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Structural Estimation of the Effect of Out-of-Stocks

Abstract

We develop a structural demand model that captures the effect of out-of-stocks on customer

choice. Our estimation method uses store-level data on sales and partial information on product

availability. Our model allows for flexible substitution patterns which are based on utility maxi-

mization principles and can accommodate categorical and continuous product characteristics. The

methodology can be applied to data from multiple markets and in categories with a relatively large

number of alternatives, slow moving products and frequent out-of-stocks. We estimate our model

using sales data from multiple stores for twenty four items in the shampoo product category. In

addition, we illustrate how the model can be used to assist the decisions of a retailer in two ways.

First, we show how to quantify the lost sales induced by out-of-stock products. Second, we provide

insights on the financial consequences of out-of-stocks and suggest simple policies that can be used

to help mitigate the negative economic impact of out-of-stocks.

Keywords: choice models; retailing; out-of-stocks; inventory management; Bayesian methods;

data augmentation; aggregate demand estimation.



1 Introduction

In retailing, inventory decisions have direct implications on product availability to customers. When

making decisions related to the inventory levels of a product category, store managers need to

balance the costs of holding and replenishing inventory versus the costs of out-of-stocks. The cost of

holding inventory can be calculated directly using financial measures available to store managers. In

contrast, evaluating the cost of an out-of-stock requires estimating its impact on customers’ buying

behavior. The lack of precise measures of the costs of out-of-stocks has been cited as one of the

root causes for the slow adoption of quantitative models in inventory management by practitioners

(Zipkin (2000)).

In terms of the magnitude and prevalence of this problem, out-of-stocks are certainly not uncom-

mon in retailing. The average out-of-stock rate in the U.S. and Europe is about 8% and the costs

associated to out-of-stocks vary across product categories and can be substantial in some cases.1 In

order to quantify the financial consequences of out-of-stocks, it is useful to analyze the choices that

a customer facing an out-of-stock could make. First, a customer encountering an out-of-stock may

choose to defer its purchase until the product becomes available. Second, the customer may choose

to purchase a substitute product in the category. Third, a customer may decide not to purchase

any products – that is, the out-of-stock leads to a lost sale– which has the largest negative financial

impact for the retailer. Our main objective is to develop a methodology to quantify the effect of the

two latter scenarios, product substitution and lost sales, that can be implemented using information

commonly available to a store manager.

A major challenge in estimating the impact of out-of-stocks on retail demand is the lack of pre-

cise data on product availability. One would expect the extensive adoption of perpetual inventory

management systems in retailing, which monitor inventory in real-time, to alleviate this data limita-

tion problem. However, there are two reasons why these inventory systems have not entirely solved

this problem. First, in many cases these systems do not distinguish between inventory on the shelf

or in the backroom and, as a consequence, the system might report availability for the store, while

the shelf may be empty. Second, recent work by DeHoratius and Raman (2008) has shown large

discrepancies between the actual inventory and system-recorded inventory. Consequently, audits
1See Gruen et al. (2002) for a detailed study on the incidence and consequences of out-of-stocks across different

product categories and geographies.
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need to be conducted periodically in order to reconcile actual inventory with what is kept in the

inventory system. Therefore, in practice, many retailers operate with a periodic inventory review

system, where inventory is observed precisely only at specific time epochs and cannot be perfectly

inferred at other points in time. For these reasons, we design our methods to work with sparse

information of product availability, as provided by periodic inventory review systems.

Our estimation approach is based on an extension of the methodology in Chen and Yang (2007),

Musalem et al. (2007) and Musalem et al. (2008) for demand estimation from aggregate data.

Accordingly, we treat the sequence of individual purchases in a given time period (i.e., the order

in which individual purchases were made) as missing data and simulate these sequences from their

posterior distribution. Combining these simulated sequences of purchases with periodic inventory

information, we estimate the evolution of product inventory on the shelf and make inferences about

the demand model taking into account the occurrence of out-of-stocks. Consequently, we explicitly

consider the endogenous variation in product availability, modeling the set of products available to

a customer in a given time period as a function of the initial inventory and the sequence of choices

made by customers. Moreover, when used in categories where out-of-stocks occur frequently, our

data augmentation simplifies substantially the estimation of the model parameters relative to the

Expectation-Maximization (EM) approach used in previous work (Anupindi et al. (1998) and Conlon

and Mortimer (2007)). Furthermore, this structural approach to model product availability allows

us to perform policy experiments that can be useful to estimate lost sales and evaluate the impact

of policies designed to mitigate the consequences of out-of-stocks.

We estimate our model using sales data from multiple stores for twenty four items in the shampoo

product category. In addition, we illustrate how the model can be used to assist the decisions of a

store manager in two ways. First, we estimate lost sales induced by product out-of-stocks, which

is used to assign a financial tag to the cost of out-of-stocks. Second, we use the model to evaluate

the financial consequences of temporary price promotions that can help alleviate the costs of out-

of-stocks by recapturing a fraction of the lost sales.

To summarize, our work makes four important contributions. First, we develop a methodology

that can be applied in fairly general settings, including categories with a large number of products,

some of which may be slow-moving products that exhibit zero sales in some periods. Second,

our methodology explicitly considers the endogenous changes in product availability triggered by
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customer choices. Third, our structural approach allows us to perform policy experiments that

can be useful to estimate lost sales and evaluate the impact of policies designed to reduce the

consequences of out-of-stocks. Fourth, the use of data augmentation greatly simplifies the estimation

of the model parameters, especially when compared with EM or maximum simulated likelihood

approaches.

The rest of this article is structured as follows. Section 2 relates our work to the existing litera-

ture. In section 3 we describe the demand model, estimation methodology and how the methodology

can be used to estimate lost sales. Section 4 presents an empirical application of the methodology

using a data set with shampoo purchases. Section 5 estimates the costs of out-of-stocks and illus-

trates how the methodology can be used to assess the impact of different policies aimed at mitigating

their financial consequences. Finally, Section 6 concludes this paper with a discussion of interesting

avenues for future research.

2 Literature Review

Our work is related to research streams in the operations management, marketing and economics

literatures. For instance, our work is related to analytical models of inventory management and

assortment planning developed in the operations management literature (e.g. Zipkin (2000), Smith

and Agrawal (2000)). These models typically assume a specific demand formulation that is incorpo-

rated into an optimization problem; but in general they provide little guidance on how to determine

the input parameters of the demand model. This limits the applicability of this work in two ways.

First, the demand model specification needs to be validated through empirical data in order for the

prescribed decisions to be relevant in practice. Second, a naïve estimation of a correctly specified

demand model which neglects the effect of out-of-stocks on sales can lead to biased estimates and in-

correct model inputs. A notable exception in this literature is Kök and Fisher (2007), who estimate

a demand model that captures the effect of permanent changes in an assortment on sales, which

is then used to choose the number of facings of products to be included in an optimal assortment.

Our focus is different in that we measure the effect of temporary changes of product availability

on sales. Another difference is that they use ad-hoc functional forms for the substitution patterns,
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while in our approach product substitutions are based on utility maximization principles.2 Recent

work by Vulcano et al. (2008) estimates substitution effects induced by out-of-stocks. Their method

is relatively simple to implement but requires precise information on product availability for every

purchase. In contrast, our methodology can be used with partial information on product availability,

but is more computationally intensive.

In the context of the marketing literature, models that use individual data (e.g. Fader and Hardie

(1996); Rossi et al. (1996)) or aggregate data (e.g., Besanko et al. (2003), Jiang et al. (2007)) to

estimate consumer demand are ubiquitous; but most of this work does not take into account the

effect of product availability on demand. Studies that use customer panel-data to estimate the effect

of out-of-stocks (e.g., Campo et al 2003; Swait and Erdem 2002) usually infer product availability

based on sales data.3 A simple method to identify an out-of-stock event from sales information is

to assume that if no sales of an item are observed during a certain time period then the product

was not available. This rule is not always appropriate because: (1) zero sales are not always caused

by out-of-stocks, especially for slow moving items; and (2) out-of-stocks do not always lead to zero

sales (i.e., an out-of-stock may occur in the middle of a time period after the remaining units of an

item were sold). For these reasons, it is important to incorporate more direct measures of product

availability when estimating customers’ preferences and reactions to stock-outs.

To our knowledge, Anupindi et al. (1998) are the first to estimate the effect of out-of-stocks

on customer demand using actual measures of product availability. Their model accounts for lost

sales and product substitution effects, but unless further restrictions are imposed to this model, it

is necessary to estimate a different set of arrival rates for every possible set of available alternatives

faced by a customer. Therefore, the number of parameters rapidly grows with the number of

alternatives and in order to fully characterize customers’ propensity to buy each alternative, it is

necessary to have observations for every possible choice set.4 In order to address this estimation

issue, Anupindi et al. (1998) focus on the case of one-stage substitution: the demand for an out-of-

stock product is partially transferred to another product, but if this product is also out-of-stock,

then this demand is lost. This restriction substantially reduces the number of parameters that need
2Kök and Fisher (2007) also develop a model to estimate stock-out based substitution (temporary changes in

availability), which they do not estimate with their empirical data.
3An exception is Anderson et al. 2006, who use sales data from a catalogue retailer.
4Denoting by J the number of alternatives, the number of non-empty choice sets is equal to 2J − 1.
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to be estimated, but it may not be appropriate in some applications.

A different approach is proposed by Kalyanam et al. (2007), who use a reduced-form model to

capture cross-item substitutions through a finite number of categorical variables. A limitation of

this approach is that the number of parameters to be estimated grows with the square of the number

of options in each categorical variable. In addition, the model does not incorporate time-varying

or continuous product characteristics such as price and therefore it cannot be used to estimate

price-elasticities of demand, which are needed to evaluate alternative policies to manage a product

category or to mitigate the costs of out-of-stocks.

In addition, our work is also related to the literature on consideration sets (e.g., Hauser and

Wernerfelt (1990); Roberts and Lattin (1991); Andrews and Srinivasan (1995)). This body of re-

search focuses on modeling the set of alternatives that are considered by a consumer when estimating

consumer preferences. The estimation of consideration sets is usually implemented by inferring them

from choice data and parametric assumptions about the consideration and choice processes. This

presents an important estimation challenge, given that data from a consumer who never chooses a

given product can be rationalized in at least two ways: i) the product does not enter the consumer’s

consideration set or ii) the product is considered by the consumer, but she assigns a large disutility

to this product. This highlights the importance of using auxiliary information to separately identify

consumer preferences and consideration sets (e.g., asking consumers which alternatives they consid-

ered as in Roberts and Lattin (1991)). In our paper, we face a similar problem as we are interested

in estimating the underlying set of alternatives that are available to each customer. We estimate

this set of alternatives combining sales data with information on product inventory. This enables

us to characterize the evolution of the choice set as a function of variations in product availability.

In the economics literature there has been an extensive development of methods to estimate

demand based on random utility maximization models (RUM) using market-level sales data (e.g.

Berry (1994) and Berry et al. (1995)). RUMmodels can be very effective at providing a parsimonious

characterization of consumer preferences reducing the number of parameters to be estimated. In the

context of out-of-stocks, Bruno and Vilcassim (2008) extend the methodology in Berry et al. (1995)

to incorporate external information about product availability, showing that neglecting the effects

of out-of-stocks leads to substantial biases in the estimation. Obtaining measures of availability at

the market level is difficult; for example, Bruno and Vilcassim use the all commodity volume (ACV)
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weighted distribution information, which may not be a good proxy of local availability to consumers

(Dolan and Hayes (2005)). We overcome this problem by using store data as opposed to market

level information and, therefore, we are able to obtain more precise measures of product availability

to exploit variations in the choice set due to out-of-stocks. In addition, given the complexity of the

methodology proposed by Bruno and Vilcassim (2008), these authors assume that the probability

of one product being sold-out is independent of the availability of other products. This assumption,

may not be appropriate for demand models that do not satisfy the independence of irrelevant

alternatives assumption.5 We explicitly address this issue by not imposing restrictive assumptions

on the joint probability of different products being sold-out. In addition and as mentioned by

Chintagunta and Dubé (2005), a limitation of the basic methodology developed in Berry (1994)

and most of its extensions (including Bruno and Vilcassim (2008)) is that it cannot be used when

some of the products have zero sales, which is not uncommon for store-level data of slow-moving

categories.

Closest to our work is Conlon and Mortimer (2007), who estimate the substitution effects induced

by stock-outs using a random utility model and partial data on product availability. They use an EM

algorithm to account for the missing data on product availability faced by each customer. However,

the expectation step becomes difficult to implement when multiple products are simultaneously

out-of-stock (as in the case of our empirical application). As we will explain in the next section, our

approach can be applied to cases where a large number of products become out-of-stock without

increasing the complexity of the estimation method.

In terms of Bayesian methods to estimate demand using aggregate data, and as we mentioned in

the introduction, our estimation approach presented here is based on an extension of the method-

ology in Chen and Yang (2007), Musalem et al. (2007) and Musalem et al. (2008). In contrast to

prior work in this area (e.g., Musalem et al. (2008)), we not only use aggregate sales data, but also

use periodic information about product inventory. Conditioning on both types of information, we

jointly estimate the distribution of consumer preferences and product availability, which enables us

to estimate the impact of out-of-stocks on consumer choices.

Finally, we note that other authors have used controlled laboratory experiments (e.g. Fitzsimons
5For example, it seems more likely for an out-of-stock of caffeine-free diet Coke to trigger a subsequent out-of-stock

for a similar product (e.g., caffeine-free diet Pepsi) than one for a dissimilar one (e.g., Sprite).
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(2000)), field experiments (e.g., Anderson et al. (2006)), and questionnaires (e.g., Campo et al.

(2003b)) to estimate customer response to out-of-stocks. We focus instead on developing methods

that use data routinely collected by store managers.

3 Model and Methodology

This section describes the customer choice model and the estimation method. The demand model

is based on utility maximization principles and can be estimated with sales data from multiple

stores combined with (partial) information about product availability. We also discuss identification

and endogeneity issues and show results from a simulation experiment to test and validate our

methodology. Finally, we show how the model can be used to estimate lost sales.

3.1 Customer Choice model

We start by specifying a random-coefficients multinomial logit (MNL) model for product choice

within a category, a demand specification widely used in the economics and marketing literature

(e.g. Train (2003), Chintagunta et al. (1991)). Consider a customer i that visits store m during

time period t and chooses to buy a single unit from among the alternatives in the set J = {1, .., J}
or chooses not to purchase (no-purchase option). We specify the utility of purchasing product j ∈ J
as follows:

Uijtm = Vijtm + εijtm

= β′itmXjtm + ξjtm + εijtm (1)

where Xjtm is a vector of covariates that may include product characteristics, price and other

marketing variables. The vector of random coefficients βitm, which varies across customers, describes

individual preferences and is assumed to be distributed according to a multivariate normal with mean

θ̄m and covariance matrix Σ. The mean of individual preferences for a given store m is specified as:

θ̄m = θ′Zm (2)
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where Zm is a vector of characteristics for store m, which enables a researcher to capture observed

heterogeneity across customers in different markets and θ is a matrix of coefficients. The variance-

covariance matrix Σ captures unobserved customer heterogeneity, which is assumed for simplicity

and parsimony to be constant across stores. In addition, ξjtm is a common demand shock that

is introduced to capture market factors unobserved to the researcher that change the utility of all

customers for alternative j in period t and market m. The random vector ξtm = (ξ1tm...ξJtm) is

assumed to follow a multivariate normal distribution with zero mean and covariance matrix Σξ. For

simplicity, we assume that Σξ = σ2
ξ · IJ (where I is the identity matrix with J rows and columns).

The inclusion of these demand shocks helps to prevent overfitting problems when aggregate data are

used to estimate the model (Berry (1994)). Finally, εijtm is an individual-specific demand shock,

modeled as an i.i.d. random variable from an extreme value distribution.

The probability that a customer chooses a given brand depends on the set of alternatives available

to a customer. In particular, due to the occurrence of out-of-stocks, the choice set of a customer

may not include all the products in the set J . Product availability is characterized in our model

by the vector aitm =
(
a1

itm...aJ
itm

)
, where aj

itm = 1 if customer i visiting store m in period t finds

product j available, and aj
itm = 0 otherwise. Without any loss of generality, we index customers in

each period by their order of arrival to the store.

Let yitm denote the product chosen by customer i in period t and market m and let Ui0tm = εi0tm

be the utility of the no-purchase option (the subscript 0 denotes the no-purchase option). The

probability that a customer i facing availability aitm purchases product j is given by:

pj (βitm, aitm, ξtm) ≡ Pr (yitm = j|βitm, aitm, ξtm, X) =
aj

itm · exp (βitmXjtm + ξjtm)
1 +

∑
k∈J

ak
itm · exp (βitmXktm + ξktm)

, (3)

while the probability of choosing the no purchase option is given by p0(βitm, aitm, ξtm) = 1 −
∑
j∈J

pj (βitm, aitm, ξtm). Note that this customer model is similar to the one used by Bruno and

Vilcassim (2008).6 In addition, we assume that aggregate store-level sales data, Sjtm, are observed.

Given an observed number of customers making purchase decisions in each period, Ntm, the number

of customers choosing the no purchase option is given by S0tm = Ntm −
J∑

j=1
Sjtm.

6Campo et al. (2003a) make use of a similar extension to the MNL model, but do not incorporate random
coefficients.
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As is evident from equation (3), the estimation of the model requires information about the set of

products available to each customer visiting the store (aitm). As we mentioned in the introduction,

this information is rarely available in practice. Instead, we assume that product availability is

observed at the beginning and at the end of each period.7 We use the notation Itm =
(
I1
tm, ..., IJ

tm

)

to denote inventory at the beginning of the period; Îtm is used for product inventory at the end of

the period. If there are replenishments, the definition of the time periods is such that they occur

just before the beginning of the period and are therefore accounted in Itm. When a store m runs

out-of-stock for some product j during period t, we observe that Ij
tm > 0 and Îj

tm = 0 but we do

not know the exact time of the out-of-stock. This missing piece of information is important as it

determines how many customers were exposed to the out-of-stock. For example, if the first customer

visiting the store purchased the last unit of product j, then all other customers were exposed to this

out-of-stock. In contrast, if the last customer visiting the store purchased the last unit of product

j, then no customers were affected by this out-of-stock. Because this information is not directly

observable, we don’t know a priori whether customers buying product k 6= j during that period

chose this product because it was their most preferred item or because it was their second preferred

option when product j, the preferred product, was not available. Consequently, given that the

purchasing probability depends on the availability vector a, the likelihood function for this problem

cannot be expressed only in terms of sales data and the coefficients of the utility function of each

customer, as in standard applications of choice models to purchase data.

These difficulties caused by sparse product availability data were recognized by Anupindi et al.

(1998). They develop a model where the time epoch of each out-of-stock is treated as missing

data, and use an EM algorithm for estimation. The EM algorithm facilitates the search for the

maximum likelihood estimators. However, the closed-form expressions used in their expectation

step become complicated as the number of out-of-stocks in a single period increases. In fact,

they derive expressions for no more than two out-of-stocks taking place in the same period. The

Bayesian estimation method described in the next section circumvents this limitation, allowing for

simultaneous out-of-stocks for an arbitrary number of products in each period and for a much more

general class of problems that do not require closed-form expressions.
7Note that store sales are usually monitored more frequently than product availability. In those cases, our method

can still be applied after aggregating sales to form a sales series with the same frequency as the availability data.
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3.2 Bayesian estimation

The proposed methodology uses a data augmentation approach to overcome the difficulties generated

by incomplete data on product availability. Let wijtm be a choice indicator equal to 1 if yitm = j

and equal to zero otherwise and denote by Wtm the set of choice indicators wijtm for all customers

and alternatives corresponding to period t and market m. There are many configurations of Wtm

which could have generated the observed data. Denoting by Ωtm the set of all the configurations of

choice indicators consistent with the aggregate sales data for period t and market m, Wtm ∈ Ωtm if

and only if:
Ntm∑

i=1

wijtm = Sjtm, for all j ∈ J . (4)

Our data augmentation approach treats each choice (yitm) and choice indicator (wijtm) as missing

data. The main advantage of using these augmented data is that they determine unambiguously

the availability observed by each customer, as illustrated by the following example. Suppose that

two products, B and C, are available at the beginning of a given time period, but only product C

is available at the end of the period. We observe total period sales for each product: SB = 1 and

SC = 2. Therefore, we know that initially there was exactly 1 unit of B and at least 3 units of C in

inventory. Furthermore, suppose we also observe that N = 6 customers visited the store during this

period; therefore, N−SB−SC = 3 customers chose the no-purchase option denoted by 0. We index

customers by their order of arrival and the choice of each customer by yi ∈ {B, C, 0} . The vector

y = (y1, ..., y6) characterizes the order of purchases during the period. If y = (C, 0, C, 0, 0, B), then

all 6 customers found both products available. If we consider instead a different value of the vector

of individual choices by swapping the choices of customers 1 and 6, we obtain y = (B, 0, C, 0, 0, C).

In this case, customers 2 through 6 found product B out-of-stock. Also note that had we swapped

instead the choices of customers 1 and 2, y = (0, C, C, 0, 0, B), the set of products available to each

customer would be unchanged.

The relationship between individual choices and availability can be expressed, in general terms,

as follows. Given w and the observed data (sales on each period, Sjtm, and inventory information

at the beginning and end of each period, Itm and Îtm), product availability for each customer can
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be determined as:

aj
itm =





1 if Ij
tm > 0, Îj

tm > 0,

0 if Ij
tm = Îj

tm = 0,

1
{

i−1∑
k=1

wkjtm < Sjtm

}
if Ij

tm > 0, Îj
tm = 0.

(5)

where the summation over customers 1, .., i− 1 includes all customers arriving prior to customer i.

Using the augmented data, the likelihood function for store m and period t is given by:

Ltm (θ,Σ, Σξ) =

∑

Wtm∈Ωtm

∫

ξtm

Nm∏

i=1




∫

βitm

J∏

j=0

pj (βitm, aitm, ξtm)wijtm φ(βitm; θ′Zm, Σ)dβitm


φ(ξtm; 0, Σξ)dξtm, (6)

where φ (x; µ,Σ) denotes the multivariate normal density with mean µ and variance covariance ma-

trix Σ. The overall likelihood (including all stores and periods) is given by L =
M∏

m=1

T∏
t=1

Ltm (θ,Σ, Σξ).

This likelihood function is difficult to compute due to the summation over all possible configurations

of choice indicators (Wtm) consistent with the aggregate data (see equation 6).8 Instead of using

a Maximum Likelihood (ML) approach, our strategy is to apply data augmentation together with

Markov Chain Monte-Carlo methods (MCMC) to facilitate the estimation of the parameters of the

model. This approach is described in the next paragraphs.

In contrast to ML, which seeks to find a point estimate for the parameters of interest (θ,Σ, Σξ),

a Bayesian approach seeks to estimate the posterior distribution for the parameters, given the

observed data. Towards this objective, we define the hyper-prior distribution π(θ, Σ,Σξ) which

formalizes the researcher’s prior beliefs about the demand parameters. We also write the likelihood

of the augmented data for customer i in store m and period t as:

Litm (βitm, ξtm|a,w) =
J∏

j=0

[pj (βitm, aitm, ξtm)]wijtm . (7)

The posterior density of (θ, Σ,Σξ), {βitm}, and the augmented data (a,w) given the observed data
8Another complication of doing maximum likelihood is that the integrals in (6) cannot be expressed in closed

analytical form and have to be approximated through simulation. The resulting objective function may be highly
non-linear and the search for a global optimum becomes challenging.
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is proportional to:

p (θ, Σ, Σξ, a, w, {βitm} |S) ∝ π (θ, Σ, Σξ)
∏

t

∏
m

1

{
Ntm∑

i=1

wijtm = Sjtm; j ∈ J
}

φ (ξtm; 0,Σξ)

×
Ntm∏

i=1

φ
(
βitm; θ′Zm,Σ

) · Litm (βitm, ξtm|a,w) (8)

where the indicator function incorporates constraint (4) into the probability model.

We seek to estimate the posterior (8) using MCMC methods. Conditional on the augmented

variables (a,w), the parameters {βitm} , θ, Σ and Σξ can be sampled using existing Bayesian methods

for individual level data (e.g. Allenby and Rossi (2003)). In particular, we combine these existing

methods with a sampling scheme for the missing data a and w. Following Musalem et al. (2007),

posterior samples for these variables can be obtained by deriving the full-conditional distribution

of the augmented choices and availability data. Note that the full-conditional distributions have

a simple structure if we partition the set of customers into pairs and consider the distribution of

the choices of customers in a given pair, holding constant all other choices.9 This enables us to

define a mechanism to sequentially sample a and w from their posterior distribution for each pair

of customers. We illustrate this sampling scheme with an example (see Table 1).

To simplify notation, we suppress time (t) and store (m) indexes for this example. Consider the

set of products formed by {B,C} plus the no-purchase option 0. The observed data are SB = 1,

SC = 2, N = 6, IB = 1, IC = 3, ÎB = 0 and ÎC = 1. We start with an initial assignment of

choices given by y (see column 2 in Table 1), which is consistent with the observed sales data. We

now show how to sample a new vector y′. We randomly generate a partition of the set of customers

into 3 pairs: for example, {1, 3} , {2, 4} , {5, 6} . We are interested in calculating the full conditional

distribution of the choices of customers in one of these pairs, say {2, 4}. Conditioning on the choices

of all other customers {1, 3, 5, 6}, denoted by y−24, and the observed data, there are only two vectors

of choices that are consistent with the sales data: the current choices (y) and the choice vector y∗

(see column 5 in Table 1) where the choices of customers 2 and 4 are swapped.

Note that when exchanging the choices of customers 2 and 4, the sets of available products
9As mentioned in Musalem et al. (2007), one could also consider partitioning the set of customers into larger groups

(e.g., triplets or quadruplets). This may provide a more efficient approach to estimate the posterior distribution of
the model parameters, but it increases the computational cost of each simulation.
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to customers arriving between customers 2 and 4 may endogenously change, but the choice set

of all other customers remains unchanged. In the example, customers 2, 3 and 4 find alternative

B available under the current configuration of choices (y, see column 3 in Table 1), while only

customer 2 finds this alternative available under the new configuration (y∗, see column 6 in Table

1). In addition, product availability for all other customers (1, 5 and 6) remains constant. Therefore,

swapping the choices of customers 2 and 4 can only affect the likelihood of customers 2, 3 and 4.

When sampling from this full conditional distribution, the probability of generating a draw where

the choices of 2 and 4 are exchanged is:

Pr (y∗|y−24) =
∏4

i=2 Li (βi, ξ|a∗, w∗)∏4
i=2 Li (βi, ξ|a∗, w∗) +

∏4
i=2 Li (βi, ξ|a,w)

where a∗, w∗is the augmented data implied by the vector of choices y∗. The new draw is equal to

the previous draw y with probability 1− Pr (y∗|y−24) .

Based on this intuition, the Gibbs sampling scheme for the missing data (a,w) of each store-

period can be formalized as follows:

Step 1: In a given iteration r, randomly generate a partition of customer-pairs, denoted Ptm, of

the Ntm customers.

Step 2: For a given pair (l, k) ∈ Ptm, exchange the choices of customers l and k. Generate the new

choice vector y∗ and binary variables a∗ and w∗ by swapping the choices of customers in pair

(l, k). The new variables are accepted with probability:

Pr (accept) =
∏k

i=l Li (βi, ξ|a∗, w∗)∏k
i=l Li (βi, ξ|a∗, w∗) +

∏k
i=l Li (βi, ξ|a,w)

If accepted, update y
(r+1)
tm ← y∗tm, a(r+1) ← a∗ and w(r+1) ← w∗, otherwise set y

(r+1)
tm ← y

(r)
tm ,

a(r+1) ← a(r) and w(r+1) ← w(r). Repeat Step 2 for a new pair in Ptm until no pairs are left.

The Gibbs sampling scheme ensures that every feasible choice vector y can be sampled with positive

probability. Therefore, when combined with a proper sampling scheme for {βitm} , {ξtm} , θ, and

Σ, it generates an irreducible Markov chain with stationary probability distribution equal to the

posterior distribution of the parameters of the model.
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3.3 Identification

In this subsection we discuss issues related to identification of our model. In the economics and

marketing literature, variations in prices, promotions and other marketing variables are usually

exploited to identify and estimate demand models (e.g., Villas-Boas and Winer (1999)). In the case

of this paper, another important source of identification arises from changes in product availability.

In particular, observing customer behavior under different choice sets provides useful information

to uncover the patterns of substitution among different alternatives. One difficulty is that the

variation in product availability is not perfectly observed and this may lead to some challenges in

the identification of the model parameters.

Consider the following example. A few units of product A are available at the beginning of a

period, and at the end of period the product is out-of-stock. There are two possible explanations

that fit these data. In the first one, customers have a low utility for product A (relative to other

products), which generates just enough demand for all the units initially available. In this case,

the out-of-stock of product A occurs towards the end of the period. A second explanation is that

customers place a high utility on product A, and the first customers visiting the store purchase

product A, generating an out-of-stock early in the period. Without additional information, we

cannot distinguish between these two alternative explanations. However, we may also observe data

for : (1) the sales for other products with similar characteristics to product A, which were available

throughout the period; and (2) sales during other periods where product A had full availability.

This additional information is useful to separately identify the utility of product A and the latent

distribution of product availability.10

An additional challenge that we face in the estimation of our model is related to the endogeneity

of inventory. A retailer is likely to choose inventory levels based on demand projections, which we

do not entirely observe in the data set of our application (the data set is described in Section 4).

Hence, inventories could be correlated with the demand shocks (ξjtm), which could lead to biases in

our estimation. To avoid this type of endogeneity, our methodology requires the demand shocks ξjtm

10The demand model could also be estimated by considering only the time periods for which the set of available
alternatives does not change, i.e. periods in which the set of products available at the beginning and end of the period
is the same. Although this would certainly reduce the complexity of the estimation method, this approach exhibits
two important disadvantages. First, one would be forced to discard valuable information about the customer demand
and this approach would only work if there are enough time periods that meet this requirement. In particular, for
longer time periods, it will be less likely to observe constant availability sets.
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to be unobservable to the retailer. This is not an unreasonable assumption when the model is used

by a store manager, since she is likely to have access to the information used to determine inventory

levels and this information could also be used to estimate the demand model. For our empirical

application, we include covariates that capture demand seasonality, which we believe capture most

of the demand changes anticipated by the store manager that may have occurred during the study.

Furthermore, note that our model uses information on availability (aitm) and does not use data

on inventory levels directly. Hence, endogeneity would only be an issue if the demand shocks ξtm

affect the distribution of availability. Models in inventory management suggest that the probability

of an out-of-stock of a product does not depend on its specific demand characteristics (e.g. mean or

standard deviation) but rather on the relative costs of holding inventory versus the costs of having

an out-of-stock. The cost of holding inventory depends mainly on the cost of capital, depreciation

and storage, which are unrelated to demand. The cost of an out-of-stock is affected, among other

things, by the product’s margin, which may be related to the demand through price. Therefore,

this implies that it is important to include prices in the utility specification not only to be able to

estimate price elasticities, but also to avoid this type of endogeneity bias.

Another potential endogeneity problem may arise from serially correlated demand shocks (ξjtm).

Today’s inventory depends on yesterday’s demand, which induces a correlation between current in-

ventory and previous demand shocks. In addition, if demand shocks are autocorrelated, current

demand shocks will be correlated with previous shocks that are in turn correlated with today’s

inventory, leading to an endogeneity problem. As we previously mentioned, we do not expect to

observe autocorrelation in demand shocks in our application once we control for seasonality. Never-

theless, the methodology presented here could be extended to allow for demand shock persistence,

which would eliminate this form of endogeneity.

3.4 Numerical Experiment

In this subsection, we test the proposed methodology using simulated data. We generated sales

and inventory data for J = 10 purchase alternatives and a no-purchase option available in M = 12

markets and T = 15 periods. We included four variables (x1, ..., x4) in the utility function. We

use random coefficients for x3 and x4 and assume fixed (i.e., constant across customers in a given

market) coefficients for x1 and x2. The first two variables correspond to two brands dummies, one
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for alternatives 1, 2 and 3 (x1), and another for alternatives 4, 5 and 6 (x2). The third variable is a

dummy variable equal to 1 for all purchase alternatives (x3), while the fourth variable is generated

from a normal distribution (x4). In order to replicate some of the features of the data set used in

our empirical application, the continuous variable is generated so that its values for a given brand

and market are the same across all time periods. Accordingly, the values of x4 for each brand and

market are generated from a normal distribution with mean equal to 2 and variance equal to 1.

Based on these four explanatory variables, customer coefficients for a given market m are gen-

erated from a 4-dimensional multivariate normal distribution with mean θm = θ′Zm as in equation

(2) and variance Σ, where Zm represents a 2-dimensional vector of demographic variables. In terms

of the demographics, the first variable z1m is equal to 1 for all markets (intercept), while the second

variable z2m is generated from a uniform distribution in the interval [−1.5, 1.5]. The true value of

θ corresponds to:

θ =




2.0 1.5 −3.0 −2.5

0.5 −0.5 0.0 0.7


 .

The variance of the random coefficients (Σ) is equal to a diagonal matrix with elements equal to

0.8 and 2.0 for x3 and x4 respectively and elements equal to zero for the two variables with fixed

coefficients (x1 and x2). The size of each market (Nm) is generated by taking the integer part of

a uniform random variable defined on the interval [0, 300]. In addition, common demand shocks

for each alternative in each period and market (ξjtm) are generated from a normal random variable

with zero mean and variance σ2
ξ equal to 0.5. Finally, initial inventory levels for each alternative are

generated by taking the integer part of a uniform random variable in the interval [0, I]. We use three

different values of I (10, 60 and 400) which lead to different inventory service levels. In the first case

(I = 10), each alternative stocks out on average in 28.9% of the time periods across all markets,

while this fraction corresponds to 8.7% and 1.3% for the second and third cases, respectively.

For each of these three data sets (I = 10, I = 60 and I = 400) we estimated θ, Σ and σ2
ξ using

the method described in the previous section and based on the aggregate data available for each

period (sales and initial inventory). We also estimated these parameters ignoring the occurrence

of out-of-stocks (assuming all products were available for every single period and market). In both
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cases, we used the following weakly informative prior distributions: θ ∼ N(0, 100 I8), Σjj ∼ scaled

inverse chi-square (df = 3, scale= 1) and σ2
ξ ∼ scaled inverse chi-square (df = −1, scale= 0.01).

The results are presented in Table 2 and they are based on a single run of 100,000 iterations

from a Markov Chain Monte Carlo (MCMC) sampler, where the last 50,000 iterations are used for

parameter estimation.

From the results in Table 2 we observe important differences in terms of parameter inference

comparing the case where out-of-stocks are modeled with the one in which out-of-stocks are ignored.

Considering the results in the first three blocks of Table 2, it is evident that when out-of-stocks are

ignored, our inferences about the model parameters are biased, especially when out-of-stocks are

more frequent (see first and second blocks of Table 2). Specifically, when I = 10 the 95% posterior

probability intervals for most of the components of θ do not cover the corresponding true values. For

example, θz1,x3 which is used to derive the mean utility of all the purchase options is underestimated

when out-of-stocks are ignored (true value= −3, 95% posterior probability interval: [−4.60,−3.78]).

In addition, the heterogeneity in the random coefficients for the continuous variable (Σx4,x4 , true

value= 2, 95% posterior probability interval: [0.54, 1.46]) is underestimated. As expected, the

estimation results improve as out-of-stocks become less frequent. In particular, in the third case,

where out-of-stocks are on-average observed only in 1.3% of the time periods for each alternative(I =

400), the results are very similar across both models (see third and sixth blocks in Table 2).

In terms of the full model, the results in the last three blocks in Table 2 show that the method

recovers well the original parameters under each of the three scenarios. In fact, the posterior

means are close to their true values (on average within 0.8 posterior standard deviations from the

corresponding true values). In addition, in all but four cases (θz1,x3 and Σx3,x3 in the fifth block and

θz1,x2 and Σξ in the sixth block of Table 2), the true values are contained within the 95% posterior

probability intervals. Finally, it is important to mention that we also conducted a simulation study

by generating 50 data sets for the case where I = 10. We estimated the model parameters using the

proposed method and also ignoring the occurrence of out-of-stocks. The results of this simulation

study, confirm the basic findings discussed in this subsection (please refer to Online Appendix A).
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Table 1: Gibbs sampling example

Customer i yi aB
i aC

i y∗i aB∗
i aC∗

i

1 C 1 1 C 1 1
2 0 1 1 B 1 1
3 C 1 1 C 0 1
4 B 1 1 0 0 1
5 0 0 1 0 0 1
6 0 0 1 0 0 1

Table 2: Results: Estimated posterior mean, standard deviation and quantiles for θ, Σ and σ2
ξ

ignoring (benchmark model) and accounting for (full model) the occurrence of out-of-stocks.

Model θz1,x1 θz1,x2 θz1,x3 θz1,x4 θz2,x1 θz2,x2 θz2,x3 θz2,x4 Σx3,x3 Σx4,x4 σ2
ξ

mean 1.45 1.30 -4.13 -1.52 0.41 -0.39 0.00 0.53 0.66 0.93 0.48
Benchmark std.dev. 0.09 0.09 0.22 0.22 0.09 0.10 0.10 0.06 0.39 0.24 0.06

I=10 2.5% 1.28 1.14 -4.60 -1.96 0.23 -0.59 -0.19 0.43 0.24 0.54 0.36
50.0% 1.45 1.30 -4.11 -1.49 0.41 -0.39 0.01 0.53 0.49 0.90 0.48
97.5% 1.62 1.48 -3.78 -1.13 0.60 -0.18 0.19 0.65 1.58 1.46 0.60
mean 1.82 1.37 -3.39 -2.14 0.41 -0.50 -0.02 0.70 0.85 1.56 0.61

Benchmark std.dev. 0.07 0.08 0.09 0.12 0.10 0.10 0.09 0.06 0.24 0.19 0.05
I=60 2.5% 1.68 1.22 -3.58 -2.38 0.22 -0.71 -0.18 0.59 0.47 1.23 0.52

50.0% 1.82 1.37 -3.40 -2.13 0.41 -0.50 -0.02 0.70 0.82 1.54 0.61
97.5% 1.96 1.54 -3.21 -1.94 0.59 -0.30 0.14 0.81 1.41 1.95 0.72
mean 1.94 1.70 -3.09 -2.54 0.38 -0.62 0.06 0.71 0.52 2.04 0.60

Benchmark std.dev. 0.09 0.09 0.11 0.11 0.09 0.09 0.08 0.04 0.22 0.17 0.05
I=400 2.5% 1.77 1.52 -3.32 -2.76 0.21 -0.80 -0.12 0.62 0.20 1.75 0.51

50.0% 1.95 1.70 -3.09 -2.54 0.38 -0.62 0.06 0.71 0.49 2.03 0.60
97.5% 2.12 1.88 -2.89 -2.35 0.57 -0.45 0.21 0.79 1.06 2.41 0.69
mean 1.92 1.70 -3.24 -2.41 0.50 -0.53 -0.08 0.79 0.91 1.91 0.61

Full std.dev. 0.11 0.11 0.25 0.27 0.10 0.11 0.11 0.08 0.39 0.40 0.08
I=10 2.5% 1.70 1.49 -3.75 -3.03 0.29 -0.76 -0.32 0.64 0.41 1.25 0.47

50.0% 1.92 1.69 -3.24 -2.38 0.50 -0.53 -0.08 0.79 0.80 1.85 0.61
97.5% 2.12 1.91 -2.71 -1.94 0.70 -0.31 0.12 0.95 1.85 2.87 0.78
mean 1.97 1.48 -3.36 -2.36 0.53 -0.51 0.03 0.73 1.76 1.87 0.55

Full std.dev. 0.07 0.09 0.14 0.13 0.10 0.11 0.10 0.06 0.52 0.22 0.05
I=60 2.5% 1.82 1.31 -3.64 -2.62 0.33 -0.72 -0.14 0.61 0.99 1.47 0.45

50.0% 1.97 1.48 -3.35 -2.36 0.53 -0.51 0.03 0.73 1.67 1.86 0.54
97.5% 2.11 1.66 -3.12 -2.12 0.71 -0.30 0.23 0.84 2.88 2.33 0.65
mean 1.97 1.73 -3.15 -2.51 0.41 -0.62 0.06 0.70 0.67 2.00 0.59

Full std.dev. 0.08 0.09 0.09 0.11 0.09 0.10 0.10 0.04 0.31 0.18 0.05
I=400 2.5% 1.81 1.56 -3.32 -2.72 0.22 -0.82 -0.14 0.62 0.19 1.69 0.51

50.0% 1.97 1.73 -3.15 -2.51 0.41 -0.61 0.07 0.70 0.64 1.99 0.59
97.5% 2.13 1.89 -2.98 -2.32 0.59 -0.41 0.27 0.78 1.37 2.37 0.69
true 2.00 1.50 -3.00 -2.50 0.50 -0.50 0.00 0.70 0.80 2.00 0.50
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3.5 Estimating Lost Sales

An important factor that determines inventory levels in retailing is the cost of shortage. This cost is

closely related to the behavior of customers that encounter an out-of-stock. The cost of an out-of-

stock increases with: (i) the markup of the product that sells out; and (ii) the fraction of customers

that choose not to purchase after experiencing an out-of-stock.11 The former is known by the store

manager, but the latter is not directly observable. In what follows, we show how to use the model to

estimate lost sales - the fraction of customers that chose not to purchase but would have purchased

if some of the out-of-stock products had been available. This estimate can be used together with

markup information to assign a dollar value to the cost of shortage.

Consider a customer i facing a set of available products A who chose the no-purchase option.

We drop the time (t) and market (m) subscripts for ease of exposition. The set of out-of-stock

products, denoted by Ac = J \A , includes product k. The probability that customer i would have

purchased product k had it been available is given by:

Pr(choose k| choose 0 from A) =
∫

Pr(choose k| choose 0 from A, βi)f(βi| choose 0 from A)dβi

=
∫

eVik

1 +
∑

j∈A∪{k}
eVij

f(βi| choose 0 from A)dβi (9)

where βi is the (random) “taste” coefficient of the customer, f(βi|·) its conditional density and Vij is

the implied deterministic utility of this customer from purchasing product j. The first equality comes

from conditioning on the customers preferences (βi). The second equality comes from standard

properties of the multinomial logit choice model.12 Similarly, the probability of that the customer

would have chosen any of the missing alternatives had they been available is given by:

Pr(choose Ac| choose 0 from A) =
∫ ∑

k∈Ac

eVik

1 +
∑
j∈J

eVij
f(βi| choose 0 from A)dβi (10)

11Also note that the cost of an out-of-stock decreases with the markup of the products that capture the demand
for the non-available products.

12Conditioning on choosing the no-purchase option, the random utility Ui0 is distributed according to an extreme
value distribution with mode (location) equal to ln(1 +

∑
j∈A−k

eVij ) and scale equal to 1. Hence, the probability of

preferring k over the no-purchase option is eVik ·
(

1 + eVik +
∑

j∈A

eVij

)−1

.
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The main challenge of computing lost sales via equations (9) and (10) is that it requires inte-

gration over those customers who where exposed to out-of-stocks and chose the no-purchase option.

Our data augmentation strategy enables us to easily identify these customers and compute these

integrals through simulation without further computational effort.

Specifically, in the context of MCMC estimation, in any given iteration we can use the draws

for the augmented data on choices (yi) and availability (ai) to identify the set OA of all customers

facing availability A who chose the no-purchase option.13 Using these draws, we can estimate the

lost sales (LS) induced by all of the out-of-stock products as:

LS =
∑

i∈OA

∑
k∈Ac

eVik

1 +
∑
j∈J

eVij
. (11)

Finally, it is important to note that one could erroneously consider an alternative approach

(on the surface correct) to estimate the impact of out-of-stocks where the sales of each product

are estimated assuming all products were available and computing choice probabilities for every

customer using equation (3). This approach, however, is not accurate as it ignores the choices

implied by the observed sales data. For example, suppose only product k was out-of-stock and 20%

of the customers decided not to buy any products (no-purchase option). If product k had been

available, then, from utility maximization, the only option these customers could have switched

to is product k. This is determined by the fact that the customers’ observed choices require the

no-purchase option to dominate all other options (all options but product k). Consequently, it

is necessary to condition on the observed sales data when estimating the consequences of out-of-

stocks. As we previously mentioned, this conditional inference is facilitated by the augmentation of

individual choices and availability data that we employ to estimate the parameters of the model.

The next section describes an application of the methodology based on data from the shampoo

product category.
13Mathematically, this set can be expressed as OA = {i : yi = 0, aj

i = 1 ∀j ∈ A, aj
i = 0 ∀j ∈ Ac}.
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4 Empirical Application: Demand Estimation in the Shampoo Prod-

uct Category

We use data on shampoo purchases from six supermarket stores located in different regions of

Spain to illustrate the methodology. The stores are owned by a major supermarket chain, with

more than 400 stores in this country. The data set was collected from 6 of these stores located in

different regions of Spain, including daily sales during 15 consecutive days (excluding two Sundays

in which stores are closed) between May 13th and May 29th in 1999. The product category includes

24 different stock keeping units (SKUs), but not all SKUs were offered in each store during the

study period. In addition to the sales data, information about product availability on the shelf was

recorded at the beginning and end of each day. In total, 291 out-of-stocks were recorded across all

days, stores and products.

The data also contain price information for every product on each store-day. From the 24

products in the data set, 16 products exhibited price variation across stores, but very few products

exhibited temporal price variation within a given store during the study period. Table 3 displays

the brands of each product and shows summary statistics for each of the products in terms of daily

unit sales, prices (in Spanish Pesetas), availability (OOS) and number of stores where each product

is offered (Stores).14

4.1 Model specification

We include eight covariates (Xjtm) in the utility function of each customer. Two of these covariates

have random coefficients: price and purchase option. The latter is a dummy variable equal to 1 in

every period for all options except the no-purchase option. This variable captures total category

demand for shampoo products as higher coefficients associated to this variable raise the utility

of all purchase alternatives in relation to the utility of the no-purchase option. In addition, we

include dummy variables for the following brands: Pantene, Herbal Essence, Head & Shoulders

(H&S), Cabello Sano and Timotei. Finally, we also include a dummy variable (Weekend) to control

for seasonality (changes in demand during weekends). This variable is equal to 1 for all purchase

alternatives for every time period corresponding to a Saturday and is equal to 0 otherwise (recall
14Availability is measured as the fraction of days in which an out-of-stock for a given product was observed.
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Table 3: Brands and summary statistics for the shampoo data: brands, mean and standard deviation
of daily sales and prices, fraction of out-of-stocks (OOS) and number of stores for each product.

Daily Unit Sales Price
Product Brand M SD M SD OOS Stores

1 Other 0.08 0.27 3.99 0.00 0.00 6
2 Other 0.00 0.00 4.97 0.04 0.11 3
3 Other 0.07 0.25 4.97 0.04 0.12 4
4 Timotei 0.12 0.39 6.03 0.10 0.27 6
5 Timotei 0.12 0.33 5.99 0.27 0.10 6
6 Timotei 0.17 0.43 6.03 0.10 0.26 6
7 Timotei 0.06 0.23 5.79 0.41 0.16 5
8 Other 0.03 0.18 4.72 0.32 0.38 4
9 Other 0.06 0.23 4.75 0.00 0.20 6
10 Pantene 0.17 0.37 4.50 0.11 0.33 6
11 Pantene 0.28 0.97 4.50 0.16 0.40 5
12 Pantene 0.29 0.89 4.50 0.11 0.39 6
13 Pantene 0.28 0.73 4.45 0.15 0.39 6
14 Other 0.07 0.29 4.99 0.00 0.17 6
15 Other 0.24 0.53 2.07 0.03 0.11 5
16 Other 0.24 0.53 4.85 0.00 0.03 6
17 Herbal Essence 1.03 1.47 4.55 0.19 0.08 6
18 H&S 0.32 0.68 5.20 0.22 0.36 6
19 H&S 0.21 0.63 5.17 0.19 0.31 6
20 Other 0.19 0.45 4.99 0.00 0.11 6
21 Cabello Sano 0.11 0.32 3.45 0.00 0.12 5
22 Cabello Sano 0.27 0.61 3.45 0.00 0.08 6
23 Cabello Sano 0.30 0.64 3.47 0.04 0.42 6
24 Other 0.06 0.23 4.25 0.00 0.17 5
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that the stores are closed on Sundays). We note that this variable also enables us to explicitly

consider in the utility function changes in demand that might be anticipated by the store manager.

We use demographic information to capture observed preference heterogeneity across stores

(unobserved heterogeneity is captured through random coefficients). Specifically, we collected in-

formation on average declared income for each market. Accordingly, the vector of demographic

variables for a given store m (Zm) has two components: an indicator equal to 1 for all stores (in-

tercept) and the standardized natural logarithm of income15. In addition, the size of the market

for each store was estimated combining data on population and total consumption of shampoo in

Spain16.

4.2 Results

Using the method introduced in Section 3 we estimated the model based on the covariates and

demographic variables previously described. We also estimated a benchmark model that ignores

out-of-stocks. In this model, every product offered in a given store is assumed to be available to

all customers in every time period. However, products that were never available in a particular

store were excluded from the choice set in the benchmark model. We computed the log-marginal

likelihood for the full and benchmark models and obtained a log-Bayes Factor equal to 77.1, which

gives very strong empirical support for the full model (Kass and Raftery (1995)). Table 4 reports

the estimation results for the hyper-parameters θ, Σ and σ2
ξ under both model specifications.

From the results of the full model we note that products from the brands Pantene, Herbal Essence

and H&S are on average more demanded than all other products (see the results for θIntercept in

Table 4). In particular and consistent with the summary statistics in Table 3, Herbal Essence

products are those that attract more customers on average. Futhermore, the results for θIncome

show lower intrinsic demand for Herbal Essence products in stores reaching customers with higher

income levels, while the opposite is observed for H&S products. As expected, the weekend and

price effect (see θIntercept,Weekend and θIntercept,Price) show higher levels of demand during Saturdays

and significant disutility for higher prices. In addition to the observed heterogeneity across stores
15We also experimented using additional demographic information (e.g., age), but the results and the fit of the

model do not substantially change.
16The population data were downloaded from http://www.ine.es, while the consumption data were obtained from

Euromonitor International. We also experimented with an alternative definition of the market size (approximately
twice the size of the one used in this section) and obtained very similar results.
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Table 4: Empirical Results: Estimated posterior mean, standard deviation, 25% and 75% quantiles
for θ (mean of the demand coefficients), Σ and σξ (iterations 200,001-400,000).

Full Model Ignoring OOS
Variable mean (s.d.) 25% 75% mean (s.d.) 25% 75%

θIntercept Pantene 1.19 0.20 1.05 1.33 0.87 0.21 0.73 1.01
Herbal Essence 2.14 0.26 1.97 2.32 2.22 0.26 2.04 2.40
H&S 1.38 0.26 1.20 1.55 1.13 0.26 0.95 1.30
Cabello Sano 0.65 0.24 0.49 0.80 0.45 0.24 0.28 0.61
Timotei 0.53 0.31 0.33 0.74 0.41 0.31 0.21 0.62
Weekend 1.08 0.22 0.93 1.22 1.17 0.25 1.00 1.32
Purchase Option -4.88 0.62 -5.21 -4.47 -4.92 0.63 -5.32 -4.53
Price -0.91 0.19 -1.02 -0.81 -0.99 0.24 -1.13 -0.82

θIncome Pantene 0.02 0.21 -0.12 0.16 0.05 0.21 -0.08 0.19
Herbal Essence -0.52 0.28 -0.70 -0.33 -0.57 0.27 -0.75 -0.39
H&S 0.56 0.26 0.39 0.74 0.62 0.27 0.44 0.80
Cabello Sano 0.12 0.24 -0.04 0.28 0.00 0.24 -0.16 0.16
Timotei -0.06 0.31 -0.27 0.15 0.04 0.31 -0.16 0.24
Weekend -0.26 0.21 -0.39 -0.12 -0.24 0.21 -0.38 -0.09
Purchase Option -0.54 0.50 -0.88 -0.19 -0.73 0.47 -0.97 -0.44
Price -0.01 0.12 -0.09 0.07 0.02 0.11 -0.05 0.08

Σ Purchase Option 0.70 0.48 0.39 0.84 0.74 0.51 0.42 0.87
Price 0.24 0.09 0.18 0.27 0.28 0.13 0.19 0.33

σ2
ξ 1.10 0.22 0.95 1.24 1.25 0.26 1.07 1.41
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captured by θIncome, the results for Σ show the magnitude of the unobserved heterogeneity within

stores in terms of total demand (Purchase option) and price sensitivity (Price). The variances for

these random coefficients are estimated as 0.70 and 0.24, respectively. The results for the variance of

the demand shocks (σ2
ξ ) suggest that these unobserved demand effects are substantial (the posterior

mean of σ2
ξ is estimated as 1.10).

Finally, when comparing the full and benchmark models, we note that the posterior means of

θIntercept for the brands Pantene, H&S and Cabello Sano are smaller under the benchmark model

than in the full model (these posterior means are approximately one posterior standard deviation

from each other). These differences do not exhibit a strong level of statistical significance, but

their direction suggests that ignoring out-of-stocks leads to lower estimates of demand for these

brands. In contrast, the corresponding posterior mean for Herbal Essence is very similar across

both models, which is consistent with the high availability of this product on the shelf (92%, see

fraction of out-of-stocks for product 17 in Table 3).

5 Estimating and Mitigating the Costs of Out-Of-Stocks

Using the expressions derived in Subsection 3.5 (see equation 11), we estimated lost sales for every

time period in each store. Figure 1 shows the estimated lost sales as a fraction of the total sales that

would have been observed if all products had been available (referred to as full-availability sales).17

The estimates suggest that the percentage of lost sales is large and varies considerably within and

across stores. In some instances, the lost sales reach levels close to 100%, as in days 3 and 9 in store

5. Both days correspond to Saturdays with a substantial fraction of out-of-stock products (10 out

of the 24 SKUs were out-of-stock).

To better understand the effect of product availability on lost sales, Figure 2 shows the estimated

average lost sales at store-days with different number of products out-of-stock. The figure reveals

that lost sales increases non-linearly in the number of products not available. When five or fewer

products are out-of-stock the average lost sales are equal to 9.5% of the full availability sales. But

when six or more products are out-of-stock, lost sales grows by more than 3 times, up to 30.1% of

the full-availability sales. This suggests that the first products that stock-out have a smaller impact
17The full-availability scenario assumes that the retailer has enough shelf space to satisfy the full-availability

demand. Accordingly, full-availability sales are defined as the sum between the observed and lost sales.
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Figure 1: Percentage of lost purchases by day and store as a fraction of full-availability sales.
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Figure 2: Percentage of lost purchases as a fraction of full-availability sales versus number of out-
of-stock products.

on category sales, but lost sales increase more rapidly as more products become unavailable. This

pattern has important implications for assortment planning and inventory replenishment decisions.

In supermarkets, there are substantial fixed costs of replenishing products on the shelf. Hence,

Figure 2 suggests that replenishments could be postponed until several products become out-of-

stock without substantially affecting category sales, although the profitability consequences of such

a policy will depend on the retail margins of each of the sold-out products.

In addition to estimating lost sales, we also evaluate the effect of a strategy that seeks to mitigate

the effect of out-of-stocks: conducting a temporary price reduction for a single product to recapture

a fraction of lost sales. Price discounts increase the attractiveness of substitute products, inducing

some customers whose preferred product is not available to substitute their intended purchase with

another product rather than choosing the no-purchase option. In what follows, we show how to

use our model to quantify the expected fraction of lost sales that would be recaptured through this

temporary price promotions. Consider the set OA of customer who chose not to purchase when

assortment A was available (previously defined in section 3.5). Suppose that the price of product
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k ∈ A is discounted by some fraction of the original price. For each customer i ∈ OA, we define two

events: (1) Ei1 is the event that customer i would have purchased some of the unavailable products

(i.e. products in Ac) had they been available; (2) Ei2 is the event that the customer would purchase

the discounted product k when only products in A are available. All customers in OA satisfying Ei1

are counted as lost sales; those who in addition satisfy Ei2 count as recaptured lost sales. Therefore,

the fraction of lost sales that is recaptured can be calculated as:

% Reduction in Lost Sales =

∑
i∈OA

Pr(Ei1, Ei2|i ∈ OA)
LS

,

where LS is defined in equation (11) and details on how to calculate the numerator of the expression

above using draws from the MCMC simulation are shown in the Online Appendix B.

Accordingly, the model was used to measure the effectiveness of implementing price reductions

of 20% for different store-days. We consider scenarios where only one product is discounted at a

time and then compare the impact among products. As an illustration, we report results for two

store-days with very different levels of availability: (i) day 3 in market 5, where 10 SKUs are out-of-

stock; and (ii) day 15 in market 2, where only one product is out-of-stock– SKU 15 (Pantene). In

the case of day 3 in market 5, a price promotion on product 17 (Herbal Essence) reduces lost sales

by 2.5%; all other promotions reduce lost sales by less than 1%. However, in the case of day 15 in

market 2, it is more effective to discount product 13 (Pantene), which leads to a lost-sales reduction

of 4.5%. In this case, a promotion of product 17 leads to a 3.2% reduction in lost sales.

The comparison of the results from these two store-days provides insights on the effectiveness of

price promotions at mitigating the consequences of out-of-stocks. In the case of day 15 in market 2

where only one product was out-of-stock, a price promotion on a product with similar characteristics

to the missing product is more effective to recapture lost sales. In contrast, when many products

are missing, it is more effective to use a price promotion on a popular product (SKU 17).

These results show that price promotions can be useful to reduce lost sales and improve customer

service. However, promotions may also have negative consequences, including: (1) a reduction in

the margin of the discounted product; (2) cannibalization of sales from other products with higher

margins. These consequences can also be easily estimated with our model if data on the cost of

goods sold by SKU is available. Using gross margin data from the supermarket chain under study,
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we evaluated the net change in category profits accounting for the effect of increased sales, reduced

markups and cannibalization. In the case of day 3 in market 5, the promotion on product 17

increased total profits by 14.7%. In contrast, in the case of day 15 in market 2, the price promotion

on products 13 and 17 reduces profits by 33% and 8%, respectively.18

In summary, this section illustrates how the methodology can be used to assess the consequences

of policies aimed at mitigating the costs of out-of-stocks (e.g., lost sales reduction, impact on cate-

gory profits). Many additional policy experiments could be also performed, including discounts on

multiple products and experimenting with different magnitudes for price discounts. These additional

policy experiments can be easily implemented using the estimated model.

6 Conclusions

In this paper, we have proposed a method to capture the effects of out-of-stocks on customer

behavior using data available to a store manager. Lack of precise availability data in real-time,

which is common in practical retail settings, introduces a major challenge in identifying the effect of

out-of-stocks on sales. To overcome these difficulties, our methodology simulates the transition of

the inventory on the shelf conditioning on snapshots of information about product inventory, which

could be obtained through a periodic inventory review system. These data are combined with daily

sales and pricing data to estimate a structural model of demand for a product category.

The method has several attractive features. First, the model can be estimated using data from

multiple stores and markets. Second, our method is applicable in categories with many products

and with slow moving products exhibiting frequent out-of-stocks. Previous methods in this area

were limited by the number of products, the type of substitutions and the number of products that

could be simultaneously out-of-stock. Third, our structural model allows the evaluation of policies

to mitigate the consequences of out-of-stocks (such as temporary price promotions). Fourth, the

methodology explicitly models the distribution of the timing of out-of-stocks (which are unobservable

in periodic inventory systems), providing useful information on product availability.

In terms of future research, several interesting generalizations can be identified. In terms of

the demand model, alternative specifications or behavioral assumptions could be considered (e.g.,
18Promotions on other products, such as SKU 10, reduced lost sales by about 1% without substantially changing

profits.
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probit model, complexity of choice decisions). In addition, the model could be extended to explicitly

consider the possibility of some customers returning to the store in future periods if they did not

find a product in a given time period. Finally, since our methodology is based on estimating the

joint distribution of availability and sales, a possible extension could be developed for the detection

of out-of-stocks based on point-of-sales data.

In summary, we hope that the methodology presented in this paper may provide useful tools

for researchers and managers to estimate the consequences of out-of-stocks and assess the impact

of policies to mitigate their costs. This issue is certainly relevant for audiences in the operations

management, marketing and economics disciplines. We hope this paper may help to stimulate

further research aimed at addressing problems that cross the boundaries between these fields.
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Online Appendix A: Simulation Study

In this Appendix we describe the results of a simulation study designed to show the statistical

properties of the method proposed in this paper. Using the same parameter values as in Subsection

3.4, we generated 50 data sets and estimated the model parameters using the proposed method. We

also repeated this process estimating the model parameters ignoring the occurrence of out-of-stocks.

Table A1 shows the results of this simulation study. In each block, we display the mean, standard

deviation, median, mean squared error (mse) and bias of the posterior mean of each parameter

under each estimation approach. We also report the fraction of replications for which each posterior

mean is below its true value (pbelow). Ideally, we would expect this percentage to take values close

to 0.5.

From these results we observe an important bias of the posterior means under the model that

ignores out-of-stocks. In fact, for 7 out of 10 parameters, the posterior means are almost always

below or above the truth. For example, in the case of θz1,x1 which is used to determine the mean of

the coefficients for brand 1, the posterior mean is below the true value for all replications (pbelow =

1.0 for θz1,x1). In contrast, under the full model, we see a much more even distribution of the

posterior mean around the truth, with values of pbelow much closer to 0.5 (pbelow = 0.56 for θz1,x1).

In addition, we observe an improvement in the bias and mean squared error for most parameters

under the full model when compared with the results of the model that ignores out-of-stocks.
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Online Appendix B: Calculating the reduction in lost sales due to a price promotion

This section shows the details on how to calculate the reduction of lost sales after applying a

discount on a single product. Define:

• A: the set of products available.

• Ac: the set of products out of stock.

• j′: index of the discounted product.

• ∆: the change (increase) in the utility of product j′ after applying the discount.

The set of customer that choose not to purchase under assortment A is OA = {i/ui0 > uij , ∀j ∈ A}.
The events Ei1and Ei2 are defined as:

Ei1 = {ui0 < maxk∈Acuik}

Ei2 =
{
ui0 < uij′ + ∆

}
.

We also define the following subsets of consumers:

O−j′ =
{
i : ui0 > uij , ∀j ∈ A\j′} ,

Oj′ =
{
i : ui0 > uij′

}
.

Note that OA = O−j′ ∩ Oj′ . Our objective is to compute Pr(Ei1, Ei2|i ∈ OA), the reduction in

lost sales when discounting product j′. To facilitate notation, we denote the event i ∈ OA more

succinctly as OA (similarly with O−j′and Oj′) and suppress all i indexes. Note that:

Pr(E1, E2, OA) = Pr(E2, OA)− Pr(Ec
1, E2, OA). (12)

In our derivation, we will use two standard results of multinomial logit choice models (see Ben-Akiva

and Lerman (1985)):

1 The distribution of X = maxk∈P uk is Gumbel with mode log
∑

k∈P exp(Vk).
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2 Given two independent X and Y Gumbel random variables with modes Vx and Vy (respec-

tively), the difference X − Y is logistically distributed: FX−Y (z) = 1
1+exp(Vy−Vx−z) .

We first calculate P (OA, E2):

Pr(OA, E2) = Pr(Oj′ , E2, O−j′)

= Pr(O−j′) · Pr(Oj′ , E2|O−j′)

= Pr(O−j′) · Pr(0 < u0 − uj′ < ∆|u0 > uk, ∀k ∈ A\j′).

The distribution of u0 conditional on u0 > uk,∀k ∈ A\j′ is a Gumbel distribution with mode

log
∑

k∈A\j′ exp(Vk). Let Y−j′ denote a random variable with this distribution. Moreover, Y−j′ and

uj′ are independent. Using results 1 and 2 above, Y−j′ − uj′ has a logistic distribution and we

obtain:

Pr(Oj′ , E2|O−j′) = Pr(0 < Y−j′ − uj′ < ∆)

=
exp(Vj′ + ∆)

1 + exp(Vj′ + ∆) +
∑

k∈A\j′ exp(Vik)
−

∑
k∈A\j′ exp(Vk)

1 +
∑

k∈A exp(Vk)
.

In addition, Pr(O−j′) =
(
1 +

∑
k∈A\j′ exp(Vk)

)−1
, which completes the calculation of P (OA, E2).

We now turn to the calculation of Pr(OA, E2, E
c
1). We have:

Pr(OA, E2, E
c
1) = Pr(Oj′ , O−j′ , E

c
1, E2)

= Pr(Oj′ , E2|O−j′ , E
c
1) · Pr(O−j′ , E

c
1)

= Pr(0 < u0 − uj′ < ∆|u0 > uk, ∀k ∈ J \j′) · 1
1 +

∑
k∈J\j′ exp(Vk)

.

The distribution of uo conditional on u0 > uk, ∀k ∈ J \j′ is a Gumbel distribution with mode

log
∑

k∈J\j′ exp(Vk). Let Z denote a random variable with this distribution. The random variable

Z − uj′ has a logistic distribution and we obtain:

3



Pr(0 < u0 − uj′ < ∆|u0 > uk,∀k ∈ J \j′) = Pr(0 < Z − uj′ < ∆)

=
exp(Vj′ + ∆)

1 + exp(Vj′ + ∆) +
∑

k∈J\j′ exp(Vk)

−
∑

k∈J\j′ exp(Vk)

1 +
∑

k∈J\j′ exp(Vk)

This completes the calculation of Pr(O, E2, E
c
1). Replacing Pr(O, E2, E

c
1) and P (O,E2) in (12)

enabling us to estimate the reduction in lost sales.
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Table A1
Results: Summary statistics for the posterior mean of each parameter across 50 replications

ignoring out-of-stocks (first block) and accounting for out-of-stocks (second block).

Ignoring OOS θz1,x1 θz1,x2 θz1,x3 θz1,x4 θz2,x1 θz2,x2 θz2,x3 θz2,x4 Σx3,x3 Σx4,x4 σ2
ξ

mean 1.172 1.009 -4.469 -0.969 0.015 -0.430 0.245 0.332 0.665 0.462 0.476
sd 0.172 0.118 0.322 0.296 0.242 0.159 0.177 0.091 0.322 0.250 0.076

median 1.170 1.002 -4.493 -0.906 -0.033 -0.432 0.246 0.335 0.539 0.406 0.469
mse 0.716 0.255 2.261 2.432 0.294 0.030 0.091 0.144 0.122 2.427 0.006
bias -0.828 -0.491 -1.469 1.531 -0.485 0.070 0.245 -0.368 -0.135 -1.538 -0.024

pbelow 1.000 1.000 1.000 0.000 0.980 0.380 0.040 1.000 0.800 1.000 0.600
true 2.000 1.500 -3.000 -2.500 0.500 -0.500 0.000 0.700 0.800 2.000 0.500

Full Model θz1,x1 θz1,x2 θz1,x3 θz1,x4 θz2,x1 θz2,x2 θz2,x3 θz2,x4 Σx3,x3 Σx4,x4 σ2
ξ

mean 1.994 1.501 -3.148 -2.429 0.496 -0.484 0.070 0.666 1.107 1.949 0.505
sd 0.106 0.079 0.321 0.294 0.146 0.122 0.139 0.092 0.781 0.413 0.092

median 1.983 1.502 -3.072 -2.443 0.511 -0.504 0.048 0.670 0.828 1.891 0.514
mse 0.011 0.006 0.125 0.092 0.021 0.015 0.024 0.010 0.704 0.173 0.009
bias -0.006 0.001 -0.148 0.071 -0.004 0.016 0.070 -0.034 0.307 -0.051 0.005

pbelow 0.560 0.480 0.660 0.420 0.480 0.520 0.280 0.660 0.480 0.560 0.440
true 2.000 1.500 -3.000 -2.500 0.500 -0.500 0.000 0.700 0.800 2.000 0.500
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