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ABSTRACT 

THE DEVELOPMENT OF MULTIVALENT NANO-SELF PEPTIDES AS

 ANTAGONIST FOR ANTIBODY-DEPENDENT MACROPHAGE PHAGOCYTOSIS 

AbdelAziz R. Jalil 

 Dennis E. Discher 

Macrophages are immune cells that are capable of physically engulfing and 

clearing whole cells and particles. This process of phagocytosis is modulated by an 

important interaction between membrane protein CD47, present on all ‘self’ cells, and the 

macrophage immune-receptor SIRPα. Upon binding to CD47, SIRPα delivers “do not eat 

me” signals to the macrophage allowing the contact cell or particle to evade engulfment. 

Cancer cells, which are abnormal human cells, express, and sometimes over-express 

CD47, which is one mechanism used to escape immune clearance. While there has been 

success in targeting CD47 on cancer cells in the clinic, indiscriminate binding of anti-

CD47 antibodies to CD47 on healthy blood cells is unavoidable, leading to toxic side 

effects such as anemia. Here, we describe the design and synthesis of short, multivalent, 

soluble peptide (nano-Self) antagonists engineered to block SIRPα on macrophages. We 

report potent activity of bivalent and tetravalent nano-Self peptides relative to the 

monovalent variants in enhancing macrophage engulfment of IgG-opsonized target cells. 

These multivalent nano-Self peptides associate with macrophages and also suppress 

tyrosine phosphorylation in macrophages, all consistent with inhibiting the macrophage 

‘self’ signaling axis. These peptides potentially serve as novel biomolecular tools for 

macrophage immunotherapy, replacing anti-CD47 therapies currently being investigated 

in the clinic. 
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Chapter 1: Introduction 
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1.1 Background 

Clearance of cancer cells, or any other foreign cell, by immune cells requires a 

balanced response of competing inhibitory and activating signals. Ligands that signal 

inhibitory responses are necessary to maintain healthy cells from being cleared by immune 

cells. Nevertheless, cancer cells have evolved to upregulate non-immunogenic signals or 

deregulate immunogenic signaling proteins in order to bypass immune clearance. This 

prompts one to look for strategies to manipulate inhibitory receptors on immune cells or 

their counter-ligands on cancer cells to promote cancer elimination.  

Immunotherapy has gained much interest in the past decade. This approach 

stimulates the body’s own immune cells by targeting checkpoint proteins that are involved 

in inhibiting the clearance of cancer cells. The most broadly studied and characterized 

immune checkpoints are the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and 

programmed cell death protein (PD-1), found on activated T-cell membranes, and PD-L1 

(PD-1 ligand), found on the surface of cancer (and healthy) cells.1,2 Normally, when these 

T-cell receptors interact with their ligands, elimination of cancer cells is halted. Targeting 

these receptors has established the foundation of immune checkpoint blockade therapy, 

motivating the search for additional immune checkpoints.3-6  

 While anti-CTLA-4 and anti-PD-1/PD-L1 immunotherapies have shown 

unprecedented success in treating liquid tumors, solid tumors remain a challenge. 

Macrophages have been sought as potential immunotherapeutic candidates against solid 

tumors given that macrophages can infiltrate into solid tumors and are the main phagocytic 

population within the tumor microenvironment.7,8 An innate macrophage immune 

checkpoint is that between the signal regulatory protein-α or SIRPα on macrophages and 
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the ubiquitous membrane protein CD47 found on all cells, including cancer cells.9-13 This 

interaction signals “self” or “do not eat me” to the macrophage, outweighing phagocytic 

“eat me” antigens present on the surface of tumors or from tumor-targeting drugs, leading 

to the escape of the cancer cell from macrophage engulfment. 

While CD47 was known to be expressed in ovarian cancer decades ago,14 its role 

as an immune checkpoint has only been discovered recently.11-13,15 CD47 blockade on 

tumors serves as the predominant therapeutic approach in disrupting the CD47-SIRPα 

axis.16 While CD47-blockade seems promising and efficacious, indiscriminate binding of 

anti-CD47 antibodies to CD47 on all cells (ex. red blood cells) results in toxic side effects 

(ex. anemia).16 SIRPα on macrophages has also been targeted with checkpoint inhibitors.17-

19 SIRPα is less abundant than CD47, thus targeting this immune receptor, in principle, is 

a more plausible and safer alternative relative to CD47 blockade.19-21 
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1.2 Motivation and thesis outline 

The motivation for this research project stemmed from mouse and human data 

demonstrating that SIRPα blockade with antibodies is as effective as anti-CD47 therapies. 

Furthermore, the first demonstration of adapting macrophages to clear solid tumors by 

blocking SIRPα was done in our laboratory.19 The technique of harvesting macrophages 

from both mouse and human bone marrow, blocking the SIRPα receptor and also priming 

the macrophage with a targeting IgG-antibody against human tumors was successful in 

diminishing human cancers while maintaining safety. This inspires the development of 

SIRPα inhibitors of which this dissertation will discuss in detail. 

The development of our peptide checkpoint inhibitors against SIRPα is based on 

the discovery of the Self peptide, also work that was done by our group.22 This synthetic 

21-amino acid peptide, derived from the binding region of human CD47, was shown to 

bind to SIRPα and also mimic the function of full length CD47 by impeding phagocytosis 

of particles that display it. Here, we further minimalized this peptide to nano-Self peptides 

that are 8-amino acids in length but comprised of the sequence that makes up more than 

40% of the contact residues between the paired receptors. Our proof-of-principle work is 

the first that demonstrates SIRPα blockade with peptides to be used as potential agents for 

macrophage immunotherapy.  

This dissertation will cover two aspects of the field. Chapter 2 will provide an 

extensive overview of the CD47-SIRPα macrophage checkpoint. It begins by discussing 

the discovery and relevance of both proteins in cancer. Then, current clinical trials and 

treatments of various malignancies targeting both CD47 and SIRPα are discussed along 

with controversial and challenging safety concerns attributed to anti-CD47 therapies. The 
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end of the chapter provides new insights to the sequence and structure dependency of the 

CD47-SIRPα interaction and how these fundamental, but rather understudied aspects, 

relate to the binding and function of these paired receptors. This will hopefully inspire the 

development of new, potent, and functional macrophage checkpoint antagonists.  

Chapter 3 will focus on the novelty of this dissertation. The rational re-design and 

innovation in developing various nano-Self peptides is explained in detail. Our monomeric 

peptides were further engineered to bivalent and tetravalent adjuvants to increase their 

avidity to SIRPα dimers. We show that these peptides enhance macrophage-mediated 

phagocytosis of human red blood cells and human erythroleukemia K562 cells when these 

target cells are “opsonized,” or complimented with an “eat me signal.” Our data show 

potent and pharmacological activity for bivalent and tetravalent constructs (Keff  ~ 5-10 

nM). A simple inhibition assay shows multivalent nano-Self peptides outcompete soluble 

CD47 binding which suggests peptide binding to SIRPα. We further investigated the 

potential mechanism of phagocytosis and whether the binding we observed was indeed to 

SIRPα, by measuring phosphorylation levels in macrophages. This is based on the 

assumption that inhibiting the CD47-SIRPα axis by the addition of the nano-Self peptides 

will prevent SIRPα phosphorylation. Indeed, we observe significant suppression of 

phosphorylation in human macrophages even with the addition of low concentrations (20 

nM) of bivalent nano-Self, consistent with SIRPα blockade and inhibition of ‘self’ 

signaling. Lastly, we injected our most potent peptide into mice to simply understand if 

there were any immediate inflammatory or toxic effects. From the hematological data, no 

anemia or weight loss was observed in the mice indicating some level of safety.  



6 
 

Chapter 4 provides explanation on future experiments with more engineered 

peptides and how to introduce these peptides in vivo. This chapter begins with a brief 

discussion on our ongoing efforts in exploring cyclic nano-Self peptides. Sequence 

searches reveal the presence of some of the linear nano-Self peptide sequences in various 

organisms, mainly bacteria. Most importantly, the sequence of our cyclic nano-Self peptide 

does not occur in nature. Preliminary phagocytosis data for our monovalent cyclic peptide 

in both human and mouse macrophages are presented, and the implications are discussed. 

We then present the expression of human CD47 variants - mutated at a key residue involved 

in binding and which also had a crucial effect in promoting macrophage phagocytosis – on 

the surface of HEK293 cells. Different binding assays to be done on these cells are 

explained. Additionally, mutated and bivalent cyclic nano-Self peptides are proposed. We 

conclude with potential caveats as we begin to transition into in vivo studies and how we 

plan to address them using linear and cyclic nano-Self peptides.   
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Chapter 2: Macrophage checkpoint blockade: a perspective on 

results from initial clinical trials and on CD47-SIRPα 

structure-function 

Text in this chapter was previously published in: 

Antibody Therapeutics, 2020, 3, 80-94 

Jalil, A.; Andrechak, J.; Discher, D.  

I was responsible for writing the main text, generating the tables as well as making all 

illustrations presented in this Chapter except for: 

a. The text in Section 2.7 (done by J. Andrechak) 

b. Table 3 (generated by J. Andrechak) 

c. Figures 2.1 and 2.2 (made by J. Andrechak)  
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2.1 Abstract 

The macrophage checkpoint is an anti-phagocytic interaction between SIRPα on a 

macrophage and CD47 on all cell types. This interaction has emerged over the last decade 

as a potential co-target in cancer, which also expresses CD47, with antibodies against 

CD47 and SIRPα currently in preclinical and clinical development for a variety of 

hematological and solid malignancies. Monotherapy with CD47 blockade is ineffective in 

human clinical trials against many tumor types tested to date, except for some cutaneous 

and peripheral lymphomas. In contrast, pre-clinical results show efficacy in several 

syngeneic mouse models of cancer, suggesting that many of these tumor models are more 

immunogenic or otherwise artificial than human tumors. However, combination therapies 

in humans of anti-CD47 with agents such as the anti-tumor antibody rituximab do show 

efficacy against liquid tumors (lymphoma) and are promising for the field. Here, we review 

such trials as well as the key structural and interaction features of CD47-SIRPα in order to 

inform further potential therapeutic strategies. 
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2.2 Introduction 

Cancer immunotherapy has rapidly expanded into the clinic over the past decade 

with significant success for therapies that target functionally suppressed immune cells in 

tumor microenvironments.23 T-cells have been the primary focus of cancer immunotherapy 

with immune checkpoint inhibitors developed to antagonize either CTLA-4 and PD-1 

expressed on T-cell membrane proteins, or PD-1’s ligand, PD-L1, which is on the surface 

of many cells including cancer cells.1,2 While this receptor-ligand interaction normally 

inhibits an activated T-cell, inhibiting this paired receptor interaction with blocking 

antibodies enables suitably activated T-cells to eliminate cancer cells. Dramatic and 

durable effects are seen in some patients for some malignancies, with tumors having high 

mutational loads being most likely to activate T-cells, but most patients do not respond to 

this type of immunotherapy, which presents a challenge and an opportunity.24,25 

Macrophages are part of the innate immune response, are often abundant in solid 

tumors, and have a general ability to clear foreign cells through the activated process of 

phagocytosis.26,27 Phagocytosis is modulated by a checkpoint interaction between the 

signal regulatory protein alpha (SIRPα) on macrophages and the surface glycoprotein 

CD47 found on all cells.10,28 This review focuses on the structure of SIRPα and CD47, the 

role of this checkpoint in macrophage function, and therapeutic antibody strategies that 

target the SIRPα-CD47 interaction in cancer clinical trials. We also examine the sequence-

structure-function relationships of these paired receptors in efforts to stimulate new 

therapeutics. 
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2.3 The ubiquitous ‘marker of self’ ligand, CD47  

CD47 is an integral membrane glycoprotein that is expressed in all normal and 

diseased tissues at the RNA and protein levels. This glycoprotein was first discovered as 

an overexpressed ovarian carcinoma antigen (OA3).29 It was also described as associating 

with β-integrin proteins and thus named integrin associated protein (IAP).30 The protein 

was found on the surface of erythrocytes (which lack integrins) through binding of two 

different antibodies and was then designated CD47.31  

CD47 belongs to the immunoglobulin superfamily (IgSF) with a single N-terminal 

extracellular Ig-like domain, five transmembrane helices, and a C-terminal cytoplasmic 

tail. Four cytoplasmic tails range in length from four amino acids (Type 1) to 34 amino 

acids (Type 4), but the 16 amino acid tail isoform (Type 2) is the most abundant and is 

expressed on the majority of cells in humans and mice.32 

An X-ray crystal structure of CD47 reveals an IgV (variable) topology with α-

helical as well as β-sheet secondary structures and a conserved intramolecular disulfide 

bridge spanning the middle of the β-sandwich.9 An additional disulfide bridge also forms 

between the extracellular domain and one of the transmembrane domains, which is unusual 

for IgSF proteins and some evidence suggests it orients the Ig domain for optimal receptor 

binding.33 CD47 interacts primarily with three categories of extracellular receptors: 

integrins, thrombospondin-1 (TSP-1) protein and SIRPα. Cell adhesion, cell migration, and 

regulation of inflammation and phagocytosis are among the reported functions of receptor 

interactions with CD47.34  

CD47 was first termed a “marker of self” after CD47-deficient red blood cells 

(RBCs) from a mouse knockout (C57BL/6 strain) were found to be rapidly cleared from 
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the circulation of wildtype mice by splenic macrophages.35 The in vitro evidence is 

compelling that the CD47 interaction with SIRPα is a “don’t eat me” anti-phagocytic signal 

when occurring in parallel with some types of “eat me” signal – most clearly with IgG 

bound to the phagocytic target (Figure 2.1). In principle, the expression of CD47 allows 

all cells, including cancer cells, to evade macrophage engulfment. Nonetheless, two 

mysteries continue to persist since this seminal observation: (i) CD47-knockout mice do 

not exhibit anemia or any evident RBC or platelet deficiencies, and (ii) the in vivo “eat me” 

signal on RBCs in CD47-knockout mice remains unclear. Some might argue that the 

clearance cue is the senescence signal that leads to RBC phagocytosis after circulating 

weeks (in mouse) or months (in human), but CD47-knockout RBCs are all cleared within 

1-2 days in the circulation of the wildtype mouse implying that all CD47-knockout RBCs 

display the senescence signal.  
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Figure 2.1: Antagonizing either CD47 on target cancer cell or SIRPα on the 

macrophage results with phagocytosis and is enhanced with macrophage FcR 

opsonization 
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Figure 2.1: Phagocytosis is maximized by inhibiting CD47 on ‘self’ cells (the target) 

or SIRPα on macrophages in combination with antibodies that opsonize the target 

CD47 binding to SIRPα signals “don’t eat me” to the macrophage (leftmost). Neither 

antibody blockade of CD47-SIRPα nor antibody opsonization of a target is sufficient to 

make target engulfment efficient (middle two), whereas the combination maximizes 

phagocytosis (rightmost).  
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2.4 The macrophage immune receptor, SIRPα 

SIRPα is also an IgSF, integral membrane glycoprotein, and although it is expressed 

on many if not all cell types, its expression on hematopoietic cells is restricted to myeloid 

cells: macrophages, monocytes, dendritic cells, and granulocytes (and not T-cells, etc.).36 

SIRPα was first identified on rat fibroblasts as PTPNS1 (protein tyrosine phosphatase, non-

receptor type substrate 1) in association with the cytoplasmic tyrosine phosphatase SHP-2 

(Src homology region 2 domain containing phosphatase-2).37 SIRPα was later found to be 

expressed on human myeloid cells,38 although expression can vary even within subtypes 

of macrophages.19 

SIRPα has three IgSF domains, one N-terminal V-like domain (domain-1, D1) and 

two C1-like domains – which is a structure shared by a larger family of SIRPs.39,40 One 

transmembrane helix connects to cytoplasmic tails of varying lengths that govern signaling 

in the SIRPs. SIRPα’s cytoplasmic tail has four tyrosine residues that conform to an 

immunoreceptor tyrosine-based inhibitory motif (ITIM) which mediates association with 

SHP-1 and SHP-2 for inhibitory signaling.37  

Two closely related SIRP members are SIRPβ and SIRPγ. SIRPβ has a short 

cytoplasmic tail (6 amino acids) and lacks phosphatase binding motifs suggesting it lacks 

inhibitory activity. However, SIRPβ associates with DNAX activation protein 12 (DAP12) 

and can transmit activating signals.41 SIRPγ has an even shorter cytoplasmic region (4 

amino acids) and is also unlikely to signal. Two uncharacterized members of the SIRP 

family are SIRPβ2 and SIRPδ.23,39  

The extracellular domains of the SIRP members share highly conserved sequence 

homology with very subtle differences.39,40 X-ray crystal structures of D1 for each of 
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SIRPα, SIRPβ, SIRPβ2, and SIRPγ closely resemble each other.9 Additionally, SIRPα is 

known to be highly polymorphic.42 Across 10 distinct human SIRPα alleles, 18 amino acids 

have been identified as polymorphic residues, all located in the N-terminal IgV domain of 

SIRPα.  

While CD47 is the main extracellular ligand for SIRPα and might also weakly bind 

SIRPγ,9,28,39 additional extracellular ligands that interact with SIRPα include surfactant 

proteins A and D (Sp-A and Sp-D), found primarily in the lungs.43,44 Insulin secretion and 

muscle formation are among some of the functions that somehow involve SIRPα.45 

However, the best characterized function of SIRPα is its role in inhibiting macrophage 

phagocytosis upon binding CD47 on another cell.10,23,46 
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2.5 Binding of CD47-SIRPα and their other ligands 

CD47 is the main ligand for SIRPα across mouse, rat and human,46 but the 

interaction is often weak with only sub-micromolar affinity28,47,48 – as summarized here for 

various CD47 and SIRPα ligands (Table 2.1). The single N-terminal IgV domain of CD47 

interacts with the D1 of SIRPα. The interaction between these paired receptors is species-

specific to an extent, with limited cross reactivity across species.47 The X-ray crystal 

structure of the CD47-SIRPα complex reveals three distinct binding sites with the highest 

density of interactions occurring between the β-strands comprising the FG loop of CD47 

and a wide binding pocket made up of SIRPα’s BC, C’D, DE and FG loops.9 More than 

50% of the interfacial surface between the two proteins occurs at this site. Furthermore, 

about 45% of CD47’s contact residues with SIRPα consist of the 8 amino acids that make 

up the loop region between strands F and G. Their binding is mediated mainly by charge 

complementarity (SIRPα mostly positive and CD47 mostly negative). The FG loop in 

CD47 is conserved across different species which may explain why human-CD47 binds to 

some SIRPα polymorphs from different species – such as SIRPα in non-obese diabetic 

(NOD) mice48 and also porcine SIRPα.49 

Binding of CD47 to other ligands such as integrins, TSP-1 and TSP-1-derived 

peptides, also involves the IgV domain of CD47.34 While the precise regions of interaction 

with integrins have not been determined, binding studies have shown that CD47 can 

activate integrins in cis independently as well as while bound to TSP-1 derived peptides or 

SIRPα,50-52 indicating that the binding site for integrins on CD47 is not occupied by either 

protein. Binding of CD47 to TSP-1, however, inhibits the binding of SIRPα. This finding 

was further demonstrated with a monoclonal anti-CD47 antibody, B6H12, that inhibited 
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binding of both ligands to CD47.53 Although these results suggest that TSP-1 and SIRPα 

compete for overlapping binding sites on CD47, mutational and biochemical studies have 

also revealed that post-translational modifications of a critical serine residue on CD47 

away from the SIRPα binding site is required for TSP-1 binding.54  

SIRPα also interacts with ligands other than CD47 such as Sp-A and Sp-D, 

respectively. Sp-D has been shown to bind SIRPα in D3, rather than D1.44 CD47 binding 

to SIRPα in D1 is not impaired in the presence of Sp-D. Sp-A binds SIRPα; however, the 

binding site is currently unknown. While the binding domain of SIRPα is highly 

polymorphic, there has been controversy on whether the polymorphic residues affect CD47 

binding. The crystal structure reveals that the 18 polymorphic amino acids all lie outside 

of the CD47 interaction interface,9,55 although this does not preclude an allosteric effect 

that is common in protein-protein interactions. Indeed, CD47 affinity to the different SIRPα 

alleles seems to vary.22 Separate data suggest SIRPα polymorphism alters post-

translational modifications which could also affect CD47 engagement.42  
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Table 2.1: Known affinities of CD47-SIRPα ligands 

Ligand Receptor Affinity (μM) Reference 

SIRPαV1 CD47 0.46 / 0.74  22, 55 

SIRPαV2 CD47 1.0-2.0 9,28,56 

SIRPαV2 CD47 0.44 / 0.64 22, 55 

SIRPαV3 CD47 0.84 22 

SIRPαV4 CD47 0.91 22 

SIRPαV5 CD47 2.50 / 0.78 22, 55 

SIRPαV6 CD47 0.30 22 

SIRPαV7 CD47 3.21 / 0.65 22, 55 

SIRPαV8 CD47 0.65 22 

SIRPαV9 CD47 1.14 22 

SIRPαV10 CD47 0.08 / 0.67 22, 55 

NOD SIRPα CD47 0.08 48 

‘Self’ peptide SIRPα 0.16 22 

FD6 CD47 4.1 × 10 -5 57 

CV1 CD47 1.1 × 10-5 57 

PKHB1 (peptide) CD47 ‘micromolar’ affinity 58 

CD47AP SIRPα 1.1 × 10-2 59 

N3612 (Velcro CD47) SIRPαV1 

SIRPαV2 

2.5 × 10-3 

3.7 × 10-4 

60 

DSP-107  

(SIRPα-41BBL) 

CD47 1.5 × 10-3 61 
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2.6 CD47-SIRPα as an immune checkpoint 

Inhibitory immune signaling occurs upon CD47 binding, with phosphorylation of 

the ITIM motifs in SIRPα that then recruit and activate the cytoplasmic phosphatases SHP-

1 and SHP-2.62-64 Downstream targets of dephosphorylation include paxillin and 

nonmuscle myosin IIA, decreasing the efficiency of phagocytosis analogous to direct 

inhibition of nonmuscle myosin IIA – at least for IgG-opsonized targets.65 Integrin 

mediated activation also leads to the recruitment of the phosphatases and enhanced 

inhibitory phosphorylation signals.66  

When a target for phagocytosis is IgG opsonized, engulfment begins with the 

activation of Fc receptors (FcRs) on the surface of the phagocytic cell. This activation leads 

to the formation of a “phagocytic synapse” with rapid cytoskeletal rearrangement and 

accumulation of signaling proteins inside the macrophage at its point of contact with the 

targeted cell, microbe, or particle. The three main events that occur at the synapse are 

adhesion of the cell or particle with the phagocyte, pseudopod extension of the phagocyte 

around the target and final internalization.67 CD47 on the target does not eliminate 

adhesion, but tends to impede the pseudopod formation and significantly suppresses the 

internalization. 

The initial description of elevated CD47 levels in ovarian cancer followed by the 

characterization of its role in signaling “don’t eat me” to macrophages eventually inspired 

investigation of CD47 as a therapeutic target in cancer – particularly because CD47 tends 

to be modestly elevated in many hematologic and solid malignancies.11-13,15 Many proof-

of-principle applications have been developed to target the CD47-SIRPα immune 

checkpoint including fully humanized anti-CD47 antibodies, anti-SIRPα antibodies, 
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SIRPα-fusion IgG proteins, among other protein and peptide antagonists. Table 2.2 

summarizes these antagonists and their in vitro applications against various types of cancer 

malignancies. Early preclinical studies demonstrated the efficacy of anti-CD47 treatment 

of various malignancies, with many of these indicating activity as a mono-therapy.11,15,68,69 

Importantly, however, anti-CD47 is an opsonizing IgG, and so it is difficult with 

monotherapy to identify the results as (i) the pro-phagocytic effects of opsonizing a cancer 

cell – which is not novel but potentially useful, and/or (ii) blocking the anti-phagocytic 

effects of the “don’t eat me” signal – which is novel. Antibody-dependent phagocytosis 

activates the macrophage FcR, which directs the macrophage towards the target.70,71 

Investigations with FcR-deficient mice and with Fab blocking antibodies (lacking the Fc 

chain) has suggested the mechanism of antibody-dependent macrophage phagocytosis 

differs depending on the type of malignancy.72 For a few cancers, it seems sufficient to 

interrupt the CD47-SIRPα interaction, but it is ineffective for many cancers, especially 

solid tumors.57,73  

Macrophages also express CD47, and recent evidence suggests this interacts in cis 

with SIRPα. As with the trans interaction, the cis interaction leads to relatively high 

phosphorylation of SIRPα’s cytoplasmic tail and to relatively low levels of phagocytosis 

compared to CD47-knockout macrophages.74 The potency of an anti-CD47 therapy might 

thus reflect the cumulative effects of inhibiting trans interactions between a macrophage 

and a cancer cell as well as inhibiting passivating cis interactions on the same macrophage.   



 

Table 2.2: CD47-SIRPα immune checkpoint inhibitors used for in vitro phagocytosis assays against cancer cells 

Cancer Type CD47 Antagonists SIRPα Antagonists 

Acute Lymphoblastic Leukemia B6H1268,75, BRIC12675, TTI-62276, ZF177 anti-mouse SIRPα (not specified)75 

Acute Myeloid Leukemia anti-CD47 (not specified)78, B6H1213,68,79, BRIC12613, C47B22279, DSP-107 (CD47/4-1BB 

bispecific)61, Magrolimab80, NI-1701 (CD47/CD19 bispecific)81, SIRPα-FC82, SRF23183, TTI-

62184, TTI-62276, ZF177 

P84 (anti-mouse SIRPα)12 

B Cell Lymphoma ALX14885, B6H1268,86-88, BRIC12687, CD20-CD47LL (CD47/CD20 bispecific)89, 

CD20-CD47SL (CD47/CD20 bispecific)89, CV157, FD657, DSP-10761, Inhibrix90, 

NI-170181, SRF23183, TG-1801 (CD47/CD20 bispecific)91, TTI-62184, TTI-62276 

04017, SE12C317, ADU-180592, KWAR2318, 

N361260 

Bladder Cancer anti-CD47 (not specified)93, B6H1211,68 None 

Brain Cancer B6H1211,68, BRIC12611, Magrolimab15,94,95 None 

Breast Cancer B6H1211,96, BRIC12611, CV157, FD657, RRx-00197, TTI-62184 1.23A96, 12C496, 04017, SE12C317, KWAR2318, 

N361260 

Chronic Lymphocytic Leukemia PKHB158 None 

Chronic Myeloid Leukemia B6H1268, TTI-62184 None 

Colon Cancer ALX14885, B6H1211,98, BRIC12611, CV157, FD657, DSP-10761, TTI-62184 FAB 11999, FAB 13699, KWAR2318, N361260 

Colorectal Cancer TTI-62276 None 

Endometrial Cancer B6H12100 None 

Epidermoid Cancer TTI-62184 None 

Esophageal Cancer ALX14885 FAB 11999, FAB 1599, FAB 13699 

Gastric Cancer B6H12101 None 

Hepatocellular Cancer Ab400 (cross reacts human and mouse CD47)102, B6H12102 None 

Leiomyosarcoma B6H12103 None 

Lung Cancer CV1104, FD6104, DSP-10761, Magrolimab104, RRx-00197, SIRPαD1-Fc105, TTI-62184, TTI-62276 SE7C219 

Melanoma A4 (anti-mouse CD47)73, TTI-62184 MY-1 (anti-mouse SIRPα)106, P84106 

Medulloblastoma Magrolimab15 None 

Myelodysplastic Syndrome TTI-62276 None 

Myeloma ALX14885, B6H12107, TTI-62184 None 

Osteosarcoma Ab400108, B6H12108 None 

Ovarian Cancer B6H1211, BRIC12611, DSP-10761, TTI-62184 None 

Pancreatic Cancer B6H12109,110, CV1109, FD6109, Magrolimab109 None 

Pharynx Cancer DSP-10761 None 

Renal Carcinoma None KWAR2318, MY-1106, P84106 

Skin Cancer TTI-62184 None 

T-Cell Lymphoma B6H12111, SRF231111, TTI-62184 None 

T-Cell Leukemia B6H1279, C47B15779, C47B16179, C47B22279, TTI-62184 SE7C219 

2
1
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2.7 Clinical targeting CD47-SIRPα in cancer 

Decades ago, one anti-CD47 antibody was injected into ovarian cancer patients in 

order to image the tumors; the study demonstrated some targetability but provided no 

insight into therapeutic effects or safety issues.14 This of course pre-dates by a decade the 

description in mouse of CD47 as a ‘Marker of Self’.35 Over the past decade, CD47 has 

indeed emerged as a potential therapeutic target for macrophage checkpoint blockade in 

clinical trials against cancer, with monoclonal antibodies being the primary antagonists.  

Clinical trials up to Phase 2 have rapidly expanded in numbers, diversity of 

approach, and targets studied.16,112,113 Key strategies and current results from trial reports 

and conference proceedings are reviewed here (Table 2.3). A main conclusion is that 

monotherapy with anti-CD47 shows little to no efficacy across multiple cancer types when 

administered systemically, and while it often leads to rapid loss of a large fraction of blood 

cells (consistent with rapid loss of CD47-knockout mouse blood cells upon infusion in 

normal mice35), anti-CD47 can show efficacy in humans in combination therapies. In 

reviewing the clinical trials (below) with this macrophage checkpoint blockade, it seems 

that some efforts with anti-CD47 are based on the hope that human tumors would possess 

macrophage activating activity that could be unleashed by simply preventing the inhibitory 

signaling from CD47-SIRPα (i.e. a monotherapy). As noted earlier, T-cell checkpoint 

blockade (using antagonists of PD-1’s interaction with PD-L1) succeeds primarily against 

human tumors with high mutational loads that tend to activate T-cells via their T-cell 

receptor (TCR).24,25 

Magrolimab, previously known as Hu5F9-G4, is the anti-human-CD47 monoclonal 

that is most advanced in clinical trials. Two Phase 1 dose escalation trials have been 
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completed in acute myeloid leukemia (AML) and solid tumors. Magrolimab is a humanized 

monoclonal IgG4 antibody that was engineered to not only block CD47 signaling but to 

also minimize engagement of FcRs and thereby limit macrophage activation.15 This is 

because the IgG4’s Fc region has weaker affinity for FcRs compared to other IgG subtypes; 

Magrolimab is therefore more likely to work as an inhibitor and less as an opsonizing 

antibody. On the other hand, CD47 expression on all cells in the body means that there is 

a large sink for infused anti-CD47.  

First reports of efficacy required a combination treatment of magrolimab and 

ritixumab (anti-CD20) in relapsed/refractory (r/r) non-Hodgkin’s lymphoma (NHL) 

patients that were refractory to rituximab alone.114 Phase 1b results showed 36% complete 

response rate (CRR) and 50% objective response rate (ORR) for a small cohort of a few 

dozen patients. Addition of the tumor-specific antibody to activate macrophage effector 

functions is a growing trend in CD47 blockade trials, reflecting the need for pro-phagocytic 

cues (e.g. antibody engagement of FcRs) in combination with blockade of ‘don’t eat me’ 

signals to drive tumor regression. CD24 was recently proposed as another cell-surface 

‘don’t eat me’ signal and target, although in magrolimab-treated Phase 2 NHL patients, 

neither CD24 nor CD47 showed prognostic value.115,116 In another combination Phase 1b 

trial with the chemotherapeutic azacitidine, ongoing results reported 92% ORR in untreated 

higher-risk myelodysplastic syndrome (MDS) and 64% ORR in untreated AML 

patients.117,118 A tentative mechanism for this combination is that azacitidine results in 

surface display of pro-phagocytic calreticulin (normally intracellular), which synergizes 

with CD47 blockade in cancer cell phagocytosis.119 These latest data contributed to Forty-

Seven, Inc’s multi-billion dollar acquisition by the much larger firm, Gilead Sciences, 
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announced in March 2020.  

TTI-621 and TTI-622 are SIRPα-Fc fusion proteins in trials against hematologic 

and solid malignancies.120-123 Both consist of the CD47-binding domain of human SIRPα 

fused to a human Fc domain: IgG1 for TTI-621 and IgG4 for TTI-622. The IgG1 domain 

of TTI-621 contributes to its increased potency, at least in preclinical models.84 The TTI’s 

were reported to have no affinity for human RBCs, but a re-analysis of TTI-621 data 

suggests otherwise. Magrolimab (5F9) and BRIC126 clearly cause hemagglutination by 

antibody-mediated cross-bridging,84 which is not observed with TTI-621 and other select 

anti-CD47 agents (Figure 2.2A). On the other hand, addition of ‘saturating concentrations’ 

(~1 μM based on hemagglutination results) to RBCs and then assayed for binding by flow 

cytometry, TTI-621 (and also TTI-622) gives a signal well above several non-specific 

antibodies albeit far below several anti-CD47 antibodies; the difference allows one to 

estimate a weak sub-μM affinity of TTI-621 for RBCs (Figure 2.2B). This is only slightly 

weaker than TTI-621 binding (with ~10 nM to ~1 μM affinities) to fresh white blood cells 

and platelets as well as to primary hematopoietic tumor samples, and to various human 

tumor cell lines (Figure 2.2C). Curiously, the effective concentrations (EC50) for 

phagocytosis of the tumor cell lines was ~10-100 fold stronger (~nM) than the above 

binding affinities, which perhaps relates to dominance of the Fc domain, and it is also 

curious that RBC phagocytosis results have not been reported. Indeed, tight binding of ~10 

nM does not predict efficient phagocytosis (Figure 2.2D). Although TTI-621 showed some 

efficacy when administered intratumorally to patients with cutaneous T-cell lymphoma 

(mycosis fungoides), intravenous administration showed grade 3 thrombocytopenia in 18% 

of a varied cohort of leukemia, lymphoma, and other solid tumor patients (25% overall 
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showed some level of thrombocytopenia). It should be noted that platelet measurements 

are much noisier than RBC counts, and confident measurements of cytopenias/anemias 

also require measurements of any compensating production (e.g. reticulocytes). Despite 

potential safety concerns, monotherapies with TTI-621 in B- and T-cell lymphomas 

produce 18-29% ORR at low doses (0.5 mg/kg) with dose escalation in progress, which is 

unlike other anti-CD47 monotherapies under clinical study.124 TTI-622 is being studied in 

combination with other tumor-specific agents, including rituximab and a PD-1 inhibitor to 

engage adaptive immune responses with continued claims of preferential tumor cell 

phagocytosis and no RBC binding.76 For a deeper understanding of mechanism, future 

experiments should address RBC phagocytosis effects (i.e. EC50 in vitro) as well as the 

effect of bivalent/multivalent protein/peptide binding and blocking of SIRPα in the absence 

of a Fc domain. 

CC-90002 is a humanized, high affinity (sub-nanomolar) monoclonal IgG4 CD47 

antibody in Phase 1 trials against advanced solid and hematologic malignancies in 

combination with rituximab, with an earlier trial terminated due to discouraging safety 

profiles. In r/r NHL patients of the combined trial, 13% showed a response rate with 25% 

showing stable disease,125 but 50% showed anemia (of any grade) with 33% showing 

thrombocytopenia.  

ALX 148 is a fusion protein that consists of the CD47 binding domains of SIRPα 

and a fully inactive Fc domain.85,126 Notably, its molecular mass is 50% that of a typical 

antibody, which may enable lower dosing (e.g. 10 mg/kg) to saturate CD47 targets. The 

most recent reported data show that just 13.3% and 6.7% of patients (n = 30) show 

thrombocytopenia and anemia, respectively, in a combination cohort with ALX148 and 
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trastuzamab (anti-HER2). Another cohort receiving ALX148 and pembrolizumab (anti-

PD1) reported 7.7% in both of the same measures.127 In a cohort for r/r NHL with 

rituximab, the maximum tolerated dose was not reached, similar levels of anemia and 

thrombocytopenia were shown, and ongoing preliminary ORRs varied from 31% to 50% 

depending on tumor type. 

Safety concerns with anti-CD47 remain due to the lack of specificity in targeting a 

ubiquitously expressed protein. Anemia and thrombocytopenia are widespread in patients 

and only partially mitigated by priming and dosing strategies.16 One fully human 

monoclonal antibody, SRF231, caused blood toxicities at such low doses (12 mg/kg) 

halting further expansion cohorts in its Phase 1 trial.83 The addition of tumor-specific 

agents alongside anti-CD47 may increase efficacy but does not necessarily address safety 

issues, even in the case of bispecific or Fc-inactive antibodies. 

Other current candidates in early trials have yet to report results as they monitor 

patient safety and dosing profiles such as AO-176, a humanized monoclonal anti-CD47 

IgG2 antibody, and HX009, an anti-PD-1/CD47 bispecific antibody.119 IBI-188 is a CD47 

IgG4 monoclonal antibody under Phase 1 trials in the US and China against advanced 

malignant tumors and lymphomas.128 TJC4 (also known as TJ011133) is another CD47 

monoclonal antibody that recently entered Phase 1 trials in the US for solid tumors and 

lymphoma in combination with pembrolizumab and rituximab.129,130 Many other drugs are 

in active preclinical development by startups and major pharmaceutical companies. The 

expanding field of candidates indicates an exciting but potentially challenging time in the 

development of CD47 therapeutics for cancer. 

SIRPα is also a target for antibody blockade under preclinical and clinical study in 
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efforts to address the safety and efficacy concerns of early CD47 drugs, especially given 

CD47’s ubiquitous expression.99 Several anti-SIRPα antibodies are in active development 

in efforts to augment anti-tumor responses and overcome the significant off-target 

toxicities with anti-CD47.131 BI 765063/OSE-172 is a monoclonal SIRPα antagonist in a 

Phase 1 trial that dosed its first patient in June 2019 as a monotherapy and in combination 

with an anti-PD-1 monoclonal antibody.132 



 
 

Table 2.3: Therapeutic CD47-SIRPα antibodies currently being investigated in the clinic 

Drug Company Clinical trials Phase Status Targets Combinations 

Magrolimab 

(Hu5F9-

G4) 

Forty Seven, Inc. 
NCT02678338 Phase 1 Completed 

Acute myeloid leukemia, 

myelodysplastic syndrome 
Monotherapy 

NCT02216409 Phase 1 Completed Solid tumors Monotherapy 

NCT03248479 Phase 1 Ongoing 
Acute myeloid leukemia, 

myelodysplastic syndrome 
Monotherapy, azacitidine 

NCT02953782 
Phase 

1/2 
Ongoing 

Colorectal neoplasms, solid 

tumors 
Cetuximab 

NCT02953509 
Phase 

1/2 
Ongoing 

Lymphoma, Non-Hodgkin 

lymphoma, Large B-Cell, 

diffuse indolent lymphoma 

Rituximab 

TTI-621 Trillium Therapeutics, Inc. 
NCT02663518 Phase 1 Ongoing 

Hematologic malignancies, 

sold tumors 
Monotherapy, rituximab, nivolumab 

NCT02890368 Phase 1 Ongoing 
Solid tumors, mycosis 

fungoides 

Monotherapy, PD-1/PD-L1 inhibitor, 

pegylated interferon-α2a, T-Vec, 

radiation 

TTI-622 NCT03530683 Phase 1 Ongoing Lymphoma, myeloma 

Monotherapy, rituximab, PD-1 

inhibitor, proteasome-inhibitor 

regimen 

CC-90002 Celgene NCT02367196 Phase 1 Ongoing Hematologic neoplasms Monotherapy, rituximab 

ALX 148 ALX Oncology, Inc. NCT03013218 Phase 1 Ongoing 
Solid tumors, Non-Hodgkin 

lymphoma 

Monotherapy, pembrolizumab, 

trastuzumab, rituximab, ramucirumab 

+ paclitaxel, 5-FU + cisplatin 

SRF231 Surface Oncology NCT03512340 Phase 1 Ongoing 
Advanced solid cancers, 

hematologic cancers 
Monotherapy 

AO-176 Arch Oncology NCT03834948 Phase 1 Ongoing Solid tumors Monotherapy 

BI 765063  Boehringer Ingelheim NCT03990233 Phase 1 Ongoing Solid tumors Monotherapy, PD-1 inhibitor 

HX009 Waterstone Hanxbio Pty Ltd. NCT04097769 Phase 1 Ongoing Advanced solid tumors Monotherapy 

TJ011133 

(TJC4) 
I-Mab Biopharma, Co. Ltd. NCT03934814 Phase 1 Ongoing Solid tumors, lymphoma 

Monotherapy, pembrolizumab, 

rituximab 

IBI-188 Innovent Biologics Co. Ltd. NCT03763149 Phase 1 Ongoing Advanced malignancies Monotherapy 

NCT03717103 Phase 1 Ongoing Advanced malignancies Monotherapy, rituximab 

2
8
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Figure 2.2: Novel analyses of SIRPα-Fc fusion antibody (TTI-621) interacting with 

blood cells and cancer cells (reported in Ref 72) elucidate aspects of molecular 

mechanism 
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Figure 2.2: Novel re-analysis of TTI-621 binding data from Ref 72 

A. Molecular partition function (ξ) fitting to the hemagglutination data. K1 and K2 are 

association constants, inversely related to dissociation constants or EC50. Schematic of 

possible binding states of various CD47 affinity agents is shown for two apposed RBC 

membranes. Magrolimab (5F9) and BRIC126 both exhibit high hemagglutination and 

show cross-bridging, which can be fit (5F9: K1 = 1.2 × 10-2 nM-1, K2 = 0.24 nM-1; 

BRIC126: K1 =6.6 × 10-2 nM-1; K2 = 1.9 nM-1), whereas TTI-621, B6H12, and 2D3 do not.  

B. TTI-621 shows non-zero binding to RBCs, which is weaker than anti-CD47 antibodies 

but consistent with past reports of sub-μM affinity between CD47 and SIRPα.133 Inset: 

same data plotted with y-axis on log scale. Note that the plot follows the same color scheme 

as in panel A.  

C. TTI-621 binding data show sub-μM affinity for white blood cells, primary tumor 

samples, and human tumor cell lines. Phagocytosis of the human tumor lines requires less 

binding for effective phagocytosis. 

D. TTI-621 binding affinities do not predict phagocytic efficiency across various cancer 

cell types. BR.C: breast cancer, AML: acute myeloid leukemia, BCL: B cell lymphoma, 

MM: multiple myeloma, TCL: T-cell lymphoma. 
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2.8 Sequence-function relationships for CD47-SIRPα  

 Understanding the residues in CD47 and SIRPα that are key to binding and function 

will assist in developing new classes of checkpoint blocking proteins and peptides. 

Antibodies used for blocking are extremely large, glycoprotein complexes with >1,000 

amino acid residues (~150 kDa). They also possess multiple disulfide bridges that require 

specialized eukaryotic machinery to faithfully produce the numerous post-translational 

modifications. For these reasons and more monoclonal antibodies with specificity for one 

protein such as CD47 are costly to produce in large quantities even though Good 

Manufacturing Practice for monoclonals is now a mainstay in biopharma.134 Indeed, the 

average annual cost to a patient for a monoclonal antibody treatment is about $100,000, 

which adds greatly to the rapidly rising costs of drugs and healthcare.135,136 

The co-crystal structure of CD47-SIRPα shows 13 residues in CD47 that contact 

12 residues in SIRPα (polymorphic variants 1 and 2) through hydrogen bonding and salt 

bridges.9,55 Cross-species interactions, such as between pig CD47 and human SIRPα47 or 

between human CD47 and NOD mouse SIRPα,48 have a potential basis in some critical 

contact residues based on sequence alignments (Figure 2.3). Contact residues in human 

CD47 are all conserved in pig CD47 except for Lys-6, which is an Ile in pig. From the 

crystal structure, this residue is outside of the CD47 FG binding loop, and Lys is similar in 

size to Ile, making it likely that contact is maintained. For similar reasons, monkey CD47 

that shares the same contact residues as human CD47, and dog CD47 that shares the same 

contact residues as pig CD47, should both bind human SIRPα. Mouse and rat CD47 have 

two non-conserved mutations at human residues Asp-46 and Glu-106, respectively. 

Mutating Asp to a bulky Tyr residue should interfere with the FG loop in SIRPα and 
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remove an important H-bond. Replacing the negative Glu with a positively charged Lys 

eliminates a critical salt bridge with Lys-53 in SIRPα’s binding pocket. Likewise, cow, 

sheep, and chicken all have mutations at critical H-bonding sites, which explain the lack of 

binding to human SIRPα.  

 The 12 contact residues in human SIRPα are conserved across its polymorph 

variants that all bind human CD47.22 NOD-SIRPα reportedly binds human CD47 65-fold 

more tightly than human SIRPα.48 Sequence analysis reveals conserved mutations with 

SIRPαV1 except at residues Gln-52 and Lys-53 (Figure 2.3). From crystal structure 

analysis, the H-bond formed via Lys-53 is potentially maintained with a Thr mutation 

found in NOD-SIRPα, a possible explanation for the increased affinity may be due to the 

increased hydrophobicity of the Q52F mutation. Phe-52 has the propensity to engage in 

hydrophobic interactions with pyroGlu-1 in SIRPα which might compensate for the loss of 

the noncritical H-bond. Variance in mouse SIRPα shows that Lys-53 is mutated to aliphatic 

Ala, eliminating a critical H-bond with Glu-106 in CD47 and perhaps explaining the lack 

of human CD47 binding. Moreover, two residues in mouse SIRPα (Ser-102 & Glu-103) 

are absent in NOD-SIRPα and in human SIRPα, which suggests enhanced CD47 affinity 

for NOD-SIRPα relative to other mouse SIRPα’s.  

Interestingly, human CD47 binding to pig SIRPα inhibits phagocytosis, which 

indicates that the sequence variance between pig and human SIRPα does not prevent 

signaling.49 Two contact residue changes between human and pig, Q52F, which is the same 

mutation found in NOD mouse strains, and G97E, a nonconserved mutation that introduces 

a salt bridge interaction with Lys37 in CD47 (Figure 2.3). In NOD-SIRPα, the Q52F 

mutation seemingly enhanced CD47 affinity suggesting the same may be true with pig 
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SIRPα, especially with the addition of a favorable H-bonding interaction at Gly97. 

However, phagocytosis is inhibited by the interaction of NOD-SIRPα and human CD47, 

implying that the sequence complementarity of the remaining contact residues, namely 

Lys53, between the paired receptors is important for signaling regardless of species. When 

comparing this to the 10 polymorphs of human SIRPα, which all bind human CD47,22,42,55 

the resultant “don’t eat me” signal is dependent on which SIRPα variant CD47 interacts 

with, even though both are from the same species.137 When comparing monkey and dog 

SIRPα sequences, the contact residues are also conserved in the same manner as CD47 

(monkey conserved with human sequence and dog conserved with pig sequence except at 

Gly97). This becomes significant for preclinical safety and efficacy models and modulating 

engraftment of human cells in other species.  

Although both CD47 and SIRPα are glycosylated post-translationally, 

glycosylation is not a requisite of CD47-SIRPα interaction, with amino acid residues 

driving the binding.138,139 Monomeric, recombinant CD47 and SIRPα expressed in E. coli 

and lacking glycosylation indeed disrupt the CD47-SIRPα interaction in vitro.140 

Glycosylation of SIRPα and of CD47 may sometimes inhibit their binding141 but otherwise 

seem important for cis dimerization of SIRPα on the surface of cells.59 An important post-

translational modification, however, is the N-terminal modification of CD47 by 

glutaminyl-peptide cyclotransferase-like protein (QPCTL) to produce pyroglutamate.142 

This modification has been demonstrated to contribute to SIRPα binding as well as 

signaling, although the earlier results with CD47 expressed in E. coli did not seem to 

account for this modification.140 Nonetheless, inhibiting QPCTL enhanced antibody-

mediated phagocytosis.142  
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 Major advances have been made in engineering high affinity versions of CD47 and 

SIRPα to function as immune checkpoint inhibitors. The most potent protein CD47 

inhibitors developed are FD6 and CV1, which inhibit SIRPα binding at, remarkably, 

picomolar concentrations.57 Analysis of the sequence and contact points between wildtype 

SIRPα and these engineered variants shows that three contact residues are mutated: K53R 

(conserved), E54Q (non-conserved), and L66T (non-conserved compared to SIRPαV1 but 

conserved compared to V2). The remaining 9 mutations in FD6 (6 mutations in CV1) 

appear to contribute to the stability of the engineered variants and add more hydrophobic 

contacts with CD47. It is important to note that these engineered variants cross-react with 

mouse CD47. Notably, an engineered CD47 variant, Velcro-CD47 N3612, potently 

antagonized SIRPα with no changes made to the binding region.60 Rather, a three amino 

acid extension was added (Trp-Gln-Pro) to the N-terminus of CD47 and only a single point 

mutation made on Gln-1 (pyroGlu) to a Pro residue. Adding additional N-terminus contact 

residues between CD47 and SIRPαV1 and V2 effectively enhanced CD47 affinity to 

nanomolar and picomolar concentrations for the SIRPα variants, respectively. A 21-amino 

acid ‘Self’ peptide derived from the FG binding loop of CD47 was also shown to bind, 

antagonize SIRPα, and inhibit phagocytosis, suggesting that binding and function primarily 

converge to this sequence.22 

 Pan-allelic anti-SIRPα antibodies that interact with more than one polymorph 

and/or species of SIRPα have also been engineered in order to overcome limitations that 

arise in targeting various polymorphs of SIRPα. One study discovered various classes of 

pan-allelic antibodies against SIRPα variants that antagonized human, mouse and monkey 

SIRPα.99 Interestingly, some of these anti-SIRPα antibodies promote phagocytosis without 
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physically blocking the SIRPα binding groove and inhibiting CD47 interaction – although 

the mechanism remains unknown. A second study reports on ADU-1805, a humanized pan-

allelic anti-SIRPα antibody that interacts with SIRPα variants 1, 2 and 8.92 ADU-1805 

blocks CD47 binding to SIRPα and SIRPγ, and it does not bind to SIRPβ. Pan-allelic agents 

that bind all SIRPα variants as well as pan-allelic peptides and proteins have yet to be 

discovered. 
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Figure 2.3: Sequence alignment show conserved contact residues in CD47 and SIRPα, 

respectively, across different species potentially explaining cross-species interactions 
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Figure 2.3: Conserved contact residues across various species of CD47 and SIRPα 

provides potential rationale for cross-species reactivity 

Sequence overlays of CD47 and SIRPα, respectively, reveal conserved residues across 

different species. Green highlighted residues are conserved relative to human wildtype 

sequence. Blue highlighted residues are non-conserved mutations relative to human 

wildtype; however, maintain H-bonding. Red highlights are non-conserved mutations. 

Porcine CD47 binds human SIRPα and this can be seen from the conservation of most of 

the contact residues. Based on this, monkey CD47, which shares the same contact residues 

as human CD47, and dog CD47, which shares the same contact residues as pig CD47, 

should bind to human SIRPα. Likewise, when comparing SIRPα variants across different 

species, the conservation of contact residues among the sequences of NOD mice and pig 

SIRPα with human SIRPα provide some rationale as to why human CD47 interacts with 

these variants. Based on this, human CD47 should interact with monkey and dog SIRPα.   
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2.9 Structure-function relationship of the CD47-SIRPα axis 

In addition to sequence analysis, crystal structures also assist in determining 

important structural factors that lead to potent antagonism (Figure 2.4A). For the fully 

humanized antibody magrolimab (Hu5F9-G4) that was made to block CD47,80 the crystal 

structure reveals a magrolimab-CD47 binding complex like that of the SIRPα-CD47 

complex showing magrolimab competing for the same SIRPα binding site.104 Crystal 

structures of the older monoclonal B6H12 as well as hybridoma (C47B161) and phage 

(C47B222) derived monoclonal anti-CD47 antibodies also show that SIRPα is inhibited 

due to competitive binding to the same CD47 FG loop binding site.79 2D3 is a monoclonal 

anti-CD47 antibody that binds CD47 but reportedly does not block the interaction with 

SIRPα nor the inhibitory signal, indicating it interacts at a site away from the CD47 FG 

binding loop.13 

SIRPα directed antagonists likewise bind and block CD47 by competing for the 

ligand binding groove in SIRPα (Figure 2.4B). KWAR23, an anti-SIRPα blocking 

antibody, overlaps the same binding region as CD47, revealing a basis for competitive 

binding.18 Most recently, a series of blocking and non-blocking anti-SIRPα antibodies have 

been crystalized in complex with SIRPα.99 The blocking antibodies all compete for the 

same binding site in SIRPα as CD47; however, one antibody epitope shares only a single 

common residue with CD47 in the SIRPα binding groove, but is enough to displace CD47 

engagement. These anti-SIRPα blocking and non-blocking antibodies, were potent to 

different degrees in promoting phagocytosis of colon and esophageal carcinoma cells in 

vitro. These effects were also observed with monoclonal anti-mouse SIRPα, P84, which 

does not block CD47 binding, but rather inhibits SIRPα signaling by some other 
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mechanism to promote macrophage phagocytosis.106  

When comparing the crystal structures of bound CD47 and SIRPα, respectively, 

there are conserved contact residues in both proteins that interact with the bound ligand. In 

CD47, Thr-102 is involved in binding with all the potent antagonists as seen in the crystal 

structures (Figure 2.4A). Likewise, Lys-96 in SIRPα is a conserved contact residue 

(Figure 2.4B). Considering which residues are conserved in terms of binding can assist in 

rational design of protein, peptide, and small molecule inhibitors that are reminiscent of 

the binding interface of either CD47 or SIRPα based on the overall fold and positioning of 

these conserved contact residues. 

It remains unclear whether CD47 binding to SIRPα leads to structural changes in 

the latter that somehow promotes cytoplasmic signaling. SIRPα is mobile and accumulates 

at the phagocytic synapse.65 Interestingly, “forcing” SIRPα into the phagocytic synapse in 

the absence of CD47 also prevents engulfment of opsonized targets indicating the 

localization of SIRPα in the synapse is sufficient for signaling “don’t eat me” to the 

macrophage.133 Accumulation of SIRPα to the synapse is thus driven by the presence of 

CD47 and appears to be the main mechanism by which phagocytosis is inhibited.  
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Figure 2.4: Constant contact residues in CD47 and SIRPα bound to different 

inhibitors 
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Figure 2.4: Crystal structures of various bound CD47/SIRPα inhibitors show location 

of constant contact residues 

Crystal structures of various A) CD47 and B) SIRPα bound inhibitors. For all antibody 

bound structures, only the first 100 residues in each of the heavy and light chains are shown. 

CD47 and SIRPα contact residues in each complex are highlighted in red. Inset tables list 

all contact residues in the respective receptors and how many times each contact residue is 

involved in binding across the various complexes.  

A. PDB codes 2JJS (CD47/SIRPα v2), 5IWL (CD47/magrolimab), 5TZ4 (CD47/B6H12), 

4KJY (CD47/FD6), 5TZT (CD47/C47B161), and 5TZ2 (CD47/C47B222). 

B. PDB codes 2JJS (SIRPα v2/CD47), 4CMM (SIRPα v1/CD47), 6BIT (SIRPα 

v1/KWAR23), and 6NMR (SIRPα v1/FAB 119).
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2.10 Conclusions 

A balance of activating and passivating signals in the immune system normally 

maintains homeostasis but also allows cancer cells to evade clearance and spread. Immune 

checkpoint blockade of the PD-1/PD-L1 axis on T-cells has achieved some success against 

some cancers as a monotherapy, but current understanding is that T-cells in these patients 

are being activated by an abundance of mutations that can stimulate only upon checkpoint 

blockade. Although monotherapy against CD47-SIRPα seemed promising based on 

multiple syngeneic mouse models of cancer that used cancer lines that were known to be 

immunogenic, monotherapy also seemed unlikely based on minimally immunogenic lines 

such as B16 melanoma in C57 mice.73 In this model, even PD-1 blockade is relatively 

ineffective unless the B16 cells are made more immunogenic with mutations that are also 

known to favor clinical responses to PD-1 blockade.24,25 Combination therapies of CD47-

SIRPα blockade with tumor-opsonizing antibodies that activate macrophages through the 

FcR pathway are thus sensible and promising. They also have the theoretical potential for 

antigenic spread within a patient, if engulfment of the cancer cell by a macrophage or 

dendritic cell leads to patient-specific antibodies against tumor mutations that otherwise 

remain hidden behind the macrophage checkpoint. 
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Chapter 3: Multivalent, soluble nano-Self peptides increase 

phagocytosis of antibody-opsonized targets by suppressing self-

signaling 

Text in this chapter was previously published in: 

ACS Nano, 2020, 14, 15083-15093 

Jalil, A.; Hayes, B.; Andrechak, J.; Xia, Y.; Chenoweth, D.; Discher, D. 

I was the main researcher in this project and executed all experiments for the data 

presented in this Chapter except for: 

a. B. Hayes assisted with confirming reproducibility of the red blood cell 

phagocytosis data with controls.  

b. The GEO microarray analysis on the various human and mouse cells presented in 

Figure 3.4 (performed by B. Hayes) 

c. The flow cytometry experiment presented in Figure 3.8 (performed by B. Hayes) 

d. The data from intravenous injections of nS-FF into mice presented in Section 

3.4.7 and Figure 3.18 (performed and written by J. Andrechak).  

e. The confocal imaging presented in Figure 3.14B (performed by Y. Xia)   
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3.1 Abstract 

Macrophages engulf ‘foreign’ cells and particles, but phagocytosis of both healthy 

cells and cancer cells is inhibited by expression of the ubiquitous membrane protein CD47 

that binds SIRPα on macrophages to signal ‘self’. Based on past studies of CD47-derived 

polypeptides on particles that inhibit particle phagocytosis, we designed soluble, 

multivalent, nano-Self peptides to bind and block SIRPα function. Bivalent and tetravalent 

peptides prove more potent (Keff ~ 10 nM) than monovalent 8-mers as agonists for 

phagocytosis of antibody targeted cells including cancer cells. Multivalent peptides 

outcompete soluble CD47 binding to human macrophages, consistent with SIRPα binding, 

and also suppress phosphotyrosine in macrophages, consistent with inhibition of ‘self’ 

signaling through SIRPα. Peptides exhibit low hairpin content, but functionality suggests 

an induced fit into SIRPα’s binding pocket. Pre-clinical studies in mice indicate safety, 

with no anemia or weight loss. Multivalent nano-Self peptides thus constitute an alternative 

approach to antibody-based CD47 blockade in promoting phagocytosis of ‘self’ – including 

cancer cells targeted clinically.  
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3.2 Introduction 

Protein-mediated interactions between two cells can convey inhibitory signals such 

as with ‘checkpoint’ receptors on immune cells. On macrophages, for example, SIRPα 

(signal regulatory protein-α) is a checkpoint receptor that binds the ubiquitously expressed 

protein CD47,9,10,36,56 which signals inhibition of macrophage engulfment of CD47-

expressing cells or particles coated with macrophage-activating antibody. On T-cells, in 

comparison, PD-1 checkpoint receptor binds to PD-L1 on the surface of cells,1,2 which 

thereby inhibits T-cell activation. Importantly, antibody antagonists of these interactions 

enable these immune cells to eliminate target cells – although efficacy is lacking in many 

patients.4-6,143,144 Such limitations motivate additional molecular designs. 

Nearly half of CD47’s contact surface with SIRPα localizes to 8 residues in a β-

hairpin loop within CD47’s immunoglobulin (Ig) domain (Figure. 3.1A).9,22 A 21-amino 

acid peptide derived from CD47 binds SIRPα and mimics function of the Ig domain by 

inhibiting macrophage-mediated clearance of peptide- or Ig- displaying nanoparticles 

injected in mice.22 Mechanistically, the interaction between CD47 and macrophage SIRPα 

stimulates dephosphorylation of multiple macrophage factors to signal against 

phagocytosis.37,62,63,65,66,145 The CD47-SIRPα macrophage checkpoint is already targeted 

in cancer patients with antagonizing antibodies and antibody-like bivalent fusions of 

SIRPα.69,120,122,126,146 Although blockade is effective in patients when combined with a 

tumor-opsonizing antibody,114 infusion of anti-CD47 is often seen to clear blood cells 

including red blood cells (RBCs).16,27,147 We hypothesized that a multivalent, 8-amino acid 

nano-Self (nS) peptide could antagonize SIRPα while preventing clearance of blood cells 

in vivo. Here, multivalent peptides substituted at a single key residue (Figure. 3.1B) 
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function as SIRPα antagonists and lead to increased macrophage phagocytosis of antibody-

targeted cells as well as association with and net dephosphorylation within macrophages. 

Compared to large antibodies, the nS peptides potentially represent an additional class of 

macrophage checkpoint inhibitors. 
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Figure 3.1A: Phagocytosis of ‘Self’ cells is inhibited by CD47 binding to SIRPα 

Figure 3.1B: nano-Self peptides based on CD47 are made to bind SIRPα as 

competitive antagonists 
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Figure 3.1: nano-Self peptides are designed as competitive inhibitors based on CD47’s 

key binding loop  

A. ‘Marker of Self’ CD47 is expressed on all cells and inhibits phagocytosis of ‘Self’ cells 

when it binds its receptor SIRPα on macrophages (Protein Data Base accession number: 

2JJS).  

B. The nS-wt peptide consists of 8-amino acids (blue) that bind the SIRPα binding pocket 

(yellow). Substitutions of the Thr residue (red) generate nS peptides as competitive 

antagonists against SIRPα. nS-X is a scrambled sequence. Bivalent peptides were 

constructed by linking monomers to (di-PEG)-lysine via their C-termini. Inset table: 

Names and sequences of nS peptides. 
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3.3 Experimental Methods 

Solid phase peptide synthesis  

a- Standard peptide synthesis 

All peptides in this study were synthesized on a Rink Amide MBHA Resin 

(loading density: 0.33 mmol/g; Novabiochem) on a 100 μmol scale at room 

temperature (RT) using 9-fluorenylmethoxycarbonyl (Fmoc) chemistry. The resin 

was transferred to a solid phase peptide synthesis vessel and swelled in N,N-

dimethylformamide (DMF; Sigma) for 30 minutes with stirring. Deprotection of 

the Fmoc group was achieved by using 1 mL of 1% w/v 1-hydroxybenzotriazole 

(HoBT; EMD Millipore) and 2% v/v 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU; 

Acros Organics) in DMF and left to stir for 1 minute (repeated three times). Lastly, 

resin was then washed thoroughly with DMF. Coupling solutions contained 3 

equivalents of Fmoc-amino acids (Chem-Impex or Oakwood Chemicals), 2.8 

equivalents of 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-

b]pyridinium 3-oxid hexafluorophosphate (HATU; Oakwood Chemicals), and 6 

equivalents of N,N-diisopropylethylamine (DIEA; Sigma) - relative to resin - 

dissolved in minimal amount of DMF to cover resin (1 – 1.3 mL) and were activated 

for 5 minutes at RT prior to addition to resin. Coupling reactions were left to 

proceed for 1 hour. Following each coupling reaction, the resin was drained, 

washed thoroughly with DMF, deprotected as described above and washed 

thoroughly with DMF. 

b- Bivalent peptide synthesis 
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Bivalent peptides were prepared by coupling 3 equivalents of Fmoc-

Lys(Fmoc)-OH directly on resin and deprotecting the Fmoc groups following the 

same procedure mentioned above. The coupling solutions of the polyethylene 

glycol (PEG) acids contained 5 equivalents of Fmoc-NH-PEG5-CH2CH2COOH 

(PurePEG), 4.5 equivalents of HATU and 10 equivalents of DIEA. The coupling 

reactions were left to proceed for 3 hours. Every subsequent amino acid coupling 

was done using 6 equivalents Fmoc-amino acid, 5 equivalents HATU and 10 

equivalents DIEA.  

c- 5(6)-Carboxyfluorescein (FAM) coupling 

All fluorescently labeled peptides were prepared by coupling Boc-

Lys(Fmoc)-OH at the N-terminus and deprotection of the Fmoc-protected γ-amine 

of Lys. FAM (Chem-Impex) was prepared by dissolving 2 equivalents in DMF with 

2 equivalents of HATU and added to the resin after activation for 5 minutes at RT. 

6 equivalents of DIEA were added dropwise to the stirring solution in order to 

maintain a homogenous solution.148 The reaction was left to proceed overnight in 

the dark.  

d- Peptide cleavage 

Following the final deprotection of the last Fmoc group (except for 

fluorescent peptides where the last amino acid contains acid labile Boc protecting 

group), the resin was washed with DMF twice and then twice more with 

dichloromethane (DCM; Sigma). A 5 mL cleavage cocktail containing 95% 

trifluoracetic acid (TFA; Acros Organics), 2.5% H2O and 2.5% triisopropylsilane 

(TIPS; Oakwood) was added to the reaction vessel and left to stir for 4 hours. 45 
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mL of cold diethyl ether (Sigma) was then added to the cleavage solution 

precipitating the peptide. To make sure all peptide precipitated, the ether layer was 

evaporated by air until ~10 mL of solution was left; thereafter, an additional 40 mL 

of cold ether was added. The peptide was collected by centrifugation, resuspended 

in cold ether and collected by centrifugation again (repeated three times). 

Depending on the solubility of the peptide, the ether washed pellet was dissolved 

in a mixture of 10-40% acetonitrile (ACN; Sigma) in water. 

e- Purification and characterization 

All peptides were purified using preparative reversed-phase high-

performance liquid chromatography (HPLC) on an Agilent 1260 Infinity II system 

using a Phenomenex Luna Omega 5 µm PS C18 100 Å LC column. Varying 

gradients of ACN and 0.1% TFA in H2O were used to separate the respective 

peptides. Purity of each peptide was checked using an analytical Agilent 1260 

Infinity II system using a Phenomenex Luna Omega 5 µm PS C18 100 Å LC 

column. Mass spectrometry was performed using a Bruker matrix-assisted laser 

desorption ionization – time of flight (MALDI-TOF) Ultraflex III mass 

spectrometer and α-Cyano-4-hydroxycinnamic acid (CHCA; Sigma) as the matrix. 

Peptides were lyophilized using a Labconco FreeZone Plus 12 Liter Cascade 

Console Freeze Dry system.  

f- UV-Vis, circular dichroism (CD) and Fourier Transform infrared (FT-IR) 

measurements 

UV-Vis absorption spectrophotometry was performed using a Jasco V-650 

Spectrophotometer and 1 cm path length quartz cells. Lyophilized peptide was 
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dissolved in 100 μL of phosphate buffered saline pH 7.4 (PBS; Thermo Fischer) 

and concentration of each peptide was determined by measuring the absorbance at 

205 nm and using a calculated extinction coefficient for each peptide due to the 

lack of aromatic residues in the peptides. 149,150 For fluorescein labeled peptides, 

the lyophilized solid was dissolved in 20 μL of dimethyl sulfoxide (DMSO; Sigma) 

then diluted to 100 μL with PBS. Peptide concentration was determined by 

measuring the absorbance at 495 nm.  

CD experiments were performed using a Jasco J-1500 Circular Dichroism 

Spectrometer and 1 mm quartz cuvettes. 100 μM samples were prepared for each 

peptide in sodium phosphate buffer pH 7, and ellipticity was measured from 190 

nm to 260 nm at 5 °C and 95 °C, respectively.  

FT-IR measurements were collected using a Jasco FT/IR-6800 FT-IR 

spectrometer. Peptide samples were solvent swapped into in deuterated water and 

deuterated hydrochloric acid. 5 μL droplets of peptide samples were measured at 

room temperature and absorbance was recorded from 1200-1700 cm-1. 

Cell culture 

All cells were purchased from American Type Culture Collection (ATCC). Human derived 

THP-1 monocytes and mouse J774A.1 macrophages were both cultured in RPMI 1640 

media (Gibco). Human erythroleukemia K562 cells were cultured in IMDM media 

(Gibco). All media were supplemented with 10% v/v fetal bovine serum (FBS; Sigma) and 

1% v/v penicillin/streptomycin (Sigma). J774A.1 macrophages were grown either as 

suspension or adherent cultures. To passage adherent J774A.1 macrophages, the cells were 

gently scraped with a cell scraper (Corning). THP-1 monocytes were cultured in 
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suspension. Differentiation of THP-1 monocytes to macrophages was achieved by addition 

of 100 ng/mL phorbol myristate acetate (PMA; Sigma) in media for 2 days (unless stated 

otherwise) and confirmed by attachment of the macrophages to the bottom of the tissue 

culture plates.  

In vitro phagocytosis assay 

Fresh human RBCs were washed twice with 50 mM EDTA (Thermo Fischer) in 

Dulbecco’s phosphate buffered saline (PBS; Gibco) then twice with 5% FBS in PBS. RBCs 

were opsonized with 20 ug/mL rabbit anti-human RBC antibody (Rockland) in 5% FBS 

for 1 hour at RT with shaking. For CD47 blocked RBCs, 5 μg/mL of mouse anti-human 

CD47 (B6H12; BD Biosciences) were added. Thereafter, RBCs were washed with PBS 

three times and stained with PKH26 dye (1:800 dilution in PBS; Sigma) for 1 hour at RT 

with shaking in the dark. RBCs were washed and resuspended in PBS.  

THP-1 monocytes were PMA differentiated in RPMI for 48 hours. Macrophages 

were then washed with RPMI media three times. The macrophages were then incubated 

with 20 nM, 1 μM or 50 μM of the nano-Self peptides for 1 hour at 37 °C, 5% CO2 and 

95% humidity. Those THP-1s were then washed with RPMI three times. J774A.1 

macrophages were plated for 24 hours in RPMI. The same peptide blocking procedure as 

above was used with the addition of a positive control using 5 μg/mL rat anti-mouse SIRPα 

(P84; BD Biosciences).  

Opsonized RBCs were added to macrophages at a ratio of 10:1 for 1 hour at 37 °C, 

5% CO2 and 95% humidity. Macrophages were then washed with RPMI three times. 

Adherent and uninternalized RBCs were lysed with water for 30 seconds followed by 

immediate replacement with RPMI media. In order to distinguish the remaining adherent 
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RBCs from internalized RBCs, opsonized RBCs were stained with AlexaFluor 647 donkey 

anti-rabbit (binds to rabbit polyclonal opsonin on RBC; Invitrogen) IgG (1:1000) while un-

opsonized, CD47 blocked RBCs were stained with AlexaFluor 647 donkey anti-mouse 

(binds to mouse monoclonal anti-CD47 on RBCs; Invitrogen) IgG (1:1000) for 30 minutes. 

After washing, macrophages were fixed with 4% formaldehyde (Sigma) for 15 minutes at 

RT, washed with PBS, stained with 1 μg/mL Hoechst 33342 (Invitrogen), and then washed 

with PBS again.  

K562 cells were washed with PBS then stained with 1:10,000 5(6)-

carboxyfluorescein diacetate (CFDA; Invitrogen) in PBS for 15 minutes at room 

temperature in the dark. Cells were washed with PBS to remove excess CFDA dye and 

then cells were resuspended in IMDM media. K562 cells were opsonized and CD47 

blocked using the same antibody concentrations used in the RBC phagocytosis assay (20 

μg/mL anti-RBC and 5 μg/mL anti-CD47) for 1 hour on ice in the dark. After washing with 

IMDM, K562 cells were added to macrophages at a ratio of 5:1 for 2 hours at 37 °C, 5% 

CO2 and 95% humidity. THP-1 macrophages were stained with Hoechst 33342 for 15 

minutes and then extensively washed prior to the addition of the K562 cells. Afterwards, 

the macrophages were washed, fixed with 4% formaldehyde, and then washed again. 

Fluorescence imaging was performed using an Olympus IX71 with a digital 

EMCCD camera (Cascade 512B) and a 40x/0.6 NA objective. Confocal imaging was done 

using a Leica TCS SP8 system with 63x/1.4 NA oil-immersion objective. Quantification 

was done with ImageJ (NIH). At least 200 cells were analyzed, and experiments were 

repeated at least three times. Two-tailed student’s t-test was used to determine statistical 

significance. 
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CD47-Fc inhibition assay 

THP-1 monocytes were PMA differentiated in RPMI for 48 hours. The 

macrophages were washed with RPMI media then incubated with 1 μM or 50 μM of nano-

Self peptides for 1 hour at 37 °C, 5% CO2 and 95% humidity. After washing, the 

macrophages were incubated with Human Trustain FcX Fc receptor blocking solution 

(Biolegend) for 10 minutes at room temperature then incubated with 2 μg/mL CD47-Fc 

fusion protein (ACRO Biosystems) for 1 hour at 37 °C, 5% CO2 and 95% humidity. As a 

negative control, B6H12 was pre-mixed with CD47-Fc at 4 °C on a rotator for one hour. 

The macrophages were then washed and incubated with 0.5 μg/mL goat anti-human IgG 

Fc DyLight 488 (Thermo Fischer) for 1 hour at 37 °C, 5% CO2 and 95% humidity. Finally, 

the macrophages were washed, fixed, Hoechst 33342 stained and imaged as described 

above.  

Peptide inhibition assay 

THP-1 monocytes were PMA differentiated in RPMI for 48 hours. Macrophages were 

washed with RPMI three times then incubated with 1 μM or 20 nM nS-FF or nS-VV for 1 

hour at 37 °C, 5% CO2 and 95% humidity. Excess peptide was washed with PBS then 100 

μM of either FAM labeled nS-F was added to the bivalent-peptide blocked macrophages 

for 1 hour as above. As a control, 50 μM of nS-X was used instead of bivalent nS peptides. 

Excess peptides were washed off with PBS and cells were fixed with 4% formaldehyde for 

15 minutes at RT, washed with PBS, stained with 1 μg/mL Hoechst 33342, and then 

washed with PBS again. Fluorescence imaging was performed as described above and 

quantification was done using ImageJ.  

SIRPα staining and confocal imaging 
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THP-1 monocytes were PMA differentiated in RPMI 1640 for 24 hours. J774A.1 

cells were plated for 24 hours in media. Cells were washed with RPMI prior to addition of 

fluorescent peptides. The peptides were left to incubate for 1 hour at 37 °C, 5% CO2 and 

95% humidity. For fixed cell staining, cells were incubated with 4% formaldehyde for 15 

minutes prior to the addition of fluorescent peptides whereas for live cell staining, fixation 

was done after incubation with the FAM-labeled peptides. Nuclei were stained with 1 

μg/mL Hoechst 33342. Cells were then washed with PBS three times before analysis. 

Fluorescence imaging of fixed cells was done as described above. For live cell (without 

fixation) confocal imaging, cells were washed with respective media three times after 

nuclei staining instead of PBS. Confocal imaging was done using a Leica TCS SP8 system 

with 63x/1.4 NA oil-immersion objective. Quantification was done with ImageJ. 

Phosphotyrosine staining 

THP-1 monocytes were PMA differentiated for 48 hours. Macrophages were washed with 

RPMI three times then incubated with 50 μM and 20 nM of either nS-F or nS-FF for 1 hour 

at 37 °C, 5% CO2 and 95% humidity. The same conditions were replicated with the addition 

of 5 μg/mL anti-CD47. Excess peptide was washed with PBS and then macrophages were 

fixed. Permeabilization of the macrophages was achieved with 0.5% Triton-X for 30 

minutes. After washing with PBS, the macrophages were incubated with 1:100 mouse anti-

pTyr (Santa Cruz Biotechnology) for 1 hour at room temperature with gentle shaking. 

Macrophages were washed with PBS, then stained with AlexaFluor 488 donkey anti-mouse 

(1:1000; Invitrogen) and 1 μg/mL Hoechst 33342 for 1 hour with shaking then washed 

again. Fluorescence imaging and quantification was performed as described above.  

Intravenous injections of nS-FF into mice 



57 
 

14-week-old C57BL6/J mice (Jackson Laboratory, Inc.) were anesthetized with 4% 

isoflurane in air carrier gas, and approximately 140 µl of blood was drawn retro-orbitally 

at Days -7, -1, and 4 post-injection of either 100 µl PBS (vehicle control) or 1 mg/kg ns-

FF peptide in 100 µl PBS. Blood was collected with capillary tubes pre-rinsed with 0.5M 

EDTA into K2EDTA microhematocrit tubes to prevent clotting. Injections were given 

intravenously daily on Days 0, 1, 2, and 3. Mice were weighed at each blood draw and 

monitored for clinical signs of anemia daily. 

GEO microarray analysis  

Data from the GEO database was used to obtain gene expression data for key genes 

associated with macrophage identity. The cell types included in this analysis were human 

HEK 293T (GEO accession GSE28715), human PMA-differentiated THP-1 macrophages 

(GEO accession GDS4258), primary mouse macrophages (GEO accession GDS2454) and 

human K562 erythroleukemia (GEO accession GSE16774 & GSE8832).  

Flow cytometry  

Fresh human RBCs were washed twice with 50 mM EDTA and then twice with 5% 

w/v bovine serum albumin (BSA; Sigma) in PBS. K562 cells were collected and washed 

twice with 5% BSA. RBCs and K562 cells were blocked with 5% BSA for one hour at 

room temperature on a rotator. Saturating amounts of AlexaFluor 647 mouse anti-human 

CD47 (B6H12; BD Biosciences) were added to both RBCs and K562 cells and incubated 

at room temperature on a rotator for one hour. Cells were washed three times with 5% BSA 

Flow cytometry was performed on a BD LSRII (Benton Dickinson) at the Penn Cytomics 

and Cell Sorting Resources Laboratory and analyzed with FCS Express 7 software (De 

Novo Software). 
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SIRPα expression and purification 

Soluble human SIRPα fused with glutathione s-transferase (SIRPα-GST) was expressed 

and purified as previously published.65  

nano-Self peptides binding to soluble SIRPα 

a- Peptide biotinylation 

NHS-biotin (Thermo Fisher) was mixed with nS-wt and nS-V, respectively, 

following the manufacturer’s protocol. The biotinylated peptides were dialyzed 

against PBS.  

b- Streptavidin-beads binding 

Streptavidin-coated polystyrene beads of 2.1 μm radius (Spherotech) were washed 

and blocked three times in PBS plus 0.4% w/v bovine serum albumin (BSA; 

Sigma). nS-wt-biotin or nS-V-biotin were incubated with the beads for 1 hour at 

room temperature with shaking. Beads were washed with PBS, then incubated with 

recombinant SIRPα for 1 hour on ice. Streptavidin beads were labeled with rabbit 

anti-streptavidin-FITC (Invitrogen), and SIRPα was stained with mouse anti-

SIRPα-allophycocyanin (anti-SIRPα-APC; Invitrogen).  

Affinity binding assay 

The same binding protocol mentioned above was used. Increasing concentrations (10 nM 

to 1 mM) of FAM-labeled peptides were incubated with THP-1 macrophages before or 

after fixation. For J774A.1 macrophages, affinity binding assay was only done on live cells. 

Fluorescence imaging and analysis were done as described in Methods.  

Opsonin Titration 
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The same phagocytosis protocol as described in Methods was used. Increasing 

concentrations (from 33 nM to 1.33 μM) of anti-RBC IgG were incubated with the RBCs. 

CD47 on RBCs was blocked in all conditions with 5 μg/mL anti-CD47. Fluorescence 

imaging and analysis were done as described in Methods.  
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3.4 Results and Discussion 

3.4.1 nano-Self peptide designs, synthesis, and characterization 

CD47’s 8-amino acid binding loop defines a wildtype nano-Self (nS-wt) and has a 

central Thr next to a hydrophobic Leu that are buried in SIRPα’s hydrophobic pocket 

(Figure. 3.1A). All co-crystal structures of CD47 and its antagonists show an interaction 

with this central Thr.151 Furthermore, screening for high affinity mutants of SIRPα’s 

binding pocket all yielded Phe insertions (with >100-fold higher affinities for CD47 versus 

the sub-μM affinity of wildtype),146 which suggests that greater hydrophobicity and/or 

aromaticity increases affinity. We therefore substituted the Thr with hydrophobic Phe or 

Val (nS-F and nS-V, respectively, in Figure. 3.1B: Inset Table). Phe adds aromaticity and 

could allow for a pi-stacking interaction with SIRPα’s Phe-74 that points towards CD47’s 

key β-hairpin whereas Val removes the polar hydroxyl group from the similarly sized Thr. 

Multivalent nS peptide designs are based on the fact that SIRPα is mobile – it accumulates 

at the phagocytic synapse,65 and is likely a homodimer.59 A distance of ~2.5 nm between 

the binding sites of SIRPα homodimers was estimated from simple modeling of crystal 

structures and led us to design bivalent nS peptides with two flexible PEG5 nano-linkers of 

~1.5 nm length152 attached to two amines of a central Lys (Figure. 3.1B). 

All nS peptides were synthesized on a Rink amide resin yielding C-terminal amide 

functional groups to minimize charge on the peptides. Analytical HPLC followed by 

MALDI-TOF mass spectrometry characterization showed >98% purity of all synthesized 

nS peptides (Figure. 3.2). Solubility at neutral pH (up to at least 50 μM) is likely 

attributable to charge on three of the eight residues.  
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Figure 3.2: Analytical HPLC traces and MALDI-TOF mass confirmation of all 

peptides indicate successful and pure synthesis 
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Figure 3.2: Synthesis and purity of nano-self peptides are characterized and 

confirmed by analytical HPLC and MALDI-TOF mass spectrometry 

All peptides used in this assay were run on an analytical HPLC to determine purity of the 

nS peptides. All analytical traces show one major peak for each peptide. The peptides were 

all characterized by MALDI-TOF mass spectrometry. Single main peaks appear for the 

correct mass for all peptides.  
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3.4.2 nS peptide agonists for human macrophage engulfment of opsonized human 

cells 

Solutions of nS peptides were added to cultures of adherent human THP-1 

macrophages (referred to as macrophages; Figure 3.3A & 3.4) to study the phagocytosis 

of two antibody-opsonized human cells: (1) healthy RBCs which serve as a simple ‘self’ 

cell and are also relevant to the anemia caused by infusion of anti-CD47; and (2) human 

erythroleukemia K562 cells which serve as a blood cancer cell model relevant to the liquid 

tumors that show some efficacy when treated with opsonized IgG and anti-CD47.114 After 

observing and quantifying internalization of RBCs with our bivalent nS-FF peptide by 

macrophages, we further synthesized a tetravalent peptide to study the effects of 

multivalency on cancer cells (Figure 3.3B & 3.5). Interestingly, all nS peptides, except for 

scrambled nS-X and nS-XX, enhanced phagocytosis of RBCs opsonized by anti-RBC IgG 

(Figures 3.3C & 3.6). nS-FF was effective even at 20 nM with ~40% of peptide-treated 

macrophages showing at least one opsonized RBC internalized by the end of the 1 h assay, 

with an efficacy constant (Keff) of ~ 8 nM indicating >100-fold higher activity than that of 

nS-wt (Figure 3.3C). This key metric of efficacy in promoting phagocytosis follows the 

trend:  

nS-FF > nS-F > nS-VV > nS-V > nS-wt (Figure 3.3C) 

Furthermore, maximum peptide concentrations of 50 μM show phagocytosis levels for nS-

wt and all nS-F and nS-V variants are well above those for nS-X and nS-XX controls that 

do not affect baseline engulfment of opsonized RBCs (Figures 3.3C & D).  

Maximum peptide concentrations reveal an additional effect when compared to 

anti-CD47 blockade. Combining anti-CD47 with anti-RBC causes ~30% of macrophages 
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to phagocytose opsonized RBCs, which is higher than the effect of anti-RBC alone (~20% 

of macrophages contain opsonized RBCs; red open bar in Figure 3.3D), consistent with 

anti-CD47 inhibiting recognition by the macrophage’s SIRPα. Likewise, combining nS-wt 

with anti-RBC also causes ~30% of macrophages to internalize opsonized RBCs. Note that 

saturating amounts of anti-CD47 on RBCs has minimal effect on baseline engulfment (~5-

10% of macrophages) and that anti-RBC is always used at ~133 nM (Figure 3.7A) 

Surprisingly, the highest levels of phagocytosis – with ~40-50% of macrophages 

containing opsonized RBCs – are seen for all F and V substituted peptides at maximum 

peptide concentrations (Figure 3.3D).  

Opsonized erythroleukemia K562 cancer cells were similarly tested for 

phagocytosis in the presence of our most potent nS-FF and our tetravalent nS-F4 peptides. 

The anti-RBC successfully opsonized and triggered phagocytosis of K562 cells by 

macrophages (Figures 3.3E, F and 3.7B). Multivalent nS-FF and nS-F4 nearly doubled 

the percentage of phagocytic macrophages relative to trans anti-CD47 blockade whereas 

macrophages were unaffected by nS-XX control (Figure 3.3D). Interaction of the nS 

peptides with K562 cells is likely minimal due to the relative lack of SIRPα expression 

(Figure 3.4). However, saturation at ~40% of macrophages engulfing opsonized K562 

cells is less than the ~50% for opsonized RBCs, perhaps because K562 cells have more 

CD47 molecules than RBCs, suggesting more “don’t eat me” signaling (Figure 3.8) 

For both opsonized RBCs and opsonized K562s (Figures 3.3D, F), the hyper-

phagocytosis that is achieved with soluble F- and V- nS peptides matches the recently 

measured increases for disruption of both (i) the trans interactions between CD47 on a 

target and macrophage SIRPα and also, importantly, (ii) the cis interactions between CD47 
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and SIRPα on the same macrophage (Figure 3.3G-left).74 Expression profiling of 

macrophages confirms these cells generally express CD47 at roughly similar levels to other 

cell types (Figure 3.4). The recent study showed that macrophage-CD47 knockdown 

removed a basal level of inhibitory ‘self’ signaling from the cis interaction and thereby 

caused hyper-phagocytosis, with similarly increased phagocytosis when anti-CD47 was 

added to macrophages separate from adding anti-CD47 to block the target. A preliminary 

conclusion is that nS-FF and the other substituted peptides, which were designed to bind 

SIRPα, inhibit both the cis and trans interactions between SIRPα and CD47 (Figure 3.3G 

G-right). 

Consistent with the results with human macrophages, mouse-derived J774A.1 

macrophages show all of the same trends for nS-F, nS-V, nS-wt, and nS-X peptides, 

including 3-fold more phagocytosis with nS-F relative to the minimal internalization of 

opsonized RBCs in the presence of nS-X control (Figures. 3.7C). The ~10-20% increase 

in phagocytic mouse macrophages with F and V substituted nS peptides relative to anti-

CD47 on opsonized RBCs agrees with the cis and trans inhibition effect, and the nS-wt 

peptide matches anti-CD47 blockade effects – at least for high concentration (50 μM). 

Indeed, the effective activity of nS-wt is ~100-fold weaker in the mouse macrophage assay 

than in the human assay (Figure 3.3C). The difference could reflect a singular difference 

between the 8-residue sequences of human and mouse CD47’s: the Thr in human-CD47 is 

replaced by a less bulky and less hydrophobic Ser in mouse-CD47, which again affirms 

that sequence matters. The various phagocytosis results lead us to further hypotheses on 

peptide functions (Figure 3.3G). First, nS-F peptide should associate directly with 
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macrophages, and moreso than nS-X but less so than nS-FF. Second, nS-F and nS-FF 

peptides affect phosphotyrosine levels that are downstream of SIRPα binding to CD47.74 
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Figure 3.3: Soluble nano-Self peptides show nanomolar activity in enhancing 

phagocytosis of antibody opsonized targets 
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Figure 3.3: Multivalent nano-Self peptides enhance human macrophage phagocytosis 

of opsonized targets 

A. Schematic of the phagocytosis assay. RBC and K562 erythroleukemia cell opsonization 

and the treatment of the macrophages with the nS peptides are done separately. Afterwards, 

opsonized cells are added to the macrophages, and then phagocytosis is measured by 

counting macrophages with internalized target cells. Addition of nS peptides effectively 

increases phagocytosis of opsonized cells per fluorescence microscopy images (scale bar: 

25 μm). 

B. Sketch of the tetravalent nS-F4 which consists of a core lysine coupled through both 

amine functional groups to two lysine residues giving rise to four reactive amine groups. 

Four simultaneous couplings of the nS-F sequence results with the tetravalent scaffold. 

C. Incubating various concentrations of the nS peptides with macrophages results in 

varying levels of macrophages that internalize at least one opsonized RBC. Relative to nS-

wt, substitutions of the key Thr enhanced phagocytosis as did multivalency. Scrambled nS-

X or nS-XX peptides do not have effects on phagocytosis. Phagocytosis by mouse 

macrophages is also affected by nS-wt, albeit not as much as with human macrophages. 

Baseline phagocytosis of opsonized red blood cells is represented by the red data points. 

Microscopy fields were selected randomly and at least 200 macrophages were analyzed 

per condition (n = 3 ± SEM).  

D. Saturating macrophages with nS-FF, nS-F and nS-VV enhances phagocytosis of 

opsonized RBCs significantly by an additional ~10-20% relative to anti-CD47 treatment 

of opsonized RBCs. nS-wt is least effective but gives the same result as anti-CD47 and is 

greater than just opsonized RBCs. Microscopy fields were selected randomly and at least 
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200 macrophages were analyzed per condition (n = 3 ± SEM; * denotes p < 0.05 relative 

to CD47-blocked and opsonized RBCs). 

E. Effects on phagocytosis of K562 erythroleukemia cells are enhanced by nS-FF and nS-

F4. The increase in valency appears to have a slight effect at high concentration of peptide 

but phagocytosis levels were largely similar between bivalent and tetravalent peptides. 

F. Saturating macrophages with nS-FF and nS-F4 significantly increases phagocytosis of 

opsonized K562 cancer cells by about two-fold relative to opsonized and CD47 blocked 

cells with only opsonization effect observed with nS-XX addition. 

G. Schematic of potential mechanism by which the nS peptides engage and enhance 

phagocytosis. Left panel: CD47-expressing cells signal ‘self’ to macrophage through 

engagement of CD47 on the cell surface with SIRPα on the macrophage, increasing pTyr 

signals, and overriding pro-phagocytic signaling from the opsonizing anti-RBC IgG 

antibody ultimately inhibiting phagocytosis. Right panel: nS peptides engage with SIRPα, 

inhibiting trans binding of CD47 on opsonized cells and inhibiting cis binding on the 

macrophages, leading to increased phagocytosis. 
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Figure 3.4: PMA differentiated THP-1 macrophages have an identical gene profile as 

primary mouse macrophages based on microarray gene expression analysis 
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Figure 3.4: PMA differentiated THP-1 cells share identical gene profiles as primary 

macrophages for key, pathway-relevant factors 

(Top) Microarray gene expression analysis74 verification that PMA differentiated THP-1 

macrophages express several key macrophage factors at similar levels as primary mouse 

macrophages (i.e. Sirpa, the Integrin (Itg) genes, Fcgr genes, and SHP1 gene Ptpn6), while 

differing from other hematopoietic and non-hematpoietic cells (K562 and HEK, 

respectively). Positive control genes are the ubiquitous Cd47 and the widely expressed 

nonmuscle myosin-II gene, Myh9. Negative control genes are skeletal muscle myosin, 

Myh1, and melanin synthesis gene, Tyrp1.  

(Bottom) Dendrogram from hierarchical clustering analysis validating similar profiles 

between marrow-derived mouse macrophages and PMA-differentiated THP-1 

macrophages while clearly distinct from other cell types. 
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Figure 3.5A: Sequence of tetravalent nano-Self peptide “nS-F4”  

  

Figure 3.5B: Analytical HPLC chromatogram and MALDI-TOF mass spectrum 

indicate successful synthesis of tetravalent nS-F4 
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Figure 3.5: Successful synthesis and purification of tetravalent nano-Self-F peptide 

(nS-F4) 

A. Chemical structure sketch of tetravalent nano-Self peptide.  

B. One main peak was observed in the analytical trace and MALDI-TOF chromatogram 

corresponding to the correct mass of nS-F4 indicating successful and pure synthesis of nS-

F4.  

  



 
 

 
 

Figure 3.6: Phagocytosis levels are significantly greater than all control conditions when macrophages are incubated with 

bivalent nano-Self peptides 
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Figure 3.6: Treatment of human macrophages with multivalent nano-Self peptides 

enhances phagocytosis levels significantly relative to peptide and antibody controls 

All conditions were compared with each other to determine which conditions were 

significantly different (* denotes p < 0.05 for statistical significance between conditions). 

Both multivalent peptides enhanced macrophage phagocytosis significantly compared to 

all control conditions.  
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Figure 3.7A & B: Anti-RBC titration curves to determine amount of opsonin needed 

for optimal and comparable engulfment of target cells by macrophages 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7C: Soluble nano-Self peptides enhance phagocytosis of opsonized red blood 

cells in J774A.1 mouse macrophages 
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Figure 3.7: Using optimal concentration of opsonin allows for comparison of 

macrophage phagocytosis  

Varying concentrations of anti-RBC opsonin incubated with CD47-blocked RBCs (A) and 

K562 cells (B) to determine the optimal amount of opsonization necessary for optimal 

phagocytosis. Human and mouse macrophages responded differently to RBC opsonization, 

which may be a result of the polyclonal antibody and how it engages with FcRs on the 

respective macrophages. The optimal concentration for phagocytosis assays was selected 

to be 133 nM (red point) because it gave a reasonable phagocytosis response far from 

baseline and saturation.  

C. Treating mouse macrophages with nS peptides results in enhanced engulfment of 

opsonized RBCs.  
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Figure 3.8: Greater number of CD47 molecules are on the surface of human 

erythroleukemia K562 cells when compared to healthy red blood cells 
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Figure 3.8: CD47 expression on RBCs and K562 cancer cells 

Flow cytometry quantitation of primary fluorescent anti-CD47 antibody. Samples were 

analyzed the same day using the same voltage settings on the flow cytometer. Higher 

numbers of CD47 molecules are present on the surface of K562 cells when compared to 

RBCs. 
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3.4.3 Multivalent nS peptides inhibit CD47-Fc binding to human macrophages 

To determine whether the nS peptides bind to SIRPα, we used nS-FF and nS-F4 as 

soluble competitive inhibitors of saturable CD47-Fc fusion protein binding to macrophages 

(Figure 3.9). Addition of multivalent nS peptides was followed by Fc-receptor blockade 

to minimize Fc-driven binding of construct. Afterwards, CD47-Fc was added and then 

finally anti-Fc fluorescence imaging was performed (Figure 3.10). Quantitation of 

fluorescence shows the expected trend for the levels of inhibition: 

nS-F4 ~ nS-FF > nS-wt > nS-XX (= 0) 

Anti-CD47 was pre-incubated with CD47 as a positive control for inhibition of binding to 

SIRPα.151 This showed that both nS-F4 and nS-FF are as inhibitory as anti-CD47.  
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Figure 3.9: CD47-Fc binding assay to determine apparent binding constant for 

THP-1 
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Figure 3.9: CD47-Fc binding curve  

Varying concentrations of CD47-Fc incubated with human THP-1 macrophages and 

measured by anti-Fc fluorescence. Apparent Kd was determined to be 0.46 μg/mL. 
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Figure 3.10: Multivalent nano-Self peptides inhibit high affinity CD47-Fc binding to 

THP-1, which suggests peptide binding to SIRPα 
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Figure 3.10: Binding of nano-Self peptides is consistent with SIRPα inhibition 

Representative fluorescence microscopy images of CD47-Fc inhibition by multivalent nS-

FF and nS-F4 peptides. Anti-CD47 and CD47-Fc were incubated together prior to their 

addition to macrophages. All conditions were compared to saturating concentration of 

CD47-Fc. Quantitation was done by measuring anti-Fc fluorescence (n = 2 ± SEM; * 

denotes p < 0.05; scale bar: 50 μm).   
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3.4.4 Tyrosine phosphorylation in macrophages is suppressed by nS peptides 

Given that the interaction of CD47 with SIRPα initiates a de-phosphorylation 

cascade regardless of whether the interaction occurs in trans or in cis,65,74 two key nS 

peptides were again added to the macrophages for quantitative fluorescence microscopy. 

Basal levels of phosphotyrosine (pTyr) in wildtype macrophages are indeed suppressed by 

nS-FF and by anti-CD47 (Figure 3.11A). Importantly, nS-FF suppressed pTyr signal at 

the low peptide concentration (20 nM; Figure 3.11A) that maximizes phagocytosis by 

blocking both trans and cis interactions (Figure 3.3C). Monovalent nS-F at the high 

concentration (50 μM) – that likewise maximized phagocytosis – also suppressed pTyr, 

whereas 20 nM nS-F did not significantly affect pTyr, consistent with blocking only trans 

interactions at the low concentration (Figures 3.3C & D). The negative control peptide nS-

X (50 μM) had no effect on pTyr, which is consistent with the lack of effect in 

phagocytosis. Note that anti-CD47 in the phagocytosis studies was added to the opsonized 

RBCs and K562 cells blocking only the trans interactions, whereas in these pTyr 

experiments (Figure 3.11A), anti-CD47 was added to the macrophages to determine the 

effect on basal signaling in the absence of phagocytosis. The pTyr results are not only 

consistent with peptide disruption of cis interactions between CD47 on the surface of the 

macrophage and SIRPα (Figure 3.11B), but further underscore the functional potency of 

multivalent nS peptides. 
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Figure 3.11: Bivalent nano-Self peptides at nanomolar concentration suppress 

macrophage phosphotyrosine  
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Figure 3.11: Bivalent nano-Self peptides suppress macrophage phosphotyrosine levels 

consistent with disruption of ‘Self’ signaling in cis  

A. Basal levels of pTyr signal are observed in isolated macrophages. pTyr signal is 

suppressed upon the addition of nS-FF. pTyr levels decrease in isolated macrophages when 

either CD47 is blocked or nS peptides are added. This inhibition of phosphorylation is not 

observed when macrophages are treated with nS-X, supporting that the loss of 

phosphorylation signal is due to inhibition of CD47-SIRPα binding. Multivalent nS-FF 

suppressed pTyr at nanomolar concentrations, whereas no effect was observed with 

monovalent nS-F, consistent with higher affinity of multivalent nS peptides (n = 3 ± SEM; 

* denotes p < 0.05 relative to control; scale bar: 25 μm). 

C. Schematic representing potential mechanism of nS peptides antagonizing the 

macrophage checkpoint. Anti-CD47 binds CD47 on the surface of macrophages, inhibiting 

its binding to SIRPα binding thus suppressing pTyr. Addition of nS peptides replicates the 

same effect of suppressing pTyr to similar levels as anti-CD47 blockade, consistent with - 

and providing an explanation for - the phagocytosis results. This suggests disruption of the 

CD47-SIRPα axis. 
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3.4.5 Competitive binding of nS peptides to macrophages 

To assess peptide association, nS-F was fluorescently labeled (denoted nS-F-fluor) 

and added to macrophages. Fluorescence microscopy shows nS-F-fluor associates with all 

cells (Figure 3.12A, Ctrl), consistent with SIRPα expression on all macrophages. Some 

evidence of internalized fluorescent peptide signal is consistent with SIRPα internalization 

as part of the recycling of such cell surface receptors.153-155 To demonstrate the increased 

affinity of bivalent nS peptides relative to monovalent nS-F, unlabeled nS-FF and nS-VV 

were added as inhibitors to cultures with 100 μM nS-F-fluor. Bivalent peptides at just 20 

nM significantly decreased association of nS-F-fluor with macrophages whereas nS-X 

showed no effect up to 50 μM (Figure 3.12B).  

Biotinylated-nS peptides were also used to confirm association with SIRPα by 

incubating streptavidin-coated polystyrene micro-beads first with a biotinylated-nS and 

then with purified recombinant human SIRPα extracellular domain65 plus fluorescent (non-

blocking) anti-SIRPα (Figure 3.13). Given the effect on phagocytosis after the addition of 

nS peptides to both human and mouse macrophages, association of nS-fluor peptides with 

both species of macrophages was investigated. From imaging analysis, there was indication 

of some internalization similar to anti-mouse SIRPα (P84-FITC) (Figures 3.14A & B), 

especially at high peptide concentrations (>>1 μM). For nS-X, which showed no effect on 

phagocytosis, total fluorescence intensity of nS-X-fluor associating with the macrophages 

proved significantly lower and >5-fold weaker than the other functional peptides (Figure 

3.14C).  
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Figure 3.12: Bivalent nano-Self peptides outcompete monovalent nano-Self in 

interacting with macrophages 
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Figure 3.12: Bivalent nano-Self outcompete monovalent association with 

macrophages  

A. Representative fluorescence microscopy images of nS-F-fluor fluorescence inhibition 

on macrophages after addition of multivalent nS peptide inhibitors (scale bar: 25 μm). 

B. Bivalent peptides show higher affinity towards macrophages by outcompeting the 

binding of monovalent nS-F-fluor (n = 2 ± SEM; * denotes p < 0.05 relative to control).  
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Figure 3.13: Immobilized nano-Self peptides bind to recombinant SIRPα 

  Polystyrene Beads anti-Streptavidin (FITC) anti-SIRPα (APC) 

No Peptide 

nS-wt 

nS-V 
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Figure 3.13: Immobilized nano-Self peptides bind to soluble SIRPα 

Polystyrene beads coated with streptavidin incubated with or without biotinylated nS-wt 

or nS-V. After immobilizing the nS peptides, recombinant CD47-binding domain of SIRPα 

was added. SIRPα was then stained with nonblocking APC-labeled primary antibody. 

Fluorescence is only observed in the presence of biotinylated peptide (scale bar: 5 μm).  
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Figure 3.14: nano-Self peptides bind SIRPα on macrophages  
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Figure 3.14: nano-Self peptides bind to membrane bound SIRPα and are also 

internalized by human and mouse macrophages 

A. Fluorescence images of nS-V-fluor and P84-FITC bound to the surface of live mouse 

macrophages (scale bar 25 μm). 

B. Confocal z-stack images of mouse and human macrophages incubated with FAM-

labelled peptides. In addition to membrane binding, internalization of nS-wt occurs more 

readily at higher concentrations leading to higher fluorescence intensity. At low 

concentrations (1 μM), the peptide is mainly internalized with minimal membrane staining 

hence the decrease in fluorescence.  

C. Fluorescent nS peptides binding to the surface of live human macrophages. 
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3.4.6 nS peptides are mainly disordered, with binding likely to enhance β-hairpin 

structure 

Because of the snug fit of the key CD47 β-hairpin within SIRPα (Figure 3.1A), we 

investigated the secondary structures of the 8-amino acid peptides in solution using circular 

dichroism (CD) (Figures 3.15 & 3.16). At low temperature (5 °C), the peptides are largely 

random coils with a minor fraction of β-turn structure when compared to other short 

peptides.156-158 This is evident for the most functional peptide nS-FF as a slight positive 

ellipticity peak at 215-220 nm and deep negative ellipticity peak around 195 nm — signals 

that are somewhat clear for the slightly less functional nS-VV peptide but much attenuated 

for nS-XX or nS-X. Thermal unfolding at 90 °C is evident in suppression of the ellipticity 

peaks. Difference spectra (Figure 3.15B) are the same for the bivalent nS-FF and nS-VV, 

whereas nS-XX is attenuated – showing a trend similar to the phagocytosis results (Figures 

3.3C-F). 

The nS peptides here are mainly random coils (Figures 3.15 & 3.16), which 

suggests an induced fit association with SIRPα on macrophages. Phagocytosis levels of nS 

peptide treated macrophages were compared to anti-CD47 blockade of the target, with 

bivalent nS-FF and tetravalent nS-F4 proving to be more potent in enhancing phagocytosis 

at pharmacologically relevant concentrations (20 nM) (Figures 3.3C-F). The slight 

increase of phagocytic macrophages when cultured with nS-F4 versus nS-FF (Figure 3.3F) 

seems consistent with increased avidity as a soluble inhibitor (Figure 3.17), which supports 

an advantage of multivalency, even though the effects plateau. The increased levels of 

target phagocytosis are consistent with cis and trans inhibition,74 and nS-FF’s suppression 



 
 

96 
 

of phosphorylation in isolated macrophages is consistent with blocking of cis binding of 

SIRPα to CD47 (Figures 3.11A & B).  
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Figure 3.15: Disordered structure with some hairpin content suggests induced fit into 

SIRPα binding pocket 
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Figure 3.15: Random coil structure with some hairpin folding suggests induced fit 

mechanism into SIRPα binding pocket 

A. CD spectra of nS-FF, nS-VV, nS-XX at 5 and 90 °C. Arrows indicate the molar 

ellipticity at 215-220 nm and 195 nm, respectively, suggestive of some β-hairpin turn 

which is lost in nS-XX.  

B. Difference plots show nS-FF and nS-VV are in agreement in terms of structure, 

consistent with phagocytosis results. 
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Figure 3.16: Hairpin structure of monovalent nano-Self peptides is consistent with 

fitting into SIRPα binding pocket 
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Figure 3.16: nano-Self peptides conform to some β-hairpin structure but mainly 

random coil 

A. CD spectra of monovalent nS peptides.  

B. FT-IR spectra of bivalent nS peptides. Main peak appears near 1650 cm-1, which is a 

characteristic peak shared by both random coil and β-turn peptides.  



 
 

101 
 

Figure 3.17: Tetravalent nS-F4 inhibits bivalent association with macrophages and 

apparently has stronger avidity for SIRPα than bivalent 

 

  

C o n ce n tra tio n  (n M )

lo
g

(N
o

rm
. 

F
lu

o
r.

 I
n

te
n

s
it

y
)

1 0 -5 1 0 -3 1 0 -1 1 0 1 1 0 3

-0 .2

-0 .1

0 .0

n S -F 4

n S -F F

0

IC 50  =  0 .34  nM IC 50  =  1 .4  nM

Higher avidity  

Macrophage 

SIRPα 

nS-F 

nS-FF 

nS-F4 



 
 

102 
 

Figure 3.17: Avidity of SIRPα appears to scale with the increase of nano-Self 

multivalency  

Tetravalent nS-F4 was more potent in inhibiting monovalent nS-F-fluor association with 

macrophages than bivalent nS-FF suggesting multivalency increases avidity of the nS-

peptides to SIRPα.  
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3.4.7 Safety of ns-FF injections in a pre-clinical trial  

Phase 1 clinical trials for safety of anti-CD47 in patients have shown that infusion 

into the bloodstream decreases RBC numbers (i.e. hematocrit) and increases reticulocytes 

(i.e. new RBCs),16,69 and related blood safety concerns apply to a bivalent CD47-binding 

protein made with SIRPα domains fused to a macrophage-binding domain (Fc domain).84 

Given that our nS-F peptide increases phagocytosis of opsonized RBCs and also associates 

with mouse macrophages (Figures. 3.7 & 3.14), we assessed safety of the more potent nS-

FF peptide by intravenous injection into mice. Overall, nS-FF in PBS showed no 

differences versus PBS vehicle control in its effects on mouse hematology and body weight 

after four daily tail-vein injections of 1 mg/kg peptide (Figure 3.18). This corresponds to 

about 8 µM in the blood, assuming rapid mixing and no dilution within the ~1.5 mL blood 

volume of the mouse. Withdrawal of ~140uL from this blood volume was necessary to 

obtain a complete hematology profile, and such a volume is expected to cause slight 

decreases in hematocrit and platelets as shown (Figure 3.18-i,ii). Consistent with this loss, 

more RBCs should be produced in each mouse to compensate for the RBC loss, and the 

~30% increase in reticulocytes after the first two blood draws over 11 days (Figure 3.18-

iii) is similar to the prior amount of blood removed (~300 µl/1500 µl). The mice (~14 

weeks) also continued to gain weight at the same rates (~5% over 11 days) regardless of 

peptide injections. These changes are thus expected but, importantly, unaffected by the nS-

FF peptide, which establishes some safety. 
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Figure 3.18: Preliminary hematological data showing nS-FF is safe in vivo  
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Figure 3.18: Pre-clinical assessments indicate nS-FF is safe in vivo 

Phase 1 pre-clinical trial: Intravenous injections of nS-FF were done for four consecutive 

days followed by blood withdrawal 24 hours after last injection. Blood parameters show 

that nS-FF at 1 mg/kg is safe, with no anemia or weight loss.  
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3.5 Conclusions 

Peptide-based therapies are numerous,159 and for cancer, they include approved 

analogs of naturally occurring molecules (e.g. bortezomib, carfilzomib, and goserelin). In 

cell adhesion signaling for example, the tripeptide RGD derived from extracellular 

matrix160 led to a synthetic analog with increased affinity for matrix receptors161 and with 

utility as a soluble competitive inhibitor of adhesion in clinical trials against cancer.162 

Peptides are usually synthesized at low cost (~$1/mg here) and can be stored at high 

concentration relative to therapeutic IgG’s.134 To be clear, lab-grade anti-CD47, anti-

SIRPα, and anti-PD1 are ~$100/mg, and clinical grade antibodies such as anti-PD1 cost 

>$100K/patient/year.135,136 Moreover, very few residues in a ~150 kDa antibody physically 

contact a target antigen. 

The 21-amino acid ‘Self’ peptide was the first peptide shown to bind SIRPα and 

recapitulate the anti-phagocytic signaling of full length CD47. Although a similar 21-

amino acid peptide was reported to not bind soluble SIRPα,55 our 8-amino acid nano-Self 

peptides (1) enhanced phagocytosis of antibody-opsonized human cells (normal and 

cancer) by human macrophages and (2) were as effective as anti-CD47 in inhibiting a 

CD47-Fc construct in binding to human macrophages. The underlying concept of our nS 

peptides is to bind and inhibit SIRPα rather than target CD47. Anti-CD47 infusions in the 

clinic show some efficacy against opsonized liquid tumors but also cause anemia,114 which 

is not evident in initial studies here and could in part reflect the Fc function of anti-CD47.  

When displayed on particles, the 21-amino acid ‘Self’ peptide inhibited 

phagocytosis of opsonized particles,22 whereas the soluble peptides here function as 

antagonists consistent with prior use of large, soluble CD47 ectodomain as inhibitors of 
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SIRPα to enhance phagocytosis of tumor cells.60,140 The smaller peptides here are more 

likely to penetrate a tumor from the circulation, or they might be delivered to tumors (which 

are typically rich in macrophages) by various methods that range from nanoparticle-

mediated ‘nano-gene’ therapy to packaging them into either peptide-secreting bacteria163 

or backpacks that attach to tumor-injected macrophages.164 Furthermore, anti-CD47 can 

directly opsonize cells and cause engulfment by macrophages, because the antibody’s Fc-

domain activates the Fc receptor (FcR) on the macrophages70,71 – although our data with 

the B6H12 clone of anti-CD47 does not greatly stimulate phagocytosis.65 A bivalent anti-

CD47 nanobody that lacks an Fc-domain caused modest anemia and mild 

thrombocytopenia in mice (following a similar injection and bleeding protocol as used 

here) but addition of an Fc domain increased the adverse effects.73 Importantly, the nS 

peptides lack an activating Fc domain and should solely antagonize SIRPα, eliminating 

opsonization, and thereby minimizing clearance of healthy cells. 

In sum, synthesis and functional tests of multivalent, CD47-inspired nano-Self 

peptides with hydrophobic substitutions at a central Thr demonstrate potential as a 

nanomolar agonist for phagocytosis of targeted diseased cells such as cancer cells. 

Sequence analyses of various species beyond human and mouse151 suggest the nS peptides 

will function with macrophages in monkey and dog, which are important species for 

evaluation of safety and efficacy. Lastly, the increased phagocytosis of soluble nano-Self 

relative to anti-CD47 on the cell that is targeted for phagocytosis certainly motivates further 

investigation of CD47-SIRPα’s molecular mechanisms. 
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Chapter 4: Future directions 

I performed the experiments for the data presented in this Chapter except for: 

a. Generating the plasmids for the mutant variants of CD47 and expressing them in 

HEK293 cells as shown in Figure 4.4 (performed by M. Tewari and B. Hayes)  
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 The immune checkpoint interaction between CD47 on the membrane of healthy 

and cancer cells and the macrophage receptor SIRPα inhibits macrophage-mediated 

phagocytosis. The dominant class of inhibitors against this checkpoint interaction is 

monoclonal antibodies, often used as monotherapies, but more often in combination with 

a pro-phagocytic IgG therapeutic to promote clearance of cancer cells. Recombinant fusion 

proteins (i.e. CD47 IgV domain or SIRPα IgV-like domain(s) fused to human IgG) serve 

as a second class of CD47-SIRPα inhibitors. Most antagonists from these two groups of 

inhibitors target CD47, with success in many clinical trials in treating hematological and 

solid tumors but at the expense of unwanted side effects (i.e. anemia). Development of 

therapeutics to block this key immunological interaction while minimizing toxic side 

effects and maintaining efficacy is needed. Peptide inhibitors serve as non-immunogenic 

alternatives to antibodies with many advantages such as tissue penetration, low inherent 

toxicity, facile production and low costs.  

Peptide inhibitors against the CD47-SIRPα axis exist and continue to 

emerge.22,58,165-169 We have designed multivalent linear peptides that inhibit SIRPα which 

motivates the development of more peptide agonists, in particular cyclic peptides. These 

types of peptides have advantages such as higher affinity and selectivity for protein 

receptors when compared to linear peptides due to their limited conformational flexibility 

and higher surface area. Cyclic peptides are also more resistant to enzyme degradation due 

to the lack of free termini and more stable cores, a result of increased intramolecular 

interactions.170  

We designed a cyclic nano-Self peptide (nS-Cyc) based on our wild type nano-Self 

(nS-wt) peptide by bridging the ends with a disulfide bond and verified it’s synthesis by 
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MALDI-TOF mass spectrometry (Figure 4.1A). While some of our linear nS peptide 

sequences are found in proteins expressed mostly in bacteria, no organism was found to 

express a ribosomal protein that contains the nS-Cyc sequence (Figure 4.1A Inset Table). 

A kinase protein expressed in rosary peas contains the closest sequence to nS-Cyc (Figure 

4.1B), and while this plant is toxic, toxicity seems unrelated to the aligned protein 

suggesting low immunogenicity (Figure 4.1A Inset Table).171  
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Figure 4.1: Linear nano-Self peptides are found in many bacteria, but no natural 

organism expresses a protein which contains cyclic nano-Self peptide sequences. 
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Figure 4.1: The sequence of the cyclic nano-Self peptide is not found in nature 

suggesting low immunogenicity 

A. The chemical structure of nS-Cyc consists of the 8-amino acid sequence of nS-wt 

bridged through a disulfide bond at the termini. Synthesis of the construct was verified by 

MALDI-TOF mass spectrometry indicating the oxidation of the cysteine thiols forming a 

disulfide bond. Inset table: The sequences of the linear and cyclic nS-peptides are shown. 

Although the linear peptides are found primarily in bacteria, the nS-peptides are not likely 

to elicit immune responses. Immunogenicity scores were generated using the IEDB 

Analysis Resource (http://tools.iedb.org/immunogenicity).  

B. Sequence search analysis reveals that there are no proteins expressed by any organism 

that contain the exact sequence of the cyclic nS peptides. The closest sequence to nS-Cyc 

is found in a toxic plant; however, the aligned protein seems unrelated to the toxicity of the 

plant. The residues that do not match the nS-Cyc sequences the subject protein sequence 

are highlighted in red.  
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The phagocytosis of IgG-opsonized human red blood cells (RBCs) was tested by 

incubating solutions of nS-Cyc with adherent human and mouse macrophages (Figure 

4.2A: Left Panel). Internalization of opsonized RBCs after treatment of both human and 

mouse macrophages with nS-Cyc was observed (Figure 4.2A: Images) at slightly higher 

levels than opsonized and anti-CD47 blocked RBCs (Figure 4.2B). nS-Cyc phagocytic 

activity in mouse macrophages at saturating concentrations is weaker than in human, 

consistent with nS-wt activity (Figure 4.2C). However, nS-Cyc enhanced human and 

mouse macrophage internalization more than the linear nS-wt, supporting an advantage of 

using cyclic peptides. nS-F potency on both human and mouse macrophages is significantly 

greater than any other peptide tested, indicating that sequence is an important determining 

factor of efficacy. Based on these preliminary data with nS-Cyc, in addition to data 

obtained from our linear nano-Self peptide library, cyclic nS-F (nS-F-Cyc) and cyclic 

bivalent nS-F (nS-FF-Cyc) will be synthesized and tested for effects on phagocytosis 

(Figure 4.3). We predict that the point mutation of the critical Thr residue will enhance 

effects of phagocytosis with additional effects by adding valency to the peptide. Moreover, 

nS-Cyc will be engineered to include orthogonal reactive handles (i.e. lysine) to allow for 

on-resin fluorescent labeling or addition of large PEG groups for enhanced solubility and 

prolonged circulation in vivo. 

Our main interest is to develop potent and stable peptide antagonists to replace anti-

SIRPα antibodies for treating solid tumors.19 In addition to K562 erythroleukemia cells, 

which we have shown to be efficiently phagocytosed by human macrophages in the 

presence of our linear nS-peptides, we will study the efficacy of nS-Cyc and the proposed 
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cyclic peptides in promoting phagocytosis of tumor cells such as B16 mouse melanoma 

and A549 human lung carcinoma cells.  
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Figure 4.2: nS-Cyc enhances phagocytosis of opsonized RBCs by macrophages, 

suggesting an increased effect of cyclization  
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Figure 4.2: RBC phagocytosis by human and mouse macrophages increases with the 

addition of nS-Cyc 

A. A cartoon representation of the phagocytosis assay performed. Briefly, adherent human 

or mouse macrophages are incubated with either linear or cyclic nS-peptides and then fed 

opsonized human RBCs. Internalization of RBCs is analyzed by fluorescence microscopy.  

B. Phagocytosis levels in human (i) and mouse (ii) macrophages are enhanced with the 

addition of linear and cyclic nS-peptides. nS-Cyc appears to have a greater effect in 

perturbing the CD47-SIRPα interaction compared to linear nS-wt in human macrophages, 

but is not as potent as nS-F. This suggests that cyclization increases potency, but the 

sequence is also an important component of activity. Values are all normalized relative to 

anti-CD47 blockade and anti-RBC opsonization (+,+).  

C. Addition of low concentration of nS-Cyc results with macrophages internalizing at least 

one opsonized RBC, with levels of phagocytic macrophages slightly greater than linear nS-

wt. Although efficacy of nS-Cyc is less in mouse macrophages than in human, it is still 

roughly 20-fold more active than the linear counterpart.  
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Figure 4.3: Proposed nS-F-Cyc peptide in addition to bivalent variant 
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Figure 4.3: Investigating mutated and bivalent nS-Cyc peptides seems promising 

The chemical structures of the proposed nS-F-Cyc and nS-FF-Cyc peptides to be 

synthesized and tested for phagocytosis activity and binding efficiency.   
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In mouse, the critical Thr-102 residue in the CD47 β-hairpin which binds SIRPα is 

replaced with a less bulky, but polar Ser residue, along with other non-conserved mutations 

to contact residues which disrupt SIRPα binding.151 Mutating this same critical Thr residue 

to hydrophobic Phe and Val in the nS-peptides enhanced phagocytosis suggesting tighter 

binding to SIRPα. To investigate the effects of these mutations on SIRPα binding, we 

transduced HEK293 cells with wild type CD47-GFP as well as mutant versions; namely, 

T102S, T102F and T102V (Figure 4.4A). SIRPα-Fc fusion protein binding will be 

evaluated to determine changes in SIRPα affinity towards these mutated variants. 

Additionally, inhibition assays using linear and cyclic nano-Self peptides will be explored 

to determine efficacy of these peptides to inhibit SIRPα-Fc binding (Figure 4.4B).  
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Figure 4.4: Various CD47-GFP mutants expressed on HEK-293 cells for SIRPα-Fc 

binding assays  
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Figure 4.4: Successful transduction of CD47-GFP variants will be used for binding 

assays 

A. Viral transduction and expression of wild type CD47-GFP and various mutants on HEK-

293 cells was confirmed with fluorescence microscopy. The T102S mutation is based on 

the single point mutation found in the mouse CD47 β-hairpin that interacts with SIRPα. 

T102F and T102V are based the nS-peptides that showed the most potent activity in prior 

phagocytosis and inhibition studies. 

B. Binding of SIRPα-Fc fusion protein to the mutated CD47 variants will be evaluated as 

well as efficacy of the nS-Cyc peptides to inhibit SIRPα binding to CD47.   
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Lastly, we plan to conduct more mouse studies and understand how these peptides 

function in vivo. Preliminary data indicated safe administration of nS-FF at low doses. 

However, a possible alternative can be immediate clearance of the peptide by mouse 

kidneys which also will result with no net change in blood parameters. Further studies with 

escalated nS-FF doses will be conducted to delineate any possible side effects. We will 

also investigate the novel tetravalent construct (nS-F4) and compare it to data obtained 

from the bivalent counterpart in vivo. The extra PEG linker groups in nS-F4 may potentiate 

an enhancement in blood circulation. Moreover, fluorescently labeling the peptides to 

visualize them in vivo will be done to decipher how long the peptides remain in circulation 

and to determine what types of blood cells they interact with.  

 Immunotherapies such as the development of genetically modified chimeric 

antigen receptor T-cells (CAR-T cells) utilize immune cells from the same patient 

enhancing the clearance of tumor cells.172 While results with such therapy has been 

dramatic against cancer and received FDA approval for use as a treatment, serious side 

effects remain.173 Adapting SIRPα-blocked macrophages harvested from patients poses a 

potentially safer alternative where targeting antibodies or peptides are cleared after time 

leaving the unmodified macrophages in circulation. Macrophage immunotherapy also has 

an advantage over T-cells in clearing solid tumors. Furthermore, our nano-Self peptides 

add more advantages over antibodies as they are much smaller but are similar in terms of 

potency. Rationally designing CD47-inspired peptides introduces a new direction in 

developing macrophage checkpoint inhibitors.  
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