
A Process Algebraic Approach to the Schedulability
Analysis and Workload Abstraction of Hierarchical

Real-Time Systems

Junkil Parka,1,∗, Insup Leeb, Oleg Sokolskyb, Dae Yon Hwanga, Sojin Ahna,
Jin-Young Choia, Inhye Kangc

aKorea University, Seoul 136-713, Korea
bUniversity of Pennsylvania, Philadelphia, PA 19104 USA

cUniversity of Seoul, Seoul 130-743, Korea

Abstract

Real-time embedded systems have increased in complexity. As microprocessors
become more powerful, the software complexity of real-time embedded systems
has increased steadily. The requirements for increased functionality and adapt-
ability make the development of real-time embedded software complex and error-
prone. Component-based design has been widely accepted as a compositional
approach to facilitate the design of complex systems. It provides a means for
decomposing a complex system into simpler subsystems and composing the sub-
systems in a hierarchical manner. A system composed of real-time subsystems
with hierarchy is called a hierarchical real-time system.

This paper describes a process algebraic approach to schedulability analysis
of hierarchical real-time systems. To facilitate modeling and analyzing hierar-
chical real-time systems, we conservatively extend an existing process algebraic
theory based on ACSR-VP (Algebra of Communicating Shared Resources with
Value-Passing) for the schedulability of real-time systems. We explain a method
to model a resource model in ACSR-VP which may be partitioned for a sub-
system. We also introduce schedulability relation to define the schedulability of
hierarchical real-time systems and show that satisfaction checking of the relation
is reducible to deadlock checking in ACSR-VP and can be done automatically
by the tool support of VERSA (Verification, Execution and Rewrite System for
ACSR). With the schedulability relation, we present algorithms for abstracting
real-time system workloads.
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Hierarchical Scheduling

1. Introduction

Real-time embedded systems have increased in complexity. As micropro-
cessors become more powerful, the software complexity of real-time embedded
systems has been increasing steadily. The requirements for increased function-
ality and adaptability make the development of real-time embedded software
complex and error-prone. Component-based design has been widely accepted
as a compositional approach to facilitate the design of complex systems. It
provides a means for decomposing a complex system into simpler subsystems
and composing the subsystems in a hierarchical manner. A system composed
of real-time subsystems with hierarchy is called hierarchical real-time system.
For example, ARINC-653 [1] standards by the Airlines Electronic Engineering
Committee specify partition-based design of avionics applications. Also, hyper-
visors for real-time virtual machines provide temporal partitions to guarantee
real-time performance [2][3][4]. To share system resources (e.g., CPU) among
real-time subsystems in a reliable and efficient manner, the hierarchical schedul-
ing theory has been developed in [5][6][7][8][9][10]. A challenge of analyzing hier-
archical real-time systems is dealing with complicated system aspects including
various resource sharing/scheduling policies, complicated task behaviors (e.g.,
inter-dependency) and supporting multi-processors.

There has been a process algebraic approach to the schedulability analy-
sis of real-time systems [11]. This approach is based on the timed process
algebra ACSR-VP (Algebra of Communicating Shared Resources with Value-
Passing) which is an extension of ACSR [12] (Algebra of Communicating Shared
Resources) with the value-passing capability. ACSR-VP has the notion of re-
sources such as the first class entities and the notion of priorities to capture the
resource contention among concurrent processes. In this approach, real-time
tasks are modeled as ACSR-VP processes, and scheduling algorithms can be
specified by assigning proper priorities to the timed actions in the ACSR-VP
processes. Due to the capability of value-passing, ACSR-VP can model the
systems where the processes interchange the values of priorities (e.g., priority
inheritance protocol [11]). Once a set of tasks and a scheduling algorithm of a
real-time system are modeled in ACSR-VP, the schedulability of the task set can
be analyzed by means of bisimulation and deadlock checking. ACSR-VP is ex-
pressive enough to model various kinds of tasks and scheduling algorithms. The
schedulability analysis with this approach offers the exact schedulability con-
dition. VERSA [13] (Verification, Execution and Rewrite System for ACSR)
is a tool for ACSR-VP, and can automatically perform analysis of ACSR-VP
processes such as bisimulation checking, deadlock checking and rewriting.

Although the approach [11] is well-developed and suitable for the analysis
of real-time systems, but it does not consider hierarchical real-time systems,
thus not supporting schedulability analysis of hierarchical real-time systems. In
the hierarchical scheduling setting, only partitioned resources may be available
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to real-time subsystems because subsystems share resources with other subsys-
tems. However, this approach [11] assumes that resources are dedicated and
fully available to workloads in real-time systems, and has not been considered
for specifying resource models which may be partitioned. Therefore, the ex-
isting approach [11] cannot provide an analysis method of the schedulability
hierarchical real-time systems.

This paper proposes a process algebraic method to the schedulability analysis
of hierarchical real-time systems. We provide a method to specify not only
workload models and scheduling algorithms but also resource models which
may not be fully available to workloads. Our method conservatively extends
the previous work [11] in that the dedicated resource model that the previous
work [11] only considers is a special case of our resource models. In our approach,
not only workload models but also resource models are specified as ACSR-VP
processes in order to express general resource models. Processes specifying
workload models are called demand processes, and processes specifying resource
models are referred to as supply processes. We formally define schedulability
relation between supply processes and demand processes to provide a necessary
and sufficient condition for schedulability for hierarchical real-time systems. We
also show that satisfaction checking of the schedulability relation is reducible
to deadlock checking in the ACSR-VP framework. Schedulability analysis for
hierarchical real-time systems can be done automatically by tool-support of
VERSA. Although this work focuses on the systems with a single processor, the
topic of multi-processors is an avenue of future work.

In this paper, our contributions are as follows: we provide a conservative
extension of the previous work [11] for hierarchical real-time systems, which pro-
vides a framework to conduct schedulability analysis and workload abstraction
of hierarchical real-time systems with various scheduling algorithms. In other
words, the schedulability analysis of the previous work [11] is only a special case
of our work’s. We demonstrate the use of VERSA to automatically perform
schedulability analysis and workload abstraction. We validate the accuracy of
the workload abstraction, comparing the result with CARTS (Compositional
Analysis of Real-Time Systems) [14].

The rest of this paper is organized as follows: Section 2 introduces the
syntax and the semantics of ACSR-VP. Section 3 describes hierarchical real-
time system models in ACSR-VP. Section 4 defines the schedulability relation
and the schedulability of hierarchical real-time systems. Section 5 describes
the real-time workload abstraction in our framework. Finally, we conclude the
paper in Section 6 with discussion of future work.

1.1. Related Work

As related works, there has been much work on analytical approaches to
compositional hierarchical scheduling based on real-time scheduling theory [5][6]
[7][8][9][10]. There is a tool called CARTS [14] which implements the theory of
[8][9]. Typically, such approaches to schedulability analysis use the schedula-
bility condition defined as a condition in which the minimum possible resource
supply can satisfy the maximum resource demand. The minimum resource
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supply is represented by supply bound function which under-approximates a re-
source supply. The maximum resource demand is represented by demand bound
function which over-approximates the demand of tasks. For the exactly same
type of operations, such analytical methods are generally more efficient com-
pared to formal method-based approaches like ours which usually require more
computations (e.g., state space exploration). However, the advantage of our
approach is that it is flexible to adapt to the analysis of different variations of
system settings (e.g., resource model, task model, scheduling algorithms). How-
ever, these analytical approaches can only handle independent tasks without
inter-task dependencies and assume scheduling algorithms to be Earliest Dead-
line First (EDF), Rate Monotonic (RM), and Fixed Priority (FP). In practical
applications, a more general class of the task model is desirable.

In addition to analytical approaches based on scheduling theory, several com-
putational approaches based on formal methods have been developed. To per-
form the schedulability analysis of real-time systems, computational approaches
involve modeling real-time tasks with scheduling algorithms and analyzing the
state space of the models. For computational methods for the schedulabil-
ity analysis of real-time systems, there have been process algebraic approaches
[15][16]; automata theories based on stopwatch automata [17], task automata
[18][19] and timed automata [20][21]; net-based models such as preemptive
Time Petri Nets (pTPNs) [22], Petri Nets with hyper-arcs [23] and Scheduling-
TPNs [24]. However, none of these approaches consider the modeling of resource
model explicitly and can analyze hierarchical real-time systems.

The timed automata-based approach for compositional hierarchical schedul-
ing [25][26] provide a framework which takes as input systems settings such
as the topology of the schedulers and tasks with their attributes. It uses the
formal method tool UPPAAL to verify the system’s schedulability. Moreover,
there has been an approach based on linear hybrid automata [27]. Compared
to other automatic theoretic formal method-based approaches to hierarchical
scheduling, we take a distinctive approach based on a resource-bound real-time
process algebra which has the notion of resources such as the first class entities
and the notion of priorities to capture the resource contention among concur-
rent processes. Specifically, while we consider both periodic and EDP resource
models and various scheduling algorithms, the work [26] considers only the pe-
riodic resource model and less types of scheduling algorithms. Unlike ours, the
work [27] only considers the cases where the global scheduler performs EDF
among periodic servers and the tasks that have fixed priorities.

In [28], the authors extend the work of [22] for the schedulability analysis
of two-level hierarchical real-time systems. A two-level hierarchical real-time
system is composed of several subsystems and has a global scheduler at the top
level that allocates resources to subsystems. Each subsystem has its own local
scheduler. The work of [28][29] provides an analysis method for two-level hi-
erarchical real-time systems with a time division multiplexing global scheduler
and preemptive fixed priority local schedulers. This approach can handle tasks
with inter-task dependencies. However, this approach does not provide a frame-
work for hierarchical real-time systems with more than a two level hierarchy
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and restricts the resource model only to the time division multiplexing method.
There have been other process algebraic approaches to the analysis for hier-

archical scheduling. The work of [30][31] is inspired by the timed process algebra
ACSR. These approaches introduce a new language and formalism called PADS
(Process Algebra for Demand and Supply) which are essentially based on ACSR.
PADS extends the notion of resource in ACSR. While ACSR has the concept of
resource request, PADS has the concept of resource request, resource grant and
resource consumption. In [30][31], the authors define the schedulability in terms
of PADS processes and show the schedulability analysis with independent and
periodic tasks under the EDF scheduling algorithm and the resource supply by
a supply process. The languages of these approaches are limited because tasks
with inter-task dependencies cannot be modeled, while our approach is based on
ACSR-VP, which has the feature of instantaneous actions with value-passing,
so that the task model is not limited to independent tasks. Moreover, PADS is
currently hard to apply to larger scale examples due to the lack of automatic
tool support.

2. ACSR-VP

The Algebra of Communicating Shared Resources, ACSR [12], is a real-
time process algebra. ACSR incorporates the notions of concurrency, commu-
nication, resources, priorities and timed behavior. ACSR with Value Passing
[11] [32] extends ACSR [12] with dynamic priorities and value-passing capacity.
In ACSR-VP, priorities can be value expressions that contain variables (e.g.,
{(cpu, x + 1)}). In ACSR-VP, instantaneous events are augmented with value
expressions to represent value-passing. For instance, (l?x, 3) is an input event
that receives a value in x from the channel l with the priority of 3, and (l!7, 3) is
an output event that sends 7 to the channel l with the priority of 3. If multiple
events are available on a channel at the same time, the one with the highest pri-
ority (i.e., largest number) is triggered first. In the defining form of ACSR-VP,
processes can have parameters.

2.1. Syntax

ACSR-VP distinguishes two types of actions: timed actions and instanta-
neous actions. While timed actions consume time to execute, instantaneous
actions do not consume time. Timed actions may require access to system re-
sources, e.g., cpu, bus, memory, etc. In contrast, instantaneous actions provide
a synchronization mechanism between two concurrent processes.

A system has a finite set of serially-reusable resources, R. A timed action
A ∈ DR takes one time unit to execute and is represented as a list of resources
and associated fixed priorities, e.g., {(data, 2), (cpu, 1)}. For example, a timed
action {(r, p)} denotes the use of some resource r ∈ R running at priority level
p. A distinguished timed action {}, or ∅, stands for one time unit of idling. For
an action A, we use ρ(A) to denote the set of resources it uses, and πr(A) to
denote the priority of A on resource r; if A does not use resource r, πr(A) is
zero.
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Instantaneous actions, or events, provide process synchronization in ACSR.
An event a ∈ DE takes no time to execute, and is denoted by a pair (l, p), where
l is the label of the event, and p is its priority, e.g., (chan, 3). Labels represent
input and output actions on channels. For an event a, we use γ(a) for its label
and π(a) for its priority. As in CCS (Calculus of Communicating Systems), the
special identity label, τ , arises when two events with input and output on the
same channel synchronize. We define L as the set of all event labels.

We use DR to denote the domain of timed actions, DE to denote the domain
of events, and D = DR ∪DE to denote the entire domain of actions. Let DExp
be a set of data expressions ranged over by e, e′, e1 and e2. Let V al be a
set of values ranged over by v, v′, and v1. Let V ar be a set of data variables
ranged over by x, y. Let BExp be a set of boolean expressions ranged over
by b, b′ and b1. We denote a vector of value variables and value expressions
as ~x and ~e respectively. Also, we use l, l′ and l1 to denote event labels and
r, r′ and r1 to denote resources. F and I represent sets of event labels and
resources respectively. Let K be a set of process constants ranged over by P,
Q. Let T be the set of all process terms ranged over by t, u. We assume that

for every process constant P there is a defining equation of the form P (~x)
def
= t.

ACSR-VP terms are described by the following grammar:

t ::= NIL | a.t | A:t | b→ t | t+ u | t‖u | t\F | [t]I | t\\I | P(~e)

a ::= (τ, e) | (l?, e) | (l!, e) | (l?x, e) | (l!e1, e2)

A ::= ∅ | {S}
S ::= (r, e) | (r, e), S

In the input-prefixed term (l?x, e).t, variable x is a bound variable with
scope t, leading to the usual definitions of free and bound occurrences of value
variables in process terms. In (l?x, e).t, the occurrence of variable x is bound.
For instance, consider a term (l1?x, 1).(l2!x, 1).(l3?x, 1).(l4!x, 1).NIL. This term
can be rewritten as (l1?x1, 1).(l2!x1, 1).(l3?x2, 1).(l4!x2, 1).NIL. We write fv(t)
for the set of free variables of t. We note that in an input prefix (l?x, e).t, e
should not contain the bound variable x. We refer to process terms that contain
no free variables as processes. Let P be the set of all processes ranged over by
p, q, P , Q, R, S.

The syntax of process terms NIL, a.t, A : t, t+ u, t‖u, [t]I , t\F and t\\F is
the same as that of ACSR [12]. The syntax for actions a and A are modified
so that values are added to represent dynamic priority and value passing. Note
that we also write (l, e) for (l?, e), and (l, e) for (l!, e). NIL represents a deadlock
process which performs nothing. Process terms a.t and A : t are instantaneous
actions and timed action prefixes, respectively. Instantaneous actions are re-
ferred to as events and timed actions are referred to as actions. t+ u defines a
nondeterministic choice between t and u. The choice is affected by the priority
of the first actions of t and u. t‖u represents the parallel composition of t and
u in which the events from t and u synchronize or interleave while the timed
actions from t and u, if they do not share any resource, reflect the synchronous
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passage of time. The Close operator, [t]I , produces a process that uses the
resources in I exclusively. The Restriction operator, t\F , restricts events with
labels in F from executing. t\\I is used to represent the behavior of t in which
the identities of resources in I are concealed. Besides the above operators in-
herited from ACSR, ACSR-VP introduces the conditional process term b → t.
The process term b → t behaves like t if the boolean expression b evaluates to
true, or NIL if b is false. Moreover, P is a process constant with a certain arity.
Each process constant P with arity n is associated with a process definition of

the form P(~x)
def
= t, where ~x is a vector of n variables. In a process definition

P(~x)
def
= t, we require that fv(P) ⊆ ~x, i.e, the definition body t does not contain

free variables other than those in ~x.

2.2. Semantics

The operational semantics of ACSR-VP is given in the usual way using a
labeled transition system. A labeled transition system is a triple (T ,D,→)
where T is a set of process terms, D is a set of actions, and →⊆ T × D × T
is a transition relation. The operational semantics of ACSR-VP is defined in
two steps. First, we develop an unprioritized transition system → in which no
priority information is used. Subsequently we refine → to create a prioritized
transition system, →π, in which preempted executions are pruned.

The unprioritized transition rules in Table 1 represent the unconstrained
operational semantics of ACSR-VP processes. We call it concrete operational
semantics in order to distinguish it from symbolic operational semantics which
will be introduced in a later chapter. We assume Z, the set of integers, to be
the domain of value variables. In Table 1, we use m,n, k,∈ Z for constants. In
addition, we only consider processes; that is, all value variables are bound and
instantiated before their value is referenced. We use [[e]] to denote the value
of e in Z and [[b]] to denote the boolean value of b. We use t[e/x] to denote
the process term resulting from substituting expression e for the free variable
x in the process term t. Note that rules Input1, Input2, Output1, Output2,
REC and ParC2 are derived from their counterparts in ACSR to create value
passing semantics. Rule Cond is new to ACSR-VP. For the meaning of the
aforementioned rules, we refer to [11]. The remaining rules are identical to the
transition rules described for ACSR [12]

To define an operational semantics of ACSR-VP which accounts for preemp-
tion, we define the preemption relation between actions, based on priorities, as
follows:

Definition 1 (Preemption Relation). For two actions, α and β, we say that α
is preempted by β (α ≺ β), if one of the following cases holds:

1. Both α and β are timed actions in DR, where (ρ(β) ⊆ ρ(α)) ∧ (∀r ∈
ρ(α).πr(α) ≤ πr(β)) ∧ (∃r ∈ ρ(β).πr(α) < πr(β))

2. Both α and β are events in DE , where π(α) < π(β) ∧ γ(α) = γ(β)

3. α ∈ DR and β ∈ DE , with γ(β) = τ and π(β) > 0.
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Input1 (l?, e).t
(l?,[[e]])−−−−→ t Input2

(l?x, e).t
(l?v,〚e〛)−−−−−→ t[v/x]

v ∈ V al

Output1 (l!, e).t
(l!,[[e]])−−−−→ t Output2 (l!e1, e2).t

(l![[e1]],[[e2〛)−−−−−−−−→ t

ActionTau (τ, e).t
(τ,[[e]])−−−−→ t ActionT

A : t
A−→ t

ChoiceL
t
α−→ t′

t+ u
α−→ t′

ChoiceR
u

α−→ u′

t+ u
α−→ u′

Cond
t
α−→ t′

(b→ t)
α−→ t′

[[b]] = true Rec
t[[[~e]]/~x]

α−→ t′

P(~e)
α−→ t′

P(~x)
def
= p

ParIL
t
α−→ t′

t||u α−→ t′||u
ParT

p
A1−−→ p′ q

A2−−→ q′

p||q A1∪A2−−−−−→ p′||q′
ρ(A1) ∩ ρ(A1) = ∅

ParIR
u

α−→ u′

t||u α−→ t′||u
ParC2

p
(l!v,m)−−−−→ p′ q

(l?v,n)−−−−→ q′

p||q (τ,m+n)−−−−−→ p′||q′

CloseI
p
a−→ p′

[p]I
a−→ [p′]I

CloseT
p
A1−−→ p′

[p]I
A2−−→ [p′]I

A2 = {(r, 0)|r ∈ I − ρ(A1)}

ResT
p
A−→ p′

p\F A−→ p′\F
ResI

p
a−→ p′

p\F a−→ p′\F
γ(e) /∈ F

HideI
p
a−→ p′

p\\I a−→ p′\\I
HideT

p
A−→ p′

p\\I A′
−→ p′\\I

A′ = {(r, p) ∈ A|r /∈ I}

Table 1: Concrete Operational Semantics of ACSR-VP
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We define the prioritized transition system →π which simply refines → to
account for preemption. The labeled transition system→π is defined as follows:
p
α−→π p

′ if and only if

• p
α−→ p′ is an unprioritized transition, and

• There is no unprioritized transition p
β−→ p′′; such that α ≺ β.

The prioritized transition relation →π defines the operational semantics of
ACSR-VP.

3. Modeling Hierarchical Real-Time Systems in ACSR-VP

A real-time system can be modeled by a triple (W,R,A) where W is a
workload model which consists of a set of tasks running in parallel in the system,
R is a resource model that describes the resource allocations available to the
system, and A is a scheduling algorithm that defines how the tasks use the
resource at all times. We use WA to denote a workload model W under a
scheduling algorithm A. For resource models, we assume that system resource
in a real-time system consists of a single processor on which a task is executed.
We call the processor cpu. A resource model R is said to be dedicated if it
is exclusively available to a single real-time system, or shared otherwise. A
resource model can be represented by a task model, from the viewpoint that
a resource model is the task of jobs providing the resource to the system with
timing constraints [9]. Consider a resource model R of a real-time system which
is represented by a single task T . R guarantees that cpu is allocated to the
system such that the timing requirement of T is satisfied. Given a task T , we
use R(T ) to denote a resource model R represented by T . Given a resource
model R, we use T (R) to denote a task T which represents R. For example,
consider a resource model R(T ) where T is a standard periodic task which
executes e time units every p time units. Then, R means a partitioned resource
that guarantees cpu allocations of e time units every p time units to the system.

Definition 2. A hierarchical real-time system is recursively defined by either:

• a real-time system RS or

• a triple (WH , R,A) where

– W is a hierarchical workload in that WH consists of a set of hierar-
chical real-time systems and tasks {HS 1, . . . ,HSn T1, . . . , Tm},

– R is a resource model that describes the resource allocation available
to the system HS ,

– A is a scheduling algorithm that defines how the set of systems in W
shares the resource at all times.
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HS 1

R1, A1

HS 2

R2, A2

RS 2

R4, A4

T3 T4

RS 3

R5, A5

T5 T6 T7

T8

RS 1

R3, A3

T1 T2

Figure 1: Hierarchical Real-time system example

Consider HS = ({HS 1, . . . ,HSn, T1, . . . , Tm}, R,A) where HS i = (WHi, Ri, Ai).
For hierarchical scheduling, a parent system HS considers the task T (Ri) as an
abstraction of the timing requirement of the child system HS i for each i. As
long as the parent system HS satisfies the resource requirements imposed by
the task T (Ri), HS is able to satisfy the resource demand of the child system
HS i. This scheme makes it possible for a parent system to supply resources to
its child systems without knowing how the child systems schedule resources for
their own tasks.

Example 3. Consider a hierarchical real-time system HS 1 as shown in Fig. 1,
whose subsystems are defined as follows:

• HS 1 = ({HS 2,RS 1}, R1, A1)

• HS 2 = ({RS 2,RS 3, T8}, R2, A2)

• RS 1 = ({T1, T2}, R3, A3)

• RS 2 = ({T3, T4}, R4, A4)

• RS 3 = ({T5, T6, T7}, R5, A5)

where R1, . . . , R5 are resource models, A1, . . . , A5 are scheduling algorithms,
and T1, . . . , T8 are tasks.

In a hierarchy, systems at leaf-level are real-time systems such as RS 1,RS 2,RS 3

that contain a set of tasks as the workload. We regard a real-time system as a
hierarchical real-time system with hierarchical depth of one. Systems at non-
leaf-level are hierarchical real-time systems such as HS 1 and HS 2, each of which
has a set of hierarchical real-time systems as a hierarchical workload model.

In our framework, workloads consisting of a set of tasks, scheduling algo-
rithms and resource models are specified in ACSR-VP. However, neither hierar-
chical workloads nor the hierarchy of hierarchical real-time systems is specified
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in ACSR-VP. In the remainder of this section, we describe the task and work-
load model, scheduling algorithms and the resource model. We also describe
how they are specified in ACSR-VP.

3.1. Task and Workload Model

A task is regarded as a sequential process composed of a sequence of jobs
which are executed serially. In this paper, we assume that each task is a pre-
emptable, independent and periodic hard real-time task. A task T is character-
ized by temporal parameters (ϕ, p, e, d) where

• ϕ is a phase (or start time), which is the release time of the first job in
the task,

• p is a period, which is the length of all time intervals between release times
of consecutive jobs in the task,

• e is a maximum execution time of all jobs in the task, and

• d is a relative deadline, which is the maximum allowable response time of
all jobs in the task.

We use T (p, e) and T (p, e, d) as shorthand for T (0, p, e, p) and T (0, p, e, d)
respectively. If it is under a fixed priority scheduling algorithm, a task can be
given a functional parameter fp, which is a positive number that represents the
fixed priority of the task. Otherwise, priorities are assigned to jobs in a task
based on a scheduling algorithm. We will discuss this priority assignment in the
next subsection.

A task T with phase ϕ, period p, execution time e and relative deadline d
can be modeled as an ACSR-VP process T, specified as follows:

T
def
= ∅ϕ : J(0, 0)

J(s, t)
def
= (s < e ∧ t < d)→ ({(cpu, π)} : J(s+ 1, t+ 1)

+∅ : J(s, t+ 1))
+ (s = e)→ ∅p−t : J(0, 0)

The process T waits until the phase of the task and then proceeds to J(0, 0).
J(s, t) specifies jobs that repeatedly execute for e time units within d time units
where the period of repetition is p. For J(s, t), the variables s and t are used
to accumulate the execution time and elapsed time, respectively, of the current
job. J(0, 0) represents a job released at the moment. The process J(s, t) models
a preemptable job since whenever action {(cpu, π)} is offered, the idling action
∅ is also offered as an alternate. If a job completes execution, i.e. s = e, it idles
for (p− t) time units waiting until the next job is released.

A workload model is a set of tasks running in parallel. A workload model
W = {T1, . . . , Tn} can be specified as an ACSR-VP process W specified as
follows:

W
def
= T1 ‖ · · · ‖ Tn
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where Ti specifies the task Ti.
W is not a complete specification in that priorities of timed actions in W

are not specified yet. In the next subsection, we describe how priorities can be
specified according to a given scheduling algorithm.

3.2. Workload Model under Scheduling Algorithm

In this subsection, we explain how to specify scheduling algorithms for work-
load models. A scheduling algorithm can be specified by assigning proper pri-
orities to timed actions in an ACSR-VP process. When we have specified the
task models using ACSR-VP, we need to assign proper priorities to the timed
actions to reflect the scheduling algorithm used for the tasks. As an example, we
present a complete specification of a workload model scheduled by the earliest
deadline first (EDF) scheduling algorithm. EDF is a dynamic priority schedul-
ing algorithm in which an uncompleted job with an earlier deadline has a higher
priority. Consider a workload W which consists of a set of tasks T1, . . . , Tn with
phases ϕ1, . . . , ϕn, periods p1, . . . , pn, execution times e1, . . . , en and deadlines
d1, . . . , dn respectively. We use dmax to denote (1+max(d1, . . . , dn)). Basically,
we use the following value expression as a priority for each task Ti specified by
ACSR-VP process Ti:

πi = dmax − (di − t)
where i = 1, . . . , n and t is the variable for the elapsed time. The priority πi
defined above has the property that the earlier the absolute deadline of the
current job, the larger its value.

A workload model W under EDF, denoted by WEDF, can be specified as a
ACSR-VP process WEDF as follows:

WEDF
def
= T1 ‖ · · · ‖ Tn

Ti
def
= ∅ϕi : Ji(0, 0)

Ji(s, t)
def
= (s < ei ∧ t < di)→

({(cpu, dmax − (di − t))} : Ji(s+ 1, t+ 1)
+∅ : Ji(s, t+ 1))

+ (s = ei)→ ∅p−t : Ji(0, 0)

where i = 1, . . . , n and ϕi = ϕi.
Workload models under other scheduling algorithms can be modeled sim-

ilarly. The following table lists the priority assignments for other scheduling
algorithms such as deadline monotonic (DM), least remaining time first (LRTF)
and least laxity first (LLF):

DM πi = dmax − di
LRTF πi = emax − (ci − s)
LLF πi = dmax − ((di − t)− (ci − s))

where emax denotes (1 + max{e1, . . . , en}). For fixed priority scheduling (FPS)
algorithm, fixed priorities fp1, . . . , fpn are given to tasks T1, . . . , Tn respectively.
Then, the algorithm can be simply modeled by the priority assignment πi = fpi.

12



3.3. Resource Model

In a real-time system, a resource model describes the resource allocations
available to the system. Given a task T , R(T ) is a resource model that allocates
cpu such that the timing requirement of T is satisfied. Although a resource
model is represented by a task T , the resource model is specified in ACSR-
VP differently from tasks in a workload. For a task T in a workload, the
timing requirement of T may not be satisfied because of other tasks running in
parallel. For a resource model R(T ), R guarantees the cpu allocations such that
the timing requirement of T is satisfied. R(T ) can be specified as an ACSR-VP
process similarly to the specification of T in Section 3.1, but R is specified to
always complete the execution by the deadline. A resource model R(T ) where
T is a task with phase ϕ2, period p, execution time e and relative deadline d
can be modeled as an ACSR-VP process R specified as follows:

R
def
= ∅ϕ : J′(0, 0)

J′(c, t)
def
= (c < e ∧ d− t > e− c)→ (∅ : J′(c, t+ 1)

+{(cpu, 1)} : J′(c+ 1, t+ 1))
+ (c < e ∧ d− t = e− c)→ {(cpu, 1)} : J′(c+ 1, t+ 1)
+ (c = e ∧ t < p)→ ∅ : J′(c, t+ 1)
+ (c = e ∧ t = p)→ J′(0, 0)

We assume that no multiple resource models compete in supplying resources.
So, we simply use the priority assignment π = 1 to the timed actions in the
specification of R. The process R waits until the phase of the task and then
proceeds to J′(0, 0). J′(0, 0) specifies jobs that repeatedly execute for exactly e
time units within d time units where the period of repetition is p. For J′(t, c),
the variables c and t are used to accumulate the execution time and elapsed
time, respectively, of the current job. J′(0, 0) represents a job released at the
moment. If a job completes execution, i.e. c = e, it waits until the next job is
released, when t = p. The laxity of a job is equal to (d − t) − (e − c). If the
laxity is equal to zero, J′(t, c) is required to execute during the time unit, i.e.
J′(c, t) has to perform the action {(cpu, π)} and cannot choose to idle in order
to complete the deadline. If the laxity is larger than zero, then, together with
{(cpu, π)}, the idling action ∅ is also offered as an alternate.

4. Schedulability of Hierarchical Real-Time Systems

In this section, we explain how schedulability analysis of hierarchical real-
time systems can be performed in an ACSR-VP framework. In the framework,
the schedulability relation is a central notion. The schedulability relation ‘|=’ is a
binary relation on ACSR-VP processes. In terms of the schedulability relation

2the phase ϕ is used to model the extended blocking time period [9].
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to be defined later, we first define the schedulability of hierarchical real-time
systems as follows:

Definition 4. A real-time system RS (W,R,A) is said to be schedulable iff
R |= WA.

Definition 5. A hierarchical real-time system HS is said to be schedulable iff,

1. if HS is a real-time system RS , then RS is schedulable, or

2. if HS = ({HS 1, . . . ,HSn, T1, . . . , Tm}, R,A) where HS i = (WHi, Ri, Ai),
then

• HS i is schedulable for all i and

• R |= {T (R1), . . . , T (Rn), T1, . . . , Tm}A.

In the remainder of this section, first of all, we define the schedulability
relation |=. Later, we describe a method to check the satisfaction of the schedu-
lability relation. By this method, satisfaction checking of the schedulability
relation can be done automatically by a tool-support. Lastly, we give an exam-
ple of a hierarchical real-time system and show how its schedulability can be
analyzed in our framework.

4.1. Schedulability Relation

In the previous section, we described how a real time system RS (W,R,A)
can be modeled in ACSR-VP. We use a term demand process to denote an
ACSR-VP process specifying a workload model under a scheduling algorithm
WA as described in Section 3.1 and 3.2. We also use a term supply process
to denote an ACSR-VP process specifying a resource model R as described in
Section 3.3. We say R |= WA iff R |= WA where R is the supply process for R,
and WA is the demand process for WA.

We now introduce the schedulability relation |= between supply processes
and demand processes. For S |= P , we restrict S to be a supply process and P
to be a demand process. Let S be a supply process which specifies a resource
model. In order for S to proceed, it may require cpu. Once S acquires cpu
to proceed, S provides the resource to a demand process rather than consume
cpu by itself. In that sense, we interpret S as a supply process providing cpu
to a demand process. We interpret a supply process {(cpu, 1)} :S as one that
provides cpu during the first time unit and proceeds to S. Likewise, ∅ :S provides
no resource during the first time unit and proceeds to S. A supply process
S1+S2 nondeterministically behaves as either S1 or S2 regardless of the resource
demand of a demand process.

Let S be a supply process and P = P1 ‖ · · · ‖ Pn be a demand process.
Then, by expansion law [33], there exists a process in normal form which is
equivalent to P , i.e.

P =
∑
i∈I
∅ :Qi +

∑
j∈J
{(cpu, π)} :Rj
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such that ∀i ∈ I, P ∅−→π Qi and ∀j ∈ J, P {(cpu,π)}−−−−−−→π Rj .
3 In the definition of

schedulability relation, we use the normal form of a demand process P . In the
case that S provides cpu during a time unit, i.e. S = {(cpu, 1)} :S′, then P may
consume cpu and proceed. If P doesn’t demand cpu, i.e. P = ∅ :P ′, then P
idles without using cpu in the time unit and proceeds. In another case where
S doesn’t provide cpu during a time unit, i.e., S = ∅ :S′, then P may idle and
proceed. While S = ∅ : S′, if Pi only demands cpu, i.e. Pi = {(cpu, π)} : P ′i ,
then P cannot proceed. If S = S1 + S2, S may behave as either S1 or S2

nondeterministically. Thus, in order for P to be schedulable under S, P should
be schedulable both under S1 and S2. Moreover, if P itself contains an inherent
deadlock thus being unable to proceed, P is not schedulable regardless of S.
There is a deadlock in P = P1 ‖ · · · ‖ Pn, when a conflict of demanding cpu
between some processes Pi and Pj is unavoidable. Given a supply process S
and a demand process P = P1 ‖ · · · ‖ Pn, if it is possible for P to proceed at all
times with any resource supply behavior of S, each task Pi can meet its deadline
during each period. Then, we say S and P satisfy the schedulability relation,
written S |= P .

Definition 6. A binary relation R ⊆ P × P is a schedulability relation if it
satisfies: (S, P ) ∈ R implies that

(i) P 6= NIL

(ii) if S ≡ ∅ : S1 then, I 6= ∅ and ∀i ∈ I, (S1, Qi) ∈ R

(iii) if S ≡ {(cpu, 1)} : S1 then, if J 6= ∅ then ∀j ∈ J, (S1, Rj) ∈ R
else ∀i ∈ I, (S1, Qi) ∈ R

(iv) if S ≡ S1 + S2, then (S1, P ) ∈ R and (S2, P ) ∈ R.

(v) if S ≡ C, then Let C
def
= S1. Then, (S1, P ) ∈ R

where P =
∑
i∈I ∅ :Qi +

∑
j∈J{(cpu, π)} :Rj .

We write S |= P if (S, P ) ∈ R for some schedulability relation R. Now, we
will provide several examples to illustrate how to show that real-time systems
are schedulable according to the schedulability relation.

Example 7. Consider a real-time system RS 1({T (2, 1)}, R(T (2, 1)), EDF ).
Let S1 be a supply process to specify a resource model R(T (2, 1)). Let P1

be a demand process to model a single workload {T (2, 1)} under EDF. S1 and

3The index sets I and J are used to represent the subsequent processes of P followed by
the idle action ∅ and the resource consuming action {(cpu, π)} respectively.
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P1 are as follows:
S1 = {(cpu, 1)} :S2 + ∅ :S3

S2 = ∅ :S1

S3 = {(cpu, 1)} :S1

P1 = {(cpu, 2)} :P2 + ∅ :P3

P2 = ∅ : P1

P3 = {(cpu, 3)} :P1 + ∅ : NIL

S1 |= P1 because {(S1, P1), ({(cpu, 1)} :S2, P1), (∅ :S3, P1), (S2, P2), (S3, P3)}
is a schedulability relation. Since S1 |= P1, R(T (2, 1)) |= {T (2, 1)}EDF and RS 1

is schedulable.

Example 8. Consider a real-time system RS 2({T (3, 1)}, R(T (2, 1)), EDF ).
Let S1 be a supply process to specify a resource model R(T (2, 1)) as described in
the previous example. Let Q1 be a demand process to model a single workload
{T (3, 1)} under EDF as follows:

Q1 = {(cpu, 1)} :Q2 + ∅ :Q3

Q2 = ∅ : Q4

Q3 = {(cpu, 2)} :Q4 + ∅ :Q5

Q4 = ∅ : Q1

Q5 = {(cpu, 3)} :Q1 + ∅ : NIL

S1 |= Q1 because

(S1, Q1), ({(cpu, 1)} :S2, Q1), (∅ :S3, Q1),
(S3, Q3), ({(cpu, 1)} :S2, Q4), (S1, Q4),
(S2, Q1), ({(cpu, 1)} :S2, Q3), (S1, Q3),
(S3, Q1), ({(cpu, 1)} :S2, Q2), (∅ :S3, Q3),
(S2, Q4), (S3, Q5), (S2, Q4),
(S2, Q2), (∅ :S3, Q4), (S1, Q2),

(∅ :S3, Q2), (S3, Q4)


is a schedulability relation. Since S1 |= Q1, R(T (2, 1)) |= {T (3, 1)}EDF and RS 2

is schedulable.

Example 9. Consider a real-time system RS 3({T (2, 1), T (3, 1)}, RD,EDF).
Let P1 and Q1 be the demand processes for T (2, 1) and T (3, 1) respectively
as defined in the previous examples. Let SD be a supply process to specify
a dedicated resource model RD (i.e., the resource is exclusively available) as
follows:

SD = {(cpu, 1)} :SD

SD |= (P1 ‖ Q1) because {(SD, P1 ‖ Q1), (SD, P2 ‖ Q3), (SD, P1 ‖ Q4), (SD, P2 ‖
Q1), (SD, P1 ‖ Q2), (SD, P2 ‖ Q4)} is a schedulability relation. Since S1 |= (P1 ‖
Q1), RD |= {T (2, 1), T (3, 1)}EDF and RS 3 is schedulable.

Example 10. Consider a real-time system RS 4({T (2, 1)}, R(T (3, 1)), EDF ).
Let P1 be the demand process for {T (2, 1)} as defined in an earlier example.
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Let U1 be the supply process for R(T (3, 1)), defined as follows:

U1 = {(cpu, 1)} :U2 + ∅ :U3

U2 = ∅ : U4

U3 = {(cpu, 1)} :U4 + ∅ :U5

U4 = ∅ : U1

U5 = {(cpu, 1)} :U1

RS 4 is not schedulable because U1 6|= P1 (i.e., there is no schedulability relation
that contains (U1, P1)). This can be shown by a contradiction. Suppose R is
a schedulability relation such that (U1, P1) ∈ R. Then, R should also contain
(U3, P3) and (U5,NIL) by the definition of the schedulability relation. However,
it is a contradiction that if (U5,NIL) ∈ R, R is not a schedulability relation.
Intuitively speaking, RS 4 is not schedulable because when R(T (3, 1)) does not
provide the resource for the first two time slots but the third time slot, then
T (2, 1) misses the deadline.

In order to analyze the schedulability of larger systems, we need an auto-
matic method to check satisfaction of the schedulability relation. In the next
subsection, we explain how satisfaction checking can be done automatically.

4.2. Reduction to Deadlock Checking

In this section, we show that satisfaction checking of the schedulability rela-
tion |= is reducible to deadlock checking in ACSR-VP. Given S and P , we can
check S |= P by translating S to an ACSR-VP process, composing the process
with P in parallel, closing the composite process on the resource cpu and check-
ing deadlock-freeness. Deadlock-freeness of a given ACSR-VP process can be
checked automatically by VERSA [13] which is a tool for ACSR-VP.

Definition 11. We define a translation function T : P → P as follows:

T ({(cpu, 1)} : S) = ∅ : T (S)
T (∅ : S) = {(cpu, 1)} : T (S)
T (S + T ) = (τ, 1).T (S) + (τ, 1).T (T )

Furthermore, each definition C
def
= S is translated into T (C)

def
= T (S).

The translation function T transforms the action {(cpu, 1)} into ∅ and

conversely ∅ into {(cpu, 1)}. For a supply process S1
def
= ∅ : S1, if T (S1) is

running with a demand process P , T (S1) prevents P from consuming the
resource cpu because T (S1) = {(cpu, 1)} : T (S1). On the other hand, if

T (S2)
def
= {(cpu, 1)} : S2 is running with a demand process P , T (S2) allows

P to consume cpu because T (S2) = ∅ : T (S2). Moreover, the function T trans-
forms S+T into (τ, 1).T (S) + (τ, 1).T (T ) where an action (τ, 1) blocks the first
actions of T (S) and T (T ) respectively. The prefix action (τ, 1) enables the pro-
cess (τ, 1).T (S) + (τ, 1).T (T ) to non-deterministically evolve into either T (S)
or T (T ) regardless of the processes.
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Example 12. Let S1 be a supply process to specify a resource model R(T (2, 1))
as described in the example of the previous subsection. The translated process
T (S1) can be described as follows:

T (S1) = (τ, 1).∅ : T (S2) + (τ, 1).{(cpu, 1)} : T (S3)
T (S2) = {(cpu, 1)} : T (S1)
T (S3) = ∅ : T (S1)

Definition 13. We say a process P is deadlocked or P is a deadlock process
if P has no action to perform at the first execution step. We say P ′ is a
derivative of P , written P =⇒ P ′ if there is a sequence of transitions of the
form P

α1−→ P1
α2−→ . . .

αn−−→ Pn = P ′. We consider a process is a derivative
of itself, that is P =⇒ P . We say P contains a deadlock or P is a deadlock-
containing process if P =⇒π P ′ and P ′ is a deadlock process. If P doesn’t
contain a deadlock, we say P is deadlock-free.

Definition 14. P is n-step-deadlock-free if P cannot evolve into a deadlock
process within n steps. P is 0-step-deadlock-free if P is not a deadlock process.

Lemma 15. If P is deadlock-free and P =⇒π P
′, then P ′ is deadlock-free.

Proof. If P ′ is deadlock-containing such that P ′ =⇒π P
′′ where P ′′ is a deadlock

process, then P is also deadlock-containing because P =⇒π P
′ =⇒π P

′′.

Now, we present Lemma 16 and Lemma 18 to prove that satisfaction checking
can be seen as deadlock checking, i.e., S |= P iff [T (S) ‖ P ]{cpu} is deadlock-free.

Lemma 16. If [T (S) ‖ P ]{cpu} is deadlock-free, then S |= P .

Proof. We will showR = {(S, P ) | [T (S) ‖ P ]{cpu} is deadlock-free} is a schedu-
lability relation. Let there be S, P such that (S, P ) ∈ R. Then, P 6= NIL
because otherwise [T (S) ‖ P ]{cpu} is deadlocked. Let P =

∑
i∈I ∅ : Qi +∑

j∈J{(cpu, π)} :Rj . We argue by cases on the form of S.

Case 1. S = ∅ : S1.
Since T (S) = {(cpu, 1)} : T (S1), we have I 6= ∅, otherwise [T (S) ‖ P ]{cpu}

is deadlocked. ∀i ∈ I, (S1, Qi) ∈ R because ∀i ∈ I, [T (S) ‖ P ]{cpu}
{(cpu,1)}−−−−−−→π

[T (S1) ‖ Qi]{cpu} and [T (S1) ‖ Qi]{cpu} is deadlock-free by Lemma 15.

Case 2. S = {(cpu, 1)} : S1.

If J 6= ∅, then ∀j ∈ J, (S1, Rj) ∈ R because ∀j ∈ J, [T (S) ‖ P ]{cpu}
{(cpu,π)}−−−−−−→π

[T (S1) ‖ Rj ]{cpu} and [T (S1) ‖ Rj ]{cpu} is deadlock-free by 15. If J = ∅, then

∀i ∈ I, (S1, Qi) ∈ R because ∀i ∈ I, [T (S) ‖ P ]{cpu}
∅−→π [T (S1) ‖ Qi]{cpu} and

[T (S1) ‖ Qi]{cpu} is deadlock-free by 15.

Case 3. S = S1 + S2.
T (S) = (τ, 1).T (S1) + (τ, 1).T (S2). [T (S) ‖ P ]{cpu} non-deterministically

evolves into either [T (S1) ‖ P ]{cpu} or [T (S2) ‖ P ]{cpu} performing the action
(τ, 1). Since both [T (S1) ‖ P ]{cpu} and [T (S2) ‖ P ]{cpu} are deadlock-free by
15, we have (S1, P ) ∈ R and (S2, P ) ∈ R.
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Case 4. S = C.

Let C
def
= S1. [T (S1) ‖ P ]{cpu} is deadlock-free because T (S) = T (S1) and

[T (S) ‖ P ]{cpu} is deadlock-free.

Lemma 17. If S |= P , then [T (S) ‖ P ]{cpu} is not a deadlock process.

Proof. Since S |= P , P 6= NIL. Consider the cases for S letting P =
∑
i∈I ∅ :Qi+∑

j∈J{(cpu, π)} :Rj .

Case 1. S = ∅ : S1.

T (S) = {(cpu, 1)} : T (S1), and [T (S) ‖ P ]{cpu}
(cpu,1)−−−−→π because I 6= ∅.

Case 2. S = {(cpu, 1)} : S1.

T (S) = ∅ : T (S1), and [T (S) ‖ P ]{cpu}
A−→π because P 6= NIL.

Case 3. S = S1 + S2.

T (S) = (τ, 1).T (S1) + (τ, 1).T (S2), and [T (S) ‖ P ]{cpu}
(τ,1)−−−→π.

Case 4. S = C

Let C = S1 such that S1 6= C1. Otherwise, C = NIL because C
def
= C1

def
=

· · · def= Cn
def
= C. Since one of the cases above can apply to S1, [T (S1) ‖

P ]{cpu}
α−→π. Hence, [T (S) ‖ P ]{cpu}

α−→π.

Lemma 18. If S |= P , then [T (S) ‖ P ]{cpu} is deadlock-free.

Proof. We will show that if S |= P , then ∀n ≥ 0, [T (S) ‖ P ]{cpu} is n-step-
deadlock-free. As the base case, by Lemma 17, we prove S |= P =⇒ [T (S) ‖
P ]{cpu} is 0-step-deadlock-free.

Let’s assume for some k, if S |= P , then [T (S) ‖ P ]{cpu} is n-step-deadlock-
free. Let there be S, P such that S |= P . We will prove that E = [T (S) ‖
P ]{cpu} is (k + 1)-step-deadlock-free by showing that E is not deadlocked and

whenever E
α−→π E

′ then E′ is n-step-deadlock-free. E is not deadlocked because
of Lemma 17. Let P =

∑
i∈I ∅ :Qi+

∑
j∈J{(cpu, π)} :Rj . Now, we consider the

cases for S.

Case 1. S = ∅ : S1.

Since T (S) = {(cpu, 1)} : T (S1), only idling actions P
∅−→ Qi are possible for

P in [T (S) ‖ P ]{cpu}. Whenever [T (S) ‖ P ]{cpu}
{cpu,1}−−−−−→π [T (S1) ‖ Qi]{cpu},

then S1 |= Qi and [T (S1) ‖ Qi]{cpu} is n-step-deadlock-free by the induction
hypothesis.
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Case 2. S = {(cpu, 1)} : S1

T (S) = ∅ : T (S1). If J 6= ∅, then only [T (S) ‖ P ]{cpu}
{cpu,π}−−−−−→π [T (S1) ‖

Rj ]{cpu} are possible transitions. [T (S1) ‖ Rj ]{cpu} is n-step-deadlock-free be-
cause S1 |= Rj .

If m = 0, then only [T (S) ‖ P ]{cpu}
∅−→π [T (S1) ‖ Qi]{cpu} are possible

transitions. [T (S1) ‖ Qi]{cpu} is n-step-deadlock-free because S1 |= Qi.

Case 3. S = S1 + S2

T (S) = (τ, 1).T (S1)+(τ, 1).T (S2). [T (S) ‖ P ]{cpu} can evolve into only two
processes [T (S1) ‖ P ]{cpu} and [T (S2) ‖ P ]{cpu} which are n-step-deadlock-free
because S1 |= P and S2 |= P .

Case 4. S = C

Let C = S1 such that S1 6= C1. Otherwise, C = NIL because C
def
= C1

def
=

· · · def= Cn
def
= C. Since one of the cases above can apply to S1, whenever

[T (S1) ‖ P ]{cpu}
α−→π E then E is n-step-deadlock-free. Hence, whenever

[T (S) ‖ P ]{cpu}
α−→π E then E is n-step-deadlock-free.

Combining the two results above, we obtain the following theorem and derive
some corollaries from the theorem.

Theorem 19. S |= P iff [T (S) ‖ P ]{cpu} is deadlock-free.

Proof. By Lemma 16 and Lemma 18.

Corollary 20. A real-time system RS (W,R,A) is schedulable iff [T (R) ‖WA]{cpu}
is deadlock-free.

Proof. RS (W,R,A) is schedulable iff R |= WA iff R |= WA iff [T (R) ‖ WA]{cpu}
is deadlock-free.

Corollary 21. A real-time system RS (W,RD, A) where RD is dedicated is
schedulable iff [WA]{cpu} is deadlock-free.

Proof. By Corollary 20, RS (W,RD, A) is schedulable iff [T (RD) ‖ WA]{cpu} is
deadlock-free. Since T (RD) = ∅∞, [T (RD) ‖WA]{cpu} = [WA]{cpu}.

Corollary 21 is the main result of the existing theory of schedulability in
ACSR-VP [11], which only assumes that a resource model is dedicated and
doesn’t consider a resource model explicitly. Our framework considers an ex-
plicit resource model which may not be dedicated like Corollary 20. In that
sense, our framework in this paper is a conservative extension of [11]. In the
next subsection, we present a hierarchical real-time system as an example and
its schedulability analysis.

20



HS 1

RD, EDF

HS 2

R(T (3, 2)), LRTF

RS 2

R(T (6, 1)), LLF

T (15, 1, 13) T (16, 1)
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T (12, 1)

RS 1

R(T (3, 1)), DM

T (8, 1, 7) T (9, 1, 8)

Figure 2: A Hierarchical Real-Time System of Various Real-Time Systems with
Different Scheduling Algorithms

4.3. Case Study

Consider given hierarchical real-time systems HS 1, HS 2, RS 1, RS 2 and RS 3

with a hierarchy in Fig. 2. Each system can have a different scheduling algo-
rithm. Let the systems be defined as follows:

• HS 1 = ({HS 2,RS 1}, RD,EDF)

• HS 2 = ({RS 2,RS 3, T (12, 1)}, R(T (3, 2)),LRTF)

• RS 1 = ({T (8, 1, 7), T (9, 1, 8)}, R(T (3, 1)),DM)

• RS 2 = ({T (15, 1, 13), T (16, 1)}, R(T (6, 1)),LLF)

• RS 3 = ({T1(25, 1, 17), T2(16, 1, 10), T3(12, 1, 9)}, R(T (6, 2)),FPS) with fixed
priorities fp1 = 1, fp2 = 3 and fp3 = 2 for T1,T2 and T3 respectively.

Schedulability of HS 1 can be analyzed in a bottom-up manner following the
steps below:

1. RS 1 is schedulable because R(T (3, 1)) |= {T (8, 1, 7), T (9, 1, 8)}DM

2. RS 2 is schedulable because R(T (6, 1)) |= {T (15, 1, 13), T (16, 1)}LLF
3. RS 3 is schedulable because R(T (6, 2)) |= {T1(25, 1, 17), T2(16, 1, 10),
T3(12, 1, 9)}FPS
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4. HS 2 is schedulable because RS 2 and RS 3 are schedulable andR(T (3, 2)) |=
{T (6, 1), T (6, 2), T (12, 1)}LRTF

5. HS 1 is schedulable because HS 2 and RS 1 are schedulable and RD |=
{T (3, 2), T (3, 1)}EDF

5. Abstraction of Timing Requirement of Real-Time System Work-
load

A real-time system is defined by a triple RS (W,R,A). In practice, timing
information of R may not be given while that of W and A are given. Abstract-
ing WA is finding a single task T so that R(T ) satisfies WA. Now, we define
abstractions as follows:

Definition 22. Given a workload W and scheduling algorithm A such that
RD |= WA, a single task T is called an abstraction if R(T ) |= WA.

An abstraction can be a periodic task T (p, e) [9] called periodic abstraction,
or an explicit deadline periodic (EDP) task T (p, e, d) [8] called EDP abstraction.
As for the case of periodic abstraction, T (p, e) demands less than T (p, e′) for
any e′ > e. Thus, we say a periodic abstraction T (p, e) of WA is optimal if there
is no periodic abstraction T (p, e′) of WA such that e′ < e. Likewise, T (p, e, d)
demands no more than T (p, e′, d′) for any e′ ≥ e and d′ ≤ d. Therefore, we
say an EDP abstraction T (p, e, d) is optimal if there is no EDP abstraction
T (p, e′, d′) such that e′ < e or e′ = e ∧ d′ > d.

Definition 23. Given a workload W and scheduling algorithm A such that
R(T ) |= WA, the workload abstraction problem is to find an optimal abstraction
of WA.

In the next subsection, we explain how to find periodic abstraction and EDP
abstraction in our ACSR-VP framework, and compare our results to the existing
methods [9][8][14].

5.1. Periodic and EDP Abstraction

We consider the problem of finding a periodic abstraction T (p, e). Given a
workload W , a scheduling algorithm A and a period p of the periodic abstraction
T , we will find the minimal execution time e of T such that R(T (p, e)) |= WA.
Given WA and p, Algorithm 1 computes the execution time e.

ALGORITHM 1: Finding Periodic Abstraction

1: for e = 1 to p do
2: if R(T (p, e)) |= WA then
3: return e
4: end if
5: end for
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Algorithm 1 is straightforward. Increasing e from 1 to the given period p,
the loop in the algorithm finds the minimum e such that R(T (p, e)) |= WA. The
algorithm guarantees that the execution time e found is optimal in the discrete
domain of execution time.

We now consider the problem of finding an EDP abstraction T (p, e, d). Given
a workload W , a scheduling algorithm A and a period p of the EDP abstraction
T , we will find the minimal execution time e of T such that R(T (p, e, e)) |= WA.
Then, we will find the maximal relative deadline d of T such that R(T (p, e, d)) |=
WA. Given WA and p, Algorithm 2 computes the execution time e and the
relative deadline d.

ALGORITHM 2: Given W , A and p, find e and d

1: for e = 1 to p do
2: if R(T (p, e, e)) |= WA then
3: exit for
4: end if
5: end for
6: for d = p downto e do
7: if R(T (p, e, d)) |= WA then
8: return e, d
9: end if

10: end for

Algorithm 2 is also straightforward. Increasing e from 1 to the given period p,
the first loop in the algorithm finds the minimum e such that R(T (p, e, e)) |= WA

is schedulable. The second loop, decreasing d from p to e, yields the maximum
d such that R(T (p, e, d)) |= WA. The algorithm guarantees that an optimal
abstraction in the discrete domain of execution time and deadline can be found.

As for the complexities of Algorithm 1 and Algorithm 2, both algorithms
depend on the satisfaction queries for the schedulability relation |=, whose com-
plexity is determined by the size of the labeled transition system of the sup-
ply/demand processes. The maximum number of queries are pseudo-polynomial
in p for both algorithms.

Although Algorithms 1 and 2 find the optimal solution in a linear search
manner with respect to the granularity of the budget, note that the algorithms
can be improved in complexity by using a traditional binary search technique,
which thus more efficiently finds the optimal solution in the candidate budget
space. In the next subsection, we will show how much the performance im-
proves by applying the binary search technique to the workload abstraction.
Lastly, as each query in the algorithms are processed by the VERSA tool, we
plan to enhance the efficiency of VERSA, applying symbolic and/or statistical
model checking techniques, thus improving the overall efficiency of our proposed
framework.
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p
e

CARTS ACSR-VP/VERSA
10 8 8
20 16.6667 17
30 26.6667 27
40 35 35
50 45 45
60 55 55
70 65 65
80 75 75
90 85 85
100 95 95

Table 2: Outcome Comparison of CARTS and ACSR-VP/VERSA in Periodic
Abstraction

5.2. Experimental Results

In this subsection, we perform an experiment on finding an optimal abstrac-
tion to a real-time workload. In order to make the procedure to be automatic,
we implement the algorithms described in the previous subsection, use an exist-
ing tool for ACSR-VP, called VERSA, to detect the existence of deadlocks. We
now validate the correctness of our approach (referred to as ACSR-VP/VERSA)
by comparing its result to CARTS’ [14].

Experiment 24. Consider a workload modelW = {T (0, 20, 10, 20), T (0, 40, 10, 40)}
under EDF scheduling algorithm. Table 2 shows the minimum execution time e
given period p that CARTS and ACSR-VP/VERSA calculate respectively. As
can be seen, the result of ACSR-VP/VERSA is identical to that of CARTS ex-
cept the cases of p = 20 and p = 30. The difference of the cases is caused by the
domains that they use. While CARTS finds the minimum execution time in the
real domain, ACSR-VP/VERSA finds it in the integer domain. For example,
for the case of p = 20, CARTS calculates 16.6667 as the minimum execution
time which is different to 17 of ACSR-VP/VERSA’s. In order for the result to
be used in the practical real-time system where a basic time unit is 1, the value
16.6667 has no practical meaning, and needs to be rounded up to 17. Therefore,
the result of CARTS is consistent with that of ACSR-VP/VERSA for the case.
The case of p = 30 can be argued in the same way. In that sense, Table 2 shows
that the result of ACSR-VP/VERSA is practically identical to that of CARTS
up to rounding up (or ceiling).

Experiment 25. Consider a workload model W = {T (50, 10), T (70, 10)} under
DM scheduling algorithm. Table 3 shows e and d of the EDP abstraction that
CARTS and ACSR-VP/VERSA calculate respectively for a given period p and
WDM. We observe that the result of CARTS is consistent with that of ACSR-
VP/VERSA.
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p
e, d

CARTS ACSR-VP/VERSA
10 4,4 4,4
20 10,20 10,20
30 15,25 15,25
40 20,30 20,30
50 20,20 20,20
60 30,40 30,40
70 30,30 30,30
80 40,40 40,40
90 50,50 50,50
100 60,60 60,60

Table 3: Outcome Comparison of CARTS and ACSR-VP/VERSA in EDP Ab-
straction

Experiment 26. Consider a workload model W = {T (50, 10), T (70, 10)}. Ta-
ble 4 shows the minimum execution time e and the deadline d that ACSR-
VP/VERSA calculates for a given period p, W and a scheduling algorithm A
such as LRFT, LLF. CARTS is currently unable to find EDP abstractions for
scheduling algorithm other than EDF and DM. However, our approach is capa-
ble of finding the optimal EDP abstractions for the scheduling algorithms such
as LRFT, LLF shown in Table 4 and is capable for any other algorithm that
can be modeled in ACSR-VP.

In the following experiments, we evaluate the performance (i.e., running
time) of our approach. To do this, we used a Ubuntu linux machine with
Intel Xeon CPU E5-2667 v2 with 128 GB of RAM. Although the following
experiments focus on the periodic workload abstraction and the LLF scheduling
algorithm, we believe that the experiment result would also show a similar trend
with the EDP workload abstraction and the other scheduling algorithms.

Experiment 27. Consider a workload modelW = {T (10, 1), T (20, 2), T (30, 2)}
and a scheduling algorithm A = LLF. In this experiment, we test if WA is
schedulable under the periodic resource model R(T (30, C)) varying C from 1 to
30. Note that WA is schedulable under R(T (30, C)) if C is greater than or equal
to 26, and is not schedulable if C is less than 26. Figure 3 shows the running time
required to test whether R(T (30, C)) |= WA varying C from 1 to 30. As can be
observed from the figure, the running time is neither increasing nor decreasing
monotonously. As our approach reduces the schedulability checking problem
into the deadlock checking problem, the running time of the schedulability test
depends on the size of the state space of the translated ACSR-VP process which
is constructed for deadlock checking.

Experiment 28. In this experiment, we evaluate the performance (i.e., run-
ning time) of the periodic workload abstraction algorithm (Algorithm 1), and
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p
e, d

LRFT LLF
10 4,4 4,4
20 10,20 10,20
30 15,20 15,25
40 20,30 20,30
50 20,20 20,20
60 30,40 30,40
70 30,30 30,30
80 40,40 40,40
90 50,50 50,50
100 60,60 60,60

Table 4: EDP Abstraction of Real-Time Systems with LRFT and LLF Schedul-
ing Algorithms
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Figure 3: Running Time to Test R(T (30, C)) |= {T (10, 1), T (20, 2), T (30, 2)}LLF

show that the binary search technique significantly improves the performance
of Algorithm 1 (i.e., linear search-based approach). To evaluate, we used the
workload model W = {T (10, 1), T (20, 2), T (30, 2)} and the scheduling algorithm
A = LLF. We performed the periodic workload abstraction for the periods
ranged from 5 to 100 using both the linear search-based approach and the bi-
nary search-based approach. Although the two approaches produce the same
outcomes (i.e., the minimum execution time), they greatly differ in efficiency,
as shown in Figure 4. This figure shows that the binary search-based approach
scales well, while the linear search-based approach’s running time rises quite
steeply as P increases.

Experiment 29. This experiment evaluates the correlation between the run-
ning time of the workload abstraction and the number of tasks in the workload
model. We consider finding the optimal periodic abstraction with the period of
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Figure 5: The Running Time of Workload Abstraction for the Different Number
of Tasks in the Workload Model

50 for the workload which consists of multiple task instances of T (15, 1) under
the LLF scheduling algorithm (e.g., the workload model is {T (15, 1), T (15, 1)}
when the number of tasks is 2). Figure 5 shows the running time of the binary
search-based workload abstraction approach for the different number of tasks
in the workload model. We observe that when the number of tasks reaches a
certain number (e.g., 12 in Figure 5), the running time rapidly increases. The
reason is that our approach is a computational method which performs the state
space exploration of the system to analyze its schedulability. Typically, increas-
ing the number of tasks eventually leads to the exponential growth of the state
space.

6. Conclusions and Future Work

In this paper, we conservatively extended the scheduling theory of ACSR to
model and analyze hierarchical real-time systems. We presented a method to
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model not only workload and scheduling algorithms but also resource models
which may not be fully available to workload. We defined schedulability relation
to provide necessary and sufficient conditions for the schedulability of hierarchi-
cal real-time systems. We showed that satisfaction checking of the schedulability
relation is reducible to deadlock checking in ACSR-VP, thus being able to be
done automatically using VERSA’s tool support.

We also tackled another scheduling problem in hierarchical real-time sys-
tems. The problem is abstracting the timing requirement of real-time system
workload. A workload of a real-time system consists of a set of tasks which are
running under a scheduling algorithm. Abstracting a set of tasks is finding a
single task representing the task set such that whenever the timing requirement
of the single task is satisfied, the timing requirement of a set of tasks in the
workload model is also satisfied. The problem is practically important because
it is related to determining a resource model of a real-time subsystem in a hi-
erarchical real-time system. We presented experimental results to prove the
correctness and the performance of our approach.

There are several directions for future work. First of all, our future goals
are to extend our work to handle inter-task dependencies in workload mod-
els, thus enabling the analysis of more realistic systems. Moreover, since this
work focused on single processor systems, we hope to develop a framework
for hierarchical real-time systems with multiprocessors. Since timed actions in
ACSR-VP already allow having multiple resource requirements expressed, we
plan to extend the schedulability relation with the notion of multiple resource
supply/demand, and provide a method to automatically check the satisfaction
of the schedulability relation.

Lastly, since our approach is a computational method, as a natural conse-
quence, the larger the system is, the longer the time required to analyze the
system is (e.g., the workload model with a large number of tasks). Thus, we
plan to enhance the efficiency of the analysis tool/technique for ACSR-VP so
as to handle/reduce the large state space occurring in the analysis.
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