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ABSTRACT

PRINCIPIA NARCISSUS: HOW TO AVOID BEING CAUGHT BY YOUR REFLECTION

Geoffrey Alan Washburn

Stephanie Claudene Weirich

Some modern, statically typed programming languages provide the capability for programs to reflect,
or introspect, upon their typemeta-data at runtime. Using typemeta-data to determine programbehavior
is called type-directed programming (). Type-directed programming allows many operations on data,
such as serialization, cloning, structural equality, and general iteration, to be defined naturally, just once,
for all types of data. Consequently, these operations continue to work as systems grow and software is
extended with additional data types. Without , programmers must constantly revise the code that
implements these operations and scatter their implementations throughout their code-base.

However,  conflicts with the use of abstract data types (s), a fundamental technique in the
practice of software engineering. ¿e benefits of using s derive from the fact that their definitions
are hidden; however, with , abstract type meta-data becomes no more hidden than abstracted values
(often called variables) in standard programming.

In this dissertation, I show how  and s can be reconciled through the use of information-flow
type and kind systems. I begin by introducing the problem as well as my definitions for the properties
I call confidentiality and integrity. Next, I develop the theoretical foundation for reasoning statically
about confidentiality and integrity in programs that use , and show how information-flow type and
kind systems generalize prior techniques. I then describe a realistic programming language, Infor,
with an information-flow type and kind system. After introducing the Infor language, I describe
idioms for programming in Infor and the reasoning principles for confidentiality and integrity that
are a consequence of using these idioms. Finally, I discuss the implementation of Infor and the most
important design decisions made while implementing Infor.
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Preface

¿e beginning is the most important part of the work.

Plato (¿e Republic)

Gratitude is not only the greatest of virtues, but the parent of all the others.
Cicero (Pro Plancio)

I first began thinking about the problemof reconciling type-directed programming and representation
independence inMay of , not long aftermy advisor, StephanieWeirich, and I published our first paper
together. It was one of several research problems surrounding intensional type analysis we discussed.

¿e first time I recall having thought about recovering representation independence using
information-flow kind and type systems was at the end of June , at the University of Oregon
Foundations of Security Summer School. I remember asking Steve Zdancewic, after his lecture on
information flow, whether the idea made any sense.

¿e next time I remember thinking about information-flow kind and type systems was early January
, when I was invited to give a talk as part of the  Working Group .. I had been invited to
be a student participant, in exchange for handling some of the organizational tasks. Chiefly, I recall
being tasked with securing cheese-steaks from John’s Roast Pork in South Philly, for an outing at the
Constitution Center. I had considered giving a very rough presentation on my idea of using information-
flow kind and type systems, but, in the end, I decided that without having spent any time working out
the details, it would be best to decline the offer.

However, near the end of February , I began working on a  submission that would prove a
version of parametricity using an information-flow kind and type system. At that time, the paper had
the rather punny title “Cloak and Dagger: Type-Directed Programming with Information Flow” – I
was using dagger (†, ‡) and “bag” notation as part of the language’s meta-variables and syntax. I do not
remember whether it was the title or the notation that came first. However, about twenty-four hours
before the deadline, Stephanie and I decided that the paper was not going to be polished enough to be a
respectable submission.

Stephanie and I resumed work on the paper with the aim of submitting to ; the paper now had
the more staid title “Generalizing Parametricity Using Information Flow”. In the end, we did get the
paper together and submitted it to  in July of . Considerable thanks goes to Simon Peyton Jones
who allowed me to devote time to this paper, even though the primary goal of my internship at Microsoft
Research Cambridge was to work on generalized algebraic data types. ¿is paper was not accepted into
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the conference programme, but we received several helpful reviews that allowed for us to improve the
presentation of the ideas.

Fairly late in , I began to work on revising the paper but wound up taking a two detours. I
was intrigued by Eijiro Sumii’s work on using bisimulations to prove that abstract data types, including
those that contain recursive types, were contextually equivalent. ¿e former did not really lead to any
interesting results, because constructing a bisimulation will only tell you about the relationship between
two specific abstract data types, while it is possible to derive properties about any abstract data type
with a certain signature using generalized parametricity.

Also in late in , I tried working out an alternative proof of generalized parametricity that used an
effect system, rather than an information-flow kind and type system. Trying to use a language with an
effect system in the proof failed, but it helped me better understand that the way information-flow kind
and type systems make dependencies explicit is key to making the proof of generalized parametricity
work out.

Early in , I completed my revisions to “Generalizing Parametricity Using Information Flow” and
submitted the paper . ¿is version of the paper was accepted into the program, and formed the
theoretical basis for all of future work on reconciling type-directed programming and reasoning about
data abstraction. It was the seed from which this dissertation crystallized.

�

Despite having my name of the title page, this dissertation owes its existence to so many others. I
cannot hope to properly thank each of those individuals here, but I will try my best. If there is someone I
have forgotten, please forgive me – there are so many of you to remember.

Firstly, this dissertation would not have been possible without my parents, George and Sharon
Washburn. Aside from their obvious contribution to my own existence, throughout my life they have
given me considerable love and support in its many forms. From signing me up for classes on Logo
programming, when I was so young that I cannot even remember how old I was at the time, to helping
pay for the vast majority of my undergraduate education at Carnegie Mellon, they have helped me to
get to where I am today. Finally, much of this dissertation was written while I stayed with them, after I
allowed my lease on my apartment in Philadelphia to expire.

My advisor, StephanieWeirich, as I described above, suggested the research problem this dissertation
solves and helped with the development of generalized parametricity. However, those two contributions
are only a small fraction of the ways that she has helped me. During my time at Penn, she has done every-
thing from introducing me the Siamese breed of cat to working hard reading drafts of this dissertation
to provide me with critical feedback. I cannot imagine having had a better advisor than Stephanie, and I
am truly lucky to have worked with her.

Steve Zdancewic deserves nearly as much credit as Stephanie. Despite the fact that we have only
done a little research together, I have easily spent as much time with him while at Penn as Stephanie.
Because Steve’s research has often directly involved information-flow type systems, he has been an
invaluable resource throughout the research behind this dissertation. I am also grateful that he agreed to
serve as the chair of my thesis committee.
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Benjamin Pierce, foremost deserves my thanks for simply being at Penn. Without his presence,
research on types and programming languages at Penn would not be flourishing today. Even though I
spent only a single semester while at Penn doing research with Benjamin, he has always been valuable
resource on matters professional, personal, and artistic. He also has my thanks for agreeing to serve on
my thesis committee.

While I was an undergrad at Carnegie Mellon, Frank Pfenning taught my first lectures on functional
programming in Standard , and co-advised my senior thesis project with Peter Lee. Frank taught me
a great deal about constructive logic and formal proofs, of both, the paper and the mechanized variety.
He also set a standard for mathematical rigour that I strive to achieve.

¿ere were several people that, among other things, made specific contributions to this dissertation.
Below, I list these individuals and their contributions:

• Brian Aydemir, for doing some last minute proofreading.

• Daniel Dantas, for all his help in the development of Aspect, the precursor to Infor.

• Derek Dreyer, for pointing out a subtle flaw in the original version of the proof of generalized
parametricity.

• Vesa Karvonen, for his work on the Standard  extended basis library. It saved me from needing
to reinvent the wheel quite a often during the development of Infor.

• Peng Li (李鹏), for all sorts of help and advice with both my¿inkPad  and with my¿inkPad
. ¿e vast majority of Infor was implemented on the former and the vast majority of this
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
¿eproblem

With great power comes great responsibility.

Uncle Ben (Stan Lee, Amazing Fantasy , )

Some modern, statically typed programming languages provide the capability for programs to
reflect, or introspect, upon their type meta-data at runtime. For example, Java (Gosling et al. )
and the . Common Language Infrastructure (E ), the basis for many languages including
C (E ) and F (Syme and Margetson ), provide primitive operators and libraries to do
so. Using type meta-data to determine program behavior is called type-directed programming ().
Type-directed programming allows many operations on data, such as serialization, cloning, structural
equality, and general iteration, to be defined naturally, just once, for all types of data. Consequently,
these operations continue to work as systems grow and software is extended with additional data types.
Without , programmers must constantly revise the code that implements these operations and scatter
their implementations throughout their code-base.

However,  conflicts with the use of abstract data types (s), a fundamental technique in the
practice of software engineering (Parnas ). ¿e benefits of using s derive from the fact that
their definitions are hidden; however, with , abstract type meta-data becomes no more hidden than
abstracted values (often called variables) in standard programming.

In this dissertation, I show how  and s can be reconciled through the use of information-flow
type and kind systems. I begin by introducing the problem as well as my definitions for the properties
I call confidentiality and integrity. Next, I develop the theoretical foundation for reasoning statically
about confidentiality and integrity in programs that use , and show how information-flow type and
kind systems generalize prior techniques. I then describe a realistic programming language, Infor,
with an information-flow type and kind system. After introducing the Infor language, I describe
idioms for programming in Infor and the reasoning principles for confidentiality and integrity that





data Company = C [Dept]
data Dept = D Name Manager [SubUnit]
data SubUnit = PU Employee

| DU Dept
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Float
type Manager = Employee
type Name = String
type Address = String

Figure ·: Haskell data types and type definitions that describe a company (Lämmel and Peyton Jones
).

are a consequence of using these idioms. Finally, I discuss the implementation of Infor and the most
important design decisions made while implementing Infor.

In this chapter, I begin by illustrating the utility of  by showing how it can be used to concisely
implement traversals over arbitrary data. I then use this same example to show the tension between
 and s. Following a review of existing mechanisms that have been or could be applied to the
problem, but fail to provide flexible static reasoning principles concerning data abstraction, I show how
an information-flow type and kind system succeeds where these other mechanisms fail. I then conclude
with an overview of the contributions found in this dissertation and a road-map for the remainder of the
document.

§ · ¿e power of type-directed programming

Type-directed programming has become recognized as an effective tool for “scrapping” the significant
amount of “boilerplate” code for algebraic pattern matching that arises in modern statically typed
functional languages such as  (Milner et al. ; Leroy et al. ), F (Syme and Margetson ),
Scala (Odersky ), Clean (Brus et al. ), and Haskell (Peyton Jones ).

Imagine starting with a representation of a company written in Haskell as shown in Figure ·. If
a programmer wants to write a function for increasing the salary of all employees in the company by
a percentage (say, to adjust for inflation), it would typically be written using large amounts of tedious
pattern matching code like that found in Figure ·.

Lämmel and Peyton Jones (; ; ) have shown how  in Haskell can be used to de-
fine a type-directed mapping function called everywhere that, when supplied with a function of type
forall a.a -> a, applies it to every component of any given value. However, for everywhere to be
useful it must be possible to write functions of type forall a.a -> a that are not either the identity
function or divergent terms. ¿erefore, they also provide the lifting function mkT, that lifts a function
of type t -> t, for some type t, to be of type forall a.a -> a. ¿e resulting function is the identity
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increase :: Float -> Company -> Company
increase p (C ds) = C (map (increaseD p) ds)

increaseD :: Float -> Department -> Department
increaseD p (D nm mgr us) =
D nm (increaseE p mgr) (map (increaseU p) us)

increaseU :: Float -> SubUnit -> SubUnit
increaseU p (PU e) = PU (increaseE p e)
increaseU p (PD d) = PD (increaseD p d)

increaseE :: Float -> Employee -> Employee
increaseE p (E per s) = E per (increaseS s)

increaseS :: Float -> Salary -> Salary
increaseS p (S s) = S (s * (1 + p))

Figure ·: A function to increase the salary of all Employees in a Company. ¿e function is written in
terms of helper functions for the components of a Company (Lämmel and Peyton Jones ).

on data with any type other than t. Using everywhere and mkT it is possible to write a version of the
increase function from Figure · succinctly:

increase :: Float -> Company -> Company
increase p = everywhere (mkT (increaseS p))

increaseS :: Float -> Salary -> Salary
increaseS p (S s) = S (s * (1 + p))

In the code above, the programmer only writes the important case, the one that increases a Salary value
by the given percentage, and then uses mkT to create a function that works on any type. If the type is
Salary then increaseS p is called, otherwise the identity function is used. ¿e type-directed function
everywhere then walks over all of the constructors and components that make up a value of type Company
and applies the function mkT (increaseS p) from the bottom up. ¿e result is that anywhere a value of
type Salary occurs in the input Company, the function increaseS p will be called to increase the salary.
Consequently, every salary in the provided Company will be increased.

Repetitive boilerplate code is not limited to languages with algebraic data types and pattern matching
like  and Haskell; the same problems with boilerplate arise in object-oriented languages too. In object-
oriented languages, an experienced programmer might implement the same sort of traversals using
the visitor design pattern (Gamma et al. ). Using the visitor pattern requires that the programmer
implement cases for all classes to be traversed, even if there are only a few important cases. Furthermore,
the naïve implementation of the visitor pattern, in a language like Java, has the problem that it will only
work for those classes that implement a specific visitor interface. Palsberg and Jay () have shown





how the Java reflection libraries can be used to implement a type-directed version of the visitor pattern
that works for arbitrary Java objects.

¿ere are many more examples of successful uses of  for a variety of applications:

• Java’s reflection libraries have been used to provide tools for interacting graphically with compo-
nents called “Beans” (Sun Microsystems ).

• Vestin (), in his masters thesis, has shown  can be used for implementing genetic algo-
rithms.

• Jeuring and Hagg () have shown how to use , in Generic Haskell (de Wit ), to easily
generate  tools, such as editors and compressors.

• Jansson and Jeuring () have shown how to use  to perform unification on arbitrary first-
order data.

• Achten, et al. () have shown how to use , in the Clean language, for generating gui views
from arbitrary first-order data, and later with van Weelden () described how it could be
extended to handle higher-order data.

• Cheney () has shown how to extend the ideas developed by Lämmel and Peyton Jones to write
a library so that programmers can create their own data types with binding structure, similar to
the capabilities of languages like FreshOCaml (Shinwell and Pitts ).

• Mitchell and Runciman () have developed a library for type-directed traversals that, among
other applications, has been used to extensively as part of the implementation of the Yhc Haskell
compiler (Golubovsky, Mitchell, and Naylor ).

Programmers and researchers will no doubt continue developing new and compelling applications of
.

However, despite all the benefits to writing software using , it can make reasoning about the
properties of abstract data types difficult, if not impossible. In the next section I will explain the conflict
between  and abstract data types.

§ · Type-directed programming and abstract data types

Using abstract data types has long be recognized as a fundamental technique in the practice of software
engineering (Parnas ). Many of the benefits of using abstract data types derive directly from the fact
that the interface for an abstract data type can be independent from its implementation. By independent,
I mean that programs written against the ’s interface will behave the same regardless of how the 
is implemented. In statically typed languages, interfaces give names to types and operations on them

. ¿is is, of course, not completely true. If changing the implementation of an  did not change the program’s behavior
it is unlikely it would ever be changed. A common reason to switch s is to improve performance, but reasoning at that level
is beyond the scope of my dissertation. ¿e ability to abstract away from low level details, like performance characteristics, is
part of what makes reasoning with s compelling.
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and implementations provide definitions of those types and operations. For example, if the interface for
an  for sets is independent of its implementation, it would be possible to implement sets either as
lists of elements or as hash-tables of elements, and yet not impact the behavior of the overall program.

If a language has the property that the behavior of programs is independent of all possible s,
that is it is possible to freely switch between different implementations of the same interface for any
given , I say that the language has representation independence. For example, the polymorphic
λ-calculus (Girard ; Reynolds ) is a language with representation independence.

I will frequently say that an  has the property of confidentiality, which means that how the
interface of a specific  is implemented does not affect the behavior of some subset of a program.
For example, I might say that the an  for sets has confidentiality inside a function for converting
sets to strings. Or I might say that an  for complex numbers has confidentiality with respect to
the entire program. If a language has representation independence, it is a corollary that every 
has confidentiality with respect to all subsets of a program. On one hand, if every  in a program
has confidentiality with respect to all subsets of a program, this does not imply that the language has
representation independence. On the other hand, if an  does not have confidentiality with respect to
some part of the program, that implies that the language does not have representation independence.

T, by definition, changes the behavior of operations based upon the type of their inputs. For
example, in the previous section, if the type-directed function everywhere is applied to a value of type
Company it will call itself recursively on the list argument to the C data constructor, and when applied to a
value of type Employee it will call itself recursively on the Person and Salary arguments to the E data
constructor. Because a type-directed operation can alter its behavior based on the type of its inputs,
how an  has been implemented can affect the behavior of the program. ¿erefore, representation
independence does not hold in a language with , because s do not have confidentiality with
respect to type-directed functions.

To illustrate how  can violate the confidentiality of an , consider the example data types from
the previous section. Imagine if companies were defined using the same constructors as in Figure ·,
but given an interface like the Companiesmodule in Figure ·. ¿e identifiers in the parenthesized block
following module Companies, in Figure ·, are the exports for the module. ¿erefore, Companies exports
the data types (Company, Dept, etc.) while the actual data constructors, (C, D, etc.) are hidden. Because
Companies hides the data constructors, it must provide accessor and constructor functions for each of
the data types. Additionally, the Companiesmodule provides functions (valCompany, etc.) for computing
the valuation of the various data types.

Now consider the following type-directed function, valuation, that computes the total valuation of
a company, in terms of the salaries it pays out:

valuation :: Company -> Float
valuation = everything (+) (mkQ 0 getSalary)

¿is example introduces two new type-directed operators described Lämmel and Peyton Jones (),
everything and mkQ. ¿e function everything is a form of type-directed fold or query, which takes two

. I am using these simplified operators rather than the more general type-directed operator, gfoldl, because according to
Lämmel and Peyton Jones: “Trying to understand the type of gfoldl directly can lead to brain damage.”
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module Companies (
Company, Dept, SubUnit, Employee, Person , Salary, -- exported data types
Manager, Name, Address, -- exported type definitions

-- exported accessors
companyDepts, ..., getSalary

-- exported constructors
newCompany, ..., newSalary

-- exported valuation functions
valCompany, ..., valSalary

) where
...
...
companyDepts :: Company -> [Dept]
companyDepts (C ds) = ds
...
getSalary :: Salary -> Float
getSalary (S s) = s

newCompany :: [Dept] -> Company
newCompany ds = C ds
...
newSalary :: Float -> Salary
newSalary s = S s

valCompany :: Company -> Float
valCompany (C ds) = foldl (+) 0 (map valDept ds)
...
valSalary :: Salary -> Float
valSalary (S s) = s

Figure ·: A module interface for the Company and related data types.
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functions. Its second functional argument is a query function, with type forall a.a -> b, for some
type b, that is applied to all subterms of an input value (including the value itself ). ¿e first functional
argument of everything is a combining function, with type b -> b -> b, that can be used to combine
answers returned from the query function.

In the function valuation, the query function argument used by everything is constructed using
the type-directed function mkQ (“make query”). ¿e function mkQ takes a default value of type b and
a monomorphic query function for a specific type, that is, a function from c -> b, for some type c,
and creates a new type-directed function of type forall a.a -> b. When applied to values of type
c, the function created by mkQ returns the value that would be computed by the monomorphic query
function. For inputs of any other type, the function created by mkQ will return the default value. So,
for example, the function created by (mkQ 0 getSalary) returns 2000 if applied to (newSalary 2000)

and returns 0 if applied to (newCompany []) – if (mkQ 0 getSalary) is applied to a salary it returns the
Float representation of that salary, otherwise it just returns the Float value 0.

¿e function valuationwalks over every subterm of its input using the everything operator, applying
the function (mkQ 0 getSalary) to every subterm. ¿e everything operator then uses the function (+)

to combine the result of each of these applications. ¿e overall result is that valuation will return the
sum of all the salaries in a value of type Company.

It is also worthwhile to revisit the type-directed function increase described in the previous section.
Because the data constructor S for Salary is no longer visible, the function increasemust be rewritten
as:

increase :: Float -> Company -> Company
increase p = everywhere (mkT (increaseS p))

increaseS :: Float -> Salary -> Salary
increaseS p s = newSalary ((getSalary s) * (1 + p))

Because both valuation and increase are type-directed functions, their behavior necessarily de-
pends upon the implementation of the Company type in the Companiesmodule. ¿erefore, if the imple-
mentation of Companiesmodule is changed the behavior of these two functions can change. ¿erefore, I
say that the Companiesmodule does not have confidentiality with respect to the functions valuation
and increase.

¿e problem is that because changing the implementation of the Companiesmodule can alter the
behavior of the valuation and increase, it is possible to naïvely make changes that can result in incorrect
behavior. For example, a programmermaintaining the Companiesmodule might decide that for especially
large companies, it is important to cache the total payroll for a department within the data structure
itself. ¿is could be done by redefining the Dept data type inside the module as:

data Dept = D Name Manager Float [SubUnit]

In this revised definition, the Float argument is used to cache the value of the payroll. Because this
change can be made without altering the interface as defined in Figure · the programmer might
assume that it is safe to make this change. However, using the type-directed function increase will now
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corrupt values of type Company because it does not update cached valuations. ¿e type-directed function
valuation, unlike increase, continues to behave the same as it did before.

One might argue that, increase, or a function like it, should be provided as part of the abstraction
provided by the Companiesmodule. In practice, the author of an  cannot predict all the operations
that could be desirable. ¿erefore, it can be necessary to write a function like increase after the fact,
and without access to the ’s source code.

It is also important to note that adding a cache to the definition of Dept in the previous section would
have also caused values of type Company to become corrupted by the original version of the increase
function. However, in the previous section the data type definitions were not abstract, so it is not
reasonable to assume that changing the implementation will not impact the behavior of the program.
¿at is, confidentiality is only defined for abstract type definitions, not concrete type definitions.

Furthermore, why is it that the increase function proves problematic and the valuation function
is not, when both functions violate the confidentiality of the Companies module? ¿e reason is, that
in practice, representation independence and confidentiality are stronger properties than are always
necessary – sometimes it will be acceptable for these properties not to hold. ¿is proved to be the case,
for example, with the valuation function that continued to work correctly despite the change in the
Companiesmodule. In the remainder of this section I will introduce aweaker property than confidentiality,
called integrity, that is violated by the function increase. I claim that while it is sometimes useful to
violate confidentiality, integrity should always hold.

For some s, there can be invariants on values of the abstract type. ¿e problem in the example
above arose because when the definition of the Dept type was changed, this introduced an invariant on
the Companiesmodule. ¿is invariant was that the third argument to the D constructor is equal to the
sum of the valuations of its Manager and SubUnit components. In a language without , operations
defined for such an  can safely assume that these invariants always hold on their inputs. In the
case of the Companiesmodule, this would mean that the valDept function can assume that it will always
receive values of type Dept with a correctly cached valuation. ¿is is a reasonable assumption, because
no part of the program outside the Companiesmodule should be able to manipulate these values because
their definitions are hidden.

By using  it is possible to construct values of the  that violate the invariants. In the example
above, the type-directed function increase did just that. If the function valCompany should receive one
of these values as an input, I say that the integrity of the Companiesmodule has been violated. ¿is also
explains why the valuation function remains benign, despite the change to the implementation of the
Companiesmodule – it never produces values of an abstract type, so valuation can never violate any
hidden invariants.

Note that I distinguish between the creation of a value that does not satisfy the invariants of the
, and the use of such a value by a function that expects those invariants to hold. ¿e reason for this
distinction is because it may not always be possible to atomically modify a value so that the invariant is

. In the context of information-flow systems, the property of integrity is often considered to be a dual to the property of
confidentiality (Biba ). I am not using the term integrity in this sense.

. ¿is assumption requires that the operations defined as part of the  itself always produce output values that meet
this invariant.
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guaranteed to hold during execution. For example, just using the increase function does not violate
integrity, but calling the function valCompany on a value produced by increase does violate integrity.

I claim that the property of integrity is subsumed by confidentiality, and in turn by representation
independence. ¿is is because it is only possible to violate the integrity of an  by having knowledge
of that ’s implementation. Knowing the implementation of an  can only be accomplished by
first violating confidentiality of that . For example, the increase function only works because it can
traverse the structure of a Company and its components. It can only traverse over the children of a Dept
node because the function everywhere will violate the confidentiality of Dept to learn the structure of its
implementation. ¿erefore, to reconcile  with s it seems that it is important to not only be able
to reason about the confidentiality of an , but its integrity as well.

I arrived at the properties of confidentiality and integrity independently, but they were considered
quite early in the study of data abstraction. For example, Morris in his paper Types are not sets ()
says:

All values used to represent the abstract objects are considered to be of a certain type. ¿e
rules are:

• Only values of that type can be submitted for processing (authentication).
• Only the procedures given can be applied to objects of that type (secrecy).

¿e remaining question is how to decide whether a given value has a particular type.

Morris’s notions of authentication and secrecy are analogous to my notion of integrity and confidentiality,
respectively.

One solution for ensuring that integrity always hold is to simply prohibit . However,  is
an invaluable programming technique, so prohibiting  altogether is counter-productive. A second
solution is to have all  operations validate their inputs to ensure that all expected invariants hold. ¿is
will ensure that integrity always holds, but can be too computationally expensive in practice. Another
solution to ensure integrity, would be to always express the invariants of an  as part of its definition.
In other words, as part of the type itself. ¿is, however, requires a far more powerful type system than
is currently outside of experimental programming languages. A third possible solution for preserving
integrity is to examine whether a technique developed for securing and protecting program data can be
applied to securing and protecting typemeta-data as well. In the next section, I will explain how I propose
to use techniques from information-flow type systems to statically reason about the confidentiality and
integrity of s.

. An analogous situation arises in languages that use a substructural type systems to ensure the safety of dynamically
managed memory. Languages like Cyclone (Swamy et al. ) and Vault (DeLine and Fähndrich ) allow the linearity of a
memory reference to be violated within a restricted scope, as long as linearity is restored before the scope ends.

. Confidentiality only subsumes integrity in type safe languages. In a language where unsafe and unchecked casts are
allowed, it is possible to violate integrity without having knowledge of an ’s implementation. For example, the following
C++ (Stroustrup ) code fragment allows code like string* foo = (string *)(new int); cout << *foo; which violate
the integrity of the string  without knowledge of its implementation.
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§ · Reasoning about confidentiality and integrity using information-flow

My thesis in this dissertation is that information-flow kind and types systems can be used to reason
statically about the confidentiality and integrity of s in the presence of . ¿e reason for this
is that information-flow kind and type systems make the dependencies in programs explicit. Because
the dependencies are explicit and recorded in the types and kinds of a program, programmers can
reason about how different parts of the program are related without needing to inspect all of the
code itself. Because types, and the associated information-flow annotations, are known at compile
time, programmers can also reason statically about their s and their use of  in programs. A
programmer could know by examining a type signature that changing her implementation of an  for
sets could potentially affect the program’s behavior without needing tomake the change, run the program,
and observe the behavior. Finally, information-flow kind and type systems can allow programmers not
only to observe the dependencies in their program, but allow them to enforce policies on the allowable
dependencies using type annotations.

¿e reason I chose to use an information-flow kind and type system to reason about confidentiality
and integrity is because information-flow type systems have been successfully used to reason about
the confidentiality and integrity of term data. Volpano, Smith, and Irvine () showed that a static
information-flow analysis could be formulated as type system and proved its soundness with respect to
the property known as noninterference. In an information-flow type system the types of data are labeled
with an information content. Usually the information content is expressed in terms of a lattice (Bell and
La Padula ; Denning ). ¿e bottom element of the lattice, ⊥, is informally considered to be “low
security” data while the top of the lattice, ⊤, is informally considered to be “high security” data.

A program is noninterfering if changing high security input values, that is, values whose types are
labeled with ⊤, will not change the resulting low security output values, that is, values whose types are
labeled with ⊥. It is worth noting that this sounds very familiar to representation independence, where
changing the implementation of an abstract data type does not affect the behavior of the program. In
fact, a program that is noninterfering is said to preserve confidentiality of data; it is not a coincidence
that I have been using the term confidentiality. It is natural to consider: If an information-flow type
system can prevent high security data from affecting low security data, can an information-flow kind
system prevent high security, or abstract, type meta-data from affecting the low security term and type
data?

To illustrate how information-flow kind and type systems can be used observe the dependencies and
enforce policies in programs with s and , I will start with the example program in Figure ·.
It defines a module containing two type-directed operations, a module Nat implementing an  for
natural numbers, and a module Set implementing an  for sets. ¿e example is written in Standard 
() (Milner, Tofte, Harper, and MacQueen ) extended with a single new type-directed operation
called typecase. I will first explain how the typecase primitive works and then I will explain Figure ·
in detail. Finally, I will then show how the example could be extended with an information-flow kind
and type system.

¿e typecase operator works very much like the  case operator for patternmatching on algebraic
data types, but instead of pattern matching on values, typecase pattern matches on types. For clarity,
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structure Generic = struct
fun cast (x : ’a) : ’b =

typecase ’a of ’b => x | _ => abort "Types are not the same"

fun eq (x : ’a) (y : ’a) : bool =
typecase ’a of int => x = y

| bool => if then y else (not y)
| ’b * ’c => (eq (#1 x) (#1 y)) andalso (eq (#2 x) (#2 y))
| _ => abort "Cannot compare this type for equality"

end :> sig
val cast: ’a -> ’b
val eq: ’a -> ’a -> bool

end

structure Nat = struct
type t = int
val z = 0
fun s n = n + 1
fun pred n = if n = 0 then 0 else (n - 1)

end :> sig
type t
val z: t
val s: t -> t
val pred: t -> t

end

structure Set = struct
type ’a t = ’a list
val empty = []
fun member x [] = false
| member x (x’::xs) = (Generic.eq x x’) orelse (member x xs)
fun add x s = if (member x s) then s else (x::s)
fun remove x [] = []
| remove x (x’::xs) = if (Generic.eq x x’) then xs else (x’::(remove x xs))

end :> sig
type ’a t
val empty: ’a t
val member: ’a -> ’a t -> bool
val add: ’a -> ’a t -> ’a t
val remove: ’a -> ’a t -> ’a t

end

Figure ·: An example of type-directed programming in  using typecase.
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I will often refer to the type that typecase dispatches on as the scrutinee. One additional difference
between case and typecase is that the latter performs type refinement. ¿e following example concisely
illustrates type refinement:

fun negate (x: ’a) : ’a =
typecase ’a

of int => ~x
| bool => not x
| _ => abort "This type cannot be negated"

In this example, typecase does not just alter the control-flow of the function. Inside each of the branches
of typecase it also refines the type that it matched against. It does this by introducing a new type equality
into the environment. For example, when typechecking the branch for when the type variable ’amatches
against the type int, the type equality ’a = int will be assumed. Otherwise, the expression ~x would
not be well-typed – applying the function ~, which has a type of int -> int, to the value x, with type ’a,
is not allowed. However, it is allowed because the typechecker knows that ’a is equal to int inside this
branch. Similarly, inside the second branch the typechecker assumes the type equality ’a = bool.

In Figure · the Module Generic defines a library of two type-directed functions: cast and eq. ¿e
function cast is a type-safe cast that compares the type of its argument with the desired result type and,
if they match, it returns the input unchanged, otherwise it aborts with an error message. ¿e function eq

implements a very basic version of polymorphic structural equality. For primitive types, like int, it calls
the primitive equality function, and for compound types, like tuples ’b * ’c, it calls itself recursively on
the components. For types that it does not know how to compare, eq aborts.

¿e module Nat defines a minimal implementation of the natural numbers as the abstract type Nat.t.
¿e value Nat.z is zero, Nat.s is the successor function, and Nat.pred is a predecessor function that
returns zero as the predecessor of zero. ¿e module Nat is ascribed with an opaque signature that does
not reveal that Nat.t is defined in terms of integers. ¿e module Nat has the unspecified invariant that
Nat.pred will never receive a negative integer as an argument.

¿e module Set defines a simple implementation of sets. Sets themselves are represented as lists
of elements, where the empty set, Set.empty is implemented as the empty list. ¿e module defines set
membership with the Set.member function; this function is especially interesting because it uses the type-
directed function Generic.eq to test whether elements of the abstract type ’a are equal. ¿emodule also
defines functions for adding elements to a set (Set.add) and removing elements (Set.remove). Before
consing the element to be to be added to the set onto its list argument, the function Set.add uses
the function Set.member to determine whether the element is already in the set. Like Set.member, the
function Set.remove uses the type-directed function Generic.eq to test whether the element, of type
’a, at the head of the list is the same as the element to be removed. ¿e module Set has the unspecified
invariant that Set.remove will never receive a list with duplicate elements as an input.

¿e example in Figure · contains several confidentiality violations. ¿e functions Generic.cast,
Generic.eq, Set.member, Set.add, and Set.remove all violate the confidentiality of their type parameters.
¿at is, their behavior will depend on the type parameter they are instantiated with. For example, the
following program fragment will cause the execution of the program to abort:

Set.add (Set.add 1 Set.empty) (Set.add (Set.add 1 Set.empty) Set.empty)
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while the following program fragment will return with a value:

Set.add (Nat.s Nat.z) (Set.add (Nat.s Nat.z) Set.empty)

¿e reason for this difference is that the adding elements to a set requires using Generic.eq to determine
whether an element is already in the set. However, because Generic.eq does not have a case for values of
type int list, it will abort in the first fragment. Generic.eq does have a case for values of type int, and
so the second fragment executes as expected. ¿is program fragment is not an example of a violation of
the integrity of the Setmodule because Set.remove never receives a list containing duplicate elements.

¿e example code in Figure · does not contain any integrity violations, but it is straightforward to
construct small examples that do violate integrity using the three modules. For example, it is possible to
violate the integrity of the Natmodule by writing the expression

Nat.pred (Generic.cast ~1 : Nat.t)

Similarly, the integrity of the Setmodule may be violated with the expression

Set.remove 1 (Generic.cast [1, 1] : int Set.t)

Both of these violations are created by using the function Generic.cast to bypass the type abstraction
of the Nat and Setmodules.

¿ese modules are difficult for a programmer to reason about because the type signatures do not
provide any information about the relationships and dependencies between them. For example, the
signature for the Setmodule does not provide any indication that the operations on sets will depend
upon the type of the elements. Furthermore, a programmer cannot tell whether using a different
implementation of modules would cause the program to behave any differently.

Figure · shows how the example in Figure · could be written in a language with an information-
flow type and kind system. Note that this example is not written in Infor, the language I will introduce
§ . It is instead a simplified realization of the same ideas, so that it is a more gradual departure from the
original example in Figure ·.

¿ere are five significant changes, in Figure ·, from the original example: explicitly specified kinds
with labels, explicitly specified quantification, label polymorphism, constraints on labels, types with
labels, and label creation.

Because kinds are labeled with the information content of type meta-data, unlike in Figure ·, the
kinds of type variables can no longer be left completely implicit. I write * @ l for the kind of a type
whose associated meta-data has an information content of l. It can be read as “a type at level l”. I write
l1 ⊔ l2 for the join of the two labels l1 and l2, that is, the smallest label representing an information
content greater than both l1 and l2.

Now that the kinds of type variables must be made explicit, it is no longer possible to always leave
the universal quantification over type variables implicit, as it is in -like languages. I write ⟨’a :* @ l⟩

to indicate that the type variable ’a, with the kind * @ l, is universally quantified in the type that follows.
Furthermore, just as many  functions are polymorphic in the types of their arguments, in a language
with information-flow, functions are frequently polymorphic in their labels. ¿erefore, in the example, it
is possible to specify that a label is universally quantified in a type by writing ⟨l⟩. If a function is both label
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structure Generic = struct
newlabel eql
fun cast ⟨ll l2 l3|(’a : * @ l1) (’b : * @ l2)⟩ (x : ’a @ l3) : ’b @ (l1 ⊔ l2 ⊔ l3) =

typecase ’a of ’b => x | _ => abort "Types are not the same"

fun eq ⟨l1 l2|’a : * @ l1|l1 <: eql⟩ (x : ’a @ l2) (y : ’a @ l2) : bool @ (l1 ⊔ l2) =
typecase ’a of int => x = y

| bool => if x then y else (not y)
| ’b * ’c => (eq (#1 x) (#1 y)) andalso (eq (#2 x) (#2 y))
| _ => abort "Cannot compare this type for equality"

end :> sig
label eql
val cast : ⟨l1 l2 l3|(’a : * @ l1) (’b : * @ l2)⟩ ’a @ l3 -> ’b @ (l1 ⊔ l2 ⊔ l3)
val eq : ⟨l1 l2 l3|’a : * @ l1|l1 <: eql⟩ ’a @ l2 -> ’a @ l3 -> bool @ (l1 ⊔ l2 ⊔ l3)

end

structure Nat = struct
type t = int
val z = 0
fun s n = n + 1
fun pred n = if n = 0 then 0 else (n - 1)

end :> sig
type t : * @ Generic.eql
val z : t @ ⊥
val s : ⟨l⟩ t @ l -> t @ l
val pred : t @ ⊥ -> t @ ⊥

end

structure Set = struct
type ’a t = ’a list
val empty = []
fun member x [] = false
| member x (x’::xs) = (Generic.eq x x’) orelse (member x xs)
fun add x s = if (member x s) then s else (x::s)
fun remove x [] = []
| remove x (x’::xs) = if (Generic.eq x x’) then xs else (x’::(remove x xs))

end :> sig
type (’a : * @ Generic.eql) t : * @ ⊤
val empty : ⟨l|’a : * @ l|l <: Generic.eql⟩ (’a t) @ ⊥
val member : ⟨l|’a : * @ l|l <: Generic.eql⟩ (’a @ l2) -> ((’a @ l) t) @ l -> bool @ l
val add : ⟨l|’a : * @ l|l <: Generic.eql⟩ (’a @ l) -> (’a t) @ l -> (’a t) @ l
val remove : ⟨l|’a : * @ l|l <: Generic.eql⟩ (’a @ l) -> (’a t) @ l -> (’a t) @ l

end

Figure ·: An example of type-directed programming augmented with information-flow.
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and type polymorphic, this is specified by writing ⟨l|’a :* @ l⟩, where there is a vertical bar between
the quantified label variables and the quantified type variables.

In order for some functions to typecheck, or so to allow the programmer to specify a policy on
information-flows, some polymorphic values in the example also include a constraint that serves as a
precondition. For example, several functions in Figure · have a prefix like ⟨l1|’a :* @ l1|l1 <: l2⟩.
¿is means that it is a value that is polymorphic in the labels l1 and l2 and the type variable ’a, with
kind * @ l1, and that it has the precondition that the label l1must be less than or equal to the label l2.

Just as kinds are labeled to specify the information content of type meta-data, it is also necessary in
Figure · to label types to specify the information content of term data. Again, this is done with the “at”
(@) symbol. For example, in Figure ·, the function Generic.cast had type ’a -> ’b it now has type

⟨l1 l2 l3|(’a : * @ l1) (’b : * @ l2)⟩ ’a @ l3 -> ’b @ (l1 ⊔ l2 ⊔ l3).

¿is type can be read as “for all labels l1 and l2, and for all types ’a and ’b, with the kinds * @ l1 and
* @ l2 respectively, given a value of type ’a with an information content of l3 it will return a value of
type ’b with an information content of l1 ⊔ l2 ⊔ l3”. However, it is worth understanding why this is
the correct type for Generic.cast.

In the body of the Generic.cast function, the decision of whether ’a should match with ’b or match
with _ depends upon the type meta-data associated with ’a and ’b. However, because the structure of
the type ’a has an information content of l1 and the structure of the type ’b has an information content
of l2, values computed as a result of this decision must have at least an information content of l1 and l2.
Furthermore, the value x has an information content of l3, so the value of type ’b that is returned by
the function must also have an information content of at least l3. ¿erefore, the best information-flow
annotation that can be given to result type of Generic.cast is (l1 ⊔ l2 ⊔ l3), which means that the
result necessarily depends upon the information content of its type arguments as well as the information
content of the value to be cast.

Similarly, because the result of Generic.eq depends upon the structure of the quantified type ’a,
having an information content of l1, and its two arguments x and y, having an information contents of l2
and l3 respectively, the boolean returned must have an information content of at least (l1 ⊔ l2 ⊔ l3).
However, unlike Generic.cast, Generic.eq has a constraint that the quantified label l1 must be less
than or equal to the label eql.

¿e label eql in Figure · is a new label constant defined within the Generic module using the
newlabel primitive. ¿erefore, in other parts of the example it is referenced using the fully qualified
name Generic.eql. ¿e label definition for eql does not specify anything about its properties, so it can
only be assumed that eql is greater than or equal to the ⊥ label and less than or equal to the ⊤ label. ¿e
purpose of the label eql is to specify an upper bound on the information content of types that may be
used Generic.eq.

¿e constraint l1 <: eql on Generic.eq is not required by its implementation, but is instead an
example of using kind and type annotations to specify the allowable dependencies in a program. In this
case, the goal of defining the label eql and giving Generic.eq the constraint annotation l1 <: eql is to
specify that this implementation of type-directed equality may only be used to compare values of type
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’a where the information content of ’a is less than or equal to eql. I will explain the impact of this policy
as I describe more of the differences between Figure · and Figure ·.

Whenmoving to an information-flow kind and type system, the Natmodule does not require changes
to its implementation. However, there several changes to its signature. First, the abstract type Nat.t
has been given the kind annotation * @ Generic.eql to indicate that the type Nat.t has an information
content of Generic.eql. Second, the value Nat.z has been annotated with the label ⊥ to indicate that
it has no information content. ¿ird, the function Nat.s has been made label polymorphic. Fourth,
the function Nat.pred has been labeled such that it accepts only natural numbers with an information
content of ⊥ and returns natural numbers with an information content ⊥.

¿e reason I chose these particular label annotations was to prevent the integrity violation for the
Natmodule I described earlier. With the information-flow kind and type system, the expression

Nat.pred (Generic.cast ~1 : Nat.t)

I gave earlier would need to be rewritten as

Nat.pred (Generic.cast ~1 : Nat.t @ Generic.eql)

Aside from the fact that types must now be labeled with an information content, it is necessary to specify
that the result of using Generic.cast has an information content of Generic.eql.

As I described above, the result of Generic.cast depends upon its type arguments as well as the
value being cast. If I instantiate Generic.cast with the types int @ ⊥ and Nat.t @ ⊥, and give it the
argument ~1, it must necessarily return a value with an information content of Generic.eql. ¿is is
because the information content of int @ ⊥ is ⊥, the information content of Nat.t @ ⊥ is Generic.eql,
and the information content of ~1 is ⊥. ¿erefore, the label l1 ⊔ l2 ⊔ l3 on the Generic.cast’s range
will be ⊥ ⊔ Generic.eql ⊔ ⊥ after instantiation, which simplifies to just Generic.eql.

If the expression Generic.cast ~1must now have the type Nat.t @ Generic.eql, then the expres-
sion

Nat.pred (Generic.cast ~1 : Nat.t @ Generic.eql)

will no longer be well-typed. ¿is is because Nat.pred has been annotated to accept only inputs with an
information content of ⊥. Nothing is known about the label Generic.eql, so it cannot be assumed to be
equivalent to ⊥.

Like the Natmodule, no changes are required to the implementation of the Setmodule in Figure ·.
However, there are several changes to Set’s signature. First, Set.t’s type parameter, ’a, is annotated to
specify that it has kind Generic.eql. ¿e reason this annotation was used is to specify that sets may only
be constructed from elements with types that may be compared for equality using Generic.eq. ¿e type
Set.t itself is annotated with the kind * @ ⊤ – indicating that it has the maximal information content.
Finally, all of term members of the module Set have given explicit label and type quantifiers along with
the constraint that the quantified label is less than or equal to Generic.eql.

Just one benefit of the way I have chosen to annotate the kinds and types of the Setmodule is that it is
possible to prevent the confidentiality violation I described earlier, where the behavior of the Setmodule
could inadvertently depend on the abstract type used to implement Set.t. In the original example, the
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following program fragment would cause execution to abort because Generic.eq does not know how to
compare lists.

Set.add (Set.add 1 Set.empty) (Set.add (Set.add 1 Set.empty) Set.empty)

With the information-flow kind annotations on Set’s signature, ’a Set.t now has a kind with an informa-
tion content of ⊤ and the type system will statically reject the above code because sets may only contain
elements whose types have an information content of Generic.eql or less. ¿e label ⊤ would only be
less than or equal to Generic.eql if Generic.eql were equal to ⊤, but there is not enough information
available for the typechecker to determine whether that is the case. ¿erefore, the behavior of Set.add
can no longer depend upon the implementation of Set.t.

For very similar reasons, my earlier example violating the integrity of Setmodule will be rejected
during compilation by the typechecker:

Set.remove 1 (Generic.cast [1, 1] : ((int @ ⊥) Set.t) @ ⊤)

Because the result produced by Generic.cast necessarily depends upon the information-content of
the abstract type ’a Set.t, it must necessarily produce a value of type (int @ ⊥) Set.t with an infor-
mation content of ⊤. ¿e function Set.remove has the constraint that it will only accept inputs with
an information content less than or equal to the label Generic.eql, so this function application is now
ill-typed.

However, it is important to note that while I have managed to prevent several confidentiality and
integrity violations by using an information-flow kind and type system, the annotations I have chosen
still allow for valuable uses of . For example, the following program fragment I gave earlier is still
well-typed:

Set.add (Nat.s Nat.z) (Set.add (Nat.s Nat.z) Set.empty)

¿e reason that this code still typechecks is because the abstract type Nat.t was given a kind with an
information content of Generic.eql. ¿erefore, the constraint on Set.add that it may only be used on
sets where the element type has an information content is less than or equal to Generic.eql is trivially
satisfied.

In this section I have only given a very informal account of how information-flow kind and type
systems can be used to reason about confidentiality and integrity of s and how they may be used
to specify confidentiality and integrity policies. In § , I will provide a much more detailed and for-
mal account of the reasoning principles that can be proven and derived for a specific instance of an
information-flow kind and type system. In §  and § , I will discuss a more realistic account of pro-
gramming in a language with an information-flow kind and type system and how information-flow
annotations may be used to specify policies on how  and s may interact. In the next section, I
will discuss some other techniques from language based security that may be applied to the problem of
reconciling  and data abstraction.
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§ · Related work

In this section, I will show how other mechanisms from language based security may be used provide
confidentiality and integrity guarantees for s. My study of the literature has shown that other than
information-flow techniques, the primary mechanisms for protecting data fall into two categories:

• Access control. I use access control to mean any mechanism that can be used to prevent the
examination of type meta-data. Broadly, access to type meta-data can either be determined at
compile-time or at runtime.

• Runtimemonitoring. Protection based on runtimemonitoring observes the execution of a program
and halts or alters the behavior if it attempts to violates a desired policy. Runtime monitoring
allows for very expressive and precise policies because it is possible to use any computable function
to enforce policies on the behavior of programs.

§ Access control

Access control mechanisms simply prevent typecase from being used to analyze a type definition. I
divide access control mechanisms into those where the access control policy for abstract types is specified
at compile-time and those where the access control policy is decided at runtime.

¶ Compile-time access control

One commonmechanism to statically specify whether runtime type analysis can occur is type generativity.
Languages with type generativity allow the programmer to specify that a type is new or distinct from all
others in the program. Technically, this does not directly prevent type analysis, but effectively it does
so because these new types will only ever pattern match against themselves, which never reveals their
definition.

In Figure ·, I havemodified the original example to use a new form of signature declaration, newtype.
¿is extension is most similar to the module system proposed by Govereau (), but his goal was to
study the semantics of higher-order modules rather than limit the scope of type analysis. ¿erefore, there
is no dynamic significance to newtype in his work. It is also similar to Haskell’s newtype, where newtype
defines a generative type, along a with a pseudo-constructor, to witness the isomorphism between the
types. However, a generative type in Haskell is new at its definition, whereas the newtype signature in
Figure · makes an existing type definition generative. Similar type generativity mechanisms have been
used several times in the past to protect type abstractions (Rossberg ; Leifer, Peskine, Sewell, and
Wansbrough ; Vytiniotis, Washburn, and Weirich ).

Giving ’a Set.t a type signature that declares it to be generative does not affect typechecking, but
will alter the behavior of the program compared to Figure ·. Consider my example integrity violation
from the previous section:

Set.remove 1 (Generic.cast [1, 1] : int Set.t)
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structure Generic = struct
fun cast (x : ’a) : ’b =

typecase ’a of ’b => x | _ => abort "Types are not the same"

fun eq (x : ’a) (y : ’a) : bool =
typecase ’a of int => x = y

| bool => if x then y else (not y)
| ’b * ’c => (eq (#1 x) (#1 y)) andalso (eq (#2 x) (#2 y))
| _ => abort "Cannot compare this type for equality"

end :> sig
val cast : ’a -> ’b option
val eq : ’a -> ’a -> bool

end

structure Nat = struct
type t = int
val z = 0
fun s n = n + 1
fun pred n = if n = 0 then 0 else (n - 1)

end :> sig
type t
val z: t
val s: t -> t
val pred: t -> t

end

structure Set = struct
type ’a t = ’a list
val empty = []
fun member x [] = false
| member x (x’::xs) = (Generic.eq x x’) orelse (member x xs)
fun add x s = if (member x s) then s else (x::s)
fun remove x [] = []
| remove x (x’::xs) = if (Generic.eq x x’) then xs else (x’::(remove x xs))

end :> sig
newtype ’a t
val empty : ’a t
val member : ’a -> ’a t -> bool
val add : ’a -> ’a t -> ’a t
val remove : ’a -> ’a t -> ’a tend

end

Figure ·: An example of type-directed programming augmented with type generativity.
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¿is code will still typecheck, but at runtime Generic.cast will cause the program to abort. ¿is is
because even though int Set.t is implemented by the type int list, the fact that ’a Set.t is considered
generative means that it will not be considered equivalent at runtime by the typecase primitive.

However, my other example, from the previous section, of violating integrity is not prevented:

Nat.pred (Generic.cast ~1 : Nat.t)

¿e reason for this is that I did not declare the abstract type Nat.t to be generative, so at runtime the
type Nat.t will be treated as equivalent to the type int. ¿is is easily solved by changing the module
signature for Nat.t to specify that it is generative, but that introduces another problem – it is no longer
possible to create sets of natural numbers:

Set.add (Nat.s Nat.z) (Set.add (Nat.s Nat.z) Set.empty)

If Nat.t were declared to be generative, at runtime the above code would fail because Generic.eq will
consider the type Nat.t distinct from the type int, and therefore abort because it does not have a case
to handle values of type Nat.t.

So while it is possible to rule out integrity violations by using type generativity, it will also rule out
potentially useful applications of . It is not possible to have both, as I showed was possible using an
information-flow kind and type system, because type generativity can be used to enforce confidentiality
policies, but cannot be used to enforce integrity policies. Unlike an information-flow kind and type
system it is not possible to express end-to-end policies on data using access control techniques – as
soon as access has been granted it is no longer possible to enforce a policy on the data. ¿erefore, using
generative types does not allow for the useful distinction between the properties of confidentiality and
integrity.

Even though type generativity does rule out useful  operations, I believe that it is important to be
able to provide the programmer with a mechanism for type generativity. While a programmer might
implement an abstract data type for representing natural numbers via an integer, there will be occasions
when it will be desirable to be able to distinguish between natural numbers and integers. As another
example, the type-directed function increase in § · can only be written because there is a distinction
between Salary and Float.

An alternate mechanism for static access control for type analysis was suggested by Harper and
Morrisett () in their foundational work on intensional type analysis. ¿ey propose making a
distinction between analyzable types and non-analyzable types at the kind level. However, this has the
same problem as type generativity because it does not allow reasoning about confidentiality and integrity
separately.

Finally, confined types are a mechanism intended to prevent “sensitive” data from escaping a given
package’s scope. For example, Vitek and Bokowski () show how to ensure that the random number
generator used by a package for encryption does not get accidentally handed out by one of the package’s
public interfaces. However, confined types were developed with subtyping and a nominal object type
system in mind, rather than the structural type system found in . In a structural setting, I conjecture
that confined types would serve as a form of static access control by preventing a type from being named
outside its module and values of that type from escaping the module. However, without additional
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study, I cannot be certain that this interpretation is the correct one for confined types within a structural
setting.

¶ Runtime access control

It is plausible that requiring access control decisions for type analysis to be predetermined at compile
time is simply too inflexible, and that making the decisions at runtime would make it possible to enforce
confidentiality and integrity independently. One way to implement such an access control scheme would
be to require a token value to perform analysis on a type.

¿is form of dynamic access control is exemplified by the language λR. ¿e language λR was devel-
oped by Crary, Weirich, and Morrisett () as a way to provide a type erasure semantics for typed
intermediate languages that use type analysis – an operational semantics that does not need to refer to
types.

So that types do not need to be passed around at runtime, λR instead passes around values that
represent types. ¿e type system can still refer to all types statically, but code without access to a type’s
representation cannot analyze the structure of the type. ¿erefore, code that does not have a reference
to a type’s representation does not have access to the type’s implementation. While the primary goal of
λR is a type erasure semantics, the authors conjectured that, because type analysis in λR is tied to having
access to a representation for a given type, a variant of the parametricity theorem can be recovered.
Recently, Vytiniotis and Weirich (; ) have shown how to formalize and verify this conjecture.

Figure · shows how my running example can be rewritten so that typecase scrutinizes type
representations rather than types. Type representations are values of type t rep for some type t. ¿ere
are a small set of data constructors for values of type t rep, corresponding to the set of primitive types:
the type int is represented by the data constructor intRep, which has type int rep, the type t1 * t2

is constructed by applying the representations for the types t1 and t2 to the data constructor pairRep,
which has type ’a rep * ’b rep -> (’a * ’b) rep, etc. ¿ese data constructors are instances of what
are called indexed types or s (Coquand ; Crary and Weirich ; Xi, Chen, and Chen ;
Peyton Jones, Vytiniotis, Weirich, and Washburn ).

Just like matching on types, matching on type representations introduces type refinements. If
typecase is used to scrutinize a representation with type ’a rep and it matches against the value intRep,
the type equality ’a = int is introduced.

All functions in Figure · that made use of type analysis now require extra parameters to receive the
type representations that they need to operate. ¿erefore, in Figure ·, Generic.cast needs arguments
for the representation of the type of the input value and the representation for the type of the desired
output. Generic.eq requires the type representation for the values to be compared.

Additionally, for type analysis to be used on s theymust export a representation for the abstracted
type. In Figure ·, Nat exports Nat.rep with type Nat.t rep and implements it using intRep.

However, all of this additional machinery does not significantly increase the expressive power over
compile-time access control. ¿e code in Figure · has the exact same properties as the code in Figure ·.

¿e confidentiality and integrity of the Setmodule is preserved because it does not export a type
representation. ¿erefore, it is not possible to analyze instances of the type ’a Set.t, and if it is not
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structure Generic = struct
fun cast (inrep : ’a rep) (outrep : ’b rep) (x : ’a) : ’b =

typecase inrep of outrep => x
| _ => abort "Types are not the same"

fun eq (rep : ’a rep) (x : ’a) (y : ’a) : bool =
typecase rep of intRep => x = y

| boolRep => if x then y else (not y)
| pairRep (fstrep, sndrep) =>

(eq fstrep (#1 x) (#1 y)) andalso (eq sndrep (#2 x) (#2 y))
| _ => abort "Cannot compare this type for equality"

end :> sig
val cast : ’a rep -> ’b rep -> ’a -> ’b option
val eq : ’a rep -> ’a -> ’a -> bool

end

structure Nat = struct
type t = int
val rep = intRep
val z = 0
fun s n = n + 1
fun pred n = if n = 0 then 0 else (n - 1)

end :> sig
type t
val rep: t rep
val z: t
val s: t -> t
val pred: t -> t

end

structure Set = struct
type ’a t = ’a list
val empty = []
fun member xrep x [] = false
| member xrep x (x’::xs) = (Generic.eq xrep x x’) orelse (member xrep x xs)
fun add xrep x s = if (member xrep x s) then s else (x::s)
fun remove xrep x [] = []
| remove xrep x (x’::xs) = if (Generic.eq xrep x x’) then xs else (x’::(remove xrep x xs))

end :> sig
type ’a t
val empty : ’a t
val member : ’a rep -> ’a -> ’a t -> bool
val add : ’a rep -> ’a -> ’a t -> ’a t
val remove : ’a rep -> ’a -> ’a t -> ’a t

end

Figure ·: An example of type-directed programming using type representations.
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possible to analyze them it is not possible for the program to depend upon their implementation or
violate its integrity.

However, in order for it to still be possible to create sets of natural numbers, it is necessary for the
Natmodule to export a type representation. It then remains straightforward to violate the integrity of
the Natmodule in a manner similar to what I have shown before:

Nat.pred (Generic.cast intRep Nat.rep ~1 : Nat.t)

¿erefore, shifting the choice of access control from compile-time to runtime has not changed the fact
that access control techniques cannot enforce integrity policies.

¿e use of type representations is similar to work by Sumii and Pierce (; ). Initially, they
showed how to use encryption to obtain parametricity results in an untyped language (). For
encrypted data to bemanipulated, itmust be first decrypted. ¿is requires the encryption key. Decryption
of encrypted data using the corresponding key is isomorphic to using a type-safe cast and a type
representation to obtain access to the implementation of an . ¿e correspondence is not surprising
because the goal of λR is an untyped operational semantics, and Sumii and Pierce’s goal is to reason
about abstraction in an untyped setting. In their later work using bisimulations (), Sumii and Pierce
instead use what they call dynamic sealing, but dynamic sealing is just encryption (or access control)
under another name.

§ Runtime monitoring

A very general technique for enforcing security policies is the use of runtime monitoring or execution
monitoring (Schneider ). In runtime monitoring, a security policy is defined by writing an auxiliary
program, the monitor, that observes the execution of the program. ¿e granularity varies from system
to system; in some the monitor can observe every instruction that the program is about to execute; in
others the monitor can only observe certain classes of events such as the manipulation of certain kinds
of resources.

Based on the execution stream seen so far and the next pending event, the monitor can choose to
terminate the program or alter its behavior in some fashion, such as raising an exception. ¿e policies
supported by runtime monitoring can be very expressive, because they are only limited to be computable
functions. Another benefit of runtime monitoring is that it not necessary to modify the original program.
¿erefore, it is possible to develop the program and the policies independently.

When implementing monitoring policies to prevent integrity violations caused by  it is not
always possible to completely develop the policies independently of the program. ¿is is because the
policies may need to be closely tied to the implementation. For instance, in my running example it will
be necessary to add a validation function to the Natmodule:

structure Nat = struct
...
fun validate n = (n >= 0)

end :> sig
...
val valid : t -> bool

end
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¿is extension to Nat is necessary because only the author of the Nat module knows what invariants
must hold for values of type Nat.t. Consequently, either the author of the Natmodule must write the
monitoring policy herself or export a validation function so that someone else can implement the policy.
I have chosen to take the latter approach.

A popular method for implementing runtime monitoring is to use aspect-oriented
programming (Kiczales et al. ). In some flavors of aspect-oriented programming, it is possible
to write code, called advice, that will execute at specific points in the control flow of the program. To
illustrate how this can be used to enforce a policy relating to , here is an example of advice, written
in the language Aspect (Dantas, Walker, Washburn, and Weirich ), that will prevent the integrity
violation in the original program in Figure ·:

advice before (| Nat.pred : Nat.t -> Nat.t |) (arg: Nat.t) =
if Nat.valid arg then
arg

else
abort "Attempted to call predecessor on an invalid instance of Nat.t"

¿is first line of this code can be understood as saying “before executing Nat.pred, on an argument
arg of type Nat.t, execute the following code”. ¿e body of the advice, the code that will be run, uses
Nat.valid to see if the argument is a valid natural number. If it is not a valid natural number the advice
will abort the program, otherwise it returns the original argument unchanged.

A more declarative means of specifying a similar policy can be achieved in the language Poly-
mer (Bauer, Ligatti, and Walker ). Polymer was designed to allow programmers to enforce central-
ized policies on untrusted Java programs. ¿e integrity violation in Figure · could be addressed by
writing the following policy and installing it. ¿e language extensions in the code below are based upon
the functional formalization of Polymer:

fun query (a : action) : suggestion =
case a
of Act (Nat.pred : Nat.t -> Nat.t, arg) =>

ReplaceSug
(if Nat.valid arg then

Nat.pred arg
else
abort "Attempted to call predecessor on an invalid instance of Nat.t")

| _ => IrrelevantSug

registerpolicy query

In the code above, values of type action and suggestion are, respectively, actions the program monitor
can observe and suggestions the policy can make to adjust the behavior of the program. A policy is
expressed as a function of type action -> suggestion that the monitor can use to query the policy
about whether some program action requires a response. ¿e policy can then be registered with the
runtime monitor using the registerpolicy primitive.
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¿e policy implemented by the query function specifies that if the action is to apply the function
Nat.pred to some argument arg, it should suggest to the monitor that it replace the call with one where
the argument to Nat.pred is validated before the function call is made.

Polymer’s highly declarative approach to policies has the advantage that it is easy to write code that
will compose policies in interesting ways; it can be difficult to write advice that composes in well-defined
ways. However, it would be possible to implement a Polymer style monitoring system using the primitives
provided in aspect-oriented languages.

Despite the very precise and expressive policies that runtimemonitoring can enforce on type analysis,
there are some significant drawbacks. Schneider () has shown that runtime monitoring can only
enforce safety properties. Lamport () introduced the notion of safety and liveness properties: safety
properties are those that state “bad things” do not happen and liveness properties state that “good things
happen eventually”. Runtimemonitoring is limited to enforcing safety policies, because enforcing liveness
policies would require the monitor to be able to accurately predict future events.

However, information-flow policies are not expressible as safety properties (McLean ). Despite
this result, it is possible given an information-flow policy to define a runtime monitoring policy that will
enforce the policy. ¿is monitoring policy will necessarily be more conservative in tracing information
flows than the desired information-flow policy. ¿erefore, an information-flow type and kind system
can more precisely specify and enforce confidentiality and integrity policies on type meta-data.

¿e second problem with runtime monitoring is a consequence of its expressiveness. With highly
expressive policies programmers cannot reason statically about whether their use of  violates a policy.
For example, the first runtime monitoring policy I described above could be rewritten as:

advice before (| Nat.pred : Nat.t -> Nat.t |) (arg: Nat.t) =
if Nat.valid arg orelse isFull moon then
arg

else
abort "Cannot call predecessor on invalid instance of Nat.t today"

Reasoning about programs with respect to this policy requires not only knowledge of the program text,
but the calendar year and celestial body where the code will be executed. Furthermore, because policies
enforced by runtime monitoring can be implemented and compiled separately, a programmer’s only
option may be to run her program and observe the behavior. At best, this approach will only tell her
how the policy affects that specific execution trace. To be able to effectively reason about her software, a
programmer needs to know about properties that hold for all possible executions.

Given these limitations, I do not believe programmers can successfully use runtime monitoring to
reason about confidentiality and integrity properties of s in the presence of .

§ · Contributions

As described in the preceding section § ·, in this dissertation I propose to allow programmers to reason
about the confidentiality and integrity of s in the presence of type-directed programming by using
an information-flow type and kind system. Information-flow type systems have been used in the past to
provide confidentiality and integrity policies for data; the earliest work on static information flow dates
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back to Denning and Denning (). I am the first to suggest lifting information-flow to the kind level
to define confidentiality and integrity policies for type meta-data (Washburn and Weirich ).

¿is document includes the following contributions on harmoniously integrating  and s:

• A refined analysis of the problem of representation independence in the presence of  using the
finer-grained properties of confidentiality and integrity (§ ·). I discuss how information-flow kind
and type systems can recover the ability to reason statically about the confidentiality and integrity
of s as well as enforce policies on type meta-data (§ ·). I also explain how access control
mechanisms and runtime monitoring can be applied to the problem of enforcing confidentiality
and integrity policies on type meta-data, and how they compare with the use of information-flow
kind and type systems.

• A proof (§  and § ) that, for a polymorphically-typed core calculus with support for runtime
type analysis, an information-flow type and kind system allows a generalization of Reynold’s
parametricity theorem (). ¿e parametricity theorem has in the past been used as a basis for
reasoning about representation independence. After reviewing the proof of standard parametricity
and how runtime type analysis breaks the theorem, I show how the theorem can be generalized to
languages that include runtime type analysis. ¿is generalized parametricity theorem can be used
to formally reason about the confidentiality and integrity of s in the presence of .

• ¿e design and implementation of a language with features including an information-flow type and
kind system, runtime type generativity, runtime type analysis, and a module system (§ ). Infor
shows how the theoretical foundation of generalized parametricity can be realized in a realistic
language, and provides a basis for further experimentation, and its implementation provides an
executable specification of the semantics. I give a detailed introduction to programming in Infor
while simultaneously providing insight into the many subtleties of its design.

• A study of programming idioms and design patterns for software written in Infor, and the
reasoning principles and static guarantees the different techniques provide (§ ). I focus on what
I call harmless reflection (§ ·) and the break and recover idiom (§ ·). ¿e harmless reflection
idiom ensures that  cannot influence the essential behavior of a program, while the break and
recover idiom allows confidentiality to be broken but integrity to be preserved.

• An overview of the implementation of the Infor language, and an examination of the most
significant design trade-offs that were made while developing Infor (§ ).

It is also worth explaining what is not addressed in this dissertation:

• I do not prove whether Infor is type-safe or has the generalized parametricity property. How-
ever, I do believe and conjecture that the implementation of Infor does have these properties.
Proving type safety should be a straight-forward exercise once the relationship between subkind-
ing and subtyping is clarified. Proving generalized parametricity for Infor is a challenging
research problem in itself, but this is a consequence of language features that are orthogonal to its
information-flow type and kind system. Proving parametricity (or an appropriate variation) for
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realistic languages is a difficult problem. I will comment on the difficulties in proving type safety
and generalized parametricity further in § ·.

• I do not make any claims about the confidentiality and integrity of s that leave the purview of
the type system. For example, the type system of Infor cannot say anything about what may
happen to data written to the file-system or sent over the network. ¿is would be an interesting
practical extension to my proposed research, but I believe that the existing research by Leifer et
al. (), and Sumii and Pierce (; ) have already solved this problem.
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
Generalizing parametricity

General principles should not be based on exceptional cases.

Robert J. Sawyer (Calculating God, )

In the last chapter, I concluded that an information-flow type and kind system is the correct basis
for reasoning about the confidentiality and integrity of abstract data types in the presence of type-
directed programming. In this chapter, I introduce the core-calculus λSECi, to formalize these ideas.
After introducing λSECi, I provide an introduction to the parametricity theorem, and how it has been
used to reason about data abstraction in languages without the ability to analyze types at runtime. Finally,
I show that the parametricity theorem is just a special case of a more general theorem based upon
information-flow techniques.

§ · ¿e core-calculus λSECi

λSECi is a core calculus combining information flow and type analysis. ¿e design of λSECi is intended
to be as simple as possible while still capturing the essential interactions between data abstraction and
type-directed programming. It is derived from the type-analyzing language λML

i developed byHarper and
Morrisett () and the information-flow security language λSEC of Zdancewic (). I chose to base
λSECi on λML

i because it provides a simple yet expressive model of run-time type analysis. ¿e language
λML
i was developed as an intermediate language for efficiently compiling parametric polymorphism.

Similarly, λSEC was developed to study information flow in the context of the simply-typed λ-calculus.
¿e grammar for λSECi appears in Figure ·. It is a predicative, call-by-value polymorphic λ-calculus

with booleans, functions and general recursion. Fixed points are separate from functions to make
nontermination aspects of proofs modular. I have chosen to make λSECi predicative because it is closer
in design to λML

i , and avoids the complexities introduced by higher-order type analysis. I conjecture that
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kinds κ # ⋆� types
| κ1

�→ κ2 operators

type constructors τ # α | λα:κ.τ | τ1τ2 λ-calculus
| bool booleans
| τ1 → τ2 functions
| τ1 × τ2 products
| Typerec τ τbool τ→ τ× analysis

types σ # (τ) @ � injection
| σ1

�→ σ2 functions
| σ1 ×� σ2 products
| ∀�1 α:⋆�2 .σ constructor polymorphism

terms e # true | false booleans
| x | λx:σ.e | e1e2 λ-calculus
| �e1,e2� | fst e | snd e tuples
| Λα:⋆�.e | e[τ] constructor polymorphism
| fix x:σ.e fix-point
| if e1 then e2 else e3 conditional
| typecase[γ.σ] τ ebool e→ e× analysis

values v # true | false | λx:σ.e | �v1,v2� | Λα:⋆�.e

term substitutions γ # ∙ | γ,[e/x]
type substitutions δ # ∙ | δ,[τ/α]
term variable contexts Γ # ∙ | Γ,x:σ
type variable contexts ∆ # ∙ | ∆,α:κ

Figure ·: ¿e grammar of the λSECi language.

my results extend to languages with impredicative polymorphism. Also for simplicity, I do not allow
higher-kinded polymorphism, but conjecture that my results extend to that feature as well.

In λSECi type constructors, τ, which can be analyzed at run-time, are separated from types, σ, which
describe terms. ¿e language of type constructors consists of the simply-typed λ-calculus, a type operator
called Typerec, and three primitive constructors that correspond to types: bool, τ1 → τ2, and τ1 × τ2.

§ Run-time type analysis

¿e term form typecase in λSECi can be used to define operations that depend on run-time type infor-
mation. ¿is term takes a constructor to scrutinize, τ, as well as three branches corresponding to the
primitive constructors. As in ·, I will frequently use the mnemonic subscripts ∙bool, ∙→, and ∙×to refer to
entities that handle branches for booleans, functions types, and product types respectively.
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During evaluation the constructor argument must of typecase be reduced to determine its head
form so that a branch can be chosen.

τ * bool

typecase [γ.σ] τ ebool e→ e×  ebool
:-

τ * τ1 → τ2

typecase [γ.σ] τ ebool e→ e×  e→[τ1][τ2]
:-

τ * τ1 × τ2

typecase [γ.σ] τ ebool e→ e×  e×[τ1][τ2]
:-

¿e bracketed argument to typecase, [γ.σ], is only necessary for typechecking, so it can be ignored until
I cover type checking. I write e e ′ to mean that term e reduces in a single step to e ′ and τ τ ′ to
mean that constructor τ makes a weak-head reduction step to τ ′. I write * for the reflexive, transitive
closure of the reduction relations. ¿e complete dynamic semantics for λSECi terms can be found in
Definitions ·· and ··.

λSECi also includes a constructor, Typerec, for analyzing type information. Without Typerec, it is
impossible to assign types to some useful terms that perform type analysis (Harper and Morrisett ).
Typerec implements a paramorphism (a type of fold) over the structure of the argument constructor.
When the head of the argument is one of the three primitive constructors, Typerec will apply the
appropriate branch to the constituent types, as well as the recursive invocation of Typerec on them.

Typerec (bool) τbool τ→ τ×  τbool

:-

Typerec (τ1 → τ2) τbool τ→ τ×  τ→ τ1 τ2 (Typerec τ1 τbool τ→ τ×)
(Typerec τ2 τbool τ→ τ×)

:-

Typerec (τ1 × τ2) τbool τ→ τ×  τ× τ1 τ2 (Typerec τ1 τbool τ→ τ×)
(Typerec τ2 τbool τ→ τ×)

:-

¿e complete dynamic semantics of type constructors is given in Definition ··.

§¿e information content of constructors

Information-flow type systems track the flow of information by annotating types with labels that specify
the information content of the terms they describe. Because type constructors have computational
content in λSECi (and influence the evaluation of terms) it is also necessary to label kinds.

Labels, �, are drawn from an unspecified join semi-lattice, with a least element (⊥), joins (⊔) for finite
subsets of elements in the lattice, and a partial order (⊑). ¿e actual lattice used by the type system is
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α:κ ∈ ∆
∆ ⊢ α : κ

:

∆ ⊢ bool : ⋆⊥ :

∆ ⊢ τ1 : ⋆�1 ∆ ⊢ τ2 : ⋆�2

∆ ⊢ τ1 → τ2 : ⋆�1⊔�2
:

∆ ⊢ τ1 : ⋆�1 ∆ ⊢ τ2 : ⋆�2

∆ ⊢ τ1 × τ2 : ⋆�1⊔�2
:

∆,α:κ1 ⊢ τ : κ2

∆ ⊢ λα:κ1.τ : κ1
⊥→ κ2

:

∆ ⊢ τ1 : κ1
�→ κ2 ∆ ⊢ τ2 : κ1

∆ ⊢ τ1τ2 : κ2 ⊔ �
:

∆ ⊢ τ : ⋆� ∆ ⊢ τ→ : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ
∆ ⊢ τbool : κ ∆ ⊢ τ× : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ

where � ′ = L(κ) and � ⊑ � ′

∆ ⊢ Typerec τ τbool τ→ τ× : κ
:

∆ ⊢ τ : κ1 κ1 ≤ κ2

∆ ⊢ τ : κ2
:

Figure ·: Constructor well-formedness rules for λSECi.

determined by the desired confidentiality and integrity policies of the program. Intuitively, the higher
a label is in the lattice, the more restricted the information content of a constructor or term should
be. For most examples in this chapter, I use a simple two point lattice (⊥ for low security, ⊤ for high
security) that tracks the dynamic discovery of a single type definition. In practice, any lattice with the
specified structure could be used. I give one example of a practical lattice with richer internal structure
in § ·. Another example of a rich lattice structure is the Decentralized Label Model () of Myers
and Liskov ().

¿e labels on kinds describe the information content of type constructors. ¿e kind of a constructor
(and therefore its information content) is described using the judgment ∆ ⊢ τ : κ, read as “constructor τ
is well-formed having kind κ with respect to the type variable context ∆”. Figure · shows the definition
of this judgment. ¿e operator L(κ), defined in Figure ·, extracts the label of a kind.

¿e kind system is conservative: If the label of κ is �, then the information content of a constructor of
kind κ is at most �. ¿e information level of a constructor can be raised via subsumption. Because kinds
are labeled, the ordering ⊑ on labels induces a sub-kinding relation, κ1 ≤ κ2. A kind ⋆�1 is a sub-kind
of ⋆�2 if �1 ⊑ �2. Sub-kinding for function kinds is standard. ¿e relation is reflexive and transitive by
definition; the complete definition of subkinding can be found in § ·.

¿e label of a constructor τ, of kind ⋆�, also describes the information gained when the constructor
is analyzed. For example, the kind of a Typerec constructor must be labeled at least as high as the
scrutinized type constructor τ, as shown in the rule below. ¿is requirement accounts for the fact that
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Kind information L(⋆�) , � L(κ1
�→ κ2) , �

Kind join ⋆�1 ⊔ �2 , ⋆(�1⊔�2) (κ1
�1→ κ2) ⊔ �2 , κ1

�1⊔�2→ κ2

Type information L((τ) @ �) , � L(σ1
�→ σ2) , �

L(σ1 ×� σ2) , � L(∀�1 α:⋆�2 .σ) , �1

Type join (τ) @ �1 ⊔ �2 , (τ) @ (�1 ⊔ �2) (σ1
�1→ σ2) ⊔ �2 , σ1

�1⊔�2→ σ2
(σ1 ×�1 σ2) ⊔ �2 , σ1 ×(�1⊔�2) σ2 (∀�1 α:⋆�2 .σ) ⊔ �3 , ∀(�1⊔�3)α:⋆�2 .σ

Figure ·: Kind and type label operators for λSECi.

the constructor that is equivalent to reducing the Typerec constructor will depend on the structure of τ.

∆ ⊢ τ : ⋆� ∆ ⊢ τ→ : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ

∆ ⊢ τbool : κ ∆ ⊢ τ× : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ
where � ′ = L(κ) and � ⊑ � ′

∆ ⊢ Typerec τ τbool τ→ τ× : κ
:

By default the label on the bool constructor if ⊥, as defined by : in Figure ·. ¿e label of the
kind for function and product constructors must be at least as high as the join of its two constituent
constructors. ¿is is because the label must reflect the information content of the entire constructor.

To propagate information flows through type applications, the kinds of type functions, κ1
�→ κ2,

have a label � that represents the information propagated by invoking the function. ¿e information, �, is
propagated into the result of application as κ2 ⊔ �. ¿is is shorthand for relabeling κ2 with L(κ2) ⊔ �. ¿e
precise definition for lifting label joins to kinds is given in Figure ·.

§ Tracking information flow in terms

¿e labels on types describe the information content of terms. I use the judgment ∆⋆; Γ ⊢ e : σ to mean
that “term e is well-formed with type σ with respect to the term context Γ and the type context ∆⋆.”
Figure · shows definition of this judgment. I use the notation ∆⋆ to denote type variable contexts
restricted to variables of base kind ⋆� for any label �. As I did for kinds, I define (in Figure ·) the
operator L(σ) to extract the label of a type. Also, the judgment ∆⋆ ⊢ σ is used to indicate that “type σ is
well-formed with respect to type context ∆⋆.”

Like constructors, the information content specified by labels for terms is conservative. ¿e lattice
ordering induces a subtyping judgment ∆⋆ ⊢ σ1 ≤ σ2, and subsumption can be used to raise the
information level of a term; the complete definition of subtyping can be found in § ·.

¿e types of λSECi include the standard ones for functions σ1
�→ σ2, products σ1 ×� σ2, and quantified

types ∀�1 α:⋆�2 .σ, plus those that are computed by type constructors (τ) @ �. ¿e rules for the well-
formedness of types can be found in Figure ·. Note that in the well-formedness rule for types formed
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∆⋆ ⊢ Γ
∆⋆; Γ ⊢ true : (bool) @ ⊥

:

∆⋆ ⊢ Γ
∆⋆; Γ ⊢ false : (bool) @ ⊥

:

∆⋆ ⊢ Γ x : σ ∈ Γ
∆⋆; Γ ⊢ x : σ

:

∆⋆; Γ,x:σ1 ⊢ e : σ2 ∆⋆ ⊢ σ1

∆⋆; Γ ⊢ λx:σ1.e : σ1
⊥→ σ2

:

∆⋆; Γ ⊢ e1 : σ1
�→ σ2 ∆⋆; Γ ⊢ e2 : σ1

∆⋆; Γ ⊢ e1e2 : σ2 ⊔ �
:

∆⋆,α:⋆�; Γ ⊢ e : σ
∆⋆; Γ ⊢ Λα:⋆�.e : ∀⊥α:⋆�.σ

:

∆⋆; Γ ⊢ e : ∀�α:⋆� ′ .σ ∆⋆ ⊢ τ : ⋆� ′

∆⋆; Γ ⊢ e[τ] : σ[τ/α] ⊔ �
:

∆⋆; Γ ⊢ e1 : σ1 ∆⋆; Γ ⊢ e2 : σ2

∆⋆; Γ ⊢ �e1,e2� : σ1 ×⊥ σ2
:

∆⋆; Γ ⊢ e : σ1 ×� σ2

∆⋆; Γ ⊢ fst e : σ1 ⊔ �
:

∆⋆; Γ ⊢ e : σ1 ×� σ2

∆⋆; Γ ⊢ snd e : σ2 ⊔ �
:

∆⋆; Γ,x:σ ⊢ e : σ ∆⋆ ⊢ σ
∆⋆; Γ ⊢ fix x:σ.e : σ

:

∆⋆; Γ ⊢ e1 : (bool) @ � ∆⋆; Γ ⊢ e2 : σ ∆⋆; Γ ⊢ e3 : σ
∆⋆; Γ ⊢ if e1 then e2 else e3 : σ ⊔ �

:

∆⋆ ⊢ τ : ⋆� ∆⋆; Γ ⊢ ebool : σ[bool/γ]
∆⋆,γ:⋆� ⊢ σ ∆⋆; Γ ⊢ e→ : ∀� ′α:⋆�.∀� ′β:⋆�.σ[α → β/γ]

� ⊑ � ′ ∆⋆; Γ ⊢ e× : ∀� ′α:⋆�.∀� ′β:⋆�.σ[α × β/γ]
where � ′ = L(σ[τ/γ])

∆⋆; Γ ⊢ typecase [γ.σ] τ ebool e→ e× : σ[τ/γ]
:

∆⋆; Γ ⊢ e : σ1 ∆⋆ ⊢ σ1 ≤ σ2

∆⋆; Γ ⊢ e : σ2
:

Figure ·: Term well-formedness rules for λSECi.

∆⋆ ⊢ τ : ⋆�1

∆⋆ ⊢ (τ) @ �2
:

∆⋆ ⊢ σ1 ∆⋆ ⊢ σ2

∆⋆ ⊢ σ1
�→ σ2

:
∆⋆ ⊢ σ1 ∆⋆ ⊢ σ2

∆⋆ ⊢ σ1 ×� σ2
:

∆⋆,α:⋆�1 ⊢ σ
∆⋆ ⊢ ∀�2 α:⋆�1 .σ

:

Figure ·: Type well-formedness rules for λSECi.
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from type constructors,

∆⋆ ⊢ τ : ⋆�1

∆⋆ ⊢ (τ) @ �2
:

there is no need for a connection between the label � on the kind and the label on the type. ¿at is
because � describes the information content of τ, while the label � ′ on (τ) @ � ′ describes the information
content of a term with type (τ) @ � ′. It is sound to discard �, because once a constructor has been coerced
to a type it can only be used statically to describe terms and cannot be analyzed.

Information flow is tracked at the term level analogously to the type level. Term abstractions, of type
σ1

�→ σ2, like type functions, propagate some information � when applied. Similarly, type abstractions,
∀�1 α:⋆�2 .σ, propagate some information �1 when applied. ¿e label �2 describes the information content
of constructors that can be used to instantiate the type abstraction. For products, σ1 ×� σ2, the label �
indicates the information propagated when one of its components is projected.

Like Typerec, the label � ′ on the type of the typecase expression must be at least as high in the lattice
as the label � on the scrutinee. ¿is is to account for the information learned when typecase examines
the structure of the scrutinee.

∆⋆ ⊢ τ : ⋆� ∆⋆; Γ ⊢ ebool : σ[bool/γ]
∆⋆,γ:⋆� ⊢ σ ∆⋆; Γ ⊢ e→ : ∀� ′α:⋆�.∀� ′β:⋆�.σ[α → β/γ]

� ⊑ � ′ ∆⋆; Γ ⊢ e× : ∀� ′α:⋆�.∀� ′β:⋆�.σ[α × β/γ]
where � ′ = L(σ[τ/γ])

∆⋆; Γ ⊢ typecase [γ.σ] τ ebool e→ e× : σ[τ/γ]
:

Unlike some other formulations of type analysis, λSECi’s typecase primitive does not introduce type
equalities. For example, while typechecking ebool it will not be the case that τ = bool : ⋆�. Instead, λSECi

relies on the fact that typecase’s allows the type of its branches to depend upon the type it scrutinizes.
¿at is, ebool can produce a value of type σ[bool/γ], while e→ can produce a value of type σ[α → β/γ],
and e× can produce a value of the type σ[α × β/γ].

Because the type of a typecase term can depend upon the scrutinized constructor τ, it is not possible
to deterministically synthesize its type solely from its subterms, τ, ebool, e→, and e×. ¿erefore an
annotation, [γ.σ], is required for typechecking typecase.

§ Soundness

Definition ·· (Nontermination). If ∙; ∙ ⊢ e : σ and there does not exist a derivation e * v then e ↑.

λSECi has the basic property expected from a typed language, that well-typed programs will not go
wrong (Wright and Felleisen ).

¿eorem ·· (Type Safety). If ∙; ∙ ⊢ e : σ then either e diverges (i.e. e ↑), or e evaluates to a value that is
well-typed with the type of e (i.e. e * v where ∙; ∙ ⊢ v : σ).

. In the case of a pure functional language with only extensional equality the labels on functions, type abstractions, and
products are technically unnecessary. For functions and type abstractions the information content can always be pushed into
their range, and the information content of products can always be pushed into their components. In impure languages, and
languages with pointer equality on values, the labels are necessary. ¿e labels are present in λSECi to avoid specializing too
early.
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α ↦ R ∈ η v1Rv2

η ⊢ v1 ∼ v2 : α
:

η ⊢ v ∼ v : bool
:

∀(η ⊢ e1 ≈ e2 : σ1).η ⊢ v1e1 ≈ v2e2 : σ2

η ⊢ v1 ∼ v2 : σ1 → σ2
:

η ⊢ fst v1 ≈ fst v2 : σ1 η ⊢ snd v1 ≈ snd v2 : σ2

η ⊢ v1 ∼ v2 : σ1 × σ2
:

∀τ1,τ2.∀(R ∈ τ1 ↔ τ2).η,α ↦ R ⊢ v1[τ1] ≈ v2[τ2] : σ R consistent
η ⊢ v1 ∼ v2 : ∀α:⋆.σ

:

e1  
* v1 e2  

* v2 η ⊢ v1 ∼ v2 : σ
η ⊢ e1 ≈ e2 : σ

:

e1 ↑ e2 ↑
η ⊢ e1 ≈ e2 : σ

:

Figure ·: Logically related terms in the polymorphic λ-calculus.

Proof. ¿e theorem is proven syntactically as a corollary of the standard progress and preservation
lemmas. More details can be found in Appendix . ¤

§ · Generalized parametricity

¿e parametricity theorem has long been used to reason about programs in languages with parametric
polymorphism (Reynolds , ). For example, the theorem can be used to show that different
implementations of an abstract datatype do not influence the behavior of the program or to show that
external modules cannot forge values of abstract types. ¿ese are only a few of the corollaries of the
parametricity theorem. ¿is subsection starts with an overview of the standard parametricity theorem,
and then examines how it can be generalized for λSECi.

§ Parametricity

For expository purposes, this subsection and the following subsection only consider the core of λSECi

without type constructors, security labels, or type analysis. ¿at is, I consider a simple predicative
polymorphic λ-calculus (Girard ; Reynolds ). None of the results presented in these sections are
new. Informally, given a logical relation inductively defined on types, the parametricity theorem states
that well-typed expressions, after applying related substitutions for their free type and term variables,
are related to themselves by the logical relation. ¿e power of the theorem comes from the fact that
terms typed by universally quantified type variables can be related by any relation.

¿e logical relation used by the parametricity theorem is defined in Figure ·. Terms are related with
the judgment η ⊢ e1 ≈ e2 : σ, read as “terms e1 and e2 are related at type σ with respect to the relations in
η.” Terms are related if they evaluate to related values, or both diverge.
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∀α:⋆ ∈ ∆⋆.(η(α) ∈ δ1(α) ↔ δ2(α))
η ⊢ δ1 ≈ δ2 : ∆⋆ :

∀x:σ ∈ Γ.(η ⊢ γ1(x) ≈ γ2(x) : σ)
η ⊢ γ1 ≈ γ2 : Γ

:

Figure ·: Related substitutions in the polymorphic λ-calculus.

¿e judgment η ⊢ v1 ∼ v2 : σ means that “values v1 and v2 are related at type σ with respect to the
relations in η”. ¿e relation between values is defined inductively over types σ, potentially containing
free type variables. To account for these variables, the relations are parametrized by a map, η, from type
variables to binary relations on values. ¿is map is used when σ is a type variable (see rule :). If σ is
bool, the relation is identity. Typical for logical relations, values of function type are related only if, when
applied to related arguments, they produce related results. Likewise, values of product types are related
if the projections of their components are related.

¿emost important rule, :, defines the relationship between values of type ∀α:⋆.σ. Polymorphic
values are related if their instantiations with any pair of types are related. Furthermore, any consistent
relation R between values of those types as the relation on α can be used. I use the notation R ∈ τ1 ↔ τ2

to mean that R is a binary relation between values with the closed type τ1 and values with the closed type
τ2. ¿e properties of a consistent relation are dependent upon the details of the language and the proof.
My requirements for consistency are very easy to meet, but I will wait until it is required by the proofs to
explain them. If quantification over types of higher kind were allowed, R would have to be a function on
relations. ¿is extension is orthogonal to my result, so I restrict myself to polymorphism over kind ⋆.

To state the parametricity theorem, the notion of related substitutions for types and related terms
must be defined. In Figure ·, the rule : states that a relation mapping η is well-formed with
respect to two type substitutions δ1and δ2 for the variables in the type context∆⋆. ¿ere are no restrictions
on the range of the type substitutions. On the other hand, : requires that a pair of term substitutions
for the variables in Γ must map to related terms. Even though λSECi has a call-by-value semantics, term
substitutions must map to terms, not values. Otherwise, it would it be impossible to prove the case for
fixed points, which requires a term substitution.

With these definitions it is possible to state the parametricity theorem for my restricted language:

¿eorem ·· (Parametricity). If ∆⋆; Γ ⊢ e : σ and
η ⊢ δ1 ≈ δ2 : ∆⋆ and
η ⊢ γ1 ≈ γ2 : Γ, then
η ⊢ δ1(γ1(e)) ≈ δ2(γ2(e)) : σ.

Proof. By induction on the typing judgment with appeals to supporting lemmas. ¤

One complication in this proof arises in the case for type application, where I would like to show
that a term v[τ] is related to itself (after appropriate substitutions) at type σ[τ/α]. By the induction
hypothesis, I know that v is related to itself at type ∀α:⋆.σ, so by inversion of the rule : I can conclude
that v[τ] is related to itself at type σ, where the type α is mapped to any relation R. However, what I
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true ≼ true
:

false ≼ false
:

x ≼ x
:

e1 ≼ e2

λx:σ.e1 ≼ λx:σ.e2
:

e1 ≼ e3 e2 ≼ e4

e1e2 ≼ e3e4
:

e1 ≼ e3 e2 ≼ e4

�e1,e2� ≼ �e3,e4�
:

e1 ≼ e2

fst e1 ≼ fst e2
:

e1 ≼ e2

snd e1 ≼ snd e2
:

e1 ≼ e2

Λα:⋆.e1 ≼ Λα:⋆.e2
:

e1 ≼ e2

e1[τ] ≼ e2[τ]
:

e1 ≼ e2

fix x:σ.e1 ≼ fix x:σ.e2
:

e1 ≼ e2

fixn x:σ.e1 ≼ fixn x:σ.e2
:

e1 ≼ e2

fixn x:σ.e1 ≼ fix x:σ.e2
:

e1 ≼ e4 e2 ≼ e5 e3 ≼ e6

if e1 then e2 else e3 ≼ if e4 then e5 else e6
:

Figure ·: ¿e erasure relation.

need to show is that v[τ] is related to itself at type σ[τ/α]. ¿e trick is to instantiate R with the relation
{(v1,v2) | η ⊢ v1 ≈ v2 : τ} and use the following type substitution lemma.

Lemma ·· (Type substitution for parametricity).
If η ⊢ δ1 ≈ δ2 : ∆⋆ then

η ⊢ e1 ≈ e2 : σ[τ/α] iff
η,α ↦ R ⊢ e1 ≈ e2 : σ, where
R is the relation {(v1,v2) | η ⊢ v1 ≈ v2 : τ} and δi(α) = δi(τ).

Proof. ¿e proof in both directions of the biconditional is by induction on the structure of the term
relation. ¤

Another significant complication in the proof of ¿eorem ·· is circularity in relating fix-points.
To show that fix x:σ.e is related to itself I must show that e is related to itself under an extended term
substitution where γ1(x) = γ1(fix x:σ.e) and γ2(x) = γ2(fix x:σ.e). However, for these substitutions to be
related, I need to know that the fixed point is related to itself. But showing that the fixed point is related
to itself is exactly what I am trying to show! To escape this circularity I apply a syntactic technique from
Pitts (). I define a bounded fixed point expression that can only be unfolded a finite number of
times before diverging ¿e term fixn+1 x:σ.e unwinds to e[(fixn x:σ.e)/x]. By definition fix0 x:σ.e always
diverges.

Now that fixed points may be annotated with an index, I can define a partial order on terms called
the erasure relation. ¿e definition of this relation is given in Figure ·. ¿e relation orders terms by
whether fixed point expressions are annotated. ¿e granularity of the order could be made finer by also

. It might be more aesthetically pleasing in future presentations of this proof to instead use a single bounded fixed point
operator and use a bound of ω for what I write as fix x:σ.e. ¿is more accurately characterizes the unannotated fixed point as
a “limit”.
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ordering fixed point expressions by their bound, but it is unnecessary for my proofs. For example, the
order fix1 y:bool.true ≼ fix y:bool.true holds but fix1 y:bool.true ≼ fix2 y:bool.true does not.

An important property of fixed point expressions is that if a fixed point expression reduces to a value,
then it must have unfolded itself a finite number of times. ¿e following lemma formalizes this property.

Lemma ·· (Unwinding evaluation equivalence).

fix x:σ.e ′  * v iff exists n such that for all m,m ≥ n implies fixm x:σ.e ′  * v ′ where v ′ ≼ v.

Proof. Both directions follow by straightforward induction over the number of reduction steps. ¤

At this point I can define my notion of consistency: only those relations R that cannot depend upon
finite approximations of fixed points can be quantified over. More precisely, if v1Rv2 and v ′1 is an erasure
of v2 and v ′2 is an erasure of v2 then R must also relate v ′1 and v ′2. For example, the relation

{(λx:bool.fixn1 y:bool.true,λx:bool.fixn2 y:bool.true) | n1 = n2},

is not consistent because it will relate λx:bool.fix7 y:bool.true and λx:bool.fix7 y:bool.true, but not
λx:bool.fix y:bool.true and λx:bool.fix7 y:bool.true.

¿e logical relation itself is closed under erasure, making it a consistent relation.

Lemma ·· (Logical relation is closed under erasure).

• If η ⊢ v1 ∼ v2 : τ and v1 ≼ v ′1 and v2 ≼ v ′2 then η ⊢ v ′1 ∼ v ′2 : τ

• If η ⊢ e1 ≈ e2 : τ and e1 ≼ e ′1 and e2 ≼ e ′2 then η ⊢ e ′1 ≈ e ′2 : τ

Proof. ¿e proof follows by straightforward mutual induction over the structure of η ⊢ v1 ∼ v2 : τ and
η ⊢ e1 ≈ e2 : τ. ¤

It is now straightforward to show that, for any n, fixn x:σ.e is related to itself. ¿en the following
continuity lemma can be used to prove that unbounded fixed points are related to themselves.

Lemma ·· (Continuity). If η ⊢ δ1 ≈ δ2 : ∆⋆ and
for all n, η ⊢ fixn x:σ1.e1 ≈ fixn x:σ2.e2 : σ
where δ1(σ) = σ1 and δ2(σ) = σ2 then
η ⊢ fix x:σ1.e1 ≈ fix x:σ2.e2 : σ.

Proof. ¿ere are four cases.

• If both fix x:σi.ei diverge, they are trivially related by :.

• If both fix x:σi.ei converge to a value, they must do so with some finite number of unwindings as
specified by Lemma ··, m. It is possible to instantiate the assumption, for all n, η ⊢ fixn x:σ1.e1 ≈
fixn x:σ2.e2 : σ, accordingly, to obtain the a derivation η ⊢ fixm x:σ1.e1 ≈ fixm x:σ2.e2 : σ. By
inversion this means either both fixm x:σi.ei diverge or converge to related values, η ⊢ v1 ∼ v2 : σ.
However, they must converge after at most m − 1 unwindings, therefore it is the case that they
converge to related values. Furthermore, fix x:σi.ei evaluates to v ′i , which is an erasure of vi.
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Because the logical relation is closed under erasure, it is the case that η ⊢ v ′1 ∼ v ′2 : σ. Finally
because both fix x:σi.ei converge to v ′i the rule : can be used to conclude η ⊢ fix x:σ1.e1 ≈
fix x:σ2.e2 : σ.

• In the last two cases, one of fix x:σi.ei diverges and the other converges to a value. However,
the fixed point that converged must do so in a finite number of unwindings m, as described by
Lemma ··. ¿en instantiating for all n, η ⊢ fixn x:σ1.e1 ≈ fixn x:σ2.e2 : σ with m I have a
derivation that η ⊢ fixm x:σ1.e1 ≈ fixm x:σ2.e2 : σ. By inversion I know that either both fixm x:σi.ei

converge or diverge. However, I already know that one of the expressions converges, therefore the
othermust as well. However, I know that fixn x:σi.ei terminates iff fix x:σi.ei does. ¿is contradicts
the assumption that only one of the two fixed points converged to a value.

¤

§ Applications of the parametricity theorem

¿e parametricity theorem has been used for many purposes, most famously for deriving free theorems
about functions in the polymorphic λ-calculus, from their types alone (Wadler ). My purpose is
more similar to that of Reynolds (; ): reasoning about representation independence properties.

Corollaries of¿eorem ·· provide important results for reasoning about abstract types in programs.
Many specific properties can be proven as a consequence of the parametricity theorem, but I believe the
following two are representative of what a programmer desires.

¿is first corollary says that a programmer is free to change the implementation of an abstract type
without affecting the behavior of a program. It is the essence behind parametric polymorphism – type
information is not allowed to influence program execution, and values of abstract type are be treated as
“black boxes”.

Corollary ·· (Confidentiality). If ∙ ⊢ v1 : τ1 and
∙ ⊢ v2 : τ2, then
α:⋆; x:α ⊢ e : bool and
e[τ1/α][v1/x] * v iff e[τ2/α][v2/x] * v.

Proof. First construct a derivation that ∙; ∙ ⊢ Λα:⋆.λx:α.e : ∀α:⋆.α → bool using the appropriate typing
rules and then appeal to ¿eorem ·· to obtain

∙ ⊢ Λα:⋆.λx:α.e ∼ Λα:⋆.λx:α.e : ∀α:⋆.α → bool.

Next, by inversion on : and instantiation with the relation

R = {(v1,v2) | (∙; ∙ ⊢ v1 : τ1),(∙; ∙ ⊢ v2 : τ2)},

it can be concluded that

∙,α ↦ R ⊢ (Λα:⋆.λx:α.e)[τ1] ≈ (Λα:⋆.λx:α.e)[τ2] : α → bool.

By straightforward application of : it is possible to conclude

∙,α ↦ R ⊢ v1 ∼ v2 : α,
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so by application of :, inversion on :, and instantiation

∙,α ↦ R ⊢ (Λα:⋆.λx:α.e)[τ1]v1 ≈ (Λα:⋆.λx:α.e)[τ2]v2 : bool.

Finally, because the relation is closed under reduction I have :, and by instantiation it is true that

∙,α ↦ R ⊢ e[τ1/α][v1/x] ≈ e[τ2/α][v2/x] : bool,

from which the desired conclusion can be obtained by simple inversion. ¤

¿is second corollary states that there is no way for a program to invent values of an abstract type,
and thereby allowing the integrity of the abstraction to be violated. ¿e integrity of the abstraction can
be thought of as unspecified invariants.

Corollary ·· (Integrity). If α:⋆; ∙ ⊢ e : α then e[τ/α] for any τ must diverge.

Proof. First construct a derivation that ∙; ∙ ⊢ Λα:⋆.e : ∀α:α using the appropriate typing rules, then appeal
to ¿eorem ·· to obtain

∙ ⊢ Λα:⋆.e ∼ Λα:⋆.e : ∀α:⋆.α.

Now assume an arbitrary τ. By inversion on : and by instantiation it is possible to conclude

∙,α ↦ ∅ ⊢ (Λα:⋆.e)[τ] ≈ (Λα:⋆.e)[τ] : α.

Because the relation is closed under reduction it is true that

∙,α ↦ ∅ ⊢ e[τ/α] ≈ e[τ/α] : α.

Furthermore, by inversion either e[τ/α] * v or e[τ/α] ↑. However in the former case that would mean
that

∙,α ↦ ∅ ⊢ v ∼ v : α,

which by inversion on : is impossible because there is no v such that v∅v. ¿erefore e[τ/α] ↑. ¤

§ Parametricity and type analysis

I now consider the problem of extending the parametricity theorem to all of λSECi. ¿ere are two primary
difficulties in doing so.

As an example of the first problem, the following λSECi term (eliding labels) violates Corollary ··:

typecase [γ.bool] α true (Λβ:⋆.Λδ:⋆.false)(Λβ:⋆.Λδ:⋆.false),

¿is expression contradicts confidentiality because substituting bool for α and substituting bool × bool

for α will cause the expression to evaluate to different values: true versus false. It is not possible to
directly extend the proof of parametricity to handle typecase. ¿e proof would require that the two
terms produce related results, even when they may analyze different constructors.
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Still, I would like to state properties similar to Corollaries ·· and ·· for λSECi. ¿e problem
I describe above can be solved by strengthening the definition of the logical relation. Specifically, by
changing the rule : to require that τ1 and τ2 are β-equivalent:

∀τ1,τ2.τ1 = τ2 : ⋆,∀(R ∈ τ1 ↔ τ2).η,α ↦ R ⊢ v1[τ1] ≈ v2[τ2] : σ R consistent

η ⊢ v1 ∼ v2 : ∀α:⋆.σ
:-

¿is revised version of : does allow a stronger version of Corollary ·· to be proven in the presence
of typecase, but it is so strong that it is vacuous. ¿e example above is resolved simply because the
theorem only says anything about the behavior when substituting β-equivalent constructors for α.

¿is is why tracking information-flow is critical – it allows for a richer definition of equivalence for
constructors than β-equivalence. For example, here is the earlier example annotated with information-
flow labels:

typecase [γ.(bool) @ ⊤] α true (Λβ:⋆⊤.Λδ:⋆⊤.false) (Λβ:⋆⊤.Λδ:⋆⊤.false)

If α has kind ⋆⊤ then as specified by the typing rule :, the entire expression will have type
(bool) @ ⊤. As before substituting bool × bool for α will cause the expression to evaluate to different
values: true versus false. However, in an information-flow type system, equivalence is parametrized by
an observer. If the observer is only allowed to observe data with an information content less than ⊤, to
that observer true and false at type (bool) @ ⊤ will be indistinguishable. ¿e next section will explain in
more detail what it means for constructors to be related in an information-flow kind system.

A second problem that arises when trying to prove a generalization of the parametricity theorem
for λSECi is simply defining the relation. Logical relations are defined inductively over the types of the
language. However, in λSECi the weak-head normal forms of types include (for example) Typerec with its
scrutinee a variable. It is not obvious what it means for two values to be related at a type like

Typerec α bool (λβ:⋆⊥λδ:⋆⊥.bool → bool) (λβ:⋆⊥λδ:⋆⊥.bool × bool).

¿e solution that I use, for λSECi, is to quantify over families of relations between values instead of merely
quantifying over relations between values of two specific types. I will explain how this works in more
detail when I revisit the logical relation for expressions in § ·.

§ Equivalence of constructors

¿efirst step towards a generalized parametricity theorem is formalizing what it means for type construc-
tors to be equivalent in an information-flow kind system. Instead of defining the equivalence inductively
over the structure of constructors, like in Appendix , I define a logical relation between constructors
inductively over their kinds.

I write τ1 ≈� τ2 : κ to mean closed constructors τ1 and τ2 are related at kind κ with respect to a label, �,
called the observer. Similarly, the judgment ν1 ∼� ν2 : κ is used to indicate that closed weak-head normal
constructors ν1 and ν2 are related at kind κ with respect to an observer, �. ¿e grammar of weak-head
normal constructors and relations on constructors is defined in Figures · and ·, respectively.





constructor contexts ξ # • | Typerec ξ τbool τ→ τ× | ξ τ

weak-head normal-form constructors ν # ξ{α} | bool | τ1 → τ2 | τ1 × τ2 | λα:κ.τ

weak-head normal-form types ζ # (bool) @ � | (ξ{α}) @ � | σ1
�→ σ2 | σ1 ×� σ2 | ∀�1 α:⋆�2 .σ

Figure ·: ¿e grammar of additional syntactic forms in λSECi.

�1 6⊑ �0

ν1 ∼�0 ν2 : ⋆�1
:-

�1 ⊑ �0

bool ∼�0 bool : ⋆�1
:-

�1 ⊔ �2 ⊑ �3 �3 ⊑ �0 τ1 ≈�0 τ3 : ⋆�1 τ2 ≈�0 τ4 : ⋆�2

τ1 → τ2 ∼�0 τ3 → τ4 : ⋆�3
:-

�1 ⊔ �2 ⊑ �3 �3 ⊑ �0 τ1 ≈�0 τ3 : ⋆�1 τ2 ≈�0 τ4 : ⋆�2

τ1 × τ2 ∼�0 τ3 × τ4 : ⋆�3
:-

∀(τ1 ≈�0 τ2 : κ1).ν1τ1 ≈�0 ν2τ2 : κ2 ⊔ �1

ν1 ∼�0 ν2 : κ1
�1→ κ2

:

τ1  
* ν1 τ2  

* ν2 ν1 ∼�0 ν2 : κ
τ1 ≈�0 τ2 : κ

:

Figure ·: Logically related constructors in λSECi.

Making the distinction between constructors and weak-head normal constructors is especially useful
because the head of closed weak-head normal form for constructors will never be Typerec.

Constructors that are not in normal form are related by : if and only if their weak-head
normal forms are related. ¿e rule for type functions, :, is standard for logical relations.

An anthropomorphic interpretation of the observer is of an individual with the clearance to inspect
data with an information content below a specific label in the label lattice. If the observer is an admin-
istrator she may be cleared to inspect data with an information content less than ⊤. Guest users of a
system might only be allowed to inspect data with an information content of ⊥. Because such users
cannot inspect data with an information content higher than ⊥, all data with such an information content
will appear identical to them. ¿is restriction is enforced by the rule :- in Figure ·. For
example, bool : ⋆⊤ and bool × bool : ⋆⊤ which carry “high-security” information ⊤, will be indistinguish-
able to an observer at a “low-security” level ⊥. Otherwise, the standard equivalence rules :-,
:-, and :- are used.
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More formally, the observer label can be understood as a parameter that quotients the logical relation.
If the observer is ⊤ then the relation is βη-equivalence of constructors. If the observer is some label, �,
less than ⊤, then the relation is βη-equivalence for those constructors with an information content less
than or equal to �, and the universal relation for constructors with an information content greater than �.

While the logical relation on constructors was designed so that the it will be the universal relation
when the observer is lower than the information content of the constructors, it is not an axiom. ¿erefore,
it is wise to check the definitions by proving the following lemma.

Lemma ·· (Obliviousness for constructors). If ∙ ⊢ τ1,τ2 : κ and L(κ) 6⊑ �0, then τ1 ≈�0 τ2 : κ.

Proof. By simultaneous induction over the structure of ∙ ⊢ τ1 : κ and ∙ ⊢ τ2 : κ. ¤

Another important property of the relation is that it is closed under subsumption. ¿e following
lemma verifies the intuition that two related constructors will always stay related when made more
restricted.

Lemma ·· (Constructor relation is closed under subsumption).

If κ1 ≤ κ2 and τ1 ≈�0 τ2 : κ1, then τ1 ≈�0 τ2 : κ2

Proof. By induction over the structure of τ1 ≈�0 τ2 : κ1. ¤

Finally, because I have defined equivalence on constructors in terms of a logical relation, it is useful
(and later necessary) to prove a result for type constructors that is similar to parametricity for terms.
However, first I must provide a revised definition of what it means for two constructor substitutions to
be related. Given,

∀α:κ ∈ ∆.(δ1(α) ≈�0 δ2(α) : κ)

δ1 ≈�0 δ2 : ∆
:

the lemma is as follows:

Lemma ·· (Basic lemma for constructors). If ∆ ⊢ τ : κ and δ1 ≈�0 δ2 : ∆ then δ1(τ) ≈�0 δ2(τ) : κ.

Proof. By induction over the structure of ∆ ⊢ τ : κ. See Appendix · for the complete details. ¤

Now that I have explained how equivalence on constructors is defined for λSECi, I will examine the
revisions necessary to the logical relation on expressions.

§ Related expressions

As with constructors, I parametrize the logical relation on terms by an observer at level � in the label
lattice. I write η ⊢ e1 ≈� e2 : σ to indicate that terms e1 and e2 are related to an observer at level � at type
σ, with the relation mapping η. As with constructors, I distinguish between related terms and related

. ¿e relation is βη-equivalence for type functions, but only β-equivalence for Typerec. ¿e reason for this difference
is because the logical relation for constructor equivalence is inductively defined on kinds, and because Typerec does not
introduce a distinguished kind, the only equivalences defined for Typerec constructors are given by the rule :.





τ τ ′

(τ) @ � (τ ′) @ �
:-

(τ1 → τ2) @ � (τ1) @ � �→ (τ2) @ �
:-

(τ1 × τ2) @ � (τ1) @ � ×� (τ2) @ �
:-

Figure ·: Type reduction in λSECi.

α ↦ R ∈ η (�1 ⊑ �0) ⇒ (v1R�1
ξ v2)

η ⊢ v1 ∼�0 v2 : (ξ{α}) @ �1
:

(�1 ⊑ �0) ⇒ (v1 = v2)
η ⊢ v1 ∼�0 v2 : (bool) @ �1

:

∀(η ⊢ e1 ≈�0 e2 : σ1).η ⊢ v1e1 ≈�0 v2e2 : σ2 ⊔ �1

η ⊢ v1 ∼�0 v2 : σ1
�1→ σ2

:

η ⊢ fst v1 ≈�0 fst v2 : σ1 ⊔ �1 η ⊢ snd v1 ≈�0 snd v2 : σ2 ⊔ �1

η ⊢ v1 ∼�0 v2 : σ1 ×�1 σ2
:

∀(τ1 ≈�0 τ2 : ⋆�2 ).∀(R�2
ξ ∈ δ1((ξ{τ1}) @ �2) ↔ δ2((ξ{τ2}) @ �2)).

η,α ↦ R ⊢ v1[τ1] ≈�0 v2[τ2] : σ ⊔ �1 R consistent
η ⊢ v1 ∼�0 v2 : ∀�1 α:⋆�2 .σ

:

e1  
* v1 e2  

* v2 σ * ζ η ⊢ v1 ∼�0 v2 : ζ
η ⊢ e1 ≈�0 e2 : σ

:

e1 ↑
η ⊢ e1 ≈�0 e2 : σ

:

e2 ↑
η ⊢ e1 ≈�0 e2 : σ

:

Figure ·: Logically related terms in λSECi.

normal forms, writing the judgment η ⊢ v1 ∼� v2 : ζ to indicate that values v1 and v2 are related to an
observer at level � at the weak-head normal type ζ, with the relation mapping η. ¿ese relations, as
defined in Figure ·, are similar to the ones in Figure ·. One difference is that I only relate values at
weak-head normal types ζ, defined in Figure ·.

Restricting the value relation to weak-head normal types makes the logical relation much easier
to state and understand. For example, the term �true,false� is well typed with the equivalent types
(bool×bool) @ � and (bool) @ � ×� (bool) @ �. However, restricting the relation to weak-head normal types
means that only the case for (bool) @ � ×� (bool) @ � must be considered in the inductive proof.

Like constructors, the relation over terms is defined so that terms with a greater information content
than the observer will be indistinguishable. ¿is is enforced by the precondition �1 ⊑ �0 found in :

and :. ¿e antecedent relations in :, :, and : all have their types joined with �1;
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this accounts for information gained by destructing the value. ¿e following lemma verifies the intuitions
concerning indistinguishability:

Lemma ·· (Obliviousness for terms). If δ1,δ2 ⊢ η : ∆⋆ and δ1 ≈�0 δ2 : ∆⋆ and L(ζ) 6⊑ �0 and

• ∆⋆; ∙ ⊢ v1,v2 : ζ then η ⊢ δ1(v1) ∼�0 δ2(v2) : ζ.

• ∆⋆; ∙ ⊢ e1,e2 : σ then η ⊢ δ1(e1) ≈�0 δ2(e2) : σ.

Proof. ¿e first part follows from induction on ζ and the second part from¿eorem ·· (Type safety).
¤

¿ere are two other significant differences between Figures · and ·: additional preconditions in
:, and generalizing : to :. ¿e rule : solves the problem with Typerec appearing in
the weak-head normal form of types. It generalizes : to terms related at a constructor that cannot
be normalized further because of an undetermined type variable. I characterize these constructors with
constructor contexts, ξ, defined in Figure ·. Contexts are holes •, Typerecs of a context, or a context
applied to an arbitrary constructor. I write ξ{τ} for filling a context’s hole with τ.

Previously, values were related at a type variable only if they were in the relation mapped to that
variable by η. Here η maps to families of relations. I write R�

ξ for the application of R to a label � and a
context ξ, yielding a relation. ¿erefore, when I write

R�
ξ ∈ δ1((ξ{τ1}) @ �) ↔ δ2((ξ{τ2}) @ �),

I mean that R is a dependent function of � and ξ yielding a relation on values of type δ1((ξ{τ1}) @ �) and
δ2((ξ{τ2}) @ �).

¿ismove from relations to families of relationsmakes itmore difficult to use the resulting generalized
parametricity theorem. ¿is is primarily because in standard parametricity it is only necessary to choose
a relationship between values of two fixed types, while in generalized parametricity it is necessary to
choose a family of relationship between values of arbitrary type. ¿is is because the constructor context,
ξ, determines the types of the values R�

ξ must relate.
To date I have been unable to devise any non-trivial families of relations that are not parametric in

their constructor context. It is open question whether there are interesting families of relations that are
not parametric in their constructor context. Because constructor contexts were introduced to handle
Typerec, if it were removed from λSECi this problem would go away. ¿ere may be less drastic solutions
and I will discuss some of my ideas in § ·. Fortunately, the families of relations used to prove the
confidentiality and integrity corollaries, the universal relation and the null relation, respectively, are
parametric in their constructor context.

As with standard parametricity, quantification over R is required to be consistent. In addition to being
closed under erasure of fixed point annotations, as I described for the vanilla parametricity theorem in
§ ·, relations are required to be closed under subtyping. ¿at means if v1R�1

ξ v2 and �1 ⊑ �2 then it must
also be the case that v1R�2

ξ v2.
It is important that the logical relation itself is consistent, that is, closed under subsumption and

erasure.
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Lemma ·· (Term relation is consistent).

• If δ1,δ2 ⊢ η : ∆⋆ and
∆⋆ ⊢ σ1 ≤ σ2 and
η ⊢ e1 ≈�0 e2 : σ1 then
η ⊢ e1 ≈�0 e2 : σ2.

• If δ1,δ2 ⊢ η : ∆⋆ and
η ⊢ e1 ≈�0 e2 : σ and
e1 ≼ e ′1 and e2 ≼ e ′2 then
η ⊢ e ′1 ≈�0 e ′2 : σ.

Proof. For the first part, straightforward induction over the structure of σ1 and for the second part,
straightforward induction over the structure of η ⊢ e ′1 ≈�0 e ′2 : σ. ¤

I write δ1,δ2 ⊢ η : ∆⋆ to mean that the mapping η is well-formed with respect to a pair of type
substitutions, δ1 and δ2, as defined in the rule:

∀α:⋆�1 ∈ ∆⋆.(η(α)�1
ξ ∈ δ1((ξ{α}) @ �1) ↔ δ2((ξ{α}) @ �1)) η(α) consistent

δ1,δ2 ⊢ η : ∆⋆
:

¿e last significant difference in Figure · is that : has been split into : and :.
Terms in λSECi are related if either diverges, as opposed to my earlier definition where divergent terms
were only related to other divergent terms. At first, this change might seem like a significant weakening
of the relation. In particular, the logical relation is no longer transitive. However, this definition is
standard for information-flow logical relations proofs with recursion (Abadi et al. ; Zdancewic ).
I will discuss how this requirement is merely an artifact of call-by-value information-flow in the next
subsection.

§ Generalized parametricity

Before stating the generalized parametricity theorem, the notion of related term substitutions must be
defined. Given related type substitutions, δ1 ≈�0 δ2 : ∆⋆, and a well-formed mapping, δ1,δ2 ⊢ η : ∆⋆, term
substitutions are related if they map variables to related terms.

∀x:σ ∈ Γ.(η ⊢ γ1(x) ≈�0 γ2(x) : σ)

η ⊢ γ1 ≈�0 γ2 : Γ
:

¿e only change from : is the additional of a label �0 for the observer.

¿eorem ·· (Generalized parametricity). If ∆⋆; Γ ⊢ e : σ and
δ1 ≈�0 δ2 : ∆⋆ and
δ1,δ2 ⊢ η : ∆⋆ and
η ⊢ γ1 ≈�0 γ2 : Γ then
η ⊢ δ1(γ1(e)) ≈�0 δ2(γ2(e)) : σ.
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Kinds
�⋆� # ⋆⊤

�κ1 → κ2� # �κ1� ⊤→ �κ2�

�bool� # (bool) @ ⊥

Types
�σ1 × σ2� # �σ1� ×⊥ �σ2�

�σ1 → σ2� # �σ1� ⊥→ �σ2�
�∀α:κ.σ� # ∀⊥α:�κ�.�σ�

Expressions
�true� # true
�false� # false

�if e1 then e2 else e3� # if ��e1� then �e2� else �e3�
��e1,e2�� # ��e1�,�e2��

�fst e� # fst �e�
�snd e� # snd �e�

�λx:σ.e� # λx:�σ�.�e�
�e1e2� # �e1��e2�

�Λα:κ.e� # Λα:�κ�.�e�
�e[τ]� # �e�[�τ�]

Relations

�∙� # ∙

�η,α ↦ R� # �η�,α ↦ {
{(v1,v2) | v1 R v2,(∙; ∙ ⊢ v1 : τ1),(∙; ∙ ⊢ v2 : τ2)} ξ = • and � = ⊥
{(v1,v2) | (∙; ∙ ⊢ v1 : τ1),(∙; ∙ ⊢ v2 : τ2)} ξ = • and � ≠ ⊥
∅ otherwise

where R ∈ τ1 ↔ τ2

Figure ·: ¿e encoding for standard parametricity.

Proof. As with standard parametricity, the proof is by induction over ∆⋆; Γ ⊢ e : σ. In addition to the
lemmas mentioned in § · and § ·, Lemma ·· must be extended in the straightforward manner. See
Appendix · for the complete details. ¤

I call this theorem generalized parametricity because I conjecture that¿eorem ·· can be recovered
via an encoding:

• Restrict the label lattice to two elements, ⊥ and ⊤ where ⊥ ⊑ ⊤.

• For every kind κ in ∆⋆, Γ, e, and σ require L(κ) = ⊤.

• For every type σ ′ in Γ, e, and σ require L(σ ′) = ⊥.

• Require that the observer be ⊥.

Figure · makes this encoding explicit, allowing the relationship between standard parametricity and
generalized parametricity to be described formally.
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Conjecture ·· (Generalized parametricity subsumes standard parametricity).
If ∆⋆; Γ ⊢ e : σ and

η ⊢ δ1 ≈ δ2 : ∆⋆ and
η ⊢ γ1 ≈ γ2 : Γ, then
η ⊢ δ1(γ1(e)) ≈ δ2(γ2(e)) : σ iff �η� ⊢ �δ1(γ1(e))� ≈⊥ �δ2(γ2(e))� : �σ�

where δ1(γ1(e)) ↑ iff δ2(γ2(e)) ↑.

I expect that the proof will follow by induction over the structure of the polymorphic λ-calculus
typing judgment, ∆⋆; Γ ⊢ e : σ.

However, this encoding is not perfect because : has been split into a disjunction with the
rules : and :. ¿erefore, ¿eorem ·· makes a weaker claim about the termination
behavior of related terms than ¿eorem ··. ¿is difference is accounted for in Conjecture ··
by the side condition δ1(γ1(e)) ↑ iff δ2(γ2(e)) ↑. Furthermore, the difference in how the theorems treat
non-termination does impact my results – consider the generalized version of Corollary ··:

Corollary ·· (Confidentiality). If α:⋆⊤; x:(α) @ ⊥ ⊢ e : (bool) @ ⊥ then for any ∙ ⊢ v1 : τ1 and ⊢ v2 : τ2

if e[τ1/α][v2/x] and e[τ2/α][v2/x] both terminate, they will produce the same value.

Proof. ¿e details of the proof are very similar to those for Corollary ··. Full details can be found in
§ ·. ¤

¿is corollary states that what is substituted for α and x will not affect the value computed by e.
However, it is possible that the choice of α and x could cause e to diverge. What is happening?

Unlike standard parametricity, ¿eorem ·· has an explicit observer. Standard parametricity has
an implicit observer that can observe all computations. What makes information-flow techniques work is
that some computations are opaque to the observer. Furthermore, the results of these computations are
also inaccessible to the observer, making them effectively dead code. However, because the operational
semantics I chose to use for λSECi is call-by-value, dead code must be executed even though the result is
never used.

For example, the following expression is well-typed in λSECi with type bool⊥ under the assumption α
has kind ⋆⊤:

(λx:(bool) @ ⊤.true) (typecase[γ.(bool) @ ⊤]α
(true)
(Λβ:⋆⊤.Λδ:⋆⊤.fix y:(bool) @ ⊤.y)
(Λβ:⋆⊤.Λδ:⋆⊤.false))

Corollary ·· states that if two related constructors are substituted for the free type variable α, in
the expression above, that the two resulting expressions will be related. If bool is substituted for α the
expression will evaluate to true, but if bool → bool is substituted for α then the expression will diverge.
¿erefore, because one of the expressions diverges, the corollary has not been contradicted.

However, note that the expression

(typecase[γ.(bool) @ ⊤]α (true)(Λβ:⋆⊤.Λδ:⋆⊤.fix y:(bool) @ ⊤.y)(Λβ:⋆⊤.Λδ:⋆⊤.false)),
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is completely dead code because when it does evaluate to a value, it is simply thrown away. If λSECi is
given a call-by-name operational semantics, the original expression above is operationally equivalent
to the expression true. I conjecture that all such discrepancies in termination behavior are a result of
dead code. ¿erefore, by using a call-by-name operational semantics, an exact correspondence between
standard parametricity and generalized parametricity could be recovered.

§ Applications of generalized parametricity

A typical corollary of ¿eorem ·· is normally called noninterference; the property that it is possible
to substitute values indistinguishable to the present observer and get indistinguishable results.

Corollary ·· (Noninterference). If ∙,x:σ1 ⊢ e : σ2 where L(σ1) 6⊑ L(σ2), then for any ⊢ v1 : σ1 and
⊢ v2 : σ1 it is the case that if both e[v1/x] and e[v2/x] terminate, they will both produce the same value.

Proof. Proceeds in a similar fashion to Corollary ··. ¤

More importantly, it is also possible to restate the corollaries of standard parametricity proven
earlier. ¿e previous subsection stated the revised corollary for confidentiality. ¿e same can be done
for integrity:

Corollary ·· (Integrity). If α:⋆⊤; ∙ ⊢ e : (α) @ ⊥ then e[τ/α] for any τ must diverge.

Proof. ¿e details of the proof are very similar to those for Corollary ··. Full details can be found in
Appendix ·. ¤

While these corollaries are very similar in spirit to the ones derived from standard parametricity,
it is possible to make much richer and more refined claims because the label lattice expands upon the
implicit two level lattice used by parametricity. For example, it is possible to label each abstract data type
with a distinct label. ¿is makes it possible to understand which abstract types depend upon each other;
the fact that all abstract types in standard parametricity are labeled with ⊤ means that it is not possible
to discern their interdependenices. Furthermore, using distinct labels makes it possible to reason about
the abstraction properties of each data type separately. I will explore this possibility in greater detail
in § .

§ · Related work

¿e design of λSECi and the proof of generalized parametricity draws heavily upon previous work on
type analysis, parametricity, and information flow.

Most information flow systems use a lattice model originating fromwork by Bell and La Padula ()
and Denning (). ¿e earliest work on static information flow dates back to Denning and Den-
ning (). Volpano, Smith, and Irvine () showed that Denning’s work could be formulated as
a type system and proved its soundness with respect to noninterference. Heintze and Riecke ()

. ¿e only part of the proof for ¿eorem ·· that would need to change is the proof of obliviousness for terms,
Lemma ··.
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formalized information-flow and integrity in a typed λ-calculus with references, the SLam calculus, and
proved a number of soundness and noninterference results. Pottier and Simonet () have developed
an extension of , called FlowCaml, and have shown noninterference using an alternative syntactic
technique.

Prior to this research, FlowCaml was the only language with polymorphism and a noninterference
proof. However, FlowCaml does not have anymechanisms for  and can rely on standard parametricity
for types. ¿ere was some prior research on noninterference with principal polymorphism by Tse and
Zdancewic (), and later concurrently with this research they investigated a language with type
polymorphismwhere labels and principalswere integrated into the language of types (). Furthermore,
because their goal was to support runtime decisions based upon principals, and because principals in
their formalization are a special form of type, their language provides a form of runtime type analysis.
However, their noninterference theorems focus on how related terms affect computation and do not
consider how related types would alter computations.

While research into abstraction properties predates his work, Reynolds (; ) was the first
to show how the parametricity theorem could be used to prove properties about representation inde-
pendence in the polymorphic λ-calculus. Reynold’s proofs were for a polymorphic λ-calculus without
higher-kinded types. While I have restricted λSECi to disallow polymorphic functions over higher-kinded
types, most of the machinery necessary to handle higher-kinded types has been developed because type
operators are allowed to abstract over higher-kinded type variables. Girard, in his dissertation (),
did present a form of logical relation for the λ-calculus without higher-kinded types.

Gallier () later gave a detailed survey of variations on formalizing what Girard called the method
of “Candidats de Reductibilité”, including the extensions to higher-kinds. However Gallier focused on
strong normalization, so he only studied a unary logical relation. Kučan, in his dissertation (),
did consider an interpretation for the λ-calculus without higher-kinded types that extended to n-ary
relations, but his interpretation is untyped.

Finally, following the publication of my original work on generalized parametricity, Vytiniotis and
Weirich () developed a detailed formalization of parametricity for the higher-order polymorphic
λ-calculus. However, instead of building their formalization around the canonical forms of types, as I
have done, they require an additional consistency requirement that their relations must behave the same
on β-equivalent types.

My generalized parametricity result for λSECi directly builds upon the methods of Zdancewic ()
and Pitts (). Other researchers have noticed the connection between parametricity and noninter-
ference. For example, the work of Tse and Zdancewic () compliments my research by showing
how parametricity can be used to prove noninterference. Tse and Zdancewic do so by encoding Abadíet
al.’s () dependency core calculus into the polymorphic λ-calculus.

¿e fact that runtime type analysis (and other forms of ad-hoc polymorphism) breaks parametricity
has been long understood, but little has been done to reconcile the two. Leifer et al. () design a
system that preserves type abstraction in the presence of (un)marshalling. ¿is is a weaker result because
marshalling is merely a single instance of an operation using run-time type analysis. Rossberg () and

. However, it is not clear whether his relation was more than unary. I have not yet attempted to study his dissertation in
detail because it is written in Français.
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Vytiniotis, Washburn, and Weirich () use generative types to hide type information in the presence
of run-time analysis, relying on colored-brackets (Grossman, Morrisett, and Zdancewic ) to provide
easy access. However, none of this work has formalized the abstraction properties that their systems
provide.

Finally, following the original publication of the work on generalizing parametricity, Vytiniotis and
Weirich (; ) have investigated a more traditional parametricity result for a language with type
representations in the style of λR. ¿eir work is the most closely related to the research on generalized
parametricity.

¿eir initial work () does not handle type operators and type analysis is based upon type
representations. ¿ere are three significant differences between the language they studied in that work
and λSECi.

¿e first difference is that they provide a special “top” type representation called Rany. ¿ey can use
this representation to prove properties that have no correspondence in generalized parametricity as
stated here. If Rany is omitted from their language, the properties that can be proven in their language
are a subset of those that can be derived from generalized parametricity. Using Rany as an argument to a
type analyzing function is a way of forcing functions to behave parametrically at runtime. It is possible
to label programs in λSECi to force functions to behave parametrically statically, but there is no dynamic
analog.

¿e second difference is that their language allows impredicative rather than predicative type quan-
tification. ¿erefore, it is possible to write programs and free theorems about polymorphic functions
that can be instantiated with polymorphic types themselves. However, because they do not provide a
type representation for polymorphic types, there is no interesting interaction between type analysis and
polymorphic types just as in λSECi. ¿e primary obstacle to allowing impredicative type quantification in
λSECi comes from Typerec. Naïve extensions for analyzing higher-order types at the level of types rather
than terms will make type equality undecidable. Extending λSECi with a top type would be one way to
allow impredicative quantification and avoid this problem.

¿e third difference is that because type representations are required to perform type analysis, it is
possible to completely prevent type analysis by simply not providing a corresponding representation for an
abstract type. As I discussed in § ·, using type representations in this fashion is a form of access control.
However, I conjecture that nearly all free theorems that can be derived by withholding representations
can be emulated in λSECi with appropriate labeling. For example, the type ∀⊥α:⋆⊥.(α) @ ⊥ ⊥→ (α) @ ⊥
should have similar inhabitants to the type ∀α.R[α] → α → α in their language. Correspondingly,
a function with the type ∀α.α → α in their language should have similar inhabitants to the type
∀⊥α:⋆⊤.(α) @ ⊥ ⊥→ (α) @ ⊥ in λSECi (modulo the termination discrepancy described in § ·).

¿e more recent work by Vytiniotis and Weirich () on the language Rω does address type-
operators, as described above in my discussion of higher-order parametricity, but does not examine the
problems that arise from including type-level type analysis. Again they make use of type representations,
but do not include the Rany type representation. Unlike their prior work, in Rω it is possible to prove
interesting results, that have no analog in λSECi, about the static behavior of programs that use type
analysis. Again there are three significant differences between Rω and λSECi. ¿e first two differences are
impredicative polymorphism and the use of type representations for access control, which I discussed
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earlier. ¿e third significant difference arises because they allow quantification over higher-kinded types.
¿eir central result is a proof of partial correctness for generic type-safe cast from the free theorem for
its type. In λSECi, a type-safe cast can be written and has the type

∀⊥α:⋆⊥.∀⊥β:⋆⊥.(α) @ ⊥ ⊥→ ((β) @ ⊥ +⊥ 1).

In Rω a generic type-safe cast quantifies over a type-operator and has the type

∀δ:⋆ → ⋆.∀α:⋆.∀β:⋆.R[α] → R[β] → δα → (δβ) + 1.

¿eir parametricity theorem can be used to derive that any implementation of this type, if it returns a
value of type δβ, that value will be identical to the input value with type δα. ¿at is, a generic type-safe
cast cannot subtly modify the input based upon its representation.

However, Vytiniotis and Weirich’s (; ) results are based upon the use of type represen-
tations, which, as I described in § ·, is a form of dynamic access control. Because access control
mechanisms cannot capture dependencies, they cannot be used to prove results about confidential-
ity and integrity independently, like can be done using generalized parametricity. Furthermore, type
representations are values; there is no mechanism in their language to reason about the dependencies
between abstract types. Finally, the use of an explicit lattice in λSECi allows for cleanly reasoning about
the confidentiality and integrity of several s simultaneously, along with the relationships between
them.
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
Programming with types in Infor

¿is dissertation is about defining operations with types.

Stephanie Weirich (Programming with Types, )

In the previous chapter, I developed generalized parametricity as a foundational theory for reasoning
about abstract data types in the presence of runtime type analysis. In this chapter, I show how these
ideas can be realized in a practical programming language called Infor. Infor is a member of the 
family of languages, extended with primitives for reflecting on type meta-data and an information-flow
type and kind system.

I will begin by reviewing how type-directed programming in the core of Infor differs from λSECi.
After introducing the differences in the languages, I will move on to explaining the language features in
Infor that have no analog in λSECi: modules, generative types, and dynamic information-flow. I will
conclude my introduction to programming in Infor with an example combining all of these features,
and then discuss Infor’s relationship to other programming languages.

I will assume familiarity with -like languages and I will focus mainly on the novel aspects of
Infor. ¿e complete grammar for Infor can be found in § .

§ · ¿e basics of Infor

¿is sectionwill explain the semantic and syntactic differences between λSECi and Infor’s core language:

• label, higher-order type, and constrained polymorphism,

• local type inference,

• type patterns,
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• types and type constructors are combined,

• and the program counter label.

To illustrate these differences, I will use as a running example a type-directed function, “to string”,
for converting data to human-readable strings. I will begin with an overview of the differences before
addressing some points in greater detail in the coming subsections. At the end of this section, I will
return to the Infor implementation of “to string” to review how it works and how it typechecks.

Assuming an extension of λSECi with a string type constructor, string, with kind ⋆⊥ and an infix string
concatenation function (^) with type (string) @ � ⊥→ (string) @ � ⊥→ (string) @ �, for some predetermined
label �, an implementation of “to string” in λSECi, might look like:

fix toString:(∀⊥α: ⋆� .(α) @ � ⊥→ (string) @ �).Λα: ⋆� .
typecase[δ.string] α

(λarg:bool.if arg then "True" else "False")
(Λβ: ⋆� .Λγ: ⋆� .λarg:(β → γ) @ �."<Function>")
(Λβ: ⋆� .Λγ: ⋆� .λarg:(β × γ) @ �.

"(" ^ (toString[β](fst arg)) ^ ", " ^ (toString[γ](snd arg)) ^ ")")

In the function toString, if typecase determines that α is of type bool it returns a function that uses
a conditional to choose the appropriate string for arg. In the case that α is a function type, toString
simply returns a constant function returning string "<Function>", as there is no way to further inspect
a functional value. Finally, in the case that α is a tuple, toString returns a function that will invoke
toString recursively on the first and second projections of the tuple and the results are concatenated
together.

Each of typecase’s branches just returns a string, so its type does not depend upon the type of the
scrutinee. Consequently, the annotation [δ.string], which is used specify how the type of the overall
typecase expression depends upon the scrutinee, does not need to make use of δ. Unfortunately, in λSECi,
any implementation of toString is restricted to only work on data labeled with a predetermined label �.

Below, I have rewritten the toString function in Infor. An abbreviated grammar for Infor can
be found in Figure ·.

fun toString : ∀⟨l:Lab|α: * @ l|(info α) = l⟩ α -(l|⊥)-> String @ l
fun toString ⟨l|α⟩ arg =

typecase α
| Bool @ l =>
if arg then "True" else "False" end

| _ -(_ | _)-> _ =>
"<Function>"

| (β, ψ) =>
"(" ^ (toString ⟨l|β⟩ (arg.0)) ^ "," ^ (toString ⟨l|ψ⟩ (arg.1)) ^ ")"

end

¿is example illustrates all five differences between λSECi and core Infor. However, this implementation
of the toString function is far too simplistic for practical use – it only handles a fixed subset of values
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variances π # + covariant
| - contravariant
| ± invariant

kinds κ # * @ Л type classifiers
| Lab -(π)-> κ label functions
| κ1 -(π)-> κ2 type functions

atomic labels ℓ # l label variables
| (⊥ | ⊤) bottom and top labels

full labels Л # ℓ atomic labels
| info τ information content of τ
| Л1⊔ ...⊔ Лn label join

constraints C # Л1 (<: | = | :>) Л2 label comparison
| C1 & ... & Cn conjunction

polytypes σ # ∀⟨(l:Lab)*|(α:κ)*|C?⟩ σ universal quantification
| τ monotypes

monotypes τ # α variables
| (Int | String | Bool) primitives
| τ1 -(ℓ1|ℓ2)-> τ2 term functions
| λ (l:Lab | α:κ) =(π)=> τ type functions
| τ1τ2 type application
| τ @ ℓ label application
| (τ1, ... ,τn) tuples

label patterns lp # _ wildcard
| ℓ atomic labels

type patterns φ # _ wildcard
| α type variable
| (Int | String | Bool) primitives
| φ1 φ2 type application
| φ @ lp label application
| φ1 -(lp1|lp2)-> φ2 term function
| (φ1, ... , φn) tuples

term patterns p # _ wildcard
| x variable binding
| (True | False | i | "strings") values
| (p1, ... , pn) tuples

term matches u # p => e | p =(ℓ)=> e
type matches µ # φ => e
expressions e # x (⟨Л*|τ*⟩)? instantiation

| (True | False | i | "strings") values
| (e1, ... , en) tuples
| e.n tuple projection
| e1 (andalso | orelse) e2 short-circuiting “and” and “or”
| λ (|)? u1 | ... | un end anonymous functions
| let ld* in e end let expression
| if e1 then e2 else e3 end conditional
| case e (of | |) u1 | ... | un end term case
| typecase τ (of | |) µ1 | ... | µn end type case
| e1e2 term application

function binding fb # x (⟨l*|α*⟩)?(p)+(: σ)? = e
local declarations ld # fun fb1 and ... and fbn recursive function

| fun x : σ type annotation
| val p = e “let”

Figure ·: ¿e abbreviated grammar of Infor.
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possible in Infor. Even though it is not a realistic implementation, it is still a useful point of comparison
between λSECi and Infor. I will explain how to address the limitations of this implementation of
toString later in this chapter.

All functions in Infor are required to be preceded by a type signature, as shown at the beginning
of the Infor version of toString. ¿is is because Infor, unlike most members of the  family of
languages, uses local type inference (Pierce and Turner ) rather than global type inference (Damas
and Milner ). Local type inference works by a combination of bidirectional typechecking and
synthesizing instantiations for polymorphic functions from their arguments. When writing examples, I
may sometimes omit a function’s type signature if I have already given it earlier in the text or if it is clear
from the example what it should be.

¿e signature above states that toString has the type

∀⟨l:Lab|α:* @ l|(info α) = l⟩ α -(l|⊥)-> String @ l.

¿e ∀ specifies that this type is a universally quantified type, with the variables it binds enclosed within
the angle brackets ⟨ ... ⟩. I will often describe this pair of angle brackets and their contents as the quantifier
block.

¿e first part of the quantifier block, l:Lab, says that this function quantifies over the label l. As
mentioned above, Infor includes label polymorphism. Label polymorphism is very important to
writing reusable programs in an information-flow type system. For example, the the λSECi version of
toString could only operate on inputs labeled with a predetermined label �.

Inside the quantifier block, the list of quantified label variables must always precede the list of
quantified type variables, separated by a vertical bar (|). Because of this restriction it is possible to omit
the Lab annotations on quantified labels. For example, I could have written written the quantifier block
for toString as ⟨l|α: * @ l|(info α)=l⟩; from now I will omit them for concision. Infor uses the
notation α: * @ l for what would be written as α:⋆� in λSECi.

¿e last part of the quantifier block, (info α) = l, is a label constraint. Because Infor has label
polymorphism, and consequently label variables, it is not always possible to directly compare two labels
like it is in λSECi. Initially, the only facts known about a quantified label l are that it must be greater
than or equal to ⊥ and less than or equal to ⊤. In many cases, these two facts are not specific enough to
show that some code is well-typed. ¿e constraint (info α) = lmeans that to instantiate the toString
function, it must be that case that the label info α is equal to l. ¿e label info α has a similar meaning
to the type meta-operator L(∙) in λSECi. I will explain the label info α in more detail in the coming
subsection.

Finally, following the quantifier block is the type of the function itself, α -(l|⊥)-> String @ l. In
λSECi, toString was a function with the type (α) @ � ⊥→ (string) @ �. ¿ere are two differences between
the types: there is no label on α in Infor, and the function types in Infor have two labels instead of
just one. ¿e fact that α is unlabeled is related to info labels. For now, think of values of type α as having
an unspecified information content.

. Why would I ever write the Lab annotation? I conjecture that it makes the types slightly more readable to someone
completely unfamiliar with Infor. Additionally, when writing label functions, λ l:Lab =(π)=> τ end, and their kinds, Lab
-(π)-> κ, writing Lab is required, so there is symmetry in allowing it to be written in quantifier blocks.
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¿e second difference, that there are two labels on the function type in Infor, l and ⊥, versus
just the single label ⊥ in λSECi, is a consequence of Infor being an impure language. ¿e first label in
the Infor version, l, specifies the program counter of the function. ¿e program counter label is a
precondition on the contexts in which the function may be executed; I will give a detailed explanation
of the program counter in the coming subsections. ¿e second label in the Infor version, ⊥, is the
information content associated with the function’s closure, and has the same meaning as the label on
function types in λSECi. If this second label is ⊥, Infor allows the label to be omitted. For example, the
function type in toString could have been written as α -(l)-> String @ l.

While the domains of the two functions differ, the range of the function types, String @ l and
(string) @ �, appear to be the same aside from their typefaces, but this is misleading. For now it is okay
to consider String @ l to be equivalent to (string) @ �; I will explain how they differ precisely in the
coming subsection.

On the line after the type signature for toString is its definition. ¿is part of the function is very
similar to what would be written in Standard , except the part in angle brackets, ⟨l|α⟩, immediately
after the function’s name. In Infor, the contents of these angle brackets are used to give names to the
label and type variables that the function quantifies over. ¿erefore, inside the function’s arguments and
body, the label that the function quantifies over is named l and the type it quantifies over is named α.
¿e names can be α-varied from the ones used in the type signature. It is not necessary (or allowed) to
give the kinds of the type variables, because they will be inferred by local type inference from the type
signature. Similarly, the type of toString’s argument, arg, will be inferred by local inference.

Moving into the body of toString, the typecase operator in Infor is similar to the one found
in λSECi, but with several practical differences. First, annotating a typecase expression with its type is
optional. ¿is is, again, because of the use of local type inference. Like λSECi, the scrutinee of typecase
must be of base kind.

¿e most significant deviation from λSECi in the body of toString is that the branches of typecase
are not fixed in Infor. One or more branches are specified using a language of type patterns, φ, as
described in Figure ·. Type patterns are similar to the patterns found in other -like languages.
For example, underscore ( _ ) is used as the wildcard pattern. However, Infor does not require type
patterns to be linear. ¿at is, patterns can reference already bound variables, and the variables that
patterns do bind can be referenced more than once.

¿e languages of type patterns is more restrictive than the language of types. For example, type
patterns do not include quantifiers or type functions. ¿e fact that type patterns cannot contain quanti-
fiers does not diminish the expressive power of Infor because the language is predicative. ¿erefore,
a type variable can never be bound to a quantified type at runtime. Additionally, patterns for type
functions would require the use of higher-order matching. Higher-order matching is known to be
decidable (Stirling ), but it would make the process of compiling Infor and its accompanying
runtime system significantly more complicated.

Labels in type patterns are restricted to wildcards and atomic labels (see ℓ versus Л in Figure ·)
to ensure that pattern matching is tractable and deterministic at runtime. For example, if the type

. I ran out of meta-variables for label-like entities, so full labels are indicated using the Cyrillic capital letter “el” (Л).
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Int @ l were matched with the type pattern Int @ (l1 ⊔ l2), where l1 and l2 are binding variables,
the Infor runtime could not determine a unique decomposition of l into a join of two labels.

Infor does not check that pattern matching is exhaustive or whether patterns are overlapping.
A failure to match results in a fatal runtime error. ¿is behavior is similar to other -like languages,
except that a matching failure is usually a recoverable exception rather than a fatal one.

Finally, the code in the branches of toString is nearly identical to the λSECi version. ¿e only
significant difference is that in Infor it is possible to pull the abstraction for toString’s value argument
outside of the typecase. ¿is is because Infor’s typecase primitive will refine the program context
within a branch by introducing new equalities, something that λSECi does not do. ¿e remaining
differences are mostly syntactic. For example, in Infor the projections fst and snd are written as
.0 and .1, respectively, and instantiating polymorphic functions is written with angle brackets, ⟨ ... ⟩,
instead of square brackets, [...].

Having finished the overview of the differences between toString, as written in λSECi, and toString,
as written in Infor, I will now explain how type constructors and types are merged in Infor and the
nature of the program counter in more detail. I will then conclude this section with a detailed explanation
of how and why toString type-checks in Infor.

§ Combining type constructors and types

As I havementioned previously, Infor does not differentiate between type constructors and types. Also,
in my overview of toString, I stated while String @ l and (string) @ � appear very similar syntactically,
and for practical purposes have the same meaning, these types differ. ¿e difference is in the kinds.

In λSECi, the type constructor string has kind ⋆⊥ while in Infor, the primitive type String, has kind
Lab -(+)-> (* @ ⊥). For now ignore the + annotation on the arrow kind. In λSECi, the grammatical
distinction between type constructors and types enforces that all types are properly labeled. However,
there is no such distinction in Infor, so another mechanism is needed. ¿e mechanism I decided
on was to overload the meaning of label application in monotypes. Instead of reading the information
content off an injection, like in λSECi, the convention used in Infor is that the last label application in a
monotype is the information content of value with that type. ¿erefore, String @ ⊥ and (string) @ ⊥
mean the same thing, “a string value with an information content of bottom”, but are very different in
their construction.

¿e kind of String reveals another difference between Infor and λSECi: variances. In λSECi, function
kinds are labeled with their information content, just like function types. However, because there is
only extensional equality on types in Infor, the label has been eliminated and pushed into the type
function’s range. Instead, in Infor function kinds are annotated with their variance. ¿e variance for
String is written as -(+)->, which means that subtyping should treat the label application in String @ l

covariantly. ¿at is, String @ ⊥ is a subtype of the type String @ ⊤. A contravariant type or label
argument is specified by writing -(-)-> and invariant arguments are specified by writing -(±)->. ¿e
reason Infor includes explicit variance annotations is because, unlike λSECi, the language of types

. ¿e label on kind functions in λSECi probably should have been dropped; while there are languages with pointer equality
on values, I am not aware of any language with pointer equality on types. However, Dreyer’s () calculus for recursive
modules, does allow for a limited form of imperative update on type definitions, so maybe the idea is not too far-fetched.
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is not fixed. In λSECi, it was acceptable to hardwire the variances of each type into the subtyping rules.
Programmers can use the variance annotations provided by Infor to specify how subtyping works for
their data types.

Another consequence of using the final label application in a monotype to describe the information
content of a value is that it if there is no final label application, it is not possible to directly refer to that
value’s information content. Again, this does not arise in λSECi because it uses its grammar to enforce
that all types are labeled, while Infor does not. As a specific example, the argument type of toString
is α. When α was quantified over it was specified to have kind * @ l and is therefore a well-kinded type
describing a value. However, because the type α has no label application the information content of a
value with type α cannot be directly named.

Infor resolves this problem by introducing a new form of label, the info label, that allows for
indirectly referring to a value’s information content. For example, where the information content of
the argument of toString was directly specified by writing (α) @ �, indicating that it has an information
content of �, in Infor its information content is referred to indirectly using the label info α. An info

label can be seen as making the type meta-operator L(∙) from λSECi part of the language. Like L(∙), the
info label is only defined for types with base kind.

¿ere are several equivalences that Infor uses to simplify info labels. Here are some of these
equivalences:

info (τ @ Л) = Л

info (τ1-(Л1|Л2)-> τ2) = Л2

info (τ1 ... , τn) = info τ1 = · · · = info τn

¿e first equivalence codifies the convention that the information content of a value is equivalent to the
last label application in the type. ¿e second equivalence specifies that the information content of a
function value is the second label on the function type’s arrow. ¿e third equivalence specifies that the
information content of a tuple is obtained the same as any one of its components. ¿at means that in
order to construct a tuple, subsumption must be used to make the information content of each of its
components the same.

¿e use of info labels can be partly avoided by making use of Infor’s higher-order type poly-
morphism. In toString the problem arose from the fact that it is not possible to directly refer to the
information content of a value with type α, because the type contains no label applications. An alternative
strategy when quantifying over α is to give it kind Lab -(+)-> (* @ l) instead of kind * @ l:

fun toString : ∀⟨l:Lab|α: Lab -(+)-> * @ l⟩ α @ l -(l)-> String @ l
fun toString ⟨l|α⟩ arg =

typecase (α @ l)
| Bool @ l1 =>
if arg then "True" else "False" end

| _ -(_ | _)-> _ =>
"<Function>"

| (β @ _, ψ @ _) =>
"(" ^ (toString ⟨l|β⟩ (arg.0)) ^ "," ^ (toString ⟨l|ψ⟩ (arg.1)) ^ ")"
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In this version of toString because the information content of the argument is directly specified as l, it
is possible to eliminate the need for the associated constraint. However, this version of toString also
has a subtle problem.

In this implementation of toString, for the branch for tuple types necessary to use type variables
applied to unspecified labels:

| (β @ _, γ @ _) =>

¿is is necessary so that β and γ will have the kind, Lab -(+)-> * @ l, needed to call this version of
toString recursively. ¿e problem is that the type pattern will only match against types whose normal
form ends in a label application. However, function types and tuple types in normal form do not end in a
label application. ¿erefore, if toString is invoked as

toString ⟨⊥|(λ l:Lab =(+)=> (Int @ l, (Int @ l, Int @ l)) end)⟩ (1, (2, 3))

It will abort with a type matching failure because the type (Int @ ⊥, (Int @ ⊥, Int @ ⊥)) will not
match against the type pattern (β @ _, γ @ _) (or any of the other type patterns). ¿e other problem
with this version of toString, though it ismore of an annoyance, is that it frequently requires η-expanding
the type argument to be a function from labels to types.

Additionally, working with type functions that abstract over labels is complicated by the requirement
that the information content of their body be equal to the abstracted label. ¿at is, for the label function
λ l:Lab =(π)=> τ end to be well-formed, the constraint (info τ) = lmust be true. ¿is condition is
necessary to ensure that type equivalence cannot introduce contradictory label equivalences. A specific
example of what can go wrong is the following chain of equivalences

Л = info ((λ l:Lab =(+)=> Int @ ⊥ end) @ Л) = info (Int @ ⊥) = ⊥

Furthermore, making the relation directed or requiring that τ be in weak-head normal form will not fix
the problem. Either solution would allow equivalences like Л = α @ Л, where α is a type variable, because
α @ Л is already in normal form.

¿ese examples illustrate that the choice between using info labels and higher-order type polymor-
phism is more than just pushing labels around in different ways. Why use info labels at all then? In § ·,
I will discuss how I would have designed Infor knowing what I have learned from its development.

¿e info label was partly inspired by the level constraint found in the FlowCaml language (Pottier
and Simonet ). In § ·, I will compare Infor and FlowCaml in detail.

§¿e program counter

In my overview of the toString function, I noted that in the function type α -(l|⊥)-> String @ l, the
label l annotating the function arrow is its program counter. ¿e program counter acts as precondition
on the contexts in which a function may be invoked.

When moving from a pure language with an information-flow type system, like λSECi, to an impure
language with an information-flow type system it is necessary to extend the type system with the notion

. I have glossed over the fact that a kind annotation would be truly necessary for β and γ to also have the correct variance.
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of a program counter. ¿e most common language extensions that make a language impure are mutable
state, non-local control operations, such as continuations and exceptions, non-termination, and /.
¿ese features introduce what are known as implicit flows into an information-flow type system. An
implicit flow occurs when a value can depend upon the information content of another value (or in
the case of Infor, a type), even though the first value is not directly computed from the second. ¿e
following is a typical example, written in Standard , of an implicit flow created by a combination of
control-flow and mutable state:

val x = ref 0 (* x is low security *)
val y = true (* y is high security *)
fun f () = (x := 1)
fun g () = (x := 2)

if y then f () else g () (* x now depends upon y *)

To deal with this problem, the type system assigns each control-flow point in the program a label
representing the information that has been learned as a consequence of execution reaching that point in
the program. ¿us the name “program counter label”, which evokes the idea of the memory address that
the  is currently executing.

¿e program counter label is used in two ways by the type system. Firstly, all manipulated values
must have an information content at least as high as the current program counter. For example, if the
current program counter is l1 then an integer 42 in Infor must be given a type Int @ l2 where l2
is greater than or equal to l1. ¿e reason for this requirement is that it accounts for the fact that the
current trace of a program’s control flow has as significant of an impact on the value as the fact that it
may have been computed by multiplying (6 : Int @ l1) by (7 : Int @ ⊥).

Secondly, control-flow transfers to points within a program that have a program counter lower than
the current program counter label are disallowed. ¿erefore, if the current program counter is Л1 then
it is only possible to invoke a function with the type τ1 -(Л2|Л3)-> τ2 if Л2 is greater than or equal to
both Л1 and Л3. However, when control is transferred to a location with a higher program counter, such
as through a function call or conditional, once execution returns to the point where the transfer was
initiated, it is allowable to restore the program counter to its previous state. ¿is is safe because all
control flow paths within a function or conditional must return to the same context from which the
function was called or the conditional executed. Unrestricted continuations (Sitaram and Felleisen )
and control-flow operators like “goto” (Dijkstra ) do not always have this property.

¿e following code fragment illustrates how the program counter label changes with the control-flow
of a conditional:

. To date, most realistic languages with information-flow type systems do not consider non-termination as an effect, even
though it is a potential source of implicit flows. As this is an orthogonal research problem, Infor also ignores implicit flows
caused by abnormal termination and non-termination.
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# Program counter is l1
...
if (mybool : Bool @ l2) then
# Program counter is now (l1 ⊔ l2)
...

else
# Program counter is now (l1 ⊔ l2)
...

end
# Program counter is now l1 again
...

For simple programs, there is little difference between joining the result type of a conditional with
the information content of the scrutinee, like in λSECi, and the use of a program counter. However, in
larger programs it makes a significant difference. ¿is difference is illustrated in the following example:

# fun foo : Int @ ⊤ -> Int @ ⊥
val (bar : Int @ ⊤) = if (h : Bool @ ⊤) then

foo 1
else
0

I have omitted the program counter label on the function arrow of foo because it is not directly relevant
to the example, and could prove confusing. If Infor typechecked conditionals like λSECi, it would
determine that each branch in the above conditional has type Int @ ⊥ It would then join that type with
the information content of the scrutinee, ⊤, to give bar the type Int @ ⊤, just like in the annotation
above. However, because Infor uses a program counter, while typechecking the branches the result
of the call to foo will be Int @ ⊥ but it will be immediately raised to Int @ ⊤ because it must have an
information content greater than or equal to the program counter label. Similarly, when 0 is type-checked
it will be given type Int @ ⊤ to ensure that its information content is greater than the program counter
label. So in the end, bar still receives the type Int @ ⊤.

However, changing the domain of foo will have a significant impact:

# fun foo : Int @ ⊥ -> Int @ ⊥
...

¿e declaration for bar will continue to type-check in λSECi, where the result type of the conditional
is joined with the information content of the scrutinee, but fail in Infor where a program counter
label is used. ¿e reason that bar fails to typecheck in Infor is because while typechecking 1 it will
determine that it has the type Int @ ⊤. Because Int @ ⊤ is not a valid argument for foo with its revised
type, the sub-expression foo 1 now fails to typecheck.

¿e way conditionals raise the program counter, as described above, also applies when typechecking
the case and typecase primitives in Infor.
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§ toString in detail

Now that I have finished reviewing the differences between λSECi and the core of Infor in detail, I can
return to the implementation of toString and explain in detail how and why it typechecks. Recall the
definition of toString:

fun toString : ∀⟨l:Lab|α: * @ l|(info α) = l⟩ α -(l|⊥)-> String @ l
fun toString ⟨l|α⟩ arg =

typecase α
| Bool @ l =>
if arg then "True" else "False" end

| _ -(_ | _)-> _ =>
"<Function>"

| (β, ψ) =>
"(" ^ (toString ⟨l|β⟩ (arg.0)) ^ "," ^ (toString ⟨l|ψ⟩ (arg.1)) ^ ")"

end

¿e first branch of toString will match when the scrutinee is the boolean type applied to the label l.

...
| Bool @ l =>
if arg then "True" else "False" end

...

If this branch matches, it will be the case that α is equal to the type Bool @ l, and therefore it is possible
to perform a conditional dispatch on arg. ¿e conditional will raise the program counter label from
l, as specified by toString’s type signature, to (l ⊔ l) by l, because info (Bool @ l) = l. However,
(l ⊔ l) is just equivalent to l. ¿erefore, the strings that are returned have the required type String @ l.

It is okay that I used type pattern Bool @ l rather than Bool @ _ or Bool @ l’ for some fresh
label variable l’, because of the precondition on toString. Given that (info α) = l, for any label
pattern lp, matching with the pattern of Bool @ lp will imply that α = Bool @ lp which means that
(info (Bool @ lp) = lp = l. So, by definition Bool can only be applied to the label l.

¿e second branch of toString is straightforward.

...
| _ -(_ | _)-> _ =>
"<Function>"

...

Infor has no mechanism for intensionally analyzing functional values, so it just returns the string
"<Function>".

¿e final branch of toString will match when the scrutinee is a two element tuple type.

...
| (β, γ) =>
"(" ^ (toString ⟨l|β⟩ (arg.0)) ^ "," ^ (toString ⟨l|γ⟩ (arg.1)) ^ ")"

...
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monotypes τ # ...
| m.α module type projection

expressions e # ...
| m.x module value projection

declarations d # ld local declaration
| module m (: S)? = M module declaration
| signature s = S signature declaration
| type α1 (: κ1)? = τ1 and ... and αn (: κn)? = τn type definitions

modules M # m module variable
| mod d* end

signature bindings sb # type α : κ opaque type definition
| type α : κ = τ translucent type definition
| val x : σ values
| fun x : σ functions

signatures S # s signature variables
| sig sb*end

Figure ·: ¿e grammar of the Infor module language.

Here, typechecking the recursive calls of toString is the most interesting part. By definition, if the type
pattern (β, γ) has kind * @ l then the patterns β and γ have kind * @ Л, for some Л, where Л <: l. To
call toString recursively on values with type β and γ, the constraints (info β) = l and (info γ) = l

must hold. However, given that executing this branch implies that α = (β, γ), and the precondi-
tion (info α) = l, by the definition of info described previously, it is the case that (info (β, γ)) =

(info β) = (info γ) = l.
Now that I have finished explaining how the core of Infor differs from λSECi, I will turn to covering

features of Infor that have no analog in λSECi.

§ · Modules

In λSECi abstract data types can be simulated by using open terms with free type and term variables.
Infor provides a more practical solution in the form of a simple module system. Figure · shows the
portion of the Infor grammar for modules that was elided from Figure ·.

To illustrate the use of modules in Infor, I will examine the implementation of a module for
rational numbers. An initial implementation might look like the following:

. Modules in Infor, like most members of the  family of languages, are second-class dependent records. Infor,
however, does not provide second-class functions over modules, often called functors. Functors would be a useful addition to
Infor, but I believe there is nothing interesting from a research standpoint in adding them to Infor.
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module rational = mod
fun fromInt : Int @ ⊥ -(⊥)-> (Int @ ⊥, Int @ ⊥)
fun fromInt i = (i, 1)

fun toInt : (Int @ ⊥, Int @ ⊥) -(⊥)-> Int @ ⊥
fun toInt (n, d) = n div d

fun mult : (| (Int @ ⊥, Int @ ⊥), (Int @ ⊥, Int @ ⊥) |) -(⊥)-> (Int @ ⊥, Int @ ⊥)
fun mult (n1, d1) (n2, d2) = (n1 * n2, d1 * d2)

end

¿ismodule implements rational numbers as a pair of integers, with the numerator as the first component
and the denominator as the second component. ¿e function fromInt takes an integer and converts it
to a rational number by giving it a denominator of 1. ¿e function toInt gives an approximation of a
rational number as an integer by dividing the numerator by the denominator. Finally, mult provides a
means of multiplying rational numbers.

With this example I use a shorthand notation for curried function types. In Infor, “banana braces”
are used as syntactic sugar for curried function types. Any function type written as

(|τ1, ... , τn|) -(Л1|Л2)-> τ

expands during typechecking to the longer type

τ1 -(Л1|Л2)-> ... -(Л1|Л2)-> τn -(Л1|Л2)-> τ

When the module rational is typechecked, Infor will infer the following signature:

sig
fun fromInt : Int @ ⊥ -(⊥)-> (Int @ ⊥, Int @ ⊥)
fun toInt : (Int @ ⊥, Int @ ⊥) -(⊥)-> Int @ ⊥
fun mult : (Int @ ⊥, Int @ ⊥) -(⊥)-> (Int @ ⊥, Int @ ⊥) -(⊥)-> (Int @ ⊥, Int @ ⊥)

end

¿is signature is uninteresting because it is just the collection of the type signatures I have written for the
functions, modulo canonicalization. Furthermore, the signature completely exposes the implementation
of rational numbers. ¿ere is nothing preventing a user from creating a pair of integers that does not
correspond to a valid rational number, for example, a rational number with a denominator of 0.

¿ese deficiencies can be resolved in two steps. First, the rationalmodule needs to define what is
meant by a rational number. ¿is can be done by adding a type definition.
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module rational = mod
type t = λ l:Lab =(+)=> (Int @ l, Int @ l) end

fun fromInt : Int @ ⊥ -(⊥)-> t @ ⊥
fun fromInt i = (i, 1)

fun toInt : t @ ⊥ -(⊥)-> Int @ ⊥
fun toInt (n, d) = n div d

fun mult : (| t @ ⊥, t @ ⊥ |) -(⊥)-> t @ ⊥
fun mult (n1, d1) (n2, d2) = (n1 * n2, d1 * d2)

end

¿is revised version of the rationalmodule gives a definition for a type variable t. It is described as a
covariant type function from a label l to pair of integers with an information content of l. Analogous to
function kinds, the arrow written =(+)=> between the type function arguments and the type function
body is annotated with the variance of the type function. If the type function is intended to be covariant,
like t, the argument can only appear in positions within the body where it can vary covariantly with
respect to subtyping and subkinding. For example, in the type

λ l:Lab =(+)=> (Int @ l, Int @ l) end,

the label l occurs covariantly, but in

λ l:Lab =(+)=> (Int @ l -(⊥)-> Int @ ⊥) end,

the label l occurs contravariantly because it appears in the domain of a function type. If a variable is
used both co- and contravariantly, I say that it occurs invariantly.

In this revised version of the rationalmodule, I have also changed the specifications for fromInt,
toInt, and mult by replacing each occurrence of (Int @ ⊥, Int @ ⊥) with t @ ⊥. ¿is is allowed
because inside the module the variable t is known to be equal to the type

λ l:Lab =(+)=> (Int @ l, Int @ l) end

and, by equivalence, the type

(λ l:Lab =(+)=> (Int @ l, Int @ l) end) @ ⊥

β-reduces to the type (Int @ ⊥, Int @ ⊥).
Infor will now infer the following signature for my revised version of the rationalmodule:

sig
type t : Lab -(+)-> (* @ ⊥) =

λ l:Lab =(+)=> (Int @ l, Int @ l) end
fun fromInt : Int @ ⊥ -(⊥)-> t @ ⊥
fun toInt : t @ ⊥ -(⊥)-> Int @ ⊥
fun mult : t @ ⊥ -(⊥)-> t @ ⊥ -(⊥)-> t @ ⊥

. Formally, for a variable to appear covariantly means that the variable occurs positively, while a variable that appears
contravariantly occurs negatively.
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¿is signature says that t is a type variable with kind Lab -(+)-> (* @ ⊥) and that it is equal to the
type (λ l:Lab =(+)=> (Int @ l, Int @ l) end).

While the rationalmodule now has a defined notion of what it means for a value to be a rational
number, it still does not provide any data abstraction. ¿e next step is to ascribe rationalwith a signature
that does not expose the implementation of rational numbers to the rest of the program. Extending
rational with such a signature looks like the following:

module rational : sig
type t : Lab -(+)-> (* @ ⊥)

fun fromInt : Int @ ⊥ -(⊥)-> t @ ⊥
fun toInt : t @ ⊥ -(⊥)-> Int @ ⊥
fun mult : (| t @ ⊥, t @ ⊥ |) -(⊥)-> t @ ⊥

end = mod
...

end

In this signature, I have changed t from a translucent type signature to an opaque type signature (Harper
and Lillibridge ). A type signature is called translucent when it reveals its definition. A type signature
is opaque when it does not reveal its definition. To make a type definition opaque, all that must be done
is to leave off the = ... part of the signature that follows the kind.

With the above signature signature ascription it is not directly possible to provide the rational

module with invalid instances of a rational number. ¿at is, rational.toInt (1, 0) is ill-typed because
outside the rationalmodule, the type rational.t @ ⊥ is not equal to, or even a supertype of, the type
(Int @ ⊥, Int @ ⊥).

However, the rational module is still vulnerable to having its integrity violated using typecase.
While calling rational.toInt on (1, 0) directly is now ill-typed, it is still possible to cause a divide-by-
zero exception by writing the following bit of code:

typecase rational.t @ ⊥
| (Int @ ⊥, Int @ ⊥) =>

rational.toInt (1, 0)

Inside the typecase branch it is known that the type rational.t @ ⊥ is equivalent to the type
(Int @ ⊥, Int @ ⊥). ¿erefore, rational.toInt (1, 0) will be well-typed, and when executed
rational.toInt will attempt to convert (1, 0) to an integer by dividing 1 by 0. However, this will
cause the program aborting with a divide by zero error.

A more restrictive signature for the rationalmodule can prevent the above abuse. For example, I
could have given the abstract type rational.t a more restrictive kind:

module rational : sig
type t : Lab -(+)-> (* @ ⊤)
...

end = mod
...

end
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With this new signature for rational, the programmer can know that if a program expression e has type
τ, and info τ is equivalent to ⊥ or any label other than ⊤, then if e evaluates to a value, that value does
not depend upon the definition of rational.t. ¿at is, e is parametric in the definition of rational.t.

Furthermore, this change prevents my example expression from violating rational’s integrity. Be-
cause rational.t @ ⊥ now has kind * @ ⊤, inside the branches of typecase the program counter is
raised to ⊤ when evaluating the original expression:

typecase rational.t @ ⊥
| (Int @ ⊥, Int @ ⊥) =>

# rational.t @ ⊥ = (Int @ ⊥, Int @ ⊥) and program counter label is ⊤
rational.toInt (1, 0)

Because the program counter label is ⊤, the value (1, 0) now has type (Int @ ⊤, Int @ ⊤). However,
rational.toInt still has the type rational.t @ ⊥ -(⊥)-> Int @ ⊥, where rational.t @ ⊥ is known
to be equivalent to (Int @ ⊥, Int @ ⊥). ¿erefore, the function application is no longer well-typed.

In this example, the fact that changing the label on the kind of rational.t prevented the integrity of
rational’s abstraction from being violated is somewhat accidental. A more realistic implementation of
rational numbers would have made toInt label polymorphic,

...
fun toInt : ∀⟨l⟩ t @ l -(l)-> Int @ l
fun toInt ⟨l⟩ (n, d) = n div d
...

end

¿is implementation is more realistic because quantifying over the information content of the input,
program counter, and the output, allows toInt to be used in all program contexts, rather than only those
where the program counter is ⊥ and a rational with an information content of ⊥ is available. However,
this change makes it possible to rewrite the original expression so that integrity can be violated:

typecase rational.t @ ⊤
| (Int @ ⊥, Int @ ⊥) =>

rational.toInt ⟨⊤⟩ (1, 0)
end

(Here, I have made the label instantiation of rational.toInt explicit to make the example clearer; the
instantiation can be inferred using local inference) It is still possible to recover integrity using techniques
that I will describe in § .

In practice it is desirable for benign uses of type-directed programming in Infor to be able to
distinguish between rational numbers and data that just happens to be a pair of integers. ¿e standard
solution to this problem is to use generative data types. In the next section, I will explain how generative
data types work and interact with type-directed programming in Infor.

§ · Generative data types

In § ·, one solution to the problems presented by reflection that I examine is the use of type generativity.
While I deemed type generativity to be an unsuitable foundation for reasoning about both confidentiality
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kinds κ # ...
| % @ Л algebraic type classifiers

monotypes τ # ...
| A algebraic data types

type patterns φ # ...
| A algebraic data types

term patterns p # ...
| D (⟨l*|α*⟩)? p1 ... pn data constructors

expressions e # ...
| D (⟨Л*|τ*⟩)? instantiation
| isdata α then e1 else e2 end downcast

datatype bindings dtb # A : κ = (|)? D1 : σ1 | ... | Dn : σn
declarations d # ...

| datatype dtb1 and ... and dtbn data type definitions
signature bindings sb # ...

| data A : κ algebraic data type
| con D : σ constructor binding

Figure ·: ¿e grammar for Infor’s generative data types.

and integrity independently, it is still useful in practice. For example, even though rational numbers may
be implemented as a pair of integers, like in the previous section, when writing type-directed operations
it may be important to the semantics of the operation that rational numbers and pairs of integers be
treated differently. Like most -like languages, Infor provides generative algebraic data types – each
new algebraic data type is not equivalent to any other type. Figure · shows the parts of the Infor
language relating to generative data types that were elided from Figure ·.

As a simple example of an algebraic data type, I will start with the definition of a binary tree structure
that contains no data:

datatype Tree : Lab -(+)-> (% @ ⊥) =
| Leaf : ∀⟨l⟩ Tree @ l
| Node : ∀⟨l⟩ Tree @ l -(⊤|⊥)-> Tree @ l -(⊤|⊥)-> Tree @ l

Unlike type definitions, Infor requires a kind annotation when defining a new algebraic data type
– it is not always possible for local inference to synthesize the kind of an algebraic data type from its
definition. ¿e Tree data type has been defined to have the kind Lab -(+)-> (% @ ⊥).

¿e Tree data type can be described as type function from labels to types of algebraic kind with
information content of ⊥. Infor makes a distinction between types with type kind (*) and those with
algebraic kind (%). ¿is distinction is only necessary so that it is possible to restrict some operations to
only work on algebraic data types and their associated data constructors. ¿e kind % @ Л is a subkind of
* @ Л for all Л.

I have given the Leaf data constructor the type ∀⟨l⟩ Tree @ l. ¿is type means that Leaf for any
label Л, constructs a value of type Tree @ Л – a tree whose structure has an information content of Л.

¿e Node constructor has the type

∀⟨l⟩ Tree @ l -(⊤|⊥)-> Tree @ l -(⊤|⊥)-> Tree @ l,
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¿is type can be understood to mean that if the current program counter is less than⊤, then for any label
l when Node is applied to two values of type Tree @ l, it builds a value of type Tree @ l. In Infor,
data constructors are not compiled to functions, despite having a functional types. ¿erefore, the data
constructor’s program counter labels are always ⊤ and function closure labels are always ⊥, ensuring
that it is always possible to construct a new value from a data constructor. ¿e function closure labels on
data constructors are required to be ⊥ to maximize their reuse.

It is tempting to try giving Leaf the more concise type Tree @ ⊥ because the Tree data type is
covariant and therefore it would be possible to use subsumption to give Leaf type Tree @ Л for any label
Л, seemingly the same as is possible with the type ∀⟨l⟩ Tree @ l. However, there is a subtle difference.
A type like Tree @ ⊥ is called an indexed type or  (Coquand ; Crary and Weirich ; Xi,
Chen, and Chen ; Peyton Jones, Vytiniotis, Weirich, andWashburn ), because the arguments of
Tree are not parametric. ¿e index in type Tree @ ⊥ is the label ⊥. In Infor, a type with label index is
always equivalent to a type where the argument is universally quantified, but constrained by an equality.
For example, giving Leaf the type Tree @ ⊥ is equivalent to giving it the constrained polymorphic type
∀⟨l|l = ⊥⟩ Tree @ l not the type ∀⟨l|⊥ <: l ⟩ Tree @ l. In most cases, the programmer probably
does not intended that Leaf values can only have the type Tree @ ⊥. ¿erefore, I chose to give Leaf the
type ∀⟨l⟩ Tree @ l because it is the most general type.

Now that I have explained the basics of algebraic data types in Infor, I will move on to more
complex algebraic data types.

§ Dependent kinds

¿e Tree data type is one of the simplest recursive data structures that can be defined in Infor. I
chose it primarily to focus on a few key concepts. However, more complex data structures in Infor,
parametrized containers for instance, often require dependent kinds.

¿e simplest non-trivial container structure is the “option” data type. In Infor, it is defined as the
following:

datatype Option : Π l:Lab -(+)-> (* @ l) -(+)-> Lab -(+)-> (% @ l) =
| None : ∀⟨l1 l2|α: * @ l1⟩ Option @ l1 α @ l2
| Some : ∀⟨l1 l2|α: * @ l1|(info α) = l2⟩ α -(⊤)-> Option @ l1 α @ l2

¿e type Option @ l1 α @ l2 can be interpreted as a value possibly containing a value of type α, where
α has kind * @ l1, and the information content of the overall value is l2.

¿e kind of Option,

Π l:Lab -(+)-> (* @ l) -(+)-> Lab -(+)-> (% @ l),

means that Option is a covariant dependent type function from a label l, to a covariant type function
with a domain accepting types of kind * @ l, to a covariant type function from labels to types with kind
% @ l. ¿e kind of Option is dependent in the sense that when the Option algebraic data type is fully
applied as Option @ l1 α @ l2, the acceptable kinds for this type α depend upon l1 and the overall kind
of Option @ l1 α @ l2 depends upon l1.
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Because of this dependency, local type inference in Infor allows the above definition to be written
as:

datatype Option : Π l:Lab -(+)-> (* @ l) -(+)-> Lab -(+)-> (% @ ⊥) =
| None : ∀⟨l1 l2|α: * @ l1⟩ Option α @ l2
| Some : ∀⟨l1 l2|α: * @ l1|(info α) = l2⟩ α -(⊤)-> Option α @ l2

In the quantifier block, α is already specified to have kind * @ l1. Because the label of Option’s second
(type) argument depends on its first (label) argument, the Infor typechecker can conclude that the
missing label argument should be l1.

Infor is already a very expressive language, so it is natural to wonder whether dependent kinds are
truly necessary. If Infor did not have dependent kinds, the most general definition for the Option data
type would be the following:

datatype Option’ : (* @ ⊤) -(+)-> Lab -(+)-> (% @ ⊥) =
| None’ : ∀⟨l|α: * @ ⊤⟩ Option’ α @ l
| Some’ : ∀⟨l|α: * @ ⊤|(info α) = l⟩ α -(⊤)-> Option’ α @ l

¿is definition, instead of specifying the kind of the type argument to be dependent on a label argument,
requires it to have kind * @ ⊤. Every fully applied type, and algebraic data type, can be given kind * @ ⊤

using subsumption so this definition can still be used as a container for values of any type. However,
code that uses this definition of Option’ is too conservative in tracking information flows to be reusable.

Whenever Option’ is applied to a type, the precise information content of that type is lost to
the type system. For example, the type Int @ ⊥ has kind * @ ⊥, but in the partially applied type
Option (Int @ ⊥) the inversion principles for the Infor kind system can only derive that Int @ ⊥

has the kind * @ Л, for some Л less than or equal to ⊤.
¿erefore, type patterns involving the Option’ algebraic data type will be similarly conservative. ¿e

following snippet illustrates this problem with an extension to my earlier example of toString.

fun toString : ∀⟨l|α: * @ l|(info α) = l⟩ α -(l)-> String @ l
fun toString ⟨l|α⟩ arg =

typecase α
...
| Option’ β @ l =>
case arg

| Some’ arg’ =>
# This branch will be ill-typed
"Some’ " ^ (toString ⟨⊤|β⟩ arg’)

| None’ => "None’"
end

end

Within typecase branch for Option’, the typechecker will need to assume that type variable β has
the kind * @ ⊤. Recursively calling toString on arg’ will require instantiating the label argument of
toString with ⊤. But this means that toString will return a string with an information content of ⊤.
However, toString is declared to return a value of type String @ l. ¿ere is no constraint that l be
equal to ⊤, and as a result the case will be rejected as ill-typed.
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One option would be to change the type of toString to return strings with an information content
of ⊤, but this would severely restrict its reusability.

Another perspective on the problem is that the kind (* @ ⊤) -> Lab -> (% @ ⊥) does not provide
a connection between the label in the kind of its type argument (* @ ⊤) and its overall kind (% @ ⊥). It
is not possible to tell from its fully applied kind, % @ ⊥, what the information content of its argument
happens to be. ¿e algebraic datatype “hides” the information content of its type argument. Algebraic data
types that hide information in this fashion are a significant obstacle to making precise static guarantees
in Infor.

Using the dependent kind

Π l:Lab -(+)-> (* @ l) -(+)-> Lab -(+)-> (% @ l)

for the Option algebraic data type resolves these issues. It provides a means of referring to the exact
information content of its type argument and relating the information content of the argument type and
the information content of the algebraic type as a whole. If I revise the toString implementation from
above to use the actual implementation of the Option algebraic data type, it looks like the following:

fun toString : ∀⟨l|α: * @ l|(info α) = l⟩ α -(l)-> String @ l
fun toString ⟨l|α⟩ arg =

typecase α
...
| Option @ l β @ l =>
case arg

| Some arg’ =>
"Some " ^ (toString ⟨l|β⟩ arg’)

| None => "None"
end

end

Here, the recursive call on arg’ will be well-typed because it is known that β has precisely the kind * @ l.
While the use of dependent kinds has made it possible for the toString function to work with more

algebraic data types than would be possible otherwise, in practice it is preferable to write toString once
and not extend the implementation with new cases every time a new algebraic data type is defined. In
the next subsection, I describe the the difficulties that algebraic data types introduce for type-directed
programming and then describe the solution used by Infor.

§ Analyzing generative data types

As I discussed in § ·, generative types provide a form of static access control for type information.
However, this was not the motivation for including them Infor, and in fact works against writing
type-directed operations that will apply to all Infor values.

¿e fact that algebraic data types are generative means that the only way for a type pattern to match
against them is to name them explicitly. However, this semantics has the problem that type-directed
functions must be revised for every new algebraic data type they need to handle.

I solve this problem in Infor by defining a distinguished algebraic data type for what are called
spines (Hinze, Löh, and Oliveira ; Hinze and Löh ). ¿e essence of spines is to provide a stan-
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dardized view of arbitrary data constructors. However, writing a function to convert data constructors
into this standardized form has the same problem as I described above, that every time a new algebraic
data type is defined the function would need to be extended with an additional case. To escape this
circularity, Infor provides a primitive function called toSpine that will convert any data constructor
into its spine form.

¿e toSpine function has the type signature:

fun toSpine : ∀⟨l|α: % @ l|l :> (info α)⟩ α -(⊤)-> Spine α @ l

¿e notable feature of this type is that instead of quantifying over types, it only quantifies over fully
applied algebraic data types. ¿e reason for this choice is that it only makes sense to apply toSpine to
values that are data constructor inhabitants of some algebraic data type.

To understand what the toSpine primitive does it is helpful to visualize data types diagrammatically.
I will use the following value, which has type Tree @ ⊥, as an example:

Node (Node (Leaf ⟨⊥⟩) (Leaf ⟨⊥⟩)) (Leaf ⟨⊥⟩)

I have written ⟨⊥⟩ following Leaf to specify the label used to instantiate its quantified label. No such
annotation is required for Node here as Infor’s local type inference algorithm can deduce from its
arguments how it should be instantiated. ¿is value of type Tree @ ⊥ can be visualized as shown below,
where the shapes of the nodes have no semantic meaning; they are only intended to make it easier to
observe how toSpine transforms the structure.

Node ⟨⊥⟩

Node ⟨⊥⟩

Leaf ⟨⊥⟩ Leaf ⟨⊥⟩

Leaf ⟨⊥⟩

¿e function toSpine converts any data constructor to a value of the Spine data type, which has the
data constructors SHead and SCons. For now, I will ignore details of Spine’s kind and the types of SHead
and SCons. Calling toSpine on the binary tree above yields a Spine value that looks like the following:

SCons ⟨...⟩

Leaf ⟨⊥⟩

SCons ⟨...⟩

Node ⟨⊥⟩

Leaf ⟨⊥⟩ Leaf ⟨⊥⟩

SHead ⟨...⟩

Node ⟨⊥⟩

Notice that toSpine has converted the Tree to a list-like structure where the root data constructor
that was used to build this value, Node, is the tail and each argument of Node has been added to the
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list in reverse order using SCons. However, this transformation has only been applied to the head data
constructor used construct the value. ¿e child Node and Leafs are unchanged. ¿is diagram is equivalent
to the Infor value:

SCons ⟨...⟩ (SCons ⟨...⟩
(SHead ⟨...⟩ (Node ⟨⊥⟩))
(Node (Leaf ⟨⊥⟩) (Leaf ⟨⊥⟩)))

(Leaf ⟨⊥⟩)

I have elided the instantiations for SCons and SHead for the moment. In general, it is not possible for
Infor’s local type inference algorithm to infer the all the instantiations for a Spine data type, even with
information provided by expressions containing a Spine.

¿e SHead and SCons data constructors in Infor are defined using an algebraic data type:

datatype Spine : Π l:Lab -(+)-> (* @ l) -(+)-> Lab -(+)-> (% @ l) =
| SHead : ∀⟨l1 l2|α: * @ l1⟩ α -(⊤)-> Spine α @ l2
| SCons : ∀⟨l1 l2|(β: * @ l1) (α: * @ l1)|(info β) = l2⟩

(| Spine (β -(⊤|l2)-> α) @ l2, β |) -(⊤)-> Spine α @ l2

¿e kind of Spine is identical to the one I used for Option for all the same reasons. ¿e type of the SCons
data constructor is unusual because the quantified type β, the type of the data constructor argument, does
not appear in its result type Spine α @ l2. ¿e type variable β can be viewed as existentially quantified
in the Spine data type.

It is necessary to hide the type of the arguments to a data constructor because there is no guarantee
that a fully applied data constructor will have a type that mentions the type of the arguments. For
example, consider the following algebraic data type for representing arguments given to a program on a
command-line:

datatype CmdOpt : Lab -(+)-> (% @ ⊥) =
| RangeOpt : ∀⟨l⟩ Int @ l -(⊤)-> CmdOpt @ l
| BoolOpt : ∀⟨l⟩ Bool @ l -(⊤)-> CmdOpt @ l

If toSpine is used to convert the value BoolOpt ⟨⊥⟩ Truewith the type CmdOpt @ ⊥ to a spine, it will pro-
duce the value (SCons ⟨...⟩ (SHead ⟨...⟩ BoolOpt) True) with the overall type of
(Spine (CmdOpt @ ⊥) @ ⊥). Because this type is intended to represent Spines for arbitrary instances
of CmdOpt @ ⊥, there is no way to reveal that the second argument of the SCons data constructor type
Bool @ ⊥.

Returning to my earlier example of showing what toSpine would produce when applied to the value
Node (Node (Leaf ⟨⊥⟩) (Leaf ⟨⊥⟩)) (Leaf ⟨⊥⟩), I can now fill in the type and label instantiations I
had previously omitted:

SCons ⟨⊥ ⊥|(Tree @ ⊥) (Tree @ ⊥)⟩
(SCons ⟨⊥ ⊥|(Tree @ ⊥) (Tree @ ⊥ -(⊤)-> Tree @ ⊥)⟩

(SHead ⟨⊥ ⊥|(Tree @ ⊥ -(⊤)-> Tree @ ⊥ -(⊤)-> Tree @ ⊥)⟩ (Node ⟨⊥⟩))
(Node (Leaf ⟨⊥⟩) (Leaf ⟨⊥⟩)))

Local type inference allows the value to be expressed more concisely as
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SCons (SCons ⟨⊥ ⊥|(Tree @ ⊥) (Tree @ ⊥ -(⊤)-> Tree @ ⊥)⟩
(SHead (Node ⟨⊥⟩))
(Node (Leaf ⟨⊥⟩) (Leaf ⟨⊥⟩)))

¿e remaining instantiation annotation on the SCons data constructor is necessary because it is not
possible to synthesize a type for SHead (Node ⟨⊥⟩). Alternately, I could have provided an instantiation
annotation for SHead instead of SCons, but that annotation is slightly longer.

¿e Spine algebraic data type has a third data constructor form that I have not discussed so far. ¿is
data constructor, SConsEx is necessary because it is not always possible for toSpine to construct a Spine
value from solely SHead and SCons.

datatype Spine : Π l:Lab -(+)-> (* @ l) -(+)-> Lab -(+)-> (% @ l) =
...
| SConsEx : ∀⟨l1 l2 l3|(β: * @ l2) (α: * @ l1)⟩

(| Spine (β -(⊤|l3)-> α) @ l3, β |) -(⊤)-> Spine α @ l3

¿e type of the SConsEx data constructor is similar to the type of the SCons data constructor. ¿e only
differences are that the kinds of β and α are allowed to have differing information content, l2 versus l1,
and that SConsEx does not constrain the information content of β. Another important point to note is
that the quantified label l2 does not appear in the result type of SConsEx, which means that like the type
β it is hidden by the data constructor.

¿e best way to explain why SConsEx is needed is through an example, but first, it is necessary to
revisit the type of toSpine.

fun toSpine : ∀⟨l|α: % @ l|l :> (info α)⟩ α -(⊤)-> Spine α @ l

¿e information content of the resulting Spine, l, is specified as an argument to the function itself.
¿erefore, the caller can choose the information content of the result, as long as it obeys the constraint
that l :> (info α). However, it is possible to call toSpine with instantiations for l and α that make it
impossible for toSpine to construct a value of Spine α @ l from only the data constructors SHead and
SCons. ¿e example below will illustrate this.

¿e data constructor SConsEx is usually needed to call toSpine on existential data types with hidden
labels. An example is of this is the dynamic type (Abadi, Cardelli, Pierce, and Plotkin ) in Infor:

datatype Dyn : Lab -(+)-> % @ ⊥ =
| Dynamic : ∀⟨ld l|α : * @ ld⟩ α -(⊤)-> Dyn @ l

Along with typecase, the Dyn type constructor allows for the emulation of programming idioms found
in dynamically typed languages. For example, the Dyn type constructor can be used build heterogeneous
lists of values, that is a list where each element can have a distinct type. However, consider what would
happen if the following well-typed Infor code fragment were executed.

toSpine ⟨⊥|(Dyn @ ⊥)⟩ (Dynamic ⟨⊤ ⊥|(Int @ ⊤)⟩ 42) : Spine (Dyn @ ⊥) @ ⊥

. ¿e Spine data type could be refined further to have four different SCons constructors, by creating constructors all of the
combinations arising from when the kinds α and β have do and do not have the same information content and when (info β)
equals the information content of the entire Spine. However, I just collapse it down to two data constructors and require that
the other cases be distinguished using dynamic constraint checks, which are described in the next section.
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¿e expectation is that toSpine would construct the value:

SCons ⟨⊥ ⊥|(Int @ ⊤) (Dyn @ ⊥)⟩
(SHead ⟨⊥ ⊥|(Int @ ⊤ -(⊤)-> Dyn @ ⊥)⟩ (Dynamic ⟨⊤ ⊥|(Int @ ⊤)⟩))
42

I have provided all type and label instantiations for clarity, in practice Infor will be able to infer several
of the above instantiations.

Looking back to the definition of SCons,

...
| SCons : ∀⟨l1 l2|(β: * @ l1) (α: * @ l1)|(info β) = l2⟩

(| Spine (β -(⊤|l2)-> α) @ l2, β |) -(⊤)-> Spine α @ l2
...

in order for the SCons data constructor to construct a value of type (Spine (Dyn @ ⊥) @ ⊥), the label
parameter l2must be instantiated with ⊥. However, as a precondition, the constraint (info β) = l2

must be satisfiable. However, to construct a Spine for the value Dynamic ⟨⊤ ⊥|(Int @ ⊤)⟩ 42, the quan-
tified type argument β of SConsmust be instantiated with the type Int @ ⊤. But info (Int @ ⊤) = ⊤,
so the precondition (info β) = l2 on SCons is unsatisfiable. ¿erefore, if toSpine were to return such a
Spine value, it would violate type safety.

One solution to this problem would be for toSpine to return an Option Spine. However, because I
prefer that toSpine is a total function, the toSpine function will use the SConsEx data constructor instead
of the SCons constructor in situations like the one I described above. ¿erefore, applying toSpine to
Dynamic ⟨⊤ ⊥|(Int @ ⊤)⟩ 42 evaluates to the following value:

SConsEx ⟨⊤ ⊥ ⊥|(Int @ ⊤) (Dyn @ ⊥)⟩
(SHead ⟨⊥ ⊥|(Int @ ⊤ -(⊤)-> Dyn @ ⊥)⟩ (Dynamic ⟨⊤ ⊥|(Int @ ⊤)⟩))
42

Because SConsEx does not constrain the information content of its second argument to be equal to the
overall information content of the value, this value can be safely given the type Spine (Dyn @ ⊥) @ ⊥.

It is reasonable to ask, why did I not just give SCons the type of SConsEx, and eliminate the need
for a third data constructor for Spines? ¿e reason is that SConsEx hides both the information content
of the type β and the information content of a value with type β. Because these information contents
are hidden, it is very difficult to reason statically about information-flows when working with values
built from SConsEx. However, I expect that in typical usage it will be possible to construct most Spines
using only the SCons constructor, which does not hide the information content of any of its components.
Consequently, making SCons and SConsEx distinct allows programmers tomakemore precise distinctions
when working with Spines. In § ·, I explain Infor’s features for supporting dynamic information
that can be used ameliorate the problem. In § ·, I will give a detailed example of how this works for a
realistic example.

§ Downcasting

Finally, it is often necessary to make algebraic data types usable as types by changing their kind from
% @ Л, for some label Л, to * @ Л, using subkinding. Consequently, it is no longer possible use toSpine on
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polytypes σ # ...
| ∃⟨(l:Lab)*|(α:κ)*| C?⟩ σ existential quantification
| ρ higher-rank types

higher-rank types ρ # σ1 -(ℓ1|ℓ2)-> σ2
term patterns p # ...

| pack (⟨l*|α*⟩)? p existentials
expressions e # ...

| pack e existentials
| ifholds C then e1 else e2 end constraint check

Figure ·: ¿e grammar for Infor’s extensions for dynamic information flow.

values of these algebraic data types. To solve this problem Infor provides a safe downcasting primitive
called isdata:

type α : * @ ⊥ = Tree @ ⊥

# The following is ill-typed because α does not have kind % @ ⊥
# val spn = toSpine ⟨⊥ ⊥|α⟩ (Leaf ⟨⊥⟩)

val spn = isdata α then
# Okay, because α has kind % @ ⊥ in this branch
toSpine ⟨⊥|α⟩ (Leaf ⟨⊥⟩)

else
abort "α is not an algebraic data type."

If the scrutinee of isdata really is an algebraic data type at runtime, the first branch will be executed,
otherwise the second branch will be executed. In the first branch, the typechecker will assume that α has
kind % @ ⊥ instead of * @ ⊥.

§ · Dynamic information flow

Even with Infor’s highly expressive type system, there are still some cases where it is not possible
to express some desirable information-flow policies statically. Consequently, Infor provides two
features that make it possible to fall back to tracking information flows dynamically: first-class existential
quantification and dynamic constraint checking. ¿e grammar for these features is described in Figure ·.

Infor’s algebraic data types can be used to express existential quantification, but first-class ex-
istential quantification allows programmers to avoid littering their code with new algebraic data type
definitions every time they need to existentially quantify. Existential quantification in Infor is written
nearly identically to universal quantification. ¿e ∀ preceding a quantifier block is replaced by ∃, and,
unlike universally quantified values, existentially quantified values must be labeled. For example, a
function to open a file on disk might be given the following type in Infor:

fun openFile : ∀⟨l1⟩ String @ l1 -(l1)-> (∃⟨l2|α: * @ l2|l1 <: (info α)⟩ α) @ l1

¿e range of the openFile function is an existentially quantified value. Because Infor program has no
knowledge of the structure of the data stored in the file, or its information content, it can only assume
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that it has some type α of kind * @ l2 for some label l2 and that α has some information content greater
than l1. Furthermore, it is necessary to label the existential type with l1 because, as I will explain
shortly, it would be possible to introduce illegal flows using existentially quantified labels.

Existentially quantified data is introduced using the pack expression. For example, an integer’s label
can be existentially quantified over by writing (pack 42) : (∃⟨l⟩ Int @ l) @ ⊥. ¿e type annotation
is necessary here because it is not in general possible to determine which parts of a type are to be hidden.
However, because of local type inference in Infor it is not always necessary to directly annotate the
pack expression. For example, hiding the label on an integer can be generalized to a function:

fun hideLabel : ∀⟨l1⟩ Int @ l1 -(⊥|⊥)-> (∃⟨l2⟩ Int @ l2) @ ⊥
fun hideLabel ⟨l1⟩ i = pack i

Because the Infor typechecker knows that the body of hideLabel must have the type
(∃⟨l2⟩ Int @ l2) @ ⊥, it is not necessary to annotate the pack expression directly.

Existentially quantified data is unpacked using pattern matching. An existentially quantified integer
could be incremented as follows:

val (newi : (∃⟨l⟩ Int @ l) @ ⊥) =
case (hideLabel ⟨⊥⟩ 41)

| pack ⟨l1⟩ i => pack (i + 1)

However, because the typechecker has no knowledge of what the label l1 is within the case branch, so
that l1 does not escape its scope it is necessary to package the integer back up in an existential before it
can be returned.

Existential quantification allows information-flows to be tracked dynamically. However, as we saw in
the example above, once a programmer begins using data or types with existentially quantified labels,
often the only way she can avoid repeatedly unpacking and repacking data using these labels is to discard
the data. ¿erefore, Infor provides dynamic constraint checking as a means to recover static checking.
For example, the above example could be rewritten as follows:

val (newi : Int @ ⊥) =
case (hideLabel ⟨⊥⟩ 41)

| pack ⟨l⟩ i =>
ifholds l <: ⊥ then
(i + 1 : Int @ ⊥)

else
abort "The information content is restricted."

end
end

Here the ifholds primitive allows a programmer to check whether a constraint holds at runtime. While
the execution is determined dynamically, the ifholds primitive allows the typechecker tomake additional
assumptions statically. In the example above, the first branch of ifholds will only execute if l = ⊥,
therefore when type checking i + 1 it can be assumed that the label l is equal to ⊥. However, it is
necessary to annotate i + 1 so that the entire expression will be well-typed. Because ifholds will not

. For expository purposes, I am glossing over how types would be preserved when writing data to a file.
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try to give i + 1 a minimal type, i + 1 by itself will have the type Int @ l. However, this is not a valid
type for the entire expression because l is an existentially quantified variable, and it may not leave the
scope of the case expression. However, because l <: ⊥ inside of the ifholds expression it is allowed
to use type ascription to give i + 1 the type Int @ ⊥. Because Infor does not supported negated
constraints, it is not generally possible to assume any relationship between the labels in the else branch
of an ifholds expression.

As I mentioned earlier, unlike universally quantified types, existentially quantified types in Infor
must be labeled. Otherwise, when existentially quantified types are combined with dynamic constraint
checking it would be possible to subvert the information-flow system. Even though existentially quantified
types are very similar to a dependent pairs, it is not enough to just push the information content into the
components of existential quantifier like would be done with a tuple.

¿e following code fragment demonstrates how labels could be used as a covert channel.

val (leak: ∃⟨l⟩ Option (Int @ l) @ ⊤) =
if (h: Bool @ ⊤) then
pack (None : Option (Int @ ⊥) @ ⊤)

else
pack (None : Option (Int @ ⊤) @ ⊤)

end

val (expose: Bool @ ⊥) =
case leak

| pack ⟨l⟩ _ =>
ifholds l = ⊥ then
True

else
False

end

In this example, if there were no label on the existential package, it could be unpacked, its contents
ignored, and label analysis used to decode the value of the boolean h. Labeling existential packages
ensures that it is not possible to use labels as a covert channel in this fashion.

In the following section, I will conclude this chapter by showing how everything I have described so
far can be used to write a version of toString that can operate on values of arbitrary type, unlike the
implementation I described in § ·

§ · Putting it all together

Now that I have finished reviewing Infor, it is worthwhile to give some example that combines all of
the features I have discussed. I will first give a more realistic implementation of toString and show how
the example in Figure ·, found in § ·, would be written in Infor.

. ¿is is only because the first component of the “pair” that an existentially quantified type forms may contain a label, and
labels in Infor do not have an information content. Zheng and Myers (Zheng and Myers ) resolve this problem by
working with labels reified as values that can be given an information content. ¿erefore, labels in their system can have an
information content.





Returning to my running example of “to string”, Figure · shows a module of type-directed functions
that provides a version of toString that will work for all values in Infor.

Unlike my prior versions of toString, this implementation is defined mutually-recursively with a
helper function called spineToString. For algebraic data types, toString converts them to Spines and
hands them off to spineToString. Because spineToString is intended to be used only by toString, its
type signature is hidden by tdp’s module signature.

In the definition of toString the cases for booleans, functions, and pairs are essentially the same as
in my original implementation. ¿e only difference is that I have replaced all the unnecessary label and
type variable binders with wildcards.

¿e toString branch for integers is new to the version, but its implementation simply makes use of
a Infor primitive for converting integers into strings.

Finally, this new version of toString provides a wildcard case. ¿is case uses isdata to check whether
the input is an algebraic data type. If so, it use toSpine to convert the argument x into a Spine. It also
uses a new Infor primitive that I have not yet covered, stringDatacons, to create a string to pass off
to spineToString along with the Spine. If the input is not an algebraic data type, toString returns the
string "<Unknown data>" to indicate that it encountered in input it cannot handle.

¿e function stringDatacons is used to obtain a string name for the data constructor used to build
its input value, and has the following type:

∀⟨l|α: % @ l|l :> (info α)⟩ α -(⊤)-> String @ l

Like toSpine, stringDatacons will only work on algebraic data types. Its behavior is simple; for example,
stringDatacons (Leaf ⟨⊥⟩) will evaluate to the value "Leaf" and

stringDatacons (Node (Leaf ⟨⊥⟩) (Leaf ⟨⊥⟩))

will evaluate to the value "Node".
Most of the complexity in this extended version of toString has been placed into the helper function

spineToString. ¿is function walks down a Spine, calling toString to convert the arguments found in
SCons and SConsEx to strings, and returns the string that is the name of the head data constructor when
reaching the SHead node.

It is worth noting that the reason that the string for the SHead is passed as an argument to
spineToString rather than computing it from the argument of SHead, is because the way the Infor
compiler chooses to represent data constructors. ¿e consequence of this implementation peculiarity is
that the name of data constructor is much easier to obtain when it is fully applied rather than from the
data constructor value directly.

Most of the complexity in the definition of spineToString comes from needing to specify the type
instantiations for calls to toString and recursive calls to itself. Infor’s local type inference algorithms
are not sophisticated enough to determine the correct instantiations from spineToString and toString’s
arguments.

¿e case for the SConsEx function makes use of the ifholds primitive to check whether the label
hidden by SConsEx is less than the requested information content, l, of the output string. If so, it will

. ¿e example, however, still does not handle arbitrary tuples. Handling n-ary tuples, for all n, requires another primitive
function, similar to toSpine, but less interesting.
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module tdp : sig
fun toString : ∀⟨l|α: * @ l|l = (info α)⟩ α -(l)-> String @ l

end = mod
fun toString : ∀⟨l|α: * @ l|l = (info α)⟩ α -(l)-> String @ l

fun spineToString : ∀⟨l|α: * @ l|l = (info α)⟩
(| String @ l, Spine α @ l |) -(l)-> String @ l

fun toString ⟨l|α⟩ arg =
typecase α

| Int @ _ => stringInt arg
| String @ _ => "\"" ^ arg ^ "\""
| Bool @ _ => if arg then "True" else "False" end
| _ -(_ | _)-> _ => "<Function>"
| (β, ψ) =>
"(" ^ (toString ⟨l|β⟩ (arg.0)) ^ "," ^ (toString ⟨l|ψ⟩ (arg.1)) ^ ")"

| _ => isdata α then
spineToString ⟨l|α⟩
(stringDatacons ⟨l|α⟩ arg)
(toSpine ⟨l|α⟩ arg)

else
"<Unknown data>"

end
end

and spineToString ⟨l|α⟩ name spn =
case spn
of SHead _ => name
| SCons ⟨l -- |ω ψ⟩ newspn arg =>

(spineToString ⟨l|(ω -(l|l)-> ψ)⟩ name newspn) ^
" (" ^ (toString ⟨l|ω⟩ arg) ^ ")"

| SConsEx ⟨l l’ -- |ω ψ⟩ newspn arg =>
ifholds l’ <: l then
ifholds (info ω) = l then
(spineToString ⟨l|(ω -(l|l)-> ψ)⟩ name newspn) ^
" (" ^ (toString ⟨l|ω⟩ arg) ^ ")"

else
(spineToString ⟨l|(ω -(l|l)-> ψ)⟩ name newspn) ^
" <Redacted>"

end
else
"<Redacted>"

end
end

Figure ·: A complete version of toString in Infor.
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then check whether the information content of ω is equal to the requested information content l. If not,
it will recursively call spineToString on the remainder of the Spine and use the string "<Redacted"> for
the argument. Otherwise it will call toString recursively on the argument. If the hidden label was not
less than l, spineToString simply returns the string "<Redacted>" and makes no further recursive calls.

It may seem too conservative to fail to print the remainder of a Spine if the label l’ is not less
than the label l. However, the problem arises from the fact that to call spineToString recursively, it
must instantiate its type argument α with the type ω -(l|l)-> δ. However, because the information
content of the type ω -(l|l)-> δ is computed from the combination of ω’s information content, l’, δ’s
information content (l), and the current program counter (l). If the label l’ is greater than l then the
information content of the entire type will be greater than l. Consequently, the value produced by a
recursive call to spineToStringwill not have an information content less than or equal to l, contradicting
spineToString’s type signature.

¿is restriction is annoying because the recursive call to spineToString does not need to make use
of the type ω. I conjecture that this problem could be solved if a “bottom” type were added to Infor.
¿at way it would be possible to instantiate the recursive call with a type like Bot -(l|l)-> δ instead of
ω -(l|l)-> δ.

Now that I have finished my explanation of programming in Infor, I will conclude this chapter by
describing how Infor relates to other functional languages and languages with information-flow type
systems.

§ · Related work

Infor builds on most of the functional languages that have come before it. Infor is most directly
descended from Aspect (Dantas, Walker, Washburn, and Weirich ), and was built from its
code base. However, over the past year Infor’s evolution has diverged greatly. Aside from syntactic
differences, Infor no longer supports global type inference like Aspect, lacks support for stack
analysis, and its aspect-oriented features have been simplified and refined. On the other hand, Infor
extends Aspect with an information-flow type and kind system, type functions, a second-class module
system, and first-class existential types.

Infor and Aspect are both, in turn, descended from Standard  (Milner et al. ), Objective
Caml (Leroy et al. ), and Haskell (Peyton Jones ). ¿e relationship with Standard  and
Objective Caml is, however, mostly syntactic. With the exception of Infor’s module system, and the
fact that Infor and Aspect both use a call-by-value operational semantics, most of their advanced
type systems features are closer to what would be found in a modern Haskell implementation rather
than a modern -like language: polymorphic recursion (Mycroft ), existential algebraic data
types (Läfer and Odersky ), higher-kinded polymorphism, higher-rank polymorphism (Peyton Jones
et al.), s (Coquand ; Crary andWeirich ; Xi, Chen, and Chen ; Peyton Jones, Vytiniotis,
Weirich, and Washburn ), constrained polymorphism, etc.

. I have not discussed aspect-oriented programming in Infor, because it is mostly orthogonal to the central theme of
this dissertation.
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To date, other than Infor, there are only two other realistic implementations of programming
languages with an information-flow type system: Jif (Chong et al.) and FlowCaml (Simonet ).
While Jif compiles to Java byte-code, it does not provide wrappers for Java’s reflection library. Like Jif,
FlowCaml does not provide any mechanisms for . Recent versions of Jif have added support for
runtime principal and label analysis, however. Runtime principal analysis was first formally studied in
the work by Tse and Zdancewic (; ). Furthermore, because principles and labels are defined as
part of their language of types, it can be seen a restricted form of runtime type analysis. However, Tse and
Zdancewic did not consider issues of type abstraction in their proofs of noninterference. Concurrently
with Tse and Zdancewic’s research, Zheng andMyers (Zheng andMyers ) developed a formalization
of dynamic labels and label analysis in Jif. ¿eir label analysis primitive is quite similar to the ifholds
primitive provided by Infor. Furthermore, Zheng andMyers resolved the problem of using existentially
quantified labels as a covert channel by reifying labels as values. ¿ese values representing labels have a
type of “label” which is itself labeled.

I will focus on comparing Infor with FlowCaml because they are both -like languages, while
Jif is based upon the Java (Gosling et al. ) language. ¿e current version of Jif lacks support for
Java-style generics, but does offer label and principal polymorphism. ¿erefore, Jif primarily relies on
subtype polymorphism instead of parametric polymorphism. Infor and FlowCaml, on the other-hand
both use structural subtyping induced by the ordering on labels. FlowCaml and Infor do not have
a mechanism for introducing nominal subtypes, so programs written in FlowCaml and Infor rely
on parametric polymorphism. ¿erefore, it is possible to make a more detailed comparison between a
program written in Infor and the same program written in FlowCaml.

Infor mostly subsumes FlowCaml in terms of functionality. FlowCaml does implement global type
inference, module functions (functors), exceptions, and provides a novel type visualization tool. On the
other-hand, FlowCaml does not have an information-flow kind system, has no support for type-directed
programming, does not provide existential data types, s, higher-rank polymorphism, higher-kinded
polymorphism, label analysis, or first-class existentials.

For the features that Infor and FlowCaml have in common, there are a number of small differences.
Like Infor, FlowCaml gives types and labels distinct kinds, called type and level, but does not
differentiate them as strictly syntactically. ¿is can be illustrated in FlowCaml interactive top-level:

# let x = 1;;
x : ’a int
#

FlowCaml uses prefix notation for type and label arguments, here ’a is the label describing the informa-
tion content of the integer. All universal quantification in FlowCaml is implicit so this type should be
understood as ∀’a:level. ’a int. ¿e same interaction with Infor will look like:

- val x = 1;
val x = 1 : Int @ ⊥
-

¿e two primary differences here are that Infor will infer the label ⊥ instead of universally quantifying
over the label, and that label applicationmust be distinguished from type application in Infor. Universal
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quantifiers can only be introduced in Infor through function or data constructor definitions. ¿erefore,
local type inference in Infor will not introduce a universal quantifier.

In Infor, applying a type function to a type and applying a type function to a label have a distinct
syntax to enforce a grammatical distinction between types and labels. ¿e reason for this distinction is
that I wanted to prevent programmers from being able to write types like

Int @ ((λ l:Lab =(+)=> l ⊔ ⊤ end) @ ⊥).

If it were possible to mix types and labels in this manner, it would greatly complicate the algorithm for
solving label constraints. Furthermore, I believe the distinction makes types easier to read. ¿e type
of lists in Infor is written List α @ l, which makes it easy to distinguish which is the type of the
elements and what is the information content of the entire list. In FlowCaml the type type of lists is
written (’a, ’b) list where ’b is the information content of a list.

A small difference between FlowCaml and Infor is in their function types. ¿e function type

∀⟨l1 l2 l3 l4⟩ Int @ l1 -(l2|l3)-> Int @ l4

in Infor would be written in FlowCaml as

’l1 int -{’l2||’l3}-> ’l4 int

in FlowCaml. ¿e first field in the FlowCaml function type, ’l2, is the program counter, the second
field is an empty row type (Wand , ; Rémy ) that is used to track information concerning
exceptions, and the final field, ’l3 is the information content of the function closure itself.

As I mentioned § ·, info labels in Infor were partly inspired by level constraints in FlowCaml.
A level constraint in FlowCaml is written as ’b < level(’a) and means that the information content
of any type used to instantiate ’a must be greater than or equal to the label ’b. In most cases, level
constraints behave identically to info labels. For example, the following Infor function:

fun choose : ∀⟨l|α: * @ ⊥|l <: (info α)⟩ α -(⊥)-> α -(⊥)-> Bool @ l -(l)-> α

when written in FlowCaml:

let choose y1 y0 x = if x then y1 else y0

will be inferred to have the type ’a -> ’a -> ’b bool -> ’a with ’b < level(’a). In FlowCaml
constraints are written follow a type, rather than preceding it. Note that < is used to mean less-than or
equal in FlowCaml constraints.

However, level constraints are constraints while info labels are labels. ¿erefore, info labels can be
used to instantiate label polymorphic functions. However, arguably the only times when this capability
would be useful arise because Infor does not perform global type inference.

In addition to level constraints, FlowCaml also has two other forms of constraint that Infor lacks:
content constraints and skeleton constraints. Contents constraints are written as content(’a) < ’b

and mean that the information content of the type ’a and every one of its subterms must be less than or
equal to the label ’b. ¿is constraint is motivated by FlowCaml’s polymorphic comparison functions.
Something like content constraints could be very useful for writing type-directed functions in Infor.
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However, because FlowCaml does not allow for existentially quantified types and labels, it is very easy to
check content constraints by structural recursion on their type argument. I do not believe that there is
any way to implement such a constraint in Infor because it allows existentially quantified types and
labels.

Skeleton constraints are written as ’a ~ ’b and means that the skeleton of the type ’amust match
the skeleton of type ’b. ¿e skeleton of a type in FlowCaml is the structure of a type, ignoring labels. ¿is
constraint would again be very useful in Infor. For example, the following FlowCaml is the identity on
values, but coerces the label so that output has an information that is greater than or equal to the input:

(* increaseLevel has type ’a -> ’b
with ’l1 < level(’a)
and ’l2 < level(’b)
and ’l1 < ’l2
and ’a ~ ’b *)

let increaseLevel (x : ’a) : ’b = x

I could try to write this function in Infor as

fun increaseLabel : ∀⟨l1 l2|(α: * @ ⊥) (β: * @ ⊥)|l1 <: (info α) &
l2 <: (info β) &
l1 <: l2⟩ α -(⊥)-> β

fun increaseLabel ⟨l1 l2|α β⟩ (x : α) : β = x

but it will fail to typecheck because there is no reason that α and β should have any relationship. Rewriting
the function as the following:

fun increaseLabel : ∀⟨l1 l2|(α: * @ ⊥)|l1 <: (info α) &
l2 <: (info α) &
l1 <: l2⟩ α -(⊥)-> α

fun increaseLabel ⟨l1 l2|α⟩ (x : α) : α = x

will allow it to typecheck, but has different meaning. For example, it would be possible to instantiate
the FlowCaml function increaseLevel to give it the type ’l1 int -> ’l2 int with ’l1 < ’l2, but it
is not possible to instantiate and coerce the Infor version, increaseLabel, so that it can be used with
the type ∀⟨l1 l2l <: l⟩ Int @ l -(⊥)-> Int @ l|. ¿e function with the closest meaning in Infor to
increaseLevel in FlowCaml would in Infor is the following:

fun increaseLabel : ∀⟨l1 l2|α: Lab -(+)-> * @ ⊥|l1 <: l2⟩ α @ l1 -(⊥)-> α @ l2
fun increaseLabel ⟨l1 l2|α⟩ (x : α @ l1) : α @ l2 = x

Because it is not always desirable to quantify over functions from labels to types, it may be reasonable to
incorporate a feature like skeleton constraints in a future version of Infor.

Finally, while both Infor and FlowCaml allow the programmer to write variance annotations
for the arguments to algebraic data types, FlowCaml provides a guard annotation in addition to co-,
contra-, and invariant annotations. Written as #, this variance indicates that the argument is covariant
and specifies the information content of the algebraic data type. For example, where the option data
type is defined as
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datatype Option : Π l:Lab -(+)-> (* @ l) -(+)-> Lab -(+)-> (% @ ⊥) =
| None : ∀⟨l1 l2|α: * @ l1⟩ Option α @ l2
| Some : ∀⟨l1 l2|α: * @ l1|(info α) = l2⟩ α -(⊤)-> Option α @ l2

in Infor, it would be defined in FlowCaml like

type (’a, ’b) option =
None

| Some of ’a
# ’b

and would be inferred by the FlowCaml type inference algorithm to mean

type (+’a:type, #’b:level) option = None | Some of ’a # ’b

As I have discussed, Infor just uses the convention that the last label argument in a type is the
information content of the corresponding value. ¿erefore, Infor can be viewed as requiring the kind
of every algebraic data type to end in the kind Lab -(#)-> (% @ l).

¿ere are a few reasons why FlowCaml’s definition of option is much shorter than Infor’s definition
of Option. Partly this is because FlowCaml does not require a kind annotation when defining new
algebraic data types. Additionally, Infor uses a verbose syntax for defining s, styled after
Haskell’s syntax for defining s (Peyton Jones, Vytiniotis, Weirich, and Washburn ), and for
simplicity I chose to make that the only way to define algebraic data types, rather than having a separate
syntax for defining standard algebraic data types.

Additionally, the constraint on the information content of Some’s type argument, that (info α) = l2

is not strictly necessary for regular programming. However, for  the constraint proves fairly useful.
Consider the example, I gave in § · of extending toString with a case for Option:

fun toString : ∀⟨l|α: * @ l|(info α) = l⟩ α -(l)-> String @ l
fun toString ⟨l|α⟩ arg =

typecase α
...
| Option @ l1 β @ l =>
case arg

| Some arg’ =>
"Some " ^ (toString ⟨l|β⟩ arg’)

| None => "None"
end

end

If Some did not have this constraint inside the case branch above, nothing would be known about the
information content of β. However, the program counter requires that all values have an information
content of at least l. If nothing is known about the information content of β, there is no way to show
that expression arg’ in the code above is well-typed. Consequently, without the constraint annotation
on Some, the above program will be rejected.
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
Infor information-flow usage patterns

¿emark of our time is its revulsion against imposed patterns.

Marshall McLuhan (Understanding Media: ¿e Extensions of Man, )

“Mike, I can’t believe you brought the Taint into our office.”
Douglas Coupland (jPod, )

In the previous chapter, I introduced the language Infor which uses an information-flow type and
kind system to provide programmers with static guarantees about the confidentiality and integrity of
their abstract data types. In this chapter I will describe three usage patterns for Infor and the static
guarantees Infor provides when using these patterns.

I begin by describing intra-module type-directed programming, whereby the author of a module can
use  as part of implementing their module regardless of the policy that they specify for type-directed
operations written outside the module. I then move onto explaining the harmless reflection pattern,
which gives a module the strongest possible static reasoning principles for confidentiality and integrity. I
then present the break and recover pattern, which provides a weaker alternative to harmless reflection
where confidentiality is not guaranteed to hold but integrity is preserved.

Between discussing the harmless reflection idiom and the break and recover idiom, I will introduce
the idea of using wrapper types to make the information-flow constraints from using typecase with
generative data types less conservative.

§ · Intra-module type-directed programming

As a running example in this chapter, I will be using an Infor implementation of the data structure
for companies from § ·. An initial translation of the code is presented in Figure ·. ¿is implementation,
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module companies = mod

type name = String
type address = String

datatype Person : Lab -(+)-> % @ ⊥ =
| P : ∀⟨l⟩ (| name @ l, address @ l|) -(⊤)-> Person @ l

datatype Salary : Lab -(+)-> % @ ⊥ =
| S : ∀⟨l⟩ Int @ l -(⊤)-> Salary @ l

datatype Employee : Lab -(+)-> % @ ⊥ =
| E : ∀⟨l⟩ (| Person @ l, Salary @ l|) -(⊤)-> Employee @ l

type manager = Employee

datatype Dept : Lab -(+)-> % @ ⊥ =
| D : ∀⟨l⟩ (| name @ l,

manager @ l,
Int @ l,
List (SubUnit @ l) @ l |) -(⊤)-> Dept @ l

and SubUnit : Lab -(+)-> % @ ⊥ =
| PU : ∀⟨l⟩ Employee @ l -(⊤)-> SubUnit @ l
| DU : ∀⟨l⟩ Dept @ l -(⊤)-> SubUnit @ l

datatype Company : Lab -(+)-> % @ ⊥ =
| C : ∀⟨l⟩ List (Dept @ l) @ l -(⊤)-> Company @ l

end

Figure ·: An Infor implementation of a module for companies.

as suggested there, adds a field to the Dept algebraic data type to cache valuations. I have defined all of
the data constructors to be label polymorphic in order to maximize their reuse, as well as more precisely
track information flows.

¿e Department and Company algebraic data types both make use of the type List from the Infor
standard library. ¿e List algebraic data type is defined as follows:

datatype List : Π l:Lab -(+)-> * @ l -(+)-> Lab -(+)-> % @ l =
| Nil : ∀⟨l1 l2|α: * @ l1⟩ List α @ l2
| :: : ∀⟨l1 l2|α: * @ l1|(info α) = l2⟩ (| α, List α @ l2 |) -(⊤)-> List α @ l2

¿e data constructor Nil is the empty list and the infix data constructor :: is list concatenation. Infor
supports the syntactic sugar for lists as, [e1, ... , en], like in Standard .

I could re-implement the valuation functions (valCompany, ..., valSalary) provided by the module
for companies in § ·, using the usual recursive pattern matching boilerplate, but the goal of this section
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fun valuation : ∀⟨l|α: * @ l|(info α) = l⟩ α -(l)-> Int @ l
fun valuationSpine : ∀⟨l|α: * @ l|(info α) = l⟩ Spine α @ l -(l)-> Int @ l

fun valuation ⟨l|α⟩ arg =
typecase α

| Salary @ l => case arg of S i => i end
| Dept @ l => case arg of D _ _ vl _ => vl end
| _ => isdata α then

valuationSpine ⟨l|α⟩ (toSpine ⟨l|α⟩ arg)
else
0

end
end

and valuationSpine ⟨l|α⟩ spn =
case spn

| SHead _ => 0
| SCons ⟨l1 l2|β ψ⟩ newspn arg =>

(valuationSpine ⟨l2|(β -(⊤|l)-> ψ)⟩ newspn) + (valuation ⟨l2|β⟩ arg)
| SConsEx _ _ =>

abort "Impossible"
end

Figure ·: A type-directed implementation of a valuation function.

is to show how the author of a module can take advantage of  inside of her module, regardless of the
policy for code written outside to the module. ¿e author, of course, is bound by the policies defined
by any modules that she uses as part of her implementation. However, I can be certain that for the
companiesmodule that there are no restrictions on the use of  within the module because it does
not depend upon any non-primitive types defined outside the module.

One possible type-directed implementation of a unified valuation function is given in Figure ·. ¿e
definitions of valuation and valuationSpine are mostly straightforward. If valuation is given a value
of type Salary it will use pattern matching to extract the value. If valuation is given a value of type
Dept, it will return its cached valuation rather than make a recursive call. Finally, for all other inputs,
valuation checks whether the value is an algebraic data type. If so, valuation converts it to a Spine and
calls valuationSpine, which will walk down the spine and recursively call itself and valuation. If the
argument is not an algebraic data type, valuation just returns 0.

¿e only unusual part is that valuationSpine will abort when given a SConsEx constructor. ¿is
behavior is justified by the definitions of the data constructors in the companiesmodule. It is a property
of toSpine that it will never create an SConsEx constructor when called on values that only contain labels
less than the information content of the value, as per Proposition ·· and Corollary ·· below.

Definition ·· (SConsEx free). I will call a value SConsEx free, if the value, and all of its subterms, are
not the SConsEx data constructor.
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sig
type name : Lab -(+)-> * @ ⊥ = String
type address : Lab -(+)-> * @ ⊥ = String

data Person : Lab -(+)-> % @ ⊥
con P : ∀⟨l⟩ (| name @ l, address @ l|) -(⊤)-> Person @ l
data Salary : Lab -(+)-> % @ ⊥
con S : ∀⟨l⟩ Int @ l -(⊤)-> Salary @ l

data Employee : Lab -(+)-> % @ ⊥
con E : ∀⟨l⟩ Person @ l -(⊤|⊥)-> Salary @ l -(⊤)-> Employee @ l

type manager : Lab -(+)-> % @ ⊥ = Employee

data Dept : Lab -(+)-> % @ ⊥
data SubUnit : Lab -(+)-> % @ ⊥
con D : ∀⟨l⟩ name @ l -(⊤)->

Employee @ l -(⊤)->
Int @ l -(⊤)->
List (SubUnit @ l) @ l -(⊤)-> Dept @ l

con PU : ∀⟨l⟩ Employee @ l -(⊤)-> SubUnit @ l
con DU : ∀⟨l⟩ Dept @ l -(⊤)-> SubUnit @ l

data Company : Lab -(+)-> % @ ⊥
con C : ∀⟨l⟩ List (Dept @ l) @ l -(⊤)-> Company @ l

fun valuation : ∀⟨l|α: * @ ⊥|(info α) = l⟩ α -(l)-> Int @ l
fun valuationSpine : ∀⟨l|α: * @ ⊥|(info α) = l⟩ Spine α @ l -(l)-> Int @ l

end

Figure ·: ¿e inferred signature for the companiesmodule.

Proposition ·· (Properties of toSpine).

When toSpine ⟨l⟩ is applied to some value, D v1 ... vn, it will produce a result that is SConsEx free iff

• the information content of the value’s arguments, v1 through vn, are all less than or equal to l,

• the information content of the value’s argument’s types, τ1 through τn, are all less than or equal to l,

Corollary ·· (Instantiating toSpine with ⊤). If toSpine is instantiated with the label ⊤, the resulting
Spine will always be SConsEx free.

Proof. Follows as a consequence of Proposition ·· when l is ⊤. ¤

¿e only disadvantage of the above implementation of valuation is that its type signature allows
it to be applied to any value, not just values constructed from the data constructors in the companies
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module. A more precise type for valuation, than the one in given in Figure ·, could be written by
introducing a common supertype for all of the algebraic data types in the companiesmodule.

Even though Infor cannot define generative types to be subtypes of existing types, there are many
ways, such as merging all of the algebraic datatypes or using phantom types (Fluet and Pucella ), to
simulate this kind of subsumption in a language like Infor. However, calling valuation on other sorts
of values does not impair the operation of the companiesmodule. So, at present, I will not complicate
my presentation by using one of these techniques, but I will return to this idea in § ·.

Figure · shows the signature that Infor would infer for the companiesmodule. ¿is signature
does not provide any guarantees concerning confidentiality and integrity.

• Any changes to the implementation can affect any code that uses the companiesmodule, and the
type system not provide any indication of which parts of a program can depend on this imple-
mentation. ¿erefore, none of the type definitions or algebraic data types have the confidentiality
property.

• Additionally, there is nothing stopping code in the program from creating an invalid instance of
the Dept algebraic data type, where the cached valuation is equal to the sum of valuation of its
manager and SubUnits. ¿erefore, none of these type definitions and algebraic data types have the
integrity property.

As an example of how confidentiality can be broken, here is the code of the Infor version of the
increase function that was discussed in § ·:

fun increase : ∀⟨l|α: * @ l|(info α) = l⟩ (| α, Int @ l |) -(l)-> α
fun increaseSpine : ∀⟨l|α: * @ l|(info α) = l⟩ (| Spine α @ l, Int @ l |) -(l)-> α

fun increase ⟨l|α⟩ arg amt =
typecase α

| companies.Salary @ l =>
case arg

| companies.S ⟨l1⟩ i => companies.S ((i * amt) div 100)
end

| _ => isdata α then
increaseSpine ⟨l|α⟩ (toSpine ⟨l|α⟩ arg) amt

else
arg

end
end

and increaseSpine ⟨l|α⟩ spn amt =
case spn

| SHead dc => dc
| SCons ⟨l1 l2|β ψ⟩ newspn arg =>

(increaseSpine ⟨l2|(β -(⊤|l)-> ψ)⟩ newspn amt) (increase ⟨l|β⟩ arg amt)
| SConsEx _ _ =>

abort "Impossible"
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¿e structure of increase is very similar to valuation. ¿e primary difference is that increase returns
a value with the same type of its input.

Having introduced the companies module as my starting point, which has no static guarantees
concerning the confidentiality and integrity, I will now proceed to show how three different idioms can
be applied to this example and the properties that can be derived from them.

§ · Harmless reflection

¿is idiom takes its name in analogy to harmless advice (Dantas ) in aspect-oriented program-
ming (Kiczales et al. ; Dantas et al. ). Harmless advice is designed so that when the advice is
woven into a program, it will not affect the behavior of the original program. I will call this original behav-
ior the essential computations and the new computations performed by the harmless advice inessential
computations. Similarly, with harmless reflection all uses of  that could break confidentiality and
integrity are disallowed from affecting the essential computations.

Essential computations are those that directly contribute to the “goal” of a program, such as producing
the expected output value. Inessential computations are those that may occur, but are either independent
from or do not contribute directly to the primary goal of the program. For example, the primary goal
of a web server is to accept requests from the network and provide responses. Usually a web server
will also log transactions and debugging output. However, how the web server handles requests and
responses is (usually) entirely independent of what it writes to its log files. ¿erefore, if a web server
were written using the harmless reflection idiom, it would be designed to ensure that any uses of 
that break confidentiality will not affect the essential computations, those that involve requests and
responses. However, it would be probably be acceptable for computations that are part of the logging
infrastructure to break confidentiality because they will not affect the essential behavior the program.

It is, of course, left to the programmers to decide which computations are essential and which
computations are inessential. What Infor does is allow programmers to use its type system to clearly
delineate the two and enforce the high-level policies they choose. Furthermore, Infor will help
programmers in partitioning their programs. If a programmer tries to make an essential computation
depend on an inessential computation, Infor will report a type error identifying the mistake.

When programming in the harmless reflection idiom, all term data belonging to essential compu-
tations should be declared public knowledge, that is labeled with ⊥. All types that are intended to be
fully abstract, that is, protected from potentially harmful uses of reflection, should be placed inside of
modules and ascribed with a signature that gives them a maximally restricted information content, in
other words,⊤. In this idiom, it is possible to use  to help define amodule because the type definitions
and algebraic data types are all public knowledge inside the module. Outside the module, using  will
result in data with a restricted information content. However, because the essential computations in
the program have been given types that only accept inputs that are public knowledge, the data created
by breaking representation independence can never be used as part of these essential computations.
¿erefore, changing the implementation of a fully abstract data type will never affect the behavior of the
essential computations.
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So how can harmless reflection be applied to the companiesmodule? First, it is necessary to define a
signature to make the definitions of its algebraic data types abstract.

signature companies = sig
type name : Lab -(+)-> * @ ⊥ = String
type address : Lab -(+)-> * @ ⊥ = String
data Person : Lab -(+)-> % @ ⊤
data Salary : Lab -(+)-> % @ ⊤
data Employee : Lab -(+)-> % @ ⊤
type manager : Lab -(+)-> % @ ⊤ = Employee
data Dept : Lab -(+)-> % @ ⊤
data SubUnit : Lab -(+)-> % @ ⊤
data Company : Lab -(+)-> % @ ⊤

In this signature all of the algebraic data types have been given a kind that construct types with the
restricted information content, ⊤. ¿e signature exposes the definitions of name, manager, and address,
but hides all of the data constructors in the module. If the signature exposed the data constructors,
the algebraic data types would not be abstract – anyone could just pattern match on their values.
Consequently, there is a need to define helper functions in the companiesmodule so that it is possible to
construct and destruct values of the abstract algebraic data types.

However, it is worth noting that it is not possible to just use signature ascription to prevent data
constructors from being used. It might seem reasonable, for example, to allow the following signature:

sig
data T : Lab -> * @ ⊥
con MkT : T @ ⊥ end

end

to be subsumed by the signature:

sig
data T : Lab -> * @ ⊥
val MkT : T @ ⊥ end

end

because exposing MkT as a value rather than a constructor would prevent it from being used for pattern
matching. ¿e reason for this is rather mundane: MkT is not a lexically valid variable name in Infor,
and therefore cannot be used to name a value.

¿e definitions for these helper functions, given in Figure ·, are mostly tedious. ¿e only interesting
bit is the definition of the newDept function. Because the Dept algebraic data type caches its valuation,
when constructing a new value of this type it is necessary to pre-compute its valuation.

¿ere also proves to be a difficulty with the valuation function. We would like the signature to
expose it with the type:

signature COMPANIES = sig
...
fun valuation : ∀⟨α: * @ ⊥|(info α) = ⊥⟩ α -(⊥)-> Int @ ⊥
...

end
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module companies = mod
...
# Constructors
fun newCompany : List (Dept @ ⊥) @ ⊥ -(⊥)-> Company @ ⊥
fun newCompany ds = C ds

fun newDept : (| name @ ⊥, manager @ ⊥, List (SubUnit @ ⊥) @ ⊥ |) -(⊥)-> Dept @ ⊥
fun newDept nm mn sbs =

D nm mn ((valuation ⟨⊥|(manager @ ⊥)⟩ mn) +
(valuation ⟨⊥|(List (SubUnit @ ⊥) @ ⊥)⟩ sbs)) sbs

...

# Accessors
fun companyDepts : Company @ ⊥ -(⊥)-> List (Dept @ ⊥) @ ⊥
fun companyDepts (C ds) = ds

fun deptName : Dept @ ⊥ -(⊥|⊥)-> name @ ⊥
fun deptName (D nm _ _ _) = nm
...

Figure ·: Helper functions for the companiesmodule.

But now that all of the algebraic data types in the companies module have been given the restricted
information content, ⊤, the function valuation cannot be used on their data constructors. For example,
it is not possible to call valuation on a value of type Company @ ⊥, because Company @ ⊥ has kind % @ ⊤.
But the new signature for valuation can only be instantiated with types of kind * @ ⊥, and the kind
% @ ⊤ is not subkind of * @ ⊥. Changing the signature does not solve the problem either:

signature COMPANIES = sig
...
fun valuation : ∀⟨α: * @ ⊤|(info α) = ⊥⟩ α -(⊥)-> Int @ ⊥
...

end

¿is signature is invalid because ∀⟨l|α: * @ ⊥|(info α) = l⟩ α -(l)-> Int @ l is not a subtype of
∀⟨α: * @ ⊤|(info α)= ⊥⟩ α -(l)-> Int @ ⊥. Again this problem could be resolved by using phantom
types, or related techniques, to simulate a common supertype, but for the present I will assume that it is
only ever necessary to calculate the valuation of an entire company:

signature COMPANIES = sig
...
fun valuation : Company @ ⊥ -(⊥)-> Int @ ⊥
...

end

Putting everything together, I can now give the revised implementation of the companiesmodule’s
signature in Figure ·.
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signature companies = sig
type name : Lab -(+)-> * @ ⊥ = String
type address : Lab -(+)-> * @ ⊥ = String
data Person : Lab -(+)-> % @ ⊤
data Salary : Lab -(+)-> % @ ⊤
data Employee : Lab -(+)-> % @ ⊤
type manager : Lab -(+)-> % @ ⊤ = Employee
data Dept : Lab -(+)-> % @ ⊤
data SubUnit : Lab -(+)-> % @ ⊤
data Company : Lab -(+)-> % @ ⊤

# Constructors
fun newCompany : List (Dept @ ⊥) @ ⊥ -(⊥)-> Company @ ⊥
fun newDept : (| name @ ⊥, manager @ ⊥, List (SubUnit @ ⊥) @ ⊥ |) -(⊥)-> Dept @ ⊥
...

# Accessors
fun companyDepts : Company @ ⊥ -(⊥)-> List (Dept @ ⊥) @ ⊥
fun deptName : Dept @ ⊥ -(⊥)-> name @ ⊥
...
fun valSalary: Salary @ ⊥ -(⊥)-> Int @ ⊥

# Valuation
fun valuation : Company @ ⊥ -(⊥)-> Int @ ⊥

Figure ·: A harmless reflection signature for the companiesmodule.

Within the harmless reflection idiom it is possible to make strong claims about the confidentiality of
an .

Conjecture ·· (Confidentiality for harmless reflection). Any expression, e, that violates confidentiality
of abstract data types will have a type, τ, with a restricted information content, (info τ = ⊤. Only these
expressions, which are necessarily part of inessential computations, can be affected by a change in the
implementation of an abstract data type.

I only state conjectures in this chapter because without a formal metatheory for Infor, it is not
possible to be certain that generalized parametricity holds for Infor. ¿erefore, I am extrapolating
from what I know of generalized parametricity in λSECi. I will discuss the challenges proving generalized
parametricity presents in § .

Furthermore, it no longer possible to write the increase function from the beginning of the chapter.
Because the algebraic data types in the companies module have been ascribed with an information
content of ⊤, it is necessary to change the kind of increase’s type argument. However, inside the
definition of increase this immediately causes problems.
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fun increase : ∀⟨l|α: * @ ⊤|(info α) = l⟩ (| α, Int @ l |) -(l)-> α
fun increase ⟨l|α⟩ arg amt =

typecase α
| companies.Salary @ _ =>
companies.newSalary (((companies.valSalary arg) * amt) div 100)

...
end

Using typecase on αwill now raise the program counter label to⊤. Consequently, when typechecking the
term argwithin the first branch, argwill be given the type companies.Salary @ ⊤. However, the type sig-
nature for companies requires that the input to companies.valSalary be of type companies.Salary @ ⊥.
Furthermore, regardless of the type of its input, it is not possible to invoke companies.valSalary when
the program counter label is ⊤, because the program counter label on companies.valSalary is ⊥ and
control-flow transfers to code with a program counter label less than the current program counter
label are disallowed. ¿erefore, it becomes impossible to write increase (outside of companies) in a
type-directed fashion.

Furthermore, even if it were somehow possible to write a version of the increase function we know
by Conjecture ·· that the value it produces will have an information content of ⊤. However, as can be
seen from signature in Figure ·, only values with an information content of ⊥ can ever be used.

Conjecture ·· (Integrity for harmless reflection). Integrity cannot be violated; any expression, e
of type τ with a restricted information content, (info τ) = ⊤, will be unusable as part of essential
computations. ¿at is, any essential computation cannot take values with type τ as inputs.

Despite the fact that the harmless reflection does give strong static guarantees about confidentiality
and integrity, there is something subtly unsatisfactory about the way that signature in Figure · restricts
the use of typecase. For example, if I use typecase on companies.Salary directly, the result of that
expression will always be a value with a restricted information content:

val (x : Int @ ⊤) =
typecase companies.Salary @ ⊥

| companies.Salary @ _ => 0
| _ => 1

end

¿is behavior is, of course, correct given the signature of companies and the semantics of Infor.
However, it feels unsatisfactory because using typecase on a generative data type like companies.Salary
will never reveal anything about its structure.

Furthermore, it is a common to want to determine whether an abstract type is a specific generative
type so that it is possible to use the functions provided by a module to safely work with the algebraic
data type rather than using toSpine. For example, the following functions is ill-typed:
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fun getVal : ∀⟨l|α: * @ ⊤|(info α) = l⟩ α -(l|⊥)-> Int @ l
fun getVal ⟨l|α⟩ arg =

typecase α
| Int @ _ => arg
| companies.Salary @ _ =>

companies.valSalary arg
| _ =>

abort "Unexpected input"
end

Intuitively, the confidentiality and integrity of companies.Salary will not be violated in this function,
but it will fail to typecheck for exactly the same reasons that increase fails to typecheck.

Ideally, using typecase on algebraic data types, rather than type definitions, should propagate
information differently because they are an access control mechanism. Better integrating information-
flow and the access control provided by generative data types is an area for future work, and I will discuss
the problem at greater length in § ·. Fortunately, there are indirect solutions that can be used in the
current version of Infor. I will present one such solution in the coming section.

§ · Analyzing restricted generative types with typecase

Returning to the getVal function, the problem in writing getVal so that it is well-typed stems from the
fact that I needed to give α the kind * @ ⊤ so that it could be called on inputs with the type Salary. As a
consequence of this change, typecase raised the program counter label to ⊤, making it impossible to call
companies.valSalary. To prevent this chain of consequences, it is clearly necessary to find some way to
write getVal so that its type argument can be given an unrestricted information content. Unfortunately,
there is no way this can be done with the current definition of the Salary algebraic data type.

On the other hand, it is necessary for the Salary algebraic data type to have a restricted information
content, if I want to follow the harmless reflection idiom. ¿erefore, the problem cannot be solved by
simply changing getVal or Salary.

¿e solution I chose is to introduce wrapper algebraic data types, with a low information content, that
are s (Coquand ; Crary and Weirich ; Xi, Chen, and Chen ; Peyton Jones, Vytiniotis,
Weirich, and Washburn ). Below, I have shown how to extend the original companies module,
defined in Figure ·, to use wrappers:

module companies = mod
...
datatype T : Π l:Lab -(+)-> (Lab -(+)-> % @ l) -(+)-> Lab -(+)-> % @ ⊥ =

| Pwrap : ∀⟨l⟩ Person @ l -(⊤)-> T Person @ l
| Swrap : ∀⟨l⟩ Salary @ l -(⊤)-> T Salary @ l
| Ewrap : ∀⟨l⟩ Employee @ l -(⊤)-> T Employee @ l
| Dwrap : ∀⟨l⟩ Dept @ l -(⊤)-> T Dept @ l
| SUwrap : ∀⟨l⟩ SubUnit @ l -(⊤)-> T SubUnit @ l
| Cwrap : ∀⟨l⟩ Company @ l -(⊤)-> T Company @ l

end
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¿e algebraic data type, T, is the new wrapper data type. ¿is algebraic data type is unlike any we have
seen so far because it is higher-order. Its kind,

Π l:Lab -(+)-> (Lab -(+)-> % @ l) -(+)-> Lab -(+)-> % @ ⊥,

states that it does not take a type argument but rather a function from labels to restricted algebraic data
types. ¿e T algebraic data type is then defined to have a data constructor for every one of the original
algebraic data types. ¿ese data constructors serve as wrappers witnessing, for each algebraic data type
A, the coercion from values of type A @ l to the type T A @ l. ¿is is the reason that the wrapper is a
: the types of the data constructors are indexed by their arguments.

¿e type ∀⟨l|α:Lab -(+)-> % @ ⊤⟩ T α @ l can be viewed as a common supertype for each of the
algebraic data types originally defined in the companiesmodule. ¿is modification is, in fact, similar to
the one I alluded to in beginning of the chapter to help restrict the domain of valuation.

It would have also been possible to define T as the following:

datatype T : Lab -(+)-> % @ ⊥ =
| Pwrap : ∀⟨l⟩ Person @ l -(⊤)-> T @ l
...

However, indexing Twith a type makes it possible distinguish between T and its various instances without
needing a value of the type. For example, with the non-indexed version of T to determine whether some
type α is a salary it would be necessary to write the following code fragment:

typecase α
| T @ _ => case x of Salary _ => ... end

end

¿is code requires that there is a value of type α, in this case x, to determine that α is a salary. With the
indexed version it is possible to simply write the following:

typecase α
| T Salary @ _ => ...

end

Here α is only necessary rather than α and a value of type α.
¿e algebraic data type T can also be seen a restricted form of type representation, as I discussed

in § ·. Pattern matching upon the wrapper data constructors will introduce a refinement, but with
typecase and toSpine in the language, it does not really provide a form of access control. However, it
has the benefit of still introducing type refinements.

It is now also possible to define valuation so that its domain is appropriately restricted.

fun valuation : ∀⟨l1 l2|α: Lab -(+)-> % @ l1⟩ T α @ l2 -(l2|⊥)-> Int @ l2
fun valuation ⟨l1 l2|α⟩ arg = valuation’ ⟨l2|(T α @ l2)⟩ arg

Because the original implementation of valuation from Figure ·, renamed here to valuation’, already
can calculate the valuation of any type, the most concise implementation for the restricted version of
valuation is to simply call it to do the real work. It is worth noting that unlike valuation’, valuation
needs tomaintain separate labels for its type and term arguments. ¿is is because, inside of the companies
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module, valuation needs to be usable with type ∀⟨α: Lab -(+)-> % @ ⊥⟩ T α @ ⊥ -(⊥)-> Int @ ⊥,
while I wish to expose it with type ∀⟨α: Lab -(+)-> % @ ⊤⟩ T α @ ⊥ -(⊥)-> Int @ ⊥ in the module
signature. If I had given valuation the type ∀⟨l|α: Lab -(+)-> % @ l⟩ T α @ l -(l)-> Int @ l it
would not be possible to use valuation at both these types, because it would not be possible to vary the
information content of the type argument and the term argument independently.

¿e use of wrappers also necessitates rewriting all the helper functions introduced so that the data
constructors could be hidden for the harmless reflection idiom.

module companies = mod
...
# Constructors
fun newCompany : List (T Dept @ ⊥) @ ⊥ -(⊥|⊥)-> T Company @ ⊥
fun newCompany ds =

Cwrap (C (list.map ⟨⊥ ⊥|(T Dept @ ⊥) (Dept @ ⊥)⟩
(λ Dwrap d’ => d’ end) ds))

fun newDept : (| name @ ⊥,
T Employee @ ⊥,
List (T SubUnit @ ⊥) @ ⊥ |) -(⊥|⊥)-> T Dept @ ⊥

fun newDept nm (Ewrap mn) sbs =
Dwrap (D nm mn ((valuation’ ⟨⊥|(manager @ ⊥)⟩ mn) +

(valuation’ ⟨⊥|(List (T SubUnit @ ⊥) @ ⊥)⟩) sbs)
(list.map ⟨⊥ ⊥|(T SubUnit @ ⊥) (SubUnit @ ⊥)⟩

(λ SUwrap su’ => su’ end) sbs))
...

# Accessors
fun companyDepts : T Company @ ⊥ -(⊥|⊥)-> List (T Dept @ ⊥) @ ⊥
fun companyDepts (Cwrap (C ds)) =

list.map ⟨⊥ ⊥|(Dept @ ⊥) (T Dept @ ⊥)⟩ (Dwrap ⟨⊥⟩) ds
fun deptName : T Dept @ ⊥ -(⊥|⊥)-> name @ ⊥
fun deptName (Dwrap (D nm _ _ _)) = nm
...

Each of these constructors and accessors now uses the wrapper constructors to coerce into and out of
instances of the algebraic data type T. ¿e need for various maps in the revised accessor and constructor
functions could be avoided if T and the other algebraic data types were defined mutually recursively, but
I did not choose to do this because it requires modifying the original data type definitions.

After all these changes to the companies module, the revised signature that I will use is given in
Figure ·.

¿is revised signature for companies includes the new wrapper algebraic data type, T, but does not
ascribe it a more restrictive kind. Additionally, the signature exposes all of T’s data constructors. ¿is
is acceptable as they are used as coercions rather than s. Furthermore, it is no longer necessary to
write a helper function valSalary as it is subsumed by the revised valuation function.
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signature companies = sig
type name : Lab -(+)-> * @ ⊥ = String
type address : Lab -(+)-> * @ ⊥ = String
data Person : Lab -(+)-> % @ ⊤
data Salary : Lab -(+)-> % @ ⊤
data Employee : Lab -(+)-> % @ ⊤
type manager : Lab -(+)-> % @ ⊤ = Employee
data Dept : Lab -(+)-> % @ ⊤
data SubUnit : Lab -(+)-> % @ ⊤
data Company : Lab -(+)-> % @ ⊤

data T : Π l:Lab -(+)-> (Lab -(+)-> % @ l) -(+)-> Lab -(+)-> % @ ⊥
con Pwrap : ∀⟨l⟩ Person @ l -(⊤)-> T Person @ l
con Swrap : ∀⟨l⟩ Salary @ l -(⊤)-> T Salary @ l
con Ewrap : ∀⟨l⟩ Employee @ l -(⊤)-> T Employee @ l
con Dwrap : ∀⟨l⟩ Dept @ l -(⊤)-> T Dept @ l
con SUwrap : ∀⟨l⟩ SubUnit @ l -(⊤)-> T SubUnit @ l
con Cwrap : ∀⟨l⟩ Company @ l -(⊤)-> T Company @ l

# Constructors
fun newCompany : List (T Dept @ ⊥) @ ⊥ -(⊥)-> T Company @ ⊥
fun newDept : (| name @ ⊥,

T manager @ ⊥,
List (T SubUnit @ ⊥) @ ⊥ |) -(⊥)-> T Dept @ ⊥

...
fun newSalary : Int @ ⊥ -(⊥)-> T Salary @ ⊥

# Accessors
fun companyDepts : T Company @ ⊥ -(⊥)-> List (T Dept @ ⊥) @ ⊥
fun deptName : T Dept @ ⊥ -(⊥)-> name @ ⊥
...

# Valuation
fun valuation : ∀⟨α: Lab -(+)-> % @ ⊤⟩ T α @ ⊥ -(⊥)-> Int @ ⊥

Figure ·: A harmless reflection signature for the wrapped version of the companiesmodule.
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It is now possible to rewrite the example, getVal in the following way:

fun getVal : ∀⟨α: * @ ⊥|(info α) = ⊥⟩ α -(⊥|⊥)-> Int @ ⊥
fun getVal ⟨|α⟩ arg =

typecase α
| Int @ _ => arg
| companies.T @ _ _ @ _ =>

companies.valuation arg
| _ =>

abort "Unexpected input"
end

Here, getVal can be written so that it can still use typecase to determine whether its argument is a
“salary”, but the program counter will not be raised because the information content of types of the form
T α @ ⊥ have an unrestricted information content. ¿erefore, it is possible to call companies.valuation
on getVal’s argument.

Furthermore, while it was possible to implement getVal and not break confidentiality or produce
restricted data, it is still not possible to write increase in a type-directed fashion outside of the companies
module. Unlike before, it is now possible to write the part of increase that includes the case for Salary.
Like getVal, increase does not need to match beyond the wrapper.

fun increase : ∀⟨α: * @ ⊥|(info α) = ⊥⟩ (| α, Int @ ⊥ |) -(⊥)-> α
fun increase ⟨l|α⟩ arg amt =

typecase α
| T @ _ companies.Salary @ _ =>
companies.newSalary (((companies.valSalary arg) * amt) div 100)

...
end

However, now the problem in writing increase arises in the helper function increaseSpine:

and increaseSpine ⟨l|α⟩ spn amt =
case spn

| SHead dc => dc
| SCons ⟨l1 l2|β γ⟩ newspn arg =>

(increaseSpine ⟨l2|(β -(⊤|l)-> γ)⟩ newspn amt) (increase ⟨l|β⟩ arg amt)
| SConsEx ⟨l1 l2 l3|β γ⟩ newspn arg =>

(increaseSpine ⟨(l1 ⊔ l2)|(β -(⊤|l)-> γ)⟩ newspn amt)
(increase ⟨(l2 ⊔ l)|β⟩ arg amt)

end

¿e problem is that, in order to recursively walk the structure of its input, increase must, for some
inputs, convert its input into a Spine and use a revised version of increaseSpine. However, no matter
what type I give increaseSpine there is no escaping that when it encounters an input that is one of
T’s data constructors, the information content of the argument, β, stored in SCons or SConsEx is going
to be ⊤. However, to raise the salaries that may occur in the argument arg, increaseSpine must call
increase. But increase only accepts type arguments with an information content of ⊥. However, if
I change increase to accept type arguments with any other information content, it will no longer be
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possible to call companies.valuation. Consequently, no matter how I push the labels around increase

will fail to typecheck.
Using wrapped algebraic data types allowed for a more expressive interface, but still retains all of

the static guarantees provided by harmless reflection. In the next section, I will discuss the break and
recover idiom that still preserves integrity, but provides a weaker guarantee concerning confidentiality.

§ · Break and recover

Because it is always possible to use one of Infor’s reflection primitives to analyze the implementation
of an , in practice the question is not whether it can occur but whether doing so can be of any
consequence. For the harmless reflection idiom I showed that if confidentiality is violated, the information
about the structure of the  cannot ever impact essential computations. However, sometimes this
can be too strong of a restriction for realistic programs. For example, the increase function from the
previous sections serves a useful purpose. Arguably, increase or something like it should be provided as
part of the abstraction provided by the companiesmodule, but in practice the author of an  cannot
predict all the operations that could be desirable. ¿erefore, it can be necessary to write a function like
increase after the fact, and without access to the ’s source code.

As I demonstrated for the harmless reflection idiom, it is not possible to implement increase using
. It can only be written by walking the structure of a Company value explicitly by calling the provided
accessor functions, and then rebuilding the Company using the provided constructor functions.

However, Infor allows the author of an  to be a more liberal. She can choose to write a module
and signature in such a way that  may be used, but still ensure that the integrity property is not
violated for her s. ¿is idea is captured by the break and recover idiom.

¿e break and recover idiom works much like the name suggests. Type-directed programming can
be used to break the confidentiality property, and like harmless reflection, any data produced will have a
tainted information content. Unlike harmless reflection, once data has become tainted it is possible to
remove the taint and make the data usable again. By making use of checked downgrading, it is possible
for the author of an  to provide scrubber. A scrubber function will verify that tainted values satisfy
all invariants internal to the module, and then removes the taint. For some s, it may be reasonable
to even allow the scrubber to repair invariants that may have been violated. ¿erefore, the break and
recover idiom does not guarantee that the behavior of essential computations is independent of your
choice of representation. It does however guarantee that it is not possible to use invalid instances of an
.

¿e break and recover idiom requires exposing the fine structure of Infor labels, which I have
been able to avoid discussing so far. ¿e grammar of these refinements can be found in Figure ·. In
Infor, labels are elements of a free boolean algebra constructed over sets of atoms. Atoms are untyped
constants. New atoms can be defined in Infor as follows:

newatoms a1 ... an

. ¿ough, it might also be called mostly harmless reflection.
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atomic labels ℓ # ...
| +{a1, ... , an} additive atom sets
| -{a1, ... , an} subtractive atom sets

declarations d # ...
| newatoms a1 ... an naming atoms

signature bindings sb # ...
| atom a named atom

Figure ·: ¿e grammar for Infor’s fine label structure.

Atoms can also be exported in signature with the following syntax:

atom a1
...

atom an

Because there is assumed to be a countably infinite number of atoms, from a technical standpoint
newatoms is just providing names for currently unreferenced atoms.

Given named atoms there are two sorts of labels that can be built from them. For example, the atom a

can be used to construct the label +{ a } and the label -{ a }. ¿e former label, which I call an additive
set, denotes the set of atoms containing only the atom a. ¿e latter label, which I call a subtractive set,
denotes the set of all atoms except a. It is not necessary to have a named atom to use these two label
constructors: +{} and -{} are both valid labels. ¿e former is the empty set of atoms and the latter is the
set of all atoms (including those that have yet to be named). ¿ese sets are ordered by inclusion so, for
just the two atoms a, b, the following ordering holds:

+{}

-{a, b}+{a} +{b}

+{a, b}-{b} -{a}

-{}

. After I had chosen to adopt the names “additive sets” and “subtractive sets”, Steve Zdancewic suggested calling them
“sets” and “co-sets”. I think these names better fit with existing terminology.
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+{a1, ... , an} ⊔ +{a ′1, ... , a ′m} , +{{a1, ... , an} ∪ {a ′1, ... , a ′m}}
+{a1, ... , an} ⊔ -{a ′1, ... , a ′m} , -{{a ′1, ... , a ′m} \ {a1, ... , an}}
-{a1, ... , an} ⊔ -{a ′1, ... , a ′m} , -{{a1, ... , an} ∩ {a ′1, ... , a ′m}}

+{a1, ... , an} ⊓ +{a ′1, ... , a ′m} , +{{a1, ... , an} ∩ {a ′1, ... , a ′m}}
+{a1, ... , an} ⊓ -{a ′1, ... , a ′m} , +{{a1, ... , an} \ {a ′1, ... , a ′m}}
-{a1, ... , an} ⊓ -{a ′1, ... , a ′m} , -{{a1, ... , an} ∪ {a ′1, ... , a ′m}}

Figure ·: ¿e definition of label join and label meet for atom set labels.

In the above diagram, arrows point from smaller to larger labels; the dotted arrows are used to emphasize
that this is just a small portion of the entire lattice, which has a uncountably infinite number of elements.

¿e ordering on these additive and subtractive sets forms a complete lattice, where +{} is the least
element and -{} is the greatest element. In fact, the label ⊥ is shorthand in Infor for +{}. Dually, ⊤ is
shorthand for -{}. Figure · gives the definitions for joins and meets on atom sets.

Having explained the fine structure of labels, I can explain how it is applied in the break and recover
programming idiom. Switching to the break and recover idiom from harmless reflection only requires
three significant changes to the implementation of a module: at least one new atom should be defined,
the accessor and constructor functions for the algebraic data types should be ascribed label polymorphic
types, and a scrubber function must be written.

My revised version of the companies module uses an atom called poison, and I will ascribe the
module with the signature given in Figure ·. ¿e first thing to note about this signature is that the
algebraic data types are now ascribed with kinds that specify that they have an information content of
+{poison}. Using this label means that it is possible to track those parts of the program that specifically
violate the confidentiality of the companiesmodule by looking for occurrences of +{companies.poison}.
In the harmless reflection idiom, by using the ⊤ label, it was not possible to distinguish between the
information learned by analyzing different abstract types.

¿e next change to the companies module is to constrain those functions that will only behave
correctly if given inputs that meet the invariants of the module. ¿at is, functions that would violate
integrity if given an invalid input. In the case of the companiesmodule, the valuation function is the
only function that will behave incorrectly when used with an input that does not meet the invariants of
the module. ¿erefore, the constraint l <: -{poison} has been added to the signature for valuation.
¿is constraint declares that the function can only used on inputs that are not tainted by the +{poison}
label. ¿is is similar to the harmless reflection idiom where I chose to ascribe functions with signatures
that could only accept data with unrestricted information content, ⊥. However, this constraint is much
weaker because it allow inputs that have been tainted, as long as they have not been tainted by analyzing
one of the abstract types in the companiesmodule (or by ⊤ which means that it is tainted with respect to
every possible ).

. ¿ere are ℵ0 atoms, and 2ℵ0 additive and subtractive sets, respectively, giving a total of 2ℵ0+1 elements, which is
equivalent to containing 2ℵ0 elements.
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signature companies = sig
atom poison
type name : Lab -(+)-> * @ ⊥ = String
type address : Lab -(+)-> * @ ⊥ = String
data Person : Lab -(+)-> % @ +{poison}
data Salary : Lab -(+)-> % @ +{poison}
data Employee : Lab -(+)-> % @ +{poison}
type manager : Lab -(+)-> % @ +{poison} = Employee
data Dept : Lab -(+)-> % @ +{poison}
data SubUnit : Lab -(+)-> % @ +{poison}
data Company : Lab -(+)-> % @ +{poison}

# Constructors
fun newCompany : ∀⟨l⟩ List (Dept @ l) @ l -(l)-> Company @ l
...
fun newSalary: ∀⟨l⟩ Int @ l -(l)-> Salary @ l

# Accessors
fun companyDepts : ∀⟨l⟩ Company @ l -(l)-> List (Dept @ l) @ l
...
fun valSalary : ∀⟨l⟩ Salary @ l -(l)-> Int @ l

# Valuation
fun valuation : ∀⟨l|α: * @ l|(info α) = l & l <: -{poison} ⟩

α -(l)-> Int @ l

# Scrubbing
fun scrub : ∀⟨l1 l2|α: Lab -(+)-> % @ l1|l2 <: -{poison} &

l1 <: (l2 ⊔ +{poison})⟩
α @ l1 -(l2|⊥)-> α @ l2

end

Figure ·: A break and recover signature for the companiesmodule.

Finally, the signature has been extended with a type signature for the scrubber function.

fun scrub : ∀⟨l1 l2|α: Lab -(+)-> % @ l1|l2 <: -{poison} &
l1 <: (l2 ⊔ +{poison})⟩

α @ l1 -(l2)-> α @ l2

¿e scrubber’s type signature is fairly complex. It has two label arguments, l1 and l2. Its single type
argument, α, is a type function from labels to types of base kind with an information content of l1. ¿e
function itself takes values of type α @ l1 to values of type α @ l2.

¿e constraints on scrub describe the relationship between l1 and l2. ¿e first constraint,
l2 <: -{poison} says that l2 is any label that has not been tainted by the poison atom. ¿e second con-
straint, l1 <: (l2 ⊔ +{poison}), says that it is not possible to lower l1 in any way other than removing
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the taint of the poison atom. Otherwise it would be possible to instantiate scrub so that it is a function
that coerces from α @ ⊤ to α @ ⊥, which is far too general.

It may seem a strange that scrub quantifies over a function from labels to types instead of a type.
¿e problem with quantifying directly over types with a base kind, is that scrub would wind up with the
following type:

fun scrub : ∀⟨l1 l2|α: Lab -(+)-> % @ l1|l2 <: -{poison} &
l1 <: (l2 ⊔ +{poison}) &
(info α) = l1 &
(info α) = l2⟩ α -(l2)-> α

Because there is no way to directly refer to the information content of α, it is necessary to use info labels.
However, if info labels are used, it clearly becomes impossible to ever call scrub with distinct labels for
l1 and l2 because of transitivity. ¿is is an example of where it would be useful for Infor to provide
skeleton constraints like FlowCaml (§ ·).

One possible implementation of a scrubber for the companiesmodule can be found in Figure ·.
Its functionality is split into two distinct parts. ¿e functions correct and correctSpine recursively
traverse an input and update embedded Dept data constructors so that their cached valuation is the
sum of the valuation of the Dept’s manager and SubUnits. ¿e function scrub simply calls correct on its
input, and then uses the primitive function declassify to remove the poison atom from the information
content of the input.

¿e function declassify has the type:

∀⟨l1 l2 l3|α: Lab -(+)-> * @ l3|l2 <: l1⟩ α @ l1 -(⊤)-> α @ l2

It is the only mechanism in Infor for lowering the information content of a value. Because declassify
can lower the information content of values, it can be used to bypass restrictions on valid information
flows imposed by the type system. ¿erefore, it amounts to an unsafe downcasting mechanism for labels
and should only be used judiciously.

¿ere are language extensions that could be used to restrict the scope of declassify. On possible
extension would be to consider a label lattice that is closer in structure to the Decentralized Label Model
() of Myers and Liskov (). For example, if Infor were extended with a notion of ownership
or principals, the companies module could then be treated as the owner of the abstract data types it
defines, and, more importantly, the owner of the atom poison. As the owner of the poison atom, only
code written inside the companiesmodule would be allowed to use the declassify to remove the poison
atom from labels. Any code outside of the scope of the module will not be able to use declassify to
remove the atom. However, with such an extension the onus is still on the author of a module to use the
declassify function responsibly.

Now that I have defined the break and recover version of the companiesmodule, it is now possible to
write the type-directed function increase, while still maintaining integrity. ¿e implementation of this
version of increase is given in Figure ·. Similar to scrub, the implementation of increase is broken
up into two parts. ¿e first part is just a wrapper function that calls the second part and then uses the
scrub function to remove the taint from the result. ¿e second part performs the actual type-directed
traversal that increases the salary.
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fun correct : ∀⟨l|α: * @ l|(info α) = l⟩ α -(l)-> α
fun correctSpine : ∀⟨l|α: * @ l|(info α) = l⟩ Spine α @ l -(l)-> α

fun scrub : ∀⟨l1 l2|α: Lab -(+)-> % @ l1|l2 <: -{poison} &
l1 <: (l2 ⊔ +{poison})⟩

α @ l1 -(l2)-> α @ l2

fun correct ⟨l|α⟩ arg =
typecase α

| Dept @ l =>
case arg of (D ⟨l⟩ nm mn _ sbs) =>
let
val sbs’ = list.map (correct ⟨l|(SubUnit @ l)⟩) sbs

in
D nm mn ((valuation’ ⟨l|(manager @ l)⟩ mn) +

(valuation’ ⟨l|(List (SubUnit @ l) @ l)⟩) sbs’) sbs’
end

end
| _ => isdata α then

correctSpine ⟨l|α⟩ (toSpine ⟨l|α⟩ arg)
else
arg

end
end

and correctSpine ⟨l|α⟩ spn =
case spn

| SHead dc => dc
| SCons ⟨l1 l2|β ψ⟩ newspn arg =>

(correctSpine ⟨l2|(β -(⊤|l)-> ψ)⟩ newspn) (correct ⟨l2|β⟩ arg)
| SConsEx _ _ =>

abort "Unexpected input data type."
end

and scrub ⟨l1 l2|α⟩ arg = declassify ⟨l1 l2 l1|α⟩ (correct ⟨l1|(α @ l1)⟩ arg)

Figure ·: A scrubber for the companiesmodule
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fun increase : ∀⟨l1 l2|l2 <: -{companies.poison} &
l1 <: (l2 ⊔ +{companies.poison})⟩

(| companies.Company @ l2, Int @ l2 |) -(l2)-> companies.Company @ l2

fun increaseInternal : ∀⟨l|α: * @ l|(info α) = l & l :> +{companies.poison} ⟩
(| α, Int @ l |) -(l)-> α

fun increaseSpine : ∀⟨l|α: * @ l|(info α) = l & l :> +{companies.poison} ⟩
(| Spine α @ l, Int @ l |) -(l)-> α

fun increase ⟨l1 l2|⟩ arg amt =
companies.scrub ⟨l1 l2|companies.Company⟩

(increaseInternal ⟨l1|(companies.Company @ l1)⟩ arg amt)

and increaseInternal ⟨l|α⟩ arg amt =
typecase α

| companies.Salary @ l =>
companies.newSalary (((companies.valSalary arg) * amt) div 100)

| _ => isdata α then
increaseSpine ⟨l|α⟩ (toSpine ⟨l|α⟩ arg) amt

else
arg

end
end

and increaseSpine ⟨l|α⟩ spn amt =
case spn

| SHead dc => dc
| SCons ⟨l1 l2|β ψ⟩ newspn arg =>

(increaseSpine ⟨l2|(β -(⊤|l)-> ψ)⟩ newspn amt)
(increaseInternal ⟨l|β⟩ arg amt)

| SConsEx ⟨l1 l2 l3 |β ψ⟩ newspn arg =>
ifholds l2 <: l3 & (info β) = l3 then
(increaseSpine ⟨l3|(β -(⊤|l)-> ψ)⟩ newspn amt)
(increaseInternal ⟨l|β⟩ arg amt)

else
abort "Cannot create a value with the requested information content"

end
end

Figure ·: A break and recover implementation of the increase function.
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Overall, the two functions that perform the actual work, increaseInternal and increaseSpine,
are very similar to the implementation presented at the beginning of the chapter. However, the three
differences are an additional constraint on the quantified label l :> +{companies.poison}, a nontrivial
case for SConsEx in increaseSpine, and the use of accessor and constructor functions provided by the
module.

¿e constraint is necessary because when the type pattern companies.Salary @ _ is matched in
increaseInternal, the program counter is raised by +{companies.poison}. However, the overall type of
the function is expecting a value of type α. Because the information content of α is expressed indirectly, it
is not possible to express that the information content of αwill be raised by increaseInternal. ¿erefore,
instead of expressing a change in the information content of α, the constraint l :> +{companies.poison}

is used to make sure that l is instantiated with a high enough information content that the information
content of α does not need to change. ¿is requirement does not prevent increase from being used on
unrestricted data labeled with ⊥. When increaseInternal is called by increase the label will be raised
by subsumption to exactly +{companies.poison} and then the label on the resulting value will brought
back down to ⊥ by companies.scrub.

¿e reason that increaseSpinemust try to handle the SConsEx case, unlike the other examples I have
shown so far, is that increaseSpinemust be implemented with no knowledge of how the abstract types
in the companies module are implemented. It is entirely possible that, during the recursive traversal,
toSpine can encounter a hidden data structure that can only be converted to a spine using SConsEx.
However, increaseSpine and increaseInternal can only construct an appropriate value if l2 and the
information content of β match what is needed. Otherwise, abort will be called to report a dynamic
failure.

¿e fact that increaseInternal can use an accessor function, unlike in the previous section, requires
some explanation. ¿e reason it was impossible to use companies’s accessor functions while writing
increase was because of their restricted program counters. Here, because newSalary and valSalary

have been exposed as label polymorphic functions, it is possible to instantiate them with a label that
allows them to be called even with a restricted program counter.

¿e increase function itself requires two label arguments and constraints identical to scrub –
otherwise it would not be possible to call scrub. However, it calls increaseInternal with the tainted
label, in order to satisfy its constraints.

It is now possible to formally state the integrity property for the break and recover idiom.

Conjecture ·· (Integrity for break and recover). Assuming that the program only contains legitimate
uses of the declassify function, for abstract data types labeled with some atom a, any function that
requires

• its inputs have an information-content less than -{a},

• that it may only be called in contexts where the program counter label is less than -{a},

can assume that all invariants preserved by the implementation of the abstract data type will hold.
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For example, increase, is guaranteed that any value it produces will not violate the integrity of the
valuation function. Namely, any values of type Dept that valuation receives will have a valid cached
valuation.
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
¿edesign and implementation of the

Infor language

Everyone by now presumably knows about the danger of
premature optimization. I think we should be just as
worried about premature design - designing too early what
a program should do.

Paul Graham (Hackers and Painters, )

¿e development of the Infor language has been a long process and I have learned many things
along the way. Some of what I have learned is about trade-offs in the implementation of programming
languages and compilers that are not addressed in texts on language implementation, if even in research
papers. However, most of these things are not relevant to Infor specifically, so I will not cover them in
this dissertation. Some of what I have learned is about trade-offs and issues in the design of a language
that features type-directed programming with an information-flow type and kind system. ¿ese trade-
offs will be the primary focus of this chapter. As with most things learned from practical experience,
the lessons were that I had not made the best choice when approaching these trade-offs. I have already
explained some of these choices in passing in §  and § .

I will begin the chapter with a brief introduction to the implementation of the Infor language. I
will then follow with discussions of what I believe to be the design choices that have the greatest influence
on the character of the language: merging type constructors and types, using the toSpine primitive for
analyzing generative data types, and including existential labels in the language. I will then conclude the
chapter with a discussion of some less significant design choices, that were nevertheless not obvious, but
important to discuss for posterity.
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§ · ¿e implementation of Infor

It is important to view the implementation of Infor that I have built as a tool for answering questions
about  with an information-flow type and kind system, not as a tool that will ever be used to write
software.

¿e implementation of Infor is a menagerie of different programming language technologies. ¿e
majority of Infor was implemented in Standard  (Milner et al. ), with some custom extensions
to / to provide syntactic sugar for monads. ¿e Infor parser was written using Turon’s ()
new LL(k) parser generator, and its accompanying Unicode (Consortium ) friendly lexer. Some
of the implementation is written using noweb (Ramsey ) in an attempt to provide more detailed
documentation. ¿em macro processor (Kernighan and Ritchie ) was used in several cases to
work around limitations of the / compilation manager (Blume ). Some parts of type inference
are handling by passing on logic programming queries to the Twelf logical framework (Pfenning and
Schürmann ). Finally, the Infor runtime is written in Scheme (Sperber, Dybvig, Flatt, and van
Straaten ).

¿e Infor implementation is roughly divided into three stages: the frontend, the typechecker, and
the compiler. Unfortunately, at this time the compiler stage is no longer functioning, as it has not been
possible to keep pace with changes to typechecker that have resulted from writing this dissertation.

¶ ¿e frontend ¿e frontend is relatively uninteresting, aside from the issues surrounding LL(k)
parsing. Using a LL(k) parser versus the more common choice of a LALR(1) did impact the design
Infor, but this was mostly confined to the syntax. For example, anonymous functions, conditionals,
case statements, etc. all are closed with the end keyword to make the LL(k) grammar simpler. On the
other hand, because it is possible to look ahead more than a single token, it is possible to make use of the
Haskell-style fun x : σ type signatures for functions. After parsing, the frontend processes the entire
syntax tree, eliminating syntactic sugar and some variable renaming, to produce an abstract syntax tree
in the format used by the typechecker.

¶¿e typechecker ¿e typechecking stage is the largest in terms of source code and is also the most
complex stage. ¿is stage also had the most significant impact on the design of Infor. A significant
amount of timewas spent on developing an implementation of global type inference for Infor. However,
this implementation was extremely buggy and was eventually scaled back to local type inference, because
the type inference problems Infor present are orthogonal to the thesis of this dissertation.

In retrospect, I think most of the difficulty in developing a correct implementation of global type
inference stemmed from attempting to incrementally resolve constraints while traversing the abstract
syntax tree. I think that the complexity would have been much more manageable had I cleanly separated
constraint generation from constraint solving. Another problem was, that for a few months, I attempted
to use de Bruijn indices with explicit substitutions (Abadi, Cardelli, Curien, and Lèvy ) in an attempt
to simplify some of the issues of binding and scope during unification. ¿is proved to be a terrible

. However, like most source code documentation, it proved difficult to keep up to date with the many radical changes
made to the Infor internals.
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mistake. ¿ey introduced their own problems, greatly expanded the printed size of types, labels, and
kinds, and made reading debugging output a slow and painful task. Some blame for the failure to build
a working implementation of global type inference can probably also be attributed to typical graduate
student over-ambition.

Using local type inference for Infor, rather than global type inference, has a significant impact
on the feel of the language. For example, assuming a global inference algorithm has been implemented,
a programmer would have to expend less effort in crafting “optimal” type signatures and data type
definitions. For example, when writing mutually recursive functions, I would frequently begin by writing
the functions without any constraints on their label and type arguments, and then manually attempt
to reach a fixed point on the best constraints by repeated interaction with the typechecker. ¿is was
usually a fairly painful process of chasing labels around programs.

Despite the limitations of local type inference, implementing global type inference for Infor is
not a trivial undertaking. I conjecture that a global type inference algorithm for Infor approaches
the difficulty of theorem proving for at least Π0

2 first-order logic, simply to solve constraints on the label
lattice. If the constraints that the user can write are carefully restricted, it may be possible to eliminate
the disjunctive (but not existential) non-determinism in the formulas generated (Pottier and Simonet
). Because subtyping is defined in terms of lifting label subsumption to types, I conjecture that all
type constraints will be equational and could be restricted so that they can be decided using higher-order
pattern unification (Miller ).

Probably the most interesting aspect of the typechecking stage is that subkinding, subtyping, and
constraint checking were all initially implemented by encoding the problems as logic programming
queries handed off to the Twelf logical framework (Pfenning and Schürmann ). ¿e primary
motivation for this was that nearly all of the Infor type system could be elegantly specified as a logic
program in the  meta-logic (Harper, Honsell, and Plotkin ). Not only was it easy to cleanly specify
Infor, but I was able to implement most of the key parts of the type system in an afternoon. Only a few
more days were required to completely describe the language. Furthermore, representing the Infor
language using higher-order abstract syntax (Pfenning and Elliott ) made the correct static semantics
for some parts of the language, like the use of internal versus external names in modules (Harper and
Lillibridge ), “fall out” of the specification naturally.

Despite these benefits, using Twelf in this fashion had a number of significant disadvantages:

• Because I specified the Infor type system in a relatively declarative fashion, it is very easy for
Twelf to “diverge” on incorrect programs while it searches for a witnessing proof.

• Even for correct programs, Twelf can become lost while searching for a proof.

• If Twelf does determine that a query has no solutions, there is no easy way to translate this result
back into a reasonable error message.
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• Because Twelf is a research project itself, some of the experimental features I tried to use to
improve proof search would cause exceptions in Twelf, or in one case return wrong answers.

¿e second and third issues I was able to resolve to some extent by reimplementing many of the common
queries that did not require label unification variables within . I was also able to address the second
issue some by rewritingmy specification of the Infor type system in amore algorithmic style. Switching
to a sequent style formulation (Gentzen ) for the subsumption and constraint checking rules proved
to help significantly.

However, it is not possible to completely eliminate the use of Twelf without putting label unification
variables back into the parts of Infor implemented in . Specifically, the usual rule polymorphic
subsumption requires guessing a label:

[Л/l]σ1 <:σ2

∀⟨l⟩ σ1 <:σ2

¿e rule is usually implemented by substituting a fresh unification variable for l. Unlike inferring label
and type instantiations for polymorphic functions, I cannot use a simplistic and incomplete matching
heuristic. If Infor cannot infer label and type instantiations for a polymorphic function using this
heuristic, the programmer can just supply the instantiations herself. It is not as reasonable, in my opinion,
to make the subtype checking algorithm incomplete and ask the programmer to supply a subtyping
proof when it fails.

¶ Compilation Finally, the compilation stage takes a well-formed Infor program and generates
Scheme code from it. In terms of language targets, I think Scheme is an excellent choice. Ideally, I would
target a statically typed language so that it generated code can be verified statically. However, when
implementing experimental languages it is often the case that there does not exist a language that will
allow a naïve encoding of your language to typecheck. For example, I could not have compiled Infor to
the  family of languages because there would be no way straightforward way to encode polymorphic
recursion. In retrospect, I conjecture that with some additional time it may have been possible to target
the  Haskell compiler (Peyton Jones, Hall, Hammond, Partain, and Wadler ), but it would have
probably taken significantly longer. On the other-hand, Scheme is a much better choice than other
popular high level language targets like C, because it provides more suitable abstractions. Furthermore,
there are a several decent Scheme implementations to choose from.

Because labels and types are an important part of Infor’s operational semantics, labels and types
are compiled to Scheme values representing them. I have represented labels using tagged sets of symbols,
where the tag specifies whether the set is additive or subtractive. Following past work on compiling
languages with runtime type analysis (Crary, Weirich, and Morrisett ), types are compiled to
representations in a fashion very similar to data constructors; type functions are in fact compiled to

. Specifically, I found a logic program query that the tabled logic programming engine would report as having no solutions
(which I believe to be the correct answer) while the theorem prover would report a solution (but not provide a witnessing
proof).

. ¿ere is a workaround for this in recent versions of OCaml by making using of its support for recursive modules and
functors.
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term level functions. Compilation converts type and label arguments of term functions into additional
term arguments.

Term and type pattern matching compilation takes advantage of first-class continuations to generate
simpler code for handling match failures. Term and type patterns are both decomposed into sets of
boolean preconditions and projections that extract components of their input and bind them to variables.

Despite what I discussed in § ·, data constructors are actually compiled to functions that return lists
starting with a symbol naming the data constructor, followed by a representation of the data constructor’s
type, its label arguments, its type arguments, and its value arguments. Compiling data constructors
as functions simplified compilation, because the alternate approach would have required an analysis
to distinguish whether a term application is a function application or a data constructor application.
Additionally, because Infor allows data constructors to be used as curried functions, it would have
been necessary to insert η-expansions regardless.

¿e reason that I compile data constructors with an embedded copy of their type representation is so
that toSpine can examine the type representations to decide whether a given argument should be placed
in a SCons or and SConsEx node. Unfortunately, this opens a loop-hole for breaking confidentiality.

Consider the following module:

module m : sig
type t : Lab -(+)-> * @ ⊤
data F : : Lab -(+)-> % @ ⊥
cons MkF : ∀⟨l⟩ t @ l -(⊤)-> F @ l
val x : t @ ⊥

end = mod
type t = Int

datatype F : Lab -(+)-> % @ ⊥ =
| MkF : ∀⟨l⟩ t @ l -(⊤)-> F @ l

val x = 3
end

When the data constructor MkF is compiled it will be tagged with the type Int @ l -(⊤)-> F @ l, where
Int @ l has kind * @ ⊥, and l is bound by an enclosing Scheme lambda. ¿erefore, the following code
written outside module m will behave in an unexpected fashion:

case toSpine ⟨⊥|(m.F @ ⊥)⟩ (m.MkF ⟨⊥⟩ m.x)
| SCons ⟨l1 l2|α β⟩ _ _ => True
| SConsEx _ _ => False

end

Because m.MkF was compiled with a type representation that indicated its argument has a type with an
information content of ⊥, and because the signature I ascribed to m is erased by the compiler, when
toSpine is applied to (m.MkF ⟨⊥⟩ m.x) in the code above, toSpine will inspect this stored representation
and conclude that its first argument has a kind with an information content of ⊥, and it can therefore
safely construct a Spine using a SCons node for its argument m.x. Furthermore, inside the case branch
for SCons, the label variables l1 and l2 will be bound to ⊥ at runtime, and the type variable β to Int @ ⊥.
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Except that β is just another name for m.t @ ⊥. Changing m.t @ ⊥, which has kind * @ ⊤ will therefore
change the observable type bound to β, which has the kind * @ ⊥. ¿erefore, a low security observer can
now distinguish between changes to a higher security type – confidentiality has been broken. However,
integrity still holds, because there is no way to relate values with type β back to values of type m.t @ ⊥

without them becoming tainted by ⊤.
¿e loop-hole could be closed by giving module signatures an operational meaning, inserting a

coercion at compile-time that will rewrite the labels inside a module to be consistent with the signature.
In other words, a coercion semantics for module subsumption (Breazu-Tannen, Coquand, Gunter, and
Scedrov ). However, properly designing such a coercion semantics will require further study. ¿e
other alternative, would be to eliminate toSpine from the language in favor of another solution. I will
discuss some of the other problems toSpine presents in § ·.

Otherwise, so far, the implementation of the compilation stage has had little impact on the design of
Infor. ¿e necessity of having a working implementation of toSpine written in Scheme, as part of the
Infor runtime, helped clarify its semantics, specifically with regards to the need for having both the
SCons and SConsEx data constructors.

§ · Merging type constructors and types

In retrospect, I do not think I would have chosen to use a combined language of types and type con-
structors in Infor. However, I do not believe I would have reached this conclusion before I began
implementing Infor and writing larger examples in it.

As I discussed in § ·, because Infor does not have injections that are explicitly labeled with
their information content, it has the convention that the information content of a value is taken from
the last label application in a type, info (τ @ Л) = Л. ¿is had two consequences: the need for info
labels, and a restriction on label functions. ¿is restriction is that for a function from labels to types,
λ l:Lab =(π)=> τ end, that the equality (info τ) = l hold. ¿is restriction is to prevent these sorts of
type functions from being used to discard the information content of a value by writing an abstract type
like λ l:lab =(+)=> Int @ ⊥ end. By keeping types and type constructors separate, there would be no
longer be a need for info labels, and subsequently no need to have the restriction on functions from
label to types (or rather type constructors).

Furthermore, as I demonstrated with my example in § ·, quantifying over types at kind
Lab -(+)-> * @ Л cannot be used to simulate an explicit injection from type constructors to types.
¿is is because there exist types, such as tuples, with a normal form that cannot be given this kind.

¿e info labels in Infor are not strictly a problem directly, but have the unintended consequence
of making the language of kinds, types and labels mutually recursive. Such mutual recursion complicates
the implementation of Infor and is sure to complicate the metatheory of Infor. Additionally, when
writing most polymorphic functions, I have found that is necessary to include a constraint of the form
(info α) = Л, which is just pushing the label that would be always be available on an injection in λSECi

into a constraint.
Having explicitly labeled injections from type constructors to types also eliminates the motivation for

potentially extending Infor with skeleton constraints, as I discussed in § · with respect to FlowCaml.
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¿e addition of skeleton constraints would resolve some of the shortcomings of info labels, but I think
that the better resolution would be to make the language simpler by eliminating info labels, rather than
solving the problem by making the language more complex with an additional form of constraint.

§ · ¿e toSpine primitive

As I discussed in § ·, the primitive function toSpine is included in Infor to make it possible to write
type-directed operations over algebraic data types. However, toSpine is unsatisfactory in a number of
ways. First, the implementation of the toSpine combines two orthogonal language capabilities. Second,
the Spine data type itself has limitations and problems. Finally, some type-directed operations that are
desirable cannot be written for algebraic data types using toSpine.

Based upon my explanation of toSpine § ·, it is clear that the operational semantics of toSpine
are nontrivial. As such, I think it would be better to instead provide its capabilities in the form of two
or more orthogonal language features. For example, in order to decide whether it should build a Spine
value using the SCons data constructor or the SConsEx data constructor, toSpinemust internally perform
label analysis on data constructors. ¿is functionality is already present with the dynamic constraint
checking primitive ifholds.

Internally, toSpine also is able to pull out the arguments of arbitrary data constructors, because it can
take advantage of the fact that all data constructors have a uniform representation in memory. It seems
sensible to somehow make this capability accessible in a more direct fashion. ¿ere are a multitude of
approaches that have been taken (Lämmel and Peyton Jones , , ; Hinze, Löh, and Oliveira
; Hinze and Löh ; Weirich ; Mitchell and Runciman ), but further study is necessary
to determine which is most appropriate for use in an information-flow type and kind system . As I will
discuss in § ·, I think the correct step is to try to understand how toSpine really works, by looking at a
language with a more primitive notion of type generativity.

¿e Spine data type by itself is also problematic, something that I was aware of from the outset. In
Infor, it is only possible to construct Spines from algebraic data types of base kind (% @ Л). However,
there are many type-directed operations that can only be defined over type functions. For example, there
are many interesting type-directed operations on “container” types: maps, folds, etc. Such functions
would take a type function with the kind of the form (* @ Л1) -(π)-> Lab -(+)-> (* @ Л2) as an
input. In fact, the Spine data type is merely the base case in an infinite hierarchy of Spine-like structures
parametrized by types of different kinds. It might be possible to resolve this issue by extending Infor
with kind polymorphism and what are called polykinded types (Hinze ). A polykinded type has a
structure that is inductively defined for the structure of a kind.

Also related to the structure of the Spine data type, is that because Spines are intended as uniform
“views” of a data constructors, it is only possible to implement type-directed operations over existing
instances of an algebraic data type. For example, I gave an implementation of toString in § · that
used toSpine to handle the recursion over algebraic data types. But there is no way to write the dual
function, fromString, in Infor. ¿is is because there is no way to create a data constructor from just
its name as a string. ¿is calls for a completely new primitive function or language feature. Hinze and
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Löh () have explored how to address this limitation of Spines by putting more information into the
type representations they use in their implementation, but there may be other more pleasing solutions.

Finally, another problem with the definition of the Spine algebraic data type is that the SConEx data
constructor contains an existentially quantified label. As I will describe in the next section, existentially
quantified labels are difficult to program with and can prevent precise reasoning about confidentiality
and integrity. However, I conjecture that any alternative to the use of Spines will introduce existentially
quantified labels in some form.

§ · Existential labels vs label analysis

Early in the development of Infor, allowing existentially quantified labels seemed like a sensible idea.
Existential labels seemed to offer the ability to gracefully degrade from static enforcement of information
flows to dynamic enforcement of information flows. Combined with dynamic constraint checking, it
would even be possible to switch back from dynamically tracking information-flows to statically tracking
them. Finally, as I mentioned in the previous section, because the plan was to use toSpine to allow 
with algebraic data types, existentially quantified labels were also necessary to give the Spine data type’s
data constructors satisfactory type signatures. However, in retrospect, I think that in a revised version
of Infor it would be best to attempt to minimize the use of existential labels, if not eliminate them
altogether.

¿e first problem with existentially quantified labels is that it is simply difficult to use them effectively
while maintaining the hidden labels with any precision. ¿e second problem is that existential labels
weaken the claims that can be made about confidentiality.

I will illustrate the difficulties with programming with existential labels, by revisiting the dynamic
type (Abadi, Cardelli, Pierce, and Plotkin ), Dyn,that I introduced in § ·:

datatype Dyn : Lab -(+)-> % @ ⊥ =
| Dynamic : ∀⟨ld l|α : * @ ld⟩ α -(⊤)-> Dyn @ l

Now here is function that tries to implement addition on dynamic values (that are integers):

fun addDyn : ∀⟨l⟩ (| Dyn @ l, Dyn @ l |) -(l)-> Option (Dyn @ l) @ l
fun addDyn ⟨l⟩ d1 d2 =

case (d1, d2)
| (Dynamic ⟨l1 l|α⟩ x, Dynamic ⟨l2 l|β⟩ y) =>
typecase (α, β)

| (Int @ l3, Int @ l4) =>
Some (Dynamic ⟨(l ⊔ l1 ⊔ l2 ⊔ l3 ⊔ l4)

(l ⊔ l1 ⊔ l2 ⊔ l3 ⊔ l4)|
(Int @ (l ⊔ l1 ⊔ l2 ⊔ l3 ⊔ l4))⟩
(x + ⟨(l ⊔ l1 ⊔ l2 ⊔ l3 ⊔ l4)⟩ y))

| _ => None
end

end

¿e above function will fail to typecheck because the body produces a value with the type

Option (Dyn @ (l ⊔ l1 ⊔ l2 ⊔ l3 ⊔ l4)) @ (l ⊔ l1 ⊔ l2 ⊔ l3 ⊔ l4)
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and there is no guarantee that l ⊔ l1 ⊔ l2 ⊔ l3 ⊔ l4 will be less than l. It is not an option to change
the definition of Dyn and Dynamic, but I can make addDyn typecheck by making use of ifholds :

fun addDyn : ∀⟨l⟩ (| Dyn @ l, Dyn @ l |) -(l)-> Option (Dyn @ l) @ l
fun addDyn ⟨l⟩ d1 d2 =

case (d1, d2)
| (Dynamic ⟨l1 l|α⟩ x, Dynamic ⟨l2 l|β⟩ y) =>
typecase (α, β)

| (Int @ l3, Int @ l4) =>
ifholds (l1 ⊔ l2 ⊔ l3 ⊔ l4) <: l then
Some (Dynamic ⟨l l|(Int @ l)⟩ (x + y))

else
None

end
| _ => None

end
end

However, this function is nearly useless. It requires the caller to guess a label to instantiate addDyn with
that she hopes will make it correctly add the two dynamic values (assuming they are both integers). ¿e
only way to guarantee that the function will add the inputs (when they are integers) is to instantiate the
quantified label with ⊤. And at that point, I could have just written the function to return a value with
an information content of ⊤ in the first place:

fun addDyn : (| Dyn @ ⊤, Dyn @ ⊤ |) -(⊤)-> Option (Dyn @ ⊤) @ ⊤
fun addDyn d1 d2 =

case (d1, d2)
| (Dynamic ⟨l1 l2|α⟩ x, Dynamic ⟨l3 l4|β⟩ y) =>
typecase (α, β)

| (Int @ _, Int @ _) =>
Some (Dynamic ⟨⊤ ⊤|(Int @ ⊤)⟩ (x + ⟨⊤⟩ y))

| _ => None
end

end

¿is version of addDyn trades precision in tracing information flows for reliability – the caller is guaranteed
that addDyn will not silently fail (or in an alternate implementation abort execution).

¿e problems existential labels pose for reasoning about confidentiality are similar: functions must
either use more conservative labels, making them appear to violate confidentiality of more abstractions
than they truly do, or functions must be made partial. ¿is trade-off has shown up in nearly all of the
type-directed functions written in Infor that are intended to consume arbitrary data as an input.

For example, the version of toString in § · is “partial” in the sense that for some inputs it may
return a string containing <Redacted> to indicate that it encountered data that it could not process and
still return data with the requested label. Alternately, the implementation of increase given in § · will
simply abort execution if it finds that it must process data with a higher information content than it can
handle and still meet its type specification.

. It is an option for me, but that is only because I wrote the Infor basis library.
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¿e alternative, to give these functions more conservative labels, is not one I have chosen to use. ¿is
is because the most precise, yet conservative, labels that I could have given to the outputs of toString
and increase would be ⊤. ¿is highly constrains the use of the values that type-directed functions
produce, because the authors of most modules, when using the harmless reflection idiom and the break
and recover idiom, for example, will use type signatures to prevent the use of tainted data as inputs.
¿erefore, I have usually favored making functions partial, because runtime failures should be rare
enough to make it the better trade-off.

Neither of these alternatives are satisfactory. With partiality, a user of a function may not be able to
predict the runtime behavior of type-directed function, as they may have no way of knowing that hidden
inside their input is an existential label. Alternately, conservative labeling make its difficult for the user
of a function to reason about which flows will actually occur, they can only assume that any possible
flow may arise.

¿erefore, because of the difficulty of writing programs that make use of existential labels to dy-
namically trace information flows, and the fact that existential labels make reasoning statically about
confidentiality difficult, in the future it would be best to either examine techniques for minimizing the
use of existential labels or techniques for making existential labels easier to work and reason with.

§ · Other design trade-offs

In this section I will briefly discuss some other design trade-offs and choices that I do not think signifi-
cantly impact the nature of Infor, but are nonetheless worth noting for posterity.

§ Defining algebraic data types

In Infor, the programmer defines an algebraic data typeswith a syntax that is similar towhatwas chosen
for defining s (Coquand ; Crary and Weirich ; Xi, Chen, and Chen ; Peyton Jones,
Vytiniotis, Weirich, and Washburn ) in Haskell. However, it may be more sensible to treat data
constructors like OCaml does, and require data constructors to be fully applied at their use site. Infor,
Standard , and Haskell all allow data constructors to be used as if they were functional values.

If data constructors are not defined in a fashion that makes them appear to have functional types, it
is no longer necessary to provide the vestigial program counter and function closure labels that show
up in Infor. However, defining data constructors in terms of a functional type does perhaps make
defining s more intuitive, but there may exist syntactic sugar for that purpose.

§ Subsumption and pattern matching

While implementing Infor I discovered that for typechecking case and typecase expressions it was
possible to choose between two possible semantics. For example, consider the following program
fragment:

case x : Int @ l1 of y : Int @ l2 => ... end
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What should the relationship between l1 and l2 be? Strangely, the language design could arguably
choose between two options.

• l1must be less than or equal to l2. ¿is is a reasonable answer because it matches the standard
substitution lemma: if e has type τ1, the variable x has type t2, and τ1 <: τ2 then it is sound to
substitute e for x.

• l2must be less than or equal to l1. ¿is is a reasonable answer, but is only sound if case expressions
perform label analysis. By label analysis, I mean that control flow of the pattern match will be
affected by what l1 is at runtime. For example, in the following code fragment the first branch will
never execute unless l is equal to ⊥ at runtime:

case x : Int @ l
of y : Int @ ⊥ => ...
| y : Int @ ⊤ => ...

end

For Infor, I chose to use the first semantics, because it does not require term and type patternmatching
to also perform label analysis at runtime.

¿e choice between these options for term level pattern matching does not have much of an effect
on the expressive power of Infor. ¿is is because there is already ifholds that can be used to analyze
labels at runtime. ¿erefore, it is undesirable because it duplicates existing functionality and complicates
the implementation because case would need to be able to dispatch on labels, like ifholds, as well as
values.

However, choosing the latter option for type level pattern matching would alter the expressive power
of Infor. Because kinds are presently erased during compilation, there is no mechanism for getting at
their labels at runtime. ¿erefore, it would be necessary to compile and pass around kind representations
at runtime. Furthermore, it does not seem sensible to combine this orthogonal functionality into the
typecase operator.

§¿e information content of tuples

In § · I explained that the equivalences for the info label on tuples was the following:

info (τ1 ... , τn) = info τ1 = · · · = info τn

¿is definition is an extremely recent change to the language definition. Previously I used the definition:

info (τ1 ... , τn) = info τ1 ⊔ · · · ⊔ info τn

¿is definition allows for a little more flexibility in constructing tuples, because each component is
allowed to have an independent information content.

However, this latter definition for the information content of a tuple makes it nearly impossible
to write some type-directed functions on tuples. For example, consider my initial example from § ·,
toString:
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fun toString : ∀⟨l:Lab|α: * @ l|(info α) = l⟩ α -(l|⊥)-> String @ l
fun toString ⟨l|α⟩ arg =

typecase α
| Bool @ l =>
if arg then "True" else "False" end

| _ -(_ | _)-> _ =>
"<Function>"

| (β, ψ) =>
"(" ^ (toString ⟨l|β⟩ (arg.0)) ^ "," ^ (toString ⟨l|ψ⟩ (arg.1)) ^ ")"

end

If the branch for tuples were to be typechecked using the old definition of the information content of
tuples, it will quickly fail.

...
| (β, γ) =>
"(" ^ (toString ⟨l|β⟩ (arg.0)) ^ "," ^ (toString ⟨l|γ⟩ (arg.1)) ^ ")"

...

In order to call toString recursively on the first and second projections of arg, it must be the case
that (info β) = l and (info γ) = l. In this particular branch of the typecase, it is known that
(info α) = l and that α = (β, γ). Substituting for α and using the definition of info, I can conclude that
(info β) ⊔ (info γ) = l. However, this is not enough to show that (info β) = l and (info γ) = l.

I can decompose (info β) ⊔ (info γ) = l into the constraints (info β) ⊔ (info γ) <: l and
(info β) ⊔ (info γ) :> l. ¿e first constraint implies that (info β) <: l and (info γ) <: l, which
is half of what is needed. However, the second constraint implies that (info β) :> l or (info γ) :> l.
¿ere is no guarantee that both (info β) :> l and (info γ) :> l hold, just that one of them must.
¿erefore, with the old definition of info for tuples, it is not possible to typecheck this version of
toString.

It is plausible that the problem is that the precondition I have chosen for toString in this case is
simply too strong. However, if I relax it to (info α) <: l, the sub-expression arg.0 will be ill-typed
because the program counter label is l, yet the information content of arg.0must be greater than or
equal to l. However, the information content of arg.0 is info β, which is only known to be less than
or equal to l, not greater than or equal. Alternately, if I try making the precondition (info α) :> l,
I encounter the same situation as when the constraint is an equality – that I am only guaranteed that
(info β) :> l or (info γ) :> l hold, not both.

¿erefore, to resolve this situation, changing the definition of info for tuples to the present one
seemed the best resolution.

§ · Conclusion

Probably the most important lesson that I have learned as part of designing the Infor language is
the value of having an established metatheory. Without having worked on a metatheory of Infor,
it is difficult to guess whether I would have encountered quite as many unexpected surprises while
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implementing Infor. However, the time spent working out the theory of Infor may not have
revealed the impact some of the design trade-offs have on writing realistic programs. In the next chapter,
before concluding this dissertation, I will spend some time discussing my thoughts on future directions
for the theories behind Infor.
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
Future work and conclusions

I don’t have to write about the future. For most people, the
present is enough like the future to be pretty scary.

William Gibson ()

¿e contributions that I have discussed in the proceeding chapters are valuable, yet there are still
many improvements to be considered and new avenues for research to be explored before the ideas I
have been presented will be ready for mainstream programming languages. In the next section, I will
examine many of the directions for future research, before reviewing my conclusions in the final section.

§ · Future work

While there is a considerable amount of engineering work to be done on Infor, or some other successor,
before the ideas I have described in this dissertation will be ready for use as a mainstream language, I
am confident that the engineering issues will be straightforward to solve once the theoretical problems
have been addressed. ¿erefore, most of the directions for future work that I will cover are of a more
theoretical nature.

§ A meta-theory for Infor

I feel that Infor’s lack of well specified static and dynamic semantics is a significant problem. ¿e
implementation of Infor serves partly as an executable specification, but practical concerns make
it far removed from a rigorous formal presentation. I believe recent research (Aydemir et al. ;
Lee et al. ; Aydemir et al. ) has also begun to show that “paper” formalizations of the meta-
theory of programming languages will soon be superseded bymechanized meta-theory. I believe that
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a mechanical formalization is the correct direction for a language like Infor, especially given the
language’s complexity.

Once there is a mechanically formalized specification of Infor, the next step will be to prove
that the language is type-safe. I have tried my best through testing and debugging the implementation
of Infor and my long experience in the design of statically typed languages, but for a language and
implementation of the complexity of Infor, there are no doubt still lingering loopholes that allow type
safety to be violated. I expect that aside from the challenges introduced by mechanical formalization, the
overall proof of type-safety for Infor is unlikely to require the development of new proof techniques,
with one exception.

While implementing Infor I have gone back and forth several times on the question of whether
subtyping and subkinding in Infor are required to be related in any way. Specifically, if τ1 <: τ2 where
type τ1 has kind κ1 and type τ2 has kind κ2, must it also be true that κ1 <: κ2? Currently, I err on not
requiring that κ1 <: κ2 hold if τ1 <: τ2 in Infor.

¿e reason for this problem is that to my knowledge, Infor is the first language developed to allow
variant dependent kinds. For example, many algebraic data types I have used in my examples have a
kind similar to the following:

Π l : Lab -(+)-> (* @ l) -(+)-> Lab -(+)-> (% @ l),

Here, the first label supplied to the algebraic data type is allowed to vary covariantly during subtyping.
So for example, for the Option data type in Infor, which has the above kind, Option @ ⊥, is a subtype
of Option @ ⊤. However, something very unexpected happens here: Option @ ⊥ has kind

(* @ ⊥) -(+)-> Lab -(+) -> (% @ ⊥)

and Option @ ⊤ has kind

(* @ ⊤) -(+)-> Lab -(+) -> (% @ ⊤),

but the former kind is not a subkind of the latter. ¿at is, it is not the case that

((* @ ⊥) -(+)-> Lab -(+) -> (% @ ⊥)) <: ((* @ ⊤) -(+)-> Lab -(+) -> (% @ ⊤)).

¿is relationship does not hold because, by the usual subsumption conventions for functional structures,
it must be the case that the domains vary contravariantly, * @ ⊤ <: * @ ⊥, and the ranges must vary
covariantly, Lab -(+) -> % @ ⊥ <: Lab -(+) -> % @ ⊤. ¿e former clearly does not hold. In fact,
Option @ ⊥ and Option @ ⊤ have completely incomparable kinds.

My current intuition is that this is not a problem. I base this on the strict separation of types and
type constructors in λSECi. In λSECi, the information content of type constructors can be ignored as
soon as they are injected into the language of types. Furthermore, subkinding is only relevant for type
constructor well-formedness, while subtyping is only relevant for term well-formedness. However, to
prove type soundness, it will be necessary to verify this formally.

Surprisingly, whether the subsumption relationship between kinds must be preserved by subtyping
has not been studied anywhere in the literature. To date, research into subtyping with dependent
types (Zwanenburg ; Aspinall and Compagnoni ; Chen ) has required that arguments to
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dependent functions be invariant under subsumption. Perhaps the closest relevant work is by Martin
Steffen () where he studied Fω

≤ with polarized type applications. However, because his kinds were
only first-order it is not immediately obvious how to extended his work to dependent kinds.

§ Generalized parametricity for Infor

Type-safety is unfortunately not enough to be assured of Infor’s correctness. Languages with
information-flow type (and kind) systems have the unfortunate property that while they can be shown
to be type-safe, they may still allow unexpected implicit flows in well-typed programs. ¿at is, the type
system can ensure that a well-typed program does not “go wrong” or become stuck, but it is possible
that well-typed programs can still leak information. ¿erefore, it will be necessary to prove generalized
parametricity for Infor, or a simplified, but representative, core calculus.

Unlike type safety, I believe that proving generalized parametricity for Infor, regardless of mecha-
nization, will require the development of some new proof techniques. ¿e necessity for new techniques
is not specific to the features of Infor. At present there is no entirely syntactic technique for proving
standard parametricity, and most of the difficulty in denotational proof techniques used to date have
difficulty with realistic programming language features like recursive types and mutable references.

Much like syntactic techniques have proven to scale better for proving type safety (Wright and
Felleisen ), I conjecture that syntactic alternatives to logical relations proofs are likely to scale better to
realistic languages. While there has been some progress in syntactic logical relations proofs (Schürmann
and Sarnat), a syntactic proof of parametricity remains an open problem. ¿is is partly a consequence of
the considerable expressive power of second-order logic.

I conjecture that it may be possible to extend the proof technique first developed by Pottier and
Conchon (), and later used by Pottier and Simonet () for proving noninterference for the
FlowCaml language, so that a generalized parametricity can be proven syntactically. ¿eir technique
for noninterference proofs involves introducing a specialized notion of pairs into the language and
showing that the subject-reduction property implies that there is no observable difference between
the execution of high-security pairs. Because this is an entirely syntactic technique proof technique, it
extends gracefully to languages with mutable state, recursive types and exceptions.

My initial investigations into extending Pottier and Simonet’s proof technique have led me to the
idea of extending the language with a special “paired” type that corresponds to their paired terms. ¿e
critical extension is that these paired types would be labeled with a relation between values of the two
types. ¿e remainder of the proof is quite straightforward. However, for a completely formal proof there
must be some means of describing the language that defines relations between values, what Schürmann
and Sarnat call an assertion logic. Furthermore, it is necessary to show that this logic is sound. However,
to be as expressive as the parametricity theorem, the assertion logic must be at least as powerful as
second-order logic. Showing that a language of relations based upon second-order logic is sound is
equivalent to proving the parametricity theorem. So, in truth, this approach only pushes the difficulty
into a different part of the framework.

Since my original investigation of the problem, I conjecture that it may still be possible to prove
valuable theorems using a weaker assertion logic. For example, proving the confidentiality and integrity
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corollaries in § · and § · only requires the universal relation and the empty relation, respectively.
¿erefore, further research in this direction is warranted.

Should this research direction still fail, there is still a wealth of ideas in this area, so other approaches
may be viable. I will briefly discuss some promising starting points.

Pitts has developed a purely operational account of logical relations based upon biorthogonality (also
called “top-top closure”), but there is no obvious way to extend his methodology to general recursive
types (). Johann has developed an extension of Pitts’s proof to the restricted case where uses of the
recursive type must be restricted to be in a positive position (). Pitts and Stark have developed an
extension that can handle mutable integer references ().

Birkedal and Harper have been able to develop a logical relations proof for languages with a single
iso-recursive type using what they call syntactic minimal invariance (). ¿eir formalism is quite
involved, but it seems possible that their technique could be applied to problem of extending logical
relations proofs to also handle mutable state by representing the heap as recursive data type. However,
Birkedal and Harper’s proof technique breaks down in the presence of control operators, so exceptions or
first-class continuations remain a problem. Recently, Crary and Harper have built upon this work ().

McQueen, Plotkin, and Sethi developed a domain theoretic model for languages with polymorphism
and recursive types based upon interpreting types as ideals in the domain (). Melliès and Vouil-
lon () have shown how to reformulate ideal models in a more syntactic fashion using ideas similar
to Krevine’s realizablitymodels (). ¿is model is easily extended to provide an equivalence relation
that provides a notion of parametricity, but it is unclear how complicated it might be to extend this
model to language features like mutable references.

Ahmed, starting from the step-indexed models of Appel and McAllester, developed a proof that
provides the same kind of relational reasoning provided as the parametricity theorem in the presence
of iso-recursive types (; ). Step-index models represent types, τ, by pairs of indices, k, and
values, v, such that for k reduction steps v approximates a value of type τ. ¿at is, any program using
v as if it had type τ can make k steps before possibly entering a stuck state. ¿is model is appealing
because it avoids much of the complicated meta-theory required by approaches like that of Pitts, Birkedal
and Harper, or Melliès and Vouillon. Additionally, step-index models have been extended to handle
languages with mutable state and other advanced language features (Ahmed ).

Recently there has been some research into proving a modified version of the parametricity theorem
for languages with control operators, such as exceptions. In particular, by studying the image of a
polymorphic version of Parigot’s λ◦-calculus under a continuation passing transform, Hasegawa was
able to “reverse engineer” the necessary conditions for a parametricity theorem (; ). He calls
the resulting property focal parametricity.

Finally, Sumii and Pierce have developed a coinductive bisimulation proof technique that can be used
to prove contextual equivalence of programs in the presence of recursive types (). Unfortunately,
this technique does not currently provide the same generality as is available from logical relations style or
syntactic noninterference proofs: it can only show the contextual equivalence of two specific programs.
Furthermore, constructing the witnessing bisimulation for the two programs can for be quite difficult,
and it is unlikely that mechanically constructing such bisimulations will be possible in the near future.
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§ Constructor contexts in generalized parametricity

One problem I mentioned in § · is that it is very difficult to define families of relations for use with
the generalized parametricity theorem that are not parametric in the constructor context. If Typerec
were removed from λSECi, this problem goes away. ¿erefore, it is not an issue for (informally) reasoning
about Infor programs, because Infor does not include a mechanism similar to Typerec. However,
Typerec can be very useful, so it would be worthwhile finding a way to resolve the difficulty.

While considering this problem it struck me that it seems very similar to the problem of proving
contextual equivalence directly. For contextual equivalence the problem is proving by induction over
all possible program contexts that two expressions will behave the same when placed in those contexts.
Usually the solution is to develop someother property for relating two expressions, and show that property
is equivalent to contextual equivalence. For example, -equivalence, as defined by Pitts (), is one
such property.

¿e problem with defining families of relations for generalized parametricity is the need to develop
a function from any possible context to a relation. Constructing such a function is isomorphic to
constructing an inductive proof over contexts, so perhaps similar ideas to those used to prove contextual
equivalence indirectly could be used to indirectly specify functions on constructor contexts.

Another angle on the problem with constructor contexts is that there is a mismatch between how I
have extended parametricity to non-standard types and how parametricity has typically been extended to
higher-kinds. Generalized parametricity quantifies over functions from labels and constructor contexts
to relations. For example, I use the following notation for relations in § :

R�
ξ ∈ ((ξ{τ1}) @ �) ↔ ((ξ{τ2}) @ �),

¿e essence of R can be understood better type-theoretically as an entity with the type

Π�.Πξ.((ξ{τ1}) @ �) ↔ ((ξ{τ2}) @ �),

where ∙ ↔ ∙ can be understood as the “type constructor” of relations.
However, when standard parametricity is extended to higher kinds (Vytiniotis and Weirich ),

such as ⋆ → ⋆, functions from relations to relations are quantified over. For example, if ψ is a quantified
type variable with kind ⋆ → ⋆, it would be necessary to quantify over an entity with the type

�ψ� : Πα: ⋆ .Πβ: ⋆ .(α ↔ β) → (τ1α ↔ τ2β),

that is, a function from an arbitrary pair of types α and β, and a relation between them, α ↔ β, to
the a relation τ1α ↔ τ1β, for some τ1 : ⋆ → ⋆ and τ2 : ⋆ → ⋆. Furthermore, the type of this entity is
completely derived from ψ’s kind and the choice of τ1 and τ2:

�⋆�(τ1,τ2) , τ1 ↔ τ2

�κ1 → κ2�(τ1,τ2) , Πα:κ1.Πβ:κ1.�κ1�(α,β) → �κ2�(τ1α,τ2β)

¿erefore, it seems plausible that a similar approach could be used to express more interesting
relationships between abstract data types in generalized parametricity. Such a solution would give R a
type something like

Π�.Πξ.�ξ� → ((ξ{τ1}) @ �) ↔ ((ξ{τ2}) @ �),
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where �ξ� is some function on relations. In the case of the constructor context hole, •, �•� should most
likely be the identity function on relations. Determining the definition of �∙� onmore complex constructor
contexts, and whether this is even most suitable formulation, will require further study.

I conjecture the problem with the expressive power of constructor contexts will also arise in attempts
to prove parametricity like properties for other languages with expressive type systems. For example,
languages with indexed and dependent type systems where type equivalence is non-parametric with
respect to abstract indices or values. ¿erefore, I expect that having a better understanding of how to
deal with constructor contexts for generalized parametricity will have much wider applicability.

§ A logical account of generative types and information-flow kinds

One aspect of Infor that is disappointing is that is conflates the information learned by using
typecase with the information that can be learned using toSpine. For example, if the algebraic data
type A has the kind Lab -(+)-> % @ ⊤ and the type variable α has the kind * @ ⊥, the expression
typecase α of A @ l => ... endmust have an information content of ⊤. However, typecase works
by analyzing the structure of its scrutinee. ¿e fact that α has kind * @ ⊥ indicates that there is no
information content to α’s structure. ¿e reason that the entire expression must receive an information
content of ⊤ is because Infor must conservatively assume that because A @ l has the kind % @ ⊤ that
it could learn some structural information with an information content of ⊤. ¿e problem is that it is a
priori impossible for typecase to learn any structural information because the type A is atomic.

On the other hand, it is simply not an option to always give algebraic data types an information
content of ⊥ because toSpine can be used to learn information about the structure of instances of type
A @ l. Again, I emphasize that neither typecase nor toSpine learn anything about the structure of type
A, because it has none.

However, when Infor was originally designed, it seemed sensible to partly tie the information
learned by using toSpine to the kind of its input. ¿is is, in fact, the original reason for the distinction be-
tween the kinds of algebraic data types % @ l and all other types * @ l. ¿e idea was that the information
learned from toSpine would be obtained from the kinds of the form % @ l and the information learned
by typecase would be obtained from kinds of the form * @ l. Furthermore, I added a subkinding rule
that stated % @ l <: * @ ⊥, which would account for the fact that algebraic data types have no structural
content. ¿is however, was not particularly aesthetically pleasing, and it eventually was dropped when I
discovered that the subkinding rule % @ l <: * @ ⊥ could be used to construct a covert channel – it
was then replaced with the one currently used by Infor, % @ l <: * @ l.

Another option might have been to give algebraic kinds two labels. For example, % @ l1 @ l2 would
propagate information l1 with toSpine and l2 with typecase. It could then be given the subkinding rule
% @ l1 @ l2 <: * @ l2. However, it is not clear to me that this is really the correct solution. Algebraic
data types are used to combine many independent concepts in Infor, such a iso-recursive types, sum
types, and generative types. ¿erefore, I think to better address  and generativity in a future revision
of Infor, it will be necessary to study the problem at a more foundational level. At a logical level, all
structures in a language have an introduction form and an elimination form. Information is propagated
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by the use a structure’s elimination form. In Infor all of this is obscured by the high level mechanisms
for defining algebraic data types and pattern matching.

In a line of research mostly orthogonal to the one I present in this dissertation, I helped develop a
core calculus, called λL (Vytiniotis, Washburn, and Weirich ), for studying type generativity and
open extensibility. Unlike Infor, λL makes type generativity very explicit by providing a operation
for creating “fresh” names for generative data types, and primitives terms for explicitly coercing to and
from the underlying definition of a generative data type. ¿at is much like functions or tuples, there
was an explicit mechanism for introducing and eliminating generative data types. I conjecture that the
information learned by toSpine is not associated with the kind of an algebraic data type, but is from the
use of the eliminating coercion at the level of terms.

¿erefore, I expect that it would be worth studying a calculus that combines λL and λSECi so that it is
possible to better understand and express the distinction between typecase and toSpine in a high-level
language like Infor.

§ · Conclusions

While information-flow type systems have been used in the past to provide confidentiality and integrity
policies for data, I am the first to suggest lifting information-flow labeling to the kind level so that it is
possible to reason about confidentiality and integrity of type meta-data (Washburn and Weirich ).
Specifically, in this document:

• I provide a refined analysis of the problem of representation independence in the presence of
 using the finer-grained properties of confidentiality and integrity (§ ·). I discussed how
information-flow kind and type systems can recover the ability to reason statically about the
confidentiality and integrity of s as well as enforce policies on type meta-data (§ ·). I also
explained how access control mechanisms and runtime monitoring can be applied to the problem
of enforcing confidentiality and integrity policies on type meta-data, and how they compare with
the use of information-flow kind and type systems.

• In order to formally verify my claims about the use of an information-flow type and kind system,
I have shown how it is possible generalize the parametricity theorem so that it can be applied
to languages that include runtime type analysis (§ ). ¿e parametricity theorem has been the
primary basis for all formal reasoning about data abstraction until now (§ ·). I conjecture that
my theorem is a straightforward generalization of the standard parametricity theorem, and show
how confidentiality and integrity can be derived from my theorem as corollaries (§ ·). I have
explained how the basis of this generalization works and have given a detailed paper proof of the
theorem. (§ ).

• I have described the language Infor, a realistic programming language, and explored in detail the
differences between it and the language λSECi that was used to formalized generalized parametricity
(§ ·). Additionally I have described the use of Infor’s module system (§ ·), given a detailed

. It is detailed for a paper proof, at least.
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account of its generative algebraic data types (§ ·), and explained Infor’s mechanisms for
dynamic programming with information-flow (§ ·). Finally, I give a detail comparison of Infor
with the language FlowCaml (§ ·).

• I have made a detailed exploration of how two common idioms and design patterns can be applied
to realistic Infor programming: the harmless reflection idiom and the break and recover idiom.
¿e harmless reflection idiom distinguishes between essential and essential computations and
provides programmers with a guarantee that changes in the implementation of abstract data types
will never affect essential computations, and that the integrity of these abstractions will never be
violated (§ ·). ¿e break and recover idiom trades the highly prescribed use of type-directed
programming for static guarantees about how changes in representation will alter the behavior of
the program, while still guaranteeing that integrity is preserved (§ ·).

• I have given an overview of the implementation of the Infor language, along with an review of
the most significant design choices made during Infor’s development (§ ).
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
Glossary of notation

¿ere are some semantic differences in the typefaces used in this document. Text that corresponds
to code that one would directly enter into a computer is written in a sans-serif monospaced typeface.
Text that corresponds to mathematical abstractions is written in a proportional typeface. For example,
when discussing program text I would write typecase and Bool while discussing their mathematical
abstractions I would write typecase and bool.

�,ℓ # (atomic) labels Л # full labels
l # label variables π # variances

κ,κ # kinds τ,τ # type constructors, monotypes
α,β,ω, ... α,β,ω, ... # type variables σ,σ # types, polytypes

ρ # higher-rank types ξ # constructor contexts
ν # whnf type constructors ζ # whnf types
∆ # type variable contexts δ # type substitutions
R # typed binary relations η # maps from type variables to relations

e,e # terms or expressions r # record selectors
x,y,z, ... x,y,z, ... # term variables v,v # values

Γ # term variable contexts γ # term substitutions
A # algebraic data types D # data constructors
φ # type patterns p # term patterns
µ # type matches u # term matches
ld # local declarations d # declarations
M # modules m # module variables
S # signatures s # signature variables
sb # signature binding

Table ·: Summary of meta-variables used in the document.
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
Full specification of λSECi

§ · Grammar

Definition ·· (Type Grammar).

kinds κ # ⋆� types

| κ1
�→ κ2 operators

type constructors τ # α | λα:κ.τ | τ1τ2 λ-calculus
| bool booleans
| τ1 → τ2 functions
| τ1 × τ2 products
| Typerec τ τbool τ→ τ× analysis

whnf constructors ν # ξ{α} | bool | τ1
�→ τ2 | τ1 ×� τ2 | λα:κ.τ

constructor contexts ξ # • | Typerec ξ τbool τ→ τ× | ξ τ

types σ # (τ) @ � injection

| σ1
�→ σ2 functions

| σ1 ×� σ2 products
| ∀�1 α:⋆�2 .σ polymorphism

whnf types ζ # (bool) @ � | (ξ{α}) @ � | σ1
�→ σ2 | σ1 ×� σ2 | ∀�1 α:⋆�2 .σ

type substitutions δ # ∙ | δ,[τ/α]
type variable contexts ∆ # ∙ | ∆,α:κ
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Definition ·· (Term Grammar).

terms e # true | false booleans
| x | λx:σ.e | e1e2 λ-calculus
| �e1,e2� | fst e | snd e tuples
| Λα:⋆�.e | e[τ] polymorphism
| fix x:σ.e fix-point
| if e1 then e2 else e3 conditional
| typecase[γ.σ] τ ebool e→ e× analysis

values v # true | false | λx:σ.e | �v1,v2� | Λα:⋆�.e

term substitutions γ # ∙ | γ,[e/x]
term variable contexts Γ # ∙ | Γ,x:σ

§ · Kind and type label operators

Kind information L(⋆�) , � L(κ1
�→ κ2) , �

Kind join ⋆�1 ⊔ �2 , ⋆(�1⊔�2) (κ1
�1→ κ2) ⊔ �2 , κ1

�1⊔�2→ κ2

Type information L((τ) @ �) , � L(σ1
�→ σ2) , �

L(σ1 ×� σ2) , � L(∀�1 α:⋆�2 .σ) , �1

Type join (τ) @ �1 ⊔ �2 , (τ) @ (�1 ⊔ �2) (σ1
�1→ σ2) ⊔ �2 , σ1

�1⊔�2→ σ2

(σ1 ×�1 σ2) ⊔ �2 , σ1 ×(�1⊔�2) σ2 (∀�1 α:⋆�2 .σ) ⊔ �3 , ∀(�1⊔�3)α:⋆�2 .σ

§ · Static semantics

Definition ·· (Sub-kinding).

κ ≤ κ
:

κ1 ≤ κ2 κ2 ≤ κ3

κ1 ≤ κ3
:

�1 ⊑ �2

⋆�1 ≤ ⋆�2
:

κ3 ≤ κ1 κ2 ≤ κ4 �1 ⊑ �2

κ1
�1→ κ2 ≤ κ3

�2→ κ4

:

Definition ·· (Constructor well-formedness).
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α:κ ∈ ∆

∆ ⊢ α : κ
:

∆ ⊢ bool : ⋆⊥
:

∆ ⊢ τ1 : ⋆�1 ∆ ⊢ τ2 : ⋆�2

∆ ⊢ τ1 → τ2 : ⋆�1⊔�2
:

∆ ⊢ τ1 : ⋆�1 ∆ ⊢ τ2 : ⋆�2

∆ ⊢ τ1 × τ2 : ⋆�1⊔�2
:

∆,α:κ1 ⊢ τ : κ2

∆ ⊢ λα:κ1.τ : κ1
⊥→ κ2

:

∆ ⊢ τ1 : κ1
�→ κ2 ∆ ⊢ τ2 : κ1

∆ ⊢ τ1τ2 : κ2 ⊔ �
:

∆ ⊢ τ : ⋆� ∆ ⊢ τ→ : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ

∆ ⊢ τbool : κ ∆ ⊢ τ× : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ
where � ′ = L(κ) and � ⊑ � ′

∆ ⊢ Typerec τ τbool τ→ τ× : κ
:

∆ ⊢ τ : κ1 κ1 ≤ κ2

∆ ⊢ τ : κ2
:

Definition ·· (Constructor equivalence).

∆ ⊢ τ : κ

∆ ⊢ τ = τ : κ
:

∆ ⊢ τ1 = τ2 : κ ∆ ⊢ τ2 = τ3 : κ

∆ ⊢ τ1 = τ3 : κ
:

∆ ⊢ τ2 = τ1 : κ

∆ ⊢ τ1 = τ2 : κ
:

∆ ⊢ τ3 = τ1 : ⋆�1 ∆ ⊢ τ2 = τ4 : ⋆�2

∆ ⊢ τ1 → τ2 = τ3 → τ4 : ⋆�1⊔�2
:

∆ ⊢ τ3 = τ1 : ⋆�1 ∆ ⊢ τ2 = τ4 : ⋆�2

∆ ⊢ τ1 × τ2 = τ3 × τ4 : ⋆�1⊔�2
:

∆,α:κ1 ⊢ τ1 = τ2 : κ2

∆ ⊢ λα:κ1.τ1 = λα:κ1.τ2 : κ1
⊥→ κ2

:-

∆ ⊢ (λα:κ1.τ1)τ2 : κ2

∆ ⊢ (λα:κ1.τ1)τ2 = τ1[τ2/α] : κ2
:-

∆ ⊢ τ1 = τ3 : κ1
�→ κ2 ∆ ⊢ τ2 = τ3 : κ1

∆ ⊢ τ1τ2 = τ3τ4 : κ2 ⊔ �
:

∆ ⊢ τ1 = τ2 : ⋆� ∆ ⊢ τbool = τ ′bool : κ ∆ ⊢ τ→ = τ ′→ : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ

∆ ⊢ τ× = τ ′× : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ � ⊑ � ′ where � ′ = L(κ)

∆ ⊢ Typerec τ1

τbool τ→ τ×

= Typerec τ2

τ ′bool τ ′→ τ ′×

: κ
:-

∆ ⊢ Typerec bool τbool τ→ τ× : κ

∆ ⊢ Typerec bool τbool τ→ τ× = τbool : κ
:-
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∆ ⊢ Typerec (τ1 → τ2) τbool τ→ τ× : κ

∆ ⊢ Typerec
(τ1 → τ2)
τbool τ→ τ×

= τ→τ1τ2

(Typerec τ1

τbool τ→ τ×)
(Typerec τ2

τbool τ→ τ×)

: κ
:-

∆ ⊢ Typerec (τ1 × τ2) τbool τ→ τ× : κ

∆ ⊢ Typerec
(τ1 × τ2)
τbool τ→ τ×

= τ×τ1τ2

(Typerec τ1

τbool τ→ τ×)
(Typerec τ2

τbool τ→ τ×)

: κ
:-

∆ ⊢ τ1 = τ2 : κ1 κ1 ≤ κ2

∆ ⊢ τ1 = τ2 : κ2
:

Definition ·· (Type variable context restriction). We will write ∆⋆ for those type variable contexts ∆
where ∀α:κ ∈ ∆, κ = ⋆� for some �.

Definition ·· (Subtyping).

∆⋆ ⊢ σ

∆⋆ ⊢ σ ≤ σ
:

∆⋆ ⊢ σ1 ≤ σ2 ∆⋆ ⊢ σ2 ≤ σ3

∆⋆ ⊢ σ1 ≤ σ3
:

∆⋆ ⊢ τ1 = τ2 : ⋆�1

∆⋆ ⊢ (τ1) @ �2 ≤ (τ2) @ �2
:

∆⋆ ⊢ τ1 → τ2 : ⋆�1

∆⋆ ⊢ (τ1 → τ2) @ �2 ≤ (τ1) @ �2
�2→ (τ2) @ �2

:-

∆⋆ ⊢ τ1 → τ2 : ⋆�1

∆⋆ ⊢ (τ1) @ �2
�2→ (τ2) @ �2 ≤ (τ1 → τ2) @ �2

:-

∆⋆ ⊢ τ1 × τ2 : ⋆�1

∆⋆ ⊢ (τ1 × τ2) @ �2 ≤ (τ1) @ �2 ×�2 (τ2) @ �2
:-

∆⋆ ⊢ τ1 × τ2 : ⋆�1

∆⋆ ⊢ (τ1) @ �2 ×�2 (τ2) @ �2 ≤ (τ1 × τ2) @ �2
:-

∆⋆ ⊢ σ3 ≤ σ1 ∆⋆ ⊢ σ2 ≤ σ4 �1 ⊑ �2

∆⋆ ⊢ σ1
�1→ σ2 ≤ σ3

�2→ σ4

:
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∆⋆ ⊢ σ1 ≤ σ3 ∆⋆ ⊢ σ2 ≤ σ4 �1 ⊑ �2

∆⋆ ⊢ σ1 ×�1 σ2 ≤ σ3 ×�2 σ4
:

∆⋆,α:⋆�4 ⊢ σ1 ≤ σ2 �4 ⊑ �2 �1 ⊑ �3

∆⋆ ⊢ ∀�1 α:⋆�2 .σ1 ≤ ∀�3 α:⋆�4 .σ2
:

Definition ·· (Type well-formedness).

∆⋆ ⊢ τ : ⋆�1

∆⋆ ⊢ (τ) @ �2
:

∆⋆ ⊢ σ1 ∆⋆ ⊢ σ2

∆⋆ ⊢ σ1
�→ σ2

:

∆⋆ ⊢ σ1 ∆⋆ ⊢ σ2

∆⋆ ⊢ σ1 ×� σ2
:

∆⋆,α:⋆�1 ⊢ σ

∆⋆ ⊢ ∀�2 α:⋆�1 .σ
:

Definition ·· (Type equivalence). We define ∆⋆ ⊢ σ1 = σ2 to mean that ∆⋆ ⊢ σ1 ≤ σ2 and ∆⋆ ⊢ σ2 ≤ σ1.

Definition ·· (Term variable context well-formedness).

∆⋆ ⊢ ∙
:

∆⋆ ⊢ Γ ∆⋆ ⊢ σ

∆⋆ ⊢ Γ,x:σ
:

Definition ·· (Term well-formedness).

∆⋆ ⊢ Γ

∆⋆; Γ ⊢ true : (bool) @ ⊥
:

∆⋆ ⊢ Γ

∆⋆; Γ ⊢ false : (bool) @ ⊥
:

∆⋆ ⊢ Γ x : σ ∈ Γ

∆⋆; Γ ⊢ x : σ
:

∆⋆; Γ,x:σ1 ⊢ e : σ2 ∆⋆ ⊢ σ1

∆⋆; Γ ⊢ λx:σ1.e : σ1
⊥→ σ2

:

∆⋆; Γ ⊢ e1 : σ1
�→ σ2 ∆⋆; Γ ⊢ e2 : σ1

∆⋆; Γ ⊢ e1e2 : σ2 ⊔ �
:

∆⋆,α:⋆�; Γ ⊢ e : σ

∆⋆; Γ ⊢ Λα:⋆�.e : ∀⊥α:⋆�.σ
:

∆⋆; Γ ⊢ e : ∀�α:⋆� ′ .σ ∆⋆ ⊢ τ : ⋆� ′

∆⋆; Γ ⊢ e[τ] : σ[τ/α] ⊔ �
:

∆⋆; Γ ⊢ e1 : σ1 ∆⋆; Γ ⊢ e2 : σ2

∆⋆; Γ ⊢ �e1,e2� : σ1 ×⊥ σ2
:

∆⋆; Γ ⊢ e : σ1 ×� σ2

∆⋆; Γ ⊢ fst e : σ1 ⊔ �
:

∆⋆; Γ ⊢ e : σ1 ×� σ2

∆⋆; Γ ⊢ snd e : σ2 ⊔ �
:

∆⋆; Γ,x:σ ⊢ e : σ ∆⋆ ⊢ σ

∆⋆; Γ ⊢ fix x:σ.e : σ
:

∆⋆; Γ ⊢ e1 : (bool) @ � ∆⋆; Γ ⊢ e2 : σ ∆⋆; Γ ⊢ e3 : σ

∆⋆; Γ ⊢ if e1 then e2 else e3 : σ ⊔ �
:
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∆⋆ ⊢ τ : ⋆� ∆⋆; Γ ⊢ ebool : σ[bool/γ]
∆⋆,γ:⋆� ⊢ σ ∆⋆; Γ ⊢ e→ : ∀� ′α:⋆�.∀� ′β:⋆�.σ[α → β/γ]

� ⊑ � ′ ∆⋆; Γ ⊢ e× : ∀� ′α:⋆�.∀� ′β:⋆�.σ[α × β/γ]
where � ′ = L(σ[τ/γ])

∆⋆; Γ ⊢ typecase [γ.σ] τ ebool e→ e× : σ[τ/γ]
:

∆⋆; Γ ⊢ e : σ1 ∆⋆ ⊢ σ1 ≤ σ2

∆⋆; Γ ⊢ e : σ2
:

§ · Dynamic semantics

Definition ·· (Constructor reduction).

τ1  τ ′1
τ1τ2  τ ′1τ2

:-

(λα:κ.τ1)τ2  τ1[τ2/α]
:

τ τ ′

Typerec τ τbool τ→ τ×  Typerec τ ′ τbool τ→ τ×
:-

Typerec (bool) τbool τ→ τ×  τbool

:-

Typerec (τ1 → τ2) τbool τ→ τ×  τ→ τ1 τ2 (Typerec τ1 τbool τ→ τ×)
(Typerec τ2 τbool τ→ τ×)

:-

Typerec (τ1 × τ2) τbool τ→ τ×  τ× τ1 τ2 (Typerec τ1 τbool τ→ τ×)
(Typerec τ2 τbool τ→ τ×)

:-

Definition ·· (Term computation rules).

(λx:σ.e)v e[v/x]
:

(Λα:κ.e)[τ] e[τ/α]
:

fst �v1,v2� v1
:

snd �v1,v2� v2
:

fix x:σ.e e[fix x:σ.e/x]
:

if true then e1 else e2  e1
:

if false then e1 else e2  e2
:

τ * bool

typecase [γ.σ] τ ebool e→ e×  ebool
:-
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τ * τ1 → τ2

typecase [γ.σ] τ ebool e→ e×  e→[τ1][τ2]
:-

τ * τ1 × τ2

typecase [γ.σ] τ ebool e→ e×  e×[τ1][τ2]
:-

Definition ·· (Term congruence rules).

e1  e ′1
e1e2  e ′1e2

:

e2  e ′2
v1e2  v1e ′2

:

e1  e ′1
�e1,e2� �e ′1,e2�

:

e2  e ′2
�v1,e2� �v1,e ′2�

:

e e ′

fst e fst e ′
:-

e e ′

snd e snd e ′
:-

e1  e ′1
if e1 then e2 else e3  if e ′1 then e2 else e3

:-

e e ′

e[τ] e ′[τ]
:-

Definition ·· (Nontermination). If ∙; ∙ ⊢ e : σ and there does not exist a derivation e * v then e ↑.
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
Generalized parametricity for λSECi

§ · Soundness

Lemma ·· (Inversion on sub-kinding).

. If ⋆� ≤ κ then κ = ⋆� ′ where � ⊑ � ′.

. If κ1
�→ κ2 ≤ κ then κ = κ3

� ′→ κ4 where κ3 ≤ κ1 and κ2 ≤ κ4 and � ⊑ � ′.

Proof. Straightforward induction over the structure of the sub-kinding derivation. ¤

Lemma ·· (Inversion for constructor well-formedness).

. If ∆ ⊢ τ1 → τ2 : ⋆� then ∆ ⊢ τ1 : ⋆�1 and ∆ ⊢ τ2 : ⋆�2 and �1 ⊔ �2 ⊑ �.

. If ∆ ⊢ τ1 × τ2 : ⋆� then ∆ ⊢ τ1 : ⋆�1 and ∆ ⊢ τ2 : ⋆�2 and �1 ⊔ �2 ⊑ �.

. If ∆ ⊢ τ1τ2 : κ then ∆ ⊢ τ1 : κ1
�→ κ2 and ∆ ⊢ τ2 : κ1 and κ2 ⊔ � ≤ κ.

. If ∆ ⊢ λα:κ.τ : κ1
�→ κ2 then ∆,α:κ ⊢ τ : κ3 and κ1 ≤ κ and κ3 ≤ κ2.

. If ∆ ⊢ Typerec τ τbool τ→ τ× : κ then ∆ ⊢ τ : ⋆� and ∆ ⊢ τbool : κ ′ and ∆ ⊢ τ→ : ⋆� � ′→ ⋆� � ′→ κ ′ � ′→
κ ′ � ′→ κ ′ and ∆ ⊢ τ× : ⋆� � ′→ ⋆� � ′→ κ ′ � ′→ κ ′ � ′→ κ ′ where � ′ = L(κ ′) and κ ′ ≤ κ.

Proof. By induction over the structure of thewell-formedness derivation, making use of Lemma··. ¤

Lemma ·· (Weak-head reduction equivalence).

. If ∆ ⊢ τ : κ and τ τ ′ then ∆ ⊢ τ = τ ′ : κ.
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. If ∆ ⊢ τ : κ and τ * τ ′ then ∆ ⊢ τ = τ ′ : κ.

. If ∆⋆ ⊢ σ and σ σ ′ then ∆⋆ ⊢ σ = σ ′.

. If ∆⋆ ⊢ σ and σ * σ ′ then ∆⋆ ⊢ σ = σ ′.

Proof. Part  follows from straightforward induction over the structure of τ τ ′ and use of Lemma··.
Part  follows from Part  and induction on the number of reduction steps. Part  follows from straight-
forward induction over the structure of σ  σ ′ using Part . Finally, Part  follows from Part  and
induction on the number of reduction steps. ¤

Lemma ·· (Inversion for type well-formedness).

If ∆⋆ ⊢ (τ) @ � then ∆⋆ ⊢ τ : ⋆� ′ .

Proof. Proof by induction over the structure of ∆⋆ ⊢ (τ) @ �. ¤

Lemma ·· (Inversion for subtyping).

. If ∆⋆ ⊢ σ1
�1→ σ2 ≤ σ then ∆⋆ ⊢ σ ≤ σ3

�2→ σ4 and ∆⋆ ⊢ σ3 ≤ σ1 and ∆⋆ ⊢ σ2 ≤ σ4 and �1 ⊑ �2.

. If ∆⋆ ⊢ σ1 ×�1 σ2 ≤ σ then ∆⋆ ⊢ σ ≤ σ3 ×�2 σ4 and ∆⋆ ⊢ σ1 ≤ σ3 and ∆⋆ ⊢ σ2 ≤ σ4 and �1 ⊑ �2.

. If ∆⋆ ⊢ ∀�1 α:⋆�2 .σ1 ≤ σ2 then ∆⋆ ⊢ σ2 ≤ ∀�3 α:⋆�4 .σ3 and ∆⋆,α:⋆�4 ⊢ σ3 ≤ σ1 and �1 ⊑ �3 and �4 ⊑ �2.

Proof. By straightforward induction over the structure of the subtyping derivation. ¤

Lemma ·· (Inversion for typing).

. If ∆⋆; Γ ⊢ λx:σ1.e : σ then ∆⋆ ⊢ σ ≤ σ2
�→ σ3 and ∆⋆; Γ,x:σ1 ⊢ e : σ4 where ∆⋆ ⊢ σ2 ≤ σ1 and

∆⋆ ⊢ σ4 ≤ σ3.

. If ∆⋆; Γ ⊢ Λα:⋆�.e : σ then ∆⋆ ⊢ σ ≤ ∀�1 α:⋆�2 .σ1 and ∆⋆,α:⋆�; Γ ⊢ e : σ2 where ∆⋆,α:⋆�2 ⊢ σ2 ≤ σ1 and
�2 ⊑ �.

. If ∆⋆; Γ ⊢ fix x:σ1.e : σ2 then ∆⋆; Γ,x:σ1 ⊢ e : σ1 where ∆⋆ ⊢ σ1 ≤ σ2.

. If ∆⋆; Γ ⊢ �e1,e2� : σ then ∆⋆ ⊢ σ ≤ σ1 ×� σ2 and ∆⋆; Γ ⊢ e1 : σ3 and ∆⋆; Γ ⊢ e2 : σ4 where ∆⋆ ⊢ σ3 ≤ σ1

and ∆⋆ ⊢ σ4 ≤ σ2.

. If ∆⋆; Γ ⊢ fst e : σ then ∆⋆; Γ ⊢ e : σ1 ×� σ2 where ∆⋆ ⊢ σ1 ⊔ � ≤ σ.

. If ∆⋆; Γ ⊢ snd e : σ then ∆⋆; Γ ⊢ e : σ1 ×� σ2 where ∆⋆ ⊢ σ2 ⊔ � ≤ σ.

. If ∆⋆; Γ ⊢ e1e2 : σ1 then ∆⋆; Γ ⊢ e1 : σ2
�→ σ3 and ∆⋆; Γ ⊢ e2 : σ2 and ∆⋆ ⊢ σ3 ⊔ � ≤ σ1.

. If ∆⋆; Γ ⊢ e[τ] : σ then ∆⋆; Γ ⊢ e : ∀�1 α:⋆�2 .σ ′ and ∆⋆ ⊢ τ : ⋆�2 and ∆⋆ ⊢ σ ′[τ/α] ⊔ �1 ≤ σ.

. If ∆⋆; Γ ⊢ if e1 then e2 else e3 : σ then ∆⋆; Γ ⊢ e1 : (bool) @ � and ∆⋆; Γ ⊢ e2 : σ ′ and ∆⋆; Γ ⊢ e3 : σ ′

where ∆⋆ ⊢ σ ′ ⊔ � ≤ σ.
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. If ∆⋆; Γ ⊢ typecase [γ.σ] τ ebool e→ e× : σ ′ then
∆⋆ ⊢ τ : ⋆� and
∆⋆,γ:⋆� ⊢ σ and
∆⋆; Γ ⊢ ebool : σ[bool/γ] and
∆⋆; Γ ⊢ e→ : ∀� ′α:⋆�.∀� ′β:⋆�.σ[α → β/γ] and
∆⋆; Γ ⊢ e× : ∀� ′α:⋆�.∀� ′β:⋆�.σ[α × β/γ] where
� ′ = L(σ[τ/γ]) and
� ⊑ � ′ and
∆⋆ ⊢ σ[τ/γ] ≤ σ ′.

Proof. By straightforward induction on the structure of the typing derivation with uses of Lemma ··.
¤

Lemma ·· (Substitution for constructors). If ∆,α:κ1 ⊢ τ1 : κ2 and ∆ ⊢ τ2 : κ1 then ∆ ⊢ τ1[τ2/α] : κ2.

Proof. By straightforward induction over the structure of ∆,α:κ1 ⊢ τ1 : κ2. ¤

Lemma ·· (Substitution for equivalence). If ∆,α:κ1 ⊢ τ1 = τ2 : κ2 and ∆ ⊢ τ : κ1 then ∆ ⊢ τ1[τ/α] =
τ2[τ/α] : κ2.

Proof. By straightforward induction over the structure of ∆,α:κ1 ⊢ τ1 = τ2 : κ2, making use of
Lemma ··. ¤

Lemma ·· (Substitution for types).

. If ∆⋆,α:⋆� ⊢ σ1 ≤ σ2 and ∆⋆ ⊢ τ : ⋆� then ∆⋆ ⊢ σ1[τ/α] ≤ σ2[τ/α].

. If ∆⋆,α:⋆� ⊢ σ and ∆⋆ ⊢ τ : ⋆� then ∆⋆ ⊢ σ[τ/α].

Proof. By mutual induction over the structure of ∆,α:⋆� ⊢ σ1 ≤ σ2 and ∆,α:⋆� ⊢ σ, using Lemmas ··
and ··. ¤

Lemma ·· (Substitution commutes with equivalence).

. If ∆ ⊢ τ1 = τ2 : κ1 and ∆,α:κ1 ⊢ τ : κ2 then ∆ ⊢ τ[τ1/α] = τ[τ2/α] : κ2.

. If ∆ ⊢ τ1 = τ2 : ⋆� and ∆,α:⋆� ⊢ σ then ∆ ⊢ σ[τ1/α] ≤ σ[τ2/α] and ∆ ⊢ σ[τ2/α] ≤ σ[τ1/α].

Proof. Part  follows from induction over the structure of ∆,α:κ1 ⊢ τ : κ2. Part  follows from induction
over the structure of ∆,α:⋆� ⊢ σ making use of Part . ¤

Lemma ·· (Substitution for terms).

. If ∆⋆,α:⋆�; Γ ⊢ e : σ and ∆⋆ ⊢ τ : ⋆� then ∆⋆; Γ ⊢ e[τ/α] : σ[τ/α].

. If ∆⋆; Γ,x:σ1 ⊢ e : σ2 and ∆⋆; Γ ⊢ e ′ : σ1 then ∆⋆; Γ ⊢ e[e ′/x] : σ2.
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Proof. By straightforward induction over the typing derivations, using Lemmas ·· and ··. ¤

Lemma ·· (Subject reduction).

. If ∆ ⊢ τ : κ and τ τ ′ then ∆ ⊢ τ ′ : κ.

. If ∆ ⊢ τ : κ and τ * τ ′ then ∆ ⊢ τ ′ : κ.

. If ∆⋆ ⊢ σ and σ σ ′ then ∆⋆ ⊢ σ ′.

. If ∆⋆ ⊢ σ and σ * σ ′ then ∆⋆ ⊢ σ ′.

. If ∆⋆; Γ ⊢ e : σ and e e ′ then ∆⋆; Γ ⊢ e ′ : σ.

Proof. Part  follows by induction over the structure of τ τ ′ making use of Lemmas ·· and ··.
Part  is a direct corollary of Part . Part  follows by induction over the structure of σ σ ′ making use
of Lemma ·· and Part . Part  is a direct corollary of Part . Part  follows by induction over the
structure of e e ′ making use of Lemmas ··, ··, ··, and ··. ¤

Lemma ·· (Weak head reduction terminates).

. If ∙ ⊢ τ : κ then τ * ν.

. If ∆⋆ ⊢ σ then σ * ζ.

Proof. Follows from a standard logical relations proof that we omit here. SeeMorrisett’s thesis (Morrisett
). ¤

Lemma ·· (Canonical forms for constructors). If ∙ ⊢ ν : κ

. κ = ⋆� then ν = bool or ν = τ1 → τ2 or ν = τ1 × τ2.

. κ = κ1
�→ κ2 then ν = λα:κ3.τ where κ1 ≤ κ3.

Proof. By straightforward induction over the structure of ∆ ⊢ ν : κ. ¤

Lemma ·· (Canonical forms for terms). If ∙; ∙ ⊢ v : σ

. σ = bool then v = true or v = false.

. σ = σ1
� ′→ σ2 then v = λx:σ3.e where ∆⋆ ⊢ σ1 ≤ σ3.

. σ = ∀�1 α:⋆�2 .σ ′ then v = Λα:⋆�3 .e where �1 ⊑ �3.

. σ = σ1 ×� σ2 then v = �v1,v2�.

Proof. By straightforward induction over the structure of ∙; ∙ ⊢ v : σ. ¤

Lemma ·· (Progress). If ∙; ∙ ⊢ e : σ then e is a value or there exists a derivation e e ′.
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Proof. By straightforward induction over the structure of ∙; ∙ ⊢ e : σ, using Lemmas ··, ··, and
··. ¤

¿eorem ·· (Type safety). If ∙; ∙ ⊢ e : σ then there exists a derivation that e * v or e ↑.

Proof. Proof by contradiction using Lemmas ·· and ··. ¤

§ · Finite unwindings

Definition ·· (Extension for finite unwindings).

terms e # ...
| fixn x:σ.e finite fix-point

Definition ·· (Term well-formedness).

∆⋆; Γ,x:σ ⊢ e : σ ∆⋆ ⊢ σ

∆⋆; Γ ⊢ fixn x:σ.e : σ
:

Definition ·· (Computation rules).

fix0 x:σ.e fix0 x:σ.e
:

fixn+1 x:σ.e e[fixn x:σ.e/x]
:

Definition ·· (Annotation erasure). Given a term e another term e ′, e ′ is an “erasure” of e the inductive
relation e ≼ e ′ holds.

true ≼ true
:

false ≼ false
:

x ≼ x
:

e1 ≼ e2

λx:σ.e1 ≼ λx:σ.e2
:

e1 ≼ e3 e2 ≼ e4

e1e2 ≼ e3e4
:

e1 ≼ e3 e2 ≼ e4

�e1,e2� ≼ �e3,e4�
:

e1 ≼ e2

fst e1 ≼ fst e2
:

e1 ≼ e2

snd e1 ≼ snd e2
:

e1 ≼ e2

Λα:⋆�.e1 ≼ Λα:⋆�.e2
:

e1 ≼ e2

e1[τ] ≼ e2[τ]
:

e1 ≼ e2

fix x:σ.e1 ≼ fix x:σ.e2
:

e1 ≼ e2

fixn x:σ.e1 ≼ fixn x:σ.e2
:

e1 ≼ e2

fixn x:σ.e1 ≼ fix x:σ.e2
:

e1 ≼ e4 e2 ≼ e5 e3 ≼ e6

if e1 then e2 else e3 ≼ if e4 then e5 else e6
:

ebool ≼ e ′bool e→ ≼ e ′→ e× ≼ e ′×
typecase[γ.σ] τ ebool e→ e× ≼ typecase[γ.σ] τ e ′bool e ′→ e ′×

:
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Lemma ·· (fix0 always diverges). fix0 x:σ.e ↑.

Proof. Proof by contradiction, assuming there exists a derivation fix0 x:σ.e * v. ¤

Lemma ·· (Unwinding type equivalences).

∆⋆; Γ ⊢ fix x:σ.e : σ iff ∆⋆; Γ ⊢ fixn x:σ.e : σ

Proof. Trivial inversion upon the typing derivation in both directions. ¤

Lemma ·· (Unwinding evaluation equivalence).

fix x:σ.e ′  * v iff exists n such that for all m,m ≥ n and fixm x:σ.e ′  * v ′ where v ′ ≼ v

Proof. Both directions follow by straightforward induction over number or reduction steps. ¤

§ · Noninterference

Definition ·· (Relations between values). We define σ1 ↔ σ2 to be the set of all binary relations
between values of type σ1 and values of type σ2.

Definition ·· (Parameterized relation). A parameterized relation R is a function that when given a
label � and a type context ρ yields a binary relation between values of two types. For conciseness, we use
the notation R�

ρ for the application of a label and a type context to a parameterized relation.
We will sometimes abuse notation and write

R�
ρ ∈ δ1((ρ{τ1}) @ �) ↔ δ2((ρ{τ2}) @ �).

¿is can be roughly understood with dependent types as

R : Π�.Πρ.δ1((ρ{τ1}) @ �) ↔ δ2((ρ{τ2}) @ �).

Definition ·· (Parameterized relation consistency). We say that a parameterized relation R�
ρ ∈ σ1 ↔

σ2 is consistent if

. v1R�1
ρ v2 and �1 ⊑ �2 then v1R�2

ρ v2 (moving up in the lattice does not change relatedness)

. v1 ≼ v2 and v3 ≼ v4 and v1R�1
ρ v3 then v2R�1

ρ v4 (relation does not treat finite approximations
differently)

Definition ·· (Security logical relation for constructors).

�1 6⊑ �0

ν1 ∼�0 ν2 : ⋆�1
:-

�1 ⊑ �0

bool ∼�0 bool : ⋆�1
:-

�1 ⊔ �2 ⊑ �3 �3 ⊑ �0 τ1 ≈�0 τ3 : ⋆�1 τ2 ≈�0 τ4 : ⋆�2

τ1 → τ2 ∼�0 τ3 → τ4 : ⋆�3
:-
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�1 ⊔ �2 ⊑ �3 �3 ⊑ �0 τ1 ≈�0 τ3 : ⋆�1 τ2 ≈�0 τ4 : ⋆�2

τ1 × τ2 ∼�0 τ3 × τ4 : ⋆�3
:-

∀(τ1 ≈�0 τ2 : κ1).ν1τ1 ≈�0 ν2τ2 : κ2 ⊔ �1

ν1 ∼�0 ν2 : κ1
�1→ κ2

:

τ1  
* ν1 τ2  

* ν2 ν1 ∼�0 ν2 : κ

τ1 ≈�0 τ2 : κ
:

We implicitly require for ν1 ∼� ν2 : κ and τ1 ≈� τ2 : κ that ∙ ⊢ ν1,ν2 : κ and ∙ ⊢ τ1,τ2 : κ respectively.

Definition ·· (Type reduction).

τ τ ′

(τ) @ � (τ ′) @ �
:-

(τ1 → τ2) @ � (τ1) @ � �→ (τ2) @ �
:-

(τ1 × τ2) @ � (τ1) @ � ×� (τ2) @ �
:-

Definition ·· (Security logical relation for terms).

α ↦ R ∈ η (�1 ⊑ �0) ⇒ (v1R�1
ξ v2)

η ⊢ v1 ∼�0 v2 : (ξ{α}) @ �1
:

(�1 ⊑ �0) ⇒ (v1 = v2)

η ⊢ v1 ∼�0 v2 : (bool) @ �1
:

∀(η ⊢ e1 ≈�0 e2 : σ1).η ⊢ v1e1 ≈�0 v2e2 : σ2 ⊔ �1

η ⊢ v1 ∼�0 v2 : σ1
�1→ σ2

:

η ⊢ fst v1 ≈�0 fst v2 : σ1 ⊔ �1 η ⊢ snd v1 ≈�0 snd v2 : σ2 ⊔ �1

η ⊢ v1 ∼�0 v2 : σ1 ×�1 σ2
:

∀(τ1 ≈�0 τ2 : ⋆�2 ).∀(R�2
ξ ∈ δ1((ξ{τ1}) @ �2) ↔ δ2((ξ{τ2}) @ �2)).

η,α ↦ R ⊢ v1[τ1] ≈�0 v2[τ2] : σ ⊔ �1 R consistent

η ⊢ v1 ∼�0 v2 : ∀�1 α:⋆�2 .σ
:

e1  
* v1 e2  

* v2 σ * ζ η ⊢ v1 ∼�0 v2 : ζ

η ⊢ e1 ≈�0 e2 : σ
:

e1 ↑

η ⊢ e1 ≈�0 e2 : σ
:

e2 ↑

η ⊢ e1 ≈�0 e2 : σ
:

We implicitly require for η ⊢ v1 ∼�0 v2 : ζ and η ⊢ e1 ≈�0 e2 : σ that ∙; ∙ ⊢ v1 : δ1(ζ), ∙; ∙ ⊢ v2 : δ2(ζ) and
∙; ∙ ⊢ e1 : δ1(σ), ∙; ∙ ⊢ e2 : δ2(σ) respectively where δ1 ≈�0 δ2 : ∆⋆ and δ1,δ2 ⊢ η : ∆⋆.
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Definition ·· (Related constructor substitutions).

∀α:κ ∈ ∆.(δ1(α) ≈�0 δ2(α) : κ)

δ1 ≈�0 δ2 : ∆
:

Definition ·· (Relation mapping regularity). If δ1 ≈�0 δ2 : ∆⋆ then

∀α:⋆�1 ∈ ∆⋆.(η(α)�1
ξ ∈ δ1((ξ{α}) @ �1) ↔ δ2((ξ{α}) @ �1)) η(α) consistent

δ1,δ2 ⊢ η : ∆⋆
:

Definition ·· (Related term substitutions). If δ1 ≈�0 δ2 : ∆⋆ and δ1,δ2 ⊢ η : ∆⋆ then

∀x:σ ∈ Γ.(η ⊢ γ1(x) ≈�0 γ2(x) : σ)

η ⊢ γ1 ≈�0 γ2 : Γ
:

Lemma ·· (Logical relations are closed under reduction).

. τ1 ≈�0 τ2 : κ iff τ1  * τ ′1 and τ2  * τ ′2 and τ ′1 ≈�0 τ ′2 : κ.

. η ⊢ e1 ≈�0 e2 : σ iff e1  * e ′1 and e2  * e ′2 and σ * σ ′ and η ⊢ e ′1 ≈�0 e ′2 : σ ′.

Proof. Follows from straightforward inversion upon the logical relations and from the properties of
reduction. ¤

Lemma ·· (Inversion for subtyping on normal types).

. If ∆⋆ ⊢ (ρ{α}) @ �1 ≤ ζ then ζ = (ρ{α}) @ �2 where �1 ⊑ �2.

. If ∆⋆ ⊢ (bool) @ �1 ≤ ζ then ζ = (bool) @ �2 where �1 ⊑ �2.

Proof. By straightforward induction over the structure of the subtyping derivations. ¤

Lemma ·· (Logical relations are closed under erasure).

. If v ′1 ≼ v1 and v ′2 ≼ v2 and η ⊢ v ′1 ∼�0 v ′2 : ζ then η ⊢ v1 ∼�0 v2 : ζ.

. If e ′1 ≼ e1 and e ′2 ≼ e2 and η ⊢ e ′1 ≈�0 e ′2 : σ then η ⊢ e1 ≈�0 e2 : σ

Proof. ¿e proof of Parts  and  follows by straightforward mutual induction over the structure of
η ⊢ v ′1 ∼�0 v ′2 : ζ and η ⊢ e ′1 ≈�0 e ′2 : σ. ¤

Lemma ·· (Logical relations are closed under subsumption).

. If κ1 ≤ κ2 and





• ν1 ∼�0 ν2 : κ1 then τ1 ∼�0 τ2 : κ2.

• τ1 ≈�0 τ2 : κ1 then τ1 ≈�0 τ2 : κ2

. If δ1,δ2 ⊢ η : ∆⋆ and

• ∆⋆ ⊢ ζ1 ≤ ζ2 and η ⊢ v1 ∼�0 v2 : ζ1 then η ⊢ v1 ∼�0 v2 : ζ2.

• ∆⋆ ⊢ σ1 ≤ σ2 and η ⊢ e1 ≈�0 e2 : σ1 then η ⊢ e1 ≈�0 e2 : σ2

Proof. Part  follows from straightforward mutual induction over κ1. Part  follows from straightforward
mutual induction over σ1 and ζ1, with uses of Part , Definition ··, and Lemmas ·· and ··. ¤

Corollary ·· (Value relation is consistent). If δ1,δ2 ⊢ η : ∆⋆ and ∆⋆ ⊢ τ : ⋆⊤, then the relation

Rρ
� = {(v1,v2)

∣∣∣ η ⊢ v1 ∼�0 v2 : (ρ{τ}) @ �}

is consistent.

Proof. A direct consequence of Definition ··, Lemma ·· Part , and ·· Part . ¤

Lemma ·· (Obliviousness).

. If ∙ ⊢ τ1,τ2 : κ and L(κ) 6⊑ �0 then τ1 ≈�0 τ2 : κ.

. If δ1,δ2 ⊢ η : ∆⋆ and δ1 ≈�0 δ2 : ∆⋆ and L(ζ) 6⊑ �0 and

• ∆⋆; ∙ ⊢ v1,v2 : ζ then η ⊢ δ1(v1) ∼�0 δ2(v2) : ζ.

• ∆⋆; ∙ ⊢ e1,e2 : σ then η ⊢ δ1(e1) ≈�0 δ2(e2) : σ.

Proof. Part  follows from the use of Lemma ·· and straightforward induction upon κ. Part  follows
from¿eorem ·· and induction upon ζ. ¤

Lemma ·· (Constructor substitution for term relations). If δ1,δ2 ⊢ η : ∆⋆ and R�
ρ = {(v1,v2) | η ⊢

v1 ∼�0 v2 : ζ2} and δi(α) = δi(τ) then

. η,α ↦ R ⊢ v1 ∼�0 v2 : ζ1 and (ρ{τ}) @ � * ζ2 iff η ⊢ v1 ∼�0 v2 : ζ3 where ζ[τ/α] * ζ3.

. η,α ↦ R ⊢ e1 ≈�0 e2 : σ and (ρ{τ}) @ � * ζ iff η ⊢ e1 ≈�0 e2 : σ[τ/α].

Proof. Follows from mutual induction over the logical relations, making use of
Lemma ·· Part  and Corollary ··. ¤

Lemma ·· (Constructor relation closed under Typerec). If τ ≈�0 τ ′ : ⋆� and

• τbool ≈�0 τ ′bool : κ and

• τ→ ≈�0 τ ′→ : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ and





• τ× ≈�0 τ ′× : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ.

where � ′ = L(κ) then Typerec τ τbool τ→ τ× ≈�0 Typerec τ ′ τ ′bool τ ′→ τ ′× : κ.

Proof. Straightforward induction over the structure of τ ≈�1 τ ′ : ⋆� making use of Lemma ··
Part . ¤

Lemma ·· (Fixpoint continuity). If for all n, η ⊢ fixn x:σ1.e1 ≈�0 fixn x:σ2.e2 : σ then η ⊢
fix x:σ1.e1 ≈�0 fix x:σ2.e2 : σ where δi(σ) = σi.

Proof. By substitution we know that ∙; ∙ ⊢ fix x:σi.ei : σi. Using ¿eorem ·· we know that either
fix x:σi.ei  * vi or fix x:σi.ei ↑.

Case If both fix x:σ1.e1  * v1 and fix x:σ2.e2  * v2

• From Lemma ·· we know that there is some m such that fixm x:σ1.e1  * v ′i where v ′i ≼ vi.

• Instantiating for all n, η ⊢ fixn x:σ1.e1 ≈�0 fixn x:σ2.e2 : σ with m we have that
η ⊢ fixm x:σ1.e1 ≈�0 fixm x:σ2.e2 : σ.

• By inversion upon η ⊢ fixm x:σ1.e1 ≈�0 fixm x:σ2.e2 : σ. we know that eitherfixm x:σi.ei  * v ′i
or fixm x:σi.ei ↑ v ′i . However, we already have that fixm x:σi.ei  * v ′i . ¿erefore, we also
know by inversion that η ⊢ v ′1 ∼�0 v ′2 : ζ for σ * ζ.

• By Lemma ·· Part  on v ′i ≼ vi and η ⊢ v ′1 ∼�0 v ′2 : ζ we have that η ⊢ v1 ∼�0 v2 : ζ.

• Given that fix x:σi.ei  * vi and σ * ζ by : we can conclude that η ⊢ fix x:σ1.e1 ≈�0

fix x:σ2.e2 : σ.

Case If fix x:σ1.e1 ↑

• Follows directly from :

Case If fix x:σ2.e2 ↑

• Follows directly from :

¤

¿eorem ·· (Substitution).

. If ∆ ⊢ τ : κ and δ1 ≈�0 δ2 : ∆ then δ1(τ) ≈�0 δ2(τ) : κ.

. If ∆⋆; Γ ⊢ e : σ and δ1 ≈�0 δ2 : ∆⋆ and δ1,δ2 ⊢ η : ∆⋆ and η ⊢ γ1 ≈�0 γ2 : Γ then η ⊢ δ1(γ1(e)) ≈�0

δ2(γ2(e)) : σ.

Proof. Part  follows by induction over the structure of ∆ ⊢ τ : κ.

Case
α:κ ∈ ∆

∆ ⊢ α : κ
:
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• Immediate by inversion upon δ1 ≈�0 δ2 : ∆.

Case

∆ ⊢ bool : ⋆⊥
:

• By the definition of substitution δi(bool) = bool, and bool  * bool by :, therefore
δi(bool) * δi(bool).

• ⊥ ⊑ �0 for any �0 so it follows trivially from :- that bool ∼�0 bool : ⋆⊥.

• By : on bool ∼�0 bool : ⋆⊥ and δi(bool)  * δi(bool) we can conclude that bool ≈�0

bool : ⋆⊥.

Case
∆ ⊢ τ1 : ⋆�1 ∆ ⊢ τ2 : ⋆�2

∆ ⊢ τ1 → τ2 : ⋆�1⊔�2
:

• By the definition of substitution δi(τ1 → τ2) = δi(τ1) → δi(τ2) and
δi(τ1) → δi(τ2) * δi(τ1) → δi(τ2), by :, therefore δi(τ1 → τ2) * δi(τ1 → τ2).

• Lattice joins and order are decidable, so either �1 ⊔ �2 ⊑ �0 or �1 ⊔ �2 6⊑ �0.

Sub-Case �1 ⊔ �2 ⊑ �0.

- Appeal to the induction hypothesis on ∆ ⊢ τ1 : ⋆�1 and ∆ ⊢ τ2 : ⋆�2 with δ1 ≈�0 δ2 : ∆
yielding δ1(τ1) ≈�0 δ2(τ1) : ⋆�1 and δ1(τ2) ≈�0 δ2(τ2) : ⋆�2 .

- Using :- on these along with �1 ⊔ �2 ⊑ �1 ⊔ �2 (by reflexivity) and �1 ⊔ �2 ⊑ �0

yields
δ1(τ1) → δ1(τ2) ∼�0 δ2(τ1) → δ2(τ2) : ⋆�1⊔�2

Sub-Case �1 ⊔ �2 6⊑ �0

- It follows trivially from :- that

δ1(τ1) → δ1(τ2) ∼�0 δ2(τ1) → δ2(τ2) : ⋆�1⊔�2

• Using : on δi(τ1) → δi(τ2) * δi(τ1) → δi(τ2) and

δ1(τ1) → δ1(τ2) ∼�0 δ2(τ1) → δ2(τ2) : ⋆�1⊔�2

gives us
δ1(τ1) → δ1(τ2) ≈�0 δ2(τ1) → δ2(τ2) : ⋆�1⊔�2

which by the equality described above, is the same as

δ1(τ1 → τ2) ≈�0 δ2(τ1 → τ2) : ⋆�1⊔�2

Case ¿e case for : is symmetric to the case for :.
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Case
∆,α:κ1 ⊢ τ : κ2

∆ ⊢ λα:κ1.τ : κ1
⊥→ κ2

:

• By the definition of substitution δi(λα:κ1.τ) = λα:κ1.δi(τ) and by : we know
λα:κ1.δi(τ) * λα:κ1.δi(τ), therefore δi(λα:κ1.τ) * δi(λα:κ1.τ).

• Assume τ1 ≈�0 τ2 : κ1. ¿erefore, δ1,[τ1/α] ≈�0 δ2,[τ2/α] : ∆,α:κ1 by Definition ·· and
inversion upon δ1 ≈�0 δ2 : ∆ .

• Appealing to the induction hypothesis on ∆,α:κ1 ⊢ τ : κ2 with
δ1,[τ1/α] ≈�0 δ2,[τ2/α] : ∆,α:κ1 we have that

(δ1,[τ1/α])(τ) ≈�0 (δ2,[τ2/α])(τ) : κ2

• By Lemma ·· we know that this is the same as

(λα:κ1.δ1(τ))τ1 ≈�0 (λα:κ1.δ2(τ))τ2 : κ2

Furthermore by Lemma ·· Part  on κ2 ⊑ κ2 ⊔ ⊥ and

(λα:κ1.δ1(τ))τ1 ≈�0 (λα:κ1.δ2(τ))τ2 : κ2

we know that
(λα:κ1.δ1(τ))τ1 ≈�0 (λα:κ1.δ2(τ))τ2 : κ2 ⊔ ⊥

• Consequently, discharging our assumption we have that

λα:κ1.δ1(τ) ∼�0 λα:κ1.δ2(τ) : κ1
⊥→ κ2

Use of : on this and λα:κ1.δi(τ) * λα:κ1.δi(τ) yields

λα:κ1.δ1(τ) ≈�0 λα:κ1.δ2(τ) : κ1
⊥→ κ2

By the above identity, this is the same as

δ1(λα:κ1.τ) ≈�0 δ2(λα:κ1.τ) : κ1
⊥→ κ2

Case
∆ ⊢ τ1 : κ1

�→ κ2 ∆ ⊢ τ2 : κ1

∆ ⊢ τ1τ2 : κ2 ⊔ �
:

• Appealing to the induction hypothesis on ∆ ⊢ τ1 : κ1
�→ κ2 and ∆ ⊢ τ2 : κ1 with δ1 ≈�0 δ2 : ∆

gives us δ1(τ1) ≈�0 δ2(τ1) : κ1
�→ κ2 and δ1(τ2) ≈�0 δ2(τ2) : κ1.

• By inversion upon δ1(τ1) ≈�0 δ2(τ1) : κ1
�→ κ2 we have that δi(τ1) * νi and ν1 ∼�0 ν2 : κ1

�→
κ2. By further inversion upon ν1 ∼�0 ν2 : κ1

�→ κ2 we know that

∀(τ ′1 ≈�0 τ ′2 : κ1).ν1τ ′1 ≈�0 ν2τ ′2 : κ2 ⊔ �





• Instantiating this with δ1(τ2) ≈�0 δ2(τ2) : κ1 gives us

ν1(δ1(τ2)) ≈�0 ν2(δ2(τ2)) : κ2 ⊔ �

By inversion on this we get that νi(δi(τ2)) * ν ′i and ν ′1 ∼�0 ν ′2 : κ2 ⊔ �2.

• Given δi(τ1)  * νi and νi(δi(τ2))  * ν ′i we know that δi(τ1)δi(τ2)  * ν ′i . As δi(τ1)δi(τ2) =
δi(τ1τ2), this is the same as δi(τ1τ2) * ν ′i .

• We have what we need and can conclude δ1(τ1τ2) ≈�0 δ2(τ1τ2) : κ2 ⊔ � by :.

Case

∆ ⊢ τ : ⋆� ∆ ⊢ τ→ : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ

∆ ⊢ τbool : κ ∆ ⊢ τ× : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ
where � ′ = L(κ) and � ⊑ � ′

∆ ⊢ Typerec τ τbool τ→ τ× : κ
:

• By appealing to the induction hypothesis on δ1 ≈�0 δ2 : ∆ and

- ∆ ⊢ τ : ⋆� and

- ∆ ⊢ τbool : κ and

- ∆ ⊢ τ→ : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ and

- ∆ ⊢ τ× : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ

yields

- δ1(τ) ≈�0 δ2(τ) : ⋆� and

- δ1(τbool) ≈�0 δ2(τbool) : κ and

- δ1(τ→) ≈�0 δ2(τ→) : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ and

- δ1(τ×) ≈�0 δ2(τ×) : ⋆� � ′→ ⋆� � ′→ κ � ′→ κ � ′→ κ

• Using Lemma ·· on these facts gives us that

Typerec δ1(τ) δ1(τbool) δ1(τ→) δ1(τ×) ≈�0 Typerec δ2(τ) δ2(τbool) δ2(τ→) δ2(τ×) : κ

By the definition of substitution this is identical to

δ1(Typerec τ τbool τ→ τ×) ≈�0 δ2(Typerec τ τbool τ→ τ×) : κ

Case
∆ ⊢ τ : κ1 κ1 ≤ κ2

∆ ⊢ τ : κ2
:

• First, appeal to the induction hypothesis on ∆ ⊢ τ : κ1 with δ1 ≈�0 δ2 : ∆ to conclude
δ1(τ) ≈�0 δ2(τ) : κ1.

• Using Lemma ·· Part . on this with κ1 ⊑ κ2 we can conclude the desired result, δ1(τ) ≈�0

δ2(τ) : κ2.
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Part  follows by induction over the structure/heights of typing derivations.

Cases ¿e cases for : and : are analogous to that for :.

Case
∆⋆ ⊢ Γ x : σ ∈ Γ

∆⋆; Γ ⊢ x : σ
:

• Follows immediately by inversion upon η ⊢ γ1 ≈�0 γ2 : Γ.

Cases ¿e cases for : and : are analogous to those for : and :.

Case
∆⋆,α:⋆�; Γ ⊢ e : σ

∆⋆; Γ ⊢ Λα:⋆�.e : ∀⊥α:⋆�.σ
:

• By the definition of substitution, we know that δi(γi(Λα:⋆�.e)) = Λα:⋆�.δi(γi(e)). Further-
more, by : we know that Λα:⋆�.δi(γi(e))  * Λα:⋆�.δi(γi(e)). ¿erefore, we have that
(δi(γi(Λα:⋆�.e)) * (δi(γi(Λα:⋆�.e)).

• Assume δ1(τ1) ≈�0 δ2(τ2) : ⋆� and a consistent R such that

R�2
ρ ∈ δ1((ρ{τ1}) @ �2) ↔ δ2((ρ{τ2}) @ �2).

• ¿erefore, by Definition ·· and : we know that δ1,δ2 ⊢ η,α ↦ R : ∆⋆,α:⋆� and
δ1,[δ1(τ1)/α] ≈�0 δ2,[δ2(τ2)/α] : ∆⋆,α:⋆�.

• Appealing to the induction hypothesis on ∆⋆,α:⋆�; Γ ⊢ e : σ with the above gives us that

η,α ↦ R ⊢ (δ1,[δ1(τ1)/α])(γ1(e)) ≈�0 (δ2,[δ2(τ2)/α])(γ2(e)) : σ

• Using Lemma ·· we can conclude that

η,α ↦ R ⊢ δ1(γ1((Λα:⋆�.e)[τ1])) ≈�0 δ2(γ2((Λα:⋆�.e)[τ2])) : σ

Furthermore, by Lemma ·· and ∆⋆ ⊢ σ ≤ σ ⊔ ⊥ we know that

η,α ↦ R ⊢ δ1(γ1((Λα:⋆�.e)[τ1])) ≈�0 δ2(γ2((Λα:⋆�.e)[τ2])) : σ ⊔ ⊥

• Discharging our assumptions, we have that

η ⊢ δ1(γ1(Λα:⋆�.e)) ∼�0 δ2(γ2(Λα:⋆�.e)) : ∀⊥α:⋆�.σ

Using this along with (δi(γi(Λα:⋆�.e)) * (δi(γi(Λα:⋆�.e)) and : we can conclude that

η ⊢ δ1(γ1(Λα:⋆�.e)) ≈�0 δ2(γ2(Λα:⋆�.e)) : ∀⊥α:⋆�.σ

Case
∆⋆; Γ ⊢ e : ∀�α:⋆� ′ .σ ∆⋆ ⊢ τ : ⋆� ′

∆⋆; Γ ⊢ e[τ] : σ[τ/α] ⊔ �
:
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• Appealing to the induction hypothesis on ∆⋆; Γ ⊢ e : ∀�α:⋆� ′ .σ, we get that η ⊢ δ1(γ1(e)) ≈�1

δ2(γ2(e)) : ∀�α:⋆� ′ .σ.

• By inversion on η ⊢ δ1(γ1(e)) ≈�0 δ2(γ2(e)) : ∀�α:⋆� ′ .σ we know that either δi(γi(e))  * vi or
δi(γi(e)) ↑.

Sub-Case δi(γi(e)) * vi.

- Also inversion we know that, ∀�α:⋆� ′ .σ ′  * ζ and η ⊢ v1 ∼�0 v2 : ζ. By inversion
on the weak-head reduction we know that ζ = ∀�α:⋆� ′ .σ. Inverting η ⊢ v1 ∼�1 v2 :
∀�α:⋆� ′ .σ we know that

∀(δ1(τ ′1) ≈�0 δ2(τ ′2) : ⋆� ′ ).
∀(R� ′

ρ ∈ δ1((ρ{τ ′1}) @ � ′) ↔ δ2((ρ{τ ′2}) @ � ′).
η,α ↦ R ⊢ v1[τ1] ≈�1 v2[τ2] : σ ⊔ �

- Using Part  on ∆⋆ ⊢ τ : ⋆� ′ we have that δ1(τ) ≈�0 δ2(τ) : ⋆� ′ .

- Choose R� ′
ρ to be

{(v1,v2)
∣∣∣ η ⊢ v1 ∼�0 v2 : ζ,(ρ{τ}) @ � ′  * ζ}.

- Applying δ1(τ) ≈�0 δ2(τ) : ⋆� ′ and R gives us that

η,α ↦ R ⊢ v1[δ1(τ)] ≈�1 v2[δ2(τ)] : σ ⊔ �

Using Lemma ·· on this we can conclude

η ⊢ v1[δ1(τ)] ≈�1 v2[δ2(τ)] : σ[τ/α] ⊔ �

- Given that δi(γi(e)) * vi we know that δi(γi(e))[δi(τ)] * vi[δi(τ)].
Using Lemma ·· we can conclude that

η ⊢ δ1(γ1(e))[δ1(τ)] ≈�1 δ1(γ2(e))[δ2(τ)] : σ[τ/α] ⊔ �

which by the definition of substitution is identical to the desired result

η ⊢ δ1(γ1(e[τ])) ≈�1 δ1(γ2(e[τ])) : σ[τ/α] ⊔ �

Sub-Case δi(γi(e)) ↑.
- ¿en we know that δi(γi(e[τ])) ↑ as well. Using : or : we can
conclude η ⊢ δ1(γ1(e[τ])) ≈�0 δ2(γ2(e[τ])) : σ[τ/α] ⊔ �.

Case
∆⋆; Γ ⊢ e1 : σ1 ∆⋆; Γ ⊢ e2 : σ2

∆⋆; Γ ⊢ �e1,e2� : σ1 ×⊥ σ2
:

.
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• By appealing to the induction hypothesis on∆⋆; Γ ⊢ e1 : σ1 and∆⋆; Γ ⊢ e2 : σ2 with δ1 ≈�0 δ2 : ∆⋆

and δ1,δ2 ⊢ η : ∆⋆ and η ⊢ γ1 ≈�0 γ2 : Γ we have that

η ⊢ δ1(γ1(e1)) ≈�0 δ2(γ2(e1)) : σ1

and
η ⊢ δ1(γ1(e1)) ≈�0 δ2(γ2(e1)) : σ2

• By inversion on η ⊢ δ1(γ1(e1)) ≈�0 δ2(γ2(e1)) : σ1 either δi(γi(e1)) * v1i or δi(γi(e1)) ↑.

Sub-Case δi(γi(e1)) * v1i.

- By inversion upon η ⊢ δ1(γ1(e2)) ≈�0 δ2(γ2(e2)) : σ2 either δi(γi(e2))  * v2i or
δi(γi(e2)) ↑.
Sub-Sub-Case δi(γi(e2)) * v2i.

· Because δi(γi(e1)) * v1i and δi(γi(e2)) * v2i we can conclude that
�δi(γi(e1)),δi(γi(e2))� * �v1i,v2i� which by the definition of substitution is identi-
cal to δi(γi(�e1,e2�)) * �v1i,v2i�.

· ¿erefore, fst δi(γi(�e1,e2�))  * v1i and snd δi(γi(�e1,e2�))  * v2i respectively.
Also by the above inversions upon

η ⊢ δ1(γ1(e1)) ≈�0 δ2(γ2(e1)) : σ1

and
η ⊢ δ1(γ1(e2)) ≈�0 δ2(γ2(e2)) : σ2

we know that η ⊢ v11 ∼�0 v12 : ζ1 and η ⊢ v21 ∼�0 v22 : ζ2 for σ1  * ζ1 and
σ2  * ζ2.

· Using Lemma ·· on these along with ∆⋆ ⊢ ζi ≤ ζi ⊔⊥ and ∆⋆ ⊢ σi ≤ σi ⊔⊥ we
have that η ⊢ v11 ∼�0 v12 : ζ1 ⊔ ⊥ and η ⊢ v21 ∼�0 v22 : ζ2 ⊔ ⊥ for σ1 ⊔ ⊥ * ζ1 ⊔ ⊥
and σ2 ⊔ ⊥ * ζ2 ⊔ ⊥.

· Consequently, by : we have that

η ⊢ fst δ1(γ1(�e1,e2�)) ≈�0 fst δ2(γ2(�e1,e2�)) : σ1 ⊔ ⊥

and
η ⊢ snd δ1(γ1(�e1,e2�)) ≈�0 snd δ2(γ2(�e1,e2�)) : σ2 ⊔ ⊥

· Finally, by : we can conclude

η ⊢ δ1(γ1(�e1,e2�)) ∼�0 δ2(γ2(�e1,e2�)) : σ1 ×⊥ σ2

Using this along with �δi(γi(e1)),δi(γi(e2))� * �v1i,v2i� gives us the desired result

η ⊢ δ1(γ1(�e1,e2�)) ≈�0 δ2(γ2(�e1,e2�)) : σ1 ×⊥ σ2

Sub-Sub-Case δi(γi(e2)) ↑.
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· ¿en we know that δi(γi(�e1,e2�)) ↑ and we can use either : or :
to conclude that

η ⊢ δ1(γ1(�e1,e2�)) ≈�0 δ2(γ2(�e1,e2�)) : σ1 ×⊥ σ2

Sub-Case δi(γi(e1)) ↑.
- ¿en we know that δi(γi(�e1,e2�)) ↑ and we can use either : or : to
conclude that

η ⊢ δ1(γ1(�e1,e2�)) ≈�0 δ2(γ2(�e1,e2�)) : σ1 ×⊥ σ2

Case
∆⋆; Γ ⊢ e : σ1 ×� σ2

∆⋆; Γ ⊢ fst e : σ1 ⊔ �
:

• Appealing to the induction hypothesis on ∆⋆; Γ ⊢ e : σ1 ×� σ2 we know that η ⊢ δ1(γ1(e)) ≈�0

δ2(γ2(e)) : σ1 ×� σ2.

• By inversion upon η ⊢ δ1(γ1(e)) ≈�0 δ2(γ2(e)) : σ1 ×� σ2 we know that either δi(γi(e)) * vi or
δi(γi(e)) ↑.

Sub-Case δi(γi(e)) * vi,

- Also by inversion upon

η ⊢ δ1(γ1(e)) ≈�0 δ2(γ2(e)) : σ1 ×� σ2

we have that σ1 ×� σ2  * σ ′ η ⊢ v1 ∼�0 v2 : σ ′.
- By inversion upon σ1 ×� σ2  * σ ′ we know that σ ′ = σ1 ×� σ2.

- By inversion upon η ⊢ v1 ∼�0 v2 : σ1 ×� σ2 we know that η ⊢ fst v1 ≈�0 fst v2 : σ1 ⊔ �
and η ⊢ snd v1 ≈�0 snd v2 : σ2 ⊔ �.

- Given that δi(γi(e)) * vi we know that fst δi(γi(e)) * fst vi which by the definition
of substitution is the same as δi(γi(fst e)) * fst vi. ¿erefore by Lemma ·· we
can conclude that

η ⊢ δ1(γ1(fst e)) ≈�0 δ2(γ2(fst e)) : σ1 ⊔ �

Sub-Case δi(γi(e)) ↑
- ¿erefore, we can conclude that fst δi(γi(e)) ↑, which by the definition of substitution
is the same as δi(γi(fst e)) ↑. ¿erefore, by : or : we have that
η ⊢ δ1(γ1(fst e)) ≈�0 δ2(γ2(fst e)) : σ1 ⊔ �.

Case ¿e case for : is symmetric to the case for :.

Case
∆⋆; Γ ⊢ e1 : (bool) @ � ∆⋆; Γ ⊢ e2 : σ ∆⋆; Γ ⊢ e3 : σ

∆⋆; Γ ⊢ if e1 then e2 else e3 : σ ⊔ �
:

Sub-Case � 6⊑ �0.
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• ¿en by Lemma ·· Part  we know that

η ⊢ δ1(g1(if e1 then e2 else e3)) ≈�0 δ2(g2(if e1 then e2 else e3)) : σ ⊔ �

Sub-Case � ⊑ �0.

• By appealing to the induction hypothesis on ∆⋆; Γ ⊢ e1 : (bool) @ � we know that η ⊢
δ1(γ1(e1)) ≈�0 δ2(γ2(e1)) : (bool) @ �. By inversion on this we know that either δi(γi(e1)) *

vi or δi(γi(e1)) ↑.
Sub-Sub-Case δi(γi(e1)) * vi.

- Also by inversion we know that η ⊢ v1 ∼�0 v2 : ζ where (bool) @ �  * ζ. And by
inversion on the weak-head reduction we know that ζ = (bool) @ �.

- ¿erefore, by inversion upon η ⊢ v1 ∼�0 v2 : (bool) @ � we can conclude � ⊑ �0 ⇒
v1 = v2. We assumed that � ⊑ �0, so v1 = v2.

- By Lemma ·· we know that vi = true or vi = false.

Sub-Sub-Sub-Case vi = true. By appealing to the induction hypothesis on
∆⋆; Γ ⊢ e1 : (bool) @ � we know that

η ⊢ δ1(γ1(e2)) ≈�0 δ2(γ2(e2)) : σ

By Lemma ·· we can conclude

η ⊢ δ1(γ1(e2)) ≈�0 δ2(γ2(e2)) : σ ⊔ �

We know that δi(γi(if e1 then e2 else e3)) * δi(γi(e2)), therefore by
Lemma ·· we can conclude the desired result

η ⊢ δ1(g1(if e1 then e2 else e3)) ≈�0 δ2(g2(if e1 then e2 else e3)) : σ ⊔ �

Sub-Sub-Sub-Case ¿e case for vi = false is symmetric.

Sub-Sub-Case δi(γi(e1)) ↑.
- ¿en we know that δi(gi(if e1 then e2 else e3)) ↑ and can use either : or
: to conclude that

η ⊢ δ1(g1(if e1 then e2 else e3)) ≈�0 δ2(g2(if e1 then e2 else e3)) : σ ⊔ �

Case
∆⋆; Γ,x:σ ⊢ e : σ ∆⋆ ⊢ σ

∆⋆; Γ ⊢ fixn x:σ.e : σ
:

• By the definition of substitution, we know that δi(γi(fixn x:σ.e)) = fixn x:σ.δi(γi(e)).

• ¿e case follows from induction upon n.

Sub-Case n = 0.
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- By Lemma ·· we know that fix0 x:σ.δi(γi(e)) ↑. ¿erefore, by : or
:o we can conclude that

η ⊢ fix0 x:σ.δ1(γ1(e)) ≈�0 fix0 x:σ.δ2(γ2(e)) : σ

- By the above identity, this means that we have

η ⊢ δ1(γ1(fix0 x:σ.e)) ≈�0 δ2(γ2(fix0 x:σ.e)) : σ

Sub-Case n = m + 1.
- By appealing to the local induction hypothesis on m gives us that

η ⊢ δ1(γ1(fixm x:σ.e)) ≈�0 δ2(γ2(fixm x:σ.e)) : σ.
- By Definition ·· and inversion upon η ⊢ γ1 ≈�0 γ2 : Γ we can conclude that

η ⊢ γ1,[γ1(fixm x:σ.e)/x] ≈�0 γ2,[γ2(fixm x:σ.e)/x] : Γ,x:σ

- Appealing to the global induction hypothesis on ∆⋆; Γ,x:σ ⊢ e : σ with

η ⊢ γ1,[γ1(fixm x:σ.e)/x] ≈�0 γ2,[γ2(fixm x:σ.e)/x] : Γ,x:σ

gives us that

η ⊢ δ1((γ1,[γ1(fixm x:σ.e)/x])(e)) ≈�0 δ2((γ2,[γ2(fixm x:σ.e)/x])(e)) : σ

- Trivially, n − 1 = m, so using Lemmas ·· on

η ⊢ δ1((γ1,[γ1(fixm x:σ.e)/x])(e)) ≈�0 δ2((γ2,[γ2(fixm x:σ.e)/x])(e)) : σ

we can conclude

η ⊢ δ1(γ1(fixn x:σ.e)) ≈�0 δ2(γ2(fixn x:σ.e)) : σ

Case
∆⋆; Γ,x:σ ⊢ e : σ ∆⋆ ⊢ σ

∆⋆; Γ ⊢ fix x:σ.e : σ
:

• Using Lemma ·· we know that for alln, ∆⋆; Γ ⊢ fixn x:σ.e : σ.

• ¿erefore, assume an arbitrary m. Appealing to the induction hypothesis on
∆⋆; Γ ⊢ fixm x:σ.e : σ with η ⊢ γ1 ≈�0 γ2 : Γ gives us that η ⊢ δ1(γ1(fixm x:σ.e)) ≈�0

δ2(γ2(fixm x:σ.e)) : σ.

• By the definition of substitution δi(γi(fixm x:σ.e)) = fixm x:δi(σ).δi(γi(e)). ¿erefore, we have
that

η ⊢ fixm x:δ1(σ).δ1(γ1(e)) ≈�0 fixm x:δ2(σ).δ2(γ2(e)) : σ
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• Discharging our assumption we have that for all n,

η ⊢ fixn x:δ1(σ).δ1(γ1(e)) ≈�0 fixn x:δ2(σ).δ2(γ2(e)) : σ

Using Lemma ·· we can conclude

η ⊢ fix x:δ1(σ).δ1(γ1(e)) ≈�0 fix x:δ2(σ).δ2(γ2(e)) : σ

• Again by the definition of substitution, δi(γi(fix x:σ.e)) = fix x:δi(σ).δi(γi(e)). ¿erefore, we
have the desired result

η ⊢ δ1(γ1(fix x:σ.e)) ≈�0 δ2(γ2(fix x:σ.e)) : σ

Case ¿e case for : is analogous to : and :.

Case ¿e case for : is analogous to that for :.

¤

Corollary ·· (Confidentiality). If α:⋆⊤; x:(α) @ ⊥ ⊢ e : (bool) @ ⊥ then for any ∙ ⊢ v1 : τ1 and ⊢ v2 : τ2

if e[τ1/α][v2/x] and e[τ2/α][v2/x] both terminate, they will produce the same value.

Proof. ¿en construct a derivation that ∙; ∙ ⊢ Λα:⋆⊤.λx:(α) @ ⊥.e : ∀α:⋆⊤.(α) @ ⊥ ⊥→ (bool) @ ⊥ using
the appropriate typing rules and then appeal to ¿eorem ·· Part  to obtain

∙ ⊢ Λα:⋆⊤.λx:(α) @ ⊥.e ∼⊥ Λα:⋆⊤.λx:(α) @ ⊥.e : ∀α:⋆⊤.(α) @ ⊥ ⊥→ (bool) @ ⊥

By Lemma ·· Part  we can have that τ1 ≈⊥ τ2 : ⋆⊤. Next, by inversion on : and instantiation
with the constructor relation, τ1 ≈⊥ τ2 : ⋆⊤, and the relation

R�
ρ = {(v1,v2)

∣∣∣ (∙; ∙ ⊢ v1 : (ρ{τ1}) @ �),(∙; ∙ ⊢ v2 : (ρ{τ2}) @ �)},

we can conclude that

∙,α ↦ R ⊢ (Λα:⋆⊤.λx:(α) @ ⊥.e)[τ1] ≈⊥ (Λα:⋆⊤.λx:(α) @ ⊥.e)[τ2] : (α) @ ⊥ ⊥→ (bool) @ ⊥

By straightforward application of : we have that

∙,α ↦ R ⊢ v1 ∼⊥ v2 : (α) @ ⊥

so by application of :, inversion on :, and instantiation we know

∙,α ↦ R ⊢ (Λα:⋆⊤.λx:(α) @ ⊥.e)[τ1]v1 ≈⊥ (Λα:⋆⊤.λx:(α) @ ⊥.e)[τ2]v2 : (bool) @ ⊥

Finally, because the relation is closed under reduction we have : and instantiation we have

∙,α ↦ R ⊢ e[τ1/α][v1/x] ≈⊥ e[τ2/α][v2/x] : (bool) @ ⊥

from which the desired conclusion can be obtained by simple inversion. ¤
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Corollary ·· (Noninterference). If ∙,x:σ1 ⊢ e : σ2 where L(σ1) 6⊑ L(σ2) then for any ⊢ v1 : σ1 and
⊢ v2 : σ1 it is the case that if both e[v1/x] and e[v2/x] terminate, they will both produce the same value

Proof. Proceeds in a similar fashion to Corollary ··. ¤

Corollary ·· (Integrity). If α:⋆⊤; ∙ ⊢ e : (α) @ ⊥ then e[τ/α] for any τ must diverge.

Proof. First construct a derivation that ∙; ∙ ⊢ Λα:⋆⊤.e : ∀α⊤:(α) @ ⊥ using the appropriate typing rules,
then appeal to ¿eorem ·· Part  to obtain to obtain

∙ ⊢ Λα:⋆⊤.e ∼⊥ Λα:⋆⊤.e : ∀α:⋆⊤.(α) @ ⊥

Now assume an arbitrary τ. It is straightforward to show that τ ≈⊥ τ : ⋆⊤. By inversion on : and
instantiation we can conclude

∙,α ↦ ∅ ⊢ (Λα:⋆⊤.e)[τ] ≈⊥ (Λα:⋆⊤.e)[τ] : (α) @ ⊥

Because the relation is closed under reduction we have that

∙,α ↦ ∅ ⊢ e[τ/α] ≈⊥ e[τ/α] : (α) @ ⊥

Furthermore, by inversion either e[τ/α] * v or e[τ/α] ↑. However in the former case that would mean
that

∙,α ↦ ∅ ⊢ v ∼⊥ v : (α) @ ⊥

which by inversion on : is impossible because there is no v such that v∅v. ¿erefore e[τ/α] ↑. ¤
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
Full grammar of the Infor language

§ · Identifiers and other miscellany

Note that several Roman and Greek glyphs look identical, like Roman A (Unicode ) and Greek A

(Unicode ), but are treated as distinct glyphs. ¿e  style regular expressions (Corporate I
Staff ) below specify the acceptable lexical forms for identifiers

• Symbol are [!%&+/:<=>?@~*-^|]*.

• Variable identifiers are symbols or [a − zα − ω][A − ZA − Ωa − zα − ω_0 − 9]*.

• Constructor identifiers are symbols or [A−ZA−Ω][A−ZA−Ωa−zα−ω_0−9]*. Constructor identifiers
are not α-convertible.

• Record selectors and atoms can be either variable identifiers or constructor identifiers. Record
selectors and atoms are not α-convertible.

¿e above specification has the following exceptions:

• Πmay not be used a constructor identifier.

• λmay not be used a variable identifier.

• ¿e symbols * and %, may be used as variable identifiers, but nothing else.

• ¿e symbols :, |, ||, &&, @, <:, :>, =, =(, )=>, =>, -(, and )->, are reserved for use by the language.
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¿e following table summarizes the meta-variable conventions for identifiers:

Meta-variable Lexical category Semantic category
l variable label variables
α,β variable type variables
A constructor algebraic data types
x,y variable term variables
D constructor data constructors
m variable module variables
s variable signature variables
m variable module variables
r either record selectors
a either atoms

Numbers

I use the meta-variable n for natural numbers 0, 1, ... and the meta-variable i for the integers ..., -1, 0, 1,
....

Comments

Region comments, comments for a potentially multiline region of code, are started by #( and ended
by #). ¿ey may be arbitrarily nested. Line comments, commenting the remainder of a given line, can
be started with character sequence #. Line comments may be nested within region comments, but at
present region comments will not be recognized as starting in a line comment. In fact, this can be useful.

You can comment out a region of code as follows

#(

val foo = 1 + 1

#)

And by simply adding an additional hash, it is possible to enable the region

##(

val foo = 1 + 1

#)

§ · ¿e type system

In Infor, types proper are divided into three categories: polytypes σ, ρ-types ρ, andmonotypes τ. Types
are classified by kinds.
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Labels

Atomic labels

ℓ # l label variables
| +{(m.)*a} additive boolean element
| -{(m.)*a} subtractive boolean element

It is also possible to write Top or ⊤ for -{} and Bot or ⊥ for +{}. Using ⊤ or ⊥ reuqires the input stream
be  encoded.

Full labels

Л # ℓ atomic labels
| info τ information content of a type variable
| Л1|| ... || Лn join (for n > 1)
| Л1&& ... && Лn meet (for n > 1)
| (Л)

Л1|| ... || Лn and Л1&& ... && Лn may be written as Л1⊔ ...⊔ Лn and Л1⊓ ...⊓ Лn, respectively. ¿ese alterna-
tives require that the input stream be  encoded.

Variances

Variances are used in kinds and types to specify the behavior of subtyping.

î # + covariant
| - contravariant
| = invariant

¿e variance =may also be written as ±. ¿is alternative requires that the input stream be  encoded.

Kinds

κ # * @ Л type classifiers
| % @ Л algebraic type classifiers
| Lab -(π)-> κ label functions
| Pi l (:Lab)?-(π)-> κ dependent label functions
| κ1 -(π)-> κ2 type functions

Pi l (:Lab)? -(π)-> κ may also be written as Π l (:Lab)? -(π)-> κ. ¿is alternative requires that the
input stream be  encoded.

Constraints

C # Л1 <: Л2
| Л1 :> Л2
| Л1 = Л2
| C1 & ... & Cn conjunction (for n > 1)
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Quantifier blocks

qfb # ⟨(l(:Lab)?)+(| C)?⟩
| ⟨(α: κ)+(| C)?⟩
| ⟨(l(:Lab)?)+|(α: κ)+(| C)?⟩

Polytypes

σ # ∀qfb σ universal types
| ∃qfb σ existential types
| ρ ρ-types
| (σ)

ρ-types

ρ # σ1 -(Л1|Л2)-> σ2 higher-rank term functions
(Л1 for program counter, Л2 for the closure)

| (|σ1, ... , σn|)-(Л1|Л2)-> σ curried higher-rank term functions
(Л1 for program counter, Л2 for the closure)

| τ monotypes
| (ρ)

Monotypes

τ # (m.)*α type variables
| (m.)*A algebraic data types
| Int primitive integer type
| String primitive string type
| Bool primitive boolean type
| τ1τ2 type application
| fn (l:Lab | α:κ) =(π)=> τ type functions
| τ @ Л label application
| {r1:τ1, ... , rn:τn} record types

(for n ≥ 0 and r1 ... rn distinct)
| (τ1, ... , τ_n \verb)| tuple types (for n > 1)
| τ1 -(Л1|Л2)-> τ2 term functions

(Л1 for program counter, Л2 for the closure)
| τ : κ kind annotation
| (τ)

fn (l:Lab | α:κ) =(π)=> τmay also be written as λ (l:Lab | α:κ) =(π)=> τ. ¿ese alternatives requires
that the input stream be  encoded.
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§ · Patterns

Label patterns

lp # _ wildcard label pattern
| ℓ atomic labels

Type patterns

φ # _ wildcard type pattern
| (m.)*α type variables
| (m.)*A algebraic data types
| Int primitive integer type pattern
| Bool primitive boolean type pattern
| String primitive string type pattern
| φ1 φ2 type application pattern
| φ @ lp label application pattern
| φ1 -(lp1|lp2)-> φ2 term function patterns

(lp1 for program counter, lp2 for the closure)
| φ1 -(lp1|lp2|lp3|lp4)-> φ2 term function patterns

(lp1 for information content of φ1, lp2 for program counter,
lp3 for the closure, lp4 for information content of φ2)

| {r1:φ1, ... ,rn:φn} record type patterns (for n ≥ 0 and r1 ... rn distinct)
| (φ1, ... , φn) tuple type patterns (for n > 1)
| φ : κ annotated type pattern
| (φ)

Term patterns

p # _ wildcard pattern
| x variable binding
| i integer patterns
| (True | False) boolean patterns
| "strings" string patterns
| (m.)*D (⟨l*|α*⟩)? p1 ... pn data constructor patterns – must be fully applied
| {r1=p1, ... ,rn=pn} record patterns (for n ≥ 0 and r1 ... rn distinct)
| (p1, ... , pn) tuple patterns (for n > 1)
| [p1, ... , pn] list patterns (for n ≥ 0)
| p : σ annotated pattern
| (p)
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§ · Expressions

Matches

Termmatches
u # p => e

| p =(ℓ)=> e

Type matches
µ # φ => e

Expressions proper

e # (m.)*(x | D) (⟨Л*|τ*⟩)? instantiation
| i integers
| (True | False) booleans
| "strings" strings
| op (x | D) forced nofix
| [e1, ... , en] lists (for n ≥ 0)
| {r1=e1, ... ,rn=en} records (for n ≥ 0 and r1 ... rn distinct)
| (e1, ... , en) tuples (for n > 1)
| e.n tuple projection
| e1 andalso e2 short-circuiting “and”
| e1 orelse e2 short-circuiting “or”
| fn (|)? u1 | ... | un end anonymous functions (for n > 0)
| let ld* in e end let expression
| if e1 then e2 else e3 end conditional
| case e (of | |)u1 | ... | un end term case (for n > 0)
| typecase τ (of | |) µ1 | ... | µn end type case (for n > 0)
| ifholds C then e1 else e2 end dynamic constraint check
| isdata α then e1 else e2 end type constructor cast
| e1 e2 term application
| e : σ type annotation
| (e)

fn (|)? u1 | ... | un endmay also be written as λ (|)? u1 | ... | un end. ¿is alternative requires that the
input stream be  encoded.
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Values

v # (m.)*(x | D) (⟨Л*|τ*⟩)? instantiation
| i integers
| (True | False) booleans
| "strings" strings
| op (x | D) forced nofix
| [v1, ... , vn] lists (for n ≥ 0)
| {r1=v1, ... ,rn=vn} records (for n ≥ 0 and r1 ... rn distinct)
| (v1, ... , vn) tuples (for n > 1)
| fn (|)? u1 | ... | un end anonymous functions (for n > 0)
| v : σ type annotation
| (v)

fn (|)? u1 | ... | un end may also be written as λ (|)? u1 | ... | un end. ¿is alternative requires that
the input stream be  encoded.

§ · Declarations

Fixity annotations n is a precedence somewhere between 0 and 9999. Note that prefix or postfix
implies that the items in question are unary operators, but this is not enforced by the typechecker.

fix # infixr (n)?
| infixl (n)?
| prefix (n)?
| postfix (n)?
| nofix

Data type binding

dtb # A : κ = (|)? D1:σ1 | ... | Dn:σn algebraic data type binding (for n ≥ 0)

¿e head constructor of σ1 ... σn must be A.

Recursive function binding

fb # x (⟨l*|α*⟩)? (p)+ (: σ)? = e recursive function binding

Local declarations

ld # fun fb1 and ... and fbn recursive function definitions (for n > 0)
| fun x : σ type annotation declaration
| val p = e “let” declaration
| do e sugar for effectful expressions
| fix(α | A | x | D) fixity declaration





Declarations proper

d # ld local declaration
| newatoms (a)var+ atoms
| module m (:S)? = M module declaration
| signature s = S signature declaration
| datatype dtb1 and ... and dtbn data type definitions (for n > 0)
| type α1 (: κ1)? = τ1 and ... and αn (: κn)? = τn type definitions

§ · Modules and signatures

M # (m.)*m module variable
| mod d* end

Signature bindings

sb # atom a atom
| data A : κ algebraic data type
| type α : κ opaque type definition
| type α : κ = τ translucent type definition
| con D : σ data constructor
| val x : σ value
| fun x : σ function
| mod m : S module

Signatures proper
S # s signature variables

| sig sb*end
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