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On-the-job learning is an important element of the operations of call-centers, manufacturing and other activities, espe-

cially when there may be high turnover of employees or of new technologies and processes. Workers may have diverse

capabilities that change through time, and different policies for monitoring and hiring will influence the long-run per-

formance of a firm. In this paper, we study the hiring and retention of heterogeneous workers who learn over time.

We formulate the problem as an infinite-armed bandit and characterize the optimal hiring and retention policy in detail.

We develop approximations that allow the efficient implementation of the optimal policy and the evaluation of its per-

formance. Our numerical examples demonstrate under different scenarios that the value of an active monitoring and

screening of employees can be substantial.
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1. Introduction
Workers are heterogeneous, and they evolve over time. Evolution often takes the form of on-the-job learning,

with attendant decreases in the time required to complete tasks or improvements in quality. When employees

turn over they may be replaced by new hires who differ in ability and experience.

Often there may be uncertainty regarding employee attributes. Significant random variations in task times

or quality – driven by task-by-task variability – can make it difficult for an employer to infer a given

employee’s efficiency or quality, particularly for new employees who have little or no previous track record.

Uncertainty, together with these many sources of variation – across employees, across tasks, and over

time – makes decisions regarding the retention of workers complex. The longer a worker is retained, the

better an inference an employer can make regarding his or her attributes. On-the-job learning, which can

lead to quality improvements in incumbent employees, also favors employee retention. Yet the opportunity
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cost of retaining a poor performer can be great, particularly if there is wide variation in quality across the

population of potential hires.

In this paper we develop and analyze a model that integrates all of these factors. In our model, an employer

(referred to as “she”) seeks to hire and retain a fixed number of employees from an infinite, heterogeneous

population of potential hires. Each employee (referred to as “he”) repeatedly performs the same task, whose

cost the employer wishes to minimize or, equivalently, whose quality is to be maximized. Each hire moves

down a learning curve, but elements of the curve’s parameters are unknown to the employer. The employer

takes a Bayesian view of employees’ types. By repeatedly observing the task performance of a given worker,

she can make increasingly better judgments concerning his quality. After each such task, the employee

decides whether he wants to continue working or not. Given the worker decides to stay, the employer can

decide whether to retain him or to replace him with a new hire.

In Section 3, we formulate this problem as an infinite-horizon, discounted problem in which, at any time,

the employer uses a single worker. In Section 4, we show that it is, essentially, a multi-armed bandit problem

with an infinite number of arms. Banks and Sundaram (1992) analyzed a version of this problem in which a

given arm (employee) can be one of a finite number of types. In our Bayesian setting, arm types correspond

to a continuum of prior distributions with compact support and are therefore more complex. Nonetheless,

we prove that several of their core results hold in our case as well:

• The employer can use a worker’s prior distribution and tenure to calculate a so-called Gittins index,

and at any time it is optimal for the employer to use a Gittins-index minimal employee.

• It is optimal to retain current employees as long as their Gittins indices compare favorably to those of

potential hires.

• If a current employee’s Gittins index is not minimal, however, then it is optimal to hire a new worker

and to never return to the current employee.

This last property is known as “no-recall” and is particularly interesting from an application perspective.

For recent developments concerning bandit problems that do not recall, or equivalently that are irrevocable,

we refer the reader to Farias and Madan (2011).

In Section 5, we indicate how these Gittins-index results extend to more complex settings: those in

which the employer retains multiple employees as well as those in which she hires from multiple, heteroge-

neous pools of potential hires. In both cases our original results regarding “no-recall” properties generalize

directly.

Given the availability of a Gittins index, the above policy is both intuitive and straightforward to execute.

Unfortunately, the Gittins index itself is difficult to calculate. Nevertheless, in Section 6, for specific com-

mon forms of the learning-curve function, and given performance that can be appropriately transformed

into normally-distributed data with known sampling variances and unknown means (a conjugate prior dis-

tribution), we:
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• show that, for a fixed level of experience, the Gittins index is monotone in the posterior mean of the

unknown parameter, which allows us to delineate a simple stopping boundary, below which a current

worker’s employment should continue and above which it should stop;

• develop approximations to the Gittins index that are straightforward to calculate and implement.

The approximations developed in Section 6 are the basis for numerical examples in Section 7 that provide

insights into the economic nature of the hiring and retention problem. In particular, we:

• demonstrate that the stopping boundary reflects a tradeoff between two types of learning: the

employee’s performance improvement that is linked to on-the-job experience, and the employer’s sta-

tistical learning that allows for better judgment concerning the worker’s ability;

• show that the value of active monitoring and screening of employees can be substantial;

• observe that the early stages of workers’ tenure are the most important for the effectiveness of the

optimal Gittins-index policy;

• suggest that simple hiring policies with a trial period followed by a one-shot hiring and retention

decision have the potential to perform well, within a few percent of the optimal Gittins-index policy.

Sensitivity analysis with respect to model parameters provides additional insights:

• in addition to direct gains that accrue from the steeper learning curves, investments in employee learn-

ing can provide an important secondary benefit: the optimality of lower termination rates;

• reductions in the variability of task performance can improve the sensitivity of screening procedures

and similarly reduce optimal termination rates;

• the ability to terminate employees should motivate managers to consider a broader spectrum of poten-

tial hires.

2. Literature review
There is a vast empirical literature on learning-curve phenomena at the individual and organizational levels

(Yelle 1979), as well as papers devoted to effective managerial control of factors that affect or depend on

learning (Dada and Srikanth 1990, Wiersma 2007). Much of it is segmented into the individual level (e.g.,

Nembhard and Uzumeri 2000a, Nembhard 2001) and organizational level (e.g., Bailey 1989, Lapré et al.

2000, Pisano et al. 2001). Nembhard and Uzumeri (2000b) provide a unified study that considers both of

them. Our analysis focuses on the individual level.

There also exists a rich literature that addresses labor quality and selection. The literature on secretary

problems develops a normative approach to the initial screening and hiring of employees who come from a

heterogeneous pool (Freeman 1983). Similarly, there is work on multi-armed bandit problems that addresses

matching problems in labor-market: typically, problems in which employees choose firms (Jovanovic 1979,

Banks and Sundaram 1992). In our context this work can be reinterpreted as addressing firms choosing

employees.
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The literature that explicitly addresses both worker heterogeneity and learning is much smaller. Most

closely related to our work is Nagypál (2007), which models both learning-about-match-quality (between

workers and a firm) and learning-by-doing. But that paper’s aims and results differ significantly from ours.

While its model and analysis enable the use of statistical methods to discriminate between the two forms

of learning in empirical employment records, they do not provide the insights into the nature of effective

retention/termination decisions that are the focus of our work.

A few recent papers in operations-related fields also address dimensions of heterogeneity in learning

and employee retention. Shafer et al. (2001) provide empirical evidence of the heterogeneity of learning

curves across individuals who assemble car radios. Pisano et al. (2001) document heterogeneity across

hospital units that perform cardiac surgery. Mazzola and McCardle (1996, 1997) develop models to estimate

uncertain learning curves and to control production run lengths, given that a firm faces this uncertainty.

None of these papers considers uncertainty regarding learning curves across individuals or groups, however.

Neither do they address employee turnover or employee retention decisions.

Shafer et al. (2001) consider individual learning curves and show that, by not considering learning-

parameter variations across workers, one may significantly underestimate overall productivity, given work-

ers who operate independently. Nembhard and Osothsilp (2002) study how individuals respond to pro-

duction changes. They analyze the relationship between task complexity and the distribution of individual

learning and forgetting parameters. Their main conclusion is that task complexity affects these measures.

Gans et al. (2010) show that the service times of call-center agents reflect on-the-job learning, as well as

agent heterogeneity.

The managerial implications of learning have received less attention. Nembhard (2001) is the first to

propose a method that assigns workers to tasks based on learning rates of individuals, considers forgetting

as well as learning, and gives heuristics for managers. Our work differs in that we derive optimal policies

and our numerical experiments use somewhat different learning curves.

Pinker and Shumsky (2000), Gans and Zhou (2002) and Whitt (2006) study learning with respect to the

operations management/human resource management (OM/HRM) interface. Their work does not take into

account worker heterogeneity. Gans et al. (2003) and Aksin et al. (2007) are recent surveys that include

discussion of learning and HRM in the call-center industry. Gaimon (1997) and Carillo and Gaimon (2000)

study the importance of learning when new technologies are introduced, which may encompass the call

center, manufacturing and hospital examples mentioned above. Gaimon et al. (to appear) use mathematical

models and empirical data to assess learning-before-doing, which can be modeled as hiring costs in our

analysis, and learning-by-doing, which is modeled by learning curves. Goldberg and Touw (2003) consider

statistical inference of learning curve parameters in a managerial context.

The technical aspects of the paper rely on related literature regarding infinite-armed bandit models. Berry

and Fristedt (1985) and Gittins (1989) are standard references. Easley and Kiefer (1988), Banks and Sun-

daram (1992) and Bergemann and Välimäki (2001) provide results that are of use in our analysis below.



Arlotto, Chick and Gans: Optimal Hiring and Retention Policies for Heterogeneous Workers who Learn
5

3. The Hiring and Retention Problem with One Employee
In this section, we define the problem of an employer who requires the services of a single worker and who,

at each discrete period of time, decides whether to retain the current employee or to terminate him and hire

someone else from an infinite pool of workers. The assumption that there exists an infinite pool of potential

hires is appropriate in so-called “employers’ markets,” in which the potential workforce is sufficiently large

so that workers who quit or are terminated need not be considered again. Section 5 explores the employment

of multiple hires, as well as the presence of several heterogeneous pools of workers.

At each time t = 0,1,2, . . . the employer requires the service of a single employee, i, drawn from an

infinite pool of potential workers, St; S0 represents the initial pool from which the employer can draw. If

employee i quits at time t then he is removed from the pool of potential hires and St+1 = St\{i}. We let

π(t) = i∈ St denote the employer’s choice of employee i at time t and define π = {π(0), π(1), . . .} to be a

hiring and retention policy that specifies which workers the employer engages over time.

The performance of potential workers is uncertain and evolving over time and is defined by the relation

Zi,ni = g(θi, ni, εi,ni), for all i∈ S0, (1)

where θi ∈Ω is a vector of parameters that reflects worker i’s ability, ni = 0,1,2, . . . reflects his experience,

εi,ni is a noise term with support E , and g( · ) is a deterministic function of its arguments. We denote the

realization of Zi,ni by zi,ni .

For example, for θi = (ai, bi), Yelle (1979) describes the following commonly-used form:

Zi,ni = exp(ai + bi ln(ni + 1) + εi,ni) , ni = 0,1,2, . . . . (2)

Here, ai is a parameter that determines a base-level of performance and bi < 0 describes the rate of learning.

If Zi,ni were task time, then ai and bi would be scaled in the logarithm of the time unit.

The structural results concerning optimal policies, in Section 4, require only the general functional form

(1), together with some technical assumptions. While our analysis does hinge on a single measure of perfor-

mance, the representation of an outcome, Zi,ni , can be generalized to explicitly represent multiple dimen-

sions (such as revenue, cost, quality) and then aggregated into a single score by using a functional. Section

6, in which we develop methods for explicitly calculating the stopping boundaries necessary to implement

optimal policies, assumes a more specific form of Zi,ni , such as that given by (2).

At the end of a given period, after his performance, the current employee notifies the employer of his

intention to continue working or to leave. So, we associate with each worker a sequence of Bernoulli leaving

decisions, Li = (Li,0,Li,1,Li,2, . . .) such that worker i leaves or quits after his (ni + 1)st performance if

and only if Li,0 = Li,1 = · · ·= Li,ni−1 = 0 and Li,ni = 1. We denote the realization of Li and Li,ni by `i

and `i,ni respectively.
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For any hiring policy π and for each worker i∈ S0 we let

Λi(π) =
∞∑
t=0

1(π(t) = i) (3)

be i’s working lifetime: the number of periods until he quits or is terminated. In turn, we define worker i’s

quitting probability, qi,ni , to be

qi,ni = P (Li,ni = 1|Λi(π)≥ ni + 1) , (4)

and call 1− qi,ni worker i’s continuation probability.

Let Hi,ni = {(zi,s, `i,s) : 0 ≤ s ≤ ni − 1} denote worker i’s employment history when his experience

is ni. The quitting probability of an employee with experience ni, qi,ni , may depend on Hi,ni and on his

ability θi, but it must be independent of the employer’s hiring policy, π:

P (Li,n = 1|Λi(π)≥ n+ 1) = P (Li,n = 1|Λi(π
′)≥ n+ 1) for all π 6= π′ and all i, n.

This independence assumption is restrictive, and it is not difficult to imagine how employee turnover

decisions may be influenced by the employer’s retention (and compensation) policies. For example, by

paying better performers more, the employer could provide an incentive for employee turnover patters

to change in a manner that is favorable to her. The inclusion of these types of incentives and responses

extends the analysis of the employer’s hiring and retention problem from the realm of single-decision-maker

optimization problems to that of stochastic games, however, and is beyond the focus of our current work.

Nevertheless, the strategic interaction of employer and employees is both interesting and important, and we

will briefly return to this issue in the numerical results of Section 7.

The employer does not know each employee’s θi or `i in advance. Rather, she believes that there exists a

random vector, Θ, that represents ability in the population of potential workers, and a random set of leaving

decisions, L. The distributions for Θ and L can be estimated using historical data and statistical techniques.

Each time the employer hires a new worker, she views that worker’s Θi and Li as iid samples from the

population distributions. At time t= 0 all potential workers, i, have the same history,Hi,0 = ∅, and the same

prior distribution for Θi, so the employer is indifferent among her choices. For each worker, i, and for each

level of cumulative experience, ni, the employer uses i’s employment history, Hi,ni , to update her beliefs

concerning the distribution of the parameter Θi.

For any Borel set X ⊆ Ω we let νi,ni(X) = P (Θi ∈X|Hi,ni) denote the posterior probability distri-

bution that describes the employer’s uncertainty concerning Θi after the nith performance. For Θi ∼
νi,ni we let Zi,ni ≡ Z(νi,ni , ni) ≡ Z(νi, ni), and for {Θi = θi} we assume that worker i’s performance

{Z(νi,ni , ni)|θi} has density ξni(z|θi).

An untried worker, i, has prior experience ni ≡ 0 and prior distribution νi,0 ≡ ν0, where ν0 is a common

prior distribution on Θi for all potential workers. After the completion of a task, worker i’s experience,
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ni, increases deterministically by one, and the employer updates the distribution of her belief concerning

i’s ability according to Bayes’ rule. If P(Ω) is the set of all probability measures, ν, on Ω, then the Bayes

operator β :P(Ω)×R→P(Ω) is defined as

P (Θi ∈X|Hi,ni) = νi,ni+1(X) = β(νi,ni , z)(X) =

∫
X
ξni(z|θ)dνi,ni∫

Ω
ξni(z|θ)dνi,ni

, (5)

for each Borel subset X ⊆ Ω. Thus for any given observation, z, the Bayes operator maps the prior distri-

bution, νi,ni , to its posterior distribution, νi,ni+1.

The employer’s costs are driven by both employer and employee actions. If, at the start of a period, the

employer hires a new employee, she incurs hiring cost, ch, that includes expected recruiting and training

costs. If, at the end of a period, the employee quits, the employer bears a quitting cost, cq, that includes

potential separation costs. If the employee does not quit, then the employer may decide to terminate him, in

which case she bears an analogous firing cost, cf .

Within each period, the employer incurs a task-related cost that is driven by the selected employee’s

performance, c(zi,ni). We assume that c(z) is continuous and increasing in z, which reflects an efficiency-

based measure of employee performance. Because the employer does not know employees’ true abilities,

in each period she uses her belief concerning the distribution of the current employee’s ability, νi,ni , to

estimate his expected task-related cost:

E[c (Z(νi,ni , ni))] =

∫
Ω

(∫
E
c (g(θ, ni, s)) ξni(g(θ, ni, s)|θ)ds

)
dνi,ni . (6)

The employer discounts all of these costs at rate γ ∈ (0,1) and for any hiring and retention policy, π, her

expected employment costs over an infinite horizon are

Cπ(ν0) = ch +E
[ ∞∑
t=0

γt
{

c
(
Z(νπ(t), nπ(t))

)
(7)

+(cf + ch)1(π(t) 6= π(t− 1), π(t− 1)∈ St)

+(cq + ch)1(π(t) 6= π(t− 1), π(t− 1) 6∈ St)
}]
.

The quantity ch outside the expected value is the hiring cost of the first employee, and the terms within

the summation reflect the three possible sources of cost in each period, t. The first term, c
(
Z(νπ(t), nπ(t))

)
,

reflects employee π(t)’s task-related costs. The second term, (cf + ch)1(π(t) 6= π(t− 1), π(t− 1) ∈ St),

is the cost of hiring a new worker at time t, should the previous employee be terminated. The third term,

(cq + ch)1(π(t) 6= π(t− 1), π(t− 1) 6∈ St), reflects the cost of hiring a new worker at time t, should the

previous employee quit.

When selecting which employee to utilize at time t, the employer uses only the prior distribution ν0, the

cumulative experience prior to time t of each worker, i, ni,t =
∑t−1

s=0 1(π(s) = i), and the employment histo-

ries of eligible employees,Ht =∪i∈St{Hi,ni,t}. More formally, we let Π denote the set of non-anticipating
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hiring policies, and we assume that the employer seeks a policy π∗ ∈ Π that minimizes the expected dis-

counted value of future employment costs

π∗ = arg min
π∈Π

Cπ(ν0). (8)

For the problem to be analytically tractable we assume that the parameter space Ω is a compact subset

of Rd and that ν0 has support Ω. We require that, for each n, g(θ, n,u) is jointly continuous in (θ, u) and

uniformly bounded, so that g(θ, n,u) ∈ [Kinf ,Ksup] for each triple (θ, n,u). Further, we assume that, for

each n, the marginal density ξn(z|θ) is jointly continuous in (θ, z), with support [Kinf ,Ksup]. (See, e.g.

Easley and Kiefer 1988.)

4. Structure of the Optimal Policy
The employer’s hiring and retention problem is closely related to classic Bayesian bandit problems. Each

potential employee’s state is a triple that represents his experience, ni, the employer’s current belief regard-

ing his ability, νi,ni and an availability index ri such that ri = 1 if worker i has quit and ri = 0 otherwise. In

each period, the employer chooses exactly one employee, and this choice yields a single-period cost, along

with a state transition of only that employee; the states of all other potential hires remain unchanged. From

(4) – (5) we see that state transitions are Markov.

One small difference between the employer’s problem and traditional bandit problems is that, in the

former, an employee becomes unavailable when he quits, while in the latter arms are always available.

Is it not difficult, however, to transform the hiring and retention problem so that it neatly fits within the

bandit framework. To do so, we modify the ability of a worker who quits so that he would never be hired

by the employer. More specifically, we modify (5) as follows. We choose some K ∈ (Ksup,∞) such that

c(Ksup) + ch + max{cf , cq}< c(K) and let

νi,ni+1(X) =

{
β(νi,ni , z)(X) if max{`i,k, 0≤ k≤ ni}= 0
1K if max{`i,k, 0≤ k≤ ni}= 1,

(9)

where X ⊆ Ω, β is the Bayes operator defined in (5), and Z(1K , n) = K for every n. Thus, rather than

quitting at ni, employee i becomes unproductive, and his cost exceeds the cost of any possible realization

of any worker who has not yet quit, plus the largest cost of hiring a new worker. Then

Λi = inf {n∈N : Z(νi,n, n) =K} (10)

is the time at which he becomes unproductive. Note that, for each policy π ∈Π, if employee i quits before

he is terminated, then 1 + Λi(π) = Λi. Otherwise, 1 + Λi(π)<Λi.

Call the original problem in (8), in which employees quit, Problem 1, and call the modified problem,

in which they become unproductive, Problem 2. The following lemma confirms the fact that the effect of

workers who become unproductive is analogous to that of those who quit.
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LEMMA 1. (i) In Problem 2, any policy that uses worker i when ni ≥Λi is never optimal.

(ii) A policy is optimal for Problem 1 if and only if is optimal for Problem 2.

Proofs of these claims and of others below are found in Appendix.

LEMMA 2. If E[Λi]<∞ then any policy for Problem 1 uses an infinite number of workers, a.s..

Thus, if each employee’s expected lifetime is finite, then the employer will end up hiring an infinite stream

of employees in Problem 1. Similarly an employer who avoids using employees who have become unpro-

ductive in Problem 2 will also use an infinite number of employees if E[Λi]<∞.

Problem 2 is a variant of the infinite-arm bandit problem analyzed by Banks and Sundaram (1992). Their

paper’s core results can be extended to our problem setting, and we use them characterize the structure of

the optimal hiring and retention policy. More specifically, we derive the optimal policy by solving a family

of stopping problems in which, at each period, t, the employer chooses between employing a single worker,

i ∈ St, or terminating all employment and paying the firing cost, cf , and a so-called “retirement” cost, m.

Given that we are considering an optimal stopping problem for a single employee, we drop the employee

index, i, and the experience index, n, from subscripts.

This approach, called the retirement-option problem, was introduced by Whittle (1980) for bandit prob-

lems with a finite number of arms and extended by Banks and Sundaram (1992) to study denumerable-armed

bandit models. In our context, the employer’s problem is an infinite-horizon, discounted Markov Decision

Process with uniformly bounded costs, a fact that implies that there exists an optimal hiring and reten-

tion policy that is stationary and deterministic (Bertsekas and Shreve 1996, Prop. 9.8).1 The optimal value

function for the retirement-option approach satisfies the following Bellman equation:

V (ν,m,n, r) =

{
min{cf +m,HV (ν,m,n)}, if r= 0,
min{cq +m,c(K) + γV (1K ,m,n+ 1,1)}, if r= 1,

(11)

where

HV (ν,m,n) = ch1(n= 0) +E[c(Z(ν,n))] + γ(1− qn)E[V (β(ν,Z(ν,n)),m,n+ 1,0)] (12)

+γqnV (1K ,m,n+ 1,1),

In words, when the current employee is productive (r= 0), the employer has the choice of terminating the

employee at cost cf and incurring the retirement payment, m, or of continuing his employment. Here, the

expected discounted value of continuing, HV , is the expected cost of the current period plus the expected

discounted cost to go. The expected discounted cost to go is determined by conditioning on whether or not

the employee remains productive (which happens with probability 1− qn). When the current employee has

1 A policy is stationary if, at any time t, the action it prescribes in a given state is independent of t. A policy is deterministic if the
action it prescribes is never randomized.
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become unproductive (r= 1), then the employer has the choice between incurring the quitting cost, cq, and

the retirement payment, m, or continuing his employment. In this case, the expected discounted value of

continuing employment is the sum of the current period cost of an unproductive worker, c(K), plus the

associated cost to go, which are both deterministic.

When cq +m≤ c(K)/(1− γ), so that retiring is attractive when r= 1, (12) becomes

HV (ν,m,n) = ch1(n= 0) +E[c(Z(ν,n))] + γ(1− qn)E[V (β(ν,Z(ν,n)),m,n+ 1,0)] + γqn(cq +m).

The last addend represents the cost paid for an employee who has quit, cq, plus the retirement cost for the

employer, m.

Given the availability of the value function (11) we are interested in the value ofm for which the employer

is indifferent between continuing to employ the current hire or terminating him (at cost cf if r = 0 or cq if

r= 1) and retiring (at cost m). We denote that value by the index

M(ν,n, r) =

{
sup{m∈R : V (ν,m,n,0) = cf +m} if r= 0

sup{m∈R : V (ν,m,n,1) = cq +m} if r= 1.
(13)

This index is well-defined because the value function (11) is concave and non-decreasing in m, a fact that

is stated and proved in the appendix.

Theorem 1 shows that there exists an optimal hiring and retention policy that always selects an employee

with a minimal index (13). The index is therefore justifiably called a Gittins index for this problem. With it,

we can characterize the optimal hiring and retention policy (8).

THEOREM 1. Worker i with experience ni and availability index ri is an optimal selection at time t if

and only if Mi(νi,ni , ni, ri) = infj∈St{Mj(νj,nj , nj, rj)}. Furthermore, there exists an optimal policy that

always selects a worker with a minimal Gittins index.

The optimal policy described in Theorem 1 implies that there is often just one Gittins-index-minimal

employee.

COROLLARY 1. Let m0 =M(ν0,0,0) be the Gittins index of a worker who has not yet been tried. If at

t= 0 all potential hires have Gittins indices of m0, then at any time, t, at most one worker, i, has Gittins

index Mi(νi,ni , ni,0)<m0.

Together Lemma 1 and Theorem 1 also imply the following useful “no-recall” property.

COROLLARY 2 (“No-Recall” Property). Let π∗ be an optimal Gittins-index policy and let ti =

inf{t : π∗(t) = i} be the first time worker i is employed. Then:

(i) Worker i is employed continuously for Λi(π
∗) periods; that is π∗(t) = i for all ti ≤ t < ti + Λi(π

∗).

(ii) It is never optimal to employ worker i from time ti+Λi(π
∗) on; that is π∗(t) 6= i for all ti+Λi(π

∗)≤ t.
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Therefore, it is never optimal to employe a worker who was previously terminated, and the optimal hiring

policy takes the following form. At the start of the problem, the employer calculates the index for untried

workers, m0. Then she chooses an employee, i, at random from the pool of untried employees, and after

each performance, she recalculates his Gittins index based on the posterior distribution νi,ni . If the new

Gittins index has a value of m0 or less, then it is optimal to retain the current employee. If the updated

Gittins index rises above m0 then it is optimal to terminate him and hire a new employee, at random, from

the pool.

For an employer seeking to retain a single employee, the hiring and retention problem decomposes into

a sequence of iid optimal stopping problems: hire an employee from the pool and retain him until he turns

over or his Gittins index rises above m0, whichever comes first.

Given the iid nature of the stopping problems, we can show that the Gittins index of the untried workers

is closely related to the total expected discounted cost under the optimal policy.

THEOREM 2. Let π∗ be a Gittins-index policy, and let m0 = M(ν0,0,0) be the Gittins index of the

untried workers. If E[Λ1]<∞ then m0 + cf (1− γE
[
γΛ1(π∗)

]
)−1 = infπ∈ΠCπ(ν0).

Theorem 2 is appealing since it links the expected total discounted cost under the optimal policy to the

Gittins index. This type of result does not usually hold in a general bandit setting. Here, it relies on the

“no-recall” property of the optimal policy described in Corollary 2. This allows us to interpret our hiring

process as a discounted renewal reward process in which the tenure of every worker is the length of the

renewal interval, and the cost of each worker throughout his tenure is the reward. Due to the “no-recall”

property, the renewal intervals as well as the rewards are iid. In Section 6, we use Theorem 2 to estimate the

expected discounted value of implementing a Gittins-index policy.

5. Extensions: Multiple Parallel Workers and Different Pools
Sections 3 and 4 considered the problem of employing a single worker. We now consider two extensions.

Section 5.1 considers an employer who wishes to retain multiple employees who work in parallel. Sec-

tion 5.2 considers the problem in which distinct (infinite) pools of heterogeneous workers are available. In

both cases, the optimality of an index rule is retained.

5.1. Hiring and Retention of Multiple Workers

If the employer wishes to retain a fixed number, D, of people working in parallel, a Gittins-index policy

remains optimal. In fact, one can partition the infinite pool of potential employees, St, into D separate,

countably infinite pools, S1,t,S2,t, . . . ,SD,t, in which untried workers have common prior distribution, ν0.

Further, when employee i in pool d quits at time t, he is removed from that pool so that Sd,t+1 = Sd,t\{i}.
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The infinite-horizon total expected discounted cost for the employer is then

CD
π (ν0) = chD+E

[ ∞∑
t=0

γt
D∑
d=1

(
c(Z(πd(t), nπd(t))) (14)

+ (cf + ch)1(πd(t) 6= πd(t− 1), πd(t− 1)∈ Sd,t)

+ (cq + ch)1(πd(t) 6= πd(t− 1), πd(t− 1) 6∈ Sd,t)
)]
,

where πd(t) ∈ Sd,t identifies the index of the worker who is employed from pool d at time t, and nπd(t)

represents his experience.

By interchanging the sums in (14) one obtains CD
π (ν0) =

∑D

d=1C
d
π(ν0), where Cd

π(ν0) is the dth posi-

tion’s expected discounted cost, as defined in (7). Thus, the D positions’ costs are separable so that the

total expected discounted cost is minimized when a Gittins-index minimal worker is employed in each pool.

Hence, at any time, t, in which the employer seeks to hire a new worker for any of the D positions, she can

employ any untried worker who belongs to the pool of potential employees, St. This result, due to Berge-

mann and Välimäki (2001), crucially depends on the assumption that all the workers have the same prior

distribution, ν0, at time t= 0, so that the artificial splitting of potential hires into D pools is possible.

We note that our analysis of multiple employees hinges on the independence of the outcomes of various

employees’ tasks. In many settings task outcomes may be correlated across workers, however, and the

optimality of an allocation index is no longer valid, as for other bandit problems with correlated arms. One

potentially promising avenue for addressing such correlations in future work is the knowledge gradient

approach (Frazier et al. 2009).

5.2. Heterogeneous Populations

When the employer faces a finite number of heterogeneous populations, her optimal hiring and retention

policy is the same as the one proposed in Theorem 1.

For t = 0,1,2, . . . consider, without loss of generality, two infinite pools S ′t and S ′′t , where the untried

workers have common prior distributions ν ′0 and ν ′′0 , with ν ′0 6= ν ′′0 .

Let M(ν ′0,0,0) and M(ν ′′0 ,0,0) be the indices of the untried workers in each pool. If M(ν ′0,0,0) 6=

M(ν ′′0 ,0,0), then workers belonging to the pool with larger index are never employed. Otherwise, if

M(ν ′0,0,0) =M(ν ′′0 ,0,0), then the employer is indifferent between the two populations.

6. Implementing the Optimal Policy
This section shows how analytic properties of the hiring and retention problem can be combined with

dynamic programming techniques to enable the computation of the relevant Gittins indices when perfor-

mance has certain structural properties. Because our set of iid stopping problems allows us to focus on a

single employee we drop the subscript, i, hereafter for clarity.
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As shown in the appendix, for any given ν, n and r the value function, V (ν,n,m, r), is concave and

nondecreasing in m. Therefore, given ν, n, and r a simple search scheme, such as bisection, can be used to

find the largest fixed point, M(ν,n, r), that defines the Gittins index.

We now turn to the computation of V (ν,n,m, r). We explicitly define the functional form of the (n+1)st

performance for a worker, Zn, in (1) in order to calculate solution values. In particular, we assume that g(·)

is invertible and that

g−1(Zn) =A+h(n) + εn, n= 0,1,2, . . . , (15)

is a linear regression model where A determines an unknown base-level that may vary across workers,

h(n) is a known learning function, and εn is normally distributed noise with mean 0 and known standard

deviation σ. SinceA is unknown, the mean of the noise can be assumed to be zero without loss of generality.

We assume that the potential hire’s base level of performance, A, has initial prior distribution, ν0, that is

normally distributed with mean µ0 and variance σ2
0 , N(µ0, σ

2
0).

The form in (15) implies another structural property that will be useful for computing the Gittins indices

of workers. The random variables Xn = g−1(Zn)− h(n) are normally distributed with unknown mean A

and variance σ2 + σ2
0 . By standard Bayesian analysis, νn, the posterior distribution of A after observing n

tasks, zn = (z0, z2, . . . , zn−1), is normal with

E[A | zn] =
µ0

σ2

σ2
0

+
∑n−1

k=0(g−1(zk)−h(k))

n+σ2/σ2
0

and Var[A | zn] =
σ2

0σ
2

σ2 +nσ2
0

.

Define s0 = σ2/σ2
0 , and let s= s0 + n, where n is the number of samples observed for the single-worker

problem. Set ys = µ0s0 +
∑n−1

k=0(g−1(zk)−h(k)) and ws = ys/s. The posterior distribution, νn, of A given

zn is thus N(ws, σ
2/s). We can therefore describe (νn, n) by (ws, s).

These assumptions are sufficient to guarantee that both the Bellman equation (11) and the Gittins index

(13) are monotone in the posterior mean of A, ws.

PROPOSITION 1. For any fixed, m, n, and r, V (ν,n,m, r) is nondecreasing in ws, and for any fixed n

and r, M(ν,n, r) is nondecreasing in ws.

The monotonicity of the Gittins index with respect to ws allows us to concisely describe the optimal policy.

For each s = s0 + n, there is a simple “stopping” boundary, b(s), such that it is optimal to retain the

employee (continue) if ws < b(s) and to terminate the employee (stop) if ws > b(s).

Arlotto et al. (2010) provides more detail for how to use the above results to approximate V and the

stopping boundary, b, when (15) applies, the functions g and h are known and finite for finite values of their

arguments, the noise, εn, has zero mean and known sampling variance, σ2, and the prior distribution forA is

N(ws0 , σ
2/s0), so that Proposition 1 applies. In summary, we use the common technique of approximating

the evolution of the posterior distribution as samples are observed, a Gaussian process, with the evolution
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of the posterior distribution of a related trinomial process on a grid. We construct the necessary grid of

points in the (w,s) coordinate system, estimate the terminal conditions (the period in which the dynamic

programming backwards recursion starts, typically a large number of periods in the future) using Monte

Carlo simulation, perform a backward recursion using a trinomial tree approximation on the grid of points

to approximate both V and the optimal stopping boundary for a given value of m, and then search for the

value of m that identifies the Gittins index. This process also identifies the optimal stopping boundary that

determines the optimal solution to the hiring and retention problem.

The numerical results in Section 7 correspond to a learning function that sets g(z) = ez and h(n) =

b ln(n+ 1). This corresponds to (2) with a common learning parameter bi = b and can be written to empha-

size the dependence of Z on the posterior distribution:

ln(Zn) =A+ b ln(n+ 1) + εn, n= 0,1,2, . . . , (16)

where εn ∼ N(0, σ2). Here, (16) is consistent with empirical studies of various industries. For example,

Brown et al. (2005), Shen (2003), Shen and Brown (2006) provide evidence that handle times for call-

centers are frequently lognormally distributed.

The above approach can be used to numerically evaluate other forms of h(·) as well. For example, we

also tested h(n) = b ln(1 +n/(n+ ζ)) and obtained qualitative conclusions that are analogous to what we

describe below in Section 7. Similarly, we can define a as a common, known parameter and g−1(Zn) =

a+Bh(n) + εn to model pools of workers with a common base level of quality and heterogeneous rate of

learning. While the theoretical results described in Section 4 hold for even more complex settings, such as

those with heterogeneous and unknown A and B, the numerical approach here becomes more difficult. In

particular, stopping boundaries become multidimensional and monotonicity results, such as those described

in Proposition 1, may not hold.

7. Numerical Examples and the Value of Screening
In this section, we use the methods described in Section 6 to calculate Gittins indices, as well as associated

optimal stopping boundaries, for several examples. We also use discrete event simulation to estimate rates

of termination and voluntary turnover. We compare the performance of the optimal Gittins-index policy

with that of other easily implementable policies and demonstrate that an active hiring and retention policy

reduces costs and improves the pool of workers who are employed. Moreover, we perform a sensitivity

analysis with respect to the key parameters of our model, and we conclude that increases in employee

learning reduce costs, improve the pool of employed workers and lower termination rates. Moreover, we

observe that managers favor pools of potential workers with a broader set of abilities.
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7.1. Balancing Uncertainty and Learning Effects

The first example is loosely motivated by a call center. EachZi,n represents the average duration (in minutes)

of the calls that agent i handles after n days of experience. We use the log-linear learning curve model (16).

The distribution of the base-level performance parameter, A, has mean µ0 = 0.90 and variance σ2
0 = 0.16,

and the sampling variance in the daily average of the service times is σ2 = 0.64. This implies an expected

service time of untried agents of E[Zi,0] = 3.67. The quitting probability qn is constant over time and

qn = 0.01 for all n. The annual discount rate is 10%, so the one-period discount rate is γ = 0.9996 (based

on a year of 250 days), and the cost function is linear, c(z) = cz, with unit cost c = 1. The hiring cost is

ch = 30 which corresponds to the expected cost of employing untried workers for approximately 10 days (2

weeks). Termination and quitting costs are set equal to 0. (See Theorem 3, below, in Section 7.3.) Learning

is deterministic with rate b= ln(α)/ ln(250), where α ∈ [0,1] represents the amount of learning accrued in

the first year of tenure so that E[Zi,249] = αE[Zi,0]. Choosing α= 0.50, we obtain b=−0.1255.

Figure 1 displays the stopping boundary associated with the Gittins index for untried employees, m0,

which, in this example, equals 5,497.7. The left panel plots the stopping boundary with respect to the

posterior mean ofA, and the solid line in the right panel plots the analogous stopping boundary with respect

to the posterior mean of Zn. From Proposition 1 we know that an employee whose posterior means fall

below these stopping boundaries has a Gittins index below m0 and should be retained, and one whose

posterior means fall above the stopping boundary should be replaced by a new hire from the pool of untried

potential employees.

Figure 1 Stopping Boundaries for Posterior Mean of A (left) and for E[Zn] (right).
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In the left panel, we see that the stopping boundary with respect to the posterior mean of A has an

interesting shape. The initial jump from the prior mean, µ0 = 0.90, up to 1.27 is attributed to the ending of

the hiring cost, ch, which is incurred only on day zero. Afterwards, the stopping boundary has a “cupped”
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shape for the first few periods of an employee’s tenure. The dip reflects the effect of statistical learning on

the part of the employer. As more samples are collected, uncertainty about the “true” quality of the worker

decreases, and the employer can screen workers on the basis of a more informative prior distribution. The

subsequent climb reflects the gains the employee enjoys as on-the-job experience makes even relatively

poor-quality workers attractive candidates for retention. In its right most reaches, the curve appears to

increase to an asymptote involving a constant minus h(n).

The right panel shows the stopping boundary with respect to the mean service time, E[Zn]. Here, the

stopping boundary is unimodal, with a peak on day 1 due to the elimination of the day-zero hiring cost,

followed by a monotone decrease that is initially steep and that later flattens out. Unlike the left panel, the

right panel does not explicitly display a “dip” that reflects the problem’s two conflicting forces, between the

employer’s statistical learning and the employees’ learning by doing. Instead, after day 1, we find a mono-

tonically decreasing stopping boundary that requires a worker’s expected performance to keep improving

over time.

The dashed line in the right panel plots E[Zn] for an “average” employee with base-level service time

of A = µ0. The vertical distance between the two curves is a measure of how much better or worse a

“marginally retained” employee is in comparison to an “average” employee. We see that the presence of

hiring costs induces managers to retain workers who are worse than average.

The simulation results in Table 1 describe how the optimal policy affects employee retention. The results

are based on 50,000 trials of the single-worker optimal stopping problem, and they show the fraction of

workers who are terminated or quit within various time windows.

Table 1 Optimal policy and employee retention (standard errors for the mean in parenthesis).

Turnover rates Day 1 Days 2 – 10 Days 11 – 20 Total
Terminated workers 0.0196 (.0006) 0.2830 (.0020) 0.0557 (.0010) 0.3982 (.0022)
Workers who quit 0.0102 (.0005) 0.0692 (.0011) 0.0539 (.0010) 0.6018 (.0022)

The policy terminates 39.82% of the employees: 1.96% of workers are terminated on day 1, 28.30% are

terminated during periods 2 through 10, and 9.57% thereafter. Hence, much of the termination occurs early

on. Of course, termination rates vary significantly with hiring costs. In Section 7.3 we present a sensitivity

analysis that addresses this relationship.

7.2. How the Optimal Policy compares with Simpler Policies

This section compares the optimal policy with four families of alternative hiring policies. In the first, work-

ers are never terminated, and they serve until they naturally turn over.

In the second, workers are monitored using the stopping boundaries in Figure 1 for a limited screening

period. During the screening period they can be terminated after each day of performance, and, if retained
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at the end of the screening period, they are never terminated. In Table 2 we report results for this type of

policy when the screening period is 1, 5, 10 or 20 days long.

The third family of hiring policies considers Gittins-index policies in which workers are screened and

termination can occur every 5, 10 or 20 days of performance. (Note that the optimal policy described in this

paper is a Gittins-index policy in which screening takes place each day.)

Finally, the fourth type of hiring policy considers a trial period of a given length (1, 5, 10 or 20 days)

within which workers are not terminated. At the end of the trial period the employer decides whether to

retain or terminate the worker, and, if he is retained, he is not terminated until he turns over.

Table 2 reports infinite-horizon total expected discounted costs, termination rates and long-run average

service rates for each policy. The first two quantities are familiar, and we now formally define the third. For

any hiring policy, π, its long-run average service rate is

µ(π)−1 = lim
T→∞

1

T

T∑
t=1

1

E[Zπ(t),nπ(t)
]
,

the long-run average number of calls that an agent handles per minute each day. Hence, the quantity µ(π)−1

can be used to obtain a rough estimate of the number of agents needed for a given call volume.

The quantities reported in Table 2 are obtained by simulating 1,000 trials with enough workers to cover

50,000 time periods within each trial. We also report analogous simulation results for the optimal policy and

note that, because it is estimated via simulation, rather than backward recursion, the Gittins index reported

for this example varies slightly (within one standard error) from that reported in Section 7.1.

Table 2 Comparison with other hiring policies (s.e.).

Total Expected Fraction of Long-run average
Policy Discounted Cost terminated workers service rate

Optimal policy 5,493.6 (11.9) - 0.3949 (.0005) 0.6410 (.0132) -
Never screen 6,050.7 (15.0) 10.14% 0.0000 (.0000) 0.5361 (.0141) -16.37%

Screen period 1 6,019.7 (14.5) 9.58% 0.0195 (.0002) 0.5388 (.0142) -15.95%
Screen periods 1 – 5 5,705.6 (12.9) 3.86% 0.2076 (.0005) 0.5838 (.0143) -8.92%

Screen periods 1 – 10 5,551.1 (12.4) 1.05% 0.2991 (.0005) 0.6107 (.0140) -4.73%
Screen periods 1 – 20 5,494.2 (11.8) 0.01% 0.3556 (.0005) 0.6284 (.0143) -1.96%
Gittins policy every 5 5,511.2 (12.1) 0.32% 0.3694 (.0006) 0.6342 (.0135) -1.06%

Gittins policy every 10 5,575.1 (11.4) 1.48% 0.3288 (.0005) 0.6218 (.0139) -2.99%
Gittins policy every 20 5,650.4 (12.2) 2.85% 0.2617 (.0005) 0.6017 (.0134) -6.12%
One-shot decision at 1 5,907.2 (13.9) 7.53% 0.2431 (.0005) 0.5734 (.0145) -10.54%
One-shot decision at 5 5,619.5 (12.5) 2.29% 0.3227 (.0005) 0.6114 (.0149) -4.61%

One-shot decision at 10 5,629.3 (12.3) 2.47% 0.3234 (.0006) 0.6156 (.0139) -3.96%
One-shot decision at 20 5,690.2 (12.4) 3.58% 0.2662 (.0005) 0.6008 (.0137) -6.27%

The results in Table 2 show that the optimal policy we examined leads to a substantial reduction in cost

and to an overall improvement of employee performance. For instance, the policy that does not screen

employees has a total expected discounted cost that is 10.14% higher than that of the optimal Gittins-index
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policy. Long-run average service rates imply that the optimal Gittins-index policy also leads to a 16.37%

decrease in the average number of workers required to maintain the same level of capacity. To more clearly

understand this, consider the hypothetical scenario in which the call center has an average load of 53.61

calls per minute. With the optimal policy, this requires to employ 53.61 / 0.6410 = 83.63 workers – long-run

average – to have a “fully-loaded” system. With the policy “never screen”, the same “fully-loaded” system

requires 53.61 / 0.5361 = 100 workers, and the optimal policy employs 16.37% fewer workers.

Recall from Table 1 that most termination in the optimal policy occurs relatively early in employees’

tenure. It is not surprising then, that the policy that screens workers in each of the first 20 days performs

nearly as well as the optimal one.

Interestingly, the Gittins-index policy that screens workers every 5 days also performs close to optimally.

Thus, screening need not to occur every period in order for a policy to be effective.

“One-shot” hiring and retention decisions are analogues of “secretary”-type rules that limit the frequency

of screening as well as the horizon over which screening takes place. We note that the “one-shot decision”

policy for period 1 outperforms analogous “screen period 1,” because the former uses an optimized stopping

boundary, while the latter uses the (unoptimized) stopping boundary from Gittins-index policy in which

screening occurs each period. More importantly, the results for “one-shot” 5, 10 suggest that simple, one-

shot retention decisions have the potential to perform well, with average discounted costs within a few

percent of the optimal Gittins-index policy.

7.3. Sensitivity analysis

This section examines how the optimal policy depends on four key parameters: employees’ learning rates;

employer uncertainty regarding employee performance; task-by-task variability; and hiring costs. The Git-

tins indices and turnover rates reported in this section are computed as in Section 7.1.

Learning rates. Section 7.1 studied a pool of workers whose performance improves by 50% over the

first 250-day year (b = −0.1255). Here, we compare this performance with that of fast-learning workers

who improve by 75% in the first one year (b = −0.2511), as well as that of slow-learning workers who

improve only by 25% in the same amount of time (b=−0.0521). All other parameters are kept constant, as

in Section 7.1.

Figure 2 plots the stopping boundary with respect to the posterior mean of A (left) and with respect to

E[Zn] (right) in these new settings. In the left panel, we notice that the “cupped” shape of the stopping

boundary in the early stages of employment is more prominent for the slow learners, and the set of their

allowable posterior means is smaller. On the other hand, the fast-learning workers immediately benefit

from a tangible performance improvement in their first few days so that the “cupped” part of the stopping

boundary disappears. The contribution of this experience-based learning is so high that the screening policy

retains workers with a broader set of posterior means.
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Figure 2 Stopping boundaries for different learning rates.
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Note. Other parameters: µ0 = 0.90, σ0 = 0.40, σ= 0.80, s0 = 4, ch = 30, cf = cq = 0.

With a faster learning rate, every employee is faster for each level of experience, and one expects the

stopping boundary with respect to E[Zn] to decline. This is indeed the case and, in the right panel of

Figure 2, we see that the stopping boundary for fast-learning workers is the bottom one. A similar argument

explains why the stopping boundary for slow learners is the top one in the right panel.

To more clearly understand the effect of changes in employees’ learning, we can also look at the values

of the Gittins index, at the fraction of terminated workers, and at the long-run average service rate for these

three b’s. Table 3 shows that the optimal retention policy for pools of fast learners generates the smallest

infinite-horizon expected-discounted cost, the lowest fraction of terminated workers and the largest service

rate. Conversely, slow learners are the most expensive, have the highest termination rates and the lowest

long-run average service rates.

Table 3 Gittins indices, termination and long-run average service rates with different learning rates (s.e.).

Gittins Fraction of terminated workers Long-run average
b index Day 1 Days 2–10 Days 11 –20 Total service rate

-0.2511 3,905.6 0.0102 (.0004) 0.1834 (.0017) 0.0275 (.0007) 0.2366 (.0019) 1.0253 (.0286)
-0.1255 5,491.7 0.0196 (.0006) 0.2830 (.0020) 0.0557 (.0010) 0.3982 (.0022) 0.6412 (.0133)
-0.0521 6,762.1 0.0334 (.0008) 0.3167 (.0021) 0.0822 (.0012) 0.4885 (.0022) 0.4972 (.0089)

Table 3’s results suggest a potentially important, positive sequence of managerial implications. Improve-

ments in on-the-job learning rates make employees with relatively poor initial abilities quickly become

attractive relative to untried employees, and it is optimal for the employer to retain them. As a consequence

optimal termination rates decline. Thus, improvements in on-the-job learning rates may allow the employer

to enjoy a secondary benefit of being able to retain a wider array of employees.

Moreover, there is evidence from the management literature that lower rates of forced turnover may

make a company a more desirable place to work and improve its pool of potential hires (Huselid 1995).
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Such an employee response to changes in the employment policy is of potential interest. As noted in the

introduction, explicit treatment of the phenomenon would extend our analysis in to the realm of stochastic

games, however.

Variance of base-level performance in prior distribution. We parameterize the employer’s uncertainty

concerning the ability of untested workers using the prior variance of A, σ2
0 . By varying σ2

0 , while holding

σ2 constant, we can see how the optimal screening policy changes with worker heterogeneity. Here, we

analyze three values of the prior variance, 0.04, 0.36 and 0.64 (i.e., σ0 = 0.20,0.40,0.80 respectively), and

we discuss how they affect our results. All other parameters remain constant, as in Section 7.1.

Table 4 Gittins indices, termination and long-run average service rates with different prior variances (s.e.).

Gittins Fraction of terminated workers Long-run average
σ0 index Day 1 Days 2–10 Days 11 –20 Total service rate

0.2000 5,715.1 0.0000 (.0000) 0.0330 (.0008) 0.0351 (.0008) 0.1060 (.0014) 0.5204 (.0064)
0.4000 5,491.7 0.0196 (.0006) 0.2830 (.0020) 0.0557 (.0010) 0.3982 (.0022) 0.6412 (.0133)
0.8000 4,752.8 0.2406 (.0019) 0.2840 (.0020) 0.0439 (.0009) 0.5842 (.0022) 1.1357 (.0488)

Table 4 shows how the Gittins index, the fraction of terminated workers, and the long-run average service

rate change with σ2
0 . The values obtained in the numerical example agree with the general idea that the

Gittins index reflects an option value inherent in the ability to change arms, and it favors arms with more

diffuse prior distributions. In our context, this implies that, given constant µ0, an increase in quality variation

across workers allows the employer to screen more strictly, increasing termination rates, retaining relatively

more capable employees, and lowering total costs.

Sampling variance. We then perform a sensitivity analysis with respect to the sampling variance σ2.

The analysis is similar to that for the prior variance, but here we keep σ0 constant as we let σ vary. The

values of σ we consider are 0.60, 0.80, 1.00. The other parameters are fixed as in Section 7.1.

Table 5 Gittins indices, termination and long-run average service rates with different sampling variances
(s.e.).

Gittins Fraction of terminated workers Long-run average
σ index Day 1 Days 2–10 Days 11 –20 Total service rate

0.6000 4,993.3 0.0057 (.0003) 0.1831 (.0017) 0.0595 (.0011) 0.2755 (.0020) 0.6626 (.0111)
0.8000 5,491.7 0.0196 (.0006) 0.2830 (.0020) 0.0557 (.0010) 0.3982 (.0022) 0.6412 (.0133)
1.0000 6,190.4 0.0534 (.0010) 0.3426 (.0021) 0.0517 (.0010) 0.4961 (.0022) 0.6104 (.0160)

Table 5 displays the increase in the Gittins index and in the long-run average service rate, as σ increases.

It also indicates that, for lower σ, the fractions of employees who are terminated are lower. Thus, reductions

in within-period variability improve the selectivity and effectiveness of screening procedures, allowing the

employer to reduce optimal termination rates.
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Hiring costs. Section 7.1 studied a setting in which every time a new worker is employed, the employer

incurs a hiring cost, ch = 30. Here we perform a sensitivity analysis that studies how termination rates and

total expected discounted costs vary with hiring costs.

Figure 3 plots the stopping boundary with respect to the posterior mean of A and with respect to E[Zn]

for ch = {0,15,30,60}. The left panel shows that the stopping boundary jumps up as hiring costs increase.

After day 1, the stopping boundary decreases very slightly for some time, and then it climbs again. The

same observations about two competing forces made in Section 7.1 hold here as well.

Figure 3 Stopping boundaries for different hiring costs.
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Note. Other parameters: b=−0.1255, µ0 = 0.90, σ0 = 0.40, σ= 0.80, s0 = 4, cf = cq = 0.

When ch = 0, the stopping boundary with respect to E[Zn] is monotonically decreasing. This monotonic-

ity is retained for ch > 0, but only after the initial jump attributed to the presence of hiring costs. When

hiring costs are absent the screening process is very selective and terminates 58.49% of employees on day

1 and 87.36% overall. As hiring costs enter into the problem, the termination rates quickly drop, and the

values of the Gittins indices and of the service rates follow, naturally, the opposite trend.

Table 6 Gittins indices, termination and long-run average service rates with different hiring costs (s.e.).

Gittins Fraction of terminated workers Long-run average
ch index Day 1 Days 2–10 Days 11 –20 Total service rate
0 3,645.2 0.5849 (.0022) 0.2600 (.0020) 0.0153 (.0005) 0.8736 (.0015) 0.8316 (.0153)

15 4,833.7 0.0833 (.0012) 0.3844 (.0022) 0.0548 (.0010) 0.5546 (.0022) 0.6889 (.0138)
30 5,491.7 0.0196 (.0006) 0.2830 (.0020) 0.0557 (.0010) 0.3982 (.0022) 0.6412 (.0133)
45 6,028.9 0.0057 (.0003) 0.1949 (.0018) 0.0525 (.0010) 0.2880 (.0020) 0.6122 (.0136)
60 6,509.1 0.0017 (.0002) 0.1404 (.0016) 0.0415 (.0009) 0.2201 (.0019) 0.5949 (.0134)
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Firing and quitting costs. One would expect that changes in firing and quitting costs would similarly

affect the optimal policy. However, the theorem below shows that, when the quitting probabilities are con-

stant – so that qi,n = q for all n and for all i∈ S0 – this is not the case.

To state the theorem we need to keep track of how the hiring, quitting and firing costs affect the Gittins

index. To that end, we modify our notation to accounts for these difference, lettingMi(νi,ni , ni,0, ch, cf , cq)

be the Gittins index (13), and m0(ch, cf , cq) =M(ν0,0,0, ch, cf , cq).

THEOREM 3. If the quitting probabilities qi,n = q for all i∈ S0 and all n thenMi(νi,ni , ni,0, ch, cf , cq)<

m0(ch, cf , cq) if and only if Mi(νi,ni , ni,0, ch + cf ,0,0)<m0(ch + cf ,0,0).

Thus, if the hazard rate for quitting is constant for all employees at all times, then changes in firing and

quitting costs do not affect the relative ordering of workers’ Gittins indices. Of course, the values of the

Gittins indices change, as do the (analogous) expected discounted costs of the problem. But because the

relative orderings do not change, changes in the firing and quitting costs do not affect the optimal policy,

and we therefore do not report a sensitivity analysis with respect to cf or cq.

8. Conclusions
This paper studies how statistical and on-the-job learning together determine the nature of optimal hiring

and retention decisions. Statistical learning arises when workers are heterogeneous and the employer does

not know their true quality. On-the-job learning occurs as experience affects workers’ performance.

The literature related to this problem comes from various areas, such as labor economics, statistical

decision theory, learning-curve theory, and service operations, among others. Our model of the hiring and

retention problem integrates aspects from all of these streams. With our solution we prove that Banks and

Sundaram’s (1992) results for infinite-armed bandits carry over to more complex state spaces, and we show

that a “no-recall” property (Corollary 2) ensures that worker lifetimes and costs follow the iid pattern of

a discounted renewal reward process. The iid nature of such a sequence allows us to express the optimal

infinite-horizon total expected discounted cost as a function of the Gittins index (Theorem 2).

Our numerical results show that active screening of employees can significantly improve expected costs

and long-run average employee performance. Furthermore, because most termination takes place early in

employees’ tenures, relatively simple finite-horizon and one-shot policies have the potential to perform well.

Our sensitivity analysis also shows that, as is common in bandit problems, the ability to terminate employees

should motivate managers to consider a broader spectrum of potential hires. Moreover, reductions in within-

task variability and improvements in employee learning both provide the additional benefit of lowering

termination rates.
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Appendix. Mathematical Results

Proofs of mathematical claims are presented in the order of their appearance in the main paper. (The statement

“Proof of . . . ” is presented in bold face). When other technical results are needed, they are stated with a full proof or

suitable reference, in the location that they are needed (the result is presented in standard typeface).

Proof of Lemma 1. In this proof of (i) we assume ch = cf = cq = 0, and we leave to the interested reader to check

the details for the general case. Suppose there is a policy π2 that uses at least one worker i at least once when his

experience ni exceeds Λi, with positive probability. Define the random variable T̄ = inf{t : nπ2(t) ≥Λπ2(t)} to be the

first time that such a worker is employed (with T̄ =∞ on sample paths where an employee is not use in that way). By

assumption, then, P
(
T̄ <∞

)
> 0. The cost at time T̄ is γT̄ c(K).
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We define a new policy, π1, that is nonanticipative if π2 is, and that has a lower expected total discounted cost. Let

π1(t) = π2(t) for t < T̄ , and let π1(t) = π2(t+ 1) for t≥ T̄ . Then

Cπ1
=

T̄−1∑
t=0

γtc
(
Z(νπ1(t), nπ1(t))

)
+

∞∑
t=T̄

γtc
(
Z(νπ1(t), nπ1(t))

)
Cπ2

=

T̄−1∑
t=0

γtc
(
Z(νπ1(t), nπ1(t))

)
+ γT̄ c (K) +

∞∑
t=T̄+1

γtc
(
Z(νπ1(t−1), nπ1(t−1))

)
.

We prove the statement showing that Cπ1
−Cπ2

< 0 when T̄ <∞.

Cπ1
−Cπ2

=

T̄−1∑
t=0

γtc
(
Z(νπ1(t), nπ1(t))

)
+

∞∑
t=T̄

γtc
(
Z(νπ1(t), nπ1(t))

)
−

T̄−1∑
t=0

γtc
(
Z(νπ1(t), nπ1(t))

)
− γT̄ c (K)−

∞∑
t=T̄+1

γtc
(
Z(νπ1(t−1), nπ1(t−1))

)
= (1− γ)

(
∞∑
t=T̄

γtc
(
Z(νπ1(t), nπ1(t))

))
− γT̄ c (K)

< (1− γ)

(
∞∑
t=T̄

γtc (K)

)
− γT̄ c (K) = (1− γ)

γT̄ c (K)

1− γ
− γT̄ c (K) = 0

Thus, π2 is strictly worse than π1 on a set of nonzero probability, and is therefore not optimal, as was to be shown.

We now prove part (ii) of the lemma.

If: Let π∗ be optimal for Problem 2. Then by part (i) of the lemma, there is no worker who is retained so that

ni ≥ Λi. Therefore, π∗ is feasible for Problem 1, too. For any π, let C1
π , C2

π be the total expected cost of policy π in

Problem 1 and 2 and observe that C1
π =C2

π for any π. Then, for any π 6= π∗, C1
π =C2

π ≥C2
π∗ =C1

π∗ . Therefore, π∗ is

also optimal for Problem 1.

Only if: Let π∗ be optimal for Problem 1. Then, any policy that is feasible for Problem 1 is feasible for Problem 2.

Observing again that C1
π =C2

π for any π and that for any π 6= π∗, C2
π =C1

π ≥C1
π∗ =C2

π∗ it follows that π∗ is optimal

also for Problem 2.

Proof of Lemma 2. Suppose that π1 ∈Π is a policy for Problem 1 and that E[Λi]<∞ for all i ∈ S0. No policy for

Problem 1 can use an employee after he has quit. Thus, the random variable Λi(π1) in (3) satisfies 0≤Λi(π1)≤Λi on

every sample path, for all i ∈ S0. Suppose, by contradiction, that policy π1 ∈Π only employs κ1 <∞ workers with

some positive probability ε > 0. Then, since π1 ∈Π we have

P

(
κ1∑
i=1

Λi(π1)≥ ζ

)
≥ ε (17)

for all ζ ∈ R. Since 0 ≤ Λi(π1) ≤ Λi, together with Markov’s inequality, we obtain P (
∑κ1

i=1 Λi(π1)≥ ζ) ≤
P (
∑κ1

i=1 Λi ≥ ζ) ≤ κ1E[Λ1]/ζ. Selecting any ζ > κ1E[Λ1]/ε, we obtain a contradiction to (17) from which we can

conclude that π1 6∈Π. Hence, each policy for Problem 1 employs an infinite number of workers with probability 1.

Proof of Theorem 1. We turn now to the proof of Theorem 1. The argument requires a delicate analysis of the

Bellman equation (11) and of the Gittins index (13) whose properties are presented in order. In our analysis, we use

the weak topology on P(Ω). Thus, a sequence of measures {νt}∞t=1 in P(Ω) converges to a measure ν if and only if∫
Ω
h(θ)dνt→

∫
h(θ)dν for every continuous, real-valued function h on Ω. In addition, we equip the space P(Ω) with

the the Prokhorov distance function, %, so that the space (P(Ω), %) is a metric space. (see, e.g. Billingsley 1968 and

Aliprantis and Border 2006, Chapter 15).
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LEMMA 3. (i) For each ν, n and r, V (ν,m,n, r) is concave, non-decreasing and Lipschitz continuous in m, with

Lipschitz constant equal to 1. (ii) For each m,n, r, V (ν,m,n, r) is continuous in ν.

Proof. (i) When r= 1, the result is trivial and its proof is omitted. When r= 0, we proceed by means of the Value

Iteration Algorithm (see, e.g. Bertsekas and Shreve 1996, Section 9.5, Definition 9.10 and Proposition 9.14).

Let v0(ν,m,n,0) = 0 for all m ∈R, and notice that v0 is trivially nondecreasing, concave, and Lipschitz-1 contin-

uous in m for each ν,n. Assume that vk−1(ν,m,n,0) is nondecreasing, concave, and Lipschitz-1 continuous in m for

each ν,n. Let

vk(ν,m,n,0) = min{cf +m, (18)

ch1(n= 0) +E[c(Z(ν,n))] + γ(1− qn)E[vk−1(β(ν,Z(ν,n)),m,n+ 1,0)] + γqnV (1K ,m,n+ 1,1)},

and notice that ch1(n = 0) + E[c(Z(ν,n))] is constant with respect to m, γqnV (1K ,m,n+ 1,1) is nondecreasing,

concave, and Lipschitz-γqn continuous in m, and γ(1 − qn)E[vk−1(β(ν,Z(ν,n)),m,n + 1,0)] is nondecreasing,

concave, and Lipschitz-γ(1 − qn) continuous in m by the induction assumption. Recalling that monotonicity and

concavity are preserved under minimization, we obtain that vk(ν,m,n,0) is nondecreasing and concave in m.

To obtain that vk(ν,m,n,0) is also Lipschitz-1 continuous in m the argument is similar, but a little more care is

required. Given two Lipschitz functions h,h′ with Lipschitz constants c1, c2 respectively, min{h,h′} is Lipschitz with

constant c3 = max{c1, c2}. In our context, the left minimand is Lipschitz-1 continuous, and the right minimand is

Lipschitz-γ continuous. Since γ < 1, the result follows.

(ii) When r = 1, the Bellman equation does not depend on ν and the result is then trivial. When r = 0, we proceed

by means of the Value Iteration Algorithm. Let v0(ν,m,n,0) = 0 for all ν ∈P(Ω) and notice that v0 is continuous in

ν, for any given m,n. Assume now that vk−1(ν,m,n,0) is continuous in ν and let

vk(ν,m,n,0) = min{cf +m,

ch1(n= 0) +E[c(Z(ν,n))] + γ(1− qn)E[vk−1(β(ν,Z(ν,n)),m,n+ 1,0)] + γqnV (1K ,m,n+ 1,1)},

For νt→ ν we have that

E[c(Z(νt, n))] =

∫
Ω

(∫ Ksup

Kinf

c(z)ξn(z|θ)dz

)
dνt→

∫
Ω

(∫ Ksup

Kinf

c(z)ξn(z|θ)dz

)
dν =E[Z(ν,n)],

by the definition of the weak topology on P(Ω) since the f(θ) =
∫ Ksup

Kinf
c(z)ξn(z|θ)dz is continuous in θ by the

joint continuity of ξn(z|θ) in (z,θ). Interchanges of limits and integrals are justified by the Dominated Conver-

gence Theorem. In addition, Easley and Kiefer (1988, Theorem 1) also show that, under our assumptions on ξn(z|θ),

the Bayes operator is continuous in ν. Hence, for νt → ν, β(νt, z) → β(ν, z). Since vk−1 is continuous in ν by

the induction assumption and the composition of two continuous functions is again continuous we then obtain that

vk−1(β(ν, z),m,n+ 1,0) is continuous in ν for any given z. Then, the weak topology on P(Ω) and the Dominated

Convergence Theorem yield that E[vk−1(β(νt,Z(νt, n)),m,n+ 1,0)]→E[vk−1(β(ν,Z(ν,n)),m,n+ 1,0)] proving

continuity of the second addend. The third addend and the first minimand are constant, hence continuous, with respect

to ν. The result then follows since continuity is closed with respect to addition and minimization. �

LEMMA 4. For any given n, r, V (ν,m,n, r) is jointly continuous in ν, and m.
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Proof. For r = 1, the statement is equivalent to the continuity in m that was proven in Lemma 3. For r = 0,

observe that V (ν,m,n,0) is continuous in ν by Lemma 3–(ii). By Lemma 3–(i) we know that it is also Lipschitz

continuous, hence continuous in m. Let {(νt,mt)}∞t=1 be a sequence in P(Ω) × R and define a distance function

%̂ : (P(Ω)×R)2→ R+ as %̂ ((ν,m), (ν′,m′)) = %(ν, ν′) + |m−m′|, where %(·, ·) is the Prokhorov metric on P(Ω)

induced by the weak topology. It is easy to see that %̂ is an appropriate distance function on the product spaceP(Ω)×R.

Then, for (νt,mt)→ (ν,m),

|V (νt,mt, n,0)−V (ν,m,n,0)| ≤ |V (νt,mt, n,0)−V (νt,m,n,0)|+ |V (νt,m,n,0)−V (ν,m,n,0)| → 0

since, for any given n, the first addend converges to 0 by the continuity in m for any given ν (Lemma 3–(i)) and the

second addend converges to 0 by the continuity in ν for any given m (Lemma 3–(ii)). �

LEMMA 5. (i) cf +m>M(ν,n,0) if and only if HV (ν,m,n)< cf +m.

(ii) cf +m<M(ν,n,0) if and only if HV (ν,m,n)> cf +m.

(iii) cf +m=M(ν,n,0) if and only if HV (ν,m,n) = cf +m.

Proof. We prove each of the three statements in turn.

(i) If HV (ν,m,n) < cf + m, it follows that V (ν,m,n,0) < cf + m. Recall that M(ν,n,0) = sup{m̃ ∈

R : V (ν, m̃,n,0) = cf + m̃} and that V (ν, m̃,n,0) is concave and non-decreasing in m̃, and V (ν, m̃,n,0) ≤

cf + m̃ for all m̃. This implies cf +m>M(ν,n,0).

Again, recall that M(ν,n,0) = sup{m̃ ∈ R : V (ν, m̃,n,0) = cf + m̃} and that V (ν, m̃,n,0) is concave and

non-decreasing in m̃. If cf + m > M(ν,n,0) then V (ν,m,n,0) < cf + m. In turn, V (ν,m,n,0) < cf + m

implies it is optimal not to retire so HV (ν,m,n) = V (ν,m,n,0)< cf +m.

(ii) It follows directly from the proof of (i) by reversing the inequalities.

(iii) It follows combining claims (i) and (ii). �

LEMMA 6. For any n and any r, M(ν,n, r) is uniformly continuous in ν.

Proof. For r = 1, M(ν,n,1) = sup{m ∈ R : min{cq +m,c(K) + γV (1K ,m,n+ 1,1)} = cq +m} which is

constant with respect to ν. Hence, the result is trivial. For r = 0, we first show that M(ν,n,0) is continuous in ν for

any given n. Let νt → ν and define mt = M(νt, n,0). Since M(·) takes values in a compact set, we can extract a

subsequence of mt (also denoted by mt) such that mt→m. By joint continuity (Lemma 4) of V (ν,m,n,0) in ν and

m, it follows that V (νt,mt, n,0)→ V (ν,m,n,0). Similarly, HV (νt,mt, n)→HV (ν,m,n). By Lemma 5-(iii), we

have cf +mt = HV (νt,mt, n) = V (νt,mt, n,0) for any t. Hence, cf +m = HV (ν,m,n) = V (ν,m,n,0), which,

by Lemma 5-(iii), implies M(ν,n,0) = cf +m, establishing continuity. To see uniform continuity, recall that for any

given n, M :P(Ω)→ [cKinf/(1− γ), cK/(1− γ)]. Since Ω is compact, it follows that P(Ω) is compact as well (see,

e.g. Aliprantis and Border 2006, Theorem 15.11). The space P(Ω) equipped with the Prokhorov distance is then a

compact metric space, and M(·) is a continuous map of a compact metric space that is a fortiori uniformly continuous

(see, e.g. Rudin 1976, Theorem 4.19). �

We now recall the main result of Banks and Sundaram (1992).
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THEOREM 4 (Banks and Sundaram 1992, Theorem 4.1). Let νi,ni
have finite support for all i, ni. Then, worker

i with age ni and state ri is an optimal selection at time t if and only ifMi(νi,ni
, ni, ri) = infj{Mj(νj,nj

, nj , rj)}, and

there exists an optimal policy that always selects a Gittins-index-minimal worker.

Define co(Ω) = {ν ∈P(Ω) : | supp(ν)|<∞} to be the set of probability measures, ν, defined on the Borel sets of

Ω that have finite support. It turns out that co(Ω) is dense in P(Ω).

THEOREM 5 (see, e.g. Aliprantis and Border 2006, Theorem 15.10 or Billingsley 1968, Appendix III, Theorem 4).

If Ω is metrizable, then co(Ω), the set of probability measures with finite support, is dense in P(Ω).

Hence, for every ν ∈ P(Ω) and δ > 0, there exists ν̃ ∈ co(Ω) so that %(ν, ν̃) < δ, where %(·, ·) is the Prokhorov

metric on P(Ω).

THEOREM 6. For every νi,ni
∈ P(Ω) there is ν̃i,ni

∈ co(Ω) such that Mi(νi,ni
, ni, ri) = infj{Mj(νj,nj

, nj , rj)} if

and only if Mi(ν̃i,ni
, ni, ri) = infj{Mj(ν̃j,nj

, nj , rj)}.

Proof of Theorem 6. If: Fix ε > 0. Then, since M(ν,n, r) is uniformly continuous in ν for any given n and r (see

Lemma 6), there exists δ > 0 such that

|M(ν,n, r)−M(ν′, n, r)|< ε

2
. (19)

for any pair ν, ν′ such that %(ν, ν′) < δ. By Theorem 5 we can choose ν ≡ νi,ni
∈ P(Ω) to be the type distribution

of worker i with experience ni, and ν′ ≡ ν̃i,ni
∈ co(Ω) to be the finitely supported equivalent of νi,ni

. Hence, (19)

implies that

|M(νi,ni
, ni, ri)−M(ν̃i,ni

, ni, ri)|<
ε

2
. (20)

Now, let Mi(ν̃i,ni
) = infj{Mj(ν̃j,nj

)}, and notice that Mi(νi,ni
, ni, ri)≥ infj{Mj(νj,nj

, ni, ri)}. Then, suppress-

ing the ni’s and the ri’s, we have

Mi(νi,ni
)≤ |Mi(νi,ni

)−Mi(ν̃i,ni
)|+Mi(ν̃i,ni

)<
ε

2
+ inf

j
{Mj(ν̃j,nj

)} (21)

≤ ε

2
+ inf

j
{|Mj(ν̃j,nj

)−Mj(νj,nj
)|+Mj(νj,nj

)}< ε+ inf
j
{Mj(νj,nj

))}, (22)

where (21) and (22) follow from (19). Letting ε→ 0 yields Mi(νi,ni
) = infj{Mj(νj,t)}, as required for the “if” part

of the proof. A detailed “only if” part of the proof is omitted for brevity – it is very similar to the above “if” proof (the

roles of ν and ν̃ are reversed.) �

The proof of Theorem 1 follows now easily.

Proof of Theorem 1. Combine Theorem 6, which shows that the probability distributions with finite support are

dense in the set of probability measures on Ω, with Banks and Sundaram (1992, Theorem 4.1), which shows the

asserted result holds true for the case of measures with finite support. �

Proof of Corollary 1. At t= 0, no worker has ever been employed and all the workers have Gittins index m0. Then,

the sampling process starts with a random selection of worker, i, from the stationary pool of candidates. Worker i is

employed as long as Mi(νi,ni
, ni, ri) = infj{Mj(νj,t, nj , rj)} ≤m0. As soon as i is discarded, Mi(νi,ni

, ni, ri)>m0

and the sampling process starts again.

Proof of Corollary 2. It follows immediately from Lemma 1 and Theorem 1.
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Proof of Theorem 2. Consider the retirement-option problem described in Section 4. By Lemma 5-(iii), we obtain

cf +m0 =HV (ν0,m0,0), (23)

and we note that HV (ν0,m0,0) is the total expected discounted cost of the retirement-option problem. Further, we

let Λ̃ = inf{n ∈ N : HV (νn,m0, n) = cf + m0} be the optimal stopping time for which the employer decides to

end her business and pay the terminal cost m0, and we note that Λ̃
d
= 1 + Λi(π

∗). Then, HV (ν0,m0,0,0) = ch +

E
[∑Λ̃−1

t=0 γ
tc(Z(νt, t)) + γΛ̃(cf1(Λ̃<Λ) + cq1(Λ̃ = Λ) +m0)

]
, and by using (23), we obtain

(
1−E

[
γΛ̃
])

(cf +m0) = ch +E

Λ̃−1∑
t=0

γtc(Z(νt, t)) + γΛ̃(cq − cf )1(Λ̃ = Λ)

 . (24)

By Theorem 1, we know that the optimal policy for our original infinite-horizon-expected-discounted-cost problem

requires that the employer retains the jth worker as long as he is Gittins-index minimal, i.e. Mj(νn, n, rn)≤m0. Let

Λ̃j = inf{n ∈ N : Mj(νn, n,0) > m0} represent the tenure, under the optimal policy π∗, at which the jth worker

becomes unavailable (either because he resigned or because he was terminated). Set Λ̃0 = 0, and notice that {Λ̃j}∞j=1

is the iid sequence of optimal working-life times of the employees. Because E[Λj ]<∞ and the Λj are iid, Lemma 2

implies that the optimal policy will employ an a.s. infinite number of workers. Moreover,

inf
π∈Π

Cπ(ν0) = E

 ∞∑
k=1

γ
∑k−1

j=0
Λ̃j

Λ̃k−1∑
t=0

γt
{
ch1(t= 0) + c(Z(νπ(t), nπ(t)))

}
+ γΛ̃k(cq − cf )1(Λ̃k = Λk) + γΛ̃kcf


=

∞∑
k=1

E
[
γ
∑k−1

j=0
Λ̃j

]
E

Λ̃k−1∑
t=0

γt
{
ch1(t= 0) + c(Z(νπ(t), nπ(t)))

}
+ γΛ̃k(cq − cf )1(Λ̃k = Λk) + γΛ̃kcf


= (cf +m0)

(
1−E

[
γΛ̃1

]) ∞∑
k=1

E
[
γ
∑k−1

j=0
Λ̃j

]
+ cf

∞∑
k=1

E
[
γ
∑k

j=0 Λ̃j

]
(25)

=m0 + cf

(
1−E

[
γΛ̃1

])−1

=m0 + cf
(
1− γE

[
γΛ1(π∗)

])−1
,

where (25) follows from (24), and
∑∞

k=1 E
[
γ
∑k−1

j=0
Λ̃j

]
= 1 +E[γΛ̃1 ] +E[γΛ̃1 ]2 + . . .=

(
1−E

[
γΛ̃1

])−1

.

Proof of Proposition 1. To prove Proposition 1, we first prove the following lemma. In it, we use the notion of

a likelihood ratio order (see Shaked and Shanthikumar 2007, Section 1.C). Suppose that X is a random variable

with probability density function (pdf) fX and that Y is a random variable with pdf fY . We write X ≤lr Y (X is

stochastically smaller than Y in the likelihood ratio sense) if fY (t)/fX(t) increases in t over the union of the supports

of X and Y .

LEMMA 7. Let g : R3→ R be such that (i) for A∼ ν, β(ν, z)([−∞, a]) = P (A≤ a|Z = z) is nondecreasing in z

for any given ν. If, for any a≤ a′, ξn(z|a′)/ξn(z|a) is nondecreasing in z, then V (ν,m,n, r)≤ V (ν′,m,n, r), for any

ν ≤lr ν
′, and for each given m,n, r.

Condition (i) ensures that the Bayesian update implies that larger observations lead to stochastically larger posterior

distributions in some sense. Notice also that, for several well-known families of distributions, the likelihood ratio

comparison can be simply checked comparing distribution parameters. Müller and Stoyan (2002, Table 1.1) proposes

such comparison criteria for several continuous and discrete distributions.
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Proof of Lemma 7. For r= 1, V (ν,m,n,1) = min{cq +m,c(K) + γV (1K ,m,n+ 1,1)}, which is constant and

hence trivially nondecreasing in ν. For r= 0, he assumption that ξn(z|a′)/ξn(z|a) is nondecreasing in z for any a≤ a′

yields that Z(a,n) ≤lr Z(a′, n). Then, since ν ≤lr ν
′, Shaked and Shanthikumar (2007, Theorem 1.C.17) yield that

Z(ν,n) ≤lr Z(ν′, n). We can now show monotonicity of the Bellman equation (11) with respect to the likelihood

ratio order. We proceed by means of the Value Iteration Algorithm (see, e.g. Bertsekas and Shreve 1996, Section

9.5, Definition 9.10 and Proposition 9.14). Let v0(ν,m,n,0) = 0 for all distributions ν, and notice that v0 is trivially

nondecreasing in ν. Assume vk−1(ν,m,n,0)≤ vk−1(ν′,m,n,0) for ν ≤lr ν
′. Then,

vk(ν,m,n,0) = min{cf +m, (26)

ch1(n= 0) +E[c(Z(ν,n))] + γ(1− qn)E[vk−1(β(ν,Z(ν,n)),m,n+ 1,0)] + γqnV (1K ,m,n+ 1,1)},

Notice that E[vk−1(β(νt,Z(νt, n)),m,n + 1,0)] is an expectation with respect to Z, and recall that Z(ν,n) ≤lr

Z(ν′, n), and that, by Condition (i), β(ν, z) is nondecreasing in z. Recall that ≤lr⇒≤st (Shaked and Shanthikumar

2007, Theorem 1.C.1), where ≤st is the usual stochastic order. Then, Shaked and Shanthikumar (2007, Example

1.C.57) and the induction assumption yield E[vk−1(β(νt,Z(νt, n)),m,n + 1,0)] ≤ E[vk−1(β(ν′t,Z(ν′t, n)),m,n +

1,0)]. Also, E[Z(νt, n)]≤E[Z(ν′t, n)], showing that the second minimand in (26) is nondecreasing in ν.

The first minimand in (26) is constant for any given m, and monotonicity is preserved under minimization. Hence,

vk(ν,m,n,0) ≤ vk(ν′,m,n,0), for any ν ≤lr ν
′. Repeated application of the Value Iteration Algorithm then yields

V (ν,m,n, r)≤ V (ν′,m,n, r), for any ν ≤lr ν
′, as desired. �

Proof of Proposition 1. The posterior distribution of A has distribution N(ws, σ
2/s). The normal distribution has

the monotone likelihood ratio property required by Lemma 7 (see, e.g. Müller and Stoyan 2002, Table 1.1). An appli-

cation of that lemma proves the desired monotonicity for V .

For the Gittins index we have the following. When r = 1, M(ν,n,1) = sup{m ∈ R : min{cq + m,c(K) +

γV (1K ,m,n+ 1,1)} = cq +m}, which is constant and hence trivially nondecreasing in ν. When r = 0, the result

follows from that for V . Given ν ∼ N(ws, σ
2/s) and ν′ ∼ N(w′s, σ

2/s) with ws ≤ w′s, we have V (ν,m,n,0) ≤

V (ν′,m,n,0) for any m and n, and

mν =M(ν,n,0) = V (ν,mν , n,0)≤ V (ν′,mν , n,0)≤ sup{m : V (ν′,m,n,0) = cf +m}=M(ν′, n,0) =mν′ . �

Proof of Theorem 3. Recall from the proof of Theorem 2 that Λ̃ = inf{n ∈ N : HV (νn,m0, n) = cf +m0} and

that Λ̃
d
= 1 + Λi(π

∗). Since qn = q for all n, the proof of this result hinges on showing that

E

Λ̃−1∑
t=0

γt+1q

=E
[
γΛ̃
1(Λ̃ = Λ)

]
, (27)

that would imply that

E

Λ̃−1∑
t=0

γtc(Z(νt, t)) + γΛ̃(cq − cf )1(Λ̃ = Λ)

=E

Λ̃−1∑
t=0

γt {c(Z(νt, t)) + γq(cq − cf )}

 , (28)

and this gives us an alternative representation for Cπ∗(ν0). We know that under the optimal selection policy

Cπ∗(ν0) = E

 ∞∑
k=1

γ
∑k−1

j=0
Λ̃j

Λ̃k−1∑
t=0

γt
{
ch1(t= 0) + c(Z(νπ(t), nπ(t)))

}
+ γΛ̃k(cq − cf )1(Λ̃k = Λk) + γΛ̃kcf
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where the {Λ̃j}∞j=1 is the iid-sequence of optimal working lifetime of employees and Λ̃j
d
= Λ̃ for all j. Then, (28)

allows us to write Cπ∗(ν0) as

Cπ∗(ν0) = E

 ∞∑
k=1

γ
∑k−1

j=0
Λ̃j

Λ̃k−1∑
t=0

γt
{
ch1(t= 0) + c(Z(νπ(t), nπ(t))) + γq(cq − cf )

}
+ γΛ̃kcf


= inf
π∈Π

{
ch +E

[ ∞∑
t=0

γt
{
c
(
Z(νπ(t), nπ(t))

)
+ γq(cq − cf ) + (cf + ch)1(π(t) 6= π(t− 1))

}]}
. (29)

The quantity γq(cq − cf ) is a shifting constant that does not affect the minimization problem, so we have

Cπ∗(ν0) = inf
π∈Π

{
ch +E

[ ∞∑
t=0

γtc
(
Z(νπ(t), nπ(t))

)
+ (cf + ch)1(π(t) 6= π(t− 1))

]}
+
γq(cq − cf )

1− γ
, (30)

and the solution to the minimization problem on the right hand side is the same as the solution to that minimiza-

tion problem if the hiring cost is ch + cf and the firing and quitting costs are set equal to 0. As a consequence

Mi(νi,ni
, ni,0, ch, cf , cq)<m0(ch, cf , cq) if and only if Mi(νi,ni

, ni,0, ch + cf ,0,0)<m0(ch + cf ,0,0).

To complete our argument we then need to prove (27). The left-hand side satisfies

E

Λ̃−1∑
t=0

γt+1q

=

∞∑
t=1

γtqP(Λ̃≥ t) (31)

and that the right-hand side satisfies

E
[
γΛ̃
1(Λ̃ = Λ)

]
=

∞∑
t=1

γtP(Λ = t, Λ̃ = t). (32)

Now note that by using the fact that Λ̃
d
= 1 + Λi(π

∗) and the definition of q in (4) we have

qP(Λ̃≥ t) = P(Lt−1 = 1|Λ(π∗)≥ t− 1)P(Λ̃≥ t) = P(Lt−1 = 1|Λ̃≥ t)P(Λ̃≥ t) = P(Lt−1 = 1, Λ̃≥ t)

where the last equality follows from the definition of conditional probability. Recall from (10) that P(Lt−1 = 1, Λ̃≥

t) = P(Λ = t, Λ̃≥ t), and because Λ = t implies Λ̃ = t we also have P(Λ = t, Λ̃≥ t) = P(Λ = t, Λ̃ = t), which in turn

implies qP(Λ̃≥ t) = P(Λ = t, Λ̃ = t), just as needed in (31) and (32) to complete the proof of (27).
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