1.6
1.00 K=0.25825 2.7 4.85 2.15 2.7 1.7

Bimodal variabled=3
0.15 K=0.2267 1.75 3.55 1.8 2.3 1.3
0.25 K=0.2304 2.05 3.7 1.65 2.32 1.32
0.50 K=0.238 1.95 3.8 1.85 2.36 1.36
0.75 K=0.2478 2.25 4.25 2.0 2.6 1.6
1.00 K=0.260 2.75 4.85 2.1 2.75 1.75

TABLE IX. Values of the amplitude ratié\ [Eq. (13)] for selected choices af atd= 3.

d=3
Values of Pad@pproximants forA
g Distribution Ke [7/6] [6/7] [6/6] [5/6] [6/5]
0.15 Gaussian 0.2268 0.999905 0.999905 0.999929 0.999899 0.999899
0.75 Gaussian 0.24675 0.997862 0.997864 0.998095 0.997795 0.997791
0.15 Bimodal 0.2267 1.01017 1.00975 1.01011 1.01010 1.01010

0.75 Bimodal 0.2478 1.05644 1.06135 1.05260 1.05343 1.05334
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APPENDIX C: SERIES EXPANSION OF THE SUSCEPTIBILITY OF THE RFIM IN GENERAL DIMENSION. GAUSSIAN
DISTRIBUTION OF THE RANDOM FIELD

a(0)=1, a(l)=2d, a(2)=—2d+4d*—g,
a(3)=4d/3—-8d?>+8d%—4dg,
a(4)=10d/3+16d%/3—24d%+16d*+(4d—12d%)g+2g?,
a(5)=—116d/15+16d?+24d3-64d*+32d°+(—8d/3+24d?>—32d%g+10dg?,

a(6)=—2224d/45+1748d?%/45+ 16 d®+272d*/3—160d°+ 64 d°®+ (—20d/3—20d?+ 96 d3—80d*)g+(—6d
+36d%)g?>— 1793,

a(7)=42008d/315—-1856d%/5 + 3248d°%/15— 64 d*/3 + 896d°/3 — 384d®+ 128d’+ (232d/15— 40d>— 112d°+ 320d*
—192d%)g+(8d/3—56d%+112d%g?—92dg*/3,

a(8)=108410d/63— 848984d?/315+3096d°%/5 + 1616d*/5 — 224d°+ 896 d°— 896d’ + 256 d®+ (4448d/45— 176 d%/5
—80d3—1504d%/3+960d°—448d°)g+(—24d+80d%—288d3+320d*) g%+ (—4 d/3—120d%)g®>+62g%/3,

a(9)= —12453836d/2835+2828312d%/189—-2916680d%/189+39200d*/9 + 4928d°/9 — 1024d°+ 7552d"/3 — 2048d®
+512d°+ (—84016d/315+13504d?%/15— 6352d°/15+ 128d*/3 — 1920d°+ 2688d°— 1024d")g+ (100d/3
—104d%+464d3—1152d*+864d°%) g%+ (32d/9+96d%—1216d%/3)g3+ 340dg*/3,

a(10)= — 13625783441/ 14175+276742698812/14175-353024481%/315+4622224d%/945+22208d°/3 + 6336d°/5
—11264d7/3+20224d®/3 — 4608d°+ 1024d1%+ ( — 216820d/63+ 98044d%/21+ 2976d3/5 — 1312d*+ 1216d°
—6592d%+ 7168d’ — 2304d®)g+ (15136d/15— 24316d2/15+ 312d>+ 6496d*/3 — 4000d° + 2240d°) g2
+(3080d/9 — 1304d?/3 + 736d3— 3760d*/3) g3+ (92 d + 456 d%)g* — 138295/ 15,

a(11)=348168414081/155925-41659707761%/4725+18437448321°/1575-5786628161%/945+817207041%/945
+63488d6/5 +60032d7/15— 12288d8+ 17408d°— 10240d*°+ 2048d*'+ (249076 72/2835—758008d%/21
+7215056d°%/189—60160d*/9 — 10880d°/3 + 7040d°— 62720d7/3 + 18432d®— 5120d°) g+ (— 580064d/315
+31248d%/5—103168d%/ 15+ 704d*+ 8896d°— 12672d°+5632d")g?+ ( — 16984d/45+ 5224d?%/3 — 6848d°/3
+10816d*/3 —3648d°%) g3+ (—124d/9 + 208d?%/3 + 4792d°/3)g* — 7448dg°/ 15,

a(12)=7256509995761/93555-8606219416468°/467775+701939748641°/4725-598576826081%/14175
—1552262721%/945+14120748815/945+964352d"/ 45+ 63948808/ 45— 37376d°+ 131072d% 3 — 225284 !
+4096d1%+ (27251566881/14175—172980884&1%/4725+9032704d%/63+ 610054721%/945—76544d°/3
—168256d%/15+90880d7/3 — 62464d®+ 46080d° — 11264d1% g+ (— 6282404d/105+799832d%/7
—292128d%/5— 2976d*—2304d°+ 33152d°— 37632d" + 13824d®) g2+ (— 1706528d/135+169808d2/9
—5648d°/3 —88832d%/9 + 14400d° — 30464d°/3)g3+ (— 7874d/3 + 8648d%/3 — 1320d°+ 15440d%/3)g*
+(—11992d/15—9948d?/5)g°+ 21844q°/ 45,

a(13)=—101173799246518/6081075+3612410122412/495—-505539278768°/ 4455 +321853482881*/405
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—99293376321°/405+847447041% 45+ 3489740817/135+498176d%/ 15+ 749056d°/ 15— 323584dY/ 3
+321536dY/3 — 49152d'%+ 8192d*3+ (— 696336828161/155925+100361925281%/4725—20177364321%/675
+13508865921*/945—1954496d°/ 63— 346496d°%/5 — 599296d/15+ 112640d%— 178176d°+ 112640d*°
—24576d') g+ (646945000/567 —1190396812/ 27+ 1504788813/ 27— 778624d%/3 + 42464d°/ 3 — 26240d°
+343040d7/3 — 10649648+ 33280d°) g2+ (16926304d/ 945 —3633472d%/ 45+ 3992224d°3/ 45— 100928d*/9
—119296d°/3 +50944d°%—81920d’/3) g3+ (13372d/9 — 39344d?/3 + 41048d°%/3 — 9792d*+ 15648d°) g*
+(—8776d/45—11864d%/5—105184d°%/15)g°+ 22858d g%/ 9,

a(14) = —36601976116480328/42567525496351271002572056/42567525-7671835495928°/3465

+3368622438448*/3465-40898569281°/ 27— 190837356&1%/135+90820096d 7/ 27+ 846561281%/189
+37376d°+501760d'% 3 — 29900841+ 258048d1°— 106496d13+ 16384d1*+ (— 1451301999158/93555
+3692158235682/10395-1169522569761°/4725+62932558241%/2835+3190123521°/105—-41765888&1°/135
—7246336d"/45— 2262784d8/15+ 381952d° — 1469440d1% 3 + 270336d1!— 53248d'?) g + (8840266881/175
—5318814035@1%/4725+8594242481%/ 105 —1685537488&1*/945-862144d°/3 + 22643205/3 — 143488d"
+370688d%— 290304d° + 78848d'%) g2+ (14489884@1/189—1545442481/105+106418081%/ 15+ 216752d%/3
—64192d°/3—453632d°%/3 +498176d7/3 —71424d®)g>+ (1466248d/ 15— 6926908d%/ 45+ 54016d°/3
+475792d%/9 — 141280d°/3 + 136640d°/3)g*+ (159700d/9 — 62260d?/3 — 10496d°3/5 — 68720d*/3)g°>
+(30162d/5 + 49828d2/5)g®— 929569 /315,

a(15)=1128557014030391416638512875-176388475626038679#/212837625

+3040840729149634358/212837625-265094921468288%/22275+113612045240518°%/ 22275
—177949117568%/175+2047675025921"/4725+190184038418/315+273623041°/35— 182272d%%9

+ 239534081 45— 802816d'°+ 1835008d'%/3 — 229376d4+ 32768d*°+ (202347598493024/6081075
—7830242589281%/4455+1305217209808°/4455—1635189529@1*/81+ 757177792°%/ 15+ 211750404°%/9
—26821120d7/27—4818944d8/ 15— 562176d°+ 3639296d'% 3 — 130662441+ 638976d%— 114688d'%) g
+(—1475499215744/155925+1923907916481%/ 4725—284139209216/%/4725+13353557441*/35
—9814363521°/105—-816256d°%/5 + 445772817/15— 61849608+ 1142784d°— 768000d'°+ 184320d1%) g2
+(—100954974641/8505 +10623586481%/ 189 —43669965441%/567 +950927681*/27— 580928d°/9
+76928d%/3 —4893184d7/9 + 50995208 — 547840d°%/3) g3+ ( — 778752081/945+2869792d%/5

— 3271964813/ 45+ 353824d%/3 + 587584d°/3 — 187776d°+ 384256d"/3)g*+ (91784d/225+247112d%/3
—1392944d3/15+ 52160d*/3 — 355008d°/5)g° + (458776d/135+1000808d%/ 45+ 1560464d°/45)g°®
—4709644dg’/315.

APPENDIX D: SERIES EXPANSION OF THE STRUCTURE FACTOR OF THE RFIM IN GENERAL DIMENSION.

GAUSSIAN DISTRIBUTION OF THE RANDOM FIELD
a(0)=1, a(l)=2d, a(2)=-2d+4d>?,
a(3)=4d/3-8d%+8d®, a(4)=10d/3+16d?%/3—24d3+16d*,
a(5)=—116d/15+16d?+24d3*-64d*+32d°—2dg?

a(6)=—2224d/45+1748d?%/45+ 16 d3+272d*/3—160d°+ 64 d°®+ (6 d— 12d?)g?,
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a(7)=42008d/315—1856d%/5 + 3248d°%/ 15— 64 d*/3 + 896d°/3 — 384d®+ 128d’+ (— 16 d/3+40d%— 48d%)g?+ 8 dg®,

a(8)=108410d/63—848984d?%/315+3096d°%/5 + 1616d*/5 — 224d°+896d°— 896d + 256d®+ (—44d— 8 d?+ 192d3
—160d*)g?+ (—28d+56d?)g°,

a(9)=—124538361/2835+282831202/189—2916680d°/189+39200d*/9 + 4928d°/9 — 1024d°+ 7552d"/3 — 2048d®
+512d%+ (1196d/15— 248d%— 144d+ 768d*— 480d°) g%+ (64 d/3 — 192d?+ 256 d%) g — 92 d g*/3,

a(10)= — 13625783441/ 14175+276742698812/14175-353024481%/315+4622224d*/945+22208d°/3 + 6336d°/5
—11264d7/3 +20224d8/3 — 4608d°+ 1024d'°+ (6528d/5 — 7996d?/5 — 72d3— 3104d*/3 + 2720d°
—1344d%) g%+ (872d/3 —232d%/3—1008d%+960d*) g3+ (116 d—232d?)g*,

a(11)=34816841408/155925-41659707761%/4725+18437448321°/1575-5786628161%/945+817207041%/945
+63488d°%/5 + 60032d7/15— 12288d8+ 17408d°— 10240d°+ 2048d*+ (— 832112d/315+9424d>?
—39136d%/5+960d*—5184d°+ 8832d°—3584d")g?+ (— 6224d/15+ 1584d?+ 384d>— 4480d*+ 3200d°)g>
+(—628d/9+2272d?%/3 — 1144d3)g*+ 128dg°,

a(12)=725650999576l/93555-8606219416468%/467775+701939748641°/ 4725-5985768260&1*/14175
—1552262721%/945+1412074881°/945+964352d"/ 45+ 63948808/ 45— 37376d°+ 131072d% 3 — 22528d!!
+4096d%+ ( — 7366504d/105+13240832%/105—252448d°/5 — 7968d* + 6336d° — 21504d° -+ 26880d”
—9216d®)g?%+ (— 464096d/45+ 650272d%/45— 1216d3+ 5184d*— 17600d°+ 9856d°) g3+ (—4478d/3
+2776d%/3 +4120d°— 13840d%/3)g*+ (— 500d+ 1000d?)g®,

a(13)=—101173799246518/6081075+361241012241%/495—5055392787681°/ 4455 +321853482881*/405
—99293376321°/405+847447041%/ 45+ 3489740817/135+498176d%/ 15+ 749056d°/ 15— 323584d%/ 3
+321536d'Y3 - 49152d'2+ 8192d%+ (3981955161/2835—1072903361%/ 189 +433827040°%/ 63— 262144d*
—18656d°/3 +31360d°— 237568d"/3 + 77824d® — 23040d°) g2+ (53444484/315—345984d%/5 + 10053764%/15
—35968d%/3 +95744d°/3 —62976d°+ 28672d")g>+ (73196d/45— 22352d?%/3 + 424d3+ 19648d*
—16480d°)g*+(736d/3—2912d2+5120d%)g°— 26914d g®/45,

a(14)= —3660197611648032%/4256752549635127100257 20567/ 42567525-7671835495928°/ 3465
+3368622438448*/3465-40898569281°/ 27— 190837356&1°/135+90820096d7/27+ 846561281%/189
+37376d°+501760d'%3 — 299008d*1+ 258048d*?— 106496d 3+ 16384d'*+ (265938772641/4725
—580321394681%/4725+26274658961%/315—12725056481%/945—-1079296d°/ 3 — 46336d°/5 + 136064d’
—268288d%+ 216576d°— 56320019 g2+ (28546736d/ 45— 5433889612/ 45+ 28744320°/5 + 35360d* — 57536d°
+150656d°— 209664d” + 79872d8)g>+ (298408d/5 — 140078812/ 15+ 19232d°— 165680d*/9 -+ 250400d°/3
—54208d%)g*+(21568d/3 — 19664d%/3 — 15648d°+ 21504d*)g°+ (35194d/15— 70388d?/15) g5,

a(15)=11285570140303914 16 638512875-176388475626038679/212837625
+3040840729149634358/212837625-265094921468288%/22275+113612045240518°/22275
—177949117568%/175+2047675025921'/4725+19018403841%/315+273623040°/35— 182272d1% 9
+ 239534081/ 45— 802816d'2+ 1835008d'% 3 — 229376d'*+ 32768d*°+ (— 1684400264198/ 155925
+4552242443212/945—372043027841%/525+267637904@1*/63— 26990200961°/315—2390144d°/5
—1062656d’/15+ 536576d%— 854016d°+ 583680d1°— 135168d'Y) g2+ (— 30527692641/ 2835
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+3004484321%/63— 118517920@3/189+247026560%/9 — 675712d°/9 — 260352d°+ 1842176d"/3 — 65945608
+215040d°) g3+ (— 743690960/ 945 +5444224d%/ 15— 6076064d3/ 15+ 314336d*/3 — 143808d° + 322432d°
—503552d7/3)g*+ (— 94784d/15+ 31264d2— 10304d3— 78080d*+ 80128d°)g°+ (— 156992d/135
+103048d%/9 —364592d°/15)g®+ 15736dg’/5.

APPENDIX E: SERIES EXPANSION OF THE SUSCEPTIBILITY OF THE RFIM IN GENERAL DIMENSION.
BIMODAL DISTRIBUTION OF THE RANDOM FIELD

a(0)=1, a(l)=2d, a(2)=-2d+4d*-g,
a(3)=4d/3-8d*+8d*-4dg,
a(4)=10d/3+16d%/3—24d%+16d*+(4d—12d?)g+2g%3,
a(5)=—116d/15+16d°+24d°~64d*+32d°+ (- 8d/3+24d*~32d%g+14dg?/3,

a(6)=—2224d/45+1748d?%/45+ 16 d3+272d*/3 - 160d°+ 64 d°+ (—20d/3—20d*+96d3—80d*)g+(—2d/3
+20d?)g2—17 g®/45,

a(7)=42008d/315—-1856d?/5 + 3248d°/15— 64 d*/3 +896d°/3 —384d°®+128d" + (232d/15— 40d?—112d3+320d*
—192d°%)g+(—8d/9—24d?+208d3/3)g?>— 188dg°/45,

a(8)=108410d/63— 848984d2/315+3096d°%/5 + 1616d*/5 — 224d°+ 896d®—896d" + 256d®+ (4448d/45— 176d?/5
—80d3—1504d*/3+960d°—448d®)g+ (—296d/9 + 160d%/3 — 160d3+ 640d*/3)g>+ (—232d/45
—368d%/15)g%+ 62 g*/315,

a(9)= —12453836d/2835+2828312d%/189—-2916680d°%/189+39200d*/9 + 4928d°/9 — 1024d®+ 7552d"/3 — 2048d®
+512d°+ (—84016d/315+13504d%/15— 6352d°%/15+ 128d*/3 — 1920d°+ 2688d°— 1024d7),g + (2428d/45
—472d%/3+944d%/3—2176d%/3+608d°) g2+ (1424d/135—64 d?/ 15— 4864d°/45)g°+ 1004d g*/315,

a(10)= — 13625783441/ 14175+276742698812/14175-353024481%/315+4622224d%/945+22208d°/3 + 6336d°/5
—11264d7/3+20224d®/3 — 4608d°+ 1024d1%+ ( — 216820d/63+ 98044d%/21+ 2976d3/5 — 1312d*+ 1216d°
—6592d%+ 7168d’ — 2304d®)g+ (154016d/135—1668d%+ 616d°/3 + 13472d*/9 — 2720d°+ 4928d5/3) g?
+(5020d/27—1568d%/9 + 1744d%/ 15— 3632d%/9)g>+ (3028d/315+520d%/21)g* — 13829°/14175,

a(11)=348168414081/155925-416597077@&1%/4725+18437448321°/1575-5786628161%/945+817207041°/945
+63488d%/5+ 60032d’/15— 12288d8+ 17408d°— 10240d°+ 2048d'+ (249076721/2835—758008d%/21
+7215056d°%/189—60160d*/9 — 10880d°/3 + 7040d°— 62720d7/3 + 18432d® — 5120d°)g + (— 296608d/135
+335248d%/45— 334912d°%/ 45+ 6848d*/9 + 6336d°— 9088d°®+ 12800d7/3) g2+ (— 194296d/675+10136d%/9
—42944d3/ 45+ 8384d%/9 —20288d°%/15)g°+ (— 21428d/945+5216d%/105+42808d°/315)g* — 4424d g°/ 2025,

a(12)=725650999576/93555-8606219416468°/467775+701939748641°/4725-598576826081*/14175
—1552262721°/945+1412074881%/945+964352d '/ 45+ 639488d8/45— 37376d°+ 131072d'% 3 — 2252841
+4096d'%+ (27251566881/14175—172980884&1%/4725+9032704d°%/63+ 6100547 21*/945—76544d°/3
—168256d°/15+90880d /3 — 62464d®+ 46080d° — 11264d%) g + (— 60878036d/945+7590664d%/63
—57632d%—14176d*/3 — 2048d°/3 + 73088d°/3 — 84224d"/3 + 10752d8) g2+ (— 160403841/ 2025
+875336d2%/75— 9056d°/9 — 555968d*/135+4736d°— 189056d°/45) g3+ (— 452486d/945+28136d%/63
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+1720d3/21+38288d%/63)g* + (— 159772d/14175-103028d%/47259°+ 218449°%/ 467775,

a(13)=—101173799246518/6081075+361241012241°/495 505539278768/ 4455+3218534828&1*/405

a(14)=

a(l5=

—99293376321°/405+847447041%/ 45+ 3489740817/135+498176d%/ 15+ 749056d°/ 15— 323584d%/ 3
+321536dY3 — 49152d'%+ 8192d*3+ (— 696336828161/155925+100361925281%/4725—20177364321%/675
+13508865921*/945—1954496d°/ 63— 346496d°%/5 —599296d/15+ 112640d%— 178176d°+ 112640d*°
—24576d) g+ (10700481881/8505—924238721°/ 189 +344865872°/567 —7248256d*/27+ 83872d°/9
—50560d%/3 + 778240d7/9 — 81920d8+ 79360d°/3) g%+ (1841188481/14175-380504321%/675
+405136960°/675—1087424d%/135—-16896d°+ 293632d5/15— 555008d7/45) g + (3279508d/4725
—1090192d%/315+119432d3/45— 152896d*/315+249248d°/105)g*+ (1383464d/42525—145448d2/1575
—2076064d%/141759°+ 648838dg°®/467775,

—36601976116480328/425675254963512710025720567/42567525-7671835495928°/ 3465
+3368622438448*/3465-40898569281°/ 27— 190837356&1°%/135+90820096d '/ 27+ 846561281%/189
+37376d°+501760d'%3 — 299008d*'+ 258048d*?— 106496d*3+ 16384d**+ (— 1451301999157/93555
+369215823568%/10395-1169522569761%/4725+62932558241%/2835+3190123521°/105-41765888&1°/135
—7246336d"/45— 2262784d8/15+ 381952d° — 1469440d'% 3 + 270336d*1— 53248d'?)g
+(2257191119361/42525-332967312921%/2835+79154723121%/945-48125905761*/2835—-2892608d°/9
+2723456d0°%/45—927872d7/9 + 8622080%/3 — 228864d°+ 191488d1% 3) g%+ (14811607481/2835
—9489377921%/945+119622881%/ 25+ 24638560/ 45— 10122880°%/ 45— 3012224d%/ 45+ 3213056d7/45
—173312d8/5)g3+ (3899401761/14175-305236d%/7 + 17205764%/315+1066011214/945—-106784d°/21
+378944d°%/45)g*+ (7282228d/8505—2396708d%/2835-1846976d%/4725-2198192d4/2835 g°
+(4960766d/467775+541172d%/311859°%— 929569g /42567525,

1128557014030391415638512875-176388475626038673#%/212837625
+3040840729149634358/212837625-265094921468288%/ 22275 +113612045240518%/ 22275
—177949117568%/175+2047675025921"/4725+190184038418/315+273623041%/ 35— 182272d%% 9
+239534081'Y/45— 802816d%+ 183500801 3 — 229376d 4+ 32768d*°+ (202347598493024/6081075
—7830242589281%/4455+1305217209808°/4455—163518952961*/81+ 757177792%/ 15+ 211750401%/9
—26821120d7/27— 4818944d8/15— 562176d°+ 3639296d'% 3 — 13066244+ 638976d%— 114688d'%) g
+(—4705032378496/467775+6173171450561%/14175-9089142477441%/14175+113567361632%/2835
—8872017088&1°/945—3834752d°%/ 15+ 2195200d /9 — 14049281%/3 + 905216d° — 1853440d'% 3
+151552d1Y) g%+ (— 112565946616/127575+116679133521%/ 2835 476002350081/ 8505 +2047801281/81
—793664d°/27—251008d%/9 — 684492817/27+ 358604818/ 15— 846848d°%/9) g3+ (— 34522420961/99225
+9555803681%/4725—11654509121%/4725+410962881%/945+1537472d°/ 35— 433024d5/15
+1751296d7/63)g*+ (— 2520092561/ 212625 +207465681%/2835 8317726413/ 14175—474176d%/567
—165380481°/47259°+ (— 524422960/ 1403325 +1847271212/155925+657016164%/4677759°
—35397196d9'/42567525.
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APPENDIX F: SERIES EXPANSION OF THE STRUCTURE FACTOR OF THE RFIM IN GENERAL DIMENSION.
BIMODAL DISTRIBUTION OF THE RANDOM FIELD

a(0)=1,
a(l)=2d,
a(2)=-2d+4d?
a(3)=4d/3-8d?+8d°,
a(4)=10d/3+16d%/3—24d*+16d",
a(5)=—116d/15+16d>+24d3*-64d*+32d°-2dg?,
a(6) = —2224d/45+ 1748d%/45+ 16 d3+272d*/3 - 160d°+ 64 d®+ (6 d— 12d?)g?,

a(7)=42008d/315—1856d?/5 + 3248d°/15— 64 d*/3+896d°/3 —384d°+128d"+ (— 16 d/3+40d?— 48 d3)g?
+8dg%/3,

a(8)=108410d/63—848984d?%/315+3096d°%/5 + 1616d*/5 — 224d°+896d°— 896 d’ + 256d®+ (—44d— 8 d?+ 192d3
—160d%) g%+ (—12d+24d?)g?,

a(9)=—12453836d/2835+2828312d%/189—2916680d°%/189+39200d*/9 + 4928d°/9 — 1024d®+ 7552d"/3 — 2048d?
+512d%+ (1196d/15— 248d%— 144d3+ 768d*— 480d°) g%+ (64 d/9 — 256d?/3 + 128d%)g®>— 12dg*/5,

a(10)= —13625783441/14175+27674269881%/14175-353024481%/315+4622224d*/945+22208d°/3 + 6336d°/5
—11264d7/3 +20224d8/3 — 4608d°+ 1024d*°+ (6528d/5 — 7996d?/5 — 72d°— 3104d*/3 + 2720d°>
—1344d%)g?+ (520d/3—296d%/3 — 496d°+ 1600d*/3)g>+ (76 d/5— 152d?/5)g*,

a(11)=348168414081/155925-41659707761°/4725+184374483213/1575-5786628161*/945+817207041%/945
+63488d%/5 + 60032d7/15— 12288d%+ 17408d°— 10240d*°+ 2048d*'+ (— 832112d/315+9424d?
—39136d°%/5+ 960d*—5184d°+ 8832d°— 3584d”) g%+ (— 9104d/45+ 2768d?%/3 — 2432d*+ 1920d°) g3
+(—12d/5+112d?—1048d%/5)g*+ 1696dg°/945,

a(12)=725650999576/93555-86062194164682/467775+701939748641°/4725-59857682608*/14175
—155226272°/945+1412074881°%/945+964352d 7/ 45+ 639488d8/45— 37376d°+ 131072d'% 3 — 2252841
+4096d2+ (— 7366504d/105+132408321°%/105—252448d°/5 — 7968d*+ 6336d° — 21504d° -+ 26880d’
—9216d%)g?+ (— 307424d/ 45+ 458368d%/45— 1408d°3+ 21824d*/9 — 31040d°/3 + 6272d°) g3+ (— 5942d/15
+6376d%/15+ 3672d°%/5— 1072d*)g*+ (— 4804d/315+9608d%/315)g°,

a(13)=—101173799246518/6081075+3612410122412/495—-50553927876 8%/ 4455 +32185348288I*/405
—99293376321°/405+847447041%/ 45+ 3489740817/ 135+498176d%/ 15+ 749056d°%/ 15— 323584d9/ 3
+321536d%Y3 — 49152d%+ 8192d*3+ (3981955161/2835—10729033612/189+43382704d1°/ 63— 262144d*
—18656d°/3 +31360d°— 237568d"/3 + 77824d®— 23040d°) g2+ (93764481/945—-660992d%/ 15+ 692288d°%/15
—28288d*/3 + 54272d°%/3 — 39424d°+ 57344d7/3) g®+ (3892d/25— 8848d?/5 + 5096d°/5 + 21568d*/5
—4576d°)g*+ (— 16672d/2835—108512d%/945+83456d%/315)g°— 17014d ¢®/ 14175,

a(14)=—3660197611648032%/42567525963512710025720567/42567525-7671835495928°/3465
+3368622438448*/3465—-408985692&1%/27— 190837356&1°/135-+9082009617/27+ 8465612818/189
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+37376d°+501760d'% 3 — 2990084+ 258048d°— 106496d 13+ 16384d 4+ (265938772641/4725
—580321394681%/4725+262746589@1°/315—12725056481%/945—-1079296d°/ 3 — 46336d°/5 + 136064d’
—268288d8+ 216576d°— 56320019 g2+ (9393008d/21— 9148187 2%/105+6603712d%/ 15+ 14112d*
—40640d°+93312d°—137984d” + 55296d%) g3+ (4670192d/225—8153644d%/ 225 +56288d°/5 — 32464d%/15

+21984d°—86464d°/5)g*+ (125936d/189—890672d%/ 945 —245792d%/315+309376d*/189/) g°+ (6926d/525

—13852d2/525)g°,

a(15)=11285570140303914 16 638512875-176388475626038679*/212837625
+3040840729149634358/212837625-265094921468288/22275+113612045240518%/ 22275
—177949117568°%175+2047675025921'/4725+19018403841%/315+273623040°/ 35— 182272d%%9
+239534081'Y45— 802816d%+ 1835008d'% 3 — 229376d 4+ 32768d*°+ (— 1684400264197/ 155925

+455224244321%/945—-372043027841°/525+267637904@*/63— 26990200961°/315—2390144d5/5
—1062656d"/15+ 536576d%— 854016d°+ 583680d1°— 135168d*Y) g2+ (— 59727436641/8505
+184571320@1%/567—-8381175681%/189+184112000%/9 — 824960d°/9 — 530176d°%/3 + 3625984d7/9
—1355776d%/3 + 153600d°) g3+ (— 8583584d/525+1641296d%/ 15— 3762336d°%/25+ 154336d%/3

—535232d%/15+492672d5/5 —299264d7/5)g* + (47011520/14175+1998496d%/945—-64576d°%/ 21
—1673984d%/315+516352d°/63)g°+ (574528d/42525+285592d°/2835—1334992d3%/4725 g°

+7736dg’/10395.
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