
ON CONNECTIONS BETWEEN MACHINE LEARNING AND INFORMATION
ELICITATION, CHOICE MODELING, AND THEORETICAL COMPUTER SCIENCE

Arpit Agarwal

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2021

Supervisor of Dissertation

Shivani Agarwal, Rachleff Family Associate Professor of Computer and Information Science

Graduate Group Chairperson

Mayur Naik, Professor of Computer and Information Science

Dissertation Committee

Sanjeev Khanna, Henry Salvatori Professor of Computer and Information Science
Rakesh Vohra, George A. Weiss and Lydia Bravo Weiss University Professor
Hamed Hassani, Assistant Professor of Electrical and Systems Engineering
David Parkes, George F. Colony Professor of Computer Science, John A. Paulson School of
Engineering and Applied Sciences, Harvard University

ON CONNECTIONS BETWEEN MACHINE LEARNING AND INFORMATION

ELICITATION, CHOICE MODELING, AND THEORETICAL COMPUTER SCIENCE

© COPYRIGHT

2021

Arpit Agarwal

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/

Dedicated to my grandmother

iii

ACKNOWLEDGEMENT

Firstly, I would like to warmly thank my advisor, Shivani Agarwal, for her patience and

guidance during the past few years. When I first met you during your Probability and

Statistics class at IISc, I did not know what research really means. It is through your

continued inspiration that I have been able to learn the meaning of research. I am really

grateful for this inspiration and guidance that has had a profound impact on my life. Also,

thank you for lending me an ear whenever I needed one and for always being there for me.

Secondly, I would like to thank Sanjeev Khanna teaching me how to have fun while doing

research. You always manage to make me excited about something whenever I talk to you. I

would also like to thank David Parkes for hosting me at Harvard for a semester and always

finding time for me during your busy schedule. I would also like to thank all members of

my thesis committee– Shivani Agarwal, Hamed Hassani, Sanjeev Khanna, David Parkes and

Rakesh Vohra– for giving valuable feedback on my thesis.

This thesis would have not been possible without my excellent collaborators: Shivani Agarwal,

Sepehr Assadi, Ashwinkumar BV, Rafael Frongillo, Sanjeev Khanna, Debmalya Mandal,

Harikrishna Narasimhan, David C. Parkes, Nisarg Shah, and Victor Shnayder. I would also

like to thank my friends– Prathamesh, Dushyant, Arun, Hari, Harish, Akhil, Manish, Nand,

Vineet– who have always been by my side in tough times.

Lastly I would like to thank my family, especially my parents, for all the sacrifices they have

made for this to be possible. I would like to thank my mother for being there when no one

was, and my father for loving me unconditionally.

iv

ABSTRACT

ON CONNECTIONS BETWEEN MACHINE LEARNING AND INFORMATION

ELICITATION, CHOICE MODELING, AND THEORETICAL COMPUTER SCIENCE

Arpit Agarwal

Shivani Agarwal

Machine learning, which has its origins at the intersection of computer science and statistics,

is now a rapidly growing area of research that is being integrated into almost every discipline

in science and business such as economics, marketing and information retrieval. As a

consequence of this integration, it is necessary to understand how machine learning interacts

with these disciplines and to understand fundamental questions that arise at the resulting

interfaces. The goal of my thesis research is to study these interdisciplinary questions at the

interface of machine learning and other disciplines including mechanism design/information

elicitation, preference/choice modeling, and theoretical computer science.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iv

ABSTRACT . v

LIST OF TABLES . xi

LIST OF ILLUSTRATIONS . xiv

LIST OF PUBLICATIONS . xv

CHAPTER 1 : Introduction . 1

1.1 Interface Between Machine Learning and Information Elicitation 2

1.2 Interface between Machine Learning and Choice Modeling 4

1.3 Interface Between Machine Learning and Theoretical Computer Science . . . 6

1.4 Some Comments on Additional Connections 7

CHAPTER 2 : Calibrated Surrogate Losses and Proper Scoring Rules 10

2.1 Introduction . 10

2.1.1 Background and Motivation . 10

2.1.2 Our Contributions . 11

2.1.3 Notation . 12

2.1.4 Organization . 13

2.2 Preliminaries . 13

2.2.1 Surrogate Risk Minimization and Calibrated Surrogates 13

2.2.2 Property Elicitation and Proper Scoring Rules/Losses 15

2.3 Calibrated Properties . 17

2.4 Calibrated Surrogates via Calibrated Linear Properties 21

2.4.1 Subset Ranking Losses and Standardization Functions 22

vi

2.4.2 Affdim(L)-Dimensional Surrogates of Ramaswamy et al. (2013) 25

2.4.3 Lower Bound on Dimension of Calibrated Linear Properties 28

2.5 Calibrated Surrogates via Calibrated Nonlinear Properties 32

2.5.1 Quantiles and Interval-Valued Properties 33

2.5.2 Calibrated Surrogates under Low-Noise Conditions Using Vectors of

Quantiles . 34

2.5.3 Necessary Condition for Convex Elicitability 38

CHAPTER 3 : Information Elicitation in the Absence of Ground Truth 41

3.1 Introduction . 41

3.1.1 Background . 41

3.1.2 Our Contributions . 43

3.1.3 Related Work . 45

3.1.4 Organization . 48

3.2 Model . 48

3.2.1 Multi-Task Peer Prediction . 51

3.2.2 Task Assignments . 52

3.2.3 Expected Payments . 54

3.2.4 Informed Truthfulness . 54

3.2.5 Learning and Agent Clustering . 55

3.3 Correlated Agreement for Heterogeneous Agents 57

3.3.1 Analysis of CAHU . 59

3.4 Learning the Agent Signal Types . 68

3.4.1 Clustering . 70

3.4.2 Learning the Cluster Pairwise ∆ Matrices 75

3.5 Clustering Experiments . 88

3.6 Conclusion . 93

CHAPTER 4 : Learning Multinomial Logit (MNL) Model from Choices 95

vii

4.1 Introduction . 95

4.1.1 Background . 95

4.1.2 Our Contributions . 97

4.1.3 Organization . 98

4.2 Problem Setting and Preliminaries . 98

4.3 Accelerated Spectral Ranking Algorithm . 100

4.4 Comparison of Mixing Time with Rank Centrality (RC) and Luce Spectral

Ranking (LSR) . 103

4.5 Sample Complexity Bounds . 109

4.6 Message Passing Interpretation of ASR . 118

4.7 Experiments . 122

4.7.1 Synthetic Data . 123

4.7.2 Real World Datasets . 124

4.8 Conclusion . 125

CHAPTER 5 : Multiarmed Bandits and Discrete Choice Models 126

5.1 Introduction . 126

5.1.1 Background . 126

5.1.2 Our Contributions . 127

5.1.3 Related work. 130

5.1.4 Organization . 134

5.2 Problem Setup and Preliminaries . 134

5.2.1 Random Utility Models with IID Noise (IID-RUMs) 134

5.2.2 A New Class of Choice Models . 135

5.2.3 Regret Notion . 136

5.3 A Fundamental Lower Bound . 137

5.4 Algorithms . 138

5.5 Regret Bounds . 142

5.6 Experiments . 146

viii

5.7 Proofs . 151

5.7.1 Proof of Lower Bound (Theorem 5.3.1) 151

5.7.2 Proof of Upper Bound Results . 157

5.8 Conclusion . 189

CHAPTER 6 : Finding the Best Coin with Limited Adaptivity 191

6.1 Introduction . 191

6.1.1 Background . 191

6.1.2 Our Contributions . 193

6.1.3 Related Work . 195

6.1.4 Notation . 197

6.1.5 Organization . 197

6.2 Finding the k Most Biased Coins / k Best Arms 197

6.3 A Limited-Adaptivity Algorithm for Finding the k Most Biased Coins 198

6.3.1 Algorithm . 199

6.3.2 Analysis . 200

6.4 Top-k Ranking from Pairwise Comparisons 206

6.5 Extension to Sub-Gaussian Rewards . 207

6.6 Conclusion . 210

CHAPTER 7 : Stochastic Submodular Cover with Limited Adaptivity 212

7.1 Introduction . 212

7.1.1 Background . 212

7.1.2 Our Contributions . 214

7.1.3 Related Work . 216

7.1.4 Organization . 219

7.2 Problem Statement . 219

7.3 Overview of Results . 221

7.4 Preliminaries . 223

ix

7.5 Technical Overview . 224

7.5.1 Upper Bound on r-round Adaptivity Gap 224

7.5.2 Lower Bound on Adaptivity Gap . 227

7.6 The Non-Adaptive Selection Algorithm . 228

7.6.1 A Non-Adaptive Algorithm for Increasing Expected Coverage 230

7.6.2 Proof of Theorem 7.6.2 . 236

7.7 Algorithms for the Stochastic Submodular Cover Problem 241

7.7.1 The Reduce Subroutine . 242

7.7.2 The r-Round Adaptive Algorithm . 246

7.8 A Lower Bound for r-Round Adaptive Algorithms 250

CHAPTER 8 : Conclusion . 261

APPENDIX . 262

A.1 Appendix to Chapter 4 . 262

A.2 Appendix to Chapter 5 . 273

BIBLIOGRAPHY . 274

x

LIST OF TABLES

TABLE 1 : Sample complexity for the CAHU mechanism. The rows indicate the

assignment scheme and the columns indicate the modeling assumption.

Here ` is the number of agents, n is the number of signals, ε′ is

a parameter that controls learning accuracy 3 , γ is a clustering

parameter, K is the number of clusters, and m1 (resp. m2) is the

size of the set of tasks from which the tasks used for clustering (resp.

learning) are sampled. 70

TABLE 2 : Statistics for real world datasets . 124

TABLE 3 : Overview of related work in regret minimization settings. There

are several definitions of ‘best’ arm; the reader is encouraged to

refer to the relevant papers and to our problem setting for details.

(Note: in multi-dueling bandits, ∅ denotes no feedback; in stochastic

click bandits, Ot denotes an ordered set; in combinatorial bandits, S

denotes a set of allowed subsets; in dynamic assortment optimization,

0 denotes the “no-purchase” option.) 131

TABLE 4 : Summary of some results for k best arms identification in stochastic

multi-armed bandits. 194

TABLE 5 : Summary of some results on top-k ranking from pairwise comparisons.195

TABLE 6 : Statistics for real world datasets . 269

xi

LIST OF ILLUSTRATIONS

FIGURE 1 : Illustration of steps in the proof of Theorem 2.4.4. We first find

p ∈ Q`1 ∩Q`3, and then perturb p along δ and −δ to find p1 and p2. 30

FIGURE 2 : Illustration of quantile vector property Γs(p) used to elicit coarse

information about a distribution p ∈ ∆n (here n = 6, s = 5). See

Example 2.5.3 for details. 36

FIGURE 3 : Fixed Task Assignment . 69

FIGURE 4 : Uniform Task Assignment . 69

FIGURE 5 : Algorithm 2 checks whether i and qt are in the same cluster by

estimating ∆pt,qt and ∆pt,i. 72

FIGURE 6 : The incentive error as a fraction of the maximum payoff of an agent,

averaged over agents, on 8 different data sets when using k-means++

with the L2 metric and with our custom metric 93

FIGURE 7 : The incentive error as a fraction of the expected payoff of an agent,

averaged over agents, on 8 different data sets when using k-means++

with the L2 metric and with our custom metric 93

FIGURE 8 : Results on synthetic data: L1 error vs. number of iterations for

our algorithm, ASR, compared with the RC algorithm (for m = 2)

and the LSR algorithm (for m = 5), on data generated from the

MNL/BTL model with the random and star graph topologies. . . . 121

FIGURE 9 : Results on real data: Log-likelihood vs. number of iterations for

our algorithm, ASR, compared with the RC algorithm (for pairwise

choice data) and the LSR algorithm (for multi-way choice data), all

with regularization parameter set to 0.2. 122

FIGURE 10 : The hierarchy of choice models considered in this work. 129

xii

FIGURE 11 : Regret v/s trials for our algorithms WBA-L and WBA-A (for k = 2) com-

pared with dueling bandit algorithms (DTS, BTM, RUCB and RMED1)

(the shaded region corresponds to std. deviation). As can be observed,

our algorithms are competitive against these algorithms. 147

FIGURE 12 : Regret v/s trials for our algorithms WBA-L and WBA-A compared with

the MaxMinUCB (MMU) algorithm for k = 2 and k = 5 (the shaded

region corresponds to std. deviation). We observe that our algorithms are

better than MaxMinUCB on all datasets for both values of k. We further

observe that for several datasets the regret achieved by our algorithm for

k > 2 is better than the regret of our algorithm for k = 2. 150

FIGURE 13 : A flow-chart giving organization for the proof of Theorem 5.5.2 and

Theorem 5.5.1 . 157

FIGURE 14 : An example illustrating that our algorithm eliminates items more

“aggresively” as compared to the Halving algorithm of Kalyanakr-

ishnan and Stone (2010); Even-Dar et al. (2006). Here, n = 216 and

k = 1. 194

FIGURE 15 : Results on synthetic data: L1 error vs. number of iterations for our

algorithm, ASR, compared with the RC algorithm (for m = 2) on

data generated from the MNL/BTL model with the random and

star graph topologies. 267

FIGURE 16 : Results on synthetic data: L1 error vs. number of iterations for our

algorithm, ASR, compared with the LSR algorithm (for m = 3) on

data generated from the MNL/BTL model with the random and

star graph topologies. 268

xiii

FIGURE 17 : Results on synthetic data: L1 error vs. number of iterations for our

algorithm, ASR, compared with the LSR algorithm (for m = 5) on

data generated from the MNL/BTL model with the random and

star graph topologies. 269

FIGURE 18 : Degree distributions of various real world datasets. 270

FIGURE 19 : Results on real data: Log-likelihood vs. number of iterations for

our algorithm, ASR, compared with the RC algorithm (for pairwise

comparison data) and the LSR algorithm (for multi-way comparison

data), all with regularization parameter set to 0.2. 271

FIGURE 20 : Results on real data: Log-likelihood vs. number of iterations for

our algorithm, ASR, compared with the RC algorithm (for pairwise

comparison data) and the LSR algorithm (for multi-way comparison

data), all with regularization parameter set to 1. 272

xiv

LIST OF PUBLICATIONS BASED ON THIS THESIS

1. Agarwal, A., Johnson, N., Agarwal, S.,

Choice Bandits.

In Neural Information Processing Systems (NeurIPS), 2020.

2. Agarwal, A., Mandal, D., Parkes, D., and Shah, N.,

Peer Prediction with Heterogeneous Users.

In ACM Transactions on Economics and Computation (TEAC), 2020.

A shorter version appeared in ACM Conference on Economics and Computation (EC), 2017.

Note: This work is a joint contribution of this thesis and Mandal, D.’s thesis.

3. Agarwal, A., Assadi, S., and Khanna, S.,

Stochastic Submodular Covering with Limited Adaptivity.

In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019

4. Agarwal, A., Patil, P., and Agarwal, S.,

Accelerated Spectral Ranking.

In International Conference on Machine Learning (ICML), 2018.

5. Agarwal, A., Agarwal, S., Assadi, S., and Khanna, S.,

Learning with Limited Rounds of Adaptivity: Coin Tossing, Multi-Armed Bandits, and

Ranking from Pairwise Comparisons.

In Conference on Learning Theory (COLT), 2017.

Note: A part of this work is a contribution of Assadi, S.’s thesis.

6. Agarwal, A. and Agarwal, S.,

On Consistent Surrogate Risk Minimization and Property Elicitation.

In Conference on Learning Theory (COLT), 2015.

xv

Chapter 1

Introduction

Machine learning (ML), which has its origins at the intersection of computer science and

statistics, has recently seen remarkable success in a wide range of applications including

image recognition, information retrieval, recommendation systems, medical diagnosis, and

many more. The empirical success in these wide ranging applications has naturally led to

the integration of ML in many other disciplines of science and business.

On one hand, traditional approaches in these disciplines are being augmented with machine

learning methods so as to improve these approaches along several dimensions. For example,

traditional approaches in econometrics like A/B testing are being augmented/replaced

with more sample efficient algorithms from online/active learning (Athey and Imbens,

2019), mechanism design algorithms are using machine learning techniques in order to relax

assumptions about the underlying data distribution (Agarwal et al., 2017b), and traditional

combinatorial algorithms are using ML predictions so as to improve their performance

(Purohit et al., 2018). On the other hand, ideas/concepts from other disciplines are also

making their way into machine learning and are proving to be of importance to the science

of machine learning. For example, ideas from probability forecasting and computational

economics literature are helping to better understand the design of loss functions in ML

(Agarwal and Agarwal, 2015; Liu and Guo, 2020; Liu and Helmbold, 2020), probabilistic

models for human decision-making studied in econometrics are making their way into machine

learning and finding application in various web applications (Ie et al., 2019), ideas about

resource-constrained computing from theoretical computer science are making their way to

machine learning in order to enable efficient parallel/distributed learning (Konevcny et al.,

2016; Agarwal et al., 2017a).

While remarkable progress has been made in the science of machine learning, its integration

1

with many disciplines in science and business is still relatively new. Hence, there are still a

lot of gaps in our end-to-end understanding of its interaction with these other disciplines.

Therefore, it is important to study the fundamental questions resulting from such interactions

in order to fill these gaps in our understanding.

The goal of this thesis is to study interdisciplinary questions that arise at the interface of

machine learning and other disciplines including mechanism design/information elicitation,

preference/choice modeling, and theoretical computer science. A common theme in this thesis

is the use of mathematical formalism and theoretical analysis in order to first understand the

powers and limitations of current approaches for these problems, and then guide the design

of improved and principled solutions. Through this interdisciplinary study, this thesis has

contributed towards the creation of two-way knowledge bridges between machine learning and

other fields including information elicitation/mechanism design, choice/preference elicitation,

theoretical computer science, leading to the design of principled solutions for common

problems. I will describe below the three broad interfaces that I have explored in my research

and describe the contributions in each of these in more detail. The following will also serve

as a roadmap for the rest of the thesis.

1.1 Interface Between Machine Learning and Information Elic-

itation

Information elicitation, which is studied in economics and statistics, is the design of mech-

anisms that incentivize strategic humans to truthfully exchange their beliefs, for example

prediction market mechanisms for eliciting beliefs about (uncertain) future events. My

research at the interface of information elicitation and machine learning has led to new

understanding about how viewing supervised learning algorithms as information elicitation

mechanisms can help in the design of new loss functions for learning (Agarwal and Agarwal,

2015); and how machine learning can help in designing better mechanisms for information

elicitation in the absence of ground truth (Agarwal et al., 2017a).

2

Chapter 2– Calibrated surrogate losses and proper scoring rules. Minimization of

calibrated surrogate loss functions, such as logistic and hinge loss, is a widely used framework

in consistent supervised learning (Bartlett et al., 2006; Tewari and Bartlett, 2007); scoring

agents using proper scoring rules, such as log and Huber scoring rules, is a widely used

framework in truthful information elicitation (Savage, 1971; Gneiting and Raftery, 2007). It

is well-known that there exists a correspondence between calibrated surrogate losses and

proper scoring rules: certain surrogate losses such as the logisitc or cross-entropy loss, can be

viewed as proper scoring rules for eliciting the complete conditional label distribution given an

instance (Buja et al., 2005; Reid and Williamson, 2010). However, this correspondence was

previously understood to hold for a fairly limited class of surrogates, as not all surrogates

can be viewed as eliciting the complete underlying label distribution.

In this thesis we show a much stronger correspondence between calibrated surrogates and

proper scoring rules: a large class of calibrated surrogate losses in supervised learning can

essentially be viewed as proper scoring rules for eliciting or estimating certain properties

of the underlying conditional label distribution that are sufficient to construct an optimal

classifier; and conversely, a large class of proper scoring rules can be viewed as calibrated

surrogates for supervised learning problems. For example, we show that several surrogate

loss functions for the problem of subset ranking, such as the least-squares surrogates of

Ramaswamy et al. (2013), can essentially be viewed as eliciting linear properties of the

underlying label distribution. This connection also gives a way to design efficient calibrated

surrogates for supervised learning using the theory of proper scoring rules.

The materials in this chapter are based on a joint paper with Shivani Agarwal (Agarwal and

Agarwal, 2015) in COLT’15.

Chapter 3– Information elicitation in the absence of ground truth. Typically,

a scoring rule is designed to take as input a report from an agent and a ground truth

sample. However, in many applications of information elicitation, such as the ones involving

3

crowdsourcing for machine learning, there is no ground truth sample available. Peer prediction

is the general framework for designing truthful mechanisms in this setting that score an agent

by using reports of randomly chosen peer agents as the proxy for a ground truth sample.

The problems in designing practical peer prediction mechanisms, however, have been the

presence of uninformative equilibria where the agents can just ‘agree to agree’ and maximize

their scores (Jurca and Faltings, 2005); and the fact that these mechanisms are only truthful

when all agents have homogeneous beliefs (Radanovic and Faltings, 2015b).

In this thesis we design the first peer prediction mechanism that has truthfulness guarantees

for heterogeneous agents and also avoids the problem of uninformative equilibria. We use

machine learning techniques to cluster the users based on similarity of reports and extend our

mechanism from Shnayder et al. (2016a) to work with these clusters of ‘almost’ homogeneous

users. This forms a closed loop between machine learning and information elicitation, where

information elicitation mechanisms can be used to collect truthful data for machine learning;

and machine learning can be used to learn the best mechanism out of all possible mechanisms

for information elicitation.

The materials discussed here are based on a joint paper with Debmalya Mandal, David

Parkes, and Nisarg Shah (Agarwal et al., 2017b) in EC’17.

1.2 Interface between Machine Learning and Choice Modeling

Discrete choice modeling, which is studied in a variety of fields including economics and

transportation, is concerned with the design of models of how humans make choices given

a set of alternatives. The emergence of online services in domains including entertainment

and shopping, that use machine learning to recommend alternatives to users, has presented

unique challenges at the interface of discrete choice modeling and machine learning. This

thesis addresses some of these challenges by developing fast and statistically efficient algo-

rithms for estimating the parameters of the multinomial logit (MNL) choice model (Agarwal

4

et al., 2018), and developing a multi-armed bandit framework for identifying (recommending)

‘best’ (‘good’) items with respect to a (unknown) discrete choice model (Agarwal et al., 2019b).

Chapter 4– Learning multinomial logit (MNL) model from choices. We study the

problem of learning the parameters of the multinomial logit (MNL) choice model, which is

one of the most widely studied models in discrete choice, using (offline) data about choices

made by a user when presented with different alternatives. We develop a spectral algorithm

for learning this model, which is orders of magnitude faster in computation time than existing

algorithms (Negahban et al., 2017; Maystre and Grossglauser, 2015), can be implemented

in a distributed setting, and is also statistically more efficient than previous algorithms

(Negahban et al., 2017).

The materials in this chapter are based on a joint paper with Shivani Agarwal and Prathamesh

Patil (Agarwal et al., 2018) in ICML’18.

Chapter 5– Multi-armed bandits and discrete choice models. How can humans

discover good items which they have never interacted with in the past? In other words, how

can we balance the ‘exploitation’ of items which we already know that the user has a ‘decent’

preference for, with ‘exploration’ of more items in order to learn more about user preference?

The framework of multi-armed bandits seeks to balance this ‘exploitation’ and ‘exploration’

trade-off by minimizing an appropriate notion of regret over a sequence of interactions. In

this thesis we develop a new framework, which we term as choice bandits, where a learner

offers a choice set of items to a user in each round of interaction and the user chooses an item

from this set according to an underlying (unknown) choice model. The regret is defined in

terms of the overall quality of the choice sets with respect to a ‘best’ item in the choice model.

We develop an efficient algorithm for this problem which has a sublinear regret for a wide

variety of choice models including random utility models. Our study also opens up several

questions at the interface of multi-armed bandits and discrete choice models, for example,

5

designing low-regret algorithms for a broader class of choice models such as mixture of MNLs.

The materials in this chapter are based on a joint paper with Shivani Agarwal and Nicholas

Johnson (Agarwal et al., 2020). A short version of this paper appeared in NeurIPS’20 and a

longer version is in preparation for submission to a journal.

1.3 Interface Between Machine Learning and Theoretical Com-

puter Science

In recent years there have been many avenues for exchange of ideas between machine learning

and theoretical computer science. One such avenue is the design of parallel algorithms,

which has been an important research direction in theoretical computer science, but is now

becoming increasingly popular in machine learning. This popularity is driven by the fact

many active/adaptive machine learning algorithms, such as those used in ad placement, are

highly adaptive (sequential) in their ability to process data even though they can collect

data in parallel from different users. I have contributed to the design of algorithms that have

low adaptivity for important problems in both machine learning and theoretical computer

science including best arm identification in multi-armed bandits (Agarwal et al., 2017b) and

stochastic submodular covering (Agarwal et al., 2019a).

Chapter 6– Multi-armed bandits with limited adaptivity. Best arm identification is

a widely studied problem in multi-armed bandits where the goal is to find an arm with the

highest expected reward among a finite set of stochastic arms by repeatedly pulling (sampling

reward from) these arms. Most algorithms for this problem are highly adaptive, i.e. the

algorithm only pulls an arm after observing the results of all the previous pulls. In this thesis

we study algorithms that solve this problem in a limited number of adaptive rounds, where in

each round the algorithm pulls arms in parallel. We design an algorithm that improves more

than exponentially over previous algorithms in terms of rounds of adaptivity, while requiring

6

the same number of pulls as the previous best algorithm (Even-Dar et al., 2006).

The materials in this chapter are based on a joint paper with Shivani Agarwal, Sepehr Assadi,

and Sanjeev Khanna (Agarwal et al., 2017a) in COLT’17.

Chapter 7– Stochastic submodular cover with limited adaptivity. Submodular

optimization is well-studied in combinatorial optimization and theoretical computer science,

but has also gained a lot of attention in machine learning recently, due to its applications in

diverse data collection, data summarization, viral marketing etc. An important problem in

this area is that of stochastic submodular covering where there is a submodular set function

that takes different values depending upon a stochastic environment, and the goal is to

adaptively probe the function value on different sets until a desired function value is reached

(Golovin and Krause, 2010). In this thesis we study algorithms that probe sets in parallel

and only use a few adaptive rounds. We show tight bounds on the number of probes required

to solve the problem given a fixed number of rounds of adaptivity.

The materials in this chapter are based on a joint paper with Sepehr Assadi and Sanjeev

Khanna (Agarwal et al., 2019a) in SODA’19.

1.4 Some Comments on Additional Connections

In this section we will outline broader themes underlying some of the problems studied in

this thesis and discuss connections with existing literature.

• Heterogeneity: The two interfaces discussed in Section 1.1 and Section 1.2 are

concerned with eliciting/aggregating/learning the beliefs/preferences of humans. It is

well-understood that humans are heterogeneous in their beliefs/preferences, and hence,

taking into account this heterogeneity is an important direction of research at these

interfaces. There is already substantial literature on heterogeneity at the interface

between machine learning and information elicitation, for example Chapter 3 in this

thesis studies mechanisms for elicitation of heterogeneous beliefs in the absence of

7

ground truth using machine learning techniques; Simpson et al. (2013) study the role of

heterogeneity in aggregating human labels for machine learning tasks; and Zhang et al.

(2015) study the role of multi-armed bandit algorithms for allocating crowdsourcing

tasks to humans that have a varying level of accuracy on different tasks. The interface

of machine learning and choice modeling also contains a fast growing literature on the

study of choice models that take into account heterogeneity, for example Awasthi et al.

(2014) study the learnability of a mixtures of two Mallows model; Zhao and Xia (2019);

Liu et al. (2019); Chierichetti et al. (2018); Oh and Shah (2014) study the learnability

of a mixture of multinomial logit (MMNL) models. In the future we expect to see more

work on incorporating heterogeneity for many problems at these interfaces.

• Parallelism/Adaptivity: As discussed in Section 1.3, the design of parallel/less

adaptive algorithms is an active direction of research in machine learning and spans

across many areas. Apart from the two areas discussed in Section 1.3, there are several

other areas such as regret minimization in multi-armed bandits, ranking from pairwise

comparisons, clustering etc., where adaptivity has been studied. Perchet et al. (2015b)

study the tradeoff between adaptivity and regret in the regret minimization setting for

two-armed bandits where the goal is to minimize the regret of an algorithm that pulls

arms in batches (parallely). Gao et al. (2019) further extend the results of Perchet

et al. (2015b) to multiple arms. Ruan et al. (2021); Esfandiari et al. (2021) study

the tradeoff between regret and adaptivity for linear contextual bandits. Braverman

et al. (2019); Cohen-Addad et al. (2020) study the tradeoff between adaptivity and

sample complexity for the problem of ranking from pairwise comparisons under a noisy

comparison model. Cohen-Addad et al. (2021) study the design of parallel algorithms

for the problem of correlation clustering. In the future we expect to have more literature

on the tradeoffs that arise due to paralleism/adaptivity for many other problems in

machine learning.

Starting from the next chapter, we delve into details and present our results for each of

8

these problems along with formal proofs of correctness. Each chapter is designed to be

self-contained and can be read independently of the other chapters.

9

Chapter 2

Calibrated Surrogate Losses and Proper Scoring Rules

In this chapter we will start our discussion at the interface between machine learning and

information elicitation. We will show a close relation between surrogate risk minimization

which is a popular framework for supervised learning, and property elicitation which is a

widely studied area in probability forecasting, statistics and economics.

2.1 Introduction

2.1.1 Background and Motivation

Surrogate risk minimization is one of the most popular algorithmic frameworks for supervised

learning problems such as 0-1 (binary) classification, subset ranking, multilabel classification

and others; and has been well-studied in the machine learning and learning theory community

in recent years (Bartlett et al., 2006; Zhang, 2004a,b; Tewari and Bartlett, 2007; Steinwart,

2007; Cossock and Zhang, 2008; Xia et al., 2008; Duchi et al., 2010; Buffoni et al., 2011;

Ravikumar et al., 2011; Calauzènes et al., 2012; Lan et al., 2012; Ramaswamy and Agarwal,

2012; Ramaswamy et al., 2013). Under this framework, given a target loss or performance

measure of interest such as the 0-1 binary classification loss, the goal is to design a convex

surrogate loss such as the hinge loss which can be efficiently optimized in a learning algorithm.

It is also desirable that the surrogate is calibrated, i.e. minimization of the surrogate loss

should effectively result in the minimization of the target loss in the limit of infinite samples.

Property elicitation is a widely used framework in information elicitation, and has been

well-studied in the probability forecasting literature and has recently received renewed interest

in the machine learning, statistics, and economics communities (Savage, 1971; Schervish,

1989; Gneiting and Raftery, 2007; Lambert et al., 2008; Lambert and Shoham, 2009; Vernet

et al., 2011; Abernethy and Frongillo, 2012; Steinwart et al., 2014). Under this framework,

given a target property/function of an unknown distribution (e.g. mean) the goal is to design

10

a scoring rule (e.g. Brier score) which can be used to score agents’ reports against samples

from the underlying distribution. It is desirable that the scoring rule is proper, i.e. the correct

value of the property is a minimizer of the scoring rule in the limit of infinite samples.

It is well-known that there exist similarities between several surrogate losses used for binary

classification and scoring rules used for eliciting the Bernoulli distribution (Buja et al., 2005;

Reid and Williamson, 2010; Menon and Williamson, 2016; Narasimhan and Agarwal, 2013).

For example, Buja et al. (2005); Reid and Williamson (2010) showed that any proper scoring

rule for eliciting the Bernoulli distributions, such as the log scoring rule, can be composed

with an appropriate link function to construct a calibrated surrogate for binary classification

such as the logistic loss. In other words, certain calibrated surrogates for binary classification

can essentially be viewed as eliciting the Bernoulli conditional label distribution. Williamson

et al. (2016) extended this correspondence beyond the binary case and showed that several

surrogate losses for multiclass classification effectively elicit the multinomial conditional label

distribution.

However, this correspondence was previously understood to hold for a fairly limited class

of surrogates as not all surrogates can be viewed as eliciting the complete conditional label

distribution. This excludes many surrogates for binary/multiclass classification such as

the hinge (Zhang, 2004a); and almost all surrogates for problems with large label spaces

(e.g. subset ranking) where it is highly inefficient to elicit the complete conditional label

distribution. Does this mean that such surrogates are completely unrelated to proper scoring

rules or is there a correspondence? Are these surrogates eliciting some other succinct property

of the conditional label distribution rather than eliciting the entire distribution? In this

chapter we aim to understand these questions and seek to establish a stronger connection

between calibrated surrogates and proper scoring rules.

2.1.2 Our Contributions

In this chapter we define the notion of a calibrated property for a target loss function, such that

the optimal prediction under the target loss can be constructed using this property. We show

11

that given any target loss function, any strictly proper scoring rule for eliciting this calibrated

property results in a calibrated surrogate loss. Conversely, we show that any calibrated

surrogate can be used as a proper scoring rule for eliciting a calibrated property. This implies

that a large class of calibrated surrogate losses in supervised learning can essentially be

viewed as proper scoring rules for eliciting calibrated properties of the underlying conditional

label distribution, and a large class of proper scoring rules can essentially be viewed as

calibrated surrogates for certain target loss functions.

We use this framework to study the design of convex calibrated surrogates using proper

scoring rules for linear and nonlinear properties. We show how the standardization functions

studied by Buffoni et al. (2011) for subset ranking losses, as well as the general least-squares

type surrogates studied by Ramaswamy et al. (2013), effectively amount to estimating linear

properties of the distribution. We then show how using nonlinear properties can allow for

the design of lower-dimensional convex calibrated surrogates. One offshoot of our work is a

new framework for studying low-noise conditions; we show that eliciting a vector of quantiles

allows one to obtain interval estimates of the label probabilities, based on which one can

construct calibrated surrogates under any such condition where such a coarse probability

estimate suffices to find an optimal classifier.

2.1.3 Notation

For n ∈ Z+, denote [n] = {1, . . . , n} and ∆n = {p ∈ Rn+ :
∑n

i=1 pi = 1}. Denote by

Sn the set of permutations on n objects. For u ∈ Rn, denote argsort(u) =
{
σ ∈ Sn :

ui > uj =⇒ σ(i) < σ(j) , ∀i, j ∈ [n]
}
. For a set A ⊆ Rn, denote by relint(A) the

relative interior of A, by bndry(A) the boundary of A, and by dim(A) the dimension of

the affine extension of A. For a matrix L ∈ Rn×k, denote by col(L) the column-space of

L, and by affdim(L) the affine dimension of the set of columns of L. For a strictly convex

function φ : Rn→R, denote by Bφ the Bregman divergence with respect to φ, defined as

Bφ(u1,u2) = φ(u1)− φ(u2)− ∂φ>u2
(u1 − u2) where ∂φu2 denotes a subderivative of φ at u2.

12

2.1.4 Organization

In Section 2.2 we set up some preliminaries related to surrogate risk minimization and

property elicitation. In Section 2.3 we define the notion of calibrated properties and give our

main result. In Section 2.4 we study the design of calibrated surrogates via linear properties

and in Section 2.5 the design of calibrated surrogates via non-linear properties.

2.2 Preliminaries

We set up some preliminaries related to surrogate risk minimization in Section 2.2.1 and

property elicitation in Section 2.2.2; the rest of the chapter will then connect these two

themes.

2.2.1 Surrogate Risk Minimization and Calibrated Surrogates

We consider supervised learning problems with instance space X , finite label space Y = [n],

and finite prediction space Ŷ = [k] (often Ŷ = Y , but this need not always be the case). Given

training examples (X1, Y1), . . . , (Xm, Ym) drawn i.i.d. from some underlying distribution D

on X × [n], the goal is to learn a function h : X→[k] with good performance according

to some loss function ` : [n] × [k]→R+, or equivalently, according to some loss matrix

L ∈ Rn×k+ (we will use these two notions interchangeably, with the understanding that

Lyt = `(y, t) ∀y ∈ [n], t ∈ [k]). In particular, the goal is to learn a function h with small

`-generalization error w.r.t. D, defined as er`D[h] = E(X,Y)∼D[`(Y, h(X))]; an algorithm

that given m random examples learns a (random) function hm is `-consistent w.r.t. D if

er`D[hm]
P−→ infh:X→[k] er`D[h] (as m→∞) . For any x ∈ X , we will denote py(x) = P(Y =

y|X = x) ∀y ∈ [n] (under D) and p(x) = (p1(x), . . . , pn(x))>. For p ∈ ∆n, we will find

it convenient to define Opt(`,p) = argmint∈[k] EY∼p[`(Y, t)] . Clearly, any classifier h that

satisfies h(x) ∈ Opt(`,p(x)) ∀x ∈ X achieves the optimal `-error under D.

Surrogate risk minimization algorithms. Since minimizing the discrete loss ` directly

is hard, a common algorithmic approach is to minimize a surrogate loss ψ : [n]×Rd→R+ for

13

some suitable d ∈ Z+. In particular, one learns a function fm : X→Rd by solving

minf
∑m

i=1 ψ(Yi, f(Xi))

over a suitably rich class of functions f : X→Rd; and then returns hm = pred ◦ fm for

some suitable mapping pred : Rd→[k] (for example, for multiclass 0-1 classification, where

k = n and `0-1(y, t) = 1(t 6= y), many common algorithms such as those considered by

Zhang (2004b) and Tewari and Bartlett (2007) learn a function fm : X→Rn and then

return a classifier hm = argmax ◦fm). In practice, the surrogate ψ is often chosen to be

convex in its second argument to enable efficient minimization. It is known that if the

minimization is performed over a universal function class (with suitable regularization), then

the resulting algorithm is ψ-consistent w.r.t. D, i.e. that the ψ-generalization error of fm

w.r.t. D, defined for a function f : X→Rd as erψD[f] = E(X,Y)∼D[ψ(Y, f(X))], converges to

the optimal: erψD[fm]
P−→ inff :X→Rd er

ψ
D[f] . There has been much work over the last several

years on understanding when ψ-consistency (of fm) also implies `-consistency (of hm), and

how to design surrogates satisfying this property; in particular, this has led to the study of

surrogates that are calibrated with respect to the target loss ` (Bartlett et al., 2006; Zhang,

2004a,b; Tewari and Bartlett, 2007; Steinwart, 2007; Ramaswamy and Agarwal, 2012).

Calibrated surrogates. A pair (ψ, pred) is said to be `-calibrated over P ⊆ ∆n if

∀p ∈ P : inf
u∈Rd:pred(u)/∈Opt(`,p)

EY∼p[ψ(Y,u)] > inf
u∈Rd

EY∼p[ψ(Y,u)] . (2.2.1)

It is known that (ψ, pred) is `-calibrated over P if and only if ψ-consistency (of fm) implies

`-consistency (of hm = pred ◦ fm) for all distributions D for which p(x) ∈ P ∀x (Bartlett

et al., 2006; Zhang, 2004b; Tewari and Bartlett, 2007; Ramaswamy and Agarwal, 2012, 2015).

Thus, given a target loss `, in order to design a surrogate risk minimization algorithm that

is `-consistent w.r.t. some class of distributions D, one needs to design (ψ, pred) that is

`-calibrated over the corresponding set of conditional distributions P . As noted above, one is

often interested in convex calibrated surrogates, for which ψ is convex in its second argument,

14

to enable efficient minimization.

2.2.2 Property Elicitation and Proper Scoring Rules/Losses

When the goal is to elicit a full distribution p ∈ ∆n, it is well known that one can use

a (strictly) proper scoring rule/loss. A scoring rule/loss in this context is a function

ψ : [n]×∆n→R+ that assigns a ‘penalty’ ψ(y,p′) to an estimate/report p′ ∈ ∆n when an

outcome y ∈ [n] is observed, and is said to be proper over P ⊆ ∆n if

∀p ∈ P : p ∈ argminp′∈∆n
EY∼p[ψ(Y,p′)] ,

and strictly proper over P if the above minimizer is unique for all p ∈ P.1 In probability

forecasting and economics, where the goal is to elicit the distribution from an agent, the agent

reports a distribution p′, and on observing an outcome y drawn from the true distribution p,

receives a reward (or in our setting, incurs a loss) given by the scoring rule, namely ψ(y,p′);

a strictly proper scoring rule ensures that truthful reporting maximizes the agent’s expected

reward. In machine learning and statistics, where the goal is to estimate the distribution

from random observations y1, . . . , ym sampled from p, one estimates p′ to minimize the

average value of the scoring rule on the observed sample, 1
m

∑m
i=1 ψ(yi,p

′); here a strictly

proper scoring rule yields a consistent estimator.

Proper (and strictly proper) scoring rules/losses for eliciting full probability distributions are

fairly well characterized (Savage, 1971; Schervish, 1989; Gneiting and Raftery, 2007; Vernet

et al., 2011). More recently, there has been much interest in understanding what types of

scoring rules/losses can be used when the goal is to elicit not the full probability distribution

p, but rather some property of p of interest (Lambert et al., 2008; Lambert and Shoham,

2009; Abernethy and Frongillo, 2012; Steinwart et al., 2014; Frongillo and Kash, 2015).

Property of a distribution. In general, a property is any ‘statistic’ of a distribution.
1Note that we use the terms scoring rule and loss here interchangeably; in the literature, scoring rules

usually assign a ‘utility’ to an estimate p′ that needs to be maximized, while losses assign a ‘penalty’ that
needs to be minimized. We will use the latter interpretation for both (in general, one can be obtained from
the other simply by switching signs).

15

Formally, for P ⊆ ∆n and d ∈ Z+, we will define a (d-dimensional) property over P as

any function Γ : P→Rd that maps each distribution p ∈ P to a (d-dimensional) statistic

Γ(p) ∈ Rd. One such example is the mean: Γ(p) = µ(p) = EY∼p[Y]. Other examples

of one-dimensional properties include the median, generalized quantiles, and many others.

An example of a d-dimensional property is the vector of the first d moments: Γ(p) =

(µ1(p), . . . , µd(p))>, where µi(p) = EY∼p[Y i] ∀i ∈ [d]; more generally, a d-dimensional

property is any vector of d one-dimensional properties.

Proper scoring rules/losses for eliciting properties of a distribution. Clearly, a

(strictly) proper scoring rule that elicits the full distribution can be used to elicit any property

of the distribution. However, this involves estimating an (n− 1)-dimensional property, which

can be expensive for large n and may not always be necessary. We will define a d-dimensional

scoring rule/loss as a function ψ : [n] × Rd→R+, and will say it is proper for a property

Γ : P→Rd if

∀p ∈ P : Γ(p) ∈ argminu∈Rd EY∼p[ψ(Y,u)] ,

and strictly proper for Γ if the above minimizer is unique for all p ∈ P. We will say

a d-dimensional property Γ : P→Rd is directly elicitable if there exists a strictly proper

d-dimensional scoring rule for Γ. Further, if for some d′ ≥ d, there is a directly elicitable

d′-dimensional property Γ′ : P→Rd′ which can be used to recover Γ, i.e. for which there

exists a mapping π : Rd′→Rd such that π(Γ′(p)) = Γ(p) ∀p ∈ P , then we will say that Γ is

d′-elicitable. Clearly, every property is (n− 1)-elicitable, and a d-dimensional property that

is directly elicitable is d-elicitable.

Linear properties. A class of properties that are relatively better understood are linear

properties. Specifically, a property Γ : P→Rd is said to be linear if it can be written

as a vector of expectations, i.e. if there exists a function ρ : [n]→Rd such that Γ(p) =

EY∼p[ρ(Y)] ∀p ∈ P. It is known that linear properties are directly elicitable; moreover,

as shown by Abernethy and Frongillo (2012), all strictly proper scoring rules for a linear

property have the form of a Bregman divergence:

16

Theorem 2.2.1 (Abernethy and Frongillo (2012)). Let P ⊆ ∆n and ρ : [n]→Rd, and let

Γ : P→Rd be a linear property defined as Γ(p) = EY∼p[ρ(Y)] ∀p ∈ P. Then a scoring rule

ψ : [n] × Rd→R+ is strictly proper for Γ if and only if there is a strictly convex function

φ : Rd→R such that

ψ(y,u) = Bφ(ρ(y),u) ∀y ∈ [n],u ∈ Rd .

2.3 Calibrated Properties

We now make a connection between the two main themes of this chapter by defining the

notion of a calibrated property for a given loss `. As we will see, any strictly proper scoring

rule for an `-calibrated property will yield an `-calibrated surrogate loss, and any `-calibrated

surrogate will yield a proper scoring rule for an `-calibrated property.

Specifically, recall that given a loss ` : [n] × [k]→R+, the goal is to learn a classifier that

approaches the optimal `-error under D, and that this is achieved by classifying according to

h(x) ∈ Opt(`,p(x)) for all x. This means that for any p ∈ ∆n (or more generally, p ∈ P for

some suitable P ⊆ ∆n), one is simply interested in finding an `-optimal prediction t∗(p) ∈ [k],

i.e. any t∗(p) that satisfies t∗(p) ∈ argmint∈[k] EY∼p[`(Y, t)]. While we could consider the

property t∗(p) directly, this is a discrete-valued property that is generally hard to estimate

directly.2 Instead, we will consider properties Γ : P→Rd that map p ∈ P to a real number

or vector Γ(p) ∈ Rd from which one can recover an `-optimal prediction t∗(p) ∈ [k] using a

suitable mapping pred : Rd→[k]; we will refer to such properties as `-calibrated properties:

Definition 2.3.1 (`-calibrated property). Let P ⊆ ∆n, Γ : P→Rd, and pred : Rd→[k]. We
2Note that in the probability forecasting/mechanism design setting, where there is an agent who holds

information about the probability distribution and the goal is to elicit this information from him by assigning
a suitable reward/loss using a scoring rule, eliciting a discrete-valued property poses no problem. However
in the learning/statistics setting that we consider here, where one gets random observations from the
underlying distribution and the goal is to estimate the property of interest from these observations by
minimizing/maximizing a scoring rule, a discrete-valued property leads to a discrete optimization problem
that in general can be hard.

17

will say (Γ, pred) is `-calibrated over P if for all p ∈ P and all sequences {um} in Rd,

um → Γ(p) =⇒ EY∼p[`(Y, pred(um)] → min
t∈[k]

EY∼p[`(Y, t)] .

Note in particular this implies that if (Γ, pred) is `-calibrated over P , then we have that for

all p ∈ P, pred(Γ(p)) ∈ Opt(`,p). The sequence convergence condition is stronger and is

needed in the proof of the following result, which tells us that the problem of designing an

`-calibrated surrogate loss in d dimensions can be reduced to finding an `-calibrated property

in d dimensions that is (directly) elicitable, together with any strictly proper scoring rule for

it:

Theorem 2.3.1 (`-calibrated surrogates via elicitable `-calibrated properties). Let ` : [n]×

[k]→R+ and P ⊆ ∆n. Let Γ : P→Rd and pred : Rd→[k] be such that Γ is directly elicitable

and (Γ, pred) is `-calibrated over P. Let ψ : [n]× Rd→R+ be any strictly proper scoring rule

for Γ. Then (ψ, pred) forms an `-calibrated surrogate over P.

Proof. Let p ∈ P . By strict properness of ψ for Γ, we have that Γ(p) is the unique minimizer

of EY∼p[ψ(Y,u)] over u ∈ Rd; for convenience, denote this unique minimizer by u∗. Now,

for each t ∈ [k], define

regret`p(t) := EY∼p[`(Y, t)]−min
t∈[k]

EY∼p[`(Y, t)] .

Since (Γ, pred) is `-calibrated over P, we have pred(u∗) = pred(Γ(p)) ∈ Opt(`,p), and

therefore regret`p(pred(u∗)) = 0. Let

ε = min
t∈[k]:regret`p(t)>0

regret`p(t) .

18

Then we have

inf
u∈Rd:pred(u)/∈Opt(`,p)

EY∼p[ψ(Y,u)] = inf
u∈Rd:regret`p(pred(u))≥ε

EY∼p[ψ(Y,u)]

= inf
u∈Rd:regret`p(pred(u))≥regret`p(pred(u∗))+ε

EY∼p[ψ(Y,u)] .

Now, we claim that the mapping u 7→ regret`p(pred(u)) is continuous at u = u∗. To see

this, note that since (Γ, pred) is `-calibrated over P , for all sequences {um} in Rd such that

um→u∗, we have regret`p(pred(um)) → 0 = regret`p(pred(u∗)). In particular, this implies

that ∃δ > 0 such that

‖u− u∗‖2 < δ =⇒ regret`p(pred(u))− regret`p(pred(u∗)) < ε .

This

inf
u∈Rd:regret`p(pred(u))≥regret`p(pred(u∗))+ε

EY∼p[ψ(Y,u)] ≥ inf
u∈Rd:‖u−u∗‖2≥δ

EY∼p[ψ(Y,u)]

> inf
u∈Rd

EY∼p[ψ(Y,u)] .

where the last inequality follows from the fact that u∗ is the unique minimizer ofEY∼p[ψ(Y,u)].

Since p ∈ P was arbitrary, the result follows.

Theorem 2.3.2 (proper scoring rules via `-calibrated surrogates). Let ` : [n]× [k]→R+ and

P ⊆ ∆n. Let (ψ, pred) be an `-calibrated surrogate where ψ : [n]× Rd→R+ is continuous in

the second argument and pred : Rd→[k]. Then there exists an `-calibrated property Γ : P→Rd

over P such that ψ is a proper scoring rule for Γ over P.

Proof. Given p ∈ P, let u∗p ∈ infu∈Rd EY∼p[ψ(Y,u)]. We will consider the property Γ :

P→Rd defined as Γ(p) := u∗p. It is easy to observe that ψ is a proper scoring rule for Γ since

Γ(p) = u∗p ∈ infu∈Rd EY∼p[ψ(Y,u)] by definition. Hence, the rest of this proof is devoted to

showing that Γ is `-calibrated over P.

19

We will first show that u∗p is such that pred(u∗p) ∈ Opt(`,p), for any p ∈ P. To see this

suppose that pred(u∗p) 6∈ Opt(`,p), then we will have that

inf
u∈Rd:pred(u)/∈Opt(`,p)

EY∼p[ψ(Y,u)] = inf
u∈Rd

EY∼p[ψ(Y,u)] ,

which contradicts the definition of `-calibration of surrogates (Eq. (2.2.1)).

Now, consider any sequence {um} ∈ Rd such that um→u∗p. We want to show that

EY∼p[`(Y, pred(um))] → mint∈[k] EY∼p[`(Y, t)]. Equivalently, given any ε > 0 we want

to find δ > 0 such that

‖u− u∗p‖2 < δ =⇒
∣∣∣∣EY∼p[`(Y, pred(u))] − min

t∈[k]
EY∼p[`(Y, t)]

∣∣∣∣ < ε .

Let

ε′ := inf
u∈Rd:pred(u)/∈Opt(`,p)

EY∼p[ψ(Y,u)] − inf
u∈Rd

EY∼p[ψ(Y,u)] . (2.3.1)

Clearly, ε′ > 0 due to `-calibration of ψ. The above implies that for any u with pred(u) 6∈

Opt(`,p) we have EY∼p[ψ(Y,u)]−EY∼p[ψ(Y,u∗p)] > ε′. Conversely,

∣∣EY∼p[ψ(Y,u)]−EY∼p[ψ(Y,u∗p)]
∣∣ < ε′ =⇒ pred(u) ∈ Opt(`,p) . (2.3.2)

Since ψ is continuous at u∗p ∈ Rd, we know that for ε′ > 0 there exists a δ > 0 such that

‖u− u∗p‖2 < δ =⇒ |EY∼p[ψ(Y,u)] − EY∼p[ψ(Y,u∗)]| < ε′ . (2.3.3)

Using Eq. (2.3.2) and Eq. (2.3.3) one can observe that any u with ‖u − u∗p‖2 < δ is such

that pred(u) ∈ Opt(`,p). Therefore, we have that

‖u− u∗p‖2 < δ =⇒
∣∣∣∣EY∼p[`(Y, pred(u))] − min

t∈[k]
EY∼p[`(Y, t)]

∣∣∣∣ = 0 < ε .

20

This concludes the proof of sequence convergence requirement for `-calibration in Defini-

tion 2.3.1.

As a simple example, it is easy to see that (n− 1)-dimensional properties that preserve the

full probability structure (also called ‘link’ functions) are `-calibrated for any loss `, and that

the corresponding strictly proper rules lead to class probability estimation (CPE) algorithms

that estimate the full conditional distribution p(x) (and are consistent for any loss `):

Example 2.3.2 (Link functions and class probability estimation (CPE)). Let λ : ∆n→Rn−1

be a bijective mapping (sometimes called a multiclass ‘link’ function) with a continuous

inverse λ−1. Then the property Γ : ∆n→Rn−1 defined as Γ(p) = λ(p) is trivially `-calibrated

over ∆n for any loss ` : [n] × [k]→R+; to see this, take any mapping pred` : Rn−1→[k]

that satisfies pred`(u) ∈ Opt(`,λ−1(u)) ∀u ∈ Rn−1. This property is also trivially elicitable;

indeed, this is the property effectively elicited by class probability estimation algorithms using

a multiclass proper composite surrogate loss with link λ (Vernet et al., 2011).

While estimating the full conditional distribution p(x) clearly yields consistent algorithms for

any loss `, this requires n− 1 dimensions and is not always needed. Indeed, for many losses `,

finding an optimal classifier requires estimating only a restricted, lower-dimensional property

of p(x). In such cases, one can use a strictly proper scoring rule for the corresponding

property to design a calibrated surrogate loss operating in a smaller number of dimensions.

We shall see several examples of such surrogates below. In particular, in Section 2.4 we

shall see examples of calibrated surrogate losses that effectively elicit low-dimensional linear

properties of p(x). In Section 2.5 we will consider how to exploit low-dimensional nonlinear

calibrated properties. In both cases, we will be particularly interested in convex scoring rules

that lead to convex calibrated surrogates.

2.4 Calibrated Surrogates via Calibrated Linear Properties

In this section we show that some recent works that have proposed general frameworks

for obtaining convex calibrated surrogates effectively amount to using proper scoring rules

21

for calibrated linear properties. In particular, we start by showing that the notion of

‘standardization function’ used to obtain calibrated surrogates for certain subset ranking

losses (Buffoni et al., 2011) corresponds to a calibrated linear property (Section 2.4.1). We

then show that the general framework described recently by Ramaswamy et al. (2013) for

obtaining convex calibrated surrogates for any loss ` in d = affdim(L) dimensions also

amounts to using a calibrated linear property (Section 2.4.2). Finally, we show that for any

loss `, the number of dimensions d needed to construct an `-calibrated linear property is

fundamentally lower bounded by affdim(L)− 1 (Section 2.4.3), making the construction of

Ramaswamy et al. (2013) essentially unimprovable as far as linear properties are concerned.

2.4.1 Subset Ranking Losses and Standardization Functions

Subset ranking refers to ranking problems such as those that arise in information retrieval,

where each instance x ∈ X consists of a query with say r associated documents, and a label

y ∈ Y represents some ‘preference’ or ‘relevance’ information about these documents in

relation to the query; for example a label could be a (possibly weighted) directed acyclic

graph (DAG) on r nodes indicating which of the r documents are more relevant to the

query than others (Y = Gr for some finite set Gr of possibly weighted DAGs on r nodes,

with n = |Gr|), or simply a vector of r binary or multi-valued relevance judgments for the

documents (Y = {0, 1}r with n = 2r or Y = [q]r for some q ∈ Z+ with n = qr). In most

such settings, given a new query with r documents, the goal is to rank the documents by

relevance to the query, i.e. the prediction space is the set of permutations of r objects,

Ŷ = Sr (thus k = r!). There has been much work in recent years on understanding how to

design convex calibrated surrogates for various subset ranking losses used in practice, such as

the (normalized) discounted cumulative gain ((N)DCG), pairwise disagreement (PD), mean

average precision (MAP), etc (Cossock and Zhang, 2008; Xia et al., 2008; Duchi et al., 2010;

Ravikumar et al., 2011; Buffoni et al., 2011; Calauzènes et al., 2012; Lan et al., 2012).

In particular, Buffoni et al. (2011) introduced the notion of ‘standardization function’, and

showed that many previous results on calibrated surrogates for subset ranking could be

22

explained through this notion. Specifically, let Y be one of the label spaces above and Ŷ = Sr,

and let ` : Y × Ŷ→R+ be any subset ranking loss. A standardization function for ` over

P ⊆ ∆Y is defined as any function s : Y→Rr such that

∀p ∈ P : argsort
(
EY∼p[s(Y)]

)
⊆ argminσ∈Sr EY∼p[`(Y, σ)] . (2.4.1)

We show below that if such a function s exists, then the r-dimensional linear property

Γ : P→Rr defined as Γ(p) = EY∼p[s(Y)] is `-calibrated over P:

Theorem 2.4.1 (Standardization functions yield calibrated linear properties). Let ` : Y ×

Sr→R+ be a subset ranking loss for some suitable Y as above, and let P ⊆ ∆Y . Let s : Y→Rr

be a standardization function for ` over P. Let Γ : P→Rr be the linear property defined as

Γ(p) = EY∼p[s(Y)] ,

and let pred : Rr→Sr be any mapping that satisfies pred(u) ∈ argsort(u) ∀u ∈ Rr. Then

(Γ, pred) is `-calibrated over P.

Proof. Let p ∈ P, and let {um} be any sequence in Rr such that um→Γ(p). We will show

that EY∼p[`(Y, pred(um))]→ minσ∈Sr EY∼p[`(Y, σ)].

Let δ := mini,j∈[r]:|Γi(p)−Γj(p)|>0 |Γi(p)− Γj(p)|. Since um→Γ(p), we have ∃M such that

∀m ≥M : ‖um − Γ(p)‖2 < δ .

Now clearly, for all m ≥M and i, j ∈ [r], we must have Γi(p) > Γj(p) =⇒ umi > umj (else

the L2-distance between um and Γ(p) would exceed δ). Therefore, for all m ≥M , we have

argsort(um) ⊆ argsort(Γ(p)), and thus EY∼p
[
`(Y, pred(um))] = EY∼p[`(Y, pred(Γ(p)))].

Also, by construction of pred, we know that EY∼p[`(Y, pred(Γ(p)))] = minσ∈Sr EY∼p[`(Y, σ)].

This implies that for all m ≥M , EY∼p[`(Y, pred(um))] = minσ∈Sr EY∼p[`(Y, σ)].

23

Since p ∈ P was arbitrary, this proves the result.

Thus, if a subset ranking loss ` has a standardization function over P , then one can construct

an r-dimensional convex calibrated surrogate for ` over P by constructing a convex strictly

proper scoring rule for the calibrated linear property Γ above (e.g. by using φ(u) = 1
2‖u‖22

in Theorem 2.2.1). Note that this is a huge savings over the naïve CPE approach of

Example 2.3.2, which would use |Y| − 1 dimensions (for most subset ranking settings, |Y| is

exponential in r). The following example illustrates one application of the above result:

Example 2.4.1 (Discounted cumulative gain (DCG) loss for subset ranking). The DCG loss

for multi-valued relevance vector labels (Y = [q]r for some q ∈ Z+), `DCG@τ : [q]r × Sr→R+

(where τ ∈ [r] is a cut-off value), is widely used in information retrieval and is defined as

`DCG@τ (y, σ) = Z −
τ∑
i=1

2
yσ−1(i) − 1

log2(i+ 1)
∀y ∈ [q]r, σ ∈ Sr

for a suitable constant Z that ensures non-negativity of the loss. As shown by Buffoni et al.

(2011), the function s : [q]r→Rr defined as si(y) = 2
yσ−1(i) − 1 ∀i ∈ [r] is a standardization

function for `DCG@τ over ∆Y , and therefore it follows from Theorem 2.4.1 that any strictly

proper scoring rule for the corresponding linear property Γ : ∆Y→Rr given by Γi(p) =

EY∼p[2
Yσ−1(i) − 1] ∀i ∈ [r],p ∈ ∆Y yields an `DCG@τ -calibrated surrogate over ∆Y . In

particular, using φ(u) = 1
2‖u‖22 in Theorem 2.2.1, one gets the convex `DCG@τ -calibrated

surrogate used by Cossock and Zhang (2008).

Another example of an application of Theorem 2.4.1 involves the weighted pairwise dis-

agreement (WPD) loss for subset ranking (Duchi et al., 2010). In particular, Duchi et al.

(2010) proposed a convex r-dimensional surrogate for subset ranking which they showed to

be calibrated w.r.t. the WPD loss under a certain low-noise condition; this surrogate can

also be viewed as a strictly proper scoring rule for a linear property, composed with a link

function.

24

Example 2.4.2 (Weighted pairwise disagreement (WPD) loss for subset ranking). Another

popular subset ranking loss is the WPD loss for weighted preference graph labels, `WPD :

Y × Sr→R+, where Y is some finite set of weighted DAGs on r nodes; for a weighted DAG

G = ([r], EG,WG) ∈ Y, where EG ⊂ [r]× [r] denotes the set of edges of G and WG ∈ Rr×r+

denotes the edge weights with WG
ij > 0 iff (i, j) ∈ EG, and for a permutation σ ∈ Sr, this

loss is defined as

`WPD(G, σ) =
∑
i,j

WG
ij

(
1(σ(i) > σ(j)) +

1

2
1(σ(i) = σ(j))

)
.

For any p ∈ ∆Y , define W
p
ij = EG∼p[WG

ij] and Ep =
{

(i, j) ∈ [r]× [r] : Wp
ij > Wp

ji

}
. Duchi

et al. (2010) considered the following set of ‘low-noise’ distributions p ∈ ∆Y :

PWPD
LN =

{
p ∈ ∆Y : the unweighted graph Gp = ([r], Ep) is a DAG, and

∀i, k ∈ [r] : Wp
ik > Wp

ki =⇒ ∑r
j=1

(
Wp
ij −W

p
ji

)
>
∑r

j=1

(
Wp
kj −W

p
jk

)}
.

It is easy to see that the function s : Y→Rr defined as si(G) =
∑r

j=1(WG
ij −WG

ji) ∀i ∈ [r]

is a standardization function for `WPD over PWPD
LN , and therefore by Theorem 2.4.1, any

strictly proper scoring rule for the corresponding linear property Γ : PWPD
LN →Rr given by

Γi(p) =
∑r

j=1(Wp
ij −W

p
ji) ∀i ∈ [r],p ∈ PWPD

LN yields an `WPD-calibrated surrogate over

PWPD
LN . The convex r-dimensional surrogate shown to be `WPD-calibrated over PWPD

LN by

Duchi et al. (2010) can be viewed as a strictly proper scoring rule for this property composed

with a link function.

2.4.2 Affdim(L)-Dimensional Surrogates of Ramaswamy et al. (2013)

Recently, Ramaswamy et al. (2013) gave a very general framework for constructing a convex

calibrated surrogate (over the full simplex ∆n) for any given loss ` : [n] × [k]→R+ in

d = affdim(L) dimensions. In particular, they gave the following result:

Theorem 2.4.2 (Ramaswamy et al. (2013)). Let ` : [n]× [k]→Rk+ be such that L = AB + c

for some A ∈ Rn×d, B ∈ Rd×k, and c ∈ R. Let ψ : [n] × Rd→R+ and pred : Rd→[k] be

25

defined as follows:

ψ(y,u) =
∑d

i=1(ui −Ayi)2 , pred(u) ∈ argmint∈[k]

∑d
i=1Bitui .

Then (ψ, pred) is `-calibrated over ∆n.

The proof of the above result (Ramaswamy et al., 2013) can be re-interpreted as showing that

the linear property Γ : ∆n→Rd (where d = affdim(L)) given by Γi(p) = EY∼p[AY i] ∀i ∈ [d]

is `-calibrated over ∆n via the above mapping pred; the convex least-squares type surrogate

loss ψ defined above is then simply the strictly proper scoring rule for this property resulting

from using φ(u) = 1
2‖u‖22 in Theorem 2.2.1. For completeness, we state this below and give

a self-contained proof. Note also that this implies that any other strictly proper scoring rule

for this linear property (such as those obtained by using Bregman divergences associated

with other convex functions φ in Theorem 2.2.1) will also lead to an `-calibrated surrogate

over ∆n.

Theorem 2.4.3 (Affdim(L)-dimensional calibrated linear properties). Let ` : [n]× [k]→Rk+

be such that L = AB + c for some A ∈ Rn×d, B ∈ Rd×k, and c ∈ R. Let Γ : ∆n→Rd be the

linear property defined as

Γi(p) = EY∼p[AY i] ∀i ∈ [d],

and let pred : Rd→[k] be defined as in Theorem 2.4.2. Then (Γ, pred) is `-calibrated over ∆n.

26

Proof. Note first that for any p ∈ ∆n and t ∈ [k], we have

EY∼p[`(Y, t)] =
d∑
y=1

py

(d∑
i=1

AyiBit + c

)

=
d∑
y=1

d∑
i=1

pyAyiBit + c

=

d∑
i=1

Bit

d∑
y=1

pyAyi + c

=
d∑
i=1

BitEY∼p[AY i] + c =
d∑
i=1

BitΓi(p) + c . (2.4.2)

Now, let p ∈ ∆n, and let {um} be any sequence in Rd such that um→Γ(p). For each m,

define tm := pred(um) ∈ [k]. Then we have

EY∼p[`(Y, tm)]−min
t∈[k]

EY∼p[`(Y, t)]

=
d∑
i=1

BitmΓi(p)−min
t∈[k]

d∑
i=1

BitΓi(p) , by Eq. (2.4.2)

=

d∑
i=1

Bitm(Γi(p)− umi) +

d∑
i=1

Bitmumi −min
t∈[k]

d∑
i=1

BitΓi(p)

=
d∑
i=1

Bitm(Γi(p)− umi) + min
t∈[k]

d∑
i=1

Bitumi −min
t∈[k]

d∑
i=1

BitΓi(p) ,

where the last equality holds due to the definition of pred. It is easy to see that the term on the

right hand side goes to zero asm→∞. Thus we get thatEY∼p[`(Y, tm)]→mint∈[k] EY∼p[`(Y, t)].

Since p ∈ ∆n was arbitrary, this proves the result.

Ramaswamy et al. (2013) also applied Theorem 2.4.2 to obtain low-dimensional convex

calibrated surrogates for several subset ranking losses. For subset ranking losses with

affdim(L) = r (such as the DCG@r loss), the linear property constructed by the above result

effectively provides a standardization function over ∆Y . For other subset ranking losses,

the two approaches can give complementary results. For example, for the WPD and MAP

27

losses, which have affine dimensions Θ(r2) (Ramaswamy and Agarwal, 2015), it is known

that there is no standardization function over ∆Y (Buffoni et al., 2011), and that there is no

convex calibrated surrogate over ∆Y in r dimensions (Calauzènes et al., 2012; Ramaswamy

and Agarwal, 2015). On the other hand, by Theorem 2.4.2, there do exist Θ(r2)-dimensional

calibrated linear properties and therefore Θ(r2)-dimensional convex calibrated surrogates

for these losses over ∆Y ; moreover, as demonstrated in Example 2.4.2, one can construct

standardization functions for these losses over restricted sets of distributions P ⊂ ∆Y ,

allowing for r-dimensional convex calibrated surrogates over such restricted sets P.

The following example illustrates a different application of the above result:

Example 2.4.3 (Hamming loss for sequence prediction). Consider a sequence prediction

task with Y = Ŷ = {0, 1}r (thus n = k = 2r). A widely used loss in this setting is the

Hamming loss `Ham : {0, 1}r × {0, 1}r→R+ given by

`Ham(y, t) =
∑r

i=1 1(ti 6= yi) ∀y, t ∈ {0, 1}r .

As shown by Ramaswamy and Agarwal (2012), affdim(LHam) ≤ r, and therefore by The-

orem 2.4.3, one can construct an r-dimensional linear property Γ : ∆Y→Rr that is `Ham-

calibrated over ∆Y . Any strictly proper scoring rule for Γ then forms an r-dimensional

`Ham-calibrated surrogate over ∆Y ; in particular, using φ(u) = 1
2‖u‖22 in Theorem 2.2.1, one

gets the surrogate given by Theorem 2.4.2.

2.4.3 Lower Bound on Dimension of Calibrated Linear Properties

Theorem 2.4.3 shows that for any loss `, there is a linear property in d = affdim(L) dimensions

that is `-calibrated over ∆n. In the following result, we show that this is essentially the best

one can do with linear properties:

Theorem 2.4.4 (Lower bound on dimension of calibrated linear properties). Let ` : [n]×

[k]→R+. Let Γ : ∆n→Rd be a linear property. If there exists a mapping pred : Rd→[k] such

28

that (Γ, pred) is `-calibrated over ∆n, then

d ≥ affdim(L)− 1 .

Proof. For each t ∈ [k], denote `t = (`(1, t), · · · , `(n, t))>. Before proceeding with the proof,

we will need the following definition of trigger probabilities:

Definition 2.4.4 (Trigger Probabilities; Ramaswamy and Agarwal (2012)). Let ` : [n]×[k]→

R+. For each t ∈ [k], the set of trigger probabilities of t with respect to ` is defined as

Q`t :=
{
p ∈ ∆n : p>(`t − `t′) ≤ 0 ∀t′ ∈ [k]

}
=
{
p ∈ ∆n : t ∈ Opt(`,p)

}
.

Suppose ∃pred : Rd→[k] such that (Γ, pred) is `-calibrated over ∆n. We will show that

d ≥ affdim(L)− 1.

Suppose for the sake of contradiction that d < affdim(L)− 1. Let s : [n]→Rd be such that

Γ(p) = EY∼p[s(Y)] ∀p ∈ ∆n, and define U ∈ Rd×n as uiy := si(y) ∀i ∈ [d], y ∈ [n]. Observe

that Γ(p) = Up. For each i ∈ [d], let ui ∈ Rn denote the i-th row vector of U, so that

U = [u1 · · ·ud]>. Define Ũ := [u1 · · ·ud 1]>, where 1 ∈ Rn is the all-ones vector.

The main idea of the proof is to find p1,p2 ∈ ∆n such that Up1 = Up2 but Opt(`,p1) ∩

Opt(`,p2) = ∅; this will contradict the fact that (Γ, pred) is `-calibrated over ∆n. We find

such p1,p2 by first finding p ∈ ∆n that lies at the intersection of two trigger probability

sets, and then perturbing it along suitable directions δ,−δ (see Figure 1). The following

steps give more details.

Step 1: Let i, j ∈ [k] be such that `i − `j /∈ col(Ũ>) and Q`i ∩ Q`j 6= ∅. To see that such

i, j always exist, note that by our assumption that d + 1 < affdim(L), ∃i′, j′ ∈ [k] such

that `i′ − `j′ /∈ col(Ũ>). If Q`i′ ∩ Q`j′ 6= ∅, define i := i′ and j := j′ and we are done.

Suppose that Q`i′ ∩ Q`j′ = ∅. Consider a sequence of neighboring trigger probability sets

29

(1, 0, 0) (0, 0, 1)

(0, 1, 0)

Q`
1

Q`
2

Q`
3

(12,
1
2, 0)

(12, 0,
1
2)

(0, 12,
1
2)

(13,
1
3,

1
3)

p1 p2
p

−δδ

Figure 1: Illustration of steps in the proof of Theorem 2.4.4. We first find p ∈ Q`1 ∩ Q`3, and
then perturb p along δ and −δ to find p1 and p2.

Q`i1 ,Q`i2 , · · · ,Q`im such that i1 = i′, im = j′, and Q`ir ∩ Q`ir+1
6= ∅ for all r ∈ [m − 1]. We

can write `i′ − `j′ = (`i1 − `i2) + (`i2 − `i3) + · · ·+ (`im−1 − `im). Since `i′ − `j′ /∈ col(Ũ>),

∃r ∈ [m− 1] such that `ir − `ir+1 /∈ col(Ũ>). Define i := r and j := r + 1. Then we have

`i − `j /∈ col(Ũ>) and Q`i ∩Q`j 6= ∅.

Step 2: Fix i, j as above, and let p ∈ Q`i ∩ Q`j ∩ relint(∆n) such that p /∈ Q`t ∀t 6= i, j

(which means that p>`i = p>`j < p>`t ∀t 6= i, j). The trigger probability sets form a

power diagram of the probability simplex, which implies that Q`i ∩ Q`j 6⊂ bndry(∆n) and

Q`i ∩Q`j 6⊂ Q`t ∀t 6= i, j; therefore, such a point p always exists.

Step 3: Let δ ∈ Rn such that Ũδ = 0 and (`i − `j)>δ 6= 0. To see that such a δ

always exists, let p = rank(Ũ). Observe that p < n − 1 as d < affdim(L) − 1 and

p ≤ d. Let v1, · · · ,vn−p ∈ Rn be an orthonormal basis of the null space of Ũ. Clearly,

span(u1, · · · ,ud,1,v1, · · · ,vn−p) = Rn, and therefore, ∃α1, · · · , αd+1, β1, · · · , βn−p such that

`i − `j =
∑d

r=1 αrur + αd+11 +
∑n−p

r=1 βrvr. Since `i − `j /∈ col(Ũ>), ∃q ∈ [n− p] such that

30

βq 6= 0. Take δ = vq. By construction, Ũδ = 0. Moreover,

(`i − `j)>δ =

d∑
r=1

αru
>
r vq + αd+11

>vq +

n−p∑
r=1

βrv
>
r vq

= βq||vq||22 , since Ũvq = 0 and v>r vq = 0 ∀r 6= q

6= 0 .

Thus we have shown that ∃δ ∈ Rn such that Ũδ = 0 and (`i − `j)>δ 6= 0. In the remainder

of the proof we will assume without loss of generality that (`i − `j)>δ < 0 (the case

(`i − `j)>δ > 0 can be treated similarly as below).

Step 4: This is the most crucial step in the proof in which we find p1,p2 by perturbing

p along δ as shown in Figure 1. We have to ensure: (1) This perturbation leads to valid

probability vectors; (2) One of the perturbed vectors lands in Q`i and the other one lands in

Q`j .

Let a be the least positive integer such that ∀r ∈ [n], |δr/a| ≤ min(pr, 1 − pr), and let

δ′ := δ/a. Next, let b be the least positive integer such that ∀t 6= i, j,

p>(`t − `i) > (δ′/b)>(`i − `t) , (2.4.3)

p>(`t − `j) > (δ′/b)>(`t − `j) , (2.4.4)

and define δ′′ := δ′/b. Now, Ũδ′′ = 0 and (`i − `j)>δ′′ 6= 0. Define p1 := p + δ′′ and

p2 := p− δ′′. We can see that p1r ≥ 0 and p2r ≥ 0 ∀r ∈ [n]. Also,

1>p1 = 1>p + 1>δ′′

= 1 + 0 , since Ũδ′′ = 0 and 1 ∈ col(Ũ>)

= 1 .

Similarly, 1>p2 = 1. Therefore, p1 and p2 are valid probability vectors in ∆n.

31

Now, we claim that p1 ∈ Q`i and p1 /∈ Q`t ∀t 6= i. We have,

(`i − `j)>p1 = (`i − `j)>p + (`i − `j)>δ′′

= 0 + (`i − `j)>δ′′ , since p ∈ Q`i ∩Q`j

< 0 .

This gives p1 6∈ Q`j . Moreover, ∀t 6= i, j, we have

(`i − `t)>p1 = p>(`i − `t) + δ′′>(`i − `t)

< 0 , by Eq. (2.4.3) .

Thus p1 ∈ Q`i and p1 /∈ Q`t ∀t 6= i. Similarly, p2 ∈ Q`j and p2 /∈ Q`t ∀t 6= j. Therefore,

Opt(`,p1) ∩Opt(`,p2) = ∅. Moreover,

Up1 = Up + Uδ′′

= Up , since Uδ′ = 0

= Up2 .

This gives us a contradiction since Γ will not be able to differentiate between p1 and p2,

even though the optimal predictions for them with respect to ` are different; in particular,

we get pred(Γ(p1)) = pred(Up1) = pred(Up2) = pred(Γ(p2)), and so we cannot have

pred(Γ(p1)) ∈ Opt(`,p1) and pred(Γ(p2)) ∈ Opt(`,p2), i.e. (Γ, pred) cannot be `-calibrated

over ∆n. Therefore we must have d > affdim(L)− 1.

2.5 Calibrated Surrogates via Calibrated Nonlinear Proper-

ties

We now consider settings where one can exploit calibrated nonlinear properties to design

convex calibrated surrogates in an even smaller number of dimensions than is possible via

32

linear properties. We start by considering quantiles, which are 1-dimensional nonlinear

(possibly interval-valued) properties; quantiles can be directly elicited via convex strictly

proper scoring rules and lead to calibrated 1-dimensional surrogates for certain ordinal

regression type losses (Section 2.5.1). We then develop a general framework for designing

low-dimensional convex calibrated surrogates under ‘low-noise’ conditions by eliciting vectors

of quantiles that yield ‘coarse’ information about a distribution (Section 2.5.2). We conclude

with a result that gives a necessary condition for a general nonlinear property to be directly

elicitable via a convex strictly proper scoring rule (Section 2.5.3).

2.5.1 Quantiles and Interval-Valued Properties

Quantiles and generalized quantiles have recently received significant attention in the prop-

erty elicitation literature (Kiefer, 2010; Gneiting, 2011; Schervish et al., 2012; Grant and

Gneiting, 2013; Steinwart et al., 2014). These are nonlinear properties; moreover, for discrete

distributions, these properties can take a range of values over an interval. Therefore we

will need to allow for interval-valued properties Γ that map each distribution p ∈ ∆n (or

more generally, each p ∈ P for some P ⊆ ∆n) to a vector of intervals, Γ(p) ∈ Id, where

I denotes the set of all intervals on the real line. In this case, we will say a scoring rule

ψ : [n]× Rd→R+ is proper for Γ : P→Id if

∀p ∈ P : Γ(p) ⊆ argminu∈Rd EY∼p[ψ(Y,u)] ,

and strictly proper for Γ if the above holds with equality (i.e. no value u /∈ Γ(p) is a

minimizer).

Given a loss ` : [n]× [k]→R+, we will say an interval-valued property Γ : P→Id is `-calibrated

over P if ∃ pred : Rd→[k] such that for all p ∈ P and all convergent sequences {um} in Rd,

lim
m→∞

um ∈ Γ(p) =⇒ EY∼p[`(Y, pred(um)] → min
t∈[k]

EY∼p[`(Y, t)] .

Again, it can be shown that a strictly proper scoring rule ψ for an `-calibrated interval-valued

33

property Γ : P→Id forms an `-calibrated surrogate over P.

Quantiles. For α ∈ (0, 1), the α-quantile of p ∈ ∆n is defined as the interval

Qα(p) =
{
u ∈ R : PY∼p(Y ≤ u) ≥ α and PY∼p(Y ≥ u) ≥ 1− α

}
∈ I . (2.5.1)

It is known that the scoring rule ψ : [n]× R→R+ defined as

ψ(y, u) = (1− α) · (u− y)+ + α · (y − u)+ (2.5.2)

is a convex strictly proper scoring rule for the α-quantile, i.e. for the property Γ : ∆n→I

defined as Γ(p) = Qα(p). For the median Γ(p) = Q 1
2
(p), the above scoring rule becomes

ψ(y, u) = 1
2 |u− y|.

Example 2.5.1 (Generalized ordinal regression loss). Let k = n and α ∈ (0, 1), and consider

the generalized ordinal regression loss ` : [n]× [n]→R+ defined as

`ord(α)(y, t) = (1− α)(t− y)+ + α(y − t)+ .

It is easy to see that the α-quantile Γ(p) = Qα(p) is an `ord(α)-calibrated nonlinear property

over ∆n; the scoring rule ψ in Eq. (2.5.2) is therefore a 1-dimensional convex calibrated

surrogate for `ord(α) over ∆n. Note that this is a significant improvement over what can be

achieved with linear properties for these losses, e.g. for α = 1
2 , the loss matrix Lord(α) has

affine dimension n− 1, and thus by Theorem 2.4.4, any calibrated linear property for this

loss must have dimension at least n− 2.

2.5.2 Calibrated Surrogates under Low-Noise Conditions Using Vectors

of Quantiles

We now give a general framework for constructing low-dimensional convex calibrated sur-

rogates under suitable ‘low-noise’ conditions by eliciting a vector of quantiles that forms a

calibrated nonlinear property under such conditions.

34

The broad idea is to estimate ‘coarse’ information about a distribution p ∈ ∆n using a vector

of quantiles. Specifically, for any integer s ∈ Z+ (s ≥ 2) and for a suitable set of distributions

P ⊆ ∆n, we define an (s− 1)-dimensional interval-valued property Γs : P→Is−1 as follows:

Γs(p) = Q 1
s
(p)× . . .×Q s−1

s
(p) ∈ Is−1 . (2.5.3)

From the discussion in Section 2.5.1, it follows that the scoring rule ψs : [n] × Rs−1→R+

defined as

ψs(y,u) =
s−1∑
i=1

((
1− i

s

)
· (ui − y)+ +

(i
s

)
· (y − ui)+

)
(2.5.4)

is a convex strictly proper scoring rule for Γs.

In order to design calibrated surrogates using the above vector-of-quantiles property Γs,

we will find it convenient to define for each y ∈ [n] a function Ny : Rs−1→Z+, which

for each u ∈ Rs−1 counts how many times the label y appears in the vector buc (where

buc =
(
bu1c, . . . , bus−1c

)>):
Ny(u) =

s−1∑
i=1

1(y = buic) ∀u ∈ Rs−1 .

The following lemma shows that eliciting any u ∈ Γs(p) allows one to elicit for each y ∈ [n]

an interval of width at most 2
s containing py:

Lemma 2.5.2 (Vectors of quantiles give interval estimates for probabilities). Let P ⊆ ∆n

and p ∈ P. Let Γs : P→Is−1 be defined as in Eq. (2.5.3) above, and let u ∈ Γs(p). Then for

each y ∈ [n], we have

py ∈


[
Ny(u)−1

s ,
Ny(u)+1

s

]
if Ny(u) ≥ 1

[
0, 1

s

]
if Ny(u) = 0 .

Proof. Let y ∈ [n]. If Ny(u) = 0, then no quantile in Γs(p) consists of the singleton interval

35

Figure 2: Illustration of quantile vector property Γs(p) used to elicit coarse information
about a distribution p ∈ ∆n (here n = 6, s = 5). See Example 2.5.3 for details.

{y}, and consequently, we must have py ≤ 1
s . Now suppose Ny(u) ≥ 1. Then the number of

quantiles in Γs(p) that consist of the singleton interval {y} is at least Ny(u)− 2 and at most

Ny(u), and therefore we must have Ny(u)−1
s ≤ py ≤ Ny(u)+1

s .

Example 2.5.3 (Quantile vectors and probability interval estimates). Consider the example

shown in Figure 2 (n = 6, s = 5). The figure shows the 1
5 ,

2
5 ,

3
5 and 4

5 -quantiles of the

probability vector p = (0.15, 0.45, 0.15, 0.1, 0.1, 0.05)> ∈ ∆6. Here Q 1
5
(p) = {2}, Q 2

5
(p) =

{2}, Q 3
5
(p) = [2, 3], and Q 4

5
(p) = {4}, and so Γ5(p) = {2} × {2} × [2, 3]× {4}. Consider

u = (2, 2, 2.5, 4)> ∈ Γ5(p). As can be seen, here N1(u) = N3(u) = N5(u) = N6(u) = 0;

N2(u) = 3; and N4(u) = 1. Therefore by Lemma 2.5.2, we obtain the following interval

estimates for elements of p from u: p1, p3, p5, p6 ∈ [0, 0.2]; p2 ∈ [0.4, 0.8]; and p4 ∈ [0, 0.4].

Similarly, consider u′ = (2, 2, 3, 4)>, which also lies in Γ5(p). In this case, we would have

N1(u′) = N5(u′) = N6(u′) = 0; N2(u′) = 2; and N3(u′) = N4(u′) = 1, and therefore we

would get the following interval estimates for elements of p from u′: p1, p5, p6 ∈ [0, 0.2];

p2 ∈ [0.2, 0.6]; and p3, p4 ∈ [0, 0.4].

Thus vectors of quantiles give coarse information about the probability distribution p ∈ ∆n,

and can be useful wherever it is sufficient to elicit not p exactly, but rather some intervals in

which py lie. In particular, this can be useful for designing low-dimensional convex surrogates

that are calibrated for a loss over a suitable set of ‘low-noise’ distributions. We give two such

examples below, one for the multiclass 0-1 loss, and one for multiclass classification with a

reject option.

Example 2.5.4. (O(log(n))-dimensional convex surrogate calibrated for 0-1 loss

36

under low-noise condition) Let k = n and consider the multiclass 0-1 loss `0-1 : [n]×[n]→

R+ defined as

`0-1(y, t) = 1(y 6= t) .

Consider the following ‘low-noise’ condition, under which the highest-probability element

is separated from the next highest-probability element by a probability difference of at least

2
dlog2(n)e :

P0-1
LN =

{
p ∈ ∆n : ∃y ∈ [n] such that py > py′ +

2

dlog2(n)e ∀y
′ 6= y

}
.

Then it follows from Lemma 2.5.2 that for any p ∈ P0-1
LN , by estimating a vector u ∈

Γdlog2(n)e(p), one can accurately identify the largest-probability element under p, argmaxy∈[n] py

(and make an optimal prediction under `0-1). Therefore the (dlog2(n)e− 1)-dimensional prop-

erty Γdlog2(n)e is `0-1-calibrated over P0-1
LN using pred0-1 : Rdlog2(n)e−1→[n] satisfying

pred0-1(u) ∈ argmaxy∈[n]Ny(u) .

For large n, for which the above low-noise condition is quite broad,3 this construction gives

a significant improvement over the n − 1 dimensions needed for a convex surrogate to be

calibrated for `0-1 over ∆n (Ramaswamy and Agarwal, 2012).

Example 2.5.5. (O(log(n))-dimensional convex surrogate calibrated for multi-

class classification with a reject option under low-noise condition) Consider now

a multiclass classification problem with a reject option. Here k = n + 1, with the predic-

tion (n + 1) corresponding to the ‘reject’ option; a common loss in this setting is the loss
3Indeed, the low-noise condition P0-1

LN here includes many probability distributions that are excluded from
the commonly studied ‘dominant-label’ condition P0-1

DL = {p ∈ ∆n : maxy∈[n] py >
1
2
}, which is required for

example for the common (n-dimensional) Crammer-Singer surrogate to be `0-1-calibrated.

37

`reject : [n]× [n+ 1]→ R+ defined as

`reject(y, t) =


1(y 6= t) if t ∈ [n]

1
2 if t = n+ 1.

Consider the following ‘low-noise’ condition, under which each probability element is separated

from 1
2 by at least 1

dlog2(n)e :

Preject
LN =

{
p ∈ ∆n : py /∈

[
1

2
− 1

dlog2(n)e ,
1

2
+

1

dlog2(n)e

]
∀y ∈ [n]

}
.

Then it follows from Lemma 2.5.2 that for any p ∈ Preject
LN , by estimating a vector u ∈

Γdlog2(n)e(p), one can accurately identify whether any label has probability greater than 1
2 under

p (and make an optimal prediction under `reject). Therefore the (dlog2(n)e − 1)-dimensional

property Γdlog2(n)e is `reject-calibrated over Preject
LN using predreject : Rdlog2(n)e−1→[n] defined

as follows:

predreject(u) =


argmaxy∈[n]Ny(u) if ∃y ∈ [n] such that Ny(u) ≥ dlog2(n)e

2

n+ 1 otherwise.

To our knowledge, the above approach gives the first general framework for designing low-

noise conditions together with convex surrogates that are calibrated under these conditions

for different losses. In particular, the framework allows one to develop convex calibrated

surrogates under any low-noise condition where a coarse estimate of the underlying probability

vector suffices to make an optimal prediction under the loss of interest.

2.5.3 Necessary Condition for Convex Elicitability

As we have seen, linear properties and quantile-based properties are always directly elicitable

by a convex strictly proper scoring rule. For general nonlinear properties, the following result

gives a necessary condition for convex elicitability:

38

Theorem 2.5.1 (Necessary condition for convex elicitability of a property over ∆n). Let

Γ : ∆n→Rd. If Γ is directly elicitable via a convex proper scoring rule, then

dim(Γ−1(u)) ≥ n− d− 1 ∀u ∈ Γ(relint(∆n)) .

Proof. Suppose Γ is directly elicitable via a convex proper scoring rule, and let ψ : [n]×Rd →

R+ be a convex strictly proper scoring rule for Γ. We will show that dim(Γ−1(u)) ≥

n− d− 1 ∀u ∈ Γ(relint(∆n)).

Let p ∈ relint(∆n), and let u∗ = Γ(p). Since ψ is strictly proper for Γ, we have

u∗ = argminu∈Rd EY∼p[ψ(Y,u)] .

Moreover, since ψ is convex, we have

0 ∈ ∂(EY∼p[ψ(Y,u∗)]) =

n∑
y=1

py∂ψ(y,u∗) ,

where ∂ψ(y,u∗) denotes the set of subdifferentials of ψ(y,u) at u∗ (if ψ(y, ·) is differentiable,

each such set is a singleton). Therefore for each y ∈ [n], ∃wy ∈ ∂ψ(y,u∗) such that∑n
y=1 pywy = 0. Let A = [w1 · · ·wn] ∈ Rd×n, and let

H = {q ∈ ∆n : Aq = 0} = {q ∈ Rn : Aq = 0,1>q = 1,−q ≤ 0} ,

where 1 ∈ Rn is the all-ones vector. We have p ∈ H, and also −p < 0. Therefore, by Lemma

14 of Ramaswamy and Agarwal (2012), we have

µH(p) ≥ n− (d+ 1) ,

39

where µH(p) is the feasible subspace dimension of H.4 Now,

q ∈ H =⇒ Aq = 0 =⇒ 0 ∈
n∑
y=1

qy∂ψ(y,u∗)

=⇒ u∗ = argminu∈Rd EY∼q[ψ(Y,u)]

=⇒ Γ(q) = u∗ ,

which gives H ⊆ Γ−1(u∗), and therefore,

dim(Γ−1(u∗)) ≥ µΓ−1(u∗)(p) ≥ µH(p) ≥ n− (d+ 1) .

Since p ∈ relint(∆n) was arbitrary, the result follows.

Corollary 2.5.6. Let Γ : ∆n→Rd be d′-elicitable via a convex proper scoring rule in d′ ≥ d

dimensions. Then

d′ ≥ n− dim(Γ−1(u))− 1 ∀u ∈ Γ(relint(∆n)) .

4The feasible subspace dimension of a convex set C at p ∈ C is defined as the dimension of the subspace
FC(p)∪ (−FC(p)), where FC(p) is the cone of feasible directions of C at p (Ramaswamy and Agarwal, 2012).

40

Chapter 3

Information Elicitation in the Absence of Ground Truth

In the previous chapter we saw how tools from information elicitation can help the design of

better surrogate losses for machine learning. In this chapter we will continue our discussion

at the interface of machine learning and information elicitation, and see how information

elicitation mechanisms in the absence of ground truth observations can benefit from using

machine learning tools.

3.1 Introduction

3.1.1 Background

Recall from the previous chapter that truthful information elicitation mechanisms can be

designed using proper scoring rules that take as input an agent’s report and a ground truth

observation from the underlying distribution. However, there are many applications where

such ground truth observations are not available, for example, in massive open online courses

(MOOCs) where the instructor does not grade student assignments but instead relies on

students to grade each others assignments; in prediction markets where experts are asked

about their opinion on future events; in surveys where respondents are asked about their

feedback on a new product/feature. In the first example, there is an objective ground truth

(instructor’s grade) but it is costly to compute; in the second example, there is also an

objective ground truth (outcome of the future event) but it is not known at the time of

scoring; in the final example, there is no notion of an objective ground truth.

Peer prediction is a technique of eliciting truthful information in the absence of ground truth

by comparing an agent’s response with those of their peers. Peer prediction mechanisms

leverage correlation in the reports of peers in order to score contributions. The main challenge

of peer prediction is to incentivize agents to put effort to obtain a signal or form an opinion

and then honestly report to the system. In recent years, peer prediction has been widely

41

studied in several domains, including peer assessment in massively open online courses

(MOOCs) (Shnayder and Parkes, 2016; Gao et al., 2016), for feedback on local places in a

city (Mandal et al., 2016), and in the context of collaborative sensing platforms (Radanovic

and Faltings, 2015d).

However, almost all general methods are essentially restricted to settings with homogeneous

participants, whose signal distributions are identical. This is a poor fit with many suggested

applications of peer prediction. Consider for example, the problem of peer assessment in

MOOCs. DeBoer et al. (2013) and Wilkowski et al. (2014) observe that students differ based

on their geographical locations, educational backgrounds, and level of commitment, and

indeed the heterogeneity of assessment is clear from a study of Coursera data (Kulkarni et al.,

2015). Simpson et al. (2013) observed that the users participating in a citizen science project

can be categorized into five distinct groups based on their behavioral patterns in classifying

an image as a Supernovae or not. A similar problem occurs in determining whether news

headline is offensive or not. Depending on which social community a user belongs to, we

should expect to get different opinions (Zafar et al., 2016). Moreover, Allcott and Gentzkow

(2017) report that leading to the 2016 U.S. presidential election, people were more likely to

believe the stories that favored their preferred candidate; Fourney et al. (2017) find that

there is very low connectivity among Trump and Clinton supporters on social networks,

which leads to confirmation bias among the two groups and clear heterogeneity about how

they believe whether a piece of news is “fake” or not.

One obstacle to designing peer prediction mechanisms for heterogeneous agents is an impos-

sibility result. No mechanism can provide strict incentives for truth-telling to a population of

heterogeneous agents without knowledge of their signal distributions (Radanovic and Faltings,

2015c). This negative result holds for minimal mechanisms, which only elicit signals and

not beliefs from agents. One way to alleviate this problem, without going to non-minimal

mechanisms, is to use reports from the agents across multiple tasks to estimate their signal

distributions. This is our goal: we want to design minimal peer prediction mechanisms for

42

heterogeneous agents that use reports from the agents for both learning and scoring. We

also want to provide robustness against coordinated misreports.

As a starting point, one can consider the correlated agreement (CA) mechanism proposed

by Shnayder et al. (2016b). If the agents are homogeneous and the designer has knowledge

of their joint signal distribution, the CA mechanism is informed truthful, i.e. no strategy

profile, even if coordinated, can provide more expected payment than truth-telling, and the

expected payment under an uninformed strategy (where an agent’s report is independent

of her signal) is strictly less than the expected payment under truth-telling. These two

properties remove any incentive for coordinated deviations and strictly incentivize the agents

to put effort in acquiring signals, respectively. In a detail-free variation, in which the designer

learns the signal distribution from reports, approximate incentive alignment is provided (still

maintaining the second property as a strict guarantee.) The detail-free CA mechanism can

be extended to handle agent heterogeneity, but a naïve approach would require learning the

joint signal distributions between every pair of agents, and the total number of reports that

need to be collected would be prohibitive for many settings. Can we exploit machine learning

techniques to address this requirement of learning joint signals for every pair of agents and

to design a more efficient mechanism? In this chapter we seek to answer this question and

design an efficient mechanism for heterogeneous agents.

3.1.2 Our Contributions

We design the first minimal and detail-free mechanism for peer prediction with heterogeneous

agents, where the learning component has sample complexity that is only linear in the number

of agents, while providing an incentive guarantee of approximate informed truthfulness. Like

the CA mechanism, this is a multi-task mechanism in that each agent makes reports across

multiple tasks. Our mechanism is robust to any coordination between agents as long as

the task assignments are such that from an agent’s perspective every other agent is equally

likely to be her peer. Hence, our mechanism is robust to any coordination between agents

that happens prior to task assignment. Our mechanism will also be robust to coordinations

43

after task assignments as long as the agents are not able to figure out which agents are more

likely to be their peers based on the identity of the tasks they are assigned. For example,

in the context of a MOOC, the organizer can anonymize the homeworks to be graded, and

hence, it will require a lot of effort for students to figure out whose homeworks they are

grading even after the homeworks have been assigned for grading. Since our mechanism has

a learning component, the task assignments to agents should also be such that both the goals

of incentive alignment and learning are simultaneously achieved. We consider two assignment

schemes under which these goals can be achieved and analyze the sample complexity of our

methods for these schemes.

The mechanism clusters the agents based on their reported behavior1 and learns the pairwise

correlations between these clusters. The clustering introduces one component of the incentive

approximation, and could be problematic in the absence of a good clustering such that

agents within a cluster behave similarly. Using eight real-world datasets, which contain

reports of users on crowdsourcing platforms for multiple labeling tasks, we show that the

clustering error is small in practice even when using a relatively small number of clusters.

The second component of the incentive approximation stems from the need to learn the

pairwise correlations between clusters; this component can be made arbitrarily small using a

sufficient number of signal reports.

Another contribution of this chapter is to connect, we believe for the first time, the peer

prediction literature with the extensive and influential literature on latent, confusion matrix

models of label aggregation (Dawid and Skene, 1979b). The Dawid-Skene model assumes that

signals are generated independently, conditional on a latent attribute of a task and according

to an agent’s confusion matrix. We cluster the agents based on their confusion matrices

and then estimate the average confusion matrices within clusters using recent developments

in tensor decomposition algorithms (Anandkumar et al., 2014; Zhang et al., 2016). These
1One could also consider clustering the agents based on their observable covariates as long as agents with

similar covariates have similar ‘signal type’. However, in the applications that we consider in this chapter,
for example MOOCs, such covariates may not be observable, and hence, we only rely on agent reports for
clustering.

44

average confusion matrices are then used to learn the pairwise correlations between clusters

and design reward schemes to achieve approximate informed truthfulness.

In effect, the mechanism learns how to map one agent’s signal reports onto the signal reports

of the other agents. For example, consider the context of a MOOC, in which an agent in

the “accurate” cluster accurately provides grades, an agent in the “extremal” cluster only

uses grades ‘A’ and ‘E’, and an agent in the “contrarian” cluster flips good grades for bad

grades and vice-versa. The mechanism might learn to positively score an ‘A’ report from

an “extremal” agent matched with a ‘B’ report from an “accurate” agent, or matched with

an ‘E’ report from a “contrarian” agent for the same essay. In practice, our mechanism will

train on the data collected during a semester of peer assessment reports, and then cluster

the students, estimate the pairwise signal distributions between clusters, and accordingly

score the students (i.e., the scoring is done retroactively).

3.1.3 Related Work

We provide a brief review of the related work in peer prediction, and suggest (Faltings and

Radanovic, 2017) for a detailed discussion. We focus our discussion on related work about

minimal mechanisms, but remark that we are not aware of any non-minimal mechanisms

(following from the work of Prelec (2004)) that handle agent heterogeneity. Miller et al.

(2005) introduce the peer prediction problem, and proposed an incentive-aligned mechanism

for the single-task setting. However, their mechanism requires knowledge of the joint signal

distribution and is vulnerable to coordinated misreports. In regard to coordinated misreports,

Jurca et al. (2009) show how to eliminate uninformative, pure-strategy equilibria through a

three-peer mechanism, and Kong et al. (2016) provide a method to design robust, single-task,

binary signal mechanisms (but need knowledge of the joint signal distribution). Frongillo

and Witkowski (2017) provide a characterization of minimal (single task) peer prediction

mechanisms.

Witkowski and Parkes (2013) introduce the combination of learning and peer prediction,

coupling the estimation of the signal prior together with the shadowing mechanism. Some

45

results make use of reports from a large population. Radanovic and Faltings (2015a), for

example, establish robust incentive properties in a large-market limit where both the number

of tasks and the number of agents assigned to each task grow without bound. Radanovic et al.

(2016) provide complementary theoretical results, giving a mechanism in which truthfulness

is the equilibrium with the highest payoff in the asymptote of a large population and with a

structural property on the signal distribution.

Dasgupta and Ghosh (2013) show that robustness to coordinated misreports can be achieved

for binary signals in a small population by using a multi-task mechanism. The idea is to

reward agents if they provide the same signal on the same task, but punish them if one

agent’s report on one task is the same as another’s on a different task. The Correlated

Agreement (CA) mechanism (Shnayder et al., 2016b) generalizes this mechanism to handle

multiple signals, and uses reports to estimate the correlation structure on pairs of signals

without compromising incentives. In related work, Kong and Schoenebeck (2016, 2019)

show that many peer prediction mechanisms can be derived within a single information-

theoretic framework. Their results use different technical tools than those used by Shnayder

et al. (2016b), and also include a different multi-signal generalization of the Dasgupta-

Ghosh mechanism that provides robustness against coordinated misreports in the limit of

a large number of tasks. Kong (2020) use this information-theoretic framework to design

a mechanism that uses determinant based mutual information (DMI) to reward agents.

This mechanism achieves dominant truthfulness, i.e. truthfulness dominates any other non-

permutation strategy, using only a constant number of tasks. Shnayder et al. (2016c) adopt

replicator dynamics as a model of population learning in peer prediction, and confirm that

these multi-task mechanisms (including the mechanism by Kamble et al. (2015)) are successful

at avoiding uninformed equilibria.

There are very few results on handling agent heterogeneity in peer prediction. For binary

signals, the method of Dasgupta and Ghosh (2013) is likely to be an effective solution

because their assumption on correlation structure will tend to hold for most reasonable

46

models of heterogeneity. But it will break down for more than two signals, as explained

by Shnayder et al. (2016b). Moreover, although the CA mechanism can in principle be

extended to handle heterogeneity, it is not clear how the required statistical information

about joint signal distributions can be efficiently learned and coupled with an analysis of

approximate incentives. For a setting with binary signals and where each task has one of a

fixed number of latent types, Kamble et al. (2015) design a mechanism that provides strict

incentive compatibility for a suitably large number of heterogeneous agents, and when the

number of tasks grows without bound (while allowing each agent to only provide reports on a

bounded number of tasks). Their result is restricted to binary signals, and requires a strong

regularity assumption on the generative model of signals. (Kong and Schoenebeck, 2016)

design an information theoretic framework for peer prediction. Their mechanism pays each

agent the mutual information between her report and her peer’s report. This mechanism

can be extended to the heterogeneous agents setting as long as we can measure the mutual

information between all pairs of agents. However, such a mechanism would require the agents

to provide reports on a large number of tasks.

Finally, we consider only binary effort of a user, i.e. the agent either invests effort and receives

an informed signal or does not invest effort and receives an uninformed signal. Shnayder et al.

(2016b) work with the binary effort setting and provide strict incentive for being truthful.

Therefore, as long as the mechanism designer is aware of the cost of investing effort, the

payments can be scaled to cover the cost of investing effort. The importance of motivating

effort in the context of peer prediction has also been considered by Liu and Chen (2017b)

and Witkowski et al. (2013).2 See Mandal et al. (2016) for a setting with heterogeneous tasks

but homogeneous agents. Liu and Chen (2017a) also designed single-task peer prediction

mechanism for the same setting but only when each task is associated with a latent ground

truth.
2Cai et al. (2015) work in a different model, showing how to achieve optimal statistical estimation from

data provided by rational agents. They only focus on the cost of effort. They do not consider possible
misreports, and thus their mechanism is also vulnerable to coordinated misreports.

47

3.1.4 Organization

In Section 3.2 we introduce the model for heterogeneous peer prediction. In Section 3.3 we

present our mechanism and prove its truthfulness. In Section 3.4 we provide learning results

for making our model detail-free. In Section 3.5 we present experiments on real-world data.

We finally conclude in Section 3.6.

3.2 Model

Let notation [t] denote {1, . . . , t} for t ∈ N. We consider a population of agents P = [`], and

use indices such as p and q to refer to agents from this population. There is a set of tasks

M = [m]. For example, a task can be either grading an essay or answering a question in

an online rating sytem. When an agent performs a task, she receives a signal from N = [n].

Such a signal usually indicates the quality of the task i.e. the number of points assigned to

the essay or how good the food is at a restaurant. The agents need to put some effort to

get an informative signal about the task. As mentioned before, we assume that the effort of

an agent is binary i.e. either the agent puts full effort and receives an informative signal or

the agent puts no effort and receives a signal drawn uniformly at random. We also assume

that the tasks are ex ante identical, that is, the signals of an agent for different tasks are

sampled i.i.d. For example, in the essay grading scenario, if the essays assigned to any

student are drawn uniformly at random from a large population of essays, the student’s

signal distribution for an assigned essay is ex ante almost identical to any other assigned

essay.

Each agent is assigned a set of tasks and she decides, for each task, whether to put effort

and receive an informative signal or put no effort and receive a random signal. This provides

the agent with a set of signals, one for each task. Then the agent reports back to mechanism

designer a set of signals, one for each assigned task. Before putting any effort to receive

informative signals, the agents have no knowledge about the tasks apart from the fact they

are ex-ante identical. Once the agents receive their signals, their reports are determined

completely by these signals. In other words, the agents do not use any additional information

48

to determine their reports. We will assume that, for each task, the message space and the

signal space are the same. Since the payment made to the agents depend on their reported

signals (messages), the reported signals can be very different than the observed signals. The

goal of a peer prediction mechanism is to ensure that the agents put effort in all the tasks

and report their signals truthfully. For the MOOC setting, a student spends some amount of

time to figure out the grade of each of her assigned essays. She might also decide to not look

at an essay and report an arbitrary grade. The goal of our mechanism is to ensure that the

students put some effort to determine the grades of the essays and report them truthfully

back to the platform. We work in the setting where the agents are heterogeneous, i.e., the

distribution of signals can be different for different agents. These differences are captured

by the agents’ types and we say that the agents vary by signal type. In peer prediction, we

compare the reports of an agent to the reports of their peers on the same tasks, and hence,

we also need to talk about joint signal distribution of pairs of agents in addition to the signal

distribution of an individual agent. In our setting, these joint signal distributions can be

different for different pair of agents.

Let Sp, Sq denote random variables for the signal observed by agents p and q on some task.

Let Dp,q(i, j) denote the joint probability that agent p receives signal i while agent q receives

signal j on a task, i.e. Dp,q(i, j) = Pr(Sp = i, Sq = j). Let Dp(i) and Dq(j) denote the

corresponding marginal probabilities, i.e. Dp(i) = Pr(Sp = i) and , Dq(j) = Pr(Sq = j). An

important part of our mechanisms are the delta matrices which are defined as follows. We

define the Delta matrix ∆p,q between agents p and q as

∆p,q(i, j) = Dp,q(i, j)−Dp(i) ·Dq(j), ∀i, j ∈ [n]. (3.2.1)

The delta matrices capture the correlation between pairs of realized signals. For example, if

∆p,q(1, 2) = Dp,q(1, 2)−Dp(1)Dq(2) > 0. This implies that Pr [Sp = 1|Sq = 2] > Pr [Sp = 1].

Therefore, the event of agent p observing signal 1 is positively correlated with the event of

agent q observing signal 2. This would also mean that the event that agent p receives signal

49

1 and agent q receives signal 2 is more likely when these signals are for the same task, than

when they are for different tasks. Our mechanism will use these correlations to decide the

score for an agent given the reports of the agent and her peers. The correlated agreement

(CA) mechanism (Shnayder et al., 2016b) also uses these delta matrices to construct a scoring

mechanism for agent reports, however, they work in a setting where agents are exchangeable,

i.e. the delta matrix ∆p,q is the same for all pairs p, q of agents.

Example 3.2.1. For two agents p and q, consider the following joint signal distribution

Dp,q is

Dp,q =

0.2 0.3

0.1 0.4



with marginal distributions Dp = [0.5 0.5] and Dq = [0.3 0.7], the Delta matrix ∆p,q is

∆p,q =

0.2 0.3

0.1 0.4

−
0.5

0.5

 · [0.3 0.7

]
=

 0.05 −0.05

−0.05 0.05

 .

An agent’s strategy defines, for every signal it may receive and each task it is assigned, a

probability distribution over signals it will report. Shnayder et al. (2016b) show that it is

without loss of generality for the class of mechanisms we study in this chapter to assume that

an agent’s strategy is uniform across different tasks. Hence, we will make the assumption

that an agent’s strategy is uniform across tasks. Formally, let Rp denote the random variable

for the report of agent p for a given task. The strategy of agent p, denoted F p, defines the

distribution of reports for each possible signal i, with F pir = Pr(Rp = r|Sp = i). Therefore

if there are n signals then the strategy F p : [n] → Pn, where Pn is the set of all possible

distributions with support in [n]. The collection of agent strategies, denoted {F p}p∈P , is

the strategy profile. A strategy of agent p is informed if there exist distinct i, j ∈ [n] and

r ∈ [n] such that F pir 6= F pjr, i.e., if not all rows of F
p are identical. We say that a strategy is

50

uninformed otherwise.

3.2.1 Multi-Task Peer Prediction

In this chapter we consider multi-task peer prediction mechanisms defined in Shnayder et al.

(2016b), and extend them to the setting of heterogeneous agents. In these mechanisms, each

agent performs multiple-tasks and the score of an agent depends on its reports and the

reports of its peers. For each agent, a random subset of her tasks is designated as bonus

tasks, and its complement is designated as penalty tasks, without the knowledge of the agent.

These mechanisms are characterized by scoring matrices for each pair of agents, which are

used to score agents’ reports. In our mechanism, the scoring matrix Sp,q : [n]× [n]→ {0, 1}

for agent pair p and q will be such that Sp,q(i, j) = 1 when the event that agent p receives

signal i is positively correlated with the event that agent q receives signal j on the same task,

otherwise Sp,q(i, j) = 0. We will thus use the delta matrices (which will be learnt from agent

reports) to design these scoring matrices.

For signals i and j, if Sp,q(i, j) = 1, then, for each bonus task of an agent p, we will add 1 to

her score for reporting i when the report of its peer agent q on the same task is j, otherwise

we will not add anything. Additionally, for each bonus task of agent p, we randomly select a

penalty task and subtract some score her total score based on her report on the penalty task.

For signals i and j, if Sp,q(i, j) = 1, then we will subtract 1 from her score for reporting i on

the penalty task when the report of its peer agent q on a different task is j, otherwise we will

not subtract anything. The penalty is included in the score in order to avoid ‘uninformative

equilibria’ where agents agree to report the same signal on every task without investing effort

in gathering the signals. The total score of an agent will be sum of all the scores over all

bonus tasks calculated this way.

In our mechanism the score of an agent on a bonus task will be ‘+1’ when its report is

positively correlated with the report of its peer agent on the same task. The score of an

agent on a penalty task will be ‘-1’ when its report is positively correlated with the report of

its peer on a different task. The intuition behind our mechanism is that when signals i and j

51

of agents p and q are correlated then it will be more likely that agents receive this pair of

signals on tasks they share than on tasks they do not share. Hence, the overall score will be

positive in expectation, when agents are truthful. Whenever the agents use any uninformed

strategy then the event that ‘the report of agent p is i and the report of agent q is j’ is

as likely to happen when they perform the same task as it is when they perform different

tasks. Hence, the expected payment of any uninformed strategy will be zero. The correlated

agreement (CA) mechanism (Shnayder et al., 2016b) also uses a scoring matrix for scoring

agent. However, in their homogeneous setting only one scoring matrix is required because

the delta matrices are the same for each pair of agents. In our heterogeneous setting we have

to use different scoring matrices for different pairs of agents.

Formally, for agent p, we denote the set of her bonus tasks by Mp
1 and the set of her penalty

tasks by Mp
2 . To calculate the payment to an agent p for a bonus task t ∈Mp

1 , we do the

following:

1. Randomly select an agent q ∈ P \ {p} such that t ∈M q
1 , and the set Mp

2 ∪M q
2 has at

least 2 distinct tasks, and call q the peer of p.

2. Pick tasks t′ ∈Mp
2 and t′′ ∈M q

2 randomly such that t′ 6= t′′ (t′ and t′′ are the penalty

tasks for agents p and q respectively)

3. Let the reports of agent p on tasks t and t′ be rtp and rt′p , respectively and the reports

of agent q on tasks t and t′′ be rtq and rt′′q respectively.

4. The payment of agent p for task t is then Sp,q(rtp, rtq)− Sp,q(rt
′
p , r

t′′
q).

The total payment to an agent is the sum of payments for the agent’s bonus tasks.

3.2.2 Task Assignments

Since we work in the setting where agents perform multiple tasks, and hence, it is important

to address how these tasks are assigned to agents. Our mechanism has two requirements

from any task assignment–

52

1. From an agent’s perspective, every other agent is equally likely to be her peer. This

requires agents not to know each other’s task assignments before deciding a strategy.

For example, if agents of one ‘type’ are more likely to be peers with agents of another

‘type’ based on their task assignments, then they can coordinate amongst themselves

to decide a more profitable strategy than truth-telling. Our mechanism will be robust

to coordinations that happen before the task assignments. Our mechanism will also be

robust to coordinations after task assignments as long as the agents are not able to

figure out which agents are more likely to be their peers based on the identity of the

tasks they are assigned.

2. We should always be able to find a peer agent q for any agent p. Precisely, the tasks

are assigned in a way that for every agent p we can find a peer agent q such that q has

performed at least one bonus task that p has performed, and we have reports from p

and q for two different tasks which are not the same as the bonus task.

In addition, our mechanism has a learning component, where we learn about the correlation

between agents’ signals, and also cluster agents into groups. Hence, in order to learn these

quantities, we need to collect sufficient reports from each agent. This imposes some other

requirements for the task assignment. In Section 3.4 we propose two task assignment schemes

that a principal can use that satisfy all these requirement.

53

3.2.3 Expected Payments

The expected payment to agent p under strategy profile {F q}q∈P for any bonus task performed

by her, equal across all bonus tasks as the tasks are ex ante identical, is given as

up(F
p, {F q}q 6=p) =

1

`− 1

∑
q 6=p

∑
i,j

Dp,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Sp,q(rp, rq)

−
∑
i

Dp(i)
∑
rp

F pirp

∑
j

Dq(j)
∑
rq

F qjrqSp,q(rp, rq)


=

1

`− 1

∑
q 6=p

∑
i,j

(Dp,q(i, j)−Dp(i)Dq(j))
∑
rp,rq

F pirpF
q
jrq
Sp,q(rp, rq)


=

1

`− 1

∑
q 6=p

∑
i,j

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Sp,q(rp, rq) (3.2.2)

3.2.4 Informed Truthfulness

Following Shnayder et al. (2016b), we define the notion of approximate informed truthfulness

for a multi-task peer prediction mechanism.

Definition 3.2.2. (ε-informed truthfulness) We say that a multi-task peer prediction mecha-

nism is ε-informed truthful, for some ε > 0, if and only if for every strategy profile {F q}q∈P
and every agent p ∈ P , we have up(I, {I}q 6=p) > up(F

p, {F q}q 6=p)− ε, where I is the truthful

strategy, and up(I, {I}q 6=p) > up(F
p
0 , {F q}q 6=p) where F p0 is an uninformed strategy.

An ε-informed truthful mechanism ensures that every agent prefers (up to ε) the truthful

strategy profile over any other strategy profile, and strictly prefers the truthful strategy

profile over any uninformed strategy. Moreover, no coordinated strategy profile provides more

expected utility than the truthful strategy profile (upto ε). For a small ε, this is responsive to

the main concerns about incentives in peer prediction: a minimal opportunity for coordinated

manipulations, and a strict incentive to invest effort in collecting and reporting an informative

signal.3

3We do not model the cost of effort explicitly in this chapter, but a binary cost model (effort → signal,

54

3.2.5 Learning and Agent Clustering

Suppose that one knows ∆p,q for every pair of agents, then one can calculate the scoring

matrices Sp,q according to these delta matrices and use these scoring matrices to score the

agents. It is not hard to prove (see Lemma 3.3.4 for a proof) that such an extension of the

CA mechanism will be informed truthful. However, we seek to design a detail-free mechanism

where one does not have the knowledge of delta matrices, and one needs to learn them from

agent reports. However, it would require Ω(`2) samples to learn the delta matrices between

every pair of agents, which will often be impractical. Rather, the number of reports in a

practical mechanism should scale closer to linearly in the number of agents.

In response, we will assume that agents can be (approximately) clustered into a bounded

number K of agent signal types, such that agents of the same type have similar signal

distributions. Hence, a cluster of agents will be treated as a meta-agent, and we will work

with signal distributions of these meta-agents. Formally, let G1, . . . , GK denote a partitioning

of agents into K clusters. With a slight abuse of notation, we also use G(p) to denote the

cluster to which agent p belongs.

In order to reduce the sample complexity of our mechanism, we want that the clustering of

agents to be such that for each pair p, q of agents, the signals of meta-agents (clusters) G(p)

and G(q) are correlated in a similar manner as the signals of agents p and q. With this in

mind, for s, t ∈ [K], let us define the cluster Delta matrix between clusters Gs and Gt to be

the average signal correlation taken over all pairs of agents p ∈ Gs and q ∈ Gt, i.e.

∆Gs,Gt =


1

|Gs|×|Gt|
∑

p∈Gs,q∈Gt ∆p,q if s 6= t

1
|Gs|2−Gs

∑
p,q∈Gs,q 6=p ∆p,q if s = t

.

Now, the clustering of agents should be such that for each pair of agents p, q, we should be

able to use ∆G(p),G(q) as a proxy for ∆p,q. This will allow use learn Delta matrices for every

no-effort → no signal) can be handled in a straightforward way. See Shnayder et al. (2016b).

55

cluster pair, instead of learning Delta matrices for every agent pair. This intuition results in

the following definition of an ε1-accurate clustering.

Definition 3.2.3. We say that clustering G1, . . . , GK is ε1-accurate, for some ε1 > 0, if for

every pair of agents p, q ∈ P ,

‖∆p,q −∆G(p),G(q)‖1 6 ε1, (3.2.3)

where ∆G(p),G(q) is the cluster Delta matrix between clusters G(p) and G(q).

Example 3.2.4. Let there be 4 agents p, q, r and s. Let the pairwise Delta matrices be the

following

∆p,q =

 0.15 −0.15

−0.15 0.15

 , ∆p,r =

−0.15 0.15

0.15 −0.15

 , ∆p,s =

−0.05 0.05

0.05 −0.05


∆q,r =

−0.05 0.05

0.05 −0.05

 , ∆q,s =

−0.15 0.15

0.15 −0.15

 , ∆r,s =

 0.15 −0.15

−0.15 0.15


In this example, agents p and q tend to agree with each other, while agents r and s tend to

agree with each other while disagreeing with p and q. Let the clustering be G1, G2 where p, q

belong to G1 and r, s belong to G2. Then the cluster Delta matrices are the following

∆G1,G1 =

 0.15 −0.15

−0.15 0.15

 , ∆G1,G2 =

−0.1 0.1

0.1 −0.1

 , ∆G2,G2 =

 0.15 −0.15

−0.15 0.15

 .
It is easy to observe that G1, G2 is a 0.2-accurate clustering.

Our mechanism will use an estimate of ∆G(p),G(q) (instead of ∆p,q) to define the scoring

matrix Sp,q. Thus, the incentive approximation will directly depend on the accuracy of the

clustering as well as how good the estimate of ∆G(p),G(q) is.

There is an inverse relationship between the number of clusters K and the clustering accuracy

56

ε1: the higher the K, the lower the ε1. In the extreme, we can let every agent be a separate

cluster (K = `), which results in ε1 = 0. But a small number of clusters is essential for a

reasonable sample complexity as we need to learn O(K2) cluster Delta matrices. For instance,

in Example 3.2.4 we need to learn 3 Delta matrices with clustering, as opposed to 6 without

clustering. In Section 3.4, we give a learning algorithm that can learn all the pairwise cluster

Delta matrices with Õ(K) samples given a clustering of the agents. In Section 3.5, we show

using real-world data that a reasonably small clustering error can be achieved with relatively

few clusters.

3.3 Correlated Agreement for Heterogeneous Agents

In this section we define our Correlated Agreement for Heterogeneous Agents (CAHU)

mechanism, presented as Algorithm 1. Our mechanism builds upon the multi-task Correlated

Agreement (CA) mechanism of Shnayder et al. (2016b), which uses the correlation between

signals of different agents to design a scoring matrix to score the agents. However, since we

work in a heterogeneous setting we will need to design different scoring matrices for different

pairs of agents, based on the different correlations between different pairs.

For intuition, consider the case when one has knowledge of the Delta matrices for all pairs of

agents. In this case, in the multi-task peer prediction framework defined in Section 3.2.1, the

scoring matrices Sp,q can be defined such that Sp,q(i, j) = 1 when ∆p,q > 0, and Sp,q(i, j) = 0

otherwise. Such a mechanism will be 0-informed truthful, as we prove in Lemma 3.3.4.

However, in order to design a detail-free mechanism with low sample complexity, we will

assume that we have a clustering of agents such that the average cluster Delta matrices can

be used as a proxy for agent Delta matrices. Hence, our mechanism works with a clustering

of agents, and uses the cluster Delta matrices to design scoring matrices for pairs of agents.

Here, we will describe our mechanism when a clustering as well as estimates of cluster Delta

matrices are given as inputs to the mechanism. In Section 3.4, we will see how one can learn

such a clustering and estimates of Delta matrices from agents reports.

57

Specifically, CAHU takes as input a clustering G1, . . . , GK of agents. It also takes as input

matrices {∆Gs,Gt}s,t∈[K] which are estimates of the cluster Delta matrices {∆Gs,Gt}s,t∈[K]

defined in Section 3.2.5. The scoring matrix Sp,q for agent pair p and q is then defined

such that Sp,q(i, j) = 1 when ∆G(p),G(q) > 0, and Sp,q(i, j) = 0 otherwise, where G(p) and

G(q) denote the clusters that p and q belong to, respectively. The CAHU mechanism then

calculates the reward of an agent according to the framework of multi-task peer prediction

discussed in Section 3.2.1. This would means that an agent p gets a positive score whenever

her report and her peer q’s report on a bonus task is such that there is positive correlation

between the corresponding signals of clusters G(p) and G(q). However, we also include a

penalty when this happens on different tasks. The idea is that if the clustering is ε1-accurate

and the estimates of cluster Delta matrices are accurate, then the mechanism should retain

its truthfulness properties. With this in mind, we define an (ε1, ε2)-accurate input to the

algorithm as follows

Definition 3.3.1. We say that a clustering {Gs}s∈[K] and the estimates {∆Gs,Gt}s,t∈[K] are

(ε1, ε2)-accurate if

• ‖∆p,q −∆G(p),G(q)‖1 6 ε1 for all agents p, q ∈ P , i.e., the clustering is ε1-accurate, and

• ‖∆Gs,Gt − ∆Gs,Gt‖1 6 ε2 for all clusters s, t ∈ [K], i.e., the cluster Delta matrix

estimates are ε2-accurate.

An ε1 clustering intuitively means that if we pick one agent from cluster Gs and another

agent from cluster Gt then their signal correlation is determined by the pair of clusters upto

an error ε1 and is independent of the identities of the agents. On the other hand ε2-accurate

clustering simple means that we can estimate the cluster delta matrices upto an error ε2.

When we have a clustering and estimates of the delta matrices which are (ε1, ε2)-accurate, we

prove that the CAHU mechanism is (ε1 + ε2)-informed truthful. In Section 3.4, we present

algorithms that can learn an ε1-accurate clustering and ε2-accurate estimates of cluster Delta

matrices.

58

Algorithm 1 Mechanism CAHU
Input:

A clustering G1, . . . , GK such that ‖∆p,q −∆G(p),G(q)‖1 6 ε1 for all p, q ∈ P ;
estimates {∆Gs,Gt}s,t∈[K] such that ‖∆Gs,Gt −∆Gs,Gt‖1 6 ε2 for all s, t ∈ [K]; and
for each agent p ∈ P , her bonus tasksMp

1 , penalty tasksMp
2 , and responses {rpb}b∈Mp

1∪M
p
2
.

Method:
1: for every agent p ∈ P do
2: for every task b ∈Mp

1 do . Reward response rpb
3: q ← uniformly at random conditioned on b ∈ M q

1 ∪ M q
2 and (either |M q

2 | >
2, |Mp

2 | > 2 or M q
2 6= Mp

2) . Peer agent
4: Pick tasks b′ ∈Mp

2 and b′′ ∈M q
2 randomly such that b′ 6= b′′ . Penalty tasks

5: Sp,q ← Sign(∆G(p),G(q))
†

6: Reward to agent p for task b is Sp,q
(
rpb , r

q
b

)
− Sp,q

(
rpb′ , r

q
b′′
)

7: end for
8: end for

†Sign(x) = 1 if x > 0, and 0 otherwise.

Throughout the rest of this section, we will use ε1 to denote the clustering error and ε2 to

denote the learning error. We remark that the clustering error ε1 is determined by the level

of similarity present in agent signal-report behavior, as well as the number of clusters K used,

whereas the learning error ε2 depends on how many samples the learning algorithm sees.

3.3.1 Analysis of CAHU

In this section we will prove the incentive properties of the CAHU mechanism. We will first

present an overview of the proof, before presenting it formally. Recall that the expected

payment of an agent in this setting is the following:

up(F
p, {F q}q 6=p) =

1

`− 1

∑
q 6=p

∑
i,j

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Sp,q(rp, rq) .

One can think of the expected payment to an agent p to be the average over all other agents

q, the expected payment when q is p’s peer agents. The expected payment when q is p’s peer

agent is given by the quantity
∑

i,j ∆p,q(i, j) ·
∑

rp,rq
F pirpF

q
jrq
Sp,q(rp, rq).

For intuition, let us only consider deterministic strategies in this discussion. Our proof covers

59

general randomized strategies. For deterministic strategies we have that

∑
rp,rq

F pirpF
q
jrq
Sp,q(rp, rq) = Sp,q(F

p
i , F

q
j) ,

where F pi and F qj denote (deterministic) reports of agents p and q given signals i and j,

respectively. In this case the expected payment for p when q is her peer is
∑

i,j ∆p,q(i, j) ·

Sp,q(F
p
i , F

q
j). Suppose that ∆p,q has positive diagonals, and negative non-diagonals, and the

scoring matrix Sp,q is the identity matrix, then it is not hard to see that the maximum value

of
∑

i,j ∆p,q(i, j) · Sp,q(F pi , F
q
j) for any deterministic F p and F q is the trace of the matrix

∆p,q. Moreover, this maximum is achieved when F p and F q are truthful. Also, suppose

that agents p and q adopt an uniformed strategy, say reporting ‘1’ for every task, then the

expected payment is
∑

i,j ∆p,q(i, j) ·Sp,q(1, 1) which is zero since the sum of the entries of the

Delta matrices is always zero. For the general case, we will show that the maximum expected

payment to p when agent q is her peer is given by
∑

i,j ∆p,q(i, j) · Sign(∆p,q(i, j)). Hence,

when Sp,q = Sign(∆p,q(i, j)), then this maximum is achieved when the agents are truthful.

Also, the payment of any uninformed strategy is 0. Since, this holds for any peer agent q, this

would imply informed truthfulness of the mechanism where Sp,q = Sign(∆p,q(i, j)). A similar

argument also follow for any mixed strategies. A formal proof is presented in Lemma 3.3.4,

and is very similar to the proof of informed truthfulness of the CA mechanism (Shnayder

et al., 2016b).

However, we use approximate cluster Delta matrices instead of agent Delta matrices, to design

the scoring matrices. Hence, we need to additionally worry about the effect of approximations

due to clustering and learning on the incentive properties of our mechanisms. We will show

that even under these approximation a truthful strategy will attain an expected reward that

is close to the maximum possible expected reward. Precisely, we will show that when the

clustering is ε1-accurate and the cluster Delta matrix estimates are ε2-accurate then the

expected reward of a truthful strategy is at most (ε1 + ε2) away from the maximum reward

under any strategy and scoring matrices. Also, the expected reward of any uninformed

60

strategy will always be zero. This will imply that CAHU is (ε1 + ε2)-informed truthful.

We will first need the following technical lemmas before proceeding to the main proof.

Lemma 3.3.2. For any matrix Ŝ ∈ {0, 1}n×n, and any probability distributions ψ ∈ Pn and

φ ∈ Pn, where Pn is the set of all probability distributions over [n], we have that

0 6
∑

r1,r2∈[n]

ψr1Ŝ(r1, r2)φr2 6 1 .

Proof. The fact that
∑

r1,r2∈[n] ψr1Ŝ(r1, r2)φr2 > 0 follows easily from the fact that ψr1 > 0,

φr2 > 0 and Ŝ(r1, r2) > 0 for all r1 and r2. The other direction follows from the following.

∑
r1,r2∈[n]

ψr1Ŝ(r1, r2)φr2 =
∑
r1∈[n]

ψr1
∑
r2∈[n]

Ŝ(r1, r2)φr2

6
∑
r1∈[n]

ψr1
∑
r2∈[n]

1 · φr2 (Ŝ(r1, r2) 6 1)

=
∑
r1∈[n]

ψr1 · 1 (
∑

r2∈[n] φr2 = 1)

= 1 (
∑

r1∈[n] ψr1 = 1)

We now prove another technical lemma which gives an upper bound on the maximum payoff

to an agent p under any scoring matrix.

Lemma 3.3.3. Let {Ŝp,q}p,q∈P be an arbitrary set of scoring matrices where Ŝp,q ∈ {0, 1}n×n

denotes the score matrix for agent p and agent q. Then for every strategy profile {F q}q∈P we

have that

∑
i,j

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Ŝp,q(rp, rq) 6

∑
i,j:∆p,q(i,j)>0

∆p,q(i, j) .

61

Proof. We have that

∑
i,j

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Ŝp,q(rp, rq) =

∑
(i,j):∆p,q(i,j)>0

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Ŝp,q(rp, rq)

+
∑

(i,j):∆p,q(i,j)60

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Ŝp,q(rp, rq) .

(3.3.1)

Now we make two observations. Firstly,

∑
i,j:∆p,q(i,j)>0

∆p,q(i, j) >
∑

(i,j):∆p,q(i,j)>0

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Ŝp,q(rp, rq) ,

which follows from Lemma 3.3.2 as
∑

rp,rq
F pirpF

q
jrq
Ŝp,q(rp, rq) 6 1. Secondly,

∑
(i,j):∆p,q(i,j)60

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Ŝp,q(rp, rq) 6 0 ,

which again follows from Lemma 3.3.2 as
∑

rp,rq
F pirpF

q
jrq
Ŝp,q(rp, rq) > 0.

Now, the desired bound follows from Equation 3.3.1 and the two observations above.

We will now analyze our mechanism formally using the above lemmas. The derivation of

the following result closely follows a similar analysis due to Shnayder et al. (2016b). We use

u∗p(·) to denote the utility of agent p when the scoring matrices are Sign(∆p,q(i, j)), for all

pairs p, q.

Lemma 3.3.4. For a strategy profile {F q}q∈P and an agent p ∈ P , define

u∗p(F
p, {F q}q 6=p) =

1

`− 1

∑
q 6=p

∑
i,j

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
S∗p,q(rp, rq)

where S∗p,q(i, j) = Sign(∆p,q(i, j)) for all i, j ∈ [n]. Then, u∗p(I, {I}q 6=p) > u∗p(F
p, {F q}q 6=p).

Moreover, for any uninformed strategy F p, u∗p(I, {I}q 6=p) > u∗p(r, {F q}q 6=p). This implies

62

informed-truthfulness of the mechanism where S∗p,q is used for scoring agents p and q.

Proof. Let 1[·] denote the indicator function. Then the utility of the truthful strategy profile

{I, {I}q 6=p} is given by

u∗p(I, {I}q∈P\{p}) =
1

`− 1

∑
q∈P\{p}

∑
i,j

∆p,q(i, j)
∑
rp,rq

1[i = rp] · 1[j = rq] · S∗p,q(rp, rq)

=
1

`− 1

∑
q∈P\{p}

∑
i,j

∆p,q(i, j) · S∗p,q(i, j)

=
1

`− 1

∑
q∈P\{p}

∑
i,j:∆p,q(i,j)>0

∆p,q(i, j)

The utility of any other strategy profile {F p, {F q}q 6=p} is given by

u∗p(F
p, {F q}q∈P\{p}) =

1

`− 1

∑
q∈P\{p}

∑
i,j

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
S∗p,q(rp, rq) .

From Lemma 3.3.3 we then have

u∗p(I, {I}q∈P\{p}) > u∗p(F
p, {F q}q∈P\{p}) .

For an uninformed strategy F p such that all the rows of F p are the same, i.e. F pi· = ψ for all

i where ψ is a probability distribution, we have

u∗p(F
p, {F q}q 6=p) =

1

`− 1

∑
q 6=p

∑
i,j

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
S∗p,q(rp, rq)

=
1

`− 1

∑
q 6=p

∑
i,j

∆p,q(i, j)
∑
rp,rq

ψrpF
q
jrq
S∗p,q(rp, rq)

=
1

`− 1

∑
q∈P\{p}

∑
j

∑
rp,rq

ψrpF
q
jrq
S∗p,q(rp, rq)

(∑
i

∆p,q(i, j)

)
= 0

The last equality follows since the row / column sum of delta matrices is zero. On the other

hand, u∗p(I, {I}q 6=p), being a sum of only positive entries, is strictly greater than 0.

63

We now prove our main theorem that (ε1 + ε2)-informed truthfulness holds when (ε1, ε2)-

accurate clustering and learning holds.

Theorem 3.3.5. With (ε1, ε2)-accurate clustering and learning, mechanism CAHU is (ε1 +

ε2)-informed truthful if minp u
∗
p(I, {I}q 6=p) > ε1 + ε2. In particular,

1. For every profile {F q}q∈P and agent p ∈ P , we have up(I, {I}q 6=p) > up(F
p, {F q}q 6=p)−

ε1 − ε2.

2. For any uninformed strategy F p0 , up(I, {I}q 6=p) > up(F
p
0 , {F q}q 6=p).

Proof. Fix a strategy profile {F q}q∈P . We first show that u∗p(I, {I}q 6=p) > up(F
p, {F q}q 6=p),

and then show that |u∗p(I, {I}q 6=p) − up(I, {I}q 6=p)| 6 ε1 + ε2. These together imply that

up(I, {I}q 6=p) > up(F
p, {F q}q 6=p) − ε1 − ε2. For the former, we first observe (similarly, as

in proof of Lemma 3.3.4) that the utility of truthful reporting when the scoring matrix

S∗p,q(i, j) = Sign(∆p,q(i, j)), is given by

u∗p(I, {I}q∈P\{p}) =
1

`− 1

∑
q∈P\{p}

∑
i,j:∆p,q(i,j)>0

∆p,q(i, j)

The utility up(F
p, {F q}q∈P\{p}) of an agent p for any strategy profile {F p, {F q}q∈P\{p}}

under our mechanism, when the scoring matrix Sp,q = Sign(∆G(p),G(q)), is given by

up(F
p, {F q}q∈P\{p}) =

1

`− 1

∑
q∈P\{p}

∑
i,j

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Sp,q(rp, rq)

Now, using Lemma 3.3.3 and the expressions for u∗p(I, {I}q∈P\{p}) and up(F p, {F q}q∈P\{p})

we have that

u∗p(I, {I}q∈P\{p}) > up(F
p, {F q}q∈P\{p}) .

64

For the latter, we have

|u∗p(I, {I}q 6=p)− up(I, {I}q 6=p)| =

∣∣∣∣∣∣ 1

`− 1

∑
q∈P\{p}

∑
i,j

∆p,q(i, j)
(
Sign(∆p,q)i,j − Sign(∆G(p),G(q))i,j

)∣∣∣∣∣∣
(3.3.2)

6
1

`− 1

∑
q∈P\{p}

∑
i,j

|∆p,q(i, j)
(
Sign(∆p,q)i,j − Sign(∆G(p),G(q))i,j

)
|

6
1

`− 1

∑
q∈P\{p}

∑
i,j

|∆p,q(i, j)−∆G(p),G(q)(i, j)|

=
1

`− 1

∑
q∈P\{p}

‖∆p,q −∆G(p),G(q)‖1

6
1

`− 1

∑
q∈P\{p}

‖∆p,q −∆G(p),G(q)‖1 + ‖∆G(p),G(q) −∆G(p),G(q)‖1

6
1

`− 1

∑
q∈P\{p}

ε1 + ε2 = ε1 + ε2.

To show that the third transition holds, we show that |a · (Sign(a)−Sign(b))| 6 |a− b| for all

real numbers a, b ∈ R. When Sign(a) = Sign(b), this holds trivially. When Sign(a) 6= Sign(b),

note that the RHS becomes |a|+ |b|, which is an upper bound on the LHS, which becomes

|a|. The penultimate transition holds by ε1-accurate clustering and ε2-accurate estimates of

cluster Delta matrices. This proves the first part of the theorem.

Now, we prove the second part of the theorem. For an uninformed strategy F p such that all

the rows of F p are the same, i.e. F pi = ψ for all i where ψ is a probability distribution, we

have

up(F
p, {F q}q 6=p) =

1

`− 1

∑
q 6=p

∑
i,j

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Sp,q(rp, rq)

=
1

`− 1

∑
q 6=p

∑
i,j

∆p,q(i, j)
∑
rp,rq

ψrpF
q
jrq
Sp,q(rp, rq)

=
1

`− 1

∑
q∈P\{p}

∑
j

∑
rp,rq

ψrpF
q
jrq
Sp,q(rp, rq)

(∑
i

∆p,q(i, j)

)
= 0 ,

65

where the last equality follows because the rows and columns of ∆p,q sum to zero. Since

|u∗p(I, {I}q 6=p)− up(I, {I}q 6=p)| 6 ε1 + ε2 we have

up(I, {I}q 6=p) > u∗p(I, {I}q 6=p)− ε1 − ε2 > 0

as u∗p(I, {I}q 6=p) > ε1 + ε2 for any p.

The CAHU mechanism always ensures that there is no strategy profile which gives an expected

utility more than ε1 +ε2 above truthful reporting. The condition minp u
∗
p(I, {I}q 6=p) > ε1 +ε2

is required to ensure that any uninformed strategy gives strictly less than the truth-telling

equilibrium. This is important to promote effort in collecting and reporting an informative

signal. Note that, the learning error ε2 can be made if we have sufficient amount of data.

Therefore, we need to guarantee that minp u
∗
p(I, {I}q 6=p) > ε1 to ensure that any uninformed

strategy gives strictly less than the truth-telling. Writing it out, this condition requires that

for each agent p the following holds :

1

`− 1

∑
q 6=p

∑
i,j:∆p,q(i,j)>0

∆p,q(i, j) > ε1. (3.3.3)

In particular, a sufficient condition for this property is that for every pair of agents the

expected reward on a bonus task in the CA mechanism when making truthful reports is at

least ε1, i.e. for every pair of agents p and q,

∑
i,j:∆p,q(i,j)>0

∆p,q(i, j) > ε1. (3.3.4)

In turn, as pointed out by Shnayder et al. (2016b), the LHS in (3.3.4) quantity can be

interpreted as a measure of how much positive correlation there is in the joint distribution

on signals between a pair of agents. Note that it is not important that this is same-signal

correlation. For example, this quantity would be large between an accurate and an always-

66

wrong agent in a binary-signal domain, since the positive correlation would be between one

agent’s report and the flipped report from the other agent.

The incentive properties of the mechanism are retained when used together with learning

the cluster structure and cluster Delta matrices. However, we do assume that the agents do

not reveal their task assignments to each other. If the agents were aware of the identities

of the tasks they are assigned, they could coordinate on the task identifiers to arrive at a

profitable coordinated strategy. This is reasonable in practical settings as the number of

tasks is often large. The next theorem shows that even if the agents could set the scoring

matrices to be an arbitrary function Ŝ through any possible deviating strategies, it is still

beneficial to use the scoring matrices estimated from the truthful strategies. Let Ŝ be an

arbitrary scoring function i.e. Ŝp,q specifies the score matrix for two agents from p and q.

We will write ûp(F p, {F q}q 6=p) to denote the expected utility of agent p under the CAHU

mechanism with the reward function Ŝ and strategy profile (F p, {F q}q 6=p).

Theorem 3.3.6. Let {Ŝp,q}p,q∈P be an arbitrary set of scoring matrices where Ŝp,q ∈

{0, 1}n×n denotes the score matrix for agent p and agent q. Then for every profile {F q}q∈P
and agent p ∈ P , we have

1. up(I, {I}q 6=p) > ûp(F
p, {F q}q 6=p)− ε1 − ε2.

2. If minp u
∗
p(I, {I}q 6=p) > ε1, then for any uninformed strategy F p0 , up(I, {I}q 6=p) >

ûp(F
p
0 , {F q}q 6=p).

Proof. Similar to the proof of Lemma 3.3.4, the utility of truthful reporting when the scoring

matrix S∗p,q(i, j) = Sign(∆p,q(i, j)), is given by

u∗p(I, {I}q∈P\{p}) =
1

`− 1

∑
q∈P\{p}

∑
i,j:∆p,q(i,j)>0

∆p,q(i, j)

The utility ûp(F
p, {F q}q∈P\{p}) of an agent p for any strategy profile {F p, {F q}q∈P\{p}}

67

when the scoring matrix is Ŝp,q, is given by

ûp(F
p, {F q}q∈P\{p}) =

1

`− 1

∑
q∈P\{p}

∑
i,j

∆p,q(i, j)
∑
rp,rq

F pirpF
q
jrq
Ŝp,q(rp, rq)

Now, using Lemma 3.3.3 and the expressions for u∗p(I, {I}q∈P\{p}) and ûp(F p, {F q}q∈P\{p})

we have that

u∗p(I, {I}q 6=p) > ûp(F
p, {F q}q 6=p) .

Now the proof of Theorem 3.3.5 shows that up(I, {I}q 6=p) > u∗p(I, {I}q 6=p) − ε1 − ε2. Using

the result above we get up(I, {I}q 6=p) > ûp(I, {I}q 6=p) − ε1 − ε2. Similar to the proof of

Theorem 3.3.5 it can be shown that ûp(F
p
0 , {F q}q 6=p) = 0 for any uninformed strategy F p0 .

The proof of Theorem 3.3.5 also shows that up(I, {I}q 6=p) can be made positive whenever

minp u
∗
p(I, {I}q 6=p) > ε1.

The above theorem implies that the incentive properties of our mechanism hold even when

agents are allowed to coordinate their strategies and the mechanism is learned using reports

from these coordinated strategies. To be precise, recall that up(I, {I}q 6=p) is the expected

payment to agent p when the mechanism learns the true Delta matrix and the agent reports

truthfully. This is no less than the expected payment minus ε1 + ε2 when the mechanism

learns any other delta matrices and the agents misreport in any arbitrary way.

3.4 Learning the Agent Signal Types

In this section, we provide algorithms for learning a clustering of agent signal types from

reports, and further, for learning the cluster pairwise ∆ matrices. The estimates of the ∆

matrices can then be used to give an approximate-informed truthful mechanism. Along the

way, we couple our methods with the latent “confusion matrix” methods of Dawid and Skene

(1979b).

68

Recall that m is the total number of tasks about which reports are collected. Reports on m1

of these tasks will also be used for clustering, and reports on a further m2 of these tasks will

be used for learning the cluster pairwise ∆ matrices. We consider two different schemes for

assigning agents to tasks for the purpose of clustering and learning (see Figures 3 and 4):

Figure 3: Fixed Task Assignment Figure 4: Uniform Task Assignment

1. Fixed Task Assignment: Each agent is assigned to the same, random subset of

tasks of size m1 +m2 of the given m tasks.

2. Uniform Task Assignment: For clustering, we select two agents r1 and r2, uniformly

at random, to be reference agents. These agents are assigned to a subset of tasks

of size m1(< m). For all other agents, we then assign a required number of tasks,

s1, uniformly at random from the set of m1 tasks. For learning the cluster pairwise

∆-matrices, we also assign one agent from each cluster to some subset of tasks of size

s2, selected uniformly at random from a second set of m2(< m−m1) tasks.

For each assignment scheme, the analysis establishes that there are enough agents who have

done a sufficient number of joint tasks. Table 1 summarizes the sample complexity results,

stating them under two different assumptions about the way in which signals are generated.
†For an arbitrary m2, this bound is Km2 as long as m2 is Ω

(
n7/(ε′)2

)
‡In the no assumption approach (resp. Dawid-Skene Model), ε′ is the error in the estimation of the joint

probability distribution (resp. aggregate confusion matrix).

69

No Assumption Dawid-Skene

Fixed Assignment
Clustering: Õ

(
`n2

γ2

)
Learning: Õ

(
Kn2

(ε′)2

) Clustering: Õ
(
`n2

γ2

)
Learning: Õ

(
`n7

(ε′)2

)
Uniform Assignment

Clustering: Õ
(
`n2

γ2 +m1

)
Learning: Õ

(
Km

7/8
2

√
n2

(ε′)2

) Clustering: Õ
(
`n2

γ2 +m1

)
Learning: Õ

(
Kn7

(ε′)2

)
†

Table 1: Sample complexity for the CAHU mechanism. The rows indicate the assignment
scheme and the columns indicate the modeling assumption. Here ` is the number of agents, n
is the number of signals, ε′ is a parameter that controls learning accuracy ‡ , γ is a clustering
parameter, K is the number of clusters, and m1 (resp. m2) is the size of the set of tasks
from which the tasks used for clustering (resp. learning) are sampled.

3.4.1 Clustering

We proceed by presenting and analyzing a simple clustering algorithm.

Definition 3.4.1. A clustering G1, . . . , GK is ε-good if for some γ > 0

G(q) = G(r)⇒ ‖∆pq −∆pr‖1 6 ε− 4γ ∀p ∈ [`] \ {q, r} (3.4.1)

G(q) 6= G(r)⇒ ‖∆pq −∆pr‖1 > ε ∀p ∈ [`] \ {q, r} (3.4.2)

We first show that an ε-good clustering, if exists, must be unique.

Theorem 3.4.2. Suppose there exist two clustering {Gj}j∈[K] and {Ti}i∈[K′] that are ε-good.

Then K ′ = K and Gj = Tπ(j) for some permutation π over [K].

Proof. Suppose equations 3.4.1 and 3.4.2 hold with parameters γ1 and γ2 respectively for

the clusterings {Gj}j∈[K] and {Ti}i∈[K′]. If possible, assume there exist Ti and Gj such that

Ti \Gj 6= ∅, Gj \ Ti 6= ∅ and Ti ∩Gj 6= ∅. Pick s ∈ Ti ∩Gj and r ∈ Gj \ Ti. Then we must

have, for any p /∈ {q, s, r},

1. ‖∆pr −∆ps‖1 > ε (inter-cluster distance in {Ti}i∈[K′])

2. ‖∆pr −∆ps‖1 6 ε− 4γ1 (intra-cluster distance in {Gj}j∈[K])

70

Algorithm 2 Clustering
Input: ε, γ such that there exists an ε-good clustering with parameter γ.
Output: A clustering {Ĝt}K̂t=1

1: Ĝ← ∅, K̂ ← 0 . Ĝ is the list of clusters, K̂ = |Ĝ|
2: Make a new cluster Ĝ1 and add agent 1
3: Add Ĝ1 to Ĝ, K̂ ← K̂ + 1
4: for i = 2, . . . , ` do
5: for t ∈ [K̂] do
6: Pick an arbitrary agent qt ∈ Ĝt
7: Pick pt ∈ [l] \ {i, qt} (Fixed) or pt ∈ {r1, r2} \ {i, qt} (Uniform), such that pt

has at least Ω(n
2 log(K`/δ)

γ2) tasks in common with both qt and i
8: Let ∆̄pt,qt be the empirical Delta matrix from reports of agents pt and qt
9: Let ∆̄pt,i be the empirical Delta matrix from reports of agents pt and i

10: end for
11: if ∃t ∈ [K̂] : ‖∆̄pt,qt − ∆̄pt,i‖1 6 ε− 2γ then
12: add i to Ĝt (with ties broken arbitrarily for t)
13: else
14: Make a new cluster Ĝ

K̂+1
and add agent i to it

15: Add Ĝ
K̂+1

to Ĝ, K̂ ← K̂ + 1
16: end if
17: end for

This is a contradiction. Now suppose K ′ > K. Then there must exist Ti and Tk such that

Ti ∪ Tk ⊆ Gj for some j. Pick q ∈ Ti and r ∈ Tk. Then, for any p /∈ {q, r}

1. ‖∆pq −∆pr‖1 > ε (inter-cluster distance in {Ti}i∈[K′])

2. ‖∆pq −∆pr‖1 6 ε− 4γ1 (intra-cluster distance in {Gj}j∈[K])

This leads to a contradiction and proves that K ′ 6 K. Similarly we can prove K 6 K ′.

Therefore, we have shown that for each each Gj there exists i such that Gj = Ti.

Since there is a unique ε-good clustering (up to a permutation), we will refer to this clustering

as the correct clustering. The assumption that there exists an ε-good clustering is stronger

than Equation (3.2.3) introduced earlier. In particular, identifying the correct clustering needs

to satisfy Equation (3.4.2), i.e. the ∆-matrices of two agents belonging to two different clusters

are different with respect to every other agent. So, we need low inter-cluster similarities in

addition to high intra-cluster similarities. The pseudo-code for the clustering algorithm is

71

Õ(n
2 /γ

2)
i

Õ(n 2
/γ 2

) qt

pt

Ct

Figure 5: Algorithm 2 checks whether i and qt are in the same cluster by estimating ∆pt,qt

and ∆pt,i.

presented in Algorithm 2. This algorithm iterates over the agents, and forms clusters in a

greedy manner. First, we prove that as long as we can find an agent pt that has Ω
(
n2 log(`/δ)

γ2

)
tasks in common with both qt and i, then the clustering produced by Algorithm 2 is correct

with probability at least 1− δ.

Theorem 3.4.3. If for all i ∈ P and qt ∈ G(i), there exists pt which has Ω
(
n2 log(`/δ)

γ2

)
tasks

in common with both qt and i, then Algorithm 2 recovers the correct clustering i.e. Ĝt = Gt

for t = 1, . . . ,K with probability at least 1− δ.

We need two key technical lemmas to prove Theorem 3.4.3. The first lemma shows that in

order to estimate ∆p,q with an L1 distance of at most γ, it is sufficient to estimate the joint

probability distribution Dp,q with an L1 distance of at most γ/3. With this, we can estimate

the delta matrices of agent pairs from the joint empirical distributions of their reports.

Lemma 3.4.4. For all p, q ∈ P , ‖D̄p,q −Dp,q‖1 6 γ/3⇒ ‖∆̄p,q −∆p,q‖1 6 γ .

72

Proof.

‖∆̄p,q −∆p,q‖1 =
∑
i,j

∣∣D̄p,q(i, j)− D̄p(i)D̄q(j)− (Dp,q(i, j)−Dp(i)Dq(j))
∣∣

=
∑
i,j

∣∣D̄p,q(i, j)−Dp,q(i, j)
∣∣

+
∑
i,j

∣∣D̄p(i)D̄q(j)− D̄p(i)Dq(j) + D̄p(i)Dq(j)−Dp(i)Dq(j)
∣∣

6 γ/3 +
∑
i

D̄p(i)
∑
j

∣∣D̄q(j)−Dq(j)
∣∣+
∑
j

Dq(j)
∑
i

∣∣D̄p(i)−Dp(i)
∣∣

6 γ/3 +
∑
j

∣∣D̄q(j)−Dq(j)
∣∣+
∑
i

∣∣D̄p(i)−Dp(i)
∣∣

6 γ/3 +
∑
i,j

∣∣D̄p,q(i, j)−Dp,q(i, j)
∣∣+
∑
i,j

∣∣D̄p,q(i, j)−Dp,q(i, j)
∣∣

6 γ,

as required.

The second lemma is about learning the empirical distributions of reports of pairs of agents.

This can be proved using Theorems 3.1 and 2.2 from the work of Devroye and Lugosi (2012).

Lemma 3.4.5. Any distribution over a finite domain Ω is learnable within a L1 distance of

d with probability at least 1− δ, by observing O
(
|Ω|
d2 log(1/δ)

)
samples from the distribution.

We can use the above lemma to show that the joint distributions of reports of agents can

be learned to within an L1 distance γ with probability at least 1 − δ/K`, by observing

O
(
n2

γ2 log(K`/δ)
)
reports on joint tasks.

Corollary 3.4.6. For any agent pair p, q ∈ P , the joint distribution of their reports Dp,q

is learnable within a L1 distance of γ using O
(
n2

γ2 log(K`/δ)
)
reports on joint tasks with

probability at least 1− δ/K`.

We are now ready to prove Theorem 3.4.3.

73

Proof of Theorem 3.4.3. The proof is by induction on the number of agents `. Suppose all

the agents up to and including i− 1 have been clustered correctly. Consider the i-th agent

and suppose i belongs to the cluster Gt. Suppose Ĝt 6= ∅. Then using the triangle inequality

we have

‖∆̄pt,qt − ∆̄pt,i‖1 6 ‖∆̄pt,qt −∆pt,qt‖1 + ‖∆pt,qt −∆pt,i‖1 + ‖∆̄pt,i −∆pt,i‖1

Since qt ∈ Gt, we have ‖∆pt,qt − ∆pt,i‖1 6 ε/2 − 4γ. Moreover, using lemma 3.4.4 and

corollary 3.4.6 we have that, with probability at least 1− δ/K`, ‖∆̄pt,qt −∆pt,qt‖1 6 γ and

‖∆̄pt,i −∆pt,i‖ 6 γ. This ensures that ‖∆̄pt,qt − ∆̄pt,i‖1 6 ε/2− 2γ. On the other hand pick

any cluster Gs such that s 6= t and Ĝs 6= ∅. Then

‖∆̄ps,qs − ∆̄ps,i‖1 > ‖∆ps,qs −∆ps,i‖ − ‖∆̄ps,qs −∆ps,qs‖1 − ‖∆̄ps,i −∆ps,i‖1

Since i /∈ Gs we have ‖∆ps,qs −∆ps,i‖1 > ε/2. Again, with probability at least 1− δ/K`, we

have ‖∆̄ps,qs −∆ps,qs‖1 6 γ and ‖∆̄ps,i −∆ps,i‖1 6 γ. This ensures that ‖∆̄ps,qs − ∆̄ps,i‖1 >

ε/2− 2γ. This ensures that condition on line (11) is violated for all clusters s 6= t. If Ĝt 6= ∅

this condition is satisfied and agent i added to cluster Ĝt, otherwise the algorithm makes a

new cluster with agent i. Now note that the algorithm makes a new cluster only when it sees

an agent belonging to a new cluster. This implies that K̂ = K. Taking a union bound over

the K choices of qs for the K clusters, we see that agent i is assigned to its correct cluster

with probability at least 1− δ/`. Finally, taking a union bound over all the ` agents we get

the desired result.

Next we show how the assumption in regard to task overlap is satisfied under each assignment

scheme, and characterize the sample complexity of learning the clusterings under each

scheme. In the fixed assignment scheme, all the agents are assigned to the same set of

m1 = Ω(n
2

γ2 log(K`/δ)) tasks. Thus, for each agent pair qt and i, any other agent in the

population can act as pt. The total number of tasks performed is O
(
`n2

γ2 log(K`/δ)
)
.

74

In the uniform assignment scheme, we select two agents r1 and r2 uniformly at random to

be reference agents, and assign these agents to each of m1 = Ω(n
2

γ2 log(K`/δ)) tasks. For

all other agents we then assign s1 = Ω(n
2

γ2 log(K`/δ)) tasks uniformly at random from this

set of m1 tasks. If m1 = s1, then the uniform task assignment is the same as fixed task

assignment. However, in applications (e.g., (Karger et al., 2011)), where one wants the task

assignments to be more uniform across tasks, it will make sense to use a larger value of m1.

The reference agent r1 can act as pt for all agent pairs qt and i other than r1. Similarly,

reference r2 can act as pt for all agent pairs qt and i other than r2. If qt = r1 and i = r2 or

qt = r2 and i = r1, then any other agent can act as pt. The total number of tasks performed

is Ω(`n
2

γ2 log(K`/δ) +m1), which is sufficient for the high probability result.

3.4.2 Learning the Cluster Pairwise ∆ Matrices

We proceed now under the assumption that the agents are clustered into K groups,

G1, . . . , GK . Our goal is to estimate the cluster-pairwise delta matrices ∆Gs,Gt as required

by Algorithm 1. We estimate the ∆Gs,Gt under two different settings: when we have no

model of the signal distribution, and in the Dawid-Skene latent attribute model.

Algorithm 3 Learning-∆-No-Assumption
1: for t = 1, . . . ,K do
2: Chose agent qt ∈ Gt arbitrarily.
3: end for
4: for each pair of clusters Gs, Gt do
5: Let qs and qt be the chosen agents for Gs and Gt, respectively.
6: Let D̄qs,qt be the empirical estimate of Dqs,qt such that ‖D̄qs,qt −Dqs,qt‖1 6 ε′ with

probability at least 1− δ/K2

7: Let ∆̄qs,qt be the empirical Delta matrix computed using D̄qs,qt

8: Set ∆̄Gs,Gt = ∆̄qs,qt

9: end for

3.4.2.1 Learning the ∆-Matrices with No Assumption

We first characterize the sample complexity of learning the ∆-matrices in the absence of any

modeling assumptions. In order to estimate ∆̄Gs,Gt , Algorithm 3 first picks agent qs from

cluster Gs, estimates ∆̄qs,qt and use this estimate in place of ∆̄Gs,Gt . For the fixed assignment

scheme, we assign the agents qs to the same set of tasks of size O
(

n2

(ε′)2 log(K/δ)
)
. For the

75

uniform assignment scheme, we assign the agents to subsets of tasks of an appropriate size

among the pool of m2 tasks.

Theorem 3.4.7. Given an ε-good clustering {Gs}Ks=1, if the number of shared tasks between

any pair of agents qs, qt is O
(

n2

(ε′)2 log(K/δ)
)
, then Algorithm 3 guarantees that for all s, t,

‖∆̄Gs,Gt −∆Gs,Gt‖1 6 3ε′ + 2ε with probability at least 1− δ. The total number of samples

collected by the algorithm is O
(
Kn2

(ε′)2 log(K/δ)
) (

resp. O
(
Km

7/8
2

√
n2

(ε′)2 log(K/δ)
)
w.h.p.

)
under the fixed (resp. uniform) assignment scheme.

We first prove a sequence of lemmas that will be used to prove the result.

Lemma 3.4.8. For every pair of agents p, q, we have

‖∆p,q −∆G(p),G(q)‖1 6 2 · max
a,b,c∈P :G(a)=G(b)

‖∆a,c −∆b,c‖1.

Proof. Let ∆p,G(q) = 1
|G(q)|

∑
r∈G(q) ∆p,r, then using the property of clusters we have

‖∆p,q −∆G(p),G(q)‖1 =

∥∥∥∥∆p,q −
1

|G(p)| |G(q)|
∑

u∈G(p),v∈G(q) ∆u,v

∥∥∥∥
1

=

∥∥∥∥ 1

|G(p)| |G(q)|
∑

u∈G(p),v∈G(q)

(
∆p,q −∆u,v

)∥∥∥∥
1

6
1

|G(p)| |G(q)|
∑

u∈G(p),v∈G(q)

‖∆p,q −∆u,v‖1

6
1

|G(p)| |G(q)|
∑

u∈G(p),v∈G(q)

‖∆p,q −∆u,q‖1 + ‖∆u,q −∆u,v‖1

6
1

|G(p)| |G(q)|
∑

u∈G(p),v∈G(q)

2 max
a,b,c∈P :G(a)=G(b)

‖∆a,c −∆b,c‖1

= 2 max
a,b,c∈P :G(a)=G(b)

‖∆a,c −∆b,c‖1,

as required.

The next lemma characterizes the error made by Algorithm 3 in estimating the ∆Gs,Gt-

matrices.

76

Lemma 3.4.9. For any two agents p ∈ Gs and q ∈ Gt, ‖D̄p,q − Dp,q‖1 6 ε′ ⇒ ‖∆̄p,q −

∆Gs,Gt‖1 6 3ε′ + 2ε.

Proof. Lemma 3.4.4 shows that ‖D̄p,q −Dp,q‖1 6 ε′ ⇒ ‖∆̄p,q −∆p,q‖1 6 3ε′.

Now,

‖∆̄p,q −∆Gs,Gt‖1 6 ‖∆̄p,q −∆p,q‖1 + ‖∆p,q −∆Gs,Gt‖1 6 3ε′ + 2ε.

The last inequality uses Lemma 3.4.8

Proof. (Theorem 3.4.7) By Lemma 3.4.5, to estimate Dp,q within a distance of ε′ with

probability at least 1− δ/K2, we need O
(

n2

(ε′)2 log(K2/δ)
)
. By a union bound over the K2

pairs of clusters we see that with probability at least 1− δ, we have ‖D̄qs,qt −Dqs,qt‖1 6 ε′.

This proves the first part of the theorem. When the assignment scheme is fixed, we can

assign all the same tasks to K agents {qt}Kt=1, and hence the total number of samples is

multiplied by K.

On the other hand, under the uniform assignment scheme, suppose each agent {qt}Kt=1 is

assigned to a subset of s2 tasks selected uniformly at random from the pool of m2 tasks. Now

consider any two agents qs and qt. Let Xi be an indicator random variable which is 1 when

i ∈ [m2] is included in tasks of qs, and 0 otherwise. Also, let Yi be a similar random variable

for the tasks of qt. Let Zi = Xi × Yi. The probability that both agents are assigned to a

particular task i, Pr(Zi = 1) = (s2/m2)2. Therefore, the expected number of overlapping

tasks among the two agents is m2 ·
(
s2
m2

)2
=

s22
m2

, i.e. E [
∑

i Zi] =
s22
m2

. Now, we want to bound

the deviations from this expectations. Let Rj = E [
∑m2

i=1 Zi|X1, · · · , Xj , Y1, · · · , Yj], then

Rj is a Doob martingale sequence for
∑j

i=1 Zi. Also, it is easy to see that this martingale

sequence is bounded by 1, i.e. |Rj+1 −Rj | 6 1. Therefore, we apply the Azuma-Hoeffding

bound (Lemma 3.4.10) as

77

Pr

[∣∣∣∣∣∑
i

Zi

∣∣∣∣∣ > s2
2

2m2

]
6 2 exp

{
− s4

2

8m3
2

}
.

Now substituting s2 = m
7/8
2 · L1/2 where L = O

(
n2

(ε′)2 log(K2/δ)
)
, we get

Pr

[∑
i

Zi < m
3/4
2 L/2

]
6 2 exp

{
−√m2L

2
}
.

Taking a union bound over K2 pairs of agents, if each agent completes m7/8
2 · L1/2 tasks

selected uniformly at random from the pool of m2 tasks, then the probability that any pair of

agents has number of shared tasks L is at least 1−K2 exp{−√m2L
2}, which is exponentially

small in m2.

Lemma 3.4.10. Suppose Xn, n > 1 is a martingale such that X0 = 0 and |Xi −Xi−1| 6 1

for each 1 6 i 6 n. Then for every t > 0

Pr [|Xn| > t] 6 2 exp
{
−t2/2n

}

3.4.2.2 Learning the ∆-matrices Under the Dawid-Skene Model

In this section, we assume that the agents receive signals according to the Dawid and Skene

(1979a) model. Here, each task has a latent attribute and each agent has a confusion matrix

to parameterize its signal distribution conditioned on this latent value. Recall two notations

from the introduction : Dp(i) is the marginal probability of observing signal i for agent p and

Dp,q(i, j) is the joint probability that the agents p and q observe signals i and j respectively.

Then the Dawid-Skene Model is formally defined as :

• Let {πk}nk=1 denote the prior probability over n latent values.

• Agent p has confusion matrix Cp ∈ Rn×n, such that Cpij = Dp(Sp = j|T = i) where T

is the latent value. Given this, the joint signal distribution for a pair of agents p and q

78

is

Dp,q(Sp = i, Sq = j) =
n∑
k=1

πkC
p
kiC

q
kj , (3.4.3)

and the marginal signal distribution for agent p is

Dp(Sp = i) =
n∑
k=1

πkC
p
ki. (3.4.4)

For cluster Gt, we write Ct = 1
|Gt|

∑
p∈Gt C

p to denote the aggregate confusion matrix of Gt.

As before, we assume that we are given an ε-good clustering, G1, . . . , GK , of the agents. Our

goal is to provide an estimate of the ∆Gs,Gt-matrices.

Lemma 3.4.11 proves that in order to estimate ∆Gs,Gt within an L1 distance of ε′, it is

enough to estimate the aggregate confusion matrices within an L1 distance of ε′/4. So in

order to learn the pairwise delta matrices between clusters, we first ensure that for each

cluster Gt, we have ‖C̄t − Ct‖1 6 ε′/4 with probability at least 1− δ/K, and then use the

following formula to compute the delta matrices:

∆Gs,Gt(i, j) =
n∑
k=1

πkC̄
s
kiC̄

t
kj −

n∑
k=1

πkC̄
s
ki

n∑
k=1

πkC̄
t
kj (3.4.5)

Lemma 3.4.11. Forall Ga, Gb, ‖C̄a − Ca‖1 6 ε′/4 and ‖C̄b − Cb‖1 6 ε′/4 ⇒ ‖∆̄Ga,Gb −

∆Ga,Gb‖ 6 ε′.

79

Proof.

∆Ga,Gb(i, j) =
1

|Ga| |Gb|
∑

p∈Ga,q∈Gb

∆p,q(i, j) =
1

|Ga| |Gb|
∑

p∈Ga,q∈Gb

Dp,q(i, j)−Dp(i)Dq(j)

=
1

|Ga| |Gb|
∑

p∈Ga,q∈Gb

∑
k

πkC
p
kiC

q
kj −

∑
k

πkC
p
ki

∑
k

Cqkj

=
∑
k

πk

 1

|Ga|
∑
p∈Ga

Cpki

 1

|Gb|
∑
q∈Gb

Cqkj


−
∑
k

πk

 1

|Ga|
∑
p∈Ga

Cpki

∑
k

πk

 1

|Gb|
∑
q∈Gb

Cqkj


=
∑
k

πkC
a
kiC

b
kj −

∑
k

πkC
a
ki

∑
k

πkC
b
kj

Now

‖∆̄Ga,Gb −∆Ga,Gb‖1 =
∑
i,j

∣∣∆̄Ga,Gb(i, j)−∆Ga,Gb(i, j)
∣∣

=
∑
i,j

∣∣∣∣∣∑
k

πkC̄
a
kiC̄

b
kj −

∑
k

πkC̄
a
ki

∑
k

πkC̄
b
kj −

(∑
k

πkC
a
kiC

b
kj −

∑
k

πkC
a
ki

∑
k

πkC
b
kj

)∣∣∣∣∣
6
∑
i,j

∣∣∣∣∣∑
k

πkC̄
a
kiC̄

b
kj −

∑
k

πkC
a
kiC

b
kj

∣∣∣∣∣+
∑
i,j

∣∣∣∣∣∑
k

πkC̄
a
ki

∑
k

πkC̄
b
kj −

∑
k

πkC
a
ki

∑
k

πkC
b
kj

∣∣∣∣∣
=
∑
i,j

∣∣∣∣∣∑
k

πkC̄
a
kiC̄

b
kj −

∑
k

πkC̄
a
kiC

b
kj +

∑
k

πkC̄
a
kiC

b
kj −

∑
k

πkC
a
kiC

b
kj

∣∣∣∣∣
+
∑
i,j

∣∣∣∣∣∑
k

πkC̄
a
ki

∑
k

πkC̄
b
kj −

∑
k

πkC̄
a
ki

∑
k

πkC
b
kj +

∑
k

πkC̄
a
ki

∑
k

πkC
b
kj −

∑
k

πkC
a
ki

∑
k

πkC
b
kj

∣∣∣∣∣
=
∑
k

πk
∑
j

∣∣∣C̄bkj − Cbkj∣∣∣∑
i

C̄aki +
∑
k

πk
∑
i

∣∣C̄aki − Caki∣∣∑
j

Cbkj

+
∑
k

πk
∑
i

C̄aki
∑
k′

πk′
∑
j

∣∣∣C̄bk′j − Cbk′j∣∣∣+
∑
k

πk
∑
j

Cbkj
∑
k′

πk′
∑
i

∣∣C̄ak′i − Cak′i∣∣
= 2

∑
k

πk
∑
j

∣∣∣C̄bkj − Cbkj∣∣∣+ 2
∑
k

πk
∑
i

∣∣∣C̄aki − Cbki∣∣∣
6 2‖C̄a − Ca‖1 + 2‖C̄b − Cb‖1 6 4× ε′/4 = ε′

80

We now turn to the estimation of the aggregate confusion matrix of each cluster. Let us

assume for now that the agents are assigned to the tasks according to the uniform assignment

scheme, i.e. agent p belonging to cluster Ga is assigned to a subset of Ba tasks selected

uniformly at random from a pool of m2 tasks. For cluster Ga, we choose Ba = m2
|Ga| ln(m2K

β).

This implies:

1. For each j ∈ [m2], Pr [agent p ∈ Ga completes task j] = log(m2K/β)
|Ga| , i.e. each agent p

in Ga is equally likely to complete every task j.

2. Pr [task j is unlabeled by Ga] =
(

1− log(m2K/β)
|Ga|

)|Ga|
6 β

m2K
. Taking a union bound

over the m2 tasks and K clusters, we get the probability that any task is unlabeled

is at most β. Now if we choose β = 1/poly(m2), we observe that with probability

at least 1 − 1/poly(m2), each task j is labeled by some agent in each cluster when

Ba = Õ(m2
|Ga|).

All that is left to do is to provide an algorithm and sample complexity for learning the

aggregate confusion matrices. For this, we will use n dimensional unit vectors to denote the

reports of the agents (recall that there are n possible signals). In particular agent p’s report

on task j, rpj ∈ {0, 1}n. If p’s report on task j is c, then the c-th coordinate of rpj is 1 and

all the other coordinates are 0. The expected value of agent p’s report on the jth task is

E [rpj] =
∑n

k=1 πkC
p
k The aggregated report for a cluster Gt is given as Rtj = 1

|Gt|
∑

p∈Gt rpj .

Suppose we want to estimate the aggregate confusion matrix C1 of some cluster G1. To

do so, we first pick three clusters G1, G2 and G3 and write down the corresponding cross

moments. Let (a, b, c) be a permutation of the set {1, 2, 3}. We have:

81

E[Raj] =
∑
k

πkC
a
k (3.4.6)

E[Raj ⊗Rbj] =
∑
k

πkC
a
k ⊗ Cbk (3.4.7)

E[Raj ⊗Rbj ⊗Rcj] =
∑
k

πkC
a
k ⊗ Cbk ⊗ Cck (3.4.8)

The cross moments are asymmetric, however using Theorem 3.6 in the work by Anandkumar

et al. (2014), we can write the cross-moments in a symmetric form.

Lemma 3.4.12. Assume that the vectors {Ct1, . . . , Ctn} are linearly independent for each

t ∈ {1, 2, 3}. For any permutation (a, b, c) of the set {1, 2, 3} define

R′aj = E [Rcj ⊗Rbj] (E [Raj ⊗Rbj])−1Raj

R′bj = E [Rcj ⊗Raj] (E [Rbj ⊗Raj])−1Rbj

M2 = E
[
R′aj ⊗R′bj

]
and M3 = E

[
R′aj ⊗R′bj ⊗Rcj

]

Then M2 =
n∑
k=1

πkC
c
k ⊗ Cck and M3 =

n∑
k=1

πkC
c
k ⊗ Cck ⊗ Cck

We cannot compute the moments exactly, but rather estimate the moments from samples

observed from different tasks. Furthermore, for a given task j, instead of exactly computing

the aggregate label Rgj , we select one agent p uniformly at random from Gg and use agent

p’s report on task j as a proxy for Rgj . We will denote the corresponding report as R̃gj . The

next lemma proves that the cross-moments of {R̃gj}Kg=1 and {Rgj}Kg=1 are the same.

Lemma 3.4.13. 1. For any group Ga, E
[
R̃aj

]
= E [Raj]

2. For any pair of groups Ga and Gb, E
[
R̃aj ⊗ R̃bj

]
= E [Raj ⊗Rbj]

82

3. For any three groups Ga, Gb and Gc, E
[
R̃aj ⊗ R̃bj ⊗ R̃cj

]
= E [Raj ⊗Rbj ⊗Rcj]

Proof.

1. First moments of {R̃gj}Kg=1 and {Rgj}Kg=1 are equal :

E
[
R̃aj

]
=

1

|Ga|
∑
p∈Ga

E [rpj] = E[Raj]

2. Second order cross-moments of {R̃gj}Kg=1 and {Rgj}Kg=1 are equal :

E
[
R̃aj ⊗ R̃bj

]
=
∑
k

πkE
[
R̃aj ⊗ R̃bj |yj = k

]
=
∑
k

πkE
[
R̃aj |yj = k

]
⊗ E

[
R̃bj |yj = k

]

=
∑
k

πk

 1

|Ga|
∑
p∈Ga

Cpk

⊗
 1

|Gb|
∑
q∈Gb

Cqk

 =
∑
k

πkC
a
k ⊗ Cbk = E [Raj ⊗Rbj]

3. Third order cross-moments of {R̃gj}Kg=1 and {Rgj}Kg=1 are equal :

E
[
R̃aj ⊗ R̃bj ⊗ R̃cj

]
=
∑
k

πkE
[
R̃aj ⊗ R̃bj ⊗ R̃cj |yj = k

]
=
∑
k

πkE
[
R̃aj |yj = k

]
⊗ E

[
R̃bj |yj = k

]
⊗ E

[
R̃cj |yj = k

]

=
∑
k

πk

 1

|Ga|
∑
p∈Ga

Cpk

⊗
 1

|Gb|
∑
q∈Gb

Cqk

⊗(1

|Gc|
∑
r∈Gc

Crk

)

=
∑
k

πkC
a
k ⊗ Cbk ⊗ Cck = E [Raj ⊗Rbj ⊗Rcj]

83

Algorithm 4 Estimating Aggregate Confusion Matrix

Input: K clusters of agents G1, G2, . . . , GK and the reports R̃gj ∈ {0, 1}n for j ∈ [m] and
g ∈ [K]

Output: Estimate of the aggregate confusion matrices C̄g for all g ∈ [K]
1: Partition the K clusters into groups of three
2: for Each group of three clusters {ga, gb, gc} do
3: for (a, b, c) ∈ {(gb, gc, ga), (gc, ga, gb), (ga, gb, gc)} do
4: Compute the second and the third order moments M̂2 ∈ Rn×n, M̂3 ∈ Rn×n×n. .

Compute C̄g and Π̄ by tensor decomposition
5: Compute whitening matrix Q̂ ∈ Rn×n such that Q̂T M̂2Q̂ = I
6: Compute eigenvalue-eigenvector pairs (α̂k, v̂k)

n
k=1 of the whitened tensor

M̂3(Q̂, Q̂, Q̂) by using the robust tensor power method
7: Compute ŵk = α̂−2

k and µ̂k = (Q̂T)−1α̂v̂k
8: For k = 1, . . . , n set the k-th column of C̄c by some µ̂k whose k-th coordinate has

the greatest component, then set the k-th diagonal entry of Π̄ by ŵk
9: end for

10: end for

The next set of equations show how to approximate the moments M2 and M3:

R̂′aj =

 1

m2

m2∑
j′=1

R̃cj′ ⊗ R̃bj′

 1

m2

m2∑
j′=1

R̃aj′ ⊗ R̃bj′

−1

R̃aj (3.4.9)

R̂′bj =

 1

m2

m2∑
j′=1

R̃cj′ ⊗ R̃aj′

 1

m2

m2∑
j′=1

R̃bj′ ⊗ R̃aj′

−1

R̃bj (3.4.10)

M̂2 =
1

m2

m2∑
j′=1

R̂′aj′ ⊗ R̂′bj′ and M̂3 =
1

m2

m2∑
j′=1

R̂′aj′ ⊗ R̂′bj′ ⊗ R̃cj′ (3.4.11)

We use the tensor decomposition algorithm (4) on M̂2 and M̂3 to recover the aggregate

confusion matrix C̄c and Π̄, where Π̄ is a diagonal matrix whose k-th component is π̄k, an

estimate of πk. In order to analyze the sample complexity of Algorithm 4, we need to make

some mild assumptions about the problem instance. For any two clusters Ga and Gb, define

Sab = E [Raj ⊗Rbj] =
∑n

k=1 πkC
a
k ⊗ Cbk. We make the following assumptions:

1. There exists σL > 0 such that σn(Sab) > σL for each pair of clusters a and b, where

σn(M) is the n-th smallest eigenvalue of M .

84

2. κ = mint∈[k] mins∈[n] minr 6=s
{
Ctrr − Ctrs

}
> 0

The first assumption implies that the matrices Sab are non-singular. The smallest eigenvalue

of Sab controls how many samples we need to approximate Sab from its sample mean. The

second assumption implies that within a group, the probability of assigning the correct

label is always higher than the probability of assigning any incorrect label. Note that this

assumption might be false for an individual confusion matrix. However, we are averaging

over all the users within a cluster to get the cluster average confusion matrix and unless a

large fraction of individuals within a cluster has the propensity to mislabel i.e. assign large

probability on incorrect labels, this assumption is usually satisfied. The following theorem

gives the number of tasks each agent needs to complete to get an ε′-estimate of the aggregate

confusion matrices. We will use the following two lemmas due to Zhang et al. (2016).

Lemma 3.4.14. For any ε̂ 6 σL/2, the second and the third empirical moments are bounded

as

max{‖M̂2 −M2‖op, ‖M̂3 −M3‖op} 6 31ε̂/σ3
L

with probability at least 1− δ where δ = 6 exp
(
−(
√
m2ε̂− 1)2

)
+ n exp

(
−(
√
m2/nε̂− 1)2

)
Lemma 3.4.15. For any ε̂ 6 κ/2, if the empirical moments satisfy

max{‖M̂2 −M2‖op, ‖M̂3 −M3‖op} 6 ε̂H

for H := min

{
1

2
,

2σ
3/2
L

15n(24σ−1
L + 2

√
2)
,

σ
3/2
L

4
√

3/2σ
1/2
L + 8n(24/σL + 2

√
2)

}

then ‖C̄c − C‖op 6
√
nε̂, ‖Π̄−Π‖op 6 ε̂ with probability at least 1− δ where δ is defined in

Lemma 3.4.14

Zhang et al. (2016) prove Lemma 3.4.14 when M̂2 is defined using the aggregate labels

Rgj . However, this lemma holds even if one uses the labels R̃gj . The proof is similar if one

uses Lemma 3.4.13. We now characterize the sample complexity of learning the aggregate

85

confusion matrices.

Theorem 3.4.16. For any ε′ 6 min
{

31
σ2
L
, κ2

}
n2 and δ > 0, if the size of the universe of

shared tasks m2 is at least O
(

n7

(ε′)2σ11
L

log
(
nK
δ

))
, then we have ‖C̄t − Ct‖1 6 ε′ for each

cluster Gt. The total number of samples collected by Algorithm 4 is Õ (Km2) under the

uniform assignment scheme.

Proof. Substituting ε̂ = ε̂1Hσ
3
L/31 in lemma 3.4.14 we get

max{‖M̂2 −M2‖op, ‖M̂3 −M3‖op} 6 ε̂1H

with probability at least 1− (6 + n) exp

(
−
(
m

1/2
2 ε̂1Hσ3

L

31n1/2 − 1

)2
)
. This substitution requires

ε̂1Hσ
3
L/31 6 σL/2. Since H 6 1/2, it is sufficient to have

ε̂1 6 31/σ2
L (3.4.12)

Now using Lemma 3.4.15 we see that ‖C̄c − C‖op 6
√
nε̂1 and ‖Π̄ − Π‖op 6 ε̂1 with the

above probability. It can be checked that H >
σ

5/2
L

230n . This implies that the bounds hold

with probability at least 1− (6 + n) exp

(
−
(
m

1/2
2 σ

11/2
L ε̂1

7130n3/2 − 1

)2
)
. The second substitution

requires

ε̂1 6 κ/2 (3.4.13)

Therefore to achieve a probability of at least 1− δ we need

m2 >
71302n3

ε̂2
1σ

11
L

(
1 +

√
log

(
6 + n

δ

))2

It is sufficient that

m2 > Ω

(
n3

ε̂2
1σ

11
L

log
(n
δ

))
to ensure ‖C̄c − C‖op 6

√
nε̂1. For each k, ‖C̄ck − Ck‖1 6

√
n‖C̄ck − Ck‖2 6

√
n‖C̄c −

86

C‖op 6 nε̂1. Substituting ε̂1 = ε̂′/n2, we get ‖C̄c − C‖1 =
∑n

k=1‖C̄ck − Ck‖1 6 n2ε̂1 = ε̂′

when m2 = Ω
(

n7

(ε̂′)2σ11
L

log
(
n
δ

))
. By a union bound the result holds for all the clusters

simultaneously with probability at least 1 − δK. Substituting δ/K instead of δ gives the

bound on the number of samples. Substituting ε̂′ = ε̂1/n
2 in equations 3.4.12 and 3.4.13, we

get the desired bound on ε̂′.

Now to compute the total number of samples collected by the algorithm, note that each

agent in cluster Ga provides m2
|Ga| log

(
Km2
β

)
samples. Therefore, total number of samples

collected from cluster Ga is m2 log
(
Km2
β

)
and the total number of samples collected over all

the clusters is Km2 log
(
Km2
β

)
.

Discussion. If the algorithm chooses m2 = Õ
(

n7

(ε′)2σ11
L

)
, then the total number of samples

collected under the uniform assignment scheme is at most Õ
(

n7

(ε′)2σ11
L

)
. So far we have

analyzed the Dawid-Skene model under the uniform assignment scheme. When the assignment

scheme is fixed, the moments of Raj and R̃aj need not be the same. In this case we will

have to run Algorithm 4 with respect to the actual aggregate labels {Rgj}Kg=1. This requires

collecting samples from every member of a cluster, leading to a sample complexity of

O
(

`n7

(ε′)2σ11
L

log
(
nK
δ

))
In order to estimate the confusion matrices, Zhang et al. (2016) require each agent to provide

at least O
(
n5 log((`+ n)/δ)/(ε′)2

)
samples. Our algorithm requires O

(
n7 log(nK/δ)/(ε′)2

)
samples from each cluster. The increase of n2 in the sample complexity comes about because

we are estimating the aggregate confusion matrices in L1 norm instead of the infinity norm.

Moreover when the number of clusters is small (K � `), the number of samples required from

each cluster does not grow with `. This improvement is due to the fact that, unlike Zhang

et al. (2016), we do not have to recover individual confusion matrices from the aggregate

confusion matrices.

Note that the approach based on the work of Dawid and Skene (1979b), for the uniform

assignment scheme, does not require all agents to provide reports on the same set of shared

87

tasks. Rather, we need that for each group of three clusters (as partitioned by Algorithm 4

on line 1) and each task, there should exist one agent from those three clusters who completes

the same task. In particular the reports for different tasks can be acquired from different

agents within the same cluster. The assignment scheme makes sure that this property holds

with high probability.

We now briefly compare the learning algorithms under the no-assumptions and model-based

approach. When it is difficult to assign agents to the same tasks, and when the number

of signals is small (which is often true in practice), the Dawid-Skene method has a strong

advantage. Another advantage of the Dawid-Skene method is that the learning error ε′ can

be made arbitrarily small since each aggregate confusion matrix can be learned with arbitrary

accuracy, whereas the true learning error of the no-assumption approach is at least 2ε (see

Theorem 3.4.7), and depends on the problem instance.

3.5 Clustering Experiments

Our goal in this section is to empirically evaluate the incentive that an agent has to use a

non-truthful strategy under the CAHU mechanism in real-world scenarios. Recall that this

incentive error comes from two sources:

• The clustering error. This represents how “clusterable” the agents are. From theory,

we have the upper bound ε1 = maxp,q∈[`] ‖∆p,q −∆G(p),G(q)‖1.

• The learning error. This represents how accurate our estimates for the cluster Delta

matrices are. From theory, we have the upper bound ε2 = maxi,j∈[K] ‖∆Gi,Gj −

∆Gi,Gj‖1.

Given this, the CAHU mechanism is (ε1 + ε2)-informed truthful (Theorem 3.3.5).

In our experiments, we focus solely on the clustering error due to two reasons. First, the

available real-world datasets have little overlap between the tasks performed by different

agents, making it harder for us to learn their true pairwise ∆-matrices up to a reasonable

88

accuracy and evaluate the error in our estimation. Note that the overlap is only needed to

be able to evaluate the learning error of our approach; under the Dawid-Skene model, we do

not require any overlap when using our approach in practice.

More importantly, the clustering error and the learning error differ in a key sense. Even

with the best possible clustering, the clustering error ε1 cannot be made arbitrarily small

with a fixed number of clusters because it depends on how close the signal distributions

of the agents really are. In contrast, the learning error ε2 of the no-assumption approach

is 3ε′ + 2ε1, (Theorem 3.4.7) from which the part that does not depend on clustering (ε′)

can be made arbitrarily small by simply acquiring a sufficient amount of data about agents’

behavior. Similarly, the learning error ε2 in the Dawid-Skene approach — which we use

in this experiment — can be made arbitrarily small too (Theorem 3.4.16). Hence, given

a sufficient amount of data from the agents, the total error would be dominated by the

clustering error ε1. In particular, we show that in practice even a relatively small number of

clusters lead to a small clustering error.

We use eight real-world crowdsourcing datasets. Six of these datasets are from the SQUARE

benchmark (Sheshadri and Lease, 2013), selected to ensure a sufficient density of worker

labels across different latent attributes as well as the availability of latent attributes for

sufficiently many tasks. In addition, we also use the Stanford Dogs dataset (Khosla et al.,

2011) and the Expressions dataset (Mozafari et al., 2014, 2012). Below, we briefly describe

the format of tasks, the number of agents `, and the number of signals n for each dataset.4

• Adult: Rating websites for their appropriateness, ` = 269, n = 4.

• BM: Sentiment analysis for tweets, ` = 83, n = 2.

• CI: Assessing websites for copyright infringement, ` = 10, n = 3.

• Dogs: Identifying species from images of dogs, ` = 109, n = 4.
4We filter each dataset to remove tasks for which the latent attribute is unknown, and remove workers

who only perform such tasks. ` is the number of agents that remain after filtering.

89

• Expressions: Classifying images of human faces by expression, ` = 27, n = 4.

• HCB: Assessing relevance of web search results, ` = 766, n = 4.

• SpamCF: Assessing whether response to a crowdsourcing task was spam, ` = 150,

n = 2.

• WB: Identifying whether the waterbird in the image is a duck, ` = 53, n = 2.

Since all datasets specify the latent value of the tasks, we adopt the Dawid-Skene model and

estimate the confusion matrices from the frequency with which each agent p reports each

label j in the case of each latent attribute i.

We first use a clustering algorithm to cluster the estimated confusion matrices. Typical

clustering algorithms take a distance metric over the space of data points and attempt to

minimize the maximum cluster diameter, which is the maximum distance between any two

data points in a cluster. In contrast, our objective function (Equation (3.5.1)) is a complex

function of the underlying confusion matrices. We therefore compare two approaches:

1) In this approach, we cluster the confusion matrices using the standard k-means++

algorithm with the L2 norm distance (available in Matlab) and hope that resulting

clustering leads to a small error.5

2) In the following lemma, we derive a distance metric over confusion matrices for which

the maximum cluster diameter is provably an upper bound on the clustering error,

and use k-means++ with this metric (implemented in Matlab).6 Note that computing

this metric requires knowledge of the prior over the latent attribute (e.g., in the WB

dataset, this would require knowing the probability that a random image of a waterbird
5We use L2 norm rather than L1 norm because the standard k-means++ implementation uses as the

centroid of a cluster the confusion matrix that minimizes the sum of distances from the confusion matrices
of the agents in the cluster. For L2 norm, this amounts to averaging over the confusion matrices, which is
precisely what we want. For L1 norm, this amounts to taking a pointwise median, which does not even result
in a valid confusion matrix. Perhaps for this reason, we observe that using the L1 norm performs worse.

6For computing the centroid of a cluster, we still average over the confusion matrices of the agents in the
cluster. Also, since the algorithm is no longer guaranteed to converge (indeed, we observe cycles), we restart
the algorithm when a cycle is detected, at most 10 times.

90

is a duck), which can be estimated easily from a small amount of ground truth data.

Lemma 3.5.1. For all agents p, q, r, we have ‖∆p,q −∆p,r‖1 6 2 ·∑k πk
∑

j |C
q
kj − Crkj |.

Proof. We have

‖∆p,q −∆p,r‖1 =
∑
i,j

|∆p,q(i, j)−∆p,r(i, j)|

=
∑
i,j

|Dp,q(i, j)−Dp(i)Dq(j)−Dp,r(i, j) +Dp(i)Dr(j)|

=
∑
i,j

|Dp,q(i, j)−Dp,r(i, j)−Dp(i)(Dq(j)−Dr(j))|

=
∑
i,j

∣∣∣∣∣∑
k

πkC
p
kiC

q
kj −

∑
k

πkC
p
kiC

r
kj −

∑
k

πkC
p
ki

(∑
l

πlC
q
lj −

∑
l

πlC
r
lj

)∣∣∣∣∣
=
∑
i,j

∣∣∣∣∣∑
k

πkC
p
ki

(
Cqkj − Crkj

)
−
∑
k

πkC
p
ki

(∑
l

πl

(
Cqlj − Crlj

))∣∣∣∣∣
6
∑
j

∑
k

πk

∣∣∣Cqkj − Crkj∣∣∣∑
i

Cpki +
∑
j

∑
k

πk
∑
l

πl

∣∣∣Cqlj − Crlj∣∣∣∑
i

Cpki

=
∑
j

∑
k

πk

∣∣∣Cqkj − Crkj∣∣∣+
∑
j

∑
k

πk
∑
l

πl

∣∣∣Cqlj − Crlj∣∣∣ [Using
∑
i

Cpki = 1]

6
∑
k

πk
∑
j

∣∣∣Cqkj − Crkj∣∣∣+
∑
k

πk
∑
l

πl
∑
j

∣∣∣Cqlj − Crlj∣∣∣
=
∑
k

πk
∑
j

∣∣∣Cqkj − Crkj∣∣∣+
∑
l

πl
∑
j

∣∣∣Cqlj − Crlj∣∣∣ [Using
∑
k

πk = 1]

= 2 ·
∑
k

πk
∑
j

∣∣∣Cqkj − Crkj∣∣∣ ,
as required.

Note that
∑

k πk
∑

j |C
q
kj − Crkj | 6 ‖Cq − Cr‖1 because

∑
j

∣∣∣Cqlj − Crlj∣∣∣ 6 ‖Cq − Cr‖1.

Lemma 3.5.1, along with Lemma 3.4.8, shows that the incentive error due to clustering is

upper bounded by four times the maximum cluster diameter under our metric, which defines

the distance between Cq and Cr as
∑

k πk
∑

j |C
q
kj − Crkj |.

91

For each dataset, we vary the number of clusters K from 5% to 15% of the number of agents

in the dataset. Within the k-means++ algorithm, we use 20 random seeds and choose the

best clustering produced.

Next, we compute the clustering error. Instead of using the weak bound maxp,q∈[`] ‖∆p,q −

∆G(p),G(q)‖1 on the clustering error (which is nevertheless helpful for our theoretical results),

we use the following tighter bound from the proof of Theorem 3.3.5.

|u∗p(I, {I}q 6=p)−up(I, {I}q 6=p)| =

∣∣∣∣∣∣ 1

(`− 1)

∑
q∈P\{p}

∑
i,j

∆p,q(i, j)
(
Sign(∆p,q)i,j − Sign(∆G(p),G(q))i,j

)∣∣∣∣∣∣
(3.5.1)

Assuming no learning error, this would be an upper bound on the incentive that agent p

has to use a non-truthful strategy under the CAHU mechanism. We compare this bound

to both the maximum payoff that agent p can receive and the expected payoff that agent p

would receive under our mechanism, and plot the result averaged over p. Figures 6a and 6b

similarly show the incentive of an average agent as a fraction of her maximum payoff with

the standard L2 metric and with our custom metric, respectively. Figures 7a and 7b show

the incentive of an average agent as a fraction of her expected payoff with standard L2 metric

and with our custom metric, respectively. We note that the expected payoff is a stronger

and more realistic benchmark than the maximum payoff.

In comparison to both the maximum and the expected payoffs, the incentive error is small —

less than 20% of the expected payoff and less than 5% of the maximum payoff — even with

the number of clusters K as small as 15% of the number of workers. The number of agents

does not seem to significantly affect this bound as long as the number of clusters is a fixed

percentage of the number of agents. We also note that using our custom metric leads to a

somewhat smaller error than using the standard L2 norm.

92

(a) Standard L2 metric (b) Our custom metric

Figure 6: The incentive error as a fraction of the maximum payoff of an agent, averaged over
agents, on 8 different data sets when using k-means++ with the L2 metric and with our
custom metric

(a) Standard L2 metric (b) Our custom metric

Figure 7: The incentive error as a fraction of the expected payoff of an agent, averaged over
agents, on 8 different data sets when using k-means++ with the L2 metric and with our
custom metric

3.6 Conclusion

We have provided the first, general solution to the problem of peer prediction with hetero-

geneous agents. This is a compelling research direction, where new theory and algorithms

can help to guide practice. In particular, heterogeneity is likely to be quite ubiquitous due

to differences in taste, context, judgment, and reliability across users. Beyond testing these

methods in a real-world application such as marketing surveys, there remain interesting

directions for ongoing research. For example, is it possible to solve this problem with a similar

93

sample complexity but without a clustering approach? Is it possible to couple methods of

peer prediction with optimal methods for inference in crowdsourced classification (Ok et al.,

2016), and with methods for task assignment in budgeted settings (Karger et al., 2014)?

This should include attention to adaptive assignment schemes (Khetan and Oh, 2016a) that

leverage generalized Dawid-Skene models (Zhou et al., 2015), and could connect to the

recent progress on task heterogeneity within peer prediction (Mandal et al., 2016). Finally,

it is worth investigating if we can cluster the agents based on some observable characteristics

like demographics, reputation scores etc and reduce the sample complexity of the original

mechanism.

94

Chapter 4

Learning Multinomial Logit (MNL) Model from Choices

In this chapter we will begin our discussion at the interface of machine learning and discrete

choice modeling. We present a fast and statistically efficient algorithm for learning the

parameters of the multinomial logit choice model which is a widely studied model in discrete

choice modeling.

4.1 Introduction

4.1.1 Background

Discrete choice modeling, which is studied in a variety of fields including economics and

transportation, is concerned with the design of models of how humans make choices given a

set of alternatives (Train, 2003; McFadden, 1974). These models have been used to explain

or predict consumer choices in a wide range of applications. For example, in marketing these

models are used for a variety of business problems such as pricing and product development;

in transportation planning for estimating consumer demand for various transit choices; in

labor economics for studying the participation in workforce and occupation choices; and so

on. More recently, choice models have gained a lot of attention in machine learning due

to the onset of online services in domains including entertainment and shopping, that use

machine learning to recommend alternatives to users and help them make better choices. The

presence of vast amount of consumer choice data in these applications makes it important to

design efficient algorithms that can learn these models from data and use them in a variety

of downstream applications such as demand estimation, product recommendation etc.

In this chapter we study the design of learning algorithms for the multinomial logit

(MNL)/Plackett-Luce choice model which is one of the most popular models in discrete choice

literature (Plackett, 1975; McFadden, 1974). Given a set of n items, the MNL model posits

that there is a positive weight wi associated with each item i, and the probability that item i

95

is chosen amongst all the items in a set S is wi∑
j∈S wj

. The widely studied Bradley-Terry-Luce

(BTL) model is a special case of the MNL model when the choice is pairwise, i.e. between

two alternatives (Bradley and Terry, 1952a; Luce, 1959).

Learning choice models from pairwise choices has been an active area of research, and several

algorithms have been proposed that are consistent under the BTL model (Negahban et al.,

2017; Rajkumar and Agarwal, 2014; Hunter, 2004; Chen and Suh, 2015; Jang et al., 2016;

Guiver and Snelson, 2009; Soufiani et al., 2013). The case of multiway choices has also

received some attention recently (Maystre and Grossglauser, 2015; Jang et al., 2017; Chen

et al., 2017b). Two popular algorithms are the rank centrality (RC) algorithm (Negahban

et al., 2017) for the case of pairwise choices, and its generalization to the case of multiway

choices, called the Luce spectral ranking (LSR) algorithm (Maystre and Grossglauser, 2015).

The key idea behind these algorithms is to construct a random walk (equivalently a Markov

chain) over the comparison graph on n items, where there is an edge between two items if

they are compared in a pairwise or multiway choice set. This random walk is constructed

such that its stationary distribution corresponds to the weights of the MNL/BTL model.

Given the widespread application of these algorithms, understanding their computational

aspects is of paramount importance. For random walk based algorithms this amounts to

analyzing the mixing/convergence time of their random walks to stationarity. In the case of

rank centrality and Luce spectral ranking, ensuring that the stationary distribution of the

random walk corresponds to the weights of the underlying model forces their construction to

have self loops with large mass. These self loops can lead to a large mixing time of Ω
(
ξ−1dmax

)
,

where dmax is the maximum number of unique choice sets that any item participates in; and

ξ is the spectral gap of the graph Laplacian. In practical settings dmax can be very large,

for example when the graph follows a power-law distribution, and can even be Ω(n) if one

item is compared to a large fraction of the items. In this chapter we seek to design faster

algorithms for learning the MNL model whose running time has a mild or no dependence on

dmax.

96

4.1.2 Our Contributions

We show that it is possible to construct a faster mixing random walk whose mixing time

is O
(
ξ−1
)
. We are able to construct this random walk by relaxing the condition that its

stationary distribution should exactly correspond to the weights of the MNL model, and

instead imposing a weaker condition that the weights can be recovered through a linear

transform of the stationary distribution. We call the resulting algorithm accelerated spectral

ranking (ASR).

In addition to computational advantages, the faster mixing property of our random walk

also comes with statistical advantages, as it is well understood that faster mixing Markov

chains lend themselves to tighter perturbation error bounds (Mitrophanov, 2005). We are

able to establish a sample complexity bound of O
(
ξ−2 n poly(log n)

)
, in terms of the total

variation distance, for recovering the true weights under the MNL (and BTL) model for

almost any comparison graph of practical interest. To our knowledge, these are the first

sample complexity bounds for the general case of multiway choices under the MNL model.

Negahban et al. (2017) show similar results in terms of L2 error for the special case of BTL

model. However, their bounds have an additional dependence on dmax, due to the large

mixing time of their random walk.

We also show that our algorithm can be viewed as a message passing algorithm. This

connection provides a very attractive property to our algorithm – it can be implemented

in a distributed manner with decentralized communication and choice data being stored in

different machines.

We finally conduct several experiments on synthetic and real world datasets to compare the

convergence time of our algorithm with the previous algorithms. These experiments confirm

the behavior predicted by our theoretical analysis of mixing times– the convergence of our

algorithm is in fact orders of magnitude faster than existing algorithms.

We summarize our contributions as follows:

97

1. Faster Algorithm: We present an algorithm for learning from pairwise choices under

the BTL model, and more general multiway choices under the MNL model, that is

provably faster than the previous algorithms of Negahban et al. (2017); Maystre and

Grossglauser (2015). We also give experimental evidence supporting this fact.

2. New and Improved Error Bounds: We present the first error bounds for parameter

recovery by spectral ranking algorithms under the general MNL model for any general

(connected) comparison graph. These bounds improve upon the existing bounds of

Negahban et al. (2017) for the special case of the BTL model.

3. Message Passing Interpretation: We provide an interpretation of our algorithm as

a message passing/belief propagation algorithm. This connection can be used to design

a decentralized distributed algorithm, which can work with distributed data storage.

4.1.3 Organization

In Section 4.2 we describe the problem formally. In Section 4.3 we present our algorithm

for learning under the MNL/BTL model. In Section 4.4 we analyze the mixing time of our

random walk, showing that our random walk converges much faster than existing approaches.

In Section 4.5 we give bounds on sample complexity for recovery of MNL parameters with

respect to the total variation distance. In Section 4.6 we give a message passing view of

our algorithm. In Section 4.7 we provide experimental results on synthetic and real world

datasets.

4.2 Problem Setting and Preliminaries

We consider a setting where there are n items, and one observes noisy pairwise or multiway

choices between these items. We will assume that these choices are generated according to

the multinomial logit (MNL) model, which posits that each item i ∈ [n] is associated with a

(unknown) weight/score wi > 0, and the probability that item i is chosen is proportional to

its weight wi. More formally, when there is a (multiway) comparison between items of a set

98

S ⊆ [n], for i ∈ S, we have

pi|S := Pr(i is chosen in S) =
wi∑
j∈S wj

.

This model is also referred to as the Plackett-Luce model, and it reduces to the Bradley-

Terry-Luce (BTL) model in the special case of pairwise choices, i.e. |S| = 2. Let w ∈ Rn+

be the vector of weights, i.e. w = (w1, · · · , wn)>. Note that this model is invariant to any

scaling of w, so for uniqueness we will assume that
∑n

i=1wi = 1, i.e. w ∈ ∆n where ∆n is

the n-dimensional probability simplex.

The choice data is of the following form: there are d different choice sets S1, · · · , Sd ⊆ [n],

with |Sa| = m for all a ∈ [d] and some constant m < n. For each set Sa, for a ∈ [d], one

observes L independent m-way choices between items in Sa, drawn according to the MNL

model. The assumptions that each choice set is of the same size m, and each set is compared

an equal L number of times, are only for simplicity of exposition, and we give a generalization

in the Appendix. We will denote by yla the l-th choice amongst items of Sa, for l ∈ [L] and

a ∈ [d].

Given choice data Y = {(Sa,ya)}da=1, where ya = (y1
a, · · · , yLa), the problem is to find a

weight vector ŵ ∈ ∆n, which is close to the true weight vector w under some notion of

error/distance. More formally, the problem is to find ŵ ∈ ∆n, such that ‖ŵ −w‖ can be

bounded in terms of the parameters n,L, and m, for some norm ‖ · ‖. We will give results in

terms of the total variation distance, which for two vectors u, û ∈ ∆n is defined as

‖u− û‖TV =
1

2
‖u− û‖1 =

1

2

∑
i∈[n]

|ui − ûi| .

In the following sections, we will present an algorithm for recovering an estimate ŵ of w,

and give bounds on the error ‖ŵ −w‖TV in terms of the problem parameters under natural

assumptions on the choice data.

99

4.3 Accelerated Spectral Ranking Algorithm

In this section, we will describe our algorithm, which we term as accelerated spectral ranking

(ASR). Our algorithm is based on the idea of constructing a random walk1 on the comparison

graph with n vertices, which has an edge between nodes i and j if items i and j are compared

in any m-way choice set. The key idea is to construct the random walk such that the

probability of transition from node i to node j is proportional to wj . If wj is larger than wi,

then with other quantities being equal, one would expect the random walk to spend more

time in node j than node i in its steady State distribution. Hence, if we can calculate the

stationary distribution of this random walk, it might give us a way to estimate the weight

vector w. Moreover, for computational efficiency, we would also want this random walk to

have a fast mixing time, i.e. it should rapidly converge to its stationary distribution.

The rank centrality (RC) algorithm (Negahban et al., 2017) for the BTL model, and its

generalization the Luce spectral ranking (LSR) algorithm (Maystre and Grossglauser, 2015)

for the MNL model, are based on a similar idea of constructing a random walk over the

comparison graph. These algorithms construct a random walk whose stationary distribution,

in expectation, is exactly w. However, this construction forces their Markov chain to have

self loops with large mass, slowing down the convergence rate.

In this section we will show that it is possible to design a significantly faster mixing random

walk that belongs to a different class of random walks over the comparison graph. More

precisely, the random walk that we construct is such that it is possible to recover the weight

vector w from its stationary distribution using a fixed linear transformation, while for RC

and LSR, the stationary distribution is exactly w. Our theoretical analysis in Section 4.5 as

well as experiments on synthetic and real world datasets in Section 4.7 will show that this

difference can lead to vastly improved results.

Given choice data Y, let us denote by Gc([n], E) the undirected graph on n vertices, with an
1Throughout this chapter we will use the terminology Markov chain and random walk interchangeably.

100

Algorithm 5 ASR

Input Markov chain P̂ according to Eq. (4.3.2)
Initialize π̂ = (1

n , · · · , 1
n)> ∈ ∆n

while estimates do not converge do
π̂ ← P̂>π̂

end while
Output ŵ = D−1π̂

‖D−1π̂‖1

edge (i, j) ∈ E for any i, j that are a part of an m-way choice set. More formally, (i, j) ∈ E

if there exists an index a ∈ [d] such that i, j ∈ Sa. We will call Gc the comparison graph,

and throughout this chapter, we will assume that Y is such that Gc is connected. We

will denote by di the number of unique m-way choice sets of which i ∈ [n] was a part, i.e.

di =
∑

a∈[d] 1[i ∈ Sa]. Let D ∈ Rn×n be a diagonal matrix, with Dii being equal to di,

∀i ∈ [n]. Also, let dmax := maxi di and dmin := mini di.

Suppose for each a ∈ [d] and j ∈ Sa, one had access to the true probability pj|Sa of j being

the most preferred item in Sa. Then one could define a random walk on Gc with transition

probability from node i ∈ [n] to j ∈ [n] given by

Pij :=
1

di

∑
a∈[d]:i,j∈Sa

pj|Sa =
1

di

∑
a∈[d]:i,j∈Sa

wj∑
j′∈Sa wj′

. (4.3.1)

Let P := [Pij]. One can verify that P corresponds to a valid transition probability matrix as

it is non-negative and row stochastic. Furthermore, P defines a reversible Markov chain as it

satisfies the detailed balance equations

wi di Pij = wj dj Pji ,

for all i, j ∈ [n]. If the graph Gc is connected then π = Dw/‖Dw‖1 is the unique stationary

distribution of P, and one can recover the true weight vector w from this stationary

distribution using a linear transform D−1.

In practice one does not have access to P, so we propose an empirical estimate of P that can

101

be computed from the given choice data. Formally, define p̂i|Sa to be the fraction of times

that i was chosen amongst items in the set Sa, i.e. p̂i|Sa := 1
L

∑L
l=1 1[yla = i]. Let us then

define a random walk where the probability of transition from node i ∈ [n] to node j ∈ [n] is

given by

P̂ij :=
1

di

∑
a∈[d]:i,j∈Sa

p̂j|Sa . (4.3.2)

Let P̂ := [P̂ij]. One can again verify that P̂ corresponds to a valid transition probability

matrix. We can think of P̂ as a perturbation of P, with the error due to perturbation

decreasing with more and more choices. There is a rich literature (Cho and Meyer, 2001;

Mitrophanov, 2005) on analyzing sensitivity of the stationary distribution of a Markov chain

under small perturbations. Hence, given a large number of choices, one can expect the

stationary distribution of P̂ to be close to that of P. Since we take a linear transform of

these stationary distributions, one also needs to show that closeness is preserved under this

linear transform. We defer this analysis to Section 4.5.

The pseudo-code for our algorithm is given in Algorithm 5. The algorithm computes the

stationary distribution π̂ of the Markov chain P̂ using the power method.2 It then outputs

the (normalized) vector ŵ that is obtained after applying the linear transform D−1 to π̂, i.e.

ŵ = D−1π̂
‖D−1π̂‖1 . In the next section we will compare the convergence time of our algorithm

with previous algorithms (Negahban et al., 2017; Maystre and Grossglauser, 2015).
2The stationary distribution of the Markov chain may also be computed using other linear algebraic

techniques, but these techniques typically have a running time of O(n3) which is impractical for most modern
applications.

102

4.4 Comparison of Mixing Time with Rank Centrality (RC)

and Luce Spectral Ranking (LSR)

The random walk PRC constructed by the RC (Negahban et al., 2017) algorithm for the

BTL model is given by

PRC
ij :=


1

dmax

∑
a∈[d]:i,j∈Sa pj|Sa if i 6= j

1− 1
dmax

∑
j′ 6=i P

RC
ij′ if i = j

, (4.4.1)

and the random walk PLSR constructed by LSR (Maystre and Grossglauser, 2015) for the

MNL model is given by

PLSR
ij :=


ε
∑

a∈[d]:i,j∈Sa pj|Sa if i 6= j

1− ε∑j′ 6=i P
LSR
ij′ if i = j

, (4.4.2)

where ε > 0 is chosen such that the diagonal entries are non-negative. In general ε would be

O(1
dmax

). The random walks P̂RC and P̂LSR constructed from the choice data are defined

analogously using empirical probabilities p̂j|Sa instead of pj|Sa .

We first begin by showing that for any given choice data Y, both RC/LSR and our algorithm

will return the same estimate upon convergence.

Proposition 4.4.1. Given items [n] and choice data Y = {(Sa,ya)}da=1, let π̂ be the

stationary distribution of the Markov chain P̂ constructed by ASR, and let ŵLSR be the

stationary distribution of the Markov chain P̂LSR. Then ŵLSR = D−1π̂
‖D−1π̂‖1 . The same result

is also true for ŵRC for the case of pairwise choices.

Proof. Consider the estimates ŵ = D−1π̂/‖D−1π̂‖1 returned by the ASR algorithm upon

convergence. In order to prove this lemma it is sufficient to prove that DŵLSR is an invariant

measure (an eigenvector associated with eigenvalue 1) of the Markov chain P̂ corresponding

103

to the ASR algorithm.

Since ŵLSR is the stationary distribution (also an eigenvector corresponding to eigenvalue 1)

of P̂LSR, we have

ŵLSR = (P̂LSR)>ŵLSR.

Following the definition (Eq. (4.4.2)) of P̂LSR, we have the following relation for all 1 ≤ i ≤ n

ŵLSR
i = ŵLSR

i

1− ε
∑
j 6=i

∑
a:i,j∈Sa

pj|Sa


+ ε
∑
j 6=i

∑
a:i,j∈Sa

pj|Saŵ
LSR
j

=⇒
∑
j 6=i

∑
a:i,j∈Sa

pj|Saŵ
LSR
i =

∑
j 6=i

∑
a:i,j∈Sa

pj|Saŵ
LSR
j .

We shall use this relation to prove that P̂>DŵLSR = DŵLSR, where P̂ is the transition

matrix corresponding to the Markov chain constructed by ASR. Consider the ith coordinate

[P̂>DŵLSR]i of the vector P̂>DŵLSR

[P̂>DŵLSR]i =
1

di

∑
a:i∈Sa

pi|Sadiŵ
LSR
i

+
∑
j 6=i

1

dj

∑
b:i,j∈Sb

pj|Sbdjŵ
LSR
j

=
∑
a:i∈Sa

pi|Saŵ
LSR
i +

∑
j 6=i

∑
b:i,j∈Sb

pj|Sbŵ
LSR
i

=
∑
a:i∈Sa

(
∑
j∈Sa

pj|Sa)ŵLSR
i

=
∑
a:i∈Sa

ŵLSR
i

= diŵ
LSR
i = [DŵLSR]i ,

where the second equality follows from the relation we proved earlier. Furthermore, this

identity holds for all 1 ≤ i ≤ n, from which we can conclude P̂>DŵLSR = DŵLSR. Fur-

104

thermore, if the respective Markov chains induced by the choice data are ergodic, then the

corresponding stationary distributions must be unique, which is sufficient to prove both LSR

and ASR return the same estimates upon convergence.

Since Luce spectral ranking is a generalization of the rank centrality algorithm, the transition

matrix P̂LSR is identical to the transition matrix P̂RC in the pairwise choice setting after

setting ε = 1
dmax

, and thus, we can also conclude P̂>DŵRC = DŵRC. Thus, the statement of

the lemma follows.

Although the above lemma shows that in a convergent state both these algorithms will return

the same estimates, it does not say anything about the time it takes to reach this convergent

State. This is where the key difference lies.

Observe that each row i ∈ [n] of our matrix P is divided by di, whereas each row of PRC is

divided by dmax except the diagonal entries. Now if dmax is very large, a row i ∈ [n] of PRC

that corresponds to an item i with small di would have very small non-diagonal entries. This

can make the diagonal entry PRC
ii very large, which amounts to having a heavy self loop at

node i. This heavy self loop can significantly reduce the time it takes for the random walk

to reach its stationary distribution, since a lot of transitions starting from i will return back

to i. The same analysis holds true for LSR under multiway choices.

To formalize this intuition, we need to analyze the spectral gap of a random walk X , which we

denote by µ(X), which plays an important role in determining its mixing time. The spectral

gap of a reversible random walk (or Markov chain) X is defined as µ(X) := 1−λ2(X), where

λ2(X) is the second largest eigenvalue of X in terms of absolute value. The following lemma

(see Levin et al. (2008) for more details) gives both upper and lower bounds on the mixing

time (w.r.t. the total variation distance) of a random walk in terms of the spectral gap.

Lemma 4.4.2. (Levin et al., 2008) Let X be the transition probability matrix of a reversible,

irreducible Markov chain with State space [n], π be the stationary distribution of X, and

105

πmin := mini∈[n] πi, and let

d(r) = sup
p∈∆n

‖pXr − π‖TV .

For any γ > 0, let t(γ) = min{r ∈ N : d(r) ≤ γ}; then

log(
1

2γ
)
(1

µ(X)
− 1
)
≤ t(γ) ≤ log(

1

γπmin
)

1

µ(X)
.

The above lemma States that the mixing time of a Markov chain X is inversely proportional

to its spectral gap µ(X). Now, we will compare the spectral gap of our Markov chain P with

the spectral gap of PRC (and PLSR).

Proposition 4.4.3. Let the probability transition matrix P for our random walk be as defined

in Eq. (4.3.1). Let PRC and PLSR be as defined in Eq. (4.4.1) and Eq. (4.4.2), respectively.

Then
dmin

dmax
µ(P) ≤ µ(PRC) ≤ µ(P) , (4.4.3)

and

εdminµ(P) ≤ µ(PLSR) ≤ µ(P) , (4.4.4)

where ε = O(1
dmax

).

Lemma 4.4.4. (Diaconis and Saloff-Coste, 1993) Let Q and P be reversible Markov chains

on a finite set [n] representing random walks on a graph G = ([n], E), i.e. Pij = Qij = 0 for

all (i, j) /∈ E. Let ν and π be the stationary distributions of Q and P, respectively. Then the

spectral gaps of Q and P are related as

µ(P)

µ(Q)
≥ α

β

where α := min(i,j)∈E{πiPij/νiQij} and β := maxi∈[n]{πi/νi}.

We are now ready to prove Proposition 4.4.3.

106

Proof. (of Proposition 4.4.3) To prove this lemma, we shall leverage the above comparison

lemma due to Diaconis and Saloff-Coste (1993), that compares the spectral gaps of two

arbitrary reversible Markov Chains. Let P (Eq. (4.3.2)) be the reversible Markov chain corre-

sponding to ASR with stationary distribution π = Dw/‖Dw‖1, and let PLSR (Eq. (4.4.2)) be

the reversible Markov chain corresponding to LSR (RC in the pairwise case) with stationary

distribution πLSR. Then by Lemma 4.4.4,

µ(PLSR)

µ(P)
≥ α

β

where

α := min
(i,j):∃a s.t. i,j∈Sa

(
πLSR
i PLSR

ij

πiPij

)
,

β := max
i∈[n]

(
πLSR
i

πi

)
.

From the definition of P, and PLSR, we have

Pij =
1

di

∑
a∈[d]:i,j∈Sa

wj∑
k∈Sa wk

,

PLSR
ij = ε

∑
a∈[d]:i,j∈Sa

wj∑
k∈Sa wk

From the above equations and Proposition 4.4.1, it is easy to see that

α = ε‖Dw‖1, and

β =
‖Dw‖1
dmin

=⇒ µ(PLSR) ≥ εdmin(µ(P))

Following an identical line of reasoning, we have

µ(P)

µ(PLSR)
≥ α′

β′

107

where

α′ = min
(i,j):∃a s.t. i,j∈Sa

(
πiPij

πLSR
i PLSR

ij

)
,

β′ = max
i∈[n]

(
πi

πLSR
i

)

From the definition of P, and PLSR, we have

α′ =
1

‖Dw‖1ε
, and

β′ =
dmax

‖Dw‖1
=⇒ µ(P) ≥ 1

εdmax
(µ(PLSR)) .

Since ε ≤ 1/dmax, we get the following comparison between the spectral gaps of the Markov

chains corresponding to the two approaches

εdminµ(P) ≤ µ(PLSR) ≤ µ(P) .

The same analysis works for the Markov chain PRC constructed by rank centrality for the

pairwise comparison case with ε = 1/dmax, from which we can conclude

dmin

dmax
µ(P) ≤ µ(PRC) ≤ µ(P) .

This lemma shows that the spectral gap of P is always lower bounded by that of PRC

(and PLSR), but can be much larger than it. In the latter case one would observe, using

Lemma 4.4.2, that our algorithm will converge faster than the RC algorithm (and LSR). In

fact there are instances where O(dmax/dmin) = Ω(n) and the leftmost inequalities in both

Eq. (4.4.3) and Eq. (4.4.4) hold with equality. In these instances the convergence of our

algorithm will be Ω(n) times faster. We give examples of two such instances.

108

Example 4.4.5. Let n = 3, m = 2, w1 = 1/2, w2 = 1/4 and w3 = 1/4. In the choice data 1

is compared to both 2 and 3; but items 2 and 3 are not compared to each other. This implies

that d1 = 2, and di = 1 for i 6= 1. One can calculate the matrices P and PRC, and their

respective eigenvalues, and observe that µ(P) = 2µ(PRC).

Example 4.4.6. Let m = 2, w = (1/n, · · · , 1/n)>, and the choice data be such that item 1

is compared to every other item, and no other items are compared to each other. This implies

that d1 = n− 1, and di = 1 for i 6= 1. One can calculate the matrix P and PRC again, and

their respective eigenvalues, and observe that µ(P) = (n− 1) · µ(PRC).

Note that in the above lemma, we only show the relation between the spectral gaps of the

matrices P and PRC, and not for any particular realization P̂ and P̂RC. If the Markov chains

P̂ and P̂RC are reversible, then identical results hold. However, similar results are very hard

to prove for non-reversible Markov chains (Dyer et al., 2006). Nevertheless, for large L,

one can expect the realized matrices P̂ and P̂RC to be close to their expected matrices P

and PRC, respectively. Hence, using eigenvalue perturbation bounds (Horn and Johnson,

1990), one can show that the spectrum of P̂ and P̂RC is close to the spectrum of P and PRC,

respectively. The same analysis holds true for LSR under multiway choices. In Section 4.7

we perform experiments on synthetic and real world datasets which empirically show that

the mixing times of the realized Markov chains behave as predicted.

It has been observed that faster mixing rates of Markov chains gives us the ability to prove

sharper perturbation bounds for these Markov chains (Mitrophanov, 2005). In the following

section we will use these perturbation bounds to prove sharper sample complexity bounds

for our algorithm.

4.5 Sample Complexity Bounds

In this section we will present sample complexity bounds for the estimates returned by ASR

in terms of total variation distance. The following theorem gives an error bound in terms of

the total variation distance for estimates ŵ of the MNL weights returned by our algorithm

109

Theorem 4.5.1. Given items [n] and choice data Y = {(Sa,ya)}da=1, let each set Sa of

cardinality m be compared L times, with outcomes ya = (y1
a, · · · , yLa) produced as per a

MNL model with parameters w = (w1, . . . , wn), such that ‖w‖1 = 1. If the random walk P̂

(Eq. (4.3.2)) on the comparison graph Gc([n], E) induced by the choice data Y is strongly

connected, then the ASR algorithm (Algorithm 5) converges to a unique distribution ŵ, which

with probability ≥ 1− 3n−(C2−50)/25 satisfies the following error bound3

‖w − ŵ‖TV ≤
C κdavg

µ(P) dmin

√
max{m, log(n)}

L
,

where κ = log
(

davg
dminwmin

)
, wmin = mini∈[n]wi, davg =

∑
i∈[n]widi, dmin = mini∈[n] di, µ(P)

is the spectral gap of the random walk P (Eq. (4.3.1)), and C is any constant.

Let us start by stating some auxiliary lemmas that are needed for the proof of the above

theorem.

Lemma 4.5.2 (Multinomial distribution inequality). (Devroye, 1983) Let Y1, . . . , Yn be

a sequence of n independent random variables drawn from the multinomial distribution

with parameters (p1, . . . , pk). Let Xi be the number of times i occurs in the n draws, i.e.

Xi =
∑n

j=1 1[Yj = i]. For all ε ∈ (0, 1), and all k satisfying k/n ≤ ε2/20, we have

P (
k∑
i=1

|Xi − npi| ≥ nε) ≤ 3 exp(−nε2/25).

To prove Theorem 4.5.1, we shall first prove a bound on the total variation distance between

the stationary states π and π̂ of the transition matrices P and P̂ respectively. We shall then

prove a bound on the distance between the true weights w and estimates ŵ in terms of the

distance between π and π̂.
3The dependence on κ is due to the dependence on 1

πmin
in the mixing time upper bounds in Lemma 4.4.2.

There are other bounds for κ in terms of the condition number for Markov chains, for example see (Mitrophanov,
2005), and any improvement on these bounds will lead to an improvement in our sample complexity. In the
worst case, κ has a trivial upper bound of O(logn).

110

An important result in the stability theory of Markov chains shows a connection between

the stability of a chain and its speed of convergence to equilibrium (Mitrophanov, 2005). In

fact, we can bound the sensitivity of a Markov chain under perturbation as a function of the

convergence rate of the chain, with the accuracy of the sensitivity bound depending on the

sharpness of the bound on the convergence rate. The following theorem is a specialization of

Theorem 3.1 of Mitrophanov (2005), which gives perturbation bounds for Markov chains

with general state spaces.

Theorem 4.5.3. (Mitrophanov, 2005) Consider two discrete-time Markov chains P and

P̂, with finite state space Ω = {1, . . . , n}, n ≥ 1, and stationary distributions π and π̂,

respectively. If there exist positive constants 1 < R <∞ and ρ < 1 such that

max
x∈Ω
‖Pt(x, ·)− π‖TV ≤ Rρt, ∀t ∈ N

then for E := P− P̂, we have

‖π − π̂‖TV ≤
(
t̂+

1

1− ρ
)
· ‖E‖∞ .

where t̂ = log(R)/ log(1/ρ), and ‖ · ‖∞ is the matrix norm induced by the L∞ vector norm.

It is well known that all ergodic Markov chains satisfy the conditions imposed by Theo-

rem 4.5.3. In order to obtain sharp bounds on the convergence rate, we shall leverage the

fact that the (unperturbed) Markov chain corresponding to the ideal transition probability

matrix P is time-reversible.

Theorem 4.5.4. (Diaconis and Stroock, 1991) Let P be an irreducible, reversible Markov

chain with finite state space Ω = {1, . . . , n}, n ≥ 1, and stationary distribution π. Let

λ2 := λ2(P) be the second largest eigenvalue of P in terms of absolute value. Then for all

x ∈ Ω, t ∈ N,

‖Pt(x, ·)− π‖TV ≤
√

1− π(x)

4π(x)
λt2

111

Comparing these bounds with the conditions imposed by Theorem 4.5.3, we can observe that

ρ = λ2,

R = max
i∈[n]

√
1− π(i)

4π(i)

= max
i∈[n]

√
‖Dw‖1 − widi

4widi

≤
√

davg

4dminwmin
,

where wmin = mini∈[n]wi. Substituting these values into the perturbation bounds of Theo-

rem 4.5.3, we get

t̂+
1

1− ρ =
log(davg/(4dminwmin))

2 log(1/λ2(P))
+

1

1− λ2(P)

≤ log(davg/(4dminwmin))

2(1− λ2(P))
+

1

1− λ2(P)

<
κ

2µ(P)
, where κ = log(

2davg

dminwmin
)

Now, the next step is to show that the perturbation error E := P− P̂ is bounded in terms

of the matrix L∞ norm.

Lemma 4.5.5. For E := P− P̂, we have with probability ≥ 1− 3n−(C2−50)/25,

‖E‖∞ ≤ C
√

max{m, log n}
L

where C is any constant.

Proof. By definition, ‖E‖∞ = maxi
∑n

j=1 |P̂ij − Pij |. Fix any row i ∈ [n]. The probability

112

that the absolute row sum exceeds a fixed positive quantity t is given by

P (
n∑
j=1

|P̂ij − Pij | ≥ t)

= P (

n∑
j=1

| 1
di

∑
a:i,j∈Sa

(p̂j|Sa − pj|Sa)| ≥ t)

= P (
n∑
j=1

| 1
di

∑
a:i,j∈Sa

1

L

L∑
l=1

(1(yla = j)− pj|Sa)| ≥ t)

≤ P (
n∑
j=1

∑
a:i,j∈Sa

|
L∑
l=1

(1(yla = j)− pj|Sa)| ≥ Ldit)

= P (
∑
a:i∈Sa

∑
j∈Sa

|
L∑
l=1

(1(yla = j)− pj|Sa)| ≥ Ldit)

≤ diP (
∑
j∈Sa

|
L∑
l=1

(1(yal = j)− pj|Sa)| ≥ Ldit

di
)

with the final pair of inequalities following from rearranging the terms in the summations and

applying union bound. We leverage the multinomial distribution concentration inequality

(Lemma 4.5.2) of Devroye (1983) to obtain the following bound for any set Sa for any m

satisfying a technical condition m/L ≤ t2/20.

P (
∑
j∈Sa

|
L∑
l=1

(1(yal = j)− pj|Sa)| ≥ Lt) ≤ 3 exp(
−Lt2

25
)

Thus, using union bound, the probability that any absolute row sum exceeds t is at most

3ndmax exp(−Lt2/25). By selection of t = 5C ′
√

max{m, log n}/L, we get

P

(
‖E‖∞ ≥ 5C ′

√
max{m, log n}

L

)

≤ 3n2 exp

(−25C ′2Lmax{m, log n}
25L

)
≤ 3n−(C′2−2)

substituting C = 5C ′ proves our claim. Lastly, one can verify that the aforementioned choice

113

of t satisfies the technical condition imposed by Lemma 4.5.2 for any n,m and L.

Combining the results of Theorem 4.5.3, Theorem 4.5.4, and Theorem 4.5.5 gives us a high

confidence total variation error bound on the stationary states π and π̂ of the ideal and

perturbed Markov chains P and P̂ respectively. Thus, with confidence ≥ 1− 3n−(C2−50)/25,

we have

‖π − π̂‖TV ≤
Cκ

µ(P)

√
max{m, log n}

L
, (4.5.1)

where κ = log(2davg/(dminwmin)).

The last step in our scheme is to prove that the linear transformation D−1π̂ preserves this

error bound up to a reasonable factor.

Lemma 4.5.6. Under the conditions of Theorem 4.5.1, let π = Dw/‖Dw‖1 and π̂ =

Dŵ/‖Dŵ‖1 be the unique stationary distributions of the Markov chains P (Eq. (4.3.1)) and

P̂ (Eq. (4.3.2)) respectively. Then we have

‖w − ŵ‖TV ≤
davg

dmin
‖π − π̂‖TV .

Proof. We shall divide our proof into two cases.

Case 1: ‖Dŵ‖1 ≥ ‖Dw‖1.

Let us define the set A = {i : wi ≥ ŵi}, and the set A′ = {j : πj ≥ π̂j}. When ‖Dŵ‖1 ≥

‖Dw‖1, it is easy to see that A ⊆ A′.

Consider the total variation distance ‖w − ŵ‖TV between the true preferences w and our

114

estimates ŵ. By definition,

‖w − ŵ‖TV =
∑
i∈A

(wi − ŵi)

=
∑
i∈A

wi

(
1− ŵi

wi

)
=
∑
i∈A

wi

(
1− ŵidi

widi

)
≤
∑
i∈A

wi

(
1− ŵidi‖Dw‖1

widi‖Dŵ‖1

)
=
∑
i∈A

wi

(
1− π̂i

πi

)
=
∑
i∈A

wi

(
(πi − π̂i)‖Dw‖1

widi

)
≤
∑
j∈A′

wj

(
(πj − π̂j)‖Dw‖1

wjdj

)

=
∑
j∈A′

(
(πj − π̂j)‖Dw‖1

dj

)

≤ ‖Dw‖1
dmin

∑
j∈A′

(πj − π̂j) =
davg

dmin
‖π − π̂‖TV

Case 2, where ‖Dŵ‖1 < ‖Dw‖1 follows symmetrically, giving us the inequality

‖w − ŵ‖TV ≤
‖Dŵ‖1
dmin

‖π − π̂‖TV

≤ ‖Dw‖1
dmin

‖π − π̂‖TV =
davg

dmin
‖π − π̂‖TV

where the last inequality follows from the assumption of Case 2, proving our claim.

Proof. (of Theorem 4.5.1) The theorem follows easily by combining the above lemma with

Eq. (4.5.1).

In the error bound of Theorem 4.5.1, one can further bound the spectral gap µ(P) of P

in terms of the spectral gap of the random walk normalized Laplacian of Gc, which is a

fundamental quantity associated with Gc. The Laplacian represents a random walk on Gc

115

that transitions from a node i to one of its neighbors uniformly at random. Formally, the

Laplacian L := C−1A, where C is a diagonal matrix with Cii =
∣∣⋃

a∈[d]:i∈Sa Sa
∣∣, i.e. the

number of unique items i was compared with, and A is the adjacency matrix, such that for

i, j ∈ [n], Aij = 1 if (i, j) ∈ E, and Aij = 0 otherwise. Let ξ := µ(L) be the spectral gap of

L. Then we can lower bound µ(P) as follows (proof in the Appendix)

µ(P) ≥ ξ

m b2
,

where b is the ratio of the maximum to the minimum weight, i.e. b = maxi,j∈[n]wi/wj . This

gives us the following.

Corollary 4.5.7. In the setting of Theorem 4.5.1, the ASR algorithm converges to a unique

distribution ŵ, which with probability ≥ 1− 3n−(C2−50)/25 satisfies the following error bound:

‖w − ŵ‖TV ≤
Cmb2 κ davg

ξ dmin

√
max{m, log(n)}

L
,

where b = maxi,j∈[n]
wi
wj

.

The proof of the above corollary is given in the Appendix. In the discussion that follows,

we will assume b = O(1), and hence, µ(P) = Ω(ξ/m). The quantity davg has an interesting

interpretation: it is the weighted average of the number of sets in which each item was shown.

It has a trivial upper bound of dmax, however, a careful analysis will reveal a better bound

of O(|E|/n) where E is the set of edges in the comparison graph Gc. Using this observation

we can give the following corollary of the above theorem.

Corollary 4.5.8. If the conditions of Theorem 4.5.1 are satisfied, and if the number of

edges in the comparison graph Gc are O(n poly(log n)), i.e. |E| = O(n poly(log n)), then in

order to ensure a total variation error of o(1), the required number of choices per set is upper

bounded as

L = O
(
µ(P)−2 poly(log n)

)
= O

(
ξ−2m3 poly(log n)

)
.

116

Hence, the sample complexity, i.e. total number of m-way choices needed to estimate w with

error o(1), is given by |E| × L = O
(
ξ−2m3 n poly(log n)

)
.

The proof of the this corollary is given in the Appendix. Note that the case when the total

number of edges in the comparison graph is O(n poly(log n)) captures the most interesting

case in ranking and sorting. Also, in most practical settings the size m of choice sets

will be O(log n). In this case, the above corollary implies a sample complexity bound of

O
(
ξ−2 n poly(log n)

)
, which is sometimes referred to as quasi-linear complexity. The following

simple example illustrates this sample complexity bound.

Example 4.5.9. Consider a star comparison graph, discussed in Example 4.4.6, where there

is one item i ∈ [n] that is compared to all other n− 1 items, and no other items are compared

to each other. Let w = (1
n , · · · , 1

n)>. One can calculate the spectral gap µ(P) to be 0.5 exactly.

In this case, the sample complexity bound given by our result is O(n poly(log n)).

Discussion/Comparison. For the special case of pairwise choices under the BTL model

(m = 2), Negahban et al. (2017) give a sample complexity bound of O
(
dmax
dmin

ξ−2 n poly(log n)
)

for recovering the estimates ŵ with low (normalized) L2 error. Using Proposition 4.4.1

one can see that this bound also applies to the estimates returned by our algorithm, and

our bound in terms of L1 applies to rank centrality as well. However, the bounds due to

Negahban et al. (2017) have a dependence on the ratio dmax
dmin

due to the large spectral gap of

their Markov chain as compared to ξ, the spectral gap of the Laplacian. In Section 4.7 we

show that for many real world datasets dmax
dmin

can be much larger than log n, and hence, their

bounds are no longer quasi-linear. A large class of graphs that occur in many real world

scenarios and exhibit this behavior are the power-law graphs. Another real world scenario

in which dmax
dmin

= Ω(n) arises is choice modeling (Agrawal et al., 2016), where one explicitly

models the ‘no choice option’ where the user has an option of not selecting any item from

the set of items presented to her. In this case the ‘no choice option’ will be present in each

choice set, and the comparison graph will behave like a star graph discussed in Example 4.4.6.

In fact for such graphs, the results of (Negahban et al., 2017) give a trivial bound of poly(n)

117

Algorithm 6 Message Passing
Input Graph Gf = ([n] ∪ [d], Ef), edge (i, a) ∈ E has weight p̂i|Sa
Initialize Set m(0)

a→i ← m/n, ∀a ∈ [d], ∀i ∈ Sa
for t = 1, 2, · · · until convergence do

for all i ∈ [n] do m(t)
i→a = 1

di

∑
a′:i∈Sa′

p̂i|Sa′ ·m
(t−1)
a′→i

for all a ∈ [d] do m(t)
a→i =

∑
i′∈Sam

(t)
i′→a

end for
Set ŵi ← m

(t−1)
i→a , ∀i ∈ [n]

Output ŵ/‖ŵ‖1

in terms of the L2 error.

For the general case of multiway choices we are not aware of any other sample complexity

bounds. It is also important to note that the dependence on the number of choice sets comes

only through the spectral gap ξ of the natural random walk on the comparison graph. For

example, if the graph is a cycle (d = n), then the spectral gap is O(1/n2), whereas if the

graph is a clique (d = O(n2)) the spectral gap is O(1).

4.6 Message Passing Interpretation of ASR

In this section, we show our spectral ranking algorithm can be interpreted as a message

passing/belief propagation algorithm. This connection can be used to design a decentralized

distributed version of our algorithm.

Let us introduce the factor graph, which is an important data structure used in message

passing algorithms. The factor graph is a bipartite graph Gf ([n] ∪ [d], Ef) which has two

type of nodes– item nodes which correspond to the n items, and set nodes which correspond

to the d sets. More formally, there is an item node i for each item i ∈ [n], and there is a set

node a for each set Sa, ∀a ∈ [d]. There is an edge (i, a) ∈ Ef between node i and a if and

only if i ∈ Sa. There is a weight p̂i|Sa on the edge (i, a) which corresponds to the fraction of

times i won in the set Sa.

We shall now describe the algorithm. In each iteration of this algorithm, the item nodes send

a message to their neighboring set nodes, and the set nodes respond to these messages. A

118

message from an item node i to a set node a represents an estimate of the weight wi of item

i, and a message from a set node a to an item i represents an estimate of the sum of weights

of items contained in set Sa.

In each iteration, the item nodes update their estimates based on the messages they receive

in the previous iteration, and send these estimates to their neighboring set nodes. The

set nodes then update their estimate by summing up the messages they receive from their

neighboring item nodes, and then send these estimates to their neighboring item nodes. This

process continues until the messages converge.

Formally, let m(t−1)
i→a be the message from item node i to set node a in iteration t− 1, and

m
(t−1)
a→i be the corresponding message from the set node a to item node i. Then the messages

in the next iteration are updated as follows:

m
(t)
i→a =

1

di

∑
a′∈[d]:i∈Sa′

p̂i|Sa′ ·m
(t−1)
a′→i ,

m
(t)
a→i =

∑
i′∈Sa

m
(t)
i′→a .

Now, suppose that the empirical edge weights p̂i|Sa are equal to the true weights pi|Sa =

wi∑
j∈Sa wj

, ∀i ∈ [n], a ∈ [d]. Also, suppose on some iteration t ≥ 1, the item messages m(t)
i→a

become equal to the item weights wi, ∀i ∈ [n]. Then it is easy to observe that the next

iteration of messages m(t+1)
i→a are also equal to wi. Therefore, the true weights w, in some

sense, are a fixed point of the above set of equations. The following lemma shows that the

ASR algorithm is equivalent to this message passing algorithm.

Lemma 4.6.1. For any realization of choice data Y, there is a one-to-one correspondence d

each iteration of the message passing algorithm (6) and the corresponding power iteration of

the ASR algorithm (5), and both algorithms return the same estimates ŵ for any Y.

Proof. In the message passing algorithm, the item to set messagesm(r)
i→a in round r correspond

to the estimates of the item weights. One can verify that the estimate ŵ(r) of item i in round

119

r evolves according to the following equation.

ŵ
(r+1)
i =

1

di

∑
a:i∈Sa

pi|Sa ·
∑
j∈Sa

ŵ
(r)
j .

We can represent this system of equations compactly using the following matrices. Let

V̂ ∈ Rd×n be a matrix such that

V̂ai :=


pi|Sa
di

if (i, a) ∈ E

0 otherwise
, (4.6.1)

and B ∈ Rn×d be a matrix such that

Bia :=


1 if (i, a) ∈ E

0 otherwise
, (4.6.2)

Thus, we can represent the weight update from round (r) to round (r + 1) as

ŵ(r+1) = (BV̂)>ŵ(r) = M̂>ŵ(r)

= (M̂>)rŵ(0) ,

where M̂ := BV̂, with entry (i, j) of M̂ being

M̂ij :=
1

dj

∑
a:i,j∈Sa

pj|Sa . (4.6.3)

The above equation implies that the message passing algorithm is essentially a power iteration

on the matrix M̂. Now, it is easy to see that M̂ = DP̂D−1 where P̂ is the transition matrix

constructed by ASR (Eq. (4.3.2)). Therefore, there is a one-to-one correspondence between

the power iterations on M̂ and P̂. More formally, if we initialize with ŵ(0) in the power

iteration on M̂, and initialize with π̂(0) = Dŵ(0) in the power iteration on P, then the

iterates at the r-th step will be related as π̂(r) = Dŵ(r). Furthermore, if π̂ is the stationary

120

5 10 15 20
0

0.1

0.2

0.3

0.4
ASR

RC

2 4 6 8
0

0.05

0.1

0.15

0.2
ASR

LSR

500 1000 1500
0

0.1

0.2

0.3

0.4

0.5
ASR

RC

200 400 600 800
0

0.1

0.2

0.3

0.4

0.5
ASR

LSR

Figure 8: Results on synthetic data: L1 error vs. number of iterations for our algorithm,
ASR, compared with the RC algorithm (for m = 2) and the LSR algorithm (for m = 5), on
data generated from the MNL/BTL model with the random and star graph topologies.

distribution of P̂, then ŵ = D−1π̂ is the corresponding dominant left eigenvector of M̂, i.e.

D−1π̂ = M̂>D−1π̂. Also, ŵ is exactly the estimate (after normalization) returned by both

the ASR and the message passing algorithm upon convergence. Thus, we can conclude that

the message passing algorithm is identical to ASR for any realization of comparison data

generated according to the MNL model.

The above lemma gives an interesting connection between spectral ranking under the MNL

model and message passing/belief propagation. Such connections have been observed for

other problem such as the problem of aggregating crowdsourced binary tasks (Khetan and Oh,

2016b). A consequence of this connection is that it facilitates a fully decentralized distributed

implementation of the ASR algorithm. This can be very useful for modern applications,

where machines can communicate local parameter updates to each other, without explicitly

communicating the data.

121

50 100 150 200
-9

-8.5

-8

-7.5
10

5

ASR

RC

20 40 60 80 100 120 140 160 180
-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2
10

4

ASR

RC

2 4 6 8 10 12 14 16 18 20

Iteration number

-5030

-5020

-5010

-5000

-4990

-4980

-4970

-4960

L
o
g
-l
ik
el
ih
o
o
d

SFshop dataset ǫ = 0.2

ASR

LSR

5 10 15 20 25 30 35 40 45 50

Iteration number

-4400

-4350

-4300

-4250

-4200

-4150

-4100

L
o
g
-l
ik
el
ih
o
o
d

SFwork dataset ǫ = 0.2

ASR

LSR

Figure 9: Results on real data: Log-likelihood vs. number of iterations for our algorithm,
ASR, compared with the RC algorithm (for pairwise choice data) and the LSR algorithm
(for multi-way choice data), all with regularization parameter set to 0.2.

4.7 Experiments

In this section we perform experiments on both synthetic and real data to compare our

algorithm to the existing LSR (Maystre and Grossglauser, 2015) and RC (Negahban et al.,

2017) algorithms for recovering the weight vector w under the MNL and BTL model,

respectively. The implementation4 of our algorithm is based on applying the power method

on P̂ (Eq. (4.3.2)). The power method was chosen due to its simplicity, efficiency, and

scalability to large problem sizes. Similarly, the implementations of LSR and RC are based

on applying the power method on P̂LSR (Eq. (4.4.2)), and P̂RC (Eq. (4.4.1)), respectively.

In the definition of P̂LSR, the parameter ε was chosen to be the maximum possible value

that ensures P̂LSR is a Markov chain.
4code available: https://github.com/agarpit/asr

122

https://github.com/agarpit/asr

4.7.1 Synthetic Data

We conducted experiments on synthetic data generated according to the MNL model, with

weight vectors w generated randomly (details below). We compared our algorithm with

the LSR algorithm for choice sets of size m = 5, and with the RC algorithm for sets of size

m = 2. We used two different graph topologies for generating the comparison graph Gc, or

equivalently the choice sets:

1. Random Topology: This graph topology corresponds to random graphs where

n log2(n) choice sets are chosen uniformly at random from all the
(
n
m

)
unique sets of

cardinality m. This topology is very close to the Erdős-Rényi topology which has

been well-studied in the literature. In fact the degree distributions of nodes in this

random topology are very close to the degree distributions in the Erdős-Rényi topology

(Mezard and Montanari, 2009). The only reason we study the former is computational,

as iterating over all
(
n
m

)
hyper-edges is computationally challenging.

2. Star Topology: In this graph topology, there is a single item that belongs to all sets;

the remaining (m− 1) items in each set are contained only in that set. We study this

topology because it corresponds to the choice sets used in Example 4.4.6, where there

was a factor of Ω(n) gap in the spectral gap between our algorithm and the other

algorithms.

In our experiments we selected n = 5005, and the weight wi of each item i ∈ [n] was drawn

uniformly at random from the range (0, 1); the weights were then normalized so they sum to

1. A comparison graph Gc was generated according to each of the graph topologies above.

The parameter L was set to 300 log2 n. The winner for each choice set was drawn according

to the MNL model with weights w. The convergence criterion for all algorithms was the

same: we run the algorithm until the L1 distance between the new estimates and the old

estimates is ≤ 0.0001. Each experiment was repeated 100 times and the average values

over all trials are reported. For n = 500, m ∈ {2, 5}, and both graph topologies described
5Results for other values of n are given in the Appendix.

123

Table 2: Statistics for real world datasets

Dataset n m d dmax/dmin

Youtube 21207 2 394007 600
GIF-anger 6119 2 64830 106
SFwork 6 3-6 12 4.3
SFshop 8 4-8 10 1.9

above, we compared the convergence as a function of the number of iterations6 for each

algorithm. We plotted the L1 error of the estimates produced by these algorithms after each

iteration. The plots are given in Figure 8. These plots verify the mixing time analysis of

Section 4.4, and show that our algorithm converges much faster than RC and LSR, and

orders of magnitude faster in the case of the star graph.

4.7.2 Real World Datasets

We conducted experiments on the YouTube dataset (Shetty, 2012), GIF-anger dataset (Rich

et al.), and the SFwork and SFshop (Koppelman and Bhat, 2006) datasets. Table 2 gives some

statistics about these datasets. We also plot the degree distributions of these datasets in the

Appendix. For these datasets, a ground-truth w is either unknown or undefined; and hence,

we compare our algorithm and the RC/LSR algorithm with respect to the log-likelihood of

the estimates as a function of number of iterations. Due to the number of comparisons per

set (or pair) being very small, in order to ensure irreducibility of random walks, we use a

regularized version of all algorithms (see Appendix, and also Section 3.3 in Negahban et al.

(2017), for more details). Here, we give results when the regularization parameter λ is set to

0.2, and defer the results for other parameter values to the Appendix. The results are given

in Figure 9. We observe that our algorithm converges rapidly to the peak log-likelihood value

while RC and LSR are always slower in converging to this value.
6We also plotted the convergence as a function of the running time; the results were similar as the running

time of each iteration is similar for all these algorithm.

124

4.8 Conclusion

We presented a spectral algorithm for learning parameters of the MNL/BTL model from

pairwise/multiway choices. Our algorithm is considerably faster than previous algorithms; in

addition, our analysis yields improved sample complexity results for estimation under the

BTL and MNL model. We also give a message passing/belief propagation interpretation for

our algorithm. In the future it would be interesting to see if one can use our algorithm to

give better guarantees for recovery of top-k items under MNL. Moreover, it would also be

interesting to study learning algorithms for other choice models such as multinomial probit

model (MNP), nested logit model, and mixture of MNLs etc.

125

Chapter 5

Multiarmed Bandits and Discrete Choice Models

In the previous chapter we designed an algorithm for learning the parameters of the multino-

mial logit (MNL) model from offline choice datasets. In this chapter we will continue our

discussion at the interface of machine learning and choice modeling and design algorithms

for learning under different choice models in the online multi-armed bandit setting.

5.1 Introduction

5.1.1 Background

As discussed in the previous chapter, discrete choice models have gained a lot of interest

in machine learning due to the onset of online services in domains including entertainment

and shopping, that use machine learning to recommend alternatives to users and help them

make better choices. In the previous chapter our goal was to learn a choice model from

offline choice data collected over time. However, in a lot of applications, the interaction of

users with the learning algorithm happens in an online manner, i.e. in sequential rounds

of interaction. Hence, it is desirable for these recommendation algorithms to continuously

learn about the tastes/choices of these users from this sequential interaction and recommend

better set of products progressively over time.

A widely studied setting for online learning is the multi-armed bandits setting where the

learner interacts with the environment in a sequential manner, and each time collects partial

feedback which is used to improve the interaction over time by minimizing an appropriately

notion of regret. Motivated by applications in online recommendation systems and advertising,

we seek to study choice models under this setting of online multi-armed bandits.

Previously, Yue et al. (2009) introduced the framework of dueling bandits that studies pairwise

choice models under the multi-armed bandits setting. This framework has gained a lot of

126

interest in machine learning in recent years (Yue et al., 2009; Yue and Joachims, 2011; Yue

et al., 2012; Urvoy et al., 2013; Ailon et al., 2014; Zoghi et al., 2014, 2015a,b; Dudik et al.,

2015; Jamieson et al., 2015; Komiyama et al., 2015a, 2016; Ramamohan et al., 2016; Chen

and Frazier, 2017). Here there are n arms {1, . . . , n}; on each trial t, the learner pulls a

pair of arms (it, jt), and receives pairwise choice indicating which of the two arms has a

better quality/reward. In the regret minimization setting, the goal is to identify the ‘best’

arm(s) while also minimizing the regret due to playing sub-optimal arms in the learning

(exploration) phase.

In many applications, however, it can be natural for the learner to pull more than two arms

at a time, and seek relative feedback among them. For example, in recommender systems,

it is natural to display several items or products to a user, and seek feedback on the most

preferred item among those shown. In online advertising, it is natural to display several

ads at a time, and observe which of them is clicked (preferred). In online ranker evaluation

for information retrieval, one can easily imagine a generalization of the setting studied by

Yue and Joachims (2009), where one may want to "multi-leave" several rankers at a time

to help identify the best ranking system while also presenting good/acceptable results to

users using the system during the exploration phase. In general, there is also support in the

marketing literature for showing customers more than two items at a time (Johnson et al.,

2012). Motivated by these applications, we seek to move beyond the pairwise choice setting

of dueling bandits and design a new framework that can incorporate more general multiway

choices.

5.1.2 Our Contributions

We introduce a framework that generalizes the dueling bandit problem to allow the learner

to pull more than two arms at a time. Here, on each trial t, the learner pulls a set St of up

to k arms (for fixed k ∈ {2, . . . , n}), and receives relative feedback in the form of a multiway

choice yt ∈ St indicating which arm in the set has the highest quality/reward. The goal of

the learner is again to identify a ‘best’ arm (to be formalized below) while minimizing a

127

suitable notion of regret that penalizes the learner for playing sub-optimal arms during the

exploration phase. We term the resulting framework choice bandits.

In the (stochastic) dueling bandits framework, the underlying probabilistic model from which

feedback is observed is a pairwise comparison model, which for each pair of arms (i, j), defines

a probability Pij that arm i has higher reward/quality than arm j. In our choice bandits

framework, the underlying probabilistic model is a multiway choice model, which for each

set of arms S ⊆ [n] with |S| ≤ k and each arm i ∈ S, defines a probability Pi|S that arm i

has the highest reward/quality in the set S. Figure 10 gives the hierarchy of choice models

considered in this chapter.

We first consider choice bandits under the well-known multinomial logit (MNL) choice model

(Luce, 1959; Plackett, 1975; McFadden, 1974), which generalizes the Bradley-Terry-Luce

(BTL) model for pairwise comparisons (Bradley and Terry, 1952b; Luce, 1959). Under this

model, each arm i is associated with a weight wi > 0, and the choice probabilities are given

by Pi|S = wi/
∑

j∈S wj . We design a computationally efficient algorithm, which we term

Winner Beats All – Lazy (WBA-L), that achieves an instance-wise optimal regret bound of

O
(
n log n log T), where T is the number of trials (horizon). This bound significantly improves

upon the worst-case O(n2 + n log T) bound achieved by the recent MaxMinUCB algorithm

designed for the MNL model (Saha and Gopalan, 2019a).

We then study choice bandits under a new class of choice models, that are characterized by

the existence of a unique generalized Condorcet winner (GCW), which we define to be an

arm that has larger probability of being chosen than any other arm in any choice set. This

class includes as special cases the multinomial logit (MNL) and multinomial probit (MNP)

(Thurstone, 1927) choice models, and more generally, the class of random utility models

with i.i.d. noise (IID-RUMs) (Marschak, 1960; Domencich and McFadden, 1975). The main

contribution of this work is to design a computationally efficient algorithm, which we term

Winner Beats All – Aggressive (WBA-A), that achieves an instance-wise asymptotically

optimal regret bound of O
(
n2 log n+ n log T) under this large class of choice models that

128

Generalized
Condorcet
Condition

(GCC)

Random
Utility

Models
with IID Noise

(IID-RUMs)

Multinomial Logit
Model (MNL)

Multinomial Probit
Model (MNP)

Figure 10: The hierarchy of choice models considered in this work.

exhibit a unique GCW.

The main challenge in designing an algorithm under our framework is that the space of

exploration (number of possible sets the learner can play) is Θ(nk) which is large even for

moderate k. Therefore, it can be challenging to simultaneously explore/learn the choice

sets with low regret out of the possible Θ(nk) sets and exploit these low regret sets. We

overcome these challenges by extracting just O(n2) pairwise statistics from the observed

multiway choices under different sets, and using these statistics to find choice sets with low

regret. Since these pairwise statistics are extracted from multiway choices under different

sets, a technical challenge is to show that these statistics are concentrated. We resolve this

challenge by using a novel coupling argument that couples the stochastic process generating

choices with another stochastic process, and showing that pairwise estimates according to

this other process are concentrated. We believe that our results for efficient learning under

this large class of choice models that is considerably more general than the MNL class are of

independent interest.

We also run experiments on several synthetic and real-world datasets. Our experiments on

these datasets show that our algorithms for the special case of k = 2 are competitive as

compared to previous dueling bandit algorithms, even though they are designed for a more

general setting. For the case of k > 2, we compare our algorithms with the MaxMinUCB

129

algorithm of Saha and Gopalan (2019a) which was designed for the MNL model. We observe

that our algorithms perform better in terms of regret than MaxMinUCB under all datasets

(even under synthetic MNL datasets). We further observe that under several datasets the

regret achieved by our algorithms for k > 2 is better than the regret for k = 2.

The following is a summary of our contributions

1. Modeling Contributions: We formalize a new framework that generalizes the dueling

bandit framework by allowing the learner to play larger choice sets. Our framework

opens up several new questions, including the possibility of designing algorithms for

specific types of choice models of interest in various applications. We also propose a

new non-parametric class of choice models (GCC) which include several well-studied

choice models such as MNL, MNP, and more generally all IID-RUMs as special cases,

and can be of independent interest in other multiway choice settings such as dynamic

assortment optimization (Sauré and Zeevi, 2013).

2. Algorithmic Contributions: We develop a novel algorithmic framework for extract-

ing pairwise statistics from multiway choices and making decisions based on these

pairwise statistics. This allows the learner to have the flexibility of playing larger choice

sets while being computationally efficient and achieving tight regret under a wide range

of choice models.

3. Technical Contributions: We believe that our results for learning this large GCC

class of choice models are of independent interest. Of particular interest are our ideas of

extracting and aggregating potentially inconsistent pairwise preferences from multiway

choices, and our concentration results used to establish confidence interval bounds on

these preference estimates.

5.1.3 Related work.

There has been a lot of work recently in bandit settings where more than two arms are played

at once (although no previous work considers choice models at the level of generality we do).

130

Table 3: Overview of related work in regret minimization settings. There are several
definitions of ‘best’ arm; the reader is encouraged to refer to the relevant papers and to
our problem setting for details. (Note: in multi-dueling bandits, ∅ denotes no feedback; in
stochastic click bandits, Ot denotes an ordered set; in combinatorial bandits, S denotes a set
of allowed subsets; in dynamic assortment optimization, 0 denotes the “no-purchase” option.)

Arms Pulled Feedback in
Problem in Round t Round t Goal
Dueling (it, jt) ∈ [n]2 yt ∈ {it, jt} Min. regret
Bandits w.r.t. best arm

Multi-dueling St ∈ [n]k Yt={0, 1, ∅}k×k Min. regret
Bandits w.r.t. best arm

Combinatorial St ∈ S ⊆ 2[n]:|St| ≤ k yt(i) ∈ R ∀i ∈ St Min. regret
Bandits w.r.t. top-k arms

Combinatorial St ⊆ [n]:|St| ≤ k Ot ⊆ St, |Ot| ≤ m Min. regret
Bandits with w.r.t. best arm (MNL)

Relative Feedback
Battling St ∈ [n]k yt ∈ St Min. regret
Bandits w.r.t. best arm (PS)

Stochastic Click Ot ⊆ [n]:|Ot| = k, yt ⊆ Ot Max. expected clicks
Bandits clicks
Dynamic {0} ∪ St ⊆ [n]:|St| ≤ k yt ∈ St Max. expected

Assortment revenue
Choice St ⊆ [n]:|St| ≤ k yt ∈ St Min. regret
Bandits w.r.t. best arm

We briefly review related work here; see also Table 3.

Multi-dueling bandits. In multi-dueling bandits (Brost et al., 2016; Schuth et al., 2016;

Sui et al., 2017), the learner pulls a set St of k items; however, the feedback received by

the learner is assumed to be drawn from a pairwise comparison model (in particular, the

learner observes some subset of the
(
k
2

)
possible pairwise comparisons among items in St). In

contrast, in our choice bandits setting, the learner receives the outcome of a direct multiway

choice among the items in St, generated from a multiway choice model.

Combinatorial bandits. In combinatorial (semi) bandits (Gai et al., 2012; Chen et al.,

2013; Kveton et al., 2015; Combes et al., 2015), each arm i is associated with an unknown

random variable (stochastic reward) Yi; the learner pulls a set St of up to k arms (possibly

131

from some set of ‘allowed’ sets S ⊆ 2[n]), and observes the realized rewards yt(i) for all arms

i in St. The goal is to maximize the cumulative sum of all rewards. This is different from

our choice bandits setting; in our setting, the learner observes only which arm is chosen from

the set St of arms pulled, rather than any absolute reward feedback (indeed, in our setting,

arms may not be associated with individual rewards at all).

Combinatorial bandits with relative feedback. In this very recent framework Saha

and Gopalan (2019a), the learner pulls a set St of up to k arms, and observes top-m ordered

feedback drawn according to the MNL model, for some m ≤ k. In contrast, we only observe

the (top-1) choice feedback from the set St that is played. Moreover, we study a much more

general class of choice models than the MNL model studied by them. For the special case

of (top-1) choice feedback under MNL, we give better algorithms with (almost) optimal

instance-wise bounds as compared to their MaxMinUCB algorithm which has a worst-case

bound.

Stochastic click bandits. In stochastic click bandits (Zoghi et al., 2017), the learner pulls an

ordered set of k arms/documents, and observes clicks on a subset of these documents, drawn

according to an underlying click model which is a probabilistic model for click generation

over an ordered set. However, click models in their setting are different than choice models

in our setting, and neither can be cast as a special case of the other.

Battling bandits. Another related setting is that of battling bandits (Saha and Gopalan,

2018), where the learner pulls a set St of exactly k arms and receives a feedback indicating

which arm was chosen. However, their setting considers a specific pairwise-subset (PS) choice

model that is defined in terms of a pairwise comparison model, whereas we consider much

more general choice models.

132

Preselection bandits. There has been a recent framework called preselection bandits Bengs

and Hüllermeier (2019) where two settings are considered: (1) where the learner pulls a set

St of size exactly k, (2) where the learner pulls a set St of any size less than n. In both

settings the learner receives feedback drawn from the MNL model. Firstly, the two settings

considered by this work are different than our setting where the learner plays a set of size up

to k. Secondly, we study a much more general class of choice models than the MNL model

studied by them.

Dynamic assortment optimization. In dynamic assortment optimization Rusmevichien-

tong et al. (2010); Sauré and Zeevi (2013); Agrawal et al. (2016, 2017); Chen and Wang

(2017), there are n products and each product is associated with a revenue. The learner

plays an assortment St of up to k products, and observes a feedback indicating which (if any)

of the products was purchased; the goal of the learner is to maximize the expected revenue.

Best-of-k bandits (PAC setting). Simchowitz et al. (2016) consider a best-of-k bandits

setting, where again the learner pulls a set St of k arms; however here each arm i is associated

with an unknown random variable (stochastic reward) Yi. Of the various types of feedback

that are considered, the marked bandit feedback corresponds to a setting that is similar to

our choice bandits framework, however, the analysis in Simchowitz et al. (2016) is in the

PAC/pure exploration setting, while ours is in the regret minimization setting.

Top-k identification under MNL model (PAC setting). Recently, there has also been

work on identifying the top-k items under an MNL model from actively selected sets St in

the PAC/pure exploration setting Chen et al. (2018).

133

5.1.4 Organization

We set up the choice bandits problem in Section 5.2. We present a fundamental lower

bound for our choice bandits problem in Section 5.3. We present our two algorithms in

Section 5.4. We present regret upper bounds for our algorithms in Section 5.5. We present

experimental results on synthetic and real world datasets in Section 5.6. We present proofs

of our theoretical results in Section 5.7. We finally conclude with a brief discussion in

Section 5.8.

5.2 Problem Setup and Preliminaries

In the choice bandits problem, there are n arms [n] := {1, . . . , n}, and a set size parameter

2 ≤ k ≤ n. On each trial t, the learner pulls (selects/plays) a choice set St ⊆ [n] of up to k

arms, i.e. with |St| ≤ k, and receives as feedback yt ∈ St, indicating the arm that is most

preferred in St. We assume the feedback yt is generated probabilistically from an underlying

multiway choice model, which defines for each S ⊆ [n] such that |S| ≤ k, and arm i ∈ S, a

choice probability Pi|S which corresponds to the probability that arm i is the most preferred

arm in S.1 Before defining appropriate notions of ‘best’ arm and regret for the learner, we

give some examples of multiway choice models.

5.2.1 Random Utility Models with IID Noise (IID-RUMs)

IID-RUMs are a well-known class of choice models that have origins in the econometrics

and marketing literature (Marschak, 1960; Train, 2003). Under an IID-RUM, the (random)

utility associated with arm i ∈ [n] is given by Ui = vi + εi where vi ∈ R is a deterministic

utility and the εi ∈ R are the random noise variables drawn i.i.d. from a distribution D over

reals. For a set S, the probability of choosing i ∈ S is given by

Pi|S = Pr
(
Ui > Uj ∀j ∈ S \ {i}) .

1Note that for the special case of k = 2, our framework reduces to dueling bandits; the pairwise comparison
probabilities Pij := Pr (i � j) in dueling bandits can be viewed as pairwise choice probabilities Pi|{i,j}.

134

We will sometimes also refer to vi as the weight of item i. Under any IID-RUM, if vi > vj

for some i, j ∈ [n], then arm i will be more likely to be chosen than arm j in any set. The

IID-RUM class contains some popular models, such as the multinomial logit (MNL) (Luce,

1959; Plackett, 1975; McFadden, 1974) and multinomial probit (MNP) (Thurstone, 1927), as

special cases.

Example 5.2.1 (MNL). Under MNL, the noise distribution D is Gumbel(0, 1) and the

probability Pi|S of choosing an item i from a set S has the following closed form expression:

Pi|S :=
evi∑
j∈S e

vj
.

It is clear from this expression that arms with higher weights are more likely to be chosen.

Example 5.2.2 (MNP). Under the MNP model, the noise distribution D is the standard

Normal distribution N (0, 1). Unlike MNL, there is no closed form expression for the choice

probabilities.

Under IID-RUMs there is a clear notion of ‘best’ arm: an arm that has the highest weight

maxi∈[n] vi. We now define a strictly more general class of models where there is a clear

notion of ‘best’ arm.

5.2.2 A New Class of Choice Models

We introduce a new class of multiway choice models that are characterized by the following

condition that requires the existence of a unique ‘best’ arm.

Definition 5.2.3 (Generalized Condorcet Condition (GCC)). A choice model is said to

satisfy the GCC condition if there exists a unique arm i∗ ∈ [n] such that for every choice set

S ⊆ [n] that contains i∗, we have Pi∗|S > Pj|S for all j ∈ S \ {i∗}.

Intuitively, the above condition requires the existence of a unique arm that is always

(stochastically) preferred to all other arms, no matter what other arms are shown with it.

This condition is a generalization of the Condorcet condition studied for pairwise comparison

135

models (Zoghi et al., 2014; Komiyama et al., 2015a). Just as the Condorcet condition need

not be satisfied for all pairwise comparison models, similarly, GCC need not be satisfied

by all multiway choice models. Below we show that the GCC condition is satisfied for all

IID-RUMs subject to a minor technical condition.

Lemma 5.2.4 (IID-RUMs satisfy GCC). For any IID-RUM choice model with utility for

arm i ∈ [n] given by Ui = vi + εi, the GCC condition is satisfied if | argmaxi∈[n] vi| = 1.

In this work, we study the class of all choice models where the GCC is satisfied. Under

GCC, we will refer to the unique ‘best’ arm as the generalized Condorcet winner (GCW) and

denote it by i∗. Note that for any set S containing the GCW i∗, we must have Pi∗|S ≥ 1
|S| .

5.2.3 Regret Notion

Similar to dueling bandits, the goal of the learner in our setting is to identify the best arm

while also playing good/competitive sets with respect to this arm during the exploration

phase.2 Hence, our notion of regret measures the sub-optimality of a choice set S relative

to i∗, and is a generalization of the regret defined by Saha and Gopalan (2019a) for the

special case of MNL choice models. Moreover, under our notion of regret it is optimal to play

S∗ = {i∗}, i.e. regret of playing S∗ is 0. The regret of a set is defined to be the sum of regret

due to individual arms in the set, and the regret for an arm corresponds to the ‘margin’ by

which the best arm i∗ beats this arm. In other words, the regret of an arm corresponds to

the shortfall in preference probability due to pulling this arm over the ‘best’ arm.

Definition 5.2.5 (Regret). The regret r(S) for S ⊆ [n] is defined as: r(S) :=
∑

i∈S
(
Pi∗|S∪{i∗}−

Pi|S∪{i∗}
)
.

This notion of regret can be interpreted as: r(S) is the sum over all arms i ∈ S, the fraction

of consumers that will choose i∗ minus the fraction of consumers that will choose i when i∗

is played together with S. It is easy to see that r({i∗}) = 0, and 0 ≤ r(S) ≤ |S| for any set

S ⊆ [n].
2Note that we are not working in the pure exploration setting, where all sets are of equal cost during

exploration.

136

Example 5.2.6 (Linearly growing regret). Consider a choice model where arm 1 is the

GCW, and for each set S containing arm 1, we have P1|S = 0.51 and Pi|S = 0.49
|S|−1 ∀i ∈ S\{1}.

Then r({1, . . . ,m}) = 0.51× (m− 1)− 0.49.

In the above example, the regret increases linearly as we increase m. The following gives an

example where the arms are much more ‘competitive’ and regret is smaller.

Example 5.2.7 (Sub-linearly growing regret). Consider the MNL choice model with weights

v1 = log(1 + ε), for ε > 0, and v2 = · · · = vn = 0. Then r({1, · · · ,m}) =
∑

i∈[m]
ev1−evi∑
j∈[m] e

vj =

ε(m−1)
m+ε .

The regret here increases much more slowly in terms of m. Note that our regret is not

necessarily well-defined in the dueling bandits setting, due to the need to consider choice

probabilities for sets of size 3 even when one plays only sets of size 2.

Under the above notion of regret, the goal of an algorithm A is to minimize its cumulative

regret over T trials, defined as: R(T) =
∑T

t=1 r(St).

5.3 A Fundamental Lower Bound

In this section we present a regret lower bound for our choice bandits problem. We say that

an algorithm is strongly consistent under GCC if its expected regret over T trials is o(T a)

for any a > 0 under any model in this class. Given a GCC choice model and an arm i 6= i∗,

let us define the gap parameter ∆i∗i as

∆i∗i := min
S⊆[n]:|S|≤k and i,i∗∈S

Pi∗|S − Pi|S
Pi∗|S + Pi|S

. (5.3.1)

The following theorem presents a lower bound for any strongly consistent algorithm in terms

of these gap parameters.

Theorem 5.3.1. Given a set of arms [n], choice set size bound k ≤ n, there exist GCC

choice models such that when choice outcomes are drawn according to these models, the regret

137

incurred by any algorithm A that is strongly consistent under GCC is lower bounded as:

lim inf
T→∞

E [R(T)]

log T
= Ω

 ∑
i∈[n]\{i∗}

1

∆i∗i

 ,

where T is the time-horizon. Moreover, if the underlying model is MNL with parameters

v1, v2, · · · vn ∈ R, then:

lim inf
T→∞

E [R(T)]

log T
= Ω

 ∑
i∈[n]\{i∗}

1

∆MNL
i∗i


where ∆MNL

i∗i = evi∗−evi
evi∗+evi , for i ∈ [n] \ {i∗}.

Discussion. The above bound shows that any algorithm for the choice bandits problem

needs to incur instance-dependent Ω(n log T) regret in the worst case. Note that the above

lower bound does not depend on the choice set size parameter k. If the choices are generated

from an underlying MNL model, then the above theorem gives an instance-dependent lower

bound for the regret of any algorithm. Note that Saha and Gopalan (2019a) also provided

a lower bound under MNL for our notion of regret, however, their bound depends on the

worst-case gap between i∗ and any other arm i 6= i∗, while we provide a more fine-grained

bound under MNL which depends on gaps between i∗ and each individual arm i ∈ [n].

In order to prove the above bound we construct a pair of instances that have different GCW

arms, and use the information divergence lemma of Kaufmann et al. (2016) in order to

characterize the minimum number of samples needed in order to collect the ‘information’

needed to separate these two instances. We provide a full proof of this lower bound in

Section 5.7.1.

5.4 Algorithms

In this section we describe our two algorithms, termed Winner Beats All – Aggressive

(WBA-A) and Winner Beats All – Lazy (WBA-L). The WBA-L algorithm is designed for

the MNL model while the WBA-A algorithm is designed for the more general GCC class

138

Algorithm 7 Winner Beats All – Aggressive (WBA-A)

1: Input: set of arms [n], size of choice set k, parameter C
2: t← 1, r ← 1, Ar ← [n], at ← Unif([n]), Q← ∅
3: P̂ij ← 1

2 , ∀i, j ∈ [n]
4: while t ≤ T do
5: Select largest S ⊆ Ar \ {Q ∪ at} with |S| ≤ k − 1 and P̂iat ≤ 1

2 , ∀i ∈ S
6: Let St ← S ∪ {at}; while |St| < k and Ar \St 6= ∅: add an (arbitrary) arm from Ar \St to St
7: Play set St and receive yt ∈ St as feedback; Q← Q ∪ S
8: For all i ∈ St, calculate P̂iat(t) and Ji(t, C)

9: if ∀ i ∈ Ar \ {Q ∪ at}, P̂iat(t) > 1
2 then

10: at+1 ← argmaxi∈[n]

∑
j∈[n]\Q 1[P̂ji(t) ≤ 1

2]
11: else
12: at+1 ← at
13: end if
14: if Q = Ar or S = ∅ then
15: Ar+1 ← ∅, r ← r + 1
16: for i ∈ [n] do
17: if Ji(t, C) = 0, then Ar ← Ar ∪ {i}
18: end for
19: at+1 ← argmaxi∈[n]

∑
j∈[n] 1[P̂ji(t) ≤ 1

2], Q← ∅
20: end if
21: t← t+ 1
22: end while

of models. However, the two algorithms are built upon the common principle of quickly

isolating the best arm i∗ by using the fact that this arm stochastically beats all other arms

in any choice set.

Both our algorithms divide their execution into rounds and each round can contain up to

n trials depending on problem parameters and the execution history. We will use r as an

index for a round, and t as a (global) index for a trial. For each round r, both algorithms

maintain a set Ar of active arms. These are a set of arms for which the algorithm is still not

confident enough that these are ‘bad’ arms. Note that an arm that is inactive in a particular

round, can become active in a later round. We also maintain a set Q that is initialized to

being empty at the beginning of each round and keeps track of the arms in Ar that have

been played so far in the round.

Given a trial t that falls in round r, both algorithms first select a set S ⊆ Ar \Q (arbitrarily)

of up to k − 1 arms in Ar that have not been played so far in round r. The set S is then

139

Algorithm 8 Winner Beats All – Lazy (WBA-L)

1: Input: set of arms [n], size of choice set k, parameter C
2: t← 1, r ← 1, Ar ← [n], ar ← Unif([n]), Q← ∅
3: P̂ij ← 1

2 , ∀i, j ∈ [n]
4: while t ≤ T do
5: Let at ← ar. Select largest S ⊆ Ar \ {Q ∪ at} with |S| ≤ k − 1.
6: Play set St ← S ∪ {at} and receive yt ∈ St as feedback
7: Q← Q ∪ S
8: For all i ∈ St, calculate P̂iat(t) and Ji(t, C)
9: if Q = Ar \ {ar} then

10: Ar+1 ← ∅
11: for i ∈ [n] do
12: if Ji(t, C) = 0, then Ar+1 ← Ar+1 ∪ {i}
13: end for
14: if Jar (t, C) = 0 then
15: ar+1 ← argmaxi∈[n] P̂iar (t)
16: else
17: ar+1 ← ar
18: end if
19: Q← ∅, r ← r + 1
20: end if
21: t← t+ 1
22: end while

played with a special arm at termed the ‘anchor arm’. Both algorithms try to maximize the

size of the choice set subject to availability of active arms. In WBA-L the anchor arm has

an interpretation of a ‘candidate’ best arm, whereas in WBA-A the anchor arm is chosen

so that one can quickly find evidence that arms in S are not good. Hence, in WBA-A an

additional requirement on S and at is that at empirically performs better than each arm

in S. Another difference is that WBA-L updates the anchor arm per round, while WBA-A

updates it per trial.

Let yt be the feedback received in trial t when St was played including anchor at. For all

i, j ∈ [n], let Nij(t) denote the number of times (up to round t) that either arm i or j was

chosen when arm j is the anchor, i.e.

Nij(t) :=

t∑
t′=1

1(at′ = j, {i, j} ⊆ St′ , yt′ ∈ {i, j}) . (5.4.1)

For each i, j ∈ [n] and trial t, such that Nij(t) > 0, the algorithm maintains an estimate of

140

the marginal probability of arm i beating the arm j as

P̂ij(t) :=
1

Nij(t)

t∑
t′=1

1(at′ = j, {i, j} ⊆ St′ , yt′ = i) , (5.4.2)

which is the fraction of times i was selected (compared to j) when both i and j were played

together and j was the anchor. (When Nij(t) = 0, we can simply take P̂ia(t) to be 1/2.)

Similar to Komiyama et al. (2015b), let us define an empirical divergence Ii(t, S) which

provides a certificate that an arm i is worse than (some) arms in S, as

Ii(t, S) =
∑
j∈S

1[P̂ij(t) ≤
1

2
] ·Nij(t) · d(P̂ij(t),

1

2
) ,

where d(P̂ij ,
1
2) is the KL-divergence defined as d(P,Q) = P log(PQ) + (1− P) log(1−P

1−Q), for

P,Q ∈ [0, 1]. If Ii(t, S) is 0, it means that arm i is empirically at least as good as all other

arms in S, and a higher Ii(t, S) would suggest that arm i is most likely ‘bad’. For a constant

C, we define the condition Ji(t, C) for arm i ∈ [n] and round t as

Ji(t, C) = 1

{
∃S ⊆ [n] : Ii(t, S) ≥ |S| log(nC) + log(t)

}
.

If Ji(t, C) = 1 for some i, it means that there exists a certificate S to show that i is not

likely the best arm as it loses to some arms in S by a large ‘margin’.3 The larger the set

S the larger the margin needs to be. This condition can be evaluated in polynomial time

by computing argmaxS⊆[n] Ii(t, S) − |S| · log(nC) and checking if it is greater than log(t).

Specifically, we can compute argmaxS⊆[n] Ii(t, S)− |S| · log(nC) by first sorting arms j in

the order of values 1[P̂ij(t) ≤ 1
2] ·Nij(t) · d(P̂ij(t),

1
2). We can then start with S ← ∅ and

add one arm at a time from this sorted ordering to S. We stop adding arms to the set S

once the value 1[P̂ij(t) ≤ 1
2] ·Nij(t) · d(P̂ij(t),

1
2) of the current arm j is less than log(nC).

It is easy to see that computing Ii(t, S) − |S| · log(nC) for this set S gives the value of
3Note that the above condition is similar to condition used in Komiyama et al. (2015b), except that they

only use the set [n] as a certificate instead of all possible subsets S ⊆ [n]. In our analysis and experiments
will show that this condition is an improvement over the condition used in Komiyama et al. (2015b) for the
case of dueling bandits.

141

argmaxS⊆[n] Ii(t, S)− |S| · log(nC).

Finally, let t be the final trial in a round r. In order to decide which arms to be included in

the next set of active arms Ar+1 we simply check the condition Ji(t, C) for each i ∈ [n] and

include all arms for which Ji(t, C) = 0 holds. Note that Ar+1 can be empty, in which case

we will simply play the anchor arm until it set becomes non-empty in the future. The anchor

arm in WBA-L is updated for round r + 1 if ar 6∈ Ar+1, and it becomes the arm that beats

ar with the biggest margin empirically. The anchor arm in each trial in WBA-A is the arm

with the best empirical divergence among the set of unplayed arms in that round. Detailed

pseudo-code for WBA-L is given in Algorithm 8 and for WBA-A is given in Algorithm 7.

5.5 Regret Bounds

In this section we will provide regret upper bounds for our WBA-A and WBA-L algorithms.

The following theorem presents our main result which is a regret bound for our WBA-A

algorithm under any choice model belonging to the GCC class.

Theorem 5.5.1 (Regret bound for WBA-A under GCC). Let n be the number of arms, k ≤ n

be the choice set size parameter, and i∗ be the GCW arm . If the multiway choices are drawn

according to a GCC choice model with gap parameters {∆i∗i}i 6=i∗ defined in Equation 5.3.1,

and ∆min := mini 6=i∗ ∆i∗i, then for any C ≥ 1/∆4
min, the expected regret incurred by WBA-A

is upper bounded by

E [R(T)] ≤O
(
n2 log n

∆2
min

)
+O

 ∑
i∈[n]\i∗

log(TC)

∆i∗i

 ,

where T is the (unknown) time-horizon. Moreover, if the underlying model is MNL with

weights v1, · · · , vn ∈ R, then

E [R(T)] ≤O
(
n2 log n

(∆MNL
min)2

)
+O

 ∑
i∈[n]\i∗

log(TC)

∆MNL
i∗i

 .

142

The following theorem gives an upper bound for the WBA-L algorithm under the MNL

model.

Theorem 5.5.2 (Regret bound for WBA-L under MNL). Let n be the number of arms,

k ≤ n be the choice set size parameter, and i∗ ∈ [n] be the GCW arm. If the multiway

choices are drawn according to an MNL model with weights v1, · · · , vn ∈ R, gap parameters

∆MNL
i∗i := evi∗−evi

evi∗+evi for i ∈ [n], and ∆MNL
min := mini 6=i∗ ∆MNL

i∗i , then for any C ≥ 1/
(
∆MNL

min

)4,
the expected regret incurred by WBA-L is upper bounded by

E [R(T)] ≤O

 ∑
i∈[n]\i∗

log(n) log(TC)

∆MNL
i∗i

 ,

where T is the (unknown) time-horizon.

Note that the above upper bound depends on the value of C being larger than 1/∆4
min which

is an instance-dependent quantity, however, we outline a way to select the parameter C in

an instance independent manner.

Remark 1 (Selecting C). A value of T 4 for the parameter C suffices for Theorem 5.5.2 and

Theorem 5.5.1 to hold, giving a regret upper bound of O(log(TC)) = O(log(T 5)) = O(log(T)).

(If T is not known, one can use the doubling trick.) To see this note that in order to obtain

any non-trivial upper bound for our algorithm, ∆min has to be larger than 1/T . Hence,

either ∆min is upper bounded by 1/T , or the instance is too hard to allow any non-trivial

upper bound. Therefore, C ≥ T 4 would suffice whenever the instance is not already too

hard. We actually believe setting C = T 4 may be somewhat pessimistic (it arises from taking

a union bound over all possible states of the algorithm in our regret analysis (specifically,

Lemma 5.7.4) – indeed, in our experiments, we set C = 1 for all datasets, and our algorithm

still demonstrates sublinear regret with this choice – but it certainly suffices, and the regret

bound with C = T 4 is at most a constant factor 5 times what one might get with C = 1 if

the regret bound holds in that case.

143

Discussion. The above theorems yield an instance-wise O(n log n log T) regret bound for

the WBA-L algorithm under the MNL model, and an instance-wise O(n2 log n + n log T)

regret bound for the WBA-A algorithm under the GCC class of models. Comparing these

bounds with the lower bound given in Section 5.3, one can observe the upper bound for

WBA-L is instance-wise optimal under MNL class, and our bound for the WBA-A algorithm

is asymptotically instance-wise optimal under GCC. The upper bound for WBA-L is similar

to the upper bounds obtained for some early dueling bandit algorithms such as IF (Yue et al.,

2009) and BTM (Yue and Joachims, 2011) that make a strong ‘linearity’ assumption on the

arms, while the upper bound for WBA-A is similar to the upper bounds obtained for more

recent dueling bandit algorithms such as RUCB (Zoghi et al., 2014) and RMED (Komiyama

et al., 2015b) that only assume the existence of a Condorcet winner. It is also important to

note that our regret bounds do not depend directly on the choice set size k. However, the

behavior of these bound is more subtle and depends on the specific multiway choice model

through the gap parameters {∆i∗i}i 6=i∗ . We also note that while in general the regret can

behave differently for different models, in our experiments, we find that there are choice

models (including some in real data) where our algorithms empirically achieve smaller regret

when allowed to play sets of size k > 2 as compared to k = 2. Under the MNL model, the

bounds obtained for WBA-L are better than the ones obtained for WBA-A, however, it is

important to note that WBA-A is not specialized for MNL and has almost optimal regret for

a much larger class of models. Moreover, both our instance-wise bounds under MNL are an

improvement over the upper bound for the MaxMinUCB algorithm under MNL for (top-1)

choice feedback which depends on worst-case gap parameters (Saha and Gopalan, 2019a).

Proof Overview. Our algorithms are based on the idea of isolating a ‘good’ anchor arm

and playing arms that are competitive against this anchor. Hence, in order to prove a regret

upper bound we need to show that the GCW i∗ would eventually beat every other arm i,

i.e. P̂i∗i(t) (Equation 5.4.2) would eventually become larger than 1/2. In this case i∗ would

become the anchor arm. However, an important technical challenge here is to bound the

144

deviation in these pairwise estimates P̂i∗i(t) obtained from multiway choices. In the past,

Saha and Gopalan (2019b) have shown that if one uses rank breaking to extract pairwise

estimates under the MNL model, then these pairwise estimates will be concentrated. However,

this concentration result relies crucially on the independence from irrelevant attributes (IIA)

property of MNL which states that for any two arms, the odds of choosing one over the other

in any set remains the same regardless of which set is shown. This concentration result does

not apply to our setting as the IIA property does not hold for general GCC models beyond

the MNL.

Below we outline a novel coupling argument that allows us to prove concentration for the

extracted pairwise estimates between the GCW arm i∗ and any other arm i ∈ [n]

Lemma 5.5.1 (Concentration). Consider a GCC choice model with GCW i∗. Fix i ∈ [n]. Let

S1, · · · , ST be a sequence of subsets of [n] and y1, · · · , yT be a sequence of choices according to

this model, let Ft = {S1, y1, · · · , St, yt} be a filtration such that St+1 is a measurable function

of Ft. We have

Pr(P̂i∗i(t) ≤ PGCC
i∗i − ε and Ni∗i(t) ≥ m) ≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i)·m (5.5.1)

where

PGCC
i∗i = min

S:|S|≤k,{i∗,i}⊆S

Pi∗|S

Pi∗|S + Pi|S
, (5.5.2)

and d(·, ·) is the KL-divergence.

Proof Sketch. Let us consider an alternate process for generating multiway choices y′t from

sets St. In this process, given any t and a set St such that i∗, i ∈ St with at = i, we first

generate a Bernoulli random variable Xt with probability Pi∗|S +Pi|S . If Xt = 0 we set y′t = j

with probability Pj|S
1−Pi∗|S−Pi|S

, for j ∈ S \ {i, i∗}. If Xt = 1 then we sample another Bernoulli

random variable Zt with probability PGCC
i∗i . If Zt = 1 then we let y′t = i∗, otherwise if Zt = 0

we set y′t = i. Let Pi∗i|St = Pi∗|St/(Pi∗|St + Pi|St). Now, we couple y′t and yt as follows: if

145

y′t ∈ St \ {i} then we let yt = y′t, otherwise if y′t = i then we let yt = i∗ with probability

(Pi∗i|St − PGCC
i∗i)/(1− PGCC

i∗i) and let yt = i with probability (1− Pi∗i|St)/(1− PGCC
i∗i). One

can verify that yt is distributed according to the correct underlying choice distribution. It

is now easy to observe that the estimates P̂i∗i(t) under yt will always be larger than the

estimates P̂ ′i∗i(t) under y′t, hence, we will have that Pr(P̂i∗i(t) ≤ x) ≤ Pr(P̂ ′i∗i(t) ≤ x) for

any x > 0. One can then show concentration for the coupled estimates P̂ ′i∗i(t), and use it to

bound the deviation in P̂i∗i(t).

Note that the above lemma only shows concentration for the pairwise estimates P̂i∗i(t)

between i∗ and any other arm i ∈ [n], but not for estimates P̂ij(t) between two arbitrary

arms i ∈ [n] and j ∈ [n]. However, in order to prove our result we only need concentration of

estimates between i∗ and any other arm i ∈ [n]. We believe that the above concentration

lemma is of independent interest, and might be useful in other learning from multiway choice

settings beyond MNL.

Once we have bounded the deviation for the pairwise estimates, we bound the number of

rounds r in which i∗ is not a part of the active set Ar. We then bound the expected number

of times that there exists an arm i such that P̂i∗i(t) < 1
2 , thus bounding the number of trials

until i∗ becomes the anchor. Finally, once i∗ is the anchor arm, we bound the regret incurred

due to sub-optimal arms. We provide detailed proofs of Theorem 5.5.2 and Theorem 5.5.1 in

Section 5.7.2.

5.6 Experiments

We compared the performance of our WBA-L and WBA-A algorithms against existing

algorithms on our choice bandits problem under different choice models. The first two choice

models were MNL models, the next three were from the GCC class, and the last three we

choice models extracted from real-world datasets:

1. MNL-Exp: A MNL model was generated by drawing random weights from the

exponential distribution with parameter λ = 3.5, i.e. for arm i ∈ [n], log vi as sampled

146

100 102 104 106

t: round

101

103

105

R
(t

):
re

gr
et

MNL-Exp
WBA-L, k=2

WBA-A, k=2

DTS

RMED1

BTM

RUCB

100 102 104 106

t: round

101

103

105

R
(t

):
re

gr
et

MNL-Geom
WBA-L, k=2

WBA-A, k=2

DTS

RMED1

BTM

RUCB

100 102 104 106

t: round

101

104

107

R
(t

):
re

gr
et

GCC-One
WBA-L, k=2

WBA-A, k=2

DTS

RMED1

BTM

RUCB

100 102 104 106

t: round

101

103

105

R
(t

):
re

gr
et

GCC-Two
WBA-L, k=2

WBA-A, k=2

DTS

RMED1

BTM

RUCB

100 102 104 106

t: round

101

103

105

R
(t

):
re

gr
et

GCC-Three
WBA-L, k=2

WBA-A, k=2

DTS

RMED1

BTM

RUCB

100 103 106

t: round

2000

4000

R
(t

):
re

gr
et

sushi

WBA-L, k=2

WBA-A, k=2

DTS

RMED1

BTM

RUCB

100 103 106

t: round

2000

4000

R
(t

):
re

gr
et

irish-dublin

WBA-L, k=2

WBA-A, k=2

DTS

RMED1

BTM

RUCB

100 103 106

t: round

2000

4000

R
(t

):
re

gr
et

irish-meath

WBA-L, k=2

WBA-A, k=2

DTS

RMED1

BTM

RUCB

Figure 11: Regret v/s trials for our algorithms WBA-L and WBA-A (for k = 2) compared with
dueling bandit algorithms (DTS, BTM, RUCB and RMED1) (the shaded region corresponds to std.
deviation). As can be observed, our algorithms are competitive against these algorithms.

147

i.i.d. from Exp(λ = 3.5).

2. MNL-Geom: A MNL model was generated with weights v1 = e, v2 = e
1
2 , . . .,

vn = e1/2n−1 .

3. GCC-One: This is the choice model from Example 5.2.6, where we selected arm

1 to be the GCW, and for each set S containing arm 1, we set p1|S = 0.51 and

pi|S = 0.49
|S|−1 ∀i ∈ S \ {1}; for sets S not containing the GCW 1, we selected the

smallest-index arm in S to be the highest-probability arm i∗S in S, and set pi∗S |S = 0.51

and pi|S = 0.49
|S|−1 ∀i ∈ S \ {i∗S}).

4. GCC-Two: For this choice model, we selected arm 1 to be the GCW, and for each

set S we defined ∆S := min{ |S|−1
10 , 0.99}. If i∗ /∈ S we selected the smallest-index arm

in S to be the highest-probability arm i∗S in S, otherwise we let i∗S := i∗. We defined

Pi∗S |S = 1+∆S
|S|(1−∆S)+2∆S

and for any i ∈ S \ {i∗S}, Pi|S = 1−∆S
|S|(1−∆S)+2∆S

.

5. GCC-Three: Here, again, we selected arm 1 to be the GCW, and for each set S we

defined ∆S := max{11−|S|
11 , 0.01}. Given this definition of ∆S , the choice probabilities

we defined in a similar manner as GCC-Two.

6. Sushi: This is a dataset from (Kamishima, 2003) which contains 5000 partial preference

orders given by humans over 100 different types of sushis. Similar to Komiyama et al.

(2015a), we selected a subset of 16 sushi types, such that there exists a GCW among

them.

7. Irish-Dublin: This dataset was also downloaded from preflib.org and also contains

data about elections held in Dublin, Ireland. The dataset contains 29, 988 partial

preference orders given by humans over 9 candidates. We again selected a subset of 8

candidates, such that there exists a GCW among them.

8. Irish-Meath: This is a dataset downloaded from preflib.org and contains data about

elections held in Dublin, Ireland. The dataset contains 64, 081 partial preference orders

148

given by humans over 14 candidates. We selected a subset of 12 candidates, such that

there exists a GCW among them.

Details about extraction of choice model probabilities from real-world datasets can be found

in the Appendix. Below we describe the different sets of experiments that were performed.

Each experiment was repeated 10 times. The value of n was 100 for all synthetic datasets,

16 for Sushi, 8 for Irish-Dublin, and 12 for Irish-Meath. The parameter C in our algorithms

was set to 1.

Comparison with Dueling Bandit Algorithms (k = 2). For the special case of k = 2,

we compared our algorithms with a representative set of dueling bandit algorithms (RMED1

(Komiyama et al., 2015a), DTS (Wu and Liu, 2016), RUCB (Zoghi et al., 2014), BTM (Yue

and Joachims, 2011)) for our notion of regret. Note that the purpose of these experiments is

merely to perform a sanity check and ensure that our algorithms perform reasonably well

compared with dueling bandit baselines when k = 2; the goal is not to argue that our choice

bandit algorithms beats the state-of-the-art for the specialized dueling bandit (k = 2) setting.

We set α = 0.51 for RUCB and DTS, and f(K) = 0.3K1.01 for RMED, and γ = 1.3 for

BTM. Figure 11 contain plots for these comparisons. Our algorithms either perform better

or similar to RMED1, RUCB, and BTM on all datasets; and are competitive with DTS on

most of the datasets.

Comparison with MaxMinUCB Algorithm (Saha and Gopalan, 2019a) (k > 2).

We compared the performance of our algorithms with the recent MaxMinUCB algorithm

(Saha and Gopalan, 2019a) that was designed and analyzed primarily for MNL choice models

under the same notion of regret as ours. 4 We set the parameter α to be 0.51 for MaxMinUCB.
4We also considered the SelfSparring algorithm of Sui et al. (2017) and the battling bandit algorithms of

Saha and Gopalan (2018), which are applicable to choice models defined in terms of an underlying pairwise
comparison model P . However, these algorithms all return multisets St, and any simple reduction of such
multisets to strict sets as considered in our setting (as well as the setting of Saha and Gopalan (2019a)) can
end up throwing away important information learned by the algorithms, resulting in a comparison that could

149

100 102 104 106

t: round

101

103

105

R
(t

):
re

gr
et

MNL-Exp
WBA-L, k=5

WBA-L, k=2

WBA-A, k=5

WBA-A, k=2

MMU, k=5

MMU, k=2

100 102 104 106

t: round

101

103

105

R
(t

):
re

gr
et

MNL-Geom
WBA-L, k=5

WBA-L, k=2

WBA-A, k=5

WBA-A, k=2

MMU, k=5

MMU, k=2

100 102 104 106

t: round

101

104

107

R
(t

):
re

gr
et

GCC-One
WBA-L, k=5

WBA-L, k=2

WBA-A, k=5

WBA-A, k=2

MMU, k=5

MMU, k=2

100 102 104 106

t: round

101

103

105

R
(t

):
re

gr
et

GCC-Two
WBA-L, k=5

WBA-L, k=2

WBA-A, k=5

WBA-A, k=2

MMU, k=5

MMU, k=2

100 102 104 106

t: round

101

103

105

R
(t

):
re

gr
et

GCC-Three
WBA-L, k=5

WBA-L, k=2

WBA-A, k=5

WBA-A, k=2

MMU, k=5

MMU, k=2

100 103 106

t: round

2000

4000

R
(t

):
re

gr
et

sushi

WBA-L, k=5

WBA-L, k=2

WBA-A, k=5

WBA-A, k=2

MMU, k=5

MMU, k=2

100 103 106

t: round

2000

4000

R
(t

):
re

gr
et

irish-dublin

WBA-L, k=5

WBA-L, k=2

WBA-A, k=5

WBA-A, k=2

MMU, k=5

MMU, k=2

100 103 106

t: round

2000

4000

R
(t

):
re

gr
et

irish-meath

WBA-L, k=5

WBA-L, k=2

WBA-A, k=5

WBA-A, k=2

MMU, k=5

MMU, k=2

Figure 12: Regret v/s trials for our algorithms WBA-L and WBA-A compared with the MaxMinUCB
(MMU) algorithm for k = 2 and k = 5 (the shaded region corresponds to std. deviation). We observe
that our algorithms are better than MaxMinUCB on all datasets for both values of k. We further
observe that for several datasets the regret achieved by our algorithm for k > 2 is better than the
regret of our algorithm for k = 2.

150

Figure 12 contain plots for these experiments for k = 2 and k = 5. We observe that our

algorithms are much better in terms of regret than MaxMinUCB under all datasets for both

values of k. One should note that WBA-A performs better than MaxMinUCB even under

the MNL datasets, even though MaxMinUCB is specialized to MNL while our algorithms

work under more general models. We further observe that under several datasets (GCC-One,

GCC-Two, Sushi, Irish-Dublin) the regret achieved by our algorithm for k > 2 is better

than for k = 2. We note that even though our study of more general choice feedback is

motivated by applications where it might be desirable to pull sets of size larger than 2 due to

reasons other than improving regret, these experimental results show that there exist settings

of choice models (including some in real data) where our algorithms empirically achieve a

smaller regret when allowed to play sets of size k > 2 as compared to k = 2.

5.7 Proofs

In this section we provide proofs for the theoretical results in this paper. We will prove the

lower bound result given in Section 5.3 and then proceed to the proofs of the regret bounds

given in Section 5.5.

5.7.1 Proof of Lower Bound (Theorem 5.3.1)

In order to prove this theorem we will utilize the following change of measure lemma of

Kaufmann et al. (2016).

Lemma 5.7.1 (Kaufmann et al. (2016)). Consider two multi-armed bandit instances where

A is the set of arms, and the two different collections of reward distributions are µ = {µi :

∀i ∈ A} and µ′ = {µ′i : ∀i ∈ A}, let it be the arm played at trial t by an algorithm and Xt

be the reward at time t, and let Ft = σ(i1, X1, · · · , it, Xt) be the sigma algebra upto time t.

be unfair to those algorithms. We did explore such reductions and our algorithm easily outperformed them,
but we chose not to include the results here due to this issue of fairness. (Moreover, under the MNL model,
Saha and Gopalan (2019a) already established that MaxMinUCB outperforms those algorithms – presumably
under similar reductions – so in the end, we decided such a comparison would provide little additional value
here.)

151

Consider a FT measurable random variable Z ∈ [0, 1], then

∑
i∈A

Eµ[Ni(T)]KL(µi, µ
′
i) ≥ d(Eµ[Z],Eµ′ [Z]) ,

where Ni(T) denotes the number of pulls of arm i in T trials and KL is the Kullback-Leibler

divergence between two distributions, and d(p; q) is the Kullback-Leibler divergence between

Bernoulli distributions with parameters p and q.

In the proof of the lower bound we first bound the number of times an arm is played using

the above lemma, and then bound the total regret due to this arm. Let us first define the

regret per arm i ∈ [n] as

R(T, i) =

T∑
t=1

1[i ∈ St] · (Pi∗|St∪i∗ − Pi|St∪i∗) .

We will now provide the proof of the lower bound.

Proof of Theorem 5.3.1. Let us consider an instance P of the choice bandits problem with n

arms such that the best arm i∗ is arm 1 and i∗ beats all other arms by the largest margin,

i.e. ∆i∗i ≥ ∆ji for any i, j ∈ [n]. Given any set S such that i ∈ S, let i∗S be the item that

has the highest choice probability in S. Note that i∗S will be equal to i∗ when i∗ ∈ S. We

will assume that for each choice set S there is a unique i∗S . For any set S and i ∈ S, the

instance P also satisfies that Pi∗|S∪i∗ −Pi|S∪i∗ ≥ Pi∗S |S −Pi|S . Also, in this instance the ratio

of choice probabilities of two different arms in any choice set is bounded by a constant c > 1,

i.e. Pi|S/Pj|S ≤ c for any S ⊆ [n], |S| ≤ k, and i, j ∈ S.

For i ∈ [n] \ {1}, we will now modify this instance to create a new instance P′ where the best

arm is i. Now, in the new instance we will have that P ′i∗S |S := Pi|S and P ′i|S := Pi∗S |S and for

all j ∈ S \ {i∗S , i} we will have P ′j|S := Pj|S . Clearly, the best arm in this new instance is the

arm i as it has the highest choice probability in any choice set.

Now, given any set S, the probability distributions PS and P ′S associated with this set are

152

categorical distributions where the feedback is j with probability Pj|S and Pj′|S , respectively.

Now, let A := {S ⊆ [n] : |S| ≤ k} be the set of choice sets of size at most k. We can then

use Lemma 5.7.1 with arms corresponding to sets in A and the reward for set S being drawn

from categorical distributions PS and P ′S . We then have the following bound–

∑
S∈A

EP[NS(T)]KL(PS , P
′
S) ≥ d(EP[Z],EP′ [Z]) .

where NS(T) is the number of times set S is played in T rounds, and Z is any FT measurable

random variable. Also, let Ai = {S ∈ A \ {i} : i ∈ S} be all sets that contain i except the

singleton set {i}. Since, we have that for any S ∈ A \Ai the KL divergence KL(PS , P
′
S) = 0,

then the above bound becomes:

∑
S∈Ai

EP[NS(T)]KL(PS , P
′
S) ≥ d(EP[Z],EP′ [Z]) .

Given any set S ∈ Ai we can now calculate the KL divergence between the two categorical

distributions using the inequality KL(p, q) ≤∑x∈X
(p(x)−q(x))2

q(x) , where X is the support of

the two distributions.

KL(PS , P
′
S) ≤

∑
j∈S

(Pj|S − P ′j|S)2

P ′j|S

=
(Pi|S − P ′i|S)2

P ′i|S
+

(Pi∗S |S − P
′
i∗S |S

)2

P ′i∗S |S

=
(Pi|S − Pi∗S |S)2

Pi∗S |S
+

(Pi|S − Pi∗S |S)2

Pi|S

Now, similar to Saha and Gopalan (2019a), let Z be the fraction of times out of T the

singleton set {i} is played, i.e. Z = Ni(T)/T where Ni(T) counts the number of times set

{i} is played. We will then have

d(EP[Z],EP′ [Z]) ≥
(

1− EP[Ni(T)]

T

)
ln

T

T −EP′ [Ni(T)]
− ln 2 .

153

Since, the algorithm is strongly consistent it can only play a suboptimal arm {i} only a

sublinear number of times, i.e. EP[Ni(T)] = o(Tα) and T − EP′ [Ni(T)] = o(Tα) for some

α < 1. Hence, we have that

lim
T→∞

1

lnT
d(EP[Z],EP′ [Z]) ≥ lim

T→∞

1

lnT

(
1− o(Tα)

T

)
ln

T

o(Tα)
− ln 2 ≥ (1− α) . (5.7.1)

Combining this with the previous inequality, we have that

lim
T→∞

1

lnT

∑
S∈Ai

EP[NS(T)]

(
(Pi|S − Pi∗S |S)2

Pi∗S |S
+

(Pi|S − Pi∗S |S)2

Pi|S

)
≥ (1− α) ,

which implies

lim
T→∞

1

lnT

∑
S∈Ai

EP[NS(T)] · (Pi|S − Pi∗S |S)

(
(Pi|S − Pi∗S |S)

Pi∗S |S
+

(Pi|S − Pi∗S |S)

Pi|S

)
≥ (1− α) ,

which implies

lim
T→∞

1

lnT

∑
S∈Ai

EP[NS(T)] · 3

2
· (Pi∗|S∪i∗ − Pi|S∪i∗)

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α) ,

which follows from the properties of the underlying instance. This implies

lim
T→∞

1

lnT
E[R(T, i)] · 3

2

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α) ,

the last equation follows from the definition of regret per arm. We will now argue that

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≤ ∆i∗Si|S ·

(
(Pi∗S |S + Pi|S)

Pi∗S |S
+

(Pi∗S |S + Pi|S)

Pi|S

)

≤ ∆i∗Si|S · (c+ 3) .

154

Using this we will have that

lim
T→∞

1

lnT
E[R(T,A, i)]

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α)

=⇒ lim
T→∞

1

lnT
E[R(T,A, i)] ·∆i∗Si|S · (c+ 3) ≥ (1− α)

=⇒ lim
T→∞

1

lnT
E[R(T,A, i)] ·max

j∈[n]
∆ji · (c+ 3) ≥ (1− α)

=⇒ lim
T→∞

1

lnT
E[R(T,A, i)] ·∆i∗i · (c+ 3) ≥ (1− α)

=⇒ lim
T→∞

1

lnT
E[R(T,A, i)] ≥ (1− α)

c+ 3
· 1

∆i∗i

where ∆ji := maxS:|S|≤k,{j,i}⊆S
Pj|S−Pi|S
Pj|S+Pi|S

and the second last inequality holds because of the

property of the underlying instance. Since, we have that R(T) =
∑

i∈[n]R(T, i) we get that

lim
T→∞

1

lnT
E[R(T)] ≥ Ω

∑
i 6=i∗

1

∆i∗i

 ,

which concludes the proof of the lower bound for the general GCC class.

Now, given any MNL instance, we also derive a regret lower bound which gives the minimum

instance-wise regret any strongly-consistent algorithm for the GCC class needs to incur under

this MNL instance.

Consider an instance P with an underlying MNL model with weights v1, · · · , vn. We will

assume that all these weights are distinct for simplicity, otherwise we can add a small

perturbation to these weights to break ties. We will re-parameterize this instance, and let

wi := log vi for any i ∈ [n]. Given any set S, let wS =
∑

j∈[n]wj . We have that Pi|S = wi/wS

for any i ∈ S. Given S, we will again let i∗S to be the arm that has the highest choice

probability in S, i.e. i∗S = argmaxi∈S wi. We will denote by κ the ratio of the maximum

weight to minimum weight, i.e. κ = maxiwi/minj wj .

For i ∈ [n]\{1}, we will now modify this instance to create a new instance P′ where the GCW

155

arm is i. In the new instance, for any set S, we will have that P ′i∗S |S := Pi|S and P ′i|S := Pi∗S |S

and for all j ∈ S \{i∗S , i} we will have P ′j|S := Pj|S . Clearly, the best arm in this new instance

is the arm i as it has the highest choice probability in any choice set. It is also easy to verify

that this new instance P′ belongs to the GCC class. Note that P′ might not belong to the

MNL class. Under the instance P we have that (1 + κ)(Pi∗|S∪i∗ − Pi|S∪i∗) ≥ (Pi∗S |S − Pi|S).

Given these two instances, we can follow steps analogous to the proof of the GCC case, to

derive the following bound

lim
T→∞

1

lnT
E[R(T, i)] · (1 + κ)

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
≥ (1− α) .

We now have that

(
(Pi∗S |S − Pi|S)

Pi∗S |S
+

(Pi∗S |S − Pi|S)

Pi|S

)
=
wi∗S − wi

wi
+
wi∗S − wi
wi∗S

=
wi∗S − wi
wi∗S + wi

(
wi∗S + wi

wi
+
wi∗S + wi

wi∗S

)

≤ wi∗ − wi
wi∗ + wi

(3 + κ) = ∆MNL
i∗i (3 + κ)

Using the same steps as above we have that

lim
T→∞

1

lnT
E[R(T, i)] ≥ (1− α) · 1

∆MNL
i∗i

· 1

(3 + κ)(1 + κ)
.

Since, we have that R(T) =
∑

i∈[n]R(T, i) we get that

lim
T→∞

1

lnT
E[R(T)] = Ω

 ∑
i∈[n]\{i∗}

1

∆MNL
i∗i

 ,

which concludes the proof of the lower bound for the MNL case.

Note that the lower bound for the MNL model also implies a lower bound for the general

GCC class. However, we chose to construct an instance outside MNL for the GCC lower

156

Theorem 2

Lemma 7

Lemma 8

Lemma 4 Lemma 5Lemma 2

Lemma 6

Lemma 9

Theorem 3

Lemma 10

Concentration Lemmas

Figure 13: A flow-chart giving organization for the proof of Theorem 5.5.2 and Theorem 5.5.1

bound in order to show that such a lower bound also holds beyond the MNL. Also, note that

the lower bound in Saha and Gopalan (2019a) for MNL under MNL consistent algorithms is

worst-case while our lower bound for MNL under GCC consistent algorithms applies to all

MNL instances.

5.7.2 Proof of Upper Bound Results

In this section we will present proofs for our upper bound results. We will first define some

additional notation in Section 5.7.2.1. In Section 5.7.2.2 we prove concentration results that

will be useful in proving our regret bounds. We will then proceed to the proofs of regret

bounds in Section 5.7.2.3 and Section 5.7.2.4. Figure 13 gives an overview of the proof

structure.

5.7.2.1 Additional Notation

Let Mij(t) be the number of times i is played when j is the anchor up to trial t, i.e.

Mij(t) :=
t∑

t′=1

1[at′ = j, {i, j} ⊆ St′] . (5.7.2)

Given a trial t and arms i, j ∈ [n], let P ti|ij be the choice probability of i in sets St where j is

157

the anchor arm, averaged across t rounds, i.e.

P ti|ij :=

∑t
t′=1 Pi|St′ · 1[at′ = j, {i, j} ⊆ St′]

Mij(t)
, (5.7.3)

and let P̂ ti|ij be an empirical estimate of P ti|ij , i.e.

P̂ ti|ij :=

∑t
t′=1 1[yt′ = i] · 1[at′ = j, {i, j} ⊆ St′]

Mij(t)
. (5.7.4)

We will also define the following time-dependent gap quantity.

∆t
i∗i :=

P ti∗|ii∗ − P ti|ii∗
P ti∗|ii∗ + P ti|ii∗

.

Let us define the regret per arm i ∈ [n] for a set S as

r(S, i) = 1[i ∈ S] · (Pi∗|S∪i∗ − Pi|S∪i∗) . (5.7.5)

Finally, let us also denote by Rtij the regret up to time t incurred during times when arm j

is the anchor arm, i.e.

Rij(t) :=
t∑

t′=1

r(St′ , i) · 1[at′ = j, {i, j} ⊆ St′] . (5.7.6)

where r(St′ , i) is the instantaneous regret for arm i at time t′ defined in Equation 5.7.5. Note

that

Rii∗(t) = Mi∗i(t) · (P ti∗|ii∗ − P ti|ii∗) .

We will also define Ri|i∗(t) as the regret for arm i when arm i is the anchor and i∗ is also

played together with it, i.e.

Ri|i∗(t) :=

t∑
t′=1

r(St′ , i) · 1[at′ = i, {i, i∗} ⊆ St′] . (5.7.7)

158

Note that

Ri|i∗(t) = Mi∗i(t) · (P ti∗|i∗i − P ti|i∗i) .

5.7.2.2 Concentration Inequalities

In this section we will prove all the concentration inequalities required to prove our regret

upper bounds. These concentration inequalities are needed to bound the deviation in the

pairwise preference estimates extracted from multiway comparisons.

Lemma 5.5.1. Consider a GCC choice model with GCW i∗. Fix i ∈ [n]. Let S1, · · · , ST
be a sequence of subsets of [n] and y1, · · · , yT be a sequence of choices according to this

model, let Ft = {S1, y1, · · · , St, yt} be a filtration containing the history of execution of

the algorithm such that St+1 is a measurable function of Ft. Let P̂i∗i(t) be the empirical

probability estimate of i∗ beating i calculated according to Equation 5.4.2, then for any given

t ∈ [T] we have that

Pr(P̂i∗i(t) ≤ PGCC
i∗i − ε and Ni∗i(t) ≥ m) ≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i)·m (5.7.8)

where

PGCC
i∗i = min

S:|S|≤k,{i∗,i}⊆S

Pi∗|S

Pi∗|S + Pi|S
, (5.7.9)

and d(·, ·) is the KL-divergence between two Bernoulli distributions, andNi∗i(t) :=
∑t

t′=1 1(at′ =

i, {i∗, i} ⊆ St′ , yt′ ∈ {i∗, i}). The above bound implies the following bound

Pr(P̂i∗i(t) ≤
1

2
;Ni∗i(t) ≥ m) ≤ e−d(1

2
,PGCC
i∗i)m (5.7.10)

We also have the following bound–

Pr(P̂ii∗(t) ≥ PGCC
ii∗ + ε;Ni∗i(t) ≥ m) ≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i)·m (5.7.11)

159

where PGCC
ii∗ = 1− PGCC

i∗i .

Proof. We will first prove inequality 5.7.8. Let Z1, Z2, · · · be a sequence of i.i.d. Bernoulli

random variables with probability of success PGCC
i∗i . We will initialize a counter C to 0. Let

us consider an alternate process for generating multiway choices y′t from sets St. In this

process, given any t and a set St such that i∗, i ∈ St with at = i, we first generate a Bernoulli

random variable Xt with probability Pi∗|S +Pi|S . If Xt = 0 we sample a multinomial random

variable Yt such that Yt = j with probability Pj|S
1−Pi∗|S−Pi|S

, for j ∈ S \ {i, i∗}, and let y′t = Yt.

If Xt = 1, then we increase the counter C by 1, and sample the Bernoulli random variable

ZC with probability PGCC
i∗i . If ZC = 1 we declare i∗ as the choice, i.e. y′t = i∗, otherwise if

ZC = 0 we declare i to be the choice. Let Pi∗i|S = Pi∗|S/(Pi∗|S + Pi|S). Now, we couple the

process generating y′t and the process generating yt as follows: if y′t ∈ St \ {i} then we let

yt = y′t, otherwise if y′t = i then we let yt = i∗ with probability (Pi∗i|St − PGCC
i∗i)/(1− PGCC

i∗i)

and let yt = i with probability (1−Pi∗i|St)/(1−PGCC
i∗i). The first thing to check is that yt is

drawn from the correct probabilities Pyt|St according to the underlying choice model. We

have, for any j ∈ St \ {i∗, i}

Pr yt = j|St = PrXt = 0, Yt = j|St

= PrXt = 0|St PrYt = j|Xt = 0, St

=
(
1− Pi∗|St − Pi|St

)
·

Pj|St
1− Pi∗|St − Pi|St

= Pj|St

160

We also have that

Pr yt = i∗|St = PrXt = 1, Yt = i∗|St +
Pi∗i|St − PGCC

i∗i

1− PGCC
i∗i

· PrXt = 1, Yt = i|St

=
(
Pi∗|St + Pi|St

)
·
(
PGCC
i∗i + (1− PGCC

∗i) ·
Pi∗i|St − PGCC

i∗i

1− PGCC
i∗i

)

=
(
Pi∗|St + Pi|St

)
·
(
Pi∗i|St

)
= Pi∗|St

where the last inequality follows from definition of Pi∗i|S . The fact that Pr yt = i|St = Pi|S

follows from the fact that the choice probabilities sum to 1.

LetWi∗i(t) =
∑t

t′=1 1(at′ = i, {i∗, i} ⊆ St′ , yt′ = i∗) andW ′i∗i(t) =
∑t

t′=1 1(at′ = i, {i∗, i} ⊆

St′ , y
′
t′ = i∗). Due to the above coupling, we immediately have that Pr(Wi∗i(t)) ≥ Pr(W ′i∗i(t))

for any t ∈ [T]. Then

Pr(Wi∗i(t) ≤ r) ≤ Pr(W ′i∗i(t) ≤ r)

for any r ≥ 0, and any t ∈ [T]. Using this, we have that

Pr(P̂i∗i(t) ≤ PGCC
i∗i − ε;Ni∗i(t) ≥ m) = Pr(Wi∗i(t) ≤ Ni∗i(t) · (PGCC

i∗i − ε);Ni∗i(t) ≥ m)

≤ Pr(W ′i∗i(t) ≤ Ni∗i(t) · (PGCC
i∗i − ε);Ni∗i(t) ≥ m)

Now, using techniques similar to Saha and Gopalan (2019b), we have the following bound

Pr(
W ′i∗i(t)

Ni∗i(t)
≤ PGCC

i∗i − ε;Ni∗i(t) ≥ m) = Pr(

∑Ni∗i(t)
s=1 Zs
Ni∗i(t)

≤ PGCC
i∗i − ε;Ni∗i(t) ≥ m)

=

t∑
r=m

Pr(

∑r
s=1 Zs
r

≤ PGCC
i∗i − ε;Ni∗i(t) = r)

=

t∑
r=m

Pr(

∑r
s=1 Zs
r

≤ PGCC
i∗i − ε) Pr(Ni∗i(t) = r)

161

where the last equality holds because of the fact that Z1, Z2, · · · is an independent sequence

of random variables that do not lie in the sigma algebra of S1, · · · , St, X1, · · · , Xt. Using the

KL-divergence based concentration inequality from Garivier and Cappé (2011) we have that

Pr(

∑r
s=1 Zs
r

≤ PGCC
i∗i − ε) ≤ e−d(PGCC

i∗i −ε,P
GCC
i∗i)r .

We then have that

t∑
r=m

Pr(

∑r
s=1 Zs
r

≤ PGCC
i∗i − ε) Pr(Ni∗i(t) = r) ≤

t∑
r=m

ed(PGCC
i∗i −ε,P

GCC
i∗i)r Pr(Ni∗i(t) = r)

≤ e−d(PGCC
i∗i −ε,P

GCC
i∗i)m

The proof of reverse direction follows from a similar coupling argument followed by the above

concentration inequality.

Note that the above coupling technique has similarity to the coupling used in Saha and

Gopalan (2019b) in order to show concentration of pairwise estimates under the MNL model.

However, this argument relies on the IIA property of MNL, which does not hold under

general GCC models.

The above concentration inequality is, however, not enough to prove a tight instance-

wise bound for WBA-L and WBA-A, as it bounds the worst case probabilities PGCC
i∗i . In

order to achieve a tight instance-wise bound we will develop new instance-wise concentration

inequalities using martingale based argument. This new concentration bound is a contribution

of this paper and was not present in the conference version (Agarwal et al., 2020).

Lemma 5.7.2. Let S1, · · · , ST be a sequence of subsets of [n] and y1, · · · , yT be a sequence

of choices according to this model, let Ft = {S1, y1, · · · , St, yt} be a filtration such that St+1

162

is a measurable function of Ft. Given λ > 0, for any t ∈ [T] and any i ∈ [n], we have that

Pr(

∣∣∣∣∣ P̂ ti|ii∗

P̂ ti∗|ii∗ + P̂ ti|ii∗
−

P ti|ii∗

P ti∗|ii∗ + P ti|ii∗

∣∣∣∣∣ ≥
√

2∆t
i∗iλ

Rii∗(t)
+

2∆t
i∗iλ

3Rii∗(t)
) ≤ 4nT log(T) · e−λ + 8nT · e−λ/4 ,

(5.7.12)

where the quantities P̂ ti|ii∗ , P̂
t
i∗|ii∗ , ∆t

i∗i and Rii∗(t) are defined in Section 5.7.2.1. Moreover,

if the underlying model is MNL, then for any i ∈ [n] and t ∈ [T], we have that

Pr(

∣∣∣∣∣ P̂ ti|i∗i

P̂ ti∗|i∗i + P̂ ti|i∗i
− wi
wi + wi∗

∣∣∣∣∣ ≥
√

2∆MNL
i∗i λ

Ri|i∗(t)
+

2∆MNL
i∗i λ

3Ri|i∗(t)
) ≤ 4nT log(T) · e−λ + 8nT · e−λ/4 ,

(5.7.13)

where Ri|i∗(t) is defined in Section 5.7.2.1. Moreover, if the underlying model is MNL, for

any i, j ∈ [n] with wi∗ − wj ≤ wj − wi and any t ∈ [T] we have that

Pr(

∣∣∣∣∣ P̂ ti|ij

P̂ tj|ij + P̂ ti|ij
− wi
wi + wj

∣∣∣∣∣ ≤
√

4∆MNL
ji λ

Rij(t)
+

4∆MNL
ji λ

3Rij(t)
) ≤ 4nT log(T) · e−λ + 8nT · e−λ/4 ,

(5.7.14)

where all the quantities are again defined in Section 5.7.2.1.

Proof. Fix an arm i and anchor arm j. In order to prove this lemma we will first bound the

deviation between P̂ ti|ij and P
t
i|ij . In order to bound this deviation we define Xt to be an

indicator random variable denoting the event that arm i won in trial t when j was the anchor,

i.e. Xt := 1[yt = i, at = j, {i, j} ⊆ St]. Also, let Yt be an indicator random variable denoting

the event that i was played in trial t and j was the anchor arm, i.e. Yt := 1[at = j, {i, j} ⊆ St].

Note that Rij(t) =
∑t

t′=1 r(St′ , i) · Yt′ . We also define Zt as follows:

Zt :=

t∑
t′=1

(
Xt′ − Pi|St′ · Yt′

)
.

We can then write the deviation between P̂ ti|ij and P
t
i|ij in terms of the random variable Zt

163

as follows:

Pr
(∣∣∣P̂ ti|ij − P ti|ij∣∣∣ ≥ ε) ≤ Pr

(∣∣ t∑
t′=1

(
Xt′ − Pi|St′ · Yt′

) ∣∣ > 2Mij(t)ε
)

= Pr
(∣∣Zt∣∣ > Mij(t)ε

)
,

(5.7.15)

for any ε > 0. We will show that the random variables {Zt} form a martingale sequence with

respect to the filtration Ft−1. To see this we will calculate E[Zt|Ft−1] as follows

E[Zt|Ft−1] = E[Zt−1|Ft−1] + E
[
Xt − Pi|St · Yt

∣∣∣Ft−1

]
= Zt−1 + E

[
Xt

∣∣∣Ft−1

]
− Pi|St · Yt .

The second equality holds because Yt is a deterministic quantity given Ft−1. In the case

Yt = 0 we have that Xt = 0; in the case that Yt = 1, Xt is a Bernoulli random variable with

probability Pi|St . Hence, in both cases we have that E[Xt|Ft−1]− Pi|St · Yt = 0. This implies

that

E[Zt|Ft−1] = Zt−1 .

Hence, we have shown that the sequence Zt’s form a martingale sequence. We can now use

the Bernstein inequality for martingales (Cesa-Bianchi and Lugosi, 2006) (See Appendix) to

bound the probability in Equation 5.7.15. This inequality bounds the deviation in Zt using

information about the second moments of the sequence. Let

σ2
t :=

t∑
t′=1

E
[
(Xt′ − Pi|St′ · Yt′)

2|Ft′−1

]
.

We now calculate the value of σ2
t . Recall that if Yt = 0 then Xt = 0; and if Yt = 1 then Xt is

164

a Bernoulli random variable with probability Pi|St . We then have that

σ2
t =

t∑
t′=1

E
[
(Xt′ − Pi|St · Yt′)2|Ft′−1

]
=

t∑
t′=1

Yt′ ·Var(Xt′ |Ft′−1, Yt′ = 1) + (1− Yt′) · 0

=

t∑
t′=1

Yt′ · Pi|St(1− Pi|St) ≤Mij(t) · P ti|ij . (5.7.16)

We then have

Pr(|Zt| ≥Mij(t)ε) ≤ Pr(|Zt| ≥Mij(t)ε, σ
2
t ≤Mij(t) · P ti|ij) ,

for any ε > 0. Also, |Xt − Pi|St · Yt| ≤ 1. Using the Bernstein’s inequality for martingales,

we have that,

Pr
(
|Zt| >

√
2νλ+ 2λ/3, σ2

t ≤ ν
)
≤ 2e−λ ,

for any constants λ, ν > 0. However, the problem with our desired bound is that we want

to bound the deviation of Zt by a quantity that depends on P ti|ij and Mij(t) which are

random variables, whereas in the above inequality we need λ and ν to be constants. We

use the peeling technique (Bartlett et al. (2005)), and break down the process into different

variance classes. We will then take a union bound over all the variance classes, i.e. values of

Mij(t) · P ti|ij .

165

Let us define f(ν, λ) =
√

2νλ+ 2λ/3 for any ν, λ. We then have

Pr
(
|Zt| > f(Mij(t)P

t
i|ij , λ) , σ2

t ≤Mij(t)P
t
i|ij

)
≤
dlog(t)e∑
r=1

Pr
(t

2r
< Mij(t)P

t
i|ij ≤

t

2r−1
, |Zt| > f(αMij(t), λ) , σ2

t ≤Mij(t)P
t
i|ij

)
+ Pr

(
0 ≤Mij(t)P

t
i|ij ≤ 1 , |Zt| > f(Mij(t)P

t
i|ij , λ) , σ2

t ≤ αMij(t)
)

≤
dlog(t)e∑
r=1

Pr
(
|Zt| > f(

t

2r
, λ) , σ2

t ≤
t

2r−1

)
+ Pr

(
|Zt| > f(0, λ) , σ2

t ≤ 1
)
.

The last two inequalities are due to the union bound. We now use the Bernstein’s inequality

to bound the above as:

Pr
(
|Zt| > f(γ, λ) , σ2

t ≤ 2γ
)
≤ Pr

(
|Zt| >

√
4γλ+ 2λ/3 , σ2

t ≤ 2γ
)

≤ 2e−λ .

We also have that, for any λ ≥ 1,

Pr
(
|Zt| > f(0, λ) , σ2

t ≤ 1
)
≤ Pr

(
|Zt| > λ , σ2

t ≤ 1
)

≤ 2e
− λ2

2(1+2λ/3)

≤ 2e
− λ2

2(λ+2λ/3)

≤ 2e−
λ2

4λ ≤ e−λ/4 .

Combining this all together, we have that

Pr
(
|Zt| >

√
2Mij(t)P ti|ijλ+ 2λ/3

)
≤ 2 log(t)eλ + 4e−λ/4 .

166

Using this, we have that

Pr
(∣∣∣P̂ ti|ij − P ti|ij∣∣∣ ≥

√
2P ti|ijλ

Mij(t)
+

2λ

3Mij(t)

)
≤ 2 log(t)eλ + 4e−λ/4 . (5.7.17)

Using the same argument as above we can also show that

Pr
(∣∣∣P̂ tj|ij − P tj|ij∣∣∣ ≥

√
2P tj|ijλ

Mij(t)
+

2λ

3Mij(t)

)
≤ 2 log(t)eλ + 4e−λ/4 .

Using the above we have that

Pr(

∣∣∣∣∣ P̂ ti|ij

P̂ tj|ij + P̂ ti|ij
−

P ti|ij

P tj|ij + P ti|ij

∣∣∣∣∣ ≥
√

2λ

Mij(t) · (P tj|ij + P ti|ij)
+

2λ

3Mij(t) · (P tj|ij + P ti|ij)
)

≤ 4 log(t)eλ + 8e−λ/4 .

(5.7.18)

We will prove the first part of the lemma (Equation 5.7.12) where i∗ is the anchor arm, using

the fact that Rii∗(t) = Mii∗(t) · (P ti∗|ii∗ − P ti|ii∗) to get that

Pr(

∣∣∣∣∣ P̂ ti|ii∗

P̂ ti∗|ii∗ + P̂ ti|ii∗
−

P ti|ii∗

P ti∗|ii∗ + P ti|ii∗

∣∣∣∣∣ ≥
√√√√ 2λ(P ti∗|ii∗ − P ti|ii∗)
Rii∗(t) · (P ti∗|ii∗ + P ti|ii∗)

+
2λ(P ti∗|ii∗ − P ti|ii∗)

3Rii∗(t) · (P ti∗|ii∗ + P ti|ii∗)
)

≤ 4 log(t)eλ + 8e−λ/4 .

Using the definition of ∆t
i∗i and taking the union bound over all t and i gives us the desired

bound.

The second part of the lemma (Equation 5.7.13) under the MNL model, follows from

Equation 5.7.18, the fact that Ri|i∗(t) = Mi∗i(t) · (P ti∗|i∗i − P ti|i∗i), and the fact that

P ti∗|i∗i − P ti|i∗i
P ti∗|i∗i + P ti|i∗i

= ∆MNL
i∗i

167

We will now prove the third part of the lemma (Equation 5.7.14) under the MNL model for

i, j such that wi∗ − wj ≤ wj − wi. Under this condition we have that

Rij(t) =

t∑
t′=1

1[at′ = j, {i, j} ⊆ St′] ·
wi∗ − wi∑
a∈St′∪{i∗}

wa

≤
t∑

t′=1

1[at′ = j, {i, j} ⊆ St′] · 2 ·
wj − wi∑
a∈St′

wa
= 2Mij(t) · (P tj|ij − P ti|ij)

Using Equation 5.7.18 and the above we get that

Pr(

∣∣∣∣∣ P̂ ti|ij

P̂ tj|ij + P̂ ti|ij
− wi
wi + wj

∣∣∣∣∣ ≥
√√√√ 2λ(P tj|ij − P ti|ij)
Rij(t) · (P tj|ij + P ti|ij)

+
2λ(P tj|ij − P ti|ij)

3Rij(t) · (P tj|ij + P ti|ij)
)

≤ 4 log(t)eλ + 8e−λ/4 .

Using the definition of ∆MNL
ji and taking the union bound over all t and i, j gives us the

desired bound.

Recall that Nij(t) (defined in Equation 5.4.1) denotes the number of times (up to round t)

that either arm i or j was chosen when they are played together and arm j is the anchor, and

Mij(t) (defined in Equation 5.7.2) denotes the number of times i and j are played together

when j is the anchor up to trial t. We will now prove a relation between Nij and Mij that is

needed in the proof of our regret bounds.

Lemma 5.7.3 (Concentration of Nii∗). Let S1, · · · , ST be a sequence of subsets of [n] and

y1, · · · , yT be a sequence of choices according to this model, let Ft = {S1, y1, · · · , St, yt} be a

filtration such that St+1 is a measurable function of Ft. For any t ∈ [T] and any i ∈ [n], we

have that

Pr

(
Nii∗(t) <

(P ti∗|ii∗ + P ti|ii∗)

2
·Mii∗(t),Mii∗(t) ≥

512 log(nCT)

(P ti∗|ii∗ − P ti|ii∗) ·∆i∗i

)
≤ 1

(nT)30

168

where the quantities P̂ ti|ii∗ , P̂
t
i∗|ii∗ , ∆i∗i and Mii∗(t) are defined in Section 5.7.2.1. Moreover,

if the underlying model is MNL, then for any i, j ∈ [n] and any t ∈ [T], we have that

Pr

(
Nij(t) ≥

(P ti|ij + P tj|ij)

2
·Mij(t),Mij(t) ≥

512 log(nCT)

(P tj|ij − P ti|ij) ·∆MNL
ji

)
≤ 1

(nT)30
,

where the quantities P̂ ti|ij, P̂
t
i|ij, ∆ji and Mij(t) are defined in Section 5.7.2.1

Proof. Let us define Xt to be an indicator random variable denoting the event that either arm

i or i∗ won in trial t when i∗ was the anchor, i.e. Xt := 1[yt ∈ {i, i∗}, at = i∗, {i, i∗} ⊆ St].

Also, let Yt be an indicator random variable denoting the event that i was played in trial t

and i∗ was the anchor arm, i.e. Yt := 1[at = i∗, {i, i∗} ⊆ St]. Note that Mii∗(t) =
∑t

t′=1 Yt′

and Nii∗(t) =
∑t

t′=1Xt′ . Throughout this proof we will let P{i,i∗}|St′ := Pi|St′ + Pi∗|St′ . Let

αt := (P ti∗|ii∗ + P ti|ii∗). and βt := 512 log(nCT)
(P t
i∗|ii∗−P

t
i|ii∗)·∆i∗i

We also define Zt as follows:

Zt :=
t∑

t′=1

(
Xt′ − P{i,i∗}|St′ · Yt′

)
.

We can now write the deviation in Nii∗ in terms of the deviation in Zt as follows:

Pr
(
Nii∗(t) <

αt
2
·Mii∗(t),Mii∗(t) ≥ βt

)
= Pr

(
t∑

t′=1

Xt′ <
t∑

t′=1

P{i,i∗}|St′
2

· Yt′ ,Mii∗(t) ≥ βt
)

= Pr

(
Zt < −

t∑
t′=1

P{i,i∗}|St′
2

· Yt′ ,Mii∗(t) ≥ βt
)

≤ Pr
(
|Zt| >

αt
2
·Mii∗(t),Mii∗(t) ≥ βt

)
,

(5.7.19)

where the first equality follows from the definition of αt given above and the definition of

P ti∗|ii∗ and P
t
i|ii∗ given in Equation 5.7.3. Similar to the proof of Lemma 5.7.2, we will show

that the random variables {Zt} form a martingale sequence with respect to the filtration

169

Ft−1. To see this we will calculate E[Zt|Ft−1] as follows

E[Zt|Ft−1] = E[Zt−1|Ft−1] + E
[
Xt − P{i,i∗}|St′ · Yt

∣∣∣Ft−1

]
= Zt−1 + E

[
Xt

∣∣∣Ft−1

]
− P{i,i∗}|St′ · Yt .

The second equality holds because Yt is a deterministic quantity given Ft−1. In the case

Yt = 0 we have that Xt = 0; in the case that Yt = 1, Xt is a Bernoulli random variable

with probability P{i,i∗}|St′ . Hence, in both cases we have that E[Xt|Ft−1]−P{i,i∗}|St′ · Yt = 0.

This implies that

E[Zt|Ft−1, Yt] = Zt−1 .

Hence, we have shown that the sequence Zt’s form a martingale sequence. We can now use the

Bernstein inequality for martingales (Cesa-Bianchi and Lugosi, 2006) given in Theorem A.2.1

to bound the probability in Equation 5.7.15. This inequality bounds the deviation in Zt

using information about the second moments of the sequence. Let

σ2
t :=

t∑
t′=1

E
[
(Xt′ − P{i,i∗}|St′ · Yt′)

2|Ft′−1

]
.

We now calculate the value of σ2
t . Recall that if Yt = 0 then Xt = 0; and if Yt = 1 then Xt is

a Bernoulli random variable with probability P{i,i∗}|St′ . We then have that

σ2
t =

t∑
t′=1

E
[
(Xt′ − P{i,i∗}|St′ · Yt′)

2|Ft′−1

]
=

t∑
t′=1

Yt′ ·Var(Xt′ |Ft′−1, Yt′ = 1) + (1− Yt′) · 0

=

t∑
t′=1

Yt′ · P{i,i∗}|St′ (1− P{i,i∗}|St′) ≤ αtMii∗(t) . (5.7.20)

We then have

Pr(|Zt| > αtMii∗(t)/2,Mii∗(t) ≥ βt) ≤ Pr(|Zt| ≥ αtMii∗(t)/2, σ
2
t ≤ αtMii∗(t),Mii∗(t) ≥ βt) .

170

Also, |Xt−P{i,i∗}|St′ ·Yt| ≤ 1. Using the Bernstein’s inequality for martingales, we have that,

Pr
(
|Zt| >

√
2νλ+ 2λ/3, σ2

t ≤ ν
)
≤ 2e−λ ,

for any constants λ, ν > 0. However, the problem with our desired bound is that we want

to bound the deviation of Zt by a quantity that depends on αtMii∗(t) which is a random

variable, whereas in the above inequality we need λ and ν to be constants. We use the

peeling technique (Bartlett et al. (2005)), and break down the process into different variance

classes. We will then take a union bound over all the variance classes, i.e. values of αtMii∗(t).

Let us define f(ν, λ) =
√

2νλ+ 2λ/3 for any ν, λ. Let λ = αtMii∗(t)/16. We are interested

in the events where Mii∗(t) ≥ βt, i.e. αtMii∗(t) ≥ αtβt ≥ 512 log(nCT). This implies that

λ ≥ 32 log(nCT). We then have

Pr
(
|Zt| ≥ αtMii∗(t)/2, σ

2
t ≤ αtMii∗(t),Mii∗(t) ≥ βt

)
≤ Pr

(
|Zt| > f(αtMii∗(t), λ) , σ2

t ≤ αtMii∗(t),Mii∗(t) ≥ βt
)

≤
dlog(t)e∑
r=1

Pr
(t

2r
< αtMii∗(t) ≤

t

2r−1
, |Zt| > f(αtMii∗(t), λ), σ2

t ≤ αtMii∗(t),Mii∗(t) ≥ βt
)

≤
dlog(t)e∑
r=1

Pr
(
|Zt| > f(

t

2r
, 32 log(nCT)) , σ2

t ≤
t

2r−1

)
.

The second last inequality is due to the union bound. We now use the Bernstein’s inequality

to bound the above as:

Pr
(
|Zt| > f(γ, 32 log(nCT)) , σ2

t ≤ 2γ
)

≤ Pr
(
|Zt| >

√
128γ log(nCT) + 64 log(nCT)/3 , σ2

t ≤ 2γ
)

≤ 2e−32 log(nCT) .

171

Combining this all together, we have that

Pr
(
|Zt| >

αt
2
·Mii∗(t),Mii∗(t) ≥ βt

)
≤ 2 log T

(nCT)32
.

Using the above and applying the union bound over all arms and trails gives the desired

bound. The proof of the MNL case follows the same argument with i∗ replaced with j.

5.7.2.3 Proof of Regret Upper Bound for WBA-A (Theorem 5.5.1)

In this section we will prove the regret bound for our WBA-A algorithm given in Theorem 5.5.1.

The proof of this theorem hinges on three main lemmas given below. A flow-chart for the

proof is given in Figure 13. Before stating these lemmas, we would like to remind the reader

that the execution of our algorithm is divided in rounds and each round contain up to n

trials. The first lemma bounds the number of rounds arm i∗ is not in the active set.

Lemma 5.7.4 (Number of rounds where i∗ is not active). Fix an anchor arm a ∈ [n] \ {i∗}.

The expected number of rounds arm i∗ will not be a part of the active set is bounded as

E

[
T∑
r=1

1[i∗ 6∈ Ar]
]
≤ 2 .

The proof of this lemma is given in Section 5.7.2.5. We will define ar to be the arm

that empirically beats all other arms at the end of round r − 1 if such an arm exists, i.e.∑
j∈[n] 1[P̂jar(t) ≤ 1

2] = n− 1, where t is the last trial in round r− 1. If there is no arm that

empirically beats all other arms then we will let ar = 0. If there are multiple such arms, then

we will choose one arbitrarily. The following lemma will now bound the number of rounds

arm i∗ does not empirically beat every other arm.

Lemma 5.7.5 (Time when i∗ is not the empirically best arm). The total number of rounds

when the best arm i∗ will not be the empirically best arm, even when it is in the active set, is

172

upper bounded as

E

[
T∑
r=1

1[ar 6= i∗, i∗ ∈ Ar]
]
≤

∑
i∈[n]\{i∗}

1

exp d(1/2, PGCC
i∗i)− 1

,

where PGCC
i∗i is defined in Equation 5.5.2.

The proof of this lemma is given in Section 5.7.2.6. Note that if ar = i∗ then the anchor

arm in all the trials in that round becomes i∗. The following lemma now bounds the regret

incurred due to each suboptimal arm when played against the anchor i∗.

Lemma 5.7.6 (Regret due to a bad arm). Given an arm i ∈ [n] \ {i∗} the expected regret

incurred due to arm i when arm i∗ is the anchor is upper bounded as

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]
]
≤ 512 log(nCT)

∆i∗i
+ 13 ,

where ∆i∗i is defined in Equation 5.3.1 and r(St, i) is defined in Equation 5.7.5.

The proof of this lemma is given in Section 5.7.2.7. We will now prove Theorem 5.5.1 using

the three lemmas above.

Proof of Theorem 5.5.1. The execution of the algorithm can roughly be divided into three

intermittent phases– (1) when the GCW arm i∗ is not in the active set, (2) when i∗ is in

the active set but does not beat all other arms empirically, i.e. ar 6= i∗, (3) when i∗ is in

the active set and also beats all other arms empirically. The three lemmas above bound the

number of rounds spent in these three phases.

However, in order to prove a regret upper bound we will also have to bound the total regret

incurred due to a single round. The first thing to observe is that each arm is played at most

once in each round except a few arms that might be played multiple times due to step 6 of

the algorithm. Hence, the regret for all steps except step 6 is upper bounded by n as the

regret for each arm is at most 1. Now, in order to bound the regret for step 6, we need to

173

observe that the number of times the anchor arm is changed in a single round can be at most

log n. This is due to the fact that Ar \Q reduces by a factor of at least 2 each time a new

anchor arm is selected by the algorithm. Now, we can bound the regret incurred due to step

6 of the algorithm by k log n ≤ n log n as the regret for each arm is upper bounded by 1 and

there can be at most k arms added in step 6 per anchor arm.

Hence, we now have that

E[R(T)] ≤ n log n ·
(
E

[
T∑
r=1

1[i∗ 6∈ Ar]
]

+ E

[
T∑
r=1

1[ar 6= i∗, i∗ ∈ Ar]
])

+
∑

i∈[n]\{i∗}

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]
]

≤ n log n ·

2 +
∑

i∈[n]\{i∗}

1

exp d(1/2, PGCC
i∗i)− 1

+
∑

i∈[n]\{i∗}

(
512 log(nCT)

∆i∗i
+ 13

)

≤ n log n ·
(

2 +
n

∆2
min

)
+ 13n+

∑
i∈[n]\{i∗}

512 log(n)

∆i∗i
+

∑
i∈[n]\{i∗}

512 log(CT)

∆i∗i

= O

(
n2 log n

∆2
min

)
+O

 ∑
i∈[n]\i∗

log(TC)

∆i∗i


where the last inequality follows from the fact that exp{d(1/2, PGCC

i∗i)}−1 ≥ d(1/2, PGCC
i∗i) ≥

2(PGCC
i∗i − 1

2)2 = ∆2
min/2 which follows using the well-known Pinsker’s inequality. This gives

the desired bound under any GCC model.

Now, if the underlying GCC model is MNL, using the defintion of ∆MNL
i∗i and ∆MNL

min we easily

have

E[R(T)] ≤ O
(
n2 log n

(∆MNL
min)2

)
+O

 ∑
i∈[n]\i∗

log(TC)

∆MNL
i∗i

 .

174

5.7.2.4 Proof of Regret Upper Bound for WBA-L (Theorem 5.5.2)

In this section we will prove the regret upper bound for our WBA-L algorithm given in

Theorem 5.5.2. The proof of this theorem hinges on three main lemmas. Figure 13 gives a

flow-chart depicting the various lemmas involved in this proof. The first lemma will bound

the number of rounds where i∗ is not active.

Lemma 5.7.4 (Number of rounds where i∗ is not active). Fix an anchor arm a ∈ [n] \ {i∗}.

The expected number of rounds arm i∗ will not be a part of the active set is bounded as

E

[
T∑
r=1

1[i∗ 6∈ Ar]
]
≤ 2 .

This is the same lemma that is used in the proof of Theorem 5.5.1 and the proof of this

lemma is given in Section 5.7.2.5. We will also like to remind the reader that an anchor arm

ar is selected in each round which is a considered the candidate best arm by the algorithm.

Recall that under the MNL model there is a total ordering σ over the arms such that σi < σj

if wi < wj . Let us also define the event Eλ as follows:

Eλ :=

{∣∣∣∣∣ P̂ ti|ij

P̂ tj|ij + P̂ ti|ij
− wi
wi + wj

∣∣∣∣∣ ≤
√

4∆MNL
ji λ

Rij(t)
+

4∆MNL
ji λ

3Rij(t)

∀i, j ∈ [n] s.t. wi∗ − wj ≤ wj − wi ,

and

∣∣∣∣∣ P̂ ti|i∗i

P̂ ti|i∗i + P̂ ti∗|i∗i
− wi
wi + wi∗

∣∣∣∣∣ ≤
√

2∆MNL
i∗i λ

Rii∗(t)
+

2∆MNL
i∗i λ

3Rii∗(t)
, ∀i ∈ [n] ,

and
(
Nij(t) ≥

(P ti|ij + P tj|ij)

2
·Mij(t),Mij(t) ≥

512 log(nCT)

(P tj|ij − P ti|ij) ·∆MNL
ji

)}

We will define a mistake-free execution of WBA-L.

Definition 5.7.7 (Mistake-free execution). We say a mistake is made in the execution of

WBA-L if for some r, war < war+1 . We will say a call to WBA-L is mistake-free if it makes

175

no mistake.

The next lemma bounds the probability of an arm becoming an anchor arm.

Lemma 5.7.8 (Probability of becoming anchor). Given a set of arms [n], and MNL weights

{wi}i∈[n], let (σ1, · · · , σn) be an ordering of arms such that σi ∈ [n] is the arm at position i

and wσi ≥ wσi+1 for i ∈ [n]. Let Xi be a random variable indicating that arm σi becomes an

anchor arm for some round. If the execution of WBA is mistake-free, then we have

Pr(Xj = 1) ≤ 1

j
.

The proof of this lemma is similar to the proof of a similar bound shown in Yue et al. (2009)

for the IF algorithm and is given in Section 5.7.2.8 below. We will denote by T (r) all

the trails that belong to round r, i.e. if round r starts at trial t and ends at t′ ≥ t then

T (r) := {t, t+ 1, · · · , t′}. For t ∈ T (r) we will also denote by at the anchor arm that was

selected at the beginning of round r, and by At we will denote the set of active arms at the

beginning of round r. The last lemma bounds the regret for any given anchor arm.

Lemma 5.7.9 (Regret due to a bad arm). Given an arm i ∈ [n] \ {i∗}, the expected regret

incurred due to arm i when arm j is the anchor conditional on event Eλ for λ := 8 log(nCT),

is upper bounded as

E

[
T∑
t=1

r(St, i) · 1[at = j, i ∈ St]
∣∣∣ Eλ

]
≤ Pr(∃t ∈ [T] : at = j|Eλ) ·

(
2048 log(nCT)

∆MNL
i∗i

+ 1

)

+ E

[
T∑
t=1

1[at = j, i ∈ St, i∗ 6∈ At]
∣∣∣ Eλ

]
,

where ∆MNL
i∗i is defined in Equation 5.3.1 and r(St, i) is defined in Equation 5.7.5.

The proof of this lemma is given in Section 5.7.2.9. We are now ready to prove Theorem 5.5.2.

176

Proof. Fix λ := 8 log(nCT). We have that

E[R(T)] = Pr(Eλ) ·E [R(T)|Eλ] + (1− Pr(Eλ)) ·E [R(T)|¬Eλ] . (5.7.21)

We will now bound each of the terms in the above equation one by one. We first have

E [R(T)|¬Eλ] ≤ kT , (5.7.22)

which follows from the fact that the Rii∗(t) is upper bounded by 1 in each trial t and there

are at most T trials. Also, using Lemma 5.7.2 and Lemma 5.7.3 we can observe that the

event Eλ happens with high probability, i.e.

1− Pr(Eλ) ≤ 25

nT
. (5.7.23)

Combining the above gives a bound on the second quantity of Equation 5.7.21. Now, we

will bound the first quantity in Equation 5.7.21. Without loss of generality, assume that the

arms are ordered such that w1 > w2 ≥ w3 · · · ≥ wn. We have that

E [R(T)|Eλ] =
∑
j∈[n]

∑
i∈[n]

E

[
T∑
t=1

r(St, i) · 1[at = j, i ∈ St]
∣∣∣ Eλ

]

≤
∑
j∈[n]

∑
i∈[n]

Pr(∃t ∈ [T] : at = j|Eλ) ·
(

2048 log(nCT)

∆MNL
i∗i

+ 1

)

+
∑
j∈[n]

n ·E
[

T∑
t=1

1[at = j, i ∈ St, i∗ 6∈ At]
∣∣∣ Eλ

]

≤
∑
j∈[n]

Pr(∃t ∈ [T] : at = j|Eλ) ·

∑
i∈[n]

2048 log(nCT)

∆MNL
i∗i

+ n


+ n ·E

[
T∑
t=1

1[i ∈ St, i∗ 6∈ At]
∣∣∣ Eλ

]
,

177

where the first inequality follows due to Lemma 5.7.9. We first have that

E

[
T∑
t=1

1[i ∈ St, i∗ 6∈ At]
∣∣∣ Eλ

]
≤ 2 ,

using Lemma 5.7.4. Now, observe that given the event Eλ occurs we will have concentration

for all trials and arms, and hence, an arm which is worse than the current anchor will not be

able to replace the anchor. Hence, similar to Yue et al. (2009), this implies that the execution

of WBA-L will be mistake-free. Hence, using Lemma 5.7.8 we have that

Pr(∃t ∈ [T] : at = j|Eλ) ≤ 1

j
.

Combining the above inequalities we have that

E [R(T)|Eλ] ≤
∑
j∈[n]

1

j
·

 ∑
i∈[n]\{i∗}

2048 log(nCT)

∆MNL
i∗i

+ n

+ 2n (5.7.24)

≤ log(n)

 ∑
i∈[n]\{i∗}

2048 log(nCT)

∆MNL
i∗i

+ n

+ 2n (5.7.25)

Combining Equation 5.7.21 and Equation 5.7.25 gives the required bound.

5.7.2.5 Proof of Lemma 5.7.4

Proof. We have that

E

[
T∑
r=1

1[i∗ /∈ Ar]
]

= E

[
T∑
r=2

1[i∗ /∈ Ar]
]
≤ E

[
T∑
t=2

1[¬Ji∗(t, C)]

]
.

178

The first equality above follows due to the fact that A1 will always include i∗. Using the

union bound we have the following inequality-

1[¬Ji∗(t, C)] ≤
∑

S⊆[n]\{i∗}

∑∑
· · ·
∑

{na}∈[T]S

1[
⋂
a∈S
{Ni∗a(t) = na, P̂i∗a(t) <

1

2
} ∩

⋂
a/∈S

{P̂i∗a(t) ≥
1

2
} ∩ {¬Ji∗(t, C)}] .

Fix some set S ⊆ [n] \ {i∗}. Also, let s := |S|. Fix some na ∈ [T] for all a ∈ S. Let P̂nai∗a be

the empirical probability of i∗ beating a after being pulled together na times. We will analyze

the number of rounds that i∗ is excluded from the active set due to the above configuration

of S, {na}. The conditions Ji∗(t, C) will hold when

∑
a∈S

nad(P̂nai∗a,
1

2
) ≤ log(t) + s log(nC) =⇒ t ≥ exp

(∑
a∈S

nad(P̂nai∗a,
1

2
)− s log(nC)

)
.

Hence, we have that

∞∑
t=2

1[
⋂
a∈S
{Ni∗a(t) = na, P̂i∗a(t) <

1

2
} ∩

⋂
a/∈S

{P̂i∗a(t) ≥
1

2
} ∩ {¬Ji∗(t, C)}]

≤ exp

(∑
a∈S

nad(P̂nai∗a,
1

2
)− s log(nC)

)
.

Now, we will use the method similar to the one used in Lemma 5 of Komiyama et al. (2015b),

to bound the expectation of the above quantity. Fix xa ∈ [0, log 2] for all a ∈ S. Let

Pa(xa) = Pr
(
P̂nai∗a ≤ 1

2 , d
+(P̂nai∗a,

1
2) ≥ xa

)
, where d+(P,Q) = 1[P ≤ Q] · d(P,Q). We then

179

have

E

[
T∑
t=2

1[
⋂
a∈S
{Ni∗a(t) = na, P̂i∗a(t) <

1

2
} ∩

⋂
a/∈S

{P̂i∗a(t) ≥
1

2
} ∩ {¬Ji∗(t, C)}]

]

≤
∫
{xa}∈[0,log(2)]|S|

exp

(∑
a∈S

naxa − s log(nC)

)∏
a∈S

d(−Pa(xa))

= exp (−s log(nC)) ·
∏
a∈S

∫
xa∈[0,log(2)]

exp (naxa) d(−Pa(xa))

(due to the independence of comparisons with respect to different anchors)

= exp (−s log(nC)) ·∏
a∈S

(
[− exp(naxa)Pa(xa)]

log(2)
0 +

∫
xa∈[0,log(2)]

na exp (naxa)Pa(xa)dxa

)
(integration by parts)

≤ exp (−s log(nC)) ·∏
a∈S

(
Pa(0) +

∫
xa∈[0,log(2)]

na exp (naxa) exp−na(xa + C1(PGCC
i∗a ,

1

2
))dxa

)
(Using Lemma 5.5.1, Fact 10 in Komiyama et al. (2015b) with C1(p, q) = (p− q)2/2p(1− q))

= exp (−s log(nC)) ·∏
a∈S

(
exp−nad(

1

2
, PGCC

i∗a) +

∫
xa∈[0,log(2)]

na exp−naC1(PGCC
i∗a ,

1

2
)dxa

)

= exp (−s log(nC)) ·
∏
a∈S

(
exp−nad(

1

2
, PGCC

i∗a) + log(2)na exp−naC1(PGCC
i∗a ,

1

2
)

)
.

180

We will now take a union bound over {na}. We have that

∑∑
· · ·
∑

{na}∈[T]S

exp (−s log(nC)) ·
∏
a∈S

(
exp−nad(

1

2
, PGCC

i∗a) + log(2)na exp−naC1(PGCC
i∗a ,

1

2
)

)

= exp (−s log(nC)) ·∏
a∈S

∑
na

(
exp−nad(

1

2
, PGCC

i∗a) + log(2)na exp−naC1(PGCC
i∗a ,

1

2
)

)

≤ exp{−s log(nC)} ·
∏
a∈S

(
1

exp d(1
2 , P

GCC
i∗a)− 1

+
exp{C1(PGCC

i∗a , 1
2)}

(exp{C1(PGCC
i∗a , 1

2)} − 1)2

)

≤ exp{−s log(nC) + s log(C ′)} ,

where the constant C ′ is defined as

C ′ := max
a∈[n]\i∗

(
1

exp d(1
2 , P

GCC
i∗a)− 1

+
exp{C1(PGCC

i∗a , 1
2)}

(exp{C1(PGCC
i∗a , 1

2)} − 1)2

)
.

We will now apply the union bound over all subsets S ⊆ [n] \ i∗. Now, if the parameter C is

larger than C ′, then we have

∑
S⊆[n]\{i∗}

exp{−|S| log(nC) + |S| log(C ′)} =
n−1∑
s=1

∑
S⊆[n]\{i∗},|S|=s

exp−s log(nC) + s log(C ′)

≤
n−1∑
s=1

(en
s

)s
exp−s log(nC) + s log(C ′)

=

n−1∑
s=1

exp−s log(nC) + s log(C ′) + s log(n) + s− s log(s)

≤
n−1∑
s=1

exp s− s log(s) ≤ 2 .

5.7.2.6 Proof of Lemma 5.7.5

Proof. In the following we overload notation slightly and for a round r define Nii∗(r) and

P̂ii∗(r) to be the equal to Nii∗(t) and P̂ii∗(t), where t is the last trial in round r. We have

181

the following set of inequalities:

E

[
T∑
r=1

1[ar 6= i∗, i∗ ∈ Ar]
]

= E

[
T∑
r=1

1[∃i 6= i∗, i∗ ∈ Ar, Nii∗(r) > Nii∗(r − 1), P̂i∗i(r − 1) ≤ 1

2
]

]

≤ E

 T∑
r=1

∑
i∈[n]\i∗

1[i∗ ∈ Ar, Nii∗(r) > Nii∗(r − 1), P̂i∗i(r − 1) ≤ 1

2
]


≤ E

 T∑
r=1

∑
i∈[n]\{i∗}

T∑
ni=0

1[Nii∗(r − 1) = ni, Nii∗(r) > ni, P̂
ni
i∗i ≤

1

2
]


= E

 ∑
i∈[n]\{i∗}

T∑
r=1

T∑
ni=0

1[Nii∗(r − 1) = ni, Nii∗(r) > ni, P̂
ni
i∗i ≤

1

2
]


≤ E

 ∑
i∈[n]\{i∗}

T∑
ni=0

1[P̂nii∗i ≤
1

2
]


=

∑
i∈[n]\{i∗}

T∑
ni=0

E

[
1[P̂nii∗i ≤

1

2
]

]

=
∑

i∈[n]\{i∗}

T∑
ni=0

exp−nid(1/2, PGCC
i∗i)

(using concentration Lemma 5.5.1)

=
∑

i∈[n]\{i∗}

1

exp d(1/2, PGCC
i∗i)− 1

5.7.2.7 Proof of Lemma 5.7.6

Proof. In order to prove this lemma we will use the concentration lemmas given in Section 6.6,

specifically Lemma 5.7.2 and Lemma 5.7.3. Let us define λ := 8 log(nCT). Let us also define

182

the event Eλ as follows:

Eλ :=

{∣∣∣∣∣ P̂ ti|ii∗

P̂ ti∗|ii∗ + P̂ ti|ii∗
−

P ti|ii∗

P ti∗|ii∗ + P ti|ii∗

∣∣∣∣∣ ≤
√

2∆t
i∗iλ

Rii∗(t)
+

2∆t
i∗iλ

3Rii∗(t)
and (5.7.26)

(
Nii∗(t) ≥

(P ti∗|ii∗ + P ti|ii∗)

2
·Mii∗(t),Mii∗(t) ≥

512 log(nCT)

(P ti∗|ii∗ − P ti|ii∗) ·∆i∗i

)}
(5.7.27)

We then have that

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]
]

= E

[
T∑
t=1

Rii∗(t)

]

= Pr(Eλ) ·E
[

T∑
t=1

Rii∗(t)|Eλ
]

+ (1− Pr(Eλ)) ·E
[

T∑
t=1

Rii∗(t)|¬Eλ
]
. (5.7.28)

We will now bound each of the terms in the above equation one by one. We first have

E

[
T∑
t=1

Rii∗(t)|¬Eλ
]
≤ T , (5.7.29)

which follows from the fact that the Rii∗(t) is upper bounded by 1 in each trial t and there

are at most T trials. Also, using Lemma 5.7.2 and Lemma 5.7.3 we can observe that the

event Eλ happens with high probability, i.e.

1− Pr(Eλ) ≤ 12

T
. (5.7.30)

Combining the above gives a bound on the second quantity of Equation 5.7.28.

Let us define Rmax := 512 log(nCT)
∆i∗i

+ 1. Finally, we will argue that the expected regret Rii∗(t)

conditional on the event Eλ is upper bounded as

E

[
T∑
t=1

Rii∗(t)|Eλ
]
≤ Rmax (5.7.31)

183

Towards a contradiction, suppose that the above regret is strictly larger than Rmax for some

round s. Let t′ < s be the first round at which the regret becomes larger than or equal to

Rmax − 1. Note that Rii∗(t′) < Rmax since the regret before round t′ is strictly less than

Rmax − 1 by definition and the regret can at most increase by 1 each round. We will now

show that for any round t after t′, arm i will not be a part of the active set of arms, thereby

leading to a contradiction. To see this observe that,

√
2∆t

i∗iλ

Rmax − 1
+

2∆t
i∗iλ

3(Rmax − 1)
≤
√

∆t
i∗i ·∆i∗i

32
+

∆t
i∗i ·∆i∗i

96
≤ ∆t

i∗i

4
,

where the above inequality follows from the fact that ∆i∗i ≤ ∆t
i∗i ≤ 1. Given that the event

Eλ, we have that ∣∣∣∣∣ P̂ ti|ii∗

P̂ ti∗|ii∗ + P̂ ti|ii∗
−

P ti|ii∗

P ti∗|ii∗ + P ti|ii∗

∣∣∣∣∣ < ∆t
i∗i

4
.

Recall from Equation 5.4.2 that P̂ii∗(t) =
P̂ t
i|ii∗

P̂ t
i∗|ii∗+P̂ t

i|ii∗
and Pii∗(t) =

P t
i∗|ii∗

P t
i∗|ii∗+P t

i|ii∗
. Using the

definition of ∆t
i∗i we know that ∆t

i∗i = 2(1/2− Pii∗(t)). Using this we have that

|P̂ii∗(t)− Pii∗(t)| <
∆t
i∗i

4
=⇒ P̂ii∗(t) < Pii∗(t) +

∆t
i∗i

4
=⇒ P̂ii∗(t) <

1

2
− ∆t

i∗i

4
. (5.7.32)

Using this bound, we will now argue that the above condition is sufficient to ensure that i

will not be included in the active set At for any trials t > t′. To see this recall that in order

to include i in the active set at time t we need Ji(t, C) = 0 which is defined as:

Ji(t, C) = 1

{
∃S ⊆ [n] : Ii(t, S) ≥ |S| log(nC) + log(t)

}
,

where

Ii(t, S) =
∑
j∈S

1[P̂ij(t) ≤
1

2
] ·Nij(t) · d(P̂ij(t),

1

2
) .

Consider the set S = {i∗}. In order to show that Ji(t, C) = 1 for all t > t′ we want to show

184

that

1[P̂ii∗(t) ≤
1

2
] ·Nii∗(t) · d(P̂ii∗(t),

1

2
) ≥ log(nCT) . (5.7.33)

Using the well-known Pinsker’s inequality we have that d(P,Q) ≥ 2(P − Q)2 for any

0 ≤ P,Q ≤ 1. Combining this with Equation 5.7.32, we have that

1[P̂ii∗(t) ≤
1

2
] · d(P̂ii∗(t),

1

2
) ≥ 2(P̂ii∗(t)−

1

2
)2 >

(
∆t
i∗i

)2
8

. (5.7.34)

In order to show our desired bound we also need to lower bound the value of Nii∗(t). Using

Equation 5.7.6 we have that

Rii∗(t) = Mii∗(t) · (P ti∗|ii∗ − P ti|ii∗) ≥ Rmax − 1 =⇒ Mii∗(t) ≥
Rmax − 1

(P ti∗|ii∗ − P ti|ii∗)

Using Lemma 5.7.3 we also know that

Nii∗(t) ≥
(P ti∗|ii∗ + P ti|ii∗)

2
·Mii∗(t)

Combining this with the above we know that

Nii∗(t) ≥ (P ti∗|ii∗ + P ti|ii∗) ·
Rmax − 1

2(P ti∗|ii∗ − P ti|ii∗)
=
Rmax − 1

2∆t
i∗i

≥ 8 log(nCT)(
∆t
i∗i

)2 (5.7.35)

Combining Equations 5.7.34 and 5.7.35 we get the desired bound of Equation 5.7.33. Hence,

for any t′ > t arm i will not be the part of the active set as Ji(t, C) will be 1. This implies

that the regret cannot strictly exceed Rmax leading to a contradiction.

Combining the bound for each term in Equation 5.7.28 we get that

E

[
T∑
t=1

r(St, i) · 1[at = i∗, i ∈ St]
]
≤ 512 log(nCT)

∆i∗i
+ 1 +

12

T
· T

≤ 512 log(nCT)

∆i∗i
+ 13 .

185

5.7.2.8 Proof of Lemma 5.7.8

Proof. For this lemma, we will assume without loss of generality, that arms are indexed in

the order of decreasing weights, so that w1 > w2 ≥ w3 ≥ · · · ≥ wn, and i∗ = 1. The proof of

this lemma follows using a similar analysis as Yue et al. (2009) for the IF algorithm. The

idea is to think of the sequence of anchor arms a1, a2, a3 · · · as a random walk over a graph

over n node where node i ∈ [n] corresponds to the bandit arm i ∈ [n]. The probability of

transition from node i to node j is the probability that WBA-L choses arm j as the next

anchor when the current anchor is arm i. GCC node 1 is the absorbing node in the random

walk, and the goal is to find the absorption time to node 1 in this random walk. Given that

the execution of WBA-L is mistake-free and given the current anchor is j, the linear order

of weights under the MNL model ensures that, for i < i′ < j, the probability that arm i

becomes the next anchor is greater than equal to the probability that arm i′ becomes the

next anchor, and these probabilities can be equal in the worst case. Also, given that the

execution is mistake-free and given the current anchor is j, for i′′ ≥ j the probability that

arm i′′ becomes the next anchor is 0. Hence, given that the random walk is at node j, it

jumps to any 1, · · · , j − 1 uniformly at random. Lemma 5 in Yue et al. (2009) shows that

the probability that the random walk arrives at arm i is upper bounded 1/i. Hence, the

proof of this lemma follows from Lemma 5 in Yue et al. (2009).

5.7.2.9 Proof of Lemma 5.7.9

Proof. We need to show that

E
[
Rij(T)

∣∣∣ Eλ] ≤ Pr(∃t ∈ [T] : at = j|Eλ) ·
(

2048 log(nCT)

∆MNL
i∗i

+ 1

)
+ E

[
T∑
t=1

1[at = j, i ∈ St, i∗ 6∈ At]
∣∣∣ Eλ

]
.

In order to show the above bound we will consider three cases:

186

Case 1: wi < wj and ∆MNL
i∗j ≤ ∆MNL

ji . In this case we have that wi∗ −wj ≤ wj −wi, hence,

we will use the first condition in Eλ to show that

∣∣∣∣∣ P̂ ti|ji

P̂ ti|ji + P̂ tj|ji
− wi
wi + wj

∣∣∣∣∣ ≤
√

4∆MNL
ji λ

Rij(t)
+

4∆MNL
ji λ

3Rij(t)
.

Similar to the proof of Lemma 5.7.6 we define Rmax := 1024 log(nCT)

∆MNL
i∗i

+ 1 and show that the

regret in this case is upper bounded by Rmax. We will again prove this by contradiction

similar to the proof of Lemma 5.7.6, by assuming that there is a trail t such that the regret

exceeds Rmax. We will then have that

√
4∆MNL

ji λ

Rmax − 1
+

4∆MNL
ji λ

3(Rmax − 1)
≤

√
∆MNL
ji ·∆MNL

i∗i

64
+

∆MNL
ji ·∆MNL

i∗i

192
≤

∆MNL
ji

4
,

where the above inequality follows from the fact that ∆MNL
i∗i ≤ 2∆MNL

ji . Given the event Eλ,

we have that ∣∣∣∣∣ P̂ ti|ji

P̂ ti|ji + P̂ tj|ji
− wi
wi + wj

∣∣∣∣∣ ≤ ∆MNL
ji

4
.

We also have that

2Mij(t) · (P tj|ij − P ti|ij) =

t∑
t′=1

1[at′ = j, {i, j} ⊆ St′] · 2 ·
wj − wi∑
a∈St′

wa

≥
t∑

t′=1

1[at′ = j, {i, j} ⊆ St′] ·
wi∗ − wi∑
a∈St′∪{i∗}

wa

= Rij(t) ≥ Rmax − 1

Now, combined with Lemma 5.7.3 to show that Nij(t) ≥ 8 log(nCT)/(∆MNL
ji)2, and following

along an argument similar to Lemma 5.7.6, we can show that arm i will be eliminated on

or before trial t. Therefore, the regret cannot strictly exceed Rmax which is a contradiction.

Moreover, the regret in this case is 0 if arm j does not become the anchor. Hence, the final

regret in this case is upper bounded by P (∃t ∈ [T] : at = j|Eλ)Rmax.

187

Case 2: wi < wj and ∆MNL
i∗j > ∆MNL

ji . This condition implies that wi∗ − wj > wj − wi. In

this case we will bound the regret of arm i using the regret of arm j.

E [Rij(t)|Eλ] = E

[
t∑

t′=1

1[at′ = j, {i, j} ∈ St′]
(

wi∗ − wi∑
a∈St′∪{i∗}

wa

)∣∣∣Eλ
]

≤ E

[
t∑

t′=1

1[at′ = j, {i, j} ∈ St′]
(

2(wi∗ − wj)∑
a∈St′∪{i∗}

wa

)∣∣∣Eλ
]

≤ E

[
t∑

t′=1

1[at′ = j, {i∗, j} ∈ St′]
(

2(wi∗ − wj)∑
a∈St′∪{i∗}

wa

)∣∣∣Eλ
]

= E
[
2Rj|i∗(t)|Eλ

]
,

where the second last inequality follows from the fact that the partition of arms is random in

nature, hence the expected weight of set St′ 3 i is that same as the expected weight of set

St′ 3 i∗. We will now use the second condition in Eλ to show that

∣∣∣∣∣ P̂ tj|i∗j

P̂ tj|i∗j + P̂ ti∗|i∗j
− wj
wj + wi∗

∣∣∣∣∣ ≤
√

2∆MNL
i∗j λ

Rj|i∗(t)
+

2∆MNL
i∗j λ

3Rj|i∗(t)
.

Similar to the proof of Lemma 5.7.6 we define Rmax := 512 log(nCT)

∆MNL
i∗j

+ 1 ≤ 1024 log(nCT)

∆MNL
i∗i

+ 1

and show that the regret Rj|i∗ in this case is upper bounded by Rmax. We will again prove

this by contradiction similar to the proof of Lemma 5.7.6, by assuming that there is a trail t

such that the regret exceeds Rmax. We will then have that

√
2∆MNL

i∗j λ

Rmax − 1
+

2∆MNL
i∗j λ

3(Rmax − 1)
≤

√
∆MNL
i∗j ·∆MNL

i∗j

32
+

∆MNL
i∗j ·∆MNL

i∗j

96
≤

∆MNL
i∗j

4
,

where the above inequality follows from the fact that ∆MNL
i∗i ≤ 2∆MNL

ji . Given the event Eλ,

we have that ∣∣∣∣∣ P̂ tj|i∗j

P̂ tj|i∗j + P̂ ti∗|i∗j
− wj
wj + wi∗

∣∣∣∣∣ ≤ ∆MNL
i∗j

4
.

We also have that Rj|i∗(t) = Mi∗j(t) · (P ti∗|i∗j − P tj|i∗j). Now, combined with Lemma 5.7.3

to show that Ni∗i(t) ≥ 8 log(nCT)/(∆MNL
i∗i)2, and following along an argument similar to

188

Lemma 5.7.6, we can show that arm j will be replaced by a new anchor. Therefore, the

regret Ri|i∗ cannot strictly exceed Rmax which is a contradiction. Moreover, the regret in

this case is 0 if arm j does not become the anchor. Hence, the final regret in this case is

upper bounded by P (∃t ∈ [T] : at = j|Eλ)Rmax.

Case 3: wi ≥ wj . In this case again we will bound the regret of arm i using the regret of

arm j.

E [Rij(t)|Eλ] = E

[
t∑

t′=1

1[at′ = j, {i, j} ∈ St′]
(

wi∗ − wi∑
a∈St′∪{i∗}

wa

)∣∣∣Eλ
]

≤ E

[
t∑

t′=1

1[at′ = j, {i, j} ∈ St′]
(

wi∗ − wj∑
a∈St′∪{i∗}

wa

)∣∣∣Eλ
]

≤ E

[
t∑

t′=1

1[at′ = j, {i∗, j} ∈ St′]
(

wi∗ − wj∑
a∈St′∪{i∗}

wa

)∣∣∣Eλ
]

= E
[
Rj|i∗(t)|Eλ

]
,

where the second last inequality follows from the fact that the partition of arms is random

in nature, hence the expected weight of set St′ 3 i is that same as the expected weight of

set St′ 3 i∗. Using the argument in case 2, one can show that the final regret in this case

is upper bounded by P (∃t ∈ [T] : at = j|Eλ)Rmax. Finally, the regret due to anchor can be

bounded by the regret of any other arm that is player with the anchor.

5.8 Conclusion

We have introduced a new framework for bandit learning from choice feedback that generalizes

the dueling bandit framework. Our main result is to show that computationally efficient

learning is possible in this more general framework under a wide class of choice models that is

considerably more general than the previously studied class of MNL models. Our algorithms

for this general setting, achieve (almost) optimal regret for the GCC class of models. For the

special case k = 2, our algorithms are competitive with previous dueling bandit algorithms;

189

for k > 2, our algorithms outperform the recently proposed MaxMinUCB (MMU) algorithm

even on MNL models for which MMU was designed.

190

Chapter 6

Finding the Best Coin with Limited Adaptivity

In this chapter we start our discussion at the interface of machine learning and theoretical

computer science. We will study how to find the most biased coin from a set of coins

using parallel interactions– a problem that has applications in both machine learning and

theoretical computer science.

6.1 Introduction

6.1.1 Background

In the classical machine learning settings, the learner is a passive observer who is given a

collection of randomly sampled observations from which to learn. In recent years, there has

been growing interest in active learning models, where the learner can actively request labels

or feedback at specific data points; the hope is that, by adaptively guiding the data collection

process, learning can be accomplished with fewer observations than in the passive case. Most

learning algorithms operate in one of these settings: learning is either fully passive, or fully

active.

In an increasing number of applications, while active querying is possible, the number of

rounds of interaction with the feedback generation mechanism is limited. For example, in

crowdsourcing, one can actively request feedback by sending queries to the crowd, but there

is typically a waiting time before queries are answered; if the overall task is to be completed

within a certain time frame, this effectively limits the number of rounds of interaction.

Similarly, in marketing applications, one can actively request feedback by sending surveys to

customers, but there is typically a waiting time before survey responses are received; again,

if the marketing campaign is to be completed within a certain time frame, this effectively

limits the number of rounds of interaction.

191

In this chapter, we study active/adaptive learning with limited rounds of adaptivity, where

the learner can actively request feedback at specific data points, but can do so in only a

small number of rounds. Specifically, the learner is free to query any number of data points

in each round; however, all data points to be queried in a given round must be submitted

simultaneously, based only on feedback received in previous rounds. In this setting, we are

interested not only in bounding the overall query complexity of the learner, but rather in

understanding the tradeoff between the number of rounds and the overall query complexity:

how many queries are needed given a fixed number of rounds?

We study this question in the context of an abstract coin tossing problem, and discuss

how the results give us novel insights into the round vs. query complexity tradeoff for two

problems that have received increasing interest in the learning theory community in recent

years: multi-armed bandits, and ranking from pairwise comparisons1.

The abstract coin problem we study can be described as follows: say we are given n coins with

unknown biases, each of which can be ‘queried’ by tossing the coin and observing the outcome

of the toss. The goal is to find the k coins with highest biases. This problem is a special case

of the problem of finding the k best arms in a stochastic multi-armed bandit (MAB), and has

received considerable attention in recent years (Even-Dar et al., 2006; Kalyanakrishnan and

Stone, 2010; Audibert and Bubeck, 2010; Kalyanakrishnan et al., 2012; Gabillon et al., 2012;

Jamieson et al., 2013; Bubeck et al., 2013; Karnin et al., 2013; Chen and Li, 2015; Kaufmann

et al., 2016; Jun et al., 2016; Chen et al., 2017a). In particular, it is known that O
(n log k

∆2
k

)
coin tosses suffice to find the k most biased coins with arbitrarily high constant probability,

where ∆k is the gap between the k-th and (k + 1)-th largest biases (Kalyanakrishnan and

Stone, 2010; Even-Dar et al., 2006). It is also known that this bound is optimal in terms of

the worst-case query complexity (Kalyanakrishnan et al., 2012; Mannor and Tsitsiklis, 2004).

(see Table 4; see also Section 6.2 for the exact definition of parameters involved). However,

the previous best algorithms for this problem all required Ω(log n) rounds of adaptivity to
1In the MAB and ranking literature, the query complexity of an algorithm is often referred to as simply

its sample complexity. In this chapter we use the two terms interchangeably.

192

achieve the optimal worst-case query complexity. But are Ω(log n) rounds necessary for

achieving this optimal query complexity? In this chapter we seek to answer this question by

designing an algorithm that requires much less that log n rounds of adaptivity.

6.1.2 Our Contributions

We present an algorithm, Agressive-Elimination, that significantly improves upon the

round complexity of state-of-the-art algorithms, yet still achieves the optimal worst-case

query complexity: given the gap parameter ∆k, our algorithm returns the k most biased

coins using O
(n log k

∆2
k

)
coin tosses with arbitrarily large constant probability in only log∗ (n)

rounds of adaptivity. The algorithm proceeds in rounds and in each round performs: (i) an

“estimation” phase to approximate the bias of each coin, and (ii) an “elimination” phase to

reduce the number of possible candidates and finds the top k most biased coins among the

remaining candidates in the subsequent rounds. The elimination phase gets more “aggressive”

over the rounds: in each round, the number of remaining coins reduces to an exponentially

smaller fraction (across different rounds) of the current coins. This allows the algorithm to

find the top k most biased coins in only log∗ n rounds of adaptivity (as opposed to log n

if the fraction was constant throughout). Figure 14 gives an example of the rate at which

items are eliminated per round for Agressive-Elimination algorithm, and the log n-round

Halving algorithm (Kalyanakrishnan and Stone, 2010; Even-Dar et al., 2006). The main

insight behind our algorithm is that by removing more and more coins in the elimination

phase we can allocate more and more budget (i.e., samples for each remaining coin) to the

estimation phase which in turn results in even more decrease in the number of candidate

coins for the next round.

Finally, we address the question of round vs. query complexity tradeoff for this problem in a

more fine-grained level: For any fixed number of rounds r, we present an algorithm for the

above coin problem that uses O
(
n

∆2
k
(ilog(r)(n) + log k)

)
coin tosses. Here, ilog(r)(·) denotes

the iterated logarithm of order r. Our results provide a near-complete understanding of

the power of each additional round of adaptivity in reducing the query complexity of the

193

0 2 4 6 8 10 12 14 16

round

10
0

10
1

10
2

10
3

10
4

10
5

S
iz
e
o
f
c
a
n
d
id
a
t
e
s
e
t

Aggressive-Elimination

Halving

Figure 14: An example illustrating that our algorithm eliminates items more “aggresively” as
compared to the Halving algorithm of Kalyanakrishnan and Stone (2010); Even-Dar et al.
(2006). Here, n = 216 and k = 1.

Table 4: Summary of some results for k best arms identification in stochastic multi-armed
bandits.

Algorithm # Rounds Sample/Query
of Adaptivity Complexity

k = 1

Even-Dar et al. (2002) Θ(log(n)) O(n log(1/δ)
∆2

1
)

Audibert and Bubeck (2010) Θ(n) O
(∑n

i=1 ∆−2
i · log2(nδ)

)
Chen and Li (2015) Ω(log(n)) O

(∑n
i=1 ∆−2

i · log(
log(min{n,∆−1

i })
δ)

)

All k ∈ [n]

Kalyanakrishnan and Stone (2010) Θ(log(n)) O(n log(k/δ)
∆2

k
)

Bubeck et al. (2013) Θ(n) O
(∑n

i=1 ∆−2
i · log2(nδ)

)
This work log∗(n) O(n log(k/δ)

∆2
k

)

algorithms for this problem.

Our results for the above coin problem are also applicable to the problem of top-k ranking

from pairwise comparisons, another problem that has received considerable interest in recent

years (Feige et al., 1994; Busa-Fekete et al., 2013; Chen and Suh, 2015; Shah and Wainwright,

2015; Jang et al., 2016; Heckel et al., 2016; Davidson et al., 2014; Braverman et al., 2016a).

Most top-k ranking approaches we are aware of assume either a non-adaptive setting or a fully

adaptive setting; the main exceptions to this are Feige et al. (1994); Davidson et al. (2014);

Braverman et al. (2016a), who consider the top-k ranking problem under limited rounds

of adaptivity, but under the restricted noisy permutation model of pairwise comparisons

194

Table 5: Summary of some results on top-k ranking from pairwise comparisons.

Pairwise # Rounds Sample/Query
Comparison Model of Adaptivity Complexity

Chen and Suh (2015) Bradley-Terry-Luce Non-adaptive O
(

n log(n/δ)
(w[k]−w[k+1])2

)
Shah and Wainwright (2015) General Non-adaptive O(n log(n/δ)

∆2
k

)

Braverman et al. (2016a) Noisy Permutation 4 O
(
n log(n/δ)
(1−2p)2

)
Busa-Fekete et al. (2013), General Ω

(
∆−2
k · log(n)

)
O
(∑n

i=1 ∆−2
i · log(n

δ∆i
)
)

Heckel et al. (2016)

This work General log∗(n) O(n log(k/δ)
∆2

k
)

(defined in Section 6.4). In our work, we make no assumptions on the underlying pairwise

comparison model. Again, our results for the abstract coin problem above give us a novel

algorithm for top-k ranking from pairwise comparisons that requires only log∗(n) rounds;

to our knowledge, this is the first study of this problem under general pairwise comparison

models in the limited-adaptivity setting. See Table 5 for a summary (see also Section 6.4 for

the exact definition of parameters involved).

Our work shows that for a well-studied class of learning problems, the power of fully adaptive

exploration in minimizing worst-case query complexity is realizable by just a few rounds of

adaptive exploration. In fact, for any realistic input size for the problems considered here, our

work shows that at most 5 adaptive rounds are needed to realize optimal worst-case query

complexity. We hope that our techniques can be used for other classes of learning problems

to gain an insight into how the query complexity changes as one interpolates between the

fully passive and fully active settings.

Remark 6.1.1. Agarwal et al. (2017a) also shows that log∗(n) rounds are necessary for any

algorithm that achieves the optimal query complexity bound. This lower bound result is a

contribution of Sepehr Assadi’s thesis who was a co-author in this work.

6.1.3 Related Work

The general question of computation with limited rounds of adaptivity has been studied for

certain problems such as sorting and selection in the theoretical computer science (TCS)

195

literature under the term parallel algorithms (Valiant, 1975; Bollobás and Thomason, 1983;

Ajtai et al., 1986; Pippenger, 1987; Alon and Azar, 1988; Cole, 1988; Bollobás and Brightwell,

1990; Feige et al., 1994; Davidson et al., 2014; Braverman et al., 2016a). However, with the

exception of Feige et al. (1994); Davidson et al. (2014); Braverman et al. (2016a), these studies

all operate in a deterministic setting, where any sample yields a deterministic outcome; this

is unlike the setting we consider in our problems, where there is an underlying probabilistic

model and queries yield noisy outcomes.

We note that the coin problem studied by Karp and Kleinberg (2007) is different from ours:

there, given a ranked list of coins with unknown biases and a target bias p ∈ (0, 1), the goal

is to find the coins that have bias greater than p. In our case we do not know a ranking on

the coins. Another line of work on biased coin identification is that of Chandrasekaran and

Karp (2014); Malloy et al. (2012); Jamieson et al. (2016): there, given an infinite population

of coins, each of which is of one of two types, ‘heavy’ or ‘light’, the goal is to identify a coin

of the heavy type. In our case we have a finite population of coins, each of which can be of a

different type. Moreover, all these previous papers work in the fully adaptive setting, while

our focus is on the limited-adaptivity setting.

The problem of best arm identification in MABs has mostly been considered in a fully adaptive

setting, where the learner can observe the outcome of any arm pull before selecting the next

arm to be pulled (Even-Dar et al., 2006; Audibert and Bubeck, 2010; Kalyanakrishnan et al.,

2012; Gabillon et al., 2012; Jamieson et al., 2013; Bubeck et al., 2013; Karnin et al., 2013;

Hillel et al., 2013; Perchet et al., 2015b; Chen and Li, 2015; Kaufmann et al., 2016; Jun et al.,

2016; Chen et al., 2017a). A recent work by Jun et al. (2016) is most closely related to our

work. It considers algorithms that pull multiple arms in each round and there is a bound

on the number of arms that the algorithm is allowed to pull in each round. However, the

number of rounds required by their algorithm in the worst-case is Ω(log(n)) irrespective of

the bound on the number of pulls in each round.

The problem of top-k ranking from (noisy) pairwise comparisons has mostly been considered

196

in either the non-adaptive setting or the fully adaptive setting (Busa-Fekete et al., 2013; Chen

and Suh, 2015; Shah and Wainwright, 2015; Jang et al., 2016; Heckel et al., 2016). Feige et al.

(1994), and more recently Davidson et al. (2014); Braverman et al. (2016a), considered a

setting with limited rounds of adaptivity, but under a restricted pairwise comparison model

that we refer to as the noisy permutation model (see Section 6.4 for details). In contrast, in

this work, we make no assumptions on the underlying pairwise comparison model.

6.1.4 Notation

For any integer a ≥ 1, [a] := {1, . . . , a}. For a (multi-)set of numbers {a1, . . . , an}, we

define a[i] as the i-th largest value in this set (ties are broken arbitrarily). For any

integer r ≥ 0, ilog(r)(a) denotes the iterated logarithms of order r, i.e. ilog(r)(a) =

max
{

log
(
ilog(r−1)(a)

)
, 1
}
and ilog(0)(a) = a. Matrices and vectors are denoted in boldface,

e.g., A and b, and random variables in serif, e.g., X.

6.1.5 Organization

We start by formalizing the coin tossing abstraction we use in this paper in Section 6.2.

Section 6.3 presents our algorithm. In Section 6.4, we present our results for the ranking

problem as a corollary of the results for the most biased coins problem. We present an

extension of our results to the case of sub-Gaussian rewards in Section 6.5. We conclude in

Section 6.6.

6.2 Finding the k Most Biased Coins / k Best Arms

Here, we present our main results on finding the k most biased coins using coin tosses with a

limited number of rounds of adaptivity. We give an algorithm for this problem in Section 6.3

that achieves an optimal worst-case tradeoff between round and query complexity. The coin

problem is equivalent to the problem of the k best arms identification problem in MABs with

Bernoulli reward distributions. Our results also extend to the more general case of MABs

with sub-Guassian reward distributions (see Section 6.5).

The specific problem we consider can be stated formally as follows: given n coins with

197

unknown biases p1, . . . , pn, and an integer k ∈ [n], the goal is to identify (via tosses of the

n coins) the set of k most biased coins. An important parameter in determining the query

complexity of this problem is the gap parameter ∆k := p[k] − p[k+1], i.e. the gap between the

k-th and (k + 1)-th highest biases (recall that p[i] denotes the bias of the i-th most biased

coin). We also define ∆i = max{
∣∣p[i] − p[k+1]

∣∣ , ∣∣p[i] − p[k]

∣∣}. We will assume throughout that

the set of k most biased coins is unique, i.e. that ∆k > 0; we will also assume our algorithm

is given a lower bound ∆ on the gap parameter (∆k ≥ ∆ > 0).2

We are interested here in algorithms that require limited rounds of adaptivity. In each

round, an algorithm can decide to query various coins by tossing them (with no limit on

the number of coins that can be tossed in a round or on the number of times any given coin

can be tossed in a round); however, all tosses to be conducted in a given round must be

chosen simultaneously, based only on the outcomes observed in previous rounds. We say an

algorithm is an r-round algorithm if it uses at most r rounds of adaptivity; the total number

of coin tosses it uses is termed its query complexity. For any δ ∈ [0, 1), we say an algorithm

is a δ-error algorithm for the above problem if it correctly returns the set of k most biased

coins with probability at least 1− δ.

6.3 A Limited-Adaptivity Algorithm for Finding the k Most

Biased Coins

Our main algorithmic result is the following:

Theorem 6.3.1. There exists an algorithm that given an integer k ∈ [n], a set of n coins with

gap parameter ∆k ∈ (0, 1), target number of rounds r ≥ 1, and confidence parameter δ ∈ [0, 1),

finds the set of k most biased coins w.p. ≥ 1− δ using O
(
n

∆2
k
·
(
ilog(r)(n) + log (k/δ)

))
coin

tosses and r rounds of adaptivity.
2We point out that the assumption that ∆k > 0 is only for simplicity of exposition; by picking ∆k to be

the gap between the bias of the k-th most biased coin and the next largest distinct bias value, our algorithm
works as it is. The assumption about knowledge of ∆ is also common in the MAB and ranking literature; see,
e.g., (Even-Dar et al., 2006; Kalyanakrishnan and Stone, 2010; Chen and Suh, 2015; Shah and Wainwright,
2015).

198

We also point out that by setting r = log∗ (n) in Theorem 6.3.1, we can achieve the optimal

worst-case query complexity (Kalyanakrishnan et al., 2012; Mannor and Tsitsiklis, 2004) in a

significantly smaller number of rounds of adaptivity than previous work.

Corollary 6.3.2. There exists an algorithm that given an integer k ∈ [n], a set of n coins

with gap parameter ∆k ∈ (0, 1), and confidence parameter δ ∈ [0, 1), finds the set of k most

biased coins w.p. ≥ 1 − δ using O
(
n

∆2
k
· log (k/δ)

)
coin tosses and only log∗ (n) rounds of

adaptivity.

6.3.1 Algorithm

We design a recursive algorithm, which we term as Agressive-Elimination, for proving

Theorem 6.3.1. The pseudo-code is given in Algorithm 9. It takes as input a set S ⊆ [n]

of m ≥ k candidate coins for the top k coins and a parameter r denoting the number of

rounds of adaptivity the algorithm can use. In addition, the algorithm is given the confidence

parameter δ ∈ (0, 1) and a lower bound on the gap parameter ∆ ≤ ∆k. Given this input,

Algorithm 9 essentially does the following:

1. Estimation phase: Toss each coin O
(

1
∆2 ·

(
ilog(r)(m) + log (k/δ)

))
many times

and estimate the bias of each coin.

2. Elimination phase: Let S′ be the set of O(m
ilog(r−1)(m)

) coins with the largest

estimated biases. Recursively solve the problem for the set S′ in the remaining r − 1

rounds.

We point out that the estimation phase of the algorithm is allowed to be erroneous, i.e. there

might be large deviations between the estimated biases and the true biases for a relatively

large fraction of coins. The elimination phase is then designed to be robust to such errors by

selecting a suitably large subset for the next round. As rounds progress, the set of candidates

for k most biased coins shrinks more and more such that in the last round, the algorithm

can estimate the bias of each candidate with high confidence and return the k most biased

coins. We should also point that in any round, if the input set S becomes too small, i.e. is of

199

Algorithm 9 Agressive-Elimination(Sr, k, r, δ,∆)

1: Input: set Sr ⊆ [n] of coins, number of desired top items k, number of rounds r,
confidence parameter δ ∈ (0, 1), and lower bound on gap parameter ∆ ≤ ∆k

2: Let m = mr = |Sr| and tr := 2
∆2 ·

(
ilog(r)(m) + log (8k/δ)

)
.

3: Toss each coin i ∈ Sr for tr times.
4: For each i ∈ Sr, define p̂i as the fraction of times coin i turns up heads.
5: Sort the coins in Sr in a decreasing order of p̂-values.
6: if r = 1 then
7: Return: the set of k most biased coins (according to p̂-values).
8: else
9: Let mr−1 := k+ m

ilog(r−1)(m)
and Sr−1 be the set of mr−1 most biased coins according

to p̂.
10: end if
11: if mr−1 ≤ 2k then
12: Return: Agressive-Elimination(Sr−1, k, 1, δ/2,∆).
13: else
14: Return: Agressive-Elimination(Sr−1, k, r − 1, δ/2,∆).
15: end if

size O(k), then Algorithm 9 bypasses the subsequent rounds and simply runs the 1-round

algorithm on this set to recover the answer.

6.3.2 Analysis

We present the proof of Theorem 6.3.1 in detail in this section. Throughout this section, for

any algorithm A, cost(A) denotes the query complexity of A and deg(A) denotes the degree

of adaptivity it uses, i.e., its round complexity. We start by providing a high level overview

of the proof.

Overview: To illustrate the main ideas behind our algorithm, we focus on the case that

k = 1. Consider the following type of input for best k coins problem: there exists a single

heavy coin and n− 1 light coins with the gap of ∆ between the bias of the heavy coin and

any light coin. It follows from a simple application of the Hoeffding’s bound that for any

δ ∈ (0, 1), O(log (1/δ)/∆2) coin tosses are sufficient to distinguish whether a single coin is

heavy or not with probability 1− δ. We can now use this simple observation to design an

r-round algorithm for each number of rounds r.

200

The case of r = 1 is quite simple: simply set δ = Θ(1
n) and a union bound ensures that

with some constant probability, every coin is distinguished correctly, which allows us to

output the heavy coin correctly. Now consider the case when r = 2. Here, the limited

budget for 2-round algorithms in Theorem 6.3.1 does not allow us to distinguish every

coin correctly in the first round of coin tossing. Instead, we make the following simple yet

crucial observation: it is enough for us to only classify the heavy coin and a large fraction of

light coins correctly in the first round. Indeed by setting the parameter δ = Θ(1
logn) (i.e.,

performing O(n log log n/∆2) coin tosses in the first round), we can reduce the set of possible

choices for the heavy coin to roughly n/ log n coins. But then our budget allows us to run

the previous 1-round algorithm in the second round on this smaller set of coins to find the

heavy coin. This results in the total number of coins tosses being O(n log logn/∆2) (in the

first round) plus O
(
(n/ log n) · log (n/ log n)/∆2

)
= O(n/∆2) (in the second run), which

matches the bounds for the r = 2 case in Theorem 6.3.1.

This discussion leads us to the following generic r-round algorithm: perform a number of

coin tosses in the first round to recover a sufficiently smaller set that almost surely contains

the heavy coin; recursively solve the problem on the remaining coins using the (r − 1)-round

version of the algorithm in the subsequent rounds. Here, “sufficiently smaller set” should be

chosen such that the query complexity of an (r− 1)-round algorithm on this set is within the

budget of the r-round algorithm (over the original set of coins). Exploiting this approach to

its fullest allows us to design our r-round algorithm for any number of rounds r and prove

Theorem 6.3.1.

We now provide a more formal proof for the theorem by proving Lemma 6.3.3 and then

providing a bound on the number of coin tosses that our algorithm makes in Lemma 6.3.5.

Lemma 6.3.3. Suppose S is any subset of coins [n] with size m and gap parameter ∆ ≤ ∆k

such that [k] ⊆ S. For any number of rounds 1 ≤ r ≤ log∗ (m) − 3 and any confidence

parameter δ ∈ (0, 1), Algorithm 9 returns the set of k most biased coins w.p. at least 1− δ.

201

Before proving Lemma 6.3.3, we need the following simple claim. In the remainder of this

section, we fix ε := ∆/2.

Claim 6.3.4. For any round r ≥ 1, and any coin i ∈ Sr,

Pr (|p̂i − pi| ≥ ε) ≤
δ

4k · ilog(r−1)(m)
.

Proof. By Hoeffding’s inequality, we have,

Pr (|p̂i − pi| ≥ ε) ≤ 2 exp
(
−2ε2 · tr

)
≤ 2 exp

(
−
(
ilog(r)(m) + log(8k/δ)

))
≤ δ

4k · ilog(r−1)(m)

as ilog(r)(m) = log ilog(r−1)(m).

In the following, for any integer r ≥ 1, we use Ar to denote Algorithm 9 with r number of

rounds. We now prove Lemma 6.3.3.

Proof. (of Lemma 6.3.3.)

The proof is by induction on the number of rounds r.

Base case: The base case follows immediately from Claim 6.3.4. Indeed for r = 1,

Claim 6.3.4 ensures that for any i ∈ S1,

Pr (|p̂i − pi| ≥ ε) ≤
δ

4k · ilog(0)(m1)
≤ δ

m1

as ilog(r−1)(m1) = m1 by definition. By taking a union bound over all m1 coins, we obtain

that w.p. 1 − δ, simultaneously for all coins i ∈ S1, |p̂i − pi| < ε. This implies that w.p.

202

1− δ,

∀i ∈ [k] p̂i > pi − ε = pi −∆/2 ≥ pk −∆/2

∀j ∈ S1 \ [k] p̂j < pj + ε ≤ pj + ∆/2 ≤ pk+1 + ∆/2

As ∆ ≤ pk − pk+1, we obtain that the returned set of k most biased coins according to

p̂-values is the correct answer, finalizing the proof of the base case.

Induction step: Suppose the lemma is true for all number of rounds smaller than r ≤

log∗ (m)− 3 and we prove it for the case of r rounds, i.e., for Ar. In particular, we need to

show that Ar returns the set of k most biased coins with probability at least 1− δ.

Let I = {i ∈ [k] : p̂i < pi − ε} and J = {j ∈ Sr\[k] : p̂j > pj+ε}. We know that for all i ∈ [k]

and j ∈ Sr \ [k], pi − pj ≥ 2ε. As the algorithm identifies a set of mr−1 = k + mr
ilog(r−1)(mr)

coins with the highest estimated biases (according to p̂) to recurse upon, we have,

Pr (Ar errs) ≤ Pr (|I| > 0) + Pr

(
|J | > mr

ilog(r−1)(mr)

)
+ Pr (Ar−1 errs | E) (6.3.1)

where E denotes the event that |I| = 0 and |J | ≤ mr
ilog(r−1)(mr)

, i.e., the complement of the

first two events above.

In the following, we bound probability of each event above. We first have,

Pr (|I| > 0) ≤
∑
i∈[k]

Pr (p̂i < pi − ε) ≤Claim 6.3.4 k ·
δ

4k · ilog(r−1)(mr)
≤ δ

4
(6.3.2)

where the last inequality is true because ilog(r−1)(mr) ≥ 1.

We next bound the probability that |J | > mr
ilog(r−1)(mr)

. For all j ∈ Sr \ [k], we define an

indicator random variable Yj which is 1 iff p̂j > pj + ε. We further define Y :=
∑

j Yj . We

have,

203

E [Y] =
∑
j

E [Yj] =
∑
j

Pr (p̂j > pj + ε) ≤Claim 6.3.4
∑
j

δ

4k · ilog(r−1)(mr)
≤ δ ·mr

4 · ilog(r−1)(mr)

Notice that Y = |J |; hence,

Pr

(
|J | > mr

ilog(r−1)(mr)

)
≤ Pr

(
Y >

4

δ
· E [Y]

)
≤ δ

4
(6.3.3)

where the last inequality is by Markov bound.

Finally, we calculate the probability of error of Ar−1 conditioned on that none of the two

events above happens (i.e., the event E). In that case, we have [k] ⊆ Sr−1 and that ∆ ≤ ∆k.

As r ≤ log∗ (mr) − 3 (by the lemma statement), we have r − 1 ≤ (log∗ (mr)− 1) − 3 ≤

log∗ (logmr)− 3 ≤ log∗ (mr−1)− 3. Therefore, the input to Ar−1 satisfies the assumptions

in the lemma statement as well and since the confidence parameter for Ar−1 is δ/2, we

obtain that Pr (Ar−1 errs | E) ≤ δ/2. By plugging in this bound, together with Eq (6.3.2)

and Eq (6.3.3) to Eq (6.3.1), we obtain that Ar is also a δ-error algorithm, finalizing the

proof of induction step.

Next, we prove an upper bound on the query complexity of Ar for any r ≥ 1.

Lemma 6.3.5. Suppose the input to Algorithm 9 satisfies the assumptions in Lemma 6.3.3;

then Algorithm 9 makes at most 10m
∆2 ·

(
ilog(r)(m) + log (8k/δ)

)
many coin tosses.

Proof. The proof is again by induction on the number of rounds r. The base case of r = 1 is

trivially true. Now suppose the bounds are true for all integers smaller than r ≤ log∗ (m)− 3

and we prove the lemma for the case of r rounds, i.e., for Ar. Note that the total number of

coin tosses in Ar is the sum of coins tosses in step 3 (which is m · tr) and the coins tosses

in the recursive call which we bound bellow. For the recursive call there are two cases to

consider depending on which of step 12 (Case 1) or step 14 (Case 2) in Algorithm 9 is being

204

executed.

Case 1: In this case A1 is called with the confidence parameter δ/2 on at most 2k coins.

We do not use the induction hypothesis here and instead argue directly that,

cost(Ar) = m · tr + cost(A1)

≤ m · tr +
4k

∆2
· (log (2k) + log (16k/δ))

≤ m · tr +
8k

∆2
· log (8k/δ)

≤ m · tr +
8m

∆2
· log (8k/δ) (as k ≤ m)

=
2m

∆2
·
(
ilog(r)(m) + log (8k/δ)

)
+

8m

∆2
· log (8k/δ)

(by plugging in the value of tr)

<
10m

∆2
·
(
ilog(r)(m) + log (8k/δ)

)

which proves the induction step in this case.

Case 2: In this case, Ar−1 is called with the confidence parameter δ/2 on at most 2m
ilog(r−1)(m)

coins. Hence, by induction, the total number of coin tosses made in recursive calls is

cost(Ar) = m · tr + cost(Ar−1)

≤ m · tr +
20m

∆2 · ilog(r−1)(m)
·
(
ilog(r−1)(2m) + log (16k/δ)

)
≤ m · tr +

20m

∆2 · ilog(r−1)(m)
·
(
ilog(r−1)(m) + 1 + log (8k/δ) + 1

)
< m · tr +

20m

∆2
+

22m · log (8k/δ)

∆2 · ilog(r−1)(m)

<
2m

∆2
·
(
ilog(r)(m) + log (8k/δ)

)
+

8m · ilog(r)(m)

∆2
+

8m · log (8k/δ)

∆2

where in the last inequality we used the bound on tr plus the fact that ilog(r)(m) ≥ 16 as

r ≤ log∗ (m)− 3. This concludes the proof of Lemma 6.3.5.

Theorem 6.3.1 now follows immediately from Lemma 6.3.3 and Lemma 6.3.5.

205

6.4 Top-k Ranking from Pairwise Comparisons

The problem of ranking from pairwise comparisons arises in many applications including

sports rankings, recommender systems, crowdsourcing and others, and has received increasing

attention in recent years (Gleich and Lim, 2011; Jamieson and Nowak, 2011; Negahban et al.,

2012; Busa-Fekete et al., 2013; Rajkumar and Agarwal, 2014; Chen and Suh, 2015; Shah

and Wainwright, 2015; Jang et al., 2016; Heckel et al., 2016; Braverman et al., 2016a). Here

there are n items, and an unknown preference matrix P ∈ [0, 1]n×n satisfying Pij + Pji = 1

for all i, j ∈ [n], such that whenever items i and j are compared, item i beats item j with

probability Pij and j beats i with probability Pji = 1 − Pij . Previous studies have often

made strong assumptions on the preference matrix P; here we consider a very general setting

where we make no assumptions on P.

We are interested in the problem of identifying the top-k items according to the Borda score,

which for item i is defined as the probability that i beats another item j drawn uniformly at

random:

τi =
1

n− 1

∑
j 6=i

Pij .

Ranking according to Borda scores is very natural and encompasses several special cases. For

example, Chen and Suh (2015) and Jang et al. (2016) assume P follows a Bradley-Terry-Luce

(BTL) model, under which there is a ‘score’ vector w ∈ Rn++ such that Pij = wi
wi+wj

∀i, j,

and seek to identify the top-k items according to the scores wi; it can be verified that for

such P, ranking by Borda scores is equivalent to ranking by the scores wi. Feige et al. (1994);

Braverman et al. (2016a) assume P follows a noisy permutation model3, under which there

is a permutation σ ∈ Sn and noise parameter p ∈ [0, 1
2) such that Pij = 1− p if σ(i) < σ(j)

and Pij = p otherwise, and seek to identify the top-k items according to σ; again, it can be

verified that for such P, ranking by Borda scores is equivalent to ranking according to σ. Here

we make no such assumptions on P. The general problem of top-k ranking from pairwise
3The results of Feige et al. (1994); Braverman et al. (2016a) can be further extended to a slightly more

general model where P is such that there is a permutation σ ∈ Sn and noise parameter p ∈ [0, 1
2
) such that

Pij ≥ 1− p if σ(i) < σ(j) and Pij ≤ p otherwise.

206

comparisons under Borda scores has been considered recently by Busa-Fekete et al. (2013),

Shah and Wainwright (2015) and Heckel et al. (2016); however, these studies are either in

the non-adaptive setting (where pairwise comparisons are observed for randomly drawn item

pairs) or in the fully adaptive setting (where one can actively query pairs to be compared

with no limit on the number of rounds of adaptivity). Here we consider the limited-adaptivity

setting, and show that our results for the coin problem studied in Section 6.2 also yield an

optimal algorithm and corresponding lower bound for top-k ranking in this setting.

In order to apply the algorithm of Section 6.2 to the top-k ranking problem, observe that

we can view each item i as a coin with bias pi equal to its Borda score τi. In order to toss

coin i, we simply select another item j ∈ [n] \ {i} uniformly at random, and compare i

and j; clearly, this results in a win for item i (heads outcome) with probability τi. Thus,

the Agressive-Elimination algorithm from Section 6.2 applies directly, with O(n
∆2
k

log k)

pairwise comparisons and log∗ (n) rounds of adaptivity. Thus we require fewer comparisons

than in the passive setting, and fewer rounds of adaptivity than the previous active algorithms

of Busa-Fekete et al. (2013) and Heckel et al. (2016) (see Table 5).

6.5 Extension to Sub-Gaussian Rewards

In this section we discuss the problem of best arms identification in multi-armed bandits

with sub-gaussian reward distributions defined as:

Definition 6.5.1. (Sub-Gaussian Distributions) For any b > 0, we say a distribution D on

R is b-sub-gaussian if for the random variable X drawn from D and any t ∈ R, we have that

E [exp(t · X− tE[X])] ≤ exp(b2 · t2/2) .

The Bernoulli distribution is a special case of the 1-sub-Gaussian distribution. Any distribu-

tion with support in [0, b] is a b-sub-Gaussian distribution. The b-sub-Gaussian family also

contains many unbounded distributions such as the Gaussian distribution. We next give a

207

version of Hoeffding’s inequality for b-sub-Gaussian distributions.

Lemma 6.5.2. (Hoeffding’s inequality) Let X1, . . . ,Xm be an i.i.d. sequence of random

variables drawn from a b-sub-Gaussian distribution D with µ = EX∼D[X]. Then for any ε > 0,

we have

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ
∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−mε

2

2b2

)

We are given n arms, and the reward that we get on pulling each arm is a b-sub-Gaussian

random variable with unknown mean. Let µi be the mean reward of arm i ∈ [n]. We define

the problem of k best arms identification as: given arms [n] with (unknown) mean rewards

{µi}ni=1, a parameter k ∈ [n], the goal is to identify a set of k best arms in terms of mean

rewards. We will assume that the set of k best arms is unique.

For any 0 < δ < 1, a δ-error algorithm A for solving this problem is allowed to pull the arms

in [n] and based on the outcomes of these pulls, return a set of arms which is the set of top-k

arms w.p. at least 1− δ.

We now define the gap parameter for an instance of this problem in terms of the differences

in mean rewards. For any i ∈ [n], let,

∆i =


µ[i] − µ[k+1] if i ≤ k

µ[k] − µ[i] otherwise
.

The gap parameter is then ∆k, which is the difference between the mean rewards of k-th

and (k + 1)-th best arms.

We consider algorithms that in each round chooses a multi-set of arms to pull. The choice of

this multi-set is adaptive, i.e. it is dependent on the history of rewards in previous rounds.

Following the coin tossing problem, we denote by deg(A) the round complexity of algorithm

208

A, and by cost(A) the total number of arms pulled. We are interested in algorithms for

solving this problem which have low round complexity. In particular, given a parameter r we

are interested in δ-error algorithms A which have deg(A) ≤ r.

We now show that Algorithm 9 can be extended to solve the problem of best-arms identification

in multi-armed bandits when the reward distribution is sub-Gaussian. We prove the following

theorem:

Theorem 6.5.3. There exists an algorithm that given any number of rounds r ≥ 1, integer

k ≥ 1, n arms with b-sub-Gaussian rewards with b > 0, and the gap parameter ∆k ∈ (0, 1),

and confidence parameter δ ∈ (0, 1), finds the set of the k best arms w.p. 1− δ in r rounds

with O
(
b2n
∆2
k
·
(
ilog(r)(n) + log (k/δ)

))
pulls.

To prove the above theorem, the only change required in Algorithm 9 is that the number

of pulls in each round also depends on the parameter b of the sub-Gaussian distribution.

Specifically, we set

tr :=
8b2

∆2
·
(
ilog(r)(m) + log (8k/δ)

)
,

in step 2 of Algorithm 9, while all the other steps remain the same. We first prove a claim

on the estimation of rewards of sub-Gaussian rewards. This is similar to Claim 6.3.4 for the

coin problem and we define ε in the same way as done in the proof of Theorem 6.3.1.

Claim 6.5.4. For any round r ≥ 1, and any arm i ∈ Sr, Pr (|µ̂i − µi| ≥ ε) ≤ δ
4k·ilog(r−1)(m)

.

Proof. By Hoeffding’s inequality for b sub-Gaussians Lemma 6.5.2, we have,

Pr (|µ̂i − µi| ≥ ε) ≤ 2 exp

(
−ε

2 · tr
2b2

)
≤ 2 exp

(
−
(
ilog(r)(m) + log(8k/δ)

))
≤ δ

4k · ilog(r−1)(m)

209

as ilog(r)(m) = log ilog(r−1)(m).

The rest of the proof is exactly the same as the proof of Theorem 6.3.1. The lower bound

follows from the fact that Bernoulli distributions are a special case of the 1-sub-Gaussian

distributions.

6.6 Conclusion

We considered the question of learning with limited rounds of adaptivity in the context of

several learning problems: the k most biased coins problem, the closely related k best arms

identification problem in stochastic multi-armed bandits (MABs), and top-k ranking from

pairwise comparisons. We developed an algorithm which applies to all these problems, and

that achieves the optimal worst-case query complexity for these problems in just log∗(n)

rounds of adaptivity, in contrast with previous results which require Ω(log n) rounds.

In recent years, there also has been much interest in the MAB literature (and increasingly,

in the ranking literature) in adaptive algorithms whose query complexity depends not only

on the gap ∆k between the k-th and (k + 1)-th best items, but also on the gaps of other

items (see Tables 4–5). The optimal query complexity as a function of these parameters,

referred to as instance-wise optimality, is not yet fully understood despite significant progress

in recent years; see, e.g., (Chen and Li, 2015; Chen et al., 2017a) and references therein. The

round complexity of the state-of-the-art algorithms (Karnin et al., 2013; Jamieson et al.,

2013; Chen and Li, 2015) for this setting has at least a logarithmic dependence on n, as

they call the log(n)-round Halving algorithm of Even-Dar et al. (2006) as a subroutine. It

is possible to reduce the round complexity of these algorithms to have a log∗ dependence

on n by using an (ε, δ)-PAC version4 of our algorithm as a subroutine instead of Halving.

The round complexity of these algorithms also depends on the gaps ∆i’s, and it is not clear

whether the dependence on these ∆i’s is necessary. Closing this gap remains an interesting

open question; its resolution would further enhance our understanding of the role of the
4Here, the goal is to return a set of k coins whose biases are at least p[k] − ε with probability ≥ 1− δ, for

some parameters ε, δ. Our algorithm can be easily extended to this (ε, δ)-PAC setting.

210

degree of adaptivity in designing learning algorithms.

211

Chapter 7

Stochastic Submodular Cover with Limited Adaptiv-

ity

In this chapter we continue our discussion at the interface of machine learning and theoretical

computer science, and study limited adaptivity for the problem of stochastic submodular

cover which has received a lot of interest in both communities.

7.1 Introduction

7.1.1 Background

Submodular functions naturally arise in many applications domains including algorithmic

game theory, machine learning, and social choice theory, and have been extensively studied in

combinatorial optimization. Many computational problems can be modeled as the submodular

cover problem where we are given a non-negative monotone submodular function f over a

ground set E, and the goal is to choose a smallest subset S ⊆ E such that f(S) = Q where

Q = f(E). A well-studied special case is the set cover problem where the function f is the

coverage function and the items correspond to subsets of an underlying universe. Even this

special case is known to be NP-hard to approximate to a factor better than Ω(logQ) (Dinur

and Steurer, 2014; Feige, 1998; Lund and Yannakakis, 1994; Moshkovitz, 2015), and on the

other hand, the classic paper of Wolsey (Wolsey, 1982) shows that the problem admits a

poly-time O(logQ)-approximation for any integer-valued monotone submodular function.

In this chapter we consider the stochastic version of the problem that naturally arises when

there is uncertainty about items. For instance, in stochastic influence spread in networks, the

set of nodes that can be influenced by any particular node is a random variable whose value

depends on the realized state of the influencing node (e.g. being successfully activated). In

sensor placement problems, each sensor can fail partially or entirely with certain probability

212

and the coverage of a sensor depends on whether the sensor failed or not. In data acquisition

for machine learning (ML) tasks, each data point is apriori a random variable that can take

different values, and one may wish to build a dataset representing a diverse set of values.

For example, if one wants to build a ML model for identifying a new disease from gene

patterns, one would start by building a database of gene patterns associated to that disease.

In this case, each person’s gene pattern is a random variable that can realize to different

values depending on the race, gender, etc. For other examples, we refer the reader to Liu

et al. (2008) (application in databases) and Anagnostopoulos et al. (2015) (application in

document retrieval).

In the stochastic submodular cover problem, we are given m stochastic items which are

different random variables that independently realize to an element of E, and the goal is

to find a lowest cost set of stochastic items whose realization R satisfies f(R) = Q. In

network influence spread problems each item corresponds to a node in the network, and its

realization corresponds to the set of nodes it can influence. In sensor placement problems an

item corresponds to a sensor and its realization corresponds to the area that it covers upon

being deployed. In the case of data acquisition, an item corresponds to a data point and its

realization corresponds to the value it takes upon being queried. The problem captures as a

special case the stochastic set cover problem and more generally, stochastic covering integer

programs.

In stochastic optimization, a powerful computational resource is adaptivity. An adaptive

algorithm for stochastic submodular cover chooses an item to realize and based on its

realization, decides which item to realize next. A non-adaptive algorithm on the other

hand needs to choose a permutation of items and realize them in the order specified by the

permutation until the function value reaches Q. The cost of the algorithm in both cases

is the number (or costs) of items realized by the algorithm. It is well-understood that in

general, adaptive algorithms perform better than non-adaptive algorithms in terms of cost of

coverage. However, in practical applications a non-adaptive algorithm is better from the point

213

of view of practitioners as it eliminates the need of sequential decision making and instead

requires them to make just one decision. This motivates the study of separation between

the performance of adaptive and non-adaptive algorithms, known as the adaptivity gap. For

many stochastic packing problems, the adaptivity gap is only a constant. For instance, the

adaptivity gap for budgeted stochastic max coverage where you are given a constraint on the

number of items that can be chosen and the goal is to maximize coverage, the adaptivity gap

is bounded by 1− 1/e (Asadpour et al., 2008). In a sharp contrast, for the covering version

of the problem, it is not difficult to show an adaptivity gap of Ω(Q) (Goemans and Vondrák,

2006).

Motivated by this striking separation between the power of adaptive and non-adaptive

algorithms, we consider the following question in this chapter: does one need full power of

adaptivity to obtain a near-optimal solution to stochastic submodular cover? In particular,

how does the performance guarantees change when an algorithm interpolates between these

two extremes using a few rounds of adaptivity.

7.1.2 Our Contributions

We define an r-round adaptive algorithm to be an algorithm that chooses a permutation of

all available items in each round k ∈ [r], and a threshold τk, and realizes items in the order

specified by the permutation until the function value is at least τk. A non-adaptive algorithm

would then correspond to the case r = 1 (with τ1 = Q), and an adaptive algorithm would

correspond to the case r = m (with τk = 0 for all k ∈ [r]). The permutation for each round k

is chosen adaptively based on the realization in the previous rounds, but the ordering inside

each round remains fixed regardless of the realizations seen inside the round. We will call

this the “permutation framework” for an r-round algorithm.

Our main result is that for any integer r, there exists a poly-time r-round adaptive algorithm

for stochastic submodular cover whose expected cost is Õ(Q1/r) times the expected cost of a

fully adaptive algorithm, where the Õ notation is hiding a logarithmic dependence on the

number of items and the maximum cost of any item. Prior to our work, such a result was not

214

known even for the case of r = 1 and when f is the coverage function. Indeed achieving such a

result was cast as an open problem by Goemans and Vondrak (Goemans and Vondrák, 2006)

who achieved an O(n2) bound (corresponding to O(Q2)) on the adaptivity gap of stochastic

set cover. Furthermore, we show that for any r, there exist instances of the stochastic

submodular cover problem where no r-round adaptive algorithm can achieve better than

Ω(Q1/r) approximation to the expected cost of a fully adaptive algorithm. Our lower bound

result holds even for coverage function and for algorithms with unbounded computational

power. Thus our work shows that logarithmic rounds of adaptivity are necessary and sufficient

to obtain near-optimal solutions to the stochastic submodular cover problem, and even few

rounds of adaptivity are sufficient to sharply reduce the adaptivity gap.

Remark 7.1.1. One may consider an alternate notion of r-round adaptive algorithm: In

each round k ∈ [r], the algorithm chooses a fixed set of items to realize in parallel where the

choice of the set depends on the realizations in the previous rounds (instead of a permutation

over items). Let us call this framework the “set framework”. One benefit of this variation is

that items in each round can be realized in parallel. Unfortunately in this framework, any

algorithm that always outputs a valid cover (as is our requirement), must in general include

all remaining items in the last round, because for any proper subset of the remaining items

there will be positive probability that this subset will not able to cover the entire set. Hence,

the r-round adaptivity gap would be Ω(m).

Hence, one would have to consider a relaxed version of the problem and require that the

algorithm achieves the desired coverage guarantee only with probability 1 − o(1). Our

algorithmic results directly carry over to this variant of the problem. In particular, for any

fixed r, we obtain poly-time r-round adaptive algorithm in the set framework whose cost

is Õ(Q1/r) times the expected cost of a fully adaptive algorithm, and that succeeds with

probability at least 1 − o(1). At the same time, our lower bound of Ω(Q1/r) continues to

hold in this relaxed setting. In the following we will provide results for only the permutation

framework, with the understanding that all our results carry over to the set framework with

215

the relaxed version of the problem.

7.1.3 Related Work

The problem of submodular cover was perhaps first studied by Wolsey (1982), who showed

that a greedy algorithm achieves an approximation ratio of log(Q). Subsequent to this there

has been a lot of work on this problem in various settings (Golovin and Krause, 2010; Azar

and Gamzu, 2011; Azar et al., 2009; Im et al., 2016; Deshpande et al., 2014; Grammel et al.,

2016; Kambadur et al., 2017). To our knowledge, the question of adaptivity in stochastic

covering problems was first studied in Goemans and Vondrák (2006) for the special case of

stochastic set cover and covering integer programs. It was shown that the adaptivity gap

of this problem is Ω(n), where n is the size of the universe to be covered. A non-adaptive

algorithm for this problem with an adaptivity gap of O(n2) was also presented.

Subsequently there has been a lot of work on stochastic set cover and the more general

stochastic submodular cover problem in the fully adaptive setting. A special case of stochastic

set cover was studied by Liu et al. (2008) in the adaptive setting, and an adaptive greedy

algorithm was studied1. In Golovin and Krause (2010) the notion of “adaptive submodularity"

was defined for adaptive optimization, which demands that given any partial realization of

items, the marginal function with respect to this realization remains monotone submodular.

This paper also presented an adaptive greedy algorithm for the problem of stochastic submod-

ular cover, and stochastic submodular maximization subject to cardinality constraints.2 In

Im et al. (2016) a more general version of stochastic submodular cover problem was studied

in the fully adaptive setting, and their results imply the best-possible approximation ratio

of log(Q) for stochastic submodular cover. In Deshpande et al. (2014) an adaptive dual

greedy algorithm was presented for this problem. It was also shown that the adaptive greedy

algorithm of Golovin and Krause (2010) achieves an approximation ratio of k log(P), where
1The paper originally claimed an approximation ratio of log(n) for this algorithm, however, the claim was

later retracted by the authors due to an error in the original analysis (Parthasarathy, 2018)
2It was originally claimed that this algorithm achieves an approximation ratio of log(Q) where Q is the

desired coverage, however, the claim was later retracted due to an error in the analysis (Nan and Saligrama,
2017). The authors have claimed an approximation ratio of log2(Q) since then.

216

P is the maximum function value any item can contribute, and k is the maximum support

size of the distribution of any item. There has also been work on this problem when the

realization of items can be correlated, unlike our setting where the realization of each item

is independent. In this setting, Kambadur et al. (2017) gives an adaptive algorithm which

achieves an approximation ratio of log(Qs), where Q is the desired coverage, and s denote

the support size of the joint distribution of these correlated items. In the case of independent

realizations this quantity will typically be exponential in the number of items. In Grammel

et al. (2016) a similar result was shown for a slightly different algorithm.

The question of adaptivity has also been studied for a related problem of stochastic submodular

maximization subject to cardinality constraints (Asadpour et al., 2008). The goal in this

problem is to find a set of items with cardinality at most k, so as to maximize the expected

value of a stochastic submodular function. This paper showed that a non-adaptive greedy

algorithm for this problem achieves an approximation ratio of (1− 1
e)2 with respect to an

optimal adaptive algorithm. This result was later generalized to stochastic submodular

maximization subject to matroid constraints (Asadpour and Nazerzadeh, 2016). In Gupta

et al. (2017), the adaptivity gap of stochastic submodular maximization subject to a variety

of prefix-closed constraints was studied under the setting where the distribution of each

item is Bernoulli. This class of prefix-closed constraints includes matroid and knapsack

constraints among others. It was shown that there is a non-adaptive algorithm that achieves

an approximation ratio of 1/3 with respect to an optimal adaptive algorithm. In Hellerstein

et al. (2015), the problem of stochastic submodular maximization was also studied under

various types of constraints, including knapsack constraints. An approximation ratio of τ for

this problem under knapsack constraint was given, where τ is the smallest probability of any

element in the ground set being realized by any item. The question of adaptivity has also

been studied for other stochastic problems such as stochastic packing, knapsack, matching

etc. (see, e.g. Dean et al. (2005, 2008); Yamaguchi and Maehara (2018); Blum et al. (2015);

Assadi et al. (2017, 2016) and references therein).

217

There has also been a lot of work under the framework of 2-stage or multi-stage stochastic

programming (Shapiro et al., 2009; Swamy and Shmoys, 2012; Charikar et al., 2005; Shmoys

and Swamy, 2004). In this framework, one has to make sequential decisions in a stochastic

environment, and there is a parameter λ, such that the cost of making the same decision

increases by a factor λ after each stage. The stochastic program in each stage is defined

in terms of the expected cost in the later stages. The central question in these problems

is– when can we find good solutions to this complex stochastic program, either by directly

solving it or by finding approximations to it? This largely depends on the complexity of

the stochastic program at hand. For example, if the distribution of the environment is

explicitly given, then one might be able to solve the stochastic program exactly by using

integer programming, and this question becomes largely computational in nature. This is

fundamentally different than the information theoretic question we consider in this chapter.

Aside from the stochastic setting, algorithms with limited adaptivity have been studied across

a wide spectrum of areas in computer science including in sorting and selection (e.g. Valiant

(1975); Cole (1986); Braverman et al. (2016b)), multi-armed bandits (e.g. Perchet et al.

(2015a); Agarwal et al. (2017a)), algorithms design (e.g. Balkanski and Singer; Emamjomeh-

Zadeh et al. (2016); Ene and Nguyen (2018); Balkanski et al. (2018); Balkanski and Singer

(2020); Breuer et al. (2020); Fahrbach et al. (2019)), among others; we refer the interested

reader to these papers and references therein for more details.

Remark 7.1.2. Our study of r-round adaptive algorithm for submodular cover is reminiscent

of a recent work of Chakrabarti and Wirth (2016) on multi-pass streaming algorithms for

the set cover problem. They showed that allowing additional passes over the input in the

streaming setting (similar-in-spirit to more rounds of adaptivity) can significantly improve

the performance of the algorithms and established tight pass-approximation tradeoffs that

are similar (but not identical) to r-round adaptivity gap bounds in Results 1 and Results 2.

In terms of techniques, our upper bound result—our main contribution—is almost entirely

disjoint from the techniques in Chakrabarti and Wirth (2016) (and works for the more

218

general problem of submodular cover, whereas the results in Chakrabarti and Wirth (2016)

are specific to set cover), while our lower bound uses similar instances as Chakrabarti and

Wirth (2016) but is based on an entirely different analysis.

7.1.4 Organization

In Section 7.2 we introduce the problem more formally. In Section 7.3 we provide an overview

of our technical results. In Section 7.4 we present some preliminaries for our problem. In

Section 7.5 we present a technical overview of our main results. In Section 7.6 we present

a non-adaptive selection algorithm that will be used to prove our upper bound result in

Section 7.7. We present the lower bound result in Section 7.8.

7.2 Problem Statement

Let X := {X1, . . . ,Xm} be a collection of m independent random variables each supported

on the same ground set E and f be an integer-valued3 non-negative monotone submodular

function f : 2E → N+. We will refer to random variables Xi’s as items and any set S ⊆ X as a

set of items. For any i ∈ [m], we use xi ∈ E to refer to a realization of item (random variable)

Xi and define X := {x1, . . . , xm} as the realization of X. We slightly abuse notation4 and

extend f to the ground set of items X such that for any set S ⊆ X, f(S) := f(∪Xi∈SXi): this

definition means that for any realization S of S, f(S) = f(∪xi∈Sxi). Finally, there is an

integer-valued cost ci ∈ [C] associated with item Xi ∈ X.

Let Q := f(E). For any set of items S ⊆ X, we say that a realization S of S is feasible iff

f(S) = Q. We will assume that any realization X of X is always feasible, i.e. f(X) = Q5.

We will say that a realization X of X is covered by a realization S ⊆ X of S iff S is feasible.

The goal in the stochastic submodular cover problem is to find a set of items S ⊆ X with the

minimum cost which gets realized to a feasible set. In order to do so, if we include any item
3We present our results for integer-valued functions for simplicity of exposition. All our results can easily

be generalized to positive real-valued functions.
4Note that here f : 2E → N+ is being extended to a function f ′ : 2X → N+, but we chose to refer to f ′ as

f .
5One can ensure this by adding an item Xi to the ground set such that f(xi) = Q for all realizations xi of

Xi, but cost of this item is higher than the combined cost of all other items.

219

Xi to S we pay a cost ci, and once included, Xi would be realized to some xi ∈ E and is fixed

from now on. Once a decision made regarding inclusion of an item in S, this item cannot be

removed from S.

For any set of items S ⊆ X, we define cost(S) to be the total cost of all items in S, i.e.

cost(S) =
∑

i∈[m] ci · 1[Xi ∈ S], where 1[·] is an indicator function. For any algorithm A, we

refer to the total cost of solution S returned by A on an instantiation X of X as the cost of

A on X denoted by cost(A(X)). We are interested in minimizing the expected cost of the

algorithm A, i.e., EX∼X [cost(A(X))].

Example 7.2.1 (Stochastic Set Cover). A canonical example of the stochastic submodular

cover problem is the stochastic set cover problem. Let U be a universe of n “elements” (not to

be mistaken with “items”) and X = {X1, . . . ,Xm} be a collection of m random variables where

each random variable Xi is supported on subsets of U , i.e., realizes to some subset Ti ⊆ U .

We refer to each random variable Xi as a stochastic set. In the stochastic set cover problem,

the goal is to pick a smallest (or minimum weight) collection S of items (or equivalently sets)

in X such that the realized sets in this collections cover the universe U .

We consider the following types of algorithms (sometimes referred to as policies in the

literature) for the stochastic submodular cover problem:

• Non-adaptive: A non-adaptive algorithm simply picks a fixed ordering of items in X

and insert the items one by one to S until the realization S of S become feasible.

• Adaptive: An adaptive algorithm on the other hand picks the next item to be included

in S adaptively based on the realization of previously chosen items. In other words,

the choice of each item to be included in S is now a function of the realization of items

already in S.

• r-round adaptive: We define r-round adaptive algorithms as an “interpolation”

between the above two extremes. For any integer r ≥ 1, an r-round adaptive algorithm

220

chooses the items to be included in S in r rounds of adaptivity: In each round i ∈ [r],

the algorithm chooses a threshold τi ∈ N+ and an ordering over items, and then

inserts the items one by one according to this ordering to S until for the realized set

S, f(S) ≥ τi. Once this round finishes, the algorithm decides on an ordering over the

remaining items adaptively based on the current realization.

In above definitions, a non-adaptive algorithm corresponds to case of r = 1 round adaptive

algorithm (with τ1 = Q) and a (fully) adaptive algorithm corresponds to the case of r = m

(here τi is irrelevant and can be thought as being zero).

Adaptivity gap. We use opt to refer to the optimal adaptive algorithm for the stochastic

submodular cover problem, i.e., an adaptive algorithm with minimum expected cost. We use

the expected cost of opt as the main benchmark against which we compare the cost of other

algorithms. In particular, we define adaptivity gap as the ratio between the expected cost of

the best non-adaptive algorithm for the submodular cover problem and the expected cost of

opt. Similarly, for any integer r, we define the r-round adaptivity gap for r-rounds adaptive

algorithms in analogy with above definition.

Remark 7.2.2. The notion of “best” non-adaptive or r-round adaptive algorithm defined

above allow unbounded computational power to the algorithm. Hence, the only limiting factor

of the algorithm is the information-theoretic barrier caused by the uncertainty about the

underlying realization.

7.3 Overview of Results

In this chapter, we establish tight bounds (up to logarithmic factor) on the r-round adaptivity

gap of the stochastic submodular cover problem for any integer r ≥ 1. Our main result is

an r-round adaptive algorithm (for any integer r ≥ 1) for the stochastic submodular cover

problem.

221

Result 1 (Main Result). For any integer r ≥ 1 and any monotone submodular function

f , there exists an r-round adaptive algorithm for the stochastic submodular cover problem

for function f and set of items X with cost of each item bounded by C that incurs

expected cost O(Q1/r · logQ · log(mC)) times the expected cost of the optimal adaptive

algorithm.

A corollary of Result 1 is that the r-round adaptivity gap of the submodular cover problem is

Õ(Q1/r). This implies that using only O
(

logQ
log logQ

)
rounds of adaptivity, one can reduce the

cost of the algorithm to within poly-logarithmic factor of the optimal adaptive algorithm. In

other words, one can “harness” the (essentially) full power of adaptivity, in only logarithmic

number of rounds.

Various stochastic covering problems can be cast as submodular cover problem, including the

stochastic set cover problem and the stochastic covering integer programs studied previously

in the literature (Goemans and Vondrák, 2006; Golovin and Krause, 2010; Deshpande et al.,

2014). As such, Result 1 directly extends to these problems as well. In particular, as a

(very) special case of Result 1, we obtain that the adaptivity gap of the stochastic set cover

problem is Õ(n) (here n is the size of the universe), improving upon the O(n2) bound of

Goemans and Vondrak (Goemans and Vondrák, 2006) and settling an open question in their

work regarding the adaptivity gap of this problem (an Ω(n) lower bound was already shown

in Goemans and Vondrák (2006)).

We further prove that the r-round adaptivity gaps in Result 1 are almost tight for any r ≥ 1.

Result 2. For any integer r ≥ 1, there exists a monotone submodular function f : 2E →

N+, in particular a coverage function, with Q := f(E) such that the expected cost of

any r-round adaptive algorithm for the submodular cover problem for function f , i.e.,

the stochastic set cover problem, is Ω(1
r3 ·Q1/r) times the expected cost of the optimal

adaptive algorithm.

222

Result 2 implies that the r-round adaptivity gap of the submodular cover problem is

Ω(1
r3 ·Q1/r), i.e., within poly-logarithmic factor of the upper bound in Result 1. An immediate

corollary of this result is that Ω(logQ
log logQ) rounds of adaptivity are necessary for reducing the

cost of the algorithms to within logarithmic factors of the optimal adaptive algorithm. We

further point out that interestingly, the optimal adaptive algorithm in instances created in

Result 2 only requires r+ 1 rounds; as such, Result 2 in fact is proving a lower bound on the

gap between the cost of r-round and (r + 1)-round adaptive algorithms.

We remark that our algorithm in Result 1 is polynomial time (for polynomially-bounded

item costs), while the lower bound in Result 2 holds again algorithms with unbounded

computational power (see Remark 7.2.2).

7.4 Preliminaries

Notation. Throughout this chapter we will use symbols S, T, and R to denote subsets of

the ground set E, and use symbols A and B to denote subsets of [m], i.e., indices of items.

We will also use symbols S,T and R to denote subsets of X which realize to subsets S, T

and R of the ground set E.

Submodular Functions: Let E be a finite ground set and N+ be the set of non-negative

integers. For any set function f : 2E → N+, and any set S ⊆ E, we define the marginal

contribution to f as the set function fS : 2E → N+ such that for all T ⊆ E,

fS(T) = f(S ∪ T)− f(S).

When clear from the context, we abuse the notation and for e ∈ E, we use f(e) and fS(e)

instead of f({e}) and fS({e}).

A set function f : 2E → N+ is submodular iff for all S ⊆ T ⊆ E and e ∈ E: fS(e) ≥ fT (e).

Function f is additionally monotone iff f(S) ≤ f(T). Throughout the chapter, we solely

focus on monotone submodular functions unless stated explicitly otherwise.

223

We use the following two well-known facts about submodular functions throughout the

chapter.

Fact 7.4.1. Let f(·) be a monotone submodular function, then:

∀S, T ⊆ E f(S) ≤ f(T) +
∑
e∈S\T

fT (e).

Fact 7.4.2. Let f(·) be a monotone submodular function, then for any S ⊆ E, fS(·) is also

monotone submodular.

7.5 Technical Overview

We give here an overview of the techniques used in our upper and lower bound results.

7.5.1 Upper Bound on r-round Adaptivity Gap

In this discussion we focus mainly on our non-adaptive (r = 1) algorithm, which already

deviates significantly from the previous work of Goemans and Vondrak (Goemans and

Vondrák, 2006). A non-adaptive algorithm simply picks a permutation of items and realize

them one by one in a set S until f(S) = Q. Hence, the “only” task in designing a non-adaptive

algorithm is to find a “good” ordering of items, that is, an ordering such that its prefix that

covers Q has a low expected cost.

Consider the following algorithmic task: In the setting of stochastic submodular cover

problem, suppose we are given a (ordered) set S of stochastic items. Can we pick a low-cost

(ordered) set T of stochastic items non-adaptively (without looking at a realization of S or T)

so that the coverage of S ∪ T is sufficiently larger than S, i.e., E [fS(T)] is large? Assuming

we can do this, we can use this primitive to find sets with large coverage non-adaptively and

iteratively, by starting from the empty-set and using this primitive to increase the coverage

further repeatedly.

Recall that in the non-stochastic setting, the greedy algorithm is precisely solving this

224

problem, i.e., finds a set T such that fS(T)
cost(T) ≥

Q−f(S)
cost(opt) , where with a slight abuse of

notation, opt here denotes the optimal non-stochastic cover of f(E). This suggests that one

can always find a “low” cost set T with a large marginal contribution to S. For the stochastic

problem, however, it is not at all clear whether there always exists a “low cost” (compared

to adaptive opt) T whose expected marginal contribution to S is large. This is because

there are many different realizations possible for S, and each realization S, in principle may

require a dedicated set of items T(S) to achieve a large value E [fS(T(S)) | S]. As such, while

adaptive opt can first discover the realization S of S and based on that choose T(S) to

increase the expected coverage, a non-adaptive algorithm needs to instead pick ∪S∈ST(S),

which can have a much larger cost (but the same marginal contribution). This suggests that

cost of non-adaptive algorithm can potentially grow with the size of all possible realizations

of S. We point out that this task remains challenging even if all remaining inputs other than

S are non-stochastic, i.e., always realize to a particular item.

Nevertheless, it turns out that no matter the size of the set of all realizations of S, one can

always find a set of stochastic items T such that E [fS(T)] = Ω(1)·E [Q− f(S)] while cost(T) =

Õ(Q) · E [cost(opt)], i.e., achieve a marginal contribution proportional to E [Q− f(S)] while

paying cost which is Õ(Q) times larger than opt (here opt corresponds to an optimal

adaptive algorithm corresponding the residual problem of covering Q− f(S)). Compared

to the non-stochastic setting, this cost is Õ(Q) times larger than the analogous cost in the

non-stochastic setting (see Example 7.6.1). This part is one of the main technical ingredients

of our chapter (see Theorem 7.6.2). We briefly describe the main ideas behind this proof.

The idea behind our algorithm is to sample several realizations S1, . . . , SΨ from S and pick a

low cost dedicated set Ti for each Si such that E [fSi(Ti)] is large (here, the randomness is

only on realizations of Ti). This step is quite similar to solving the non-adaptive submodular

maximization problem with knapsack constraint for which we design a new algorithm based

on an adaptation of Wolsey’s LP (Wolsey, 1982) (see Theorem 7.6.3 and discussion before

that for more details and comparison with existing results). This allows us to bound the

225

cost of each set Ti by O(E [cost(opt)]). The final (ordered) set returned by this algorithm is

then T := T1 ∪ . . . ∪ TΨ. The ordering within items of T does not matter.

The main step of this argument is however to bound the value of Ψ, i.e., the number of

samples, by O(Q). This step is done by bounding the total contribution of sets T1, . . . ,TΨ

on their own, i.e., E [f(T1 ∪ . . . ∪ TΨ)] independent of the set S. The intuition is that if we

choose, say T1, with respect to some realization S of S, but T1 does not have a marginal

contribution to most realizations S′ of S, then this means that by picking another set T2,

the set T1 ∪ T2 needs to have a coverage larger than both T1 and T2. As a result, if we

repeat this process sufficiently many times, we should eventually be able to increase E [fS(T)],

simply because otherwise f(T) > Q, a contradiction.

We now use this primitive to design our non-adaptive algorithm as follows: we keep adding set

of items to the ordering using the primitive above in iterative phases. In each phase p, we run

the above primitive multiple times to find a set Sp with E [Q− f(Sp) | Ep−1] = o(1), where

Ep−1 is the event that the realization of items picked in previous phases of the algorithm

did not cover Q entirely. We further bound the cost of the set Sp with the expected cost of

opt conditioned on the event Ep−1, i.e., E [cost(opt) | Ep−1]. Notice that this quantity can

potentially be much larger than the expected cost of opt. However, since the probability

that in the permutation returned by the non-adaptive algorithm, we ever need to realize the

sets in Sp is bounded by Pr (Ep−1), we can pay for the cost of these sets in expectation. By

repeating these phases, we can reduce the probability of not covering Q exponentially fast

and finalize the proof.

We then extend this algorithm to an r-round adaptive algorithm for any r ≥ 1. For simplicity,

let us only mention the extension to 2 rounds (extending to r is then straightforward). We

spend the first round to find a (ordered) set S with f(S) ≥ Q−√Q with high probability for

any realizations S of S. We extend our main primitive above to ensure that if E [Q− f(S)] ≥
√
Q, then we can find a set T with E [fS(T)] = Ω(1) · E [Q− f(S)] and cost(T) = Õ(

√
Q) ·

E [cost(opt)] (as opposed to O(Q) in the original statement). This is achieved by the fact

226

that when the deficit Q− f(S) is sufficiently large then the rate of coverage per cost is higher,

as opposed to when the deficit Q − f(S) is very small. Precisely, we exploit the fact that

the gap of Q− f(S) is sufficiently large to reach the contradiction in the original argument

with only O(
√
Q) sets T1,T2, We then run the previous algorithm using this primitive

by setting the threshold τ1 = Q − √Q. In the next round, we simply run our previous

algorithm on the function fS(·) where S is the realization in the first round. As fS(·) has

maximum value at most O(
√
Q), by the previous argument we only need to pay Õ(

√
Q)

times expected cost of opt, hence our total cost is Õ(
√
Q) · E [cost(opt)]. Extending this

approach to r-round algorithms is now straightforward using similar ideas as the thresholding

greedy algorithm for set cover (see, e.g. Cormode et al. (2010)).

7.5.2 Lower Bound on Adaptivity Gap

We prove our lower bound for the stochastic set cover problem, a special case of stochastic

submodular cover problem (see Example 7.2.1). Let us first sketch our lower bound for two

round algorithms. Let := {U1, . . . , Uk} be a collection of k = poly(n) sets to be determined

later (recall that n is the size of the universe U we aim to cover). Consider the following

instance of stochastic set cover: there exists a single stochastic set T which realizes to one

set chosen uniformly at random from sets U1, . . . , Uk, i.e., complements of the sets in . We

further have k additional stochastic sets where Ti realizes to Ui \ {e} for e chosen uniformly

at random from Ui. Finally, for any element e ∈ U , we have a set Te with only one realization

which is the singleton set {e} (i.e., Te always covers e).

Consider first the following adaptive strategy: pick T in the first round and see its realization,

say, Ui. Pick Ti in the second round and see its realization, say Ui \ {e}. Pick Te in the third

round. This collection of sets is (U \ Ui)∪ (Ui \ {e})∪ ({e}) = U , hence it is a feasible cover.

As such, in only 3 rounds of adaptivity, we were able to find a solution with cost only 3.

A two-round algorithm is however one round short of following the above strategy. One

approach to remedy this would be try to make a “shortcut” by picking more than one sets

in each round of this process, e.g., pick the set Ti also in the first round. However, it is

227

easy to see that as long as we do not pick Ω(k) sets in the first round, or Ω(|Ui|) sets in the

second round, we have a small chance of making such a shortcut. We are not done yet as it

is possible that the algorithm covers the universe using entirely different sets (i.e., do not

follow this strategy). To ensure that cannot help either, we need the sets in U1, . . . , Uk to

have “minimal” intersection; this in turns limits the size of each set Ui and hence the eventual

lower bound we obtain using this argument.

We design a family of instances that allows us to extend the above argument to r-round

adaptive algorithms. We construct these instances using the edifice set-system of Chakrabarti

and Wirth (2016) that poses a “near laminar” property, i.e., any two sets are either subset-

superset of one another or have “minimal” intersection. We remark that this set-system was

originally introduced by Chakrabarti and Wirth (2016) for designing multi-pass streaming

lower bounds for the set cover problem. While the instances we create in this work are

similar to the instances of Chakrabarti and Wirth (2016), the proof of our lower bound is

entirely different (lower bound of Chakrabarti and Wirth (2016) is proven using a reduction

in communication complexity).

7.6 The Non-Adaptive Selection Algorithm

We introduce a key primitive of our approach in this section for solving the following task:

Suppose we have already chosen a subset S ⊆ X of items but we are not aware of the

realization of these items; our goal is to non-adaptively add another set T to S to increase

its expected coverage. Formally, given any monotone submodular function g : 2E→N+,

let Qg := g(E) be the required coverage on g. Also, for any realization S of S, we use

∆(S) := Qg − g(S) to refer to the deficit in covering Qg, and denote by ∆ := E [∆(S)]

the expected deficit of set S. Our goal is now to add (still non-adaptively) a “low-cost”

(compared to adaptive opt) set T to S to decrease the expected deficit. It is easy to see that

such a primitive would be helpful for finding sets with “large” coverage non-adaptively and

iteratively, by starting from the empty-set and use this primitive to reduce the deficit further

by picking another set and then repeat the process starting from this set.

228

Let us start by giving an example which shows some of the difficulty of this task.

Example 7.6.1. Consider an instance of stochastic set cover: there exists a single set, say

X1 which realizes to U \ {e∗} for an element e∗ chosen uniformly at random from U and n

singleton sets X2, · · ·Xn+1, each covering a unique element in U . If we have already chosen

X1, and want to chose more sets in order to decrease the expected deficit, then it is easy to

see that even though the cost of opt is only 2, no collection of o(n) sets can decrease the

expected deficit by one. This should be contrasted with the non-stochastic setting in which

there always exists a single set that reduces a deficit of ∆ by ∆/cost(opt).

We are now ready to state our main result in this section.

Theorem 7.6.2. Let X be a collection of items, and let g be any monotone submodular

function such that g(X) = Qg for every realization X of X . Let S ⊆ X be any subset of

items and define ∆ := E [Qg − g(S)]. Given any parameter α ≥ Qg/∆, there is a randomized

non-adaptive algorithm that outputs a set T ⊆ X\S such that cost of T is O(α) ·E [cost(opt)]

in expectation over the randomness of the algorithm and E [Qg − g(S ∪ T)] ≤ 5∆/6 over

the randomness of the algorithm and realizations of S and T. Here opt is an optimal

fully-adaptive algorithm for the stochastic submodular cover problem with the function g6.

The goal in Theorem 7.6.2, is to select a set of items that can decrease the deficit of a

typical realization S of S (i.e., the expected deficit). In order to do so, we first design a

non-adaptive algorithm that finds a low-cost set that can decrease the deficit of a particular

realization S of S. This step is closely related to solving a stochastic submodular maximization

problem subject to a knapsack constraint. Indeed, when costs of all the items are the same,

i.e., when we want to minimize the number of items in the solution, one can use the

algorithm of Asadpour et al. (2008) (with some small modification) for stochastic submodular

maximization subject to cardinality constraint for this purpose. Also, when the random
6Throughout this chapter we will abuse notation by refering to an optimal fully-adaptive algorithm for

different problem instances using the same notation opt. The specific problem instance will be clear from
context.

229

variables Xi’s have binary realizations, i.e. take only two possible values, then one can use the

algorithm of (Gupta et al., 2017) for this purpose. However, we are not aware of a solution

for the knapsack constraint of the problem in its general form with the bounds required in

our algorithms, and hence we present an algorithm for this task as well. The main step of

our argument is however on how to use this algorithm to prove Theorem 7.6.2, i.e., move

from per-realization guarantee, to the expectation guarantee.

7.6.1 A Non-Adaptive Algorithm for Increasing Expected Coverage

We start by presenting a non-adaptive algorithm that picks a low-cost (compared to the

expected cost of opt) set of items deterministically, while achieving a constant factor of

coverage of opt. For any set A ⊆ [m], i.e., the set of indices of stochastic items, and any

realization X of X, we define XA := {xi | i ∈ A}, i.e, the realization of all items corresponding

to indices in A.

Theorem 7.6.3. There exists a non-adaptive algorithm that takes as input a set of items

X , a monotone submodular function f , and a parameter Q such that f(X) = Q for any

realization X of X , and outputs a set A ⊆ [m] such that (i) cost(XA) ≤ 3 · E [cost(opt)] and

(ii) EXA∼X [f(XA)] ≥ Q/3. Here, opt is the optimum adaptive algorithm for submodular

cover on X with function f and parameter Q = Q.

As argued before, Theorem 7.6.3 can be interpreted as an algorithm for submodular maxi-

mization subject to knapsack constraint.

To prove Theorem 7.6.3, we design a simple greedy algorithm (similar to the greedy algorithm

for submodular maximization) and analyze it using a linear programming (LP) relaxation in

the spirit of Wolsey’s LP (Wolsey, 1982) defined in the following section.

Extension of Wolsey’s LP for Stochastic Submodular Cover

Let us define the function F : 2[m]→N+ as follows: for any A ⊆ [m],

F (A) := E
XA∼X

[f(XA)] . (7.6.1)

230

As we assume in the lemma statement that Q := EX∼X [f(X)], we have F ([m]) = Q as well.

For any B ⊆ [m], we further define the marginal contribution function FB : 2[m]→N+ where

FB(A) := F (A∪B)−F (B) for all A ⊆ [m] \B. The following proposition is straightforward.

Proposition 7.6.4. Function F is a monotone submodular function.

Proof. F is a convex combination of submodular functions, one for each realization of X .

We will use a linear programming (LP) relaxation in the spirit of Wolsey’s LP (Wolsey, 1982)

for the submodular cover problem (when applied to the function F). Consider the following

linear programming relaxation:

P = min
y∈[0,1]m

m∑
i=1

ci · yi

s.t.
∑

i∈[m]\A

FA(i) · yi ≥ Q− 2F (A), ∀A ⊆ [m] (7.6.2)

The difference between LP (7.6.2) and Wolsey’s LP is in RHS of the constraint which is

Q− F (A) in case Wolsey’s LP. In the non-stochastic setting, one can prove that Wolsey’s

LP lower bounds the value of optimum submodular cover for function F . To extend this

result to the stochastic case (for the function f) however, it suffices to modify the constraint

as in LP (7.6.2), as we prove in the following lemma.

Lemma 7.6.5. The cost of an optimal adaptive algorithm opt for submodular cover on

function f is lower bounded by the optimal cost P of LP (7.6.2), i.e. P ≤ E [cost(opt)].

Proof. For a realization X of X and any i ∈ [m], define an indicator random variable wi(X)

that takes value 1 iff opt chooses Xi on the realization X, i.e.

wi(X) = 1[Xi ∈ opt(X)].

231

Let wi be the probability that opt chooses Xi, i.e.,

wi = Pr
X∼X

(wi(X) = 1) = E [wi(X)] .

We have that,

E [cost(opt)] = E
X

[
m∑
i=1

1[Xi ∈ opt(X)] · ci
]

=
m∑
i=1

wi · ci .

In the following, we prove that w := (w1, . . . , wm) is a feasible solution to LP (7.6.2), which

by above equation would immediately imply that P ≤ E [cost(opt)].

Clearly w ∈ [0, 1]m, so it suffices to prove that the constraint holds for any set A ⊆ [m]. The

main step in doing so is the following claim.

Claim 7.6.6. For any set A ⊆ [m], and any two realizations X and X ′ of X:

f(XA) + f(X ′A) +
∑

i∈[m]\A

fX′A(xi) · wi(X) ≥ Q.

Proof. Recall that we assume f(X) = Q always, and hence f(opt(X)) = Q as well.

Moreover, for any i ∈ opt(X), wi(X) = 1 and for i ∈ [m] \ opt(X), wi(X) = 0. We further

define the sets:

B := opt(X) ∩A and C := opt(X) \B.

232

We have,

f(XA) + f(X ′A) +
∑

i∈[m]\A

fX′A(xi) · wi(X) = f(XA) + f(X ′A) +
∑
xi∈C

fX′A(xi)

≥
Fact 7.4.1

f(XA) + f(X ′A ∪ C) (by submodularity)

≥ f(XB) + f(XC)

(by monotonicity as XB ⊆ XA)

= f(XB ∪XC) = Q,

(by submodularity and since XB ∪XC = opt(X))

which finalizes the proof. Claim 7.6.6

Fix any set A ⊆ [m]. We first take an expectation over all realizations of X in LHS of

Claim 7.6.6:

Q ≤
Claim 7.6.6

E
X

[
f(XA) + f(X ′A) +

∑
i∈[m]\A

fX′A(xi) · wi(X)
]

= E
X

[f(XA)] + f(X ′A) +
∑

i∈[m]\A

E
X

[
fX′A(xi) · wi(X)

]
= E

X
[f(XA)] + f(X ′A) +

∑
i∈[m]\A

E
X

[
fX′A(xi)

]
· E
X

[wi(X)] ,

as random variables fX′A(Xi) and wi(X) are independent since the choice of Xi by opt is

independent of what Xi realizes to. We further point out that EX [f(XA)] in the RHS of last

equation above is equal to F (A) by definition in Eq (7.6.1) and EX [wi(X)] = wi.

233

We further take an expectation over all realizations of X ′ in the RHS above:

Q ≤ E
X′

[
F (A) + f(X ′A) +

∑
i∈[m]\A

E
X

[
fX′A(xi)

]
· wi
]

=
Eq (7.6.1)

F (A) + F (A) +
∑

i∈[m]\A

E
X′

E
X

[
fX′A(xi)

]
· wi

= 2 · F (A) +
∑

i∈[m]\A

FA(i) · wi ,

as FA(i) = EX′ EX [f(X ′A ∪Xi)− f(X ′A)]. Rewriting the above equation, we obtain that

the constraint associated with set A is satisfied by w. This concludes the proof that w is a

feasible solution. Lemma 7.6.5

The Non-Adaptive-Greedy Algorithm

We now design an algorithm, namely non-adapt-greedy, based on “the greedy algorithm”

(for submodular optimization) applied to the function F in the last section and then use

LP (7.6.2) to analyze it. We emphasize that the use of the LP is only in the analysis and not

in the algorithm.

non-adapt-greedy(X, f,Q). Given a monotone submodular function f , the set of

stochastic items X, and a parameter Q = f(X) for all X, outputs a set A of (indices of)

stochastic items.

1. Initialize: Set A← ∅ and F be the function associated to f in Eq (7.6.1).

2. While F (A) < Q/3 do:

(a) Let j∗ ← argmaxj∈[m] FA(j)/cj .

(b) Update A← A ∪ {j∗}.

3. Output: A.

It is clear that the set A output by non-adapt-greedy achieves EXA [f(XA)] = F (A) ≥

Q/3 (as F ([m]) = Q, the termination condition would always be satisfied eventually). We

will now bound the cost paid by the greedy algorithm in terms of the optimal value P of

234

LP (7.6.2).

Lemma 7.6.7. cost(XA) ≤ 3P .

To prove Lemma 7.6.7 we need some definition. Let the sequence of items picked by the

greedy algorithm be j1, j2, j3 · · · , where ji is the index of the item picked in iteration i.

Moreover, for any i, define A<i := {j1, . . . , ji−1}, i.e., the set of items chosen before iteration

i. We first prove the following bound on the ratio of coverage rate to costs in each iteration.

Lemma 7.6.8. In each iteration i of the non-adaptive greedy algorithm we have,

FA<i(ji)

cji
≥ Q− 2F (A<i)

P
,

where P is the optimal value of LP (7.6.2).

Proof. Fix any iteration i. Recall that in each iteration, we pick item ji ∈ argmaxj∈[m] FA<i(j)/cj .

Suppose towards a contradiction that in some iteration i:

∀j ∈ [m]
FA<i(j)

cj
<

Q− 2F (A<i)

P
. (7.6.3)

Let y∗ be an optimal solution to LP (7.6.2), then by the constraint of the LP for set A<i we

have

Q− 2F (A<i) ≤
∑

j∈[m]\A<i

FA<i(j) · y∗j

<
Eq (7.6.3)

∑
j∈[m]\A<i

y∗j · cj ·
Q− 2F (A<i)

P

≤ Q− 2F (A<i)

P
·
∑
j∈[m]

y∗j cj = Q− 2F (A<i),

where the last equality is because by definition
∑

j∈[m] y
∗
j cj = P . By above equation,

Q− 2F (A<i) < Q− 2F (A<i), a contradiction. Lemma 7.6.8

235

Proof of Lemma 7.6.7. Fix any iteration i in the algorithm where F (A<i) ≤ Q/3. By

Lemma 7.6.8,

FA<i(ji) ≥
Lemma 7.6.8

cji ·
Q− 2F (A<i)

P
≥ cji ·

Q

3P
. (7.6.4)

Let k be the first index where FA<k < Q/3 but FA<k+1
≥ Q/3 (i.e., the iteration the

algorithm terminates). Note that cost(XA) =
∑k

i=1 cji . We start by bounding the first k − 1

terms in cost(XA):

Q/3 > F (A<k) =

k−1∑
i=1

FA<i(ji) ≥
Eq (7.6.4)

k−1∑
i=1

cji ·
Q

3P

=⇒
k−1∑
i=1

cji < P.

Now consider the last term in cost(A), i.e., cjk . Again, by Lemma 7.6.8, we have,

cjk ≤
Lemma 7.6.8

FA<k(jk) · P
Q− 2F (A<k)

≤ (Q− F (A<k)) · P
Q− 2F (A<k)

≤ 2P,

using the fact that F (A<k) < Q/3. As such, cost(XA) ≤ 3P finalizing the proof. Lemma 7.6.7

Theorem 7.6.3 now follows immediately from Lemma 7.6.7 and Lemma 7.6.5 as P ≤

E [cost(opt)].

7.6.2 Proof of Theorem 7.6.2

We use the algorithm in Theorem 7.6.3 to present the following algorithm for reducing the

expected deficit of any given set S in Theorem 7.6.2.

Select(X, g, S, α). Given a collection of indices X , a monotone submodular function g with

g(X) = Qg for every X ∼ X , collection of items S with expected deficit ∆ = E[Qg − g(S)],

picks a set T of items to decrease the expected deficit.

1. Let Ψ := 6α.

236

2. For i = 1, · · · ,Ψ do:

(a) Sample a realization Si ∼ S.

(b) Ti ← non-adapt-greedy(X \ S, gSi ,∆(Si)) (recall that ∆(Si) = Qg − g(Si)).

3. Return all items in the sets T := T1 ∪ T2 · · · ∪ TΨ.

The Select algorithm repeatedly calls the non-adapt-greedy algorithm for samples

drawn from realizations of the set S. By Fact 7.4.2, for any realization Si of S, gSi(·) is also

a monotone submodular function. Moreover, by the assumption that g(X) = Qg always, we

have that gSi(X \ Si) = Qg − f(Si) always as well. Hence, the parameters given to function

non-adapt-greedy in Select are valid.

We first bound the expected cost of Select.

Claim 7.6.9. E [cost(T)] = O(α) · E [cost(opt)].

Proof. Cost of T is the cost of the sets T1, . . . ,TΨ chosen by non-adapt-greedy on gSi

for each of the Ψ realizations of S. By Theorem 7.6.3, we can bound the cost of each Ti

using opt conditioned on realization Si for S (as we consider gSi). As such,

E [cost(T)] =
Ψ∑
i=1

E
Si∼S

[cost(Ti)]

≤
(a)

Ψ∑
i=1

E
Si∼S

[
3 · E

X
[cost(opt(X)) | S = Si]

]

=

Ψ∑
i=1

3 · E
Si∼S

E
X∼X|Si

[cost(opt(X))]

= 3Ψ · E
X

[cost(opt(X))] ,

where the inequality (a) follows from Theorem 7.6.3 because even though the opt used in

Theorem 7.6.3 is an optimal algorithm on the problem instance (Q̃,X \ S), but the cost of

EX [cost(opt(X)) | S = Si] can only be larger than the cost of opt on the instance (Q̃,X \S).

237

The bound now follow from the value of Ψ = 6α.

We now prove that the expected deficit of f(S ∪ T) is dropped by at least a ∆/6 factor. The

following lemma is at the heart of the proof.

Lemma 7.6.10. E [∆(S ∪ T)] ≤ 5∆/6.

Proof. We start by introducing the notation needed in the proof. It is useful to note that

the randomness in Ti is due to two sources: (1) the sample Si ∼ S which determines which

sets are indexed by Ti; and (2) the randomness in the realization of the sets indexed by Ti.

For any realization S of S, we use Ti(S) to denote the set Ti chosen (deterministically now

by non-adapt-greedy) conditioned on S = S (this corresponds to “fixing” the first source

of randomness above). We use the notation T≤i to denote the collection T1 ∪ · · · ∪ Ti of sets

selected in iterations 1 through i, and S≤i to denote the tuple of realizations (S1, · · · , Si)

(we define T<i and S<i analogously, where T<1 = S<1 = ∅). We also denote by T≤i(S≤i) the

sets selected in iterations 1 to i given S≤i.

Consider any i ∈ [Ψ]. For a realization Si ∼ S, we are computing non-adapt-greedy on

gSi with parameter Q = ∆(Si). As such, by Theorem 7.6.3, for the set Ti(Si) returned, we

have EX [gSi(Ti(Si))] ≥ Q/3 = ∆(Si)/3. Consequently,

E
Si∼S

E
X

[gSi
(
Ti(Si)

)
] ≥ E

Si∼S
[
∆(Si)

3
] =

∆

3
. (7.6.5)

We now use this equation to argue that adding each set Ti can decrease the expected deficit.

Before that, let us briefly touch upon the difficulty in proving this statement and the intuition

behind the proof. In Select, we first pick a realization Si of S and then add “enough” sets

to Ti to (almost) cover the deficit introduced by Si. This corresponds to Eq (7.6.5). However,

our goal is to decrease the expected deficit of S (not a deficit of a single realization). As such,

238

the quantity of interest is in fact the following instead:

E
X

[gS(Ti)] = E
Si∼S

E
S′i∼S

E
X

[
gS′i(Ti(Si))

]
, (7.6.6)

i.e., the marginal contribution of Ti(Si) (chosen by picking a set Si) to a “typical” set S′i ∼ Si

(not exactly the set Si). The set Ti we picked in this step is not necessarily covering the

deficit introduced by S′i as well (in the context of the stochastic set cover problem, think

of Si and S′i as covering a completely different set of elements and Ti being a deterministic

set covering U \ Si). As such, it is not at all clear that picking the set Ti should make “any

progress” towards reducing the expected deficit.

The way we get around this difficulty is to additionally consider the marginal contribution

of the sets T1, . . . ,TΨ to each other. If T1 cannot decrease the expected deficit of most

realizations S chosen from S, then this means that by picking another set T2(S) (for a

realization S of S), the set T1 ∪ T2 needs to have a coverage larger than both T1 and T2

individually (in the context of the set cover problem, since T1 is “useless” in covering deficit

created by S, and T2 can cover this deficit, this means that T1 and T2 should not have many

elements in common typically). We formalize this intuition in the following claim (compare

Eq (7.6.7) in this claim with Eq (7.6.6)).

Claim 7.6.11. Suppose at the start of iteration i the following holds

E
Si∼S

E
S<i∼S

E
X

[gSi
(
T<i(S<i)

)
] <

∆

6
. (7.6.7)

Then,

E
S≤i∼S

E
X

[
gT<i(S<i)(Ti(Si))

]
>

∆

6
.

Proof. By subtracting Eq. (7.6.7) from Eq. (7.6.5), and using linearity of expectation we get

239

that:

∆

6
< E

Si∼S
E

S<i∼S
E
X

[gSi
(
Ti(Si)

)
− gSi

(
T<i(S<i)

)
]

= E
Si∼S

E
S<i∼S

E
X

[g
(
Ti(Si) ∪ Si

)
− g
(
T<i(S<i) ∪ Si

)
]

≤ E
Si∼S

E
S<i∼S

E
X

[g
(
T≤i(S≤i) ∪ Si

)
− g
(
T<i(S<i) ∪ Si

)
] (by monotonicity)

≤ E
Si∼S

E
S<i∼S

E
X

[g
(
T≤i(S≤i)

)
− g
(
T<i(S<i)

)
]

(by submodularity as T<i(S<i) ⊆ T≤i(S≤i))

= E
S≤i∼S

E
X

[
gT<i(S<i)(Ti(Si))

]
, (7.6.8)

finalizing the proof. Claim 7.6.11

Suppose towards a contradiction that E [∆(S ∪ T)] > 5∆/6. This implies that,

5∆/6 < E [Qg − g(S ∪ T)] = E [Qg − g(S)− gS(T)]

=⇒ E
S∼S

E
X

[gS(T)] < ∆/6.

By monotonicity of f and since T = T1 ∪ . . . ∪ TΨ, this implies that for all i ∈ [Ψ],

∆/6 > E
S∼S

E
X

[gS(T≤i)] = E
Si∼S

E
S<i∼S

E
X

[gSi
(
T<i(S<i)

)
].

Hence, we can apply Claim 7.6.11 to obtain that for any i ∈ [Ψ]:

E
S≤i∼S

E
X

[
gT<i(S<i)(Ti(Si))

]
>

∆

6
.

240

As such, by linearity of expectation and above equation,

E
S≤Ψ∼S

E
X

[g(T(S≤Ψ))] =

Ψ∑
i=1

E
S≤i∼S

E
X

[
gT<i(S<i)(Ti(Si))

]
> Ψ · ∆

6
= 6α · ∆

6

≥ Qg = E
X

[g(X)].

where the last inequality follows due to the condition that α ≥ Qg/∆. The above is a

contradiction as T ⊆ X and g is monotone. Hence, E [∆(S ∪ T)] ≤ 5∆/6, finalizing the proof.

Lemma 7.6.10

Theorem 7.6.2 now follows immediately from Claim 7.6.9 and Lemma 7.6.10.

7.7 Algorithms for the Stochastic Submodular Cover Problem

In this section, we present our main algorithmic result which formalizes Result 1.

Theorem 7.7.1. Let E be a ground-set of items, f : 2E → N+ be a monotone submodular

function with Q := f(E), and X := {X1, . . . ,Xm} be a collection of m stochastic items with

support in E. Let ci ∈ [C] be the integer-valued cost of item Xi. For any integer r ≥ 1, there

exists an r-round adaptive algorithm for the stochastic submodular cover problem for function

f and items X with expected cost O(r ·Q1/r · logQ · log(mC)) times the expected cost of the

optimal adaptive algorithm.

Theorem 7.7.1 immediately implies that the r-round adaptivity gap of the stochastic sub-

modular cover problem is Õ(Q1/r). The rest of this section is devoted to the proof of

Theorem 7.7.1.

Overview. The underlying strategy behind our algorithm is as follows: in each round of

the algorithm, reduce the deficit of the currently realized set T chosen in the previous rounds

(i.e., the quantity Q− f(T)) by a factor of roughly Q1/r. This suggests that after r rounds

the deficit should reach zero, hence we obtain a submodular cover. In order to do so, the

241

algorithm needs to specify an ordering of items without knowing the realizations of these

items in advance (i.e., non-adaptively). This step is itself done by running the algorithm in

Theorem 7.6.2 over multiple iterative phases to reduce the deficit without knowing realization

of any chosen items in this round. We now present our algorithm in details, starting with its

main component for reducing the deficit in each round.

7.7.1 The Reduce Subroutine

Let Tk be the items selected by the r-round adaptive algorithm in rounds up to (and

including) k, and Tk be their realization. In round k, the algorithm creates an ordering of all

the available items and sets a threshold τk := Q−Q(r−k)/r for coverage in this round: after

deciding on an ordering of the items non-adaptively, the algorithm picks items according to

this ordering one by one until the total coverage of the function reaches τk. In this section,

we design an algorithm, namely Reduce, which returns an ordered set S ⊆ X \ Tk−1 in

round k such that items in S are enough to reach the coverage threshold for this round with

high probability. If there are items that are not included in S by Reduce, we will simply

add them at the end of S in any arbitrary order.

The input to the function Reduce in round k is the set of items X \ Tk−1, and the function

marginal fTk−1
; by Fact 7.4.2, fTk−1

is also a monotone submodular function. The execution

of Reduce is partitioned over Γ := O(log (mC)) phases, where in each phase, the algorithm

picks a new set of items to be added to the (ordered) set returned by it. The final set of

items returned by Reduce are ordered in increasing order of the phases (with arbitrary

ordering in each phase).

For any phase p ∈ [Γ], we define Sp as the ordered set of items selected in phase 1 up to

(and including) p. Let Qk := Q− f(Tk−1); this is the deficit of the set Tk−1 with respect to

function f . For any set S of items, we define the following event Ek(S):

Ek(S) := 1[Qk − fTk−1
(S) ≥ Qk/Q1/r]. (7.7.1)

242

Intuitively speaking, Ek(S) happens if the set of items S cannot cover most of Qk yet.

In each phase, Reduce makes Λ := O(logQ) calls to Select subroutine (Theorem 7.6.2).

Each call in phase p is to increase the coverage of the set Sp−1 to eventually achieve a

larger coverage in Sp. Instead of passing Sp−1 directly to Select, we instead pass the

set S̃p−1 := Sp−1 | Ek(Sp−1) which is a set of items that has the same distribution as Sp−1

conditioned on the event Ek(Sp−1) (i.e., we only consider such realizations of Sp−1 where

Ek(Sp−1) occurs). We show in Claim 7.7.2 that the performance of Select remains the same

in this case also (simply because in Select we only access the distribution of input sets by

sampling from it and hence we can sample from S̃p−1 instead of Sp−1). This step is required

to ensure that we can indeed achieve a larger coverage with higher probability across phases

as we are “focusing” on realizations that are “bad” in previous phases, i.e., cannot cover a

large fraction of Qk. Formally, we prove that the Pr (Ek(Sp)) ≤ 1/2 · Pr (Ek(Sp−1)), hence

after Γ = Θ(log (mC)) phases, the probability of this bad event reduces to 1/(mC)O(1) and

we can move on to the next round. We present the pseudo-code of Reduce algorithm below.

Reduce(X , fTk−1
): Given a set X of items and a monotone submodular function fTk−1

,

outputs an ordered set of items S to be used in round k of the r-round adaptive algorithm.

1. Initialize: Set Λ← 12 log(Q), and Γ← 2 log (mC) .

2. Set S0 ← ∅.

3. For phases p = 1, · · · ,Γ do:

(a) Set R0 ← ∅ and let S̃p−1 := Sp−1 | Ek(Sp−1).

(b) For iterations i = 1, · · · ,Λ do:

i. Ri ← Ri−1 ∪ Select(X \ {Ri−1 ∪ Sp−1}, fTk−1
,Ri−1 ∪ S̃p−1, 2Q

1/r).

(c) Sp ← Sp−1 ∪ RΛ.

4. Return the set SΓ, ordered according to the order in which items were added to SΓ.

Before analyzing Reduce we need the following straightforward extension of Theorem 7.6.2.

Claim 7.7.2 (Extension of Theorem 7.6.2). Let fT be any monotone submodular function,

243

for some T ⊆ E, such that Q′ := Q − f(T). Let S ⊆ X be any subset of items, and E be

an event which is a function of S and S̃ := S | E. Let ∆ := E[Q′ − fT (S̃)], then Select,

given parameter α ≥ Q′/∆, and 6α samples from S̃, outputs a set R ⊆ X \ S such that

cost of R is O(α) · E [cost(opt)|E] in expectation over the randomness of the algorithm and

E
[
Q′ − fT (S̃ ∪ R)

]
≤ 5∆/6 over the randomness of the algorithm and realizations of S̃ and

R.

Claim 7.7.2 can be proven as follows: in Select we only need samples from the distribution

S, hence by sampling from the distribution of S̃ instead we obtain the same result conditioned

on event E . One should be careful though, as the items in S̃ are no longer independent due

to the conditioning on E . However, Select does not require independence between items in

S and we can simply use S̃ instead of S.

We start by bounding the cost of the sets returned by Reduce in each phase. Note that not

all these sets are going to be chosen by the r-round algorithm in round k (as we may cover

τk before reaching these sets and move on to next round) and hence this cost is not a lower

bound on cost of the r-round algorithm.

Claim 7.7.3. For any p ∈ [Γ], E [cost(Sp \ Sp−1)] = O(Q1/r · logQ) · E[cost(opt)|Ek(Sp−1)].

Proof. We call Select with the parameter 2Q1/r for O(logQ) iterations. By Claim 7.7.2,

cost of each iteration of phase p is at most O(Q1/r) times the expected cost of opt condi-

tioned on Ek(Sp−1). Hence, total cost of phase p is E[cost(Sp \ Sp−1)] = O(Q1/r · logQ) ·

E[cost(opt)|Ek(Sp−1)].

We now prove the main property of the Reduce subroutine, i.e., that the sets returned by

it can cover the required threshold τk with high probability.

Lemma 7.7.4. Suppose SΓ := Reduce(X, fTk−1
). Then,

Pr(Ek(SΓ)) ≤ 1/(mC)2,

244

with respect to the randomness of the algorithm and the realizations of SΓ.

Proof. We prove that the probability of the event Ek(Sp) decreases after each phase p by

a constant factor. Fix a phase p ∈ [Γ]. For a realization S we define deficit ∆(S) =

Qk − fTk−1
(S). Recall that Ri is the set of items picked up to (and including) iteration i

in phase p on calls to Select with parameter α = 2Q1/r. By Claim 7.7.2 we know that

each iteration reduces the expected deficit by a constant factor. More formally, fix an Ri−1

selected up to iteration i− 1. If E [∆(Ri−1 ∪ Sp−1)|Ep−1] ≥ Qk/2Q1/r, then the condition of

Claim 7.7.2 that α ≥ Q′/∆ is satisfied with ∆ = E [∆(Ri−1 ∪ Sp−1)|Ep−1], α = 2Q1/r, and

Q′ = Qk. We then have

E [∆(Ri ∪ Sp−1)|Ek(Sp−1)]

≤ 5

6
E [∆(Ri−1 ∪ Sp−1)|Ek(Sp−1)] ,

where the above expectation is also over the randomness of the Select subroutine in iteration

i, in addition of the realization of Ri ∪Sp−1. Now, we will prove that Λ iterations are enough

to drop the expected deficit below Qk/2Q
1/r. Suppose for a contradiction that this is not

the case, i.e. after Λ iterations we have that

E[∆(RΛ ∪ Sp−1)|Ek(Sp−1)] ≥ Qk
2Q1/r

. (7.7.2)

Due to the fact that fTk−1
is a monotone function, we have

E[∆(Ri ∪ Sp−1)|Ek(Sp−1)] ≥ E[∆(RΛ ∪ Sp−1)|Ek(Sp−1)] ,

for all Ri. Then using Eq. (7.7.2) and the above equation, we can observe that the condition

of Claim 7.7.2 that E [∆(Ri ∪ Sp−1)|Ek(Sp−1)] ≥ Qk/2Q
1/r is satisfied for every Ri. This

245

implies that after Λ iterations the expected deficit can be written as

E[∆(RΛ ∪ Sp−1)|Ek(Sp−1)] ≤
(

5

6

)Λ

· E[∆(Sp−1)|Ek(Sp−1)]

≤
(

5

6

)12 logQ

·Qk (Recall that Λ = 12 logQ)

<
Qk
2Q
≤ Qk

2Q1/r
. (7.7.3)

Eq. (7.7.2) and Eq. (7.7.3) lead to a contradiction. Hence, we will have that

E[∆(Sp)|Ek(Sp−1)] = E[∆(RΛ ∪ Sp−1)|Ek(Sp−1)] <
Qk

2Q1/r
.

where again the expectation is over the randomness of the Select subroutine. Now, using

Markov’s inequality we have that

Pr
(
Ek(Sp)

∣∣∣ Ek(Sp−1)
)

= Pr
(

∆(Sp) ≥
Qk
Q1/r

∣∣∣ Ek(Sp−1)
)
≤ 1

2
, (7.7.4)

where the above probability is both with respect to the realizations of Sp and the coins used

by the algorithm to select Sp. Now, we have that

Pr(Ek(SΓ)) = Pr(Ek(S1)) ·ΠΓ
p=2 Pr (Ek(Si) | Ek(Si−1))

≤
Eq (7.7.4)

(
1

2

)Γ−1

≤ 1

(mC)2
,

by the choice of Γ = Θ(log (mC)), which proves the desired result. Lemma 7.7.4

7.7.2 The r-Round Adaptive Algorithm

We are now ready to present our r-round algorithm which is based on successive applications

of the Reduce subroutine.

246

r-Round-Adaptive(X , f,Q): Given a set of items X , a monotone submodular function

f , and the desired coverage value Q, outputs a set T such that its realization T is feasible.

1. Initialize: Set T0 ← ∅, T0 ← ∅

2. For k = 1, 2, · · · , r do:

(a) Set threshold τk ← Q−Q(r−k)/r

(b) T← Reduce(X \ Tk−1, fTk−1
)

(c) Add the remaining items X \ (T ∪ Tk−1) at the end of T in any arbitrary order.

(d) Observe the realizations T ′ of the set of items T′ ⊆ T selected by running through

the ordered set T until a total coverage of τk is reached, i.e. f(Tk−1 ∪ T ′) ≥ τk
(e) Tk ← T′ ∪ Tk−1 and Tk ← T ′ ∪ Tk−1

3. Return Tr with realization Tr as the final answer.

We are now ready to prove Theorem 7.7.1 by analyzing the above algorithm. The overall plan

is to bound the cost of each round of the r-round algorithm. In each round the algorithm

selects an ordering returned by a call to Reduce and adds the remaining items at the end

of this ordering. As argued earlier, not all the sets in the ordering are going to be chosen by

the r-round algorithm in round k. We will use Claim 7.7.3 and Lemma 7.7.4 to bound the

expected cost of the items selected from the ordering in round k in terms of the expected

cost of opt. In order to do so, we first lower bound the cost of opt.

Claim 7.7.5. For any (possibly randomly chosen) collection S ⊆ X , and any event E which

is a function of S, the expected cost of opt can be lower bounded as

E[cost(opt)] ≥ Pr(E) · E[cost(opt)|E].

247

Proof. The expected cost of opt can be written as

E[cost(opt)] = Pr(E) · E[cost(opt)|E] + Pr(¬E) · E[cost(opt)|¬E]

≥ Pr(E) · E[cost(opt)|E] .

Note that the above also holds even if the collection S is itself randomly chosen. Lemma 7.7.5

We now prove the lemma bounding the expected cost of each round of r-Round-Adaptive.

We will define the notation cost(Roundk) to be the total cost of all the items added to the

feasible set in round k. More formally,

cost(Roundk) := cost(Tk \ Tk−1) .

Now, we will provide a bound on E[cost(Roundk)].

Lemma 7.7.6. For any round k ≤ r, given Tk−1, the expected cost paid by the r-Round-Adaptive

algorithm in round k can bounded as

E[cost(Roundk)|Tk−1] ≤ O(Q1/r log(Q) log(mC)) · E[cost(opt)|Tk−1] .

Proof. Recall that in round k we call Reduce with parameter fTk−1
= fTk−1

such that

Qk = Q−f(Tk−1). Also, recall that in phase p, Reduce adds items Sp \Sp−1 to the ordering

SΓ returned by it. Using Claim 7.7.3 we have that

E[cost(Sp \ Sp−1)|Tk−1] = O(Q1/r · logQ) · E[cost(opt)|Tk−1, Ek(Sp−1)] .

Also, recall that while running through the ordered set of round k we select items from Sp\Sp−1

only if the realization is such that the items in Sp−1 are not able to reach the required coverage

threshold τk. More formally, we only pay for the cost of items in Sp \ Sp−1 when the event

Ek(Sp−1) occurs. Hence, we will pay the cost of phase p items with probability Pr(Ek(Sp−1)).

248

Also, in the case that all the items SΓ returned by Reduce are not able to reach the required

coverage threshold, we trivially bound the cost by mC. Since, Qk ≤ Q(r−k+1)/r, this event

happens with probability at most Pr(Ek(SΓ)) which is upper bounded by 1/(mC)2 using

Lemma 7.7.4. Combining all this, we have that, given Tk−1,

E[cost(Roundk)|Tk−1]

≤
Γ∑
p=1

Pr (Ek(Sp−1)) · E[cost(Sp \ Sp−1)|Tk−1] + Pr (Ek(SΓ)) ·mC

≤
Claim 7.7.3

Γ∑
p=1

Pr (Ek(Sp−1)) ·O
(
Q1/r log(Q)

)
· E[cost(opt)|Tk−1, Ek(Sp−1)]

+ Pr (Ek(SΓ)) ·mC

≤
Claim 7.7.5

O
(
Q1/r log(Q) log(mC)

)
E [cost(opt)|Tk−1] + Pr (Ek(SΓ)) ·mC

≤
Lemma 7.7.4

O
(
Q1/r log(Q) log(mC)

)
E [cost(opt)|Tk−1] +

1

(mC)2
·mC

= O
(
Q1/r log(Q) log(mC)

)
E [cost(opt)|Tk−1] .

Lemma 7.7.6

We are now ready to prove Theorem 7.7.1 which uses the above lemma to give a combined

bound on the cost of all the rounds.

Proof. (of Theorem 7.7.1) We will first divide the cost(r-Round-Adaptive) into the cost

of each round.

E[cost(r-Round-Adaptive)] =

r∑
k=1

E[cost(Roundk)] , (7.7.5)

where recall that cost(Roundk) := cost(Tk \ Tk−1) and Tk are the items selected up to (and

including) round k. Let Tk be the realization of Tk. We first need to understand that there

are two sources of randomness– 1) due to the coins used by the algorithm to sample the

249

realizations; 2) due to stochastic nature of items. We will first fix the randomness due to the

coins used by the algorithm for sampling. Once we fix the realization of coins used by the

algorithm, the only randomness in the algorithm is due to the stochastic nature of items.

Then for any k ≤ r, given a fixed realization of coins in rounds up to k − 1, we have

E[cost(Roundk)] ≤
Lemma 7.7.6

O
(
Q1/r log(Q) log(mC)

)
· E
Tk−1∼Tk−1

E[cost(opt)|Tk−1]

= O
(
Q1/r log(Q) log(mC)

)
E[cost(opt)] ,

where the last equality is due to the fact that once we fix the randomness due to coins up to

round k − 1, then the realizations Tk−1 form a partition over the space of all realizations X.

Since the choice of coins was arbitrary, we have that E[cost(Roundk)] ≤ Õ(Q1/r)cost(opt).

Then, using Eq. (7.7.5) and the above, the total cost can be bounded as

cost(r-Round-Adaptive) = O
(
rQ1/r log(Q) log(mC)

)
E[cost(opt)] .

Theorem 7.7.1

Remark 7.7.7. We can implement the r-round algorithm in polynomial time as long as the

costs are polynomially bounded, i.e., achieve a pseudo-polynomial time algorithm. Indeed, the

only “time consuming” step of the algorithm is to sample from the conditional distribution

S|E for some event E. This is however is only needed as long as the Pr(E) ≥ 1/(mC)Θ(1).

Hence, one can use rejection sampling with the total running time bounded by poly(QmC) to

implement this step. The probability that we do not get the required number of samples from

the event E with Pr(E) ≥ 1/mC after poly(QmC) trials is negligible, and we can pay for the

cost in case this bad event happens.

7.8 A Lower Bound for r-Round Adaptive Algorithms

In this section, we prove a lower bound on the approximation ratio of any r-round adaptive

algorithm for the submodular cover problem and formalize Result 2. We prove this lower

250

bound for the stochastic set cover problem (see Example 7.2.1) which is a special case of the

stochastic submodular cover problem.

Theorem 7.8.1. For any integer r ≥ 1, any r-round adaptive algorithm for the stochastic

set cover problem on instances with m stochastic sets from a universe of size n elements such

that m = nO(r) has expected cost Ω(1
r3 ·n1/r) times the cost of the optimal adaptive algorithm.

Theorem 7.8.1 formalizes Result 2 as by definition, Q = n in the stochastic set cover problem.

Overview. Consider first an instance of the stochastic set cover problem which was used

in Goemans and Vondrák (2006) for proving a 1-round adaptivity gap. There exists a single

stochastic set, say T, which realizes to U \ {e?} for e? chosen uniformly at random from U

(support of T has n sets). The remaining sets in this instance are n singleton sets that each

deterministically realize to some unique element e ∈ U . Solving such an instance adaptively

with just two sets, and indeed even in two rounds of adaptivity, is trivial: choose the set T

and observe its realization in the first round; next choose the singleton set that covers e?.

However, consider any non-adaptive algorithm for this problem: even though it is obvious

that the set T needs to be the first set in the ordering returned by the algorithm, there is

no “good” choice for the ordering of the remaining sets as the algorithm is oblivious to the

identity of e? at this point. It is then fairly easy to see that no matter what ordering the

non-adaptive algorithm chooses, in expectation Ω(n) sets needs to be picked before it could

cover e? and hence the universe U . An adaptivity gap of Ω(n) now follows easily from this

argument.

Our main contribution in this section is to design a family of instances in this spirit that

allows us to extend the above argument to r-round adaptive algorithms. Roughly speaking,

these instances are constructed in a way that at the beginning of each round, the algorithm

has access to a set that covers a “large” portion of the remaining universe “randomly”, but

since the realization of this set is not known to the algorithm, unless it picks many more sets,

it would not be able to also cover the “remainder of universe” (left out by the realization of

the aforementioned set). Morally speaking, this corresponds to replacing the set {e?} with

251

larger subsets of U in the above argument and then recurse on each subset individually.

The rest of this section is devoted to the proof of Theorem 7.8.1. We start by introduc-

ing an algebraic construction of a set-system, named an edifice, due to Chakrabarti and

Wirth (Chakrabarti and Wirth, 2016) and use it to introduce a family of “hard” instances

for the stochastic set cover problem. We then prove that any algorithm with limited rounds

of adaptivity on these instances necessarily incurs a large cost compared to the optimal

adaptive algorithm and prove Theorem 7.8.1.

Edifice Set-System

An edifice over a universe U of n items is a collection of sets in which for any two sets, either

one of them is a subset of the other, or the two sets have a small intersection. Formally:

Definition 7.8.2 (Edifice Set-System (Chakrabarti and Wirth, 2016)). For integers k ≤

s ≤ b ≤ d, a (s, b, k, d)-edifice T over a universe U is a complete d-ary k-level rooted tree

together with a collection of associated sets, satisfying the following properties:

1. Each vertex v in T is associated with a set Uv ⊆ U such that the set associated to the

root of T is U , and Uu ⊆ Uv if u is a child of v in T .

2. If v is a leaf of T , then |Uv| = b.

3. For each leaf u and each node v not an ancestor of u in T , |Uu ∩ Uv| ≤ s.

In this definition, we say that root is at level 1 of the tree and the leaf-vertices are at level k

Edifices are typically interesting when the parameter s is small and parameter b is large

compared to the size of the universe, i.e., when we have large sets which are almost disjoint

from each other in a recursive manner suggested by the tree-structure of an edifice. For our

purpose, we are interested in edifices with parameters r = k ≈ s (r is the number of rounds

we want to prove the lower bound for), b ≈ n1/k, and d = nO(1) (n is the number of elements

in the universe). The existence of such edifices follows from the results in Chakrabarti and

Wirth (2016) (see Theorem 3.5; see also RND-set systems in Assadi and Khanna (2018) for

252

a similar construction), which we summarize in the following proposition.

Proposition 7.8.3 (Chakrabarti and Wirth (2016)). For infinitely many integers N and

any integer k ≥ 1, there exists a (4k,N, k,N2)-edifice over a universe U of size Nk.

Hard Instances for Stochastic Set Cover

Fix an integer k ≥ 1 and a sufficiently large integer N ≥ k and let U be a universe of size

Nk elements. Define T as any arbitrary (4k,N, k,N2)-edifice over U which is guaranteed to

exist by Proposition 7.8.3. We define the following family of “hard” instances for stochastic

set cover.

Family X(k): A collection of stochastic sets over universe U using edifice T .

• For any vertex u ∈ T and any element e ∈ U , there exists a dedicated stochastic set

Xu and Xe in X(k), respectively, defined as follows.

• For any non-leaf vertex u ∈ T with child-vertices v1, . . . , vd, the stochastic set Xu

realizes to one of the sets Tu,v1 , . . . , Tu,vd uniformly at random where Tu,vi := Uu \Uvi .

• For any leaf vertex u ∈ T with Uu = {e1, . . . , eN} (recall that |Uu| = N be Defini-

tion 7.8.2), the stochastic set Xu realizes to one of the sets Tu,e1 , . . . , Tu,eN uniformly

at random where Tu,ei := Uu \ {ei}.

• For any element e ∈ U , Xe deterministically realizes to the singleton set {e}.

For any realization of X(k), we define the canonical path of the realization as the root-to-leaf

path P = v1, v2, . . . , vk over the vertices of the edifice T as follows:

1. v1 is the root of the tree T .

2. For any 1 < i ≤ k, vi is the child-vertex of vi−1 corresponding to Tvi−1,vi = Xvi−1 .

We have the following simple claim on the cost of the optimal adaptive algorithm on the

family X(k) for any integer k ≥ 1.

Claim 7.8.4. For any integer k ≥ 1, the expected cost of opt on X(k) is at most k + 1.

253

Proof. We prove that the following algorithm has expected cost k+1; clearly optimal adaptive

algorithm can only have a lower expected cost.

Consider the adaptive algorithm that constructs the canonical path of the underlying

realization one vertex at a time: it first chooses v1 which is the root of T and add Xv1 to S.

Next, based on the realization of Xv1 , it can determine the second vertex v2 in the canonical

path and adds Xv2 to S. It continues like this until it has added all sets Xv1 , . . . ,Xvk to S

where P := v1, . . . , vk is the canonical path of the realization. Finally, a realization of Xvk

for a leaf vk corresponds to a set Tvk,e that covers all of Uvk (the set associated with the

leaf-vertex vk in the edifice) except for a single element e. The algorithm then picks the set

Xe which deterministically realizes to {e}.

Clearly, the number of stochastic sets picked by this algorithm is k + 1. We argue that these

sets cover the universe U entirely. This is because, Xv1 covers U \ Uv2 , Xv2 covers Uv2 \ Uv3 ,

and so on until Xvk covers Uvk \ {e}. As such, Xv1 ∪ . . . ∪ Xvk covers U \ {e} and picking Xe

would cover the whole universe as Xe always realizes to {e}.

In the remainder of this section, we prove that any (r =)k-round adaptive algorithm for

stochastic set cover on X(k) should incur a cost of roughly n1/k, hence proving Theorem 7.8.1.

It is worth remarking that the adaptive algorithm in Claim 7.8.4 that achieves the cost of

k + 1 requires only k + 1 rounds of adaptivity; as such, our results are in fact proving a

separation between the cost of any k-round and k + 1-round adaptive algorithms.

Before we move on to the proof of Theorem 7.8.1, we prove the following crucial lemma using

properties of edifice T .

Lemma 7.8.5. Let Uvk be the set associated to the k-th vertex vk in the canonical path of X(k)

in edifice T and C be any collection of sets in X(k) \ Xvk . Then
∣∣⋃

T∈C T ∩ Uvk
∣∣ ≤ 4 |C| · k.

Proof. Fix any set T ∈ C. We prove that |T ∩ Uvk | ≤ 4k which would immediately imply

the lemma.

254

If T is a realization of some set Xe for some element e ∈ U , then |T | = 1 and hence the claim

immediately holds. Hence, suppose that T is a realization of Xv for some vertex v ∈ T .

If v is an ancestor of vk, then T = Uv \ U ′v where v′ is either another ancestor of vk or it

is equal to vk itself by definition of the canonical path. In either case, by property (I) of

edifices in Definition 7.8.2, Uvk ⊆ Uv′ and hence T ∩ Uvk = ∅.

If v is not an ancestor of vk, then T ⊆ Uv as Xv ⊆ Uv and by property (III) of edifices in

Definition 7.8.2, |Uv ∩ Vvk | ≤ 4k (here parameter s = 4k) and hence |T ∩ Vvk | ≤ 4k, finalizing

the proof.

Proof of Theorem 7.8.1

Fix any k ≥ 1 and a k-round algorithm A for the stochastic set cover problem on instance

X(k). By Yao’s minimax principle (Yao, 1979), we can assume that A is deterministic. We

use S1, . . . ,Sk to denote the collections of stochastic sets chosen by the algorithm in each

of its k adaptivity rounds. We further use the random variables V1, . . . ,Vk to denote the

vertices on the canonical path of X(k) (note that V1 is always root of the edifice T).

Let d := N2 denote the number of children any non-leaf vertex has in T . For any i ∈ [k − 1]

we define the following two events:

Event Esmall(i)

The collection Si chosen by A in round i has size |Si| ≤ N/8k.

The event Esmall(i) is only a function of the realizations of first i− 1 sets S1, . . . , Si−1 chosen

by A in the first i− 1 rounds plus the sets visited in round i and their realizations before

reaching the threshold fixed by the algorithm to stop the round.

255

Event Ehit(i)

The collection Si chosen by A in round i contains no set Xu where u is a

descendant of vi+1 = Vi+1, i.e., the (i+ 1)-th vertex in the canonical path of

X(k)

The event Ehit(i) is also only a function of the realizations of the first i−1 sets S1, . . . , Si−1, Si,

as well as V1, . . . ,Vi+1.

The following claim implies that event Esmall(i) is most likely to result in Ehit(i) as well.

Claim 7.8.6. For any i ∈ [k−1], Pr (Ehit(i) | Esmall(1), . . . , Esmall(i), Ehit(1), . . . , Ehit(i− 1)) ≥

1− 1
2k .

Proof. Let v1, . . . , vi be the first i vertices on the canonical path of X(k). By definition of

events Ehit(1), . . . , Ehit(i− 1), and since vi is a descendent of all v1, . . . , vi−1 by definition, we

know that no set Xv belong to S1, . . . , Si−1 for any descendent v of vi. In particular, Xvi has

not been chosen in S1, . . . , Si−1 and hence its distribution conditioned on S1, . . . , Si−1 is still

the same distribution as before. As such, the (i+ 1)-vertex of the canonical path of X(k), i.e.,

vi+1 is still chosen uniformly at random over the child-vertices of vi, even conditioned on the

realizations of S1, . . . ,Si−1. On the other hand, conditioned on realizations of S1, . . . ,Si−1,

the ordering for set Si chosen by A is determined deterministically. Let S̃ be the set of first

N/8k (as in event Esmall(i)) items in Si.

For any j ∈ [|S̃|], we define an indicator random variable Yj ∈ {0, 1} which is 1 iff the j-th

set chosen in S̃ is some Xv for a descendent v of vi+1 (notice that this event is based on the

set of items chosen in S̃ not their realizations). Let u1, . . . , ud be the d child-vertices of vi.

We have,

Pr
vi+1

(Yj = 1 | Esmall(1), . . . , Esmall(i), Ehit(1), . . . , Ehit(i− 1)) ≤ 1

d
. (7.8.1)

256

This is simply because only 1/d fraction of descendants of vi are also descendent of vi+1 as

T is a d-ary tree. Define Y =
∑|S̃|

j=1 Yj , i.e., the number of sets chosen from a descendent of

vi+1:

Pr (Y ≥ 1 | Esmall(1), . . . , Esmall(i), Ehit(1), . . . , Ehit(i− 1))

≤ E [Y | Esmall(1), . . . , Esmall(i), Ehit(1), . . . , Ehit(i− 1)] (Markov inequality)

≤
Eq (7.8.1)

|S̃|
d
≤ 1

8k
. (as d = N2 and |S̃| ≤ N/8k and N ≥ 1)

Now notice that under event Esmall(i), in the i-th round, we only pick the sets that are in S̃

and hence under this conditioning, the probability that any descendants of vi+1 belongs to

S̃i is at most 1/8k. This concludes the proof.

Define the events Esmall(∗) := Esmall(1), . . . , Esmall(k − 1) and Ehit(∗) := Ehit(1), . . . , Ehit(k − 1).

We now prove that conditioned on these two events, expected cost of A is large, in particular

Sk needs to be large in expectation.

Lemma 7.8.7. ES1,...,Sk−1
ESk [|Sk| | S1, . . . , Sk−1, Esmall(∗), Ehit(∗)] = Ω(N/k).

Proof. Fix any S1, . . . , Sk−1 conditioned on events Esmall(∗), Ehit(∗); as argued before, these

events are only a function S1, . . . , Sk−1. We now bound |Sk| in expectation.

Recall that vk is the k-th vertex of the canonical path of X(k) which is a leaf vertex of T .

By event Ehit(∗), we know that Xvk has not been chosen by A in S1, . . . , Sk−1. As such,

conditioned on (S1, . . . , Sk−1, Esmall(∗), Ehit(∗)), the set Xvk still realizes to some set Uvk \{e?}

for e? ∈ Uvk uniformly at random. In particular, for any element e ∈ Uvk ,

Pr
e?

(e? = e | S1, . . . , Sk−1, Esmall(∗), Ehit(∗)) =
1

|Uvk |
. (7.8.2)

Let Ucov be the set of elements covered in the first k − 1 rounds, i.e., by S1, . . . , Sk−1. Let

U ′vk := Uvk \Ucov be the set of elements in Uvk which are not covered in the first k−1 rounds.

257

As S1, . . . , Sk−1 do not contain Xvk , we can apply Lemma 7.8.5 and obtain that

∣∣U ′vk ∣∣ = |Uvk | − |Uvk ∩ Ucov| (7.8.3)

≥
Lemma 7.8.5

|Uvk | −
k−1∑
i=1

|Si| · 2k ≥ N − (N/8k) · 4k (7.8.4)

= N/2, (7.8.5)

as by event Esmall(∗), |Si| ≤ N/8k for all i ∈ [k − 1].

Conditioned on S1, . . . , Sk−1, the ordering chosen for Sk is fixed. Let τ := N/16k and

X1, . . . ,Xτ be the first τ sets in this ordering. Now consider the element {e?} = Uvk \ Xvk ;

this element is chosen uniformly at random from Uvk as argued before. We lower bound the

probability that the first τ sets in Sk can cover this element e?. Clearly Xvk cannot cover e?,

hence in the following, without loss of generality, we assume that X1, . . . ,Xτ do not contain

Xvk . This together with Lemma 7.8.5 implies that |(X1 ∪ . . .Xk) ∩ Uvk | ≤ τ · 4k. We have,

Pr (e? ∈ Ucov ∪ X1 ∪ . . . ∪ Xτ | S1, . . . , Sk−1, Esmall(∗), Ehit(∗))

≤
Eq (7.8.2)

|Ucov|
Uvk

+
|(X1 ∪ . . . ∪ Xk−1) ∩ Uvk |

|Uvk |

≤
Eq (7.8.5)

N

2N
+
τ · 4k
N

=
3

4
.

(by choice of τ = N/16k and since |Uvk | = N by Property (II) of edifice in Definition 7.8.2)

This means that with probability at least 1/4, Sk needs to pick more than τ sets to cover

the universe U (in particular the element e?), hence,

E
Sk

[|Sk| | S1, . . . , Sk−1, Esmall(∗), Ehit(∗)] ≥ τ/4 = Ω(N/k).

Taking an expectation over S1, . . . , Sk−1 conditioned on Esmall(∗), Ehit(∗) concludes the proof.

We are now ready to finalize the proof.

258

Lemma 7.8.8. EX∼X(k) [A(X)] = Ω(N/k2).

Proof. We can write the expected cost of A as:

E
X∼X(k)

[A(X)] = E
S1

E
X

[
A(X) | S1

]
= Pr (Esmall(1)) · E

S1

E
X

[
A(X) | S1, Esmall(1)

]
+ (1− Pr (Esmall(1))) · E

S1

E
X

[
A(X) | S1, Esmall(1)

]
≥ Pr (Esmall(1)) · E

S1

E
X

[
A(X) | S1, Esmall(1)

]
+ (1− Pr (Esmall(1))) ·N/8k.

The inequality is by definition of Esmall(1) as this means that |S1| ≥ N/8k. As such, if

Pr (Esmall(∗)) ≤ (1− 1/2k), we are already done as in this case the second term in RHS above

is at least (N/8k) · (1/2k) = Ω(N/k2). Otherwise,

E
X∼X(k)

[A(X)] ≥ (1− 1/2k) · E
S1

E
X

[
A(X) | S1, Esmall(1)

]
≥ (1− 1/2k) · Pr (Ehit(1) | Esmall(1)) E

S1

E
X

[
A(X) | S1, Ehit(1), Esmall(1)

]
≥

Claim 7.8.6
(1− 1/2k)2 · E

S1

E
X

[
A(X) | S1, Ehit(1), Esmall(1)

]
.

We now continue this calculation for the RHS using the sets S2 in second round:

E
S1

E
X

[
A(X) | S1, Ehit(1), Esmall(1)

]
= E

S1

E
S2

E
X

[
A(X) | S2, S1, Ehit(1), Esmall(1)

]
= Pr (Esmall(2) | Ehit(1), Esmall(1)) E

S1

E
S2

E
X

[
A(X) | S2, S1, Esmall(2), Ehit(1), Esmall(1)

]
+ Pr

(
Esmall(2) | Ehit(1), Esmall(1)

)
· E
S1

E
S2

E
X

[
A(X) | S2, S1, Esmall(2), Ehit(1), Esmall(1)

]

Again, if Pr (Esmall(2) | Ehit(1), Esmall(1)) ≤ (1 − 1/2k), we are already done as in this case

259

the second term in RHS above is at least Ω(N/k2). Combining this with previous equation,

we obtain that expected cost of A is at least (1− 1/2k)3 · Ω(N/k2) = Ω(N/k2). Hence, we

can assume that Pr (Esmall(2) | Ehit(1), Esmall(1)) ≥ (1− 1/2k). Using this, and the previous

argument we did for the first round, and by Claim 7.8.6, we obtain that:

E
X∼X(k)

[A(X)] ≥
(

1− 1

2k

)4

· E
S1

E
S2

E
X

[
A(X) | S2, S1, Ehit(2), Esmall(2), Ehit(1), Esmall(1)

]
.

We can thus continue this argument until processing the last round, and either we already have

EX∼X(k) = Ω(N/k2) as for some i ∈ [k−1], Pr (Esmall(i) | 1, . . . , Esmall(i− 1), Ehit(1), . . . , Ehit(i− 1))

is greater than or equal to (1− 1/2k), or:

E
X∼X(k)

[A(X)] ≥
(

1− 1

2k

)2k−2

· E
S1,...,Sk−1

E
X

[
A(X) | S1, . . . , Sk−1, Ehit(∗), Esmall(∗)

]
≥ Ω(1) · E

S1,...,Sk−1

E
Sk

[|Sk| | S1, . . . , Sk−1, Ehit(∗), Esmall(∗)]

≥
Lemma 7.8.7

Ω(N/k).

This concludes the proof.

Theorem 7.8.1 now follows from Lemma 7.8.8 and Claim 7.8.4, by setting r = k and noticing

that N = n1/k in this construction.

260

Chapter 8

Conclusion

I believe that in order to develop machine learning into a rich scientific discipline we

need to create bridges for two-way exchange of ideas between machine learning and other

disciplines that allow us to develop principled solutions to common problems. My research

has contributed towards the creation of these two-way bridges between machine learning

and information elicitation/mechanism design, choice/preference elicitation, and theoretical

computer science. In the future, I hope to explore more problems at these interfaces and

further contribute towards exchange of ideas between these fields.

261

APPENDIX

A.1 Appendix to Chapter 4

A.1.1 Generalization of the ASR algorithm with Regularization

In this section, we shall present a generalized version of the ASR algorithm that relaxes the

assumption that each set Sa is of the same fixed cardinality m, and each set Sa is compared

the same number of times L. The intuition behind this generalization is that each comparison

carries an equal amount of information, and thus, we should give a higher preference to

the empirical estimates p̂i|Sa corresponding to sets with more comparisons. Furthermore,

comparisons on smaller sets are more reliable than comparisons on larger sets. In general, sets

with larger cardinality should have proportionately more comparisons. Lastly, in practice,

we often encounter comparison data for which the random walk P̂ on the comparison graph

Gc is not strongly connected. We can resolve this issue through regularization. With these

in mind, we update our algorithm as discussed below:

Given general comparison data Y′ = {(Sa,ya)da=1}, where Sa ⊆ [n] is of cardinality |Sa|, and

ya = (y1
a, . . . , y

La
a), we define d′i for each i ∈ [n] as

d′i :=
∑

a∈[d]:i∈Sa

(
La
|Sa|

+ λ

)

where λ is a regularization parameter. Intuitively, one can think of the regularization as

adding λ|Sa| pseudo-comparisons to each set Sa, with each item in the set winning an equal λ

times. Furthermore, we define ni|Sa to be the number of times item i ∈ Sa won in a |Sa|-way

comparison amongst items in Sa, i.e. for all a ∈ [d], for all i ∈ Sa,

ni|Sa :=

La∑
l=1

1[yla = i] (A.1.1)

262

Algorithm 10 Generalized-ASR

Input Markov chain P̂′ (according to Eq. (A.1.2))
Initialize π̂ = (1

n , · · · , 1
n)> ∈ ∆n

while estimates do not converge do
π̂′ ← P̂′>π̂′

end while
Output ŵ′ = D′−1π̂′

‖D′−1π̂′‖1

Using the above notation, we set up a Markov chain P̂′ ∈ Rn×n+ such that entry (i, j) is

P̂ ′ij :=
1

d′i

∑
a∈[d]:i,j∈Sa

(
nj|Sa + λ

|Sa|

)
(A.1.2)

One can verify that this non-negative matrix is indeed row stochastic, hence corresponds to

the transition matrix of a Markov chain. One can also verify that this construction reduces to

a regularized version of P̂ (Eq. (4.3.2)) when all sets are of an equal size and are compared an

equal number of times, and is identical to P̂ when λ = 0. Lastly, we define the matrix D′ as

a diagonal matrix, with diagonal entry D′ii := d′i, ∀i ∈ [n]. Similar to ASR, we compute the

stationary distribution of P̂′, and output a (normalized) D′−1 transform of this stationary

distribution.

A.1.2 Proof of Corollary 4.5.7

Corollary 4.5.7 follows from the following lemma which compares the spectral gap of the

matrix P with the spectral gap of the graph Laplacian.

Lemma A.1.1. Let L := C−1A be the Laplacian of the undirected graph Gc([n], E). Then

the spectral gap µ(P) = 1−λ2(P) of the reversible Markov chain P (Eq. (4.3.2)) corresponding

to the ASR algorithm is related to the spectral gap ξ = 1− λ2(L) of the Laplacian as

µ(P) ≥ ξ

mb2

Proof. To prove this inequality, we shall leverage the comparison Lemma 4.4.4 of Diaconis

and Saloff-Coste (1993), with Q,ν = L,ν. From the definition of the Laplacian, it is clear

263

that for all i, νiLij = 1/2|E|. Furthermore, νi = ci/2|E| ≥ di/2|E|, where ci is the number of

unique items i was compared with, which is trivially at least the number of unique multiway

comparisons of which i was a part. Thus,

β := max
i∈[n]

πi
νi

= max
i∈[n]

widi/‖Dw‖1
ci/2|E|

≤ 2|E|wmax

‖Dw‖1
α := min

(i,j)∈E

πiPij
νiLij

= min
(i,j)∈E

widi
‖Dw‖1

1
di

∑
a:(i,j)∈Sa

wj∑
k∈Sa wk

1/2|E|

≥ 2|E|w2
min

mwmax‖Dw‖1

Thus, α/β ≥ 1/mb2, which proves our claim.

A.1.3 Proof of Corollary 4.5.8

In order to prove this corollary we first give the following claim.

Claim A.1.2. Given items [n], and comparison graph Gc = ([n], E) induced by comparison

data Y = {Sa,ya}da=1, let the vector of true MNL parameters be w = (w1, . . . , wn). Further-

more, let di represent the number of unique comparisons of which item i ∈ [n] was a part.

Then we have

davg =
∑
i∈[n]

widi ≤
2wmax|E|
wminn

,

where wmax = maxi∈[n]wi, and wmin = minj∈[n]wj.

Proof. Clearly,

wmin

∑
i∈[n]

widi ≤
1

n

∑
i∈[n]

widi ≤
wmax

n

∑
i∈[n]

di,

The statement of the lemma follows by realizing that
∑

i∈[n] di ≤
∑

i∈[n] ci ≤ 2|E|.

Proof. (of Corollary 4.5.8) Substituting the above bound on davg in the sample complexity

264

bounds of Corollary 4.5.7, we get the following guarantee on the total variation error between

the estimates ŵ and the true weight vector w

‖w − ŵ‖TV ≤
Cmb3 κ |E|
n ξ dmin

√
max{m, log(n)}

L
,

where b = wmax
wmin

. Furthermore, this guarantee holds with probability ≥ 1 − 3n−(C2−50)/25.

From this, we can conclude that if

L ≥ max{m, log(n)}
(

10mb3 κ |E|
n ξ dmin

)2

,

then it is sufficient to guarantee that ‖w−ŵ‖TV = o(1) with probability ≥ 1−3n−2. Trivially

bounding κ = O(log n), and from the assumptions b = O(1) and |E| = O(n poly(log n)), we

can conclude

L = O(ξ−2m3poly(log n))

where the additional m factor comes from trivially bounding max{m, log n} ≤ m log n. This

gives us a sample complexity bound of

|E| × L = O(ξ−2m3 n poly(log n))

for our algorithm, which proves the corollary.

A.1.4 Additional Experimental Results

In this section we will describe additional experimental results comparing our algorithm

and the RC/LSR algorithms on various synthetic and real world datasets. Since we require

additional regularization when the random walk induced by comparison data is reducible, we

will first describe the regularized version of the RC and LSR algorithms (regularized version

of our algorithm is given in Appendix A.1.1).

265

A.1.5 RC and LSR algorithms with regularization

In this section, for the sake of completeness, we state the regularized version of the RC

(Negahban et al., 2017) and LSR (Maystre and Grossglauser, 2015) algorithms.1 These

algorithms are based on computing the stationary distribution of a Markov chain. In the

case of pairwise comparisons, for a regularization parameter λ > 0, the Markov chain

P̂′RC := [P̂ ′RC
ij], where, ∀i, j ∈ [n],

P̂ ′RC
ij :=


1

dmax

(
nj|{i,j}+λ

nj|{i,j}+ni|{i,j}+2λ

)
, if i 6= j

1− 1
dmax

∑
j′ 6=i P̂

′RC
ij , if i = j

and nj|{i,j} is defined according to Eq. (A.1.1). In the case of multi-way comparisons, the

Markov chain P̂′LSR := [P̂ ′LSR
ij], where, ∀i, j ∈ [n],

P̂ ′LSR
ij :=


ε
∑

a∈[d]:i,j∈Sa

(
nj|Sa+λ

|Sa|

)
, if i 6= j

1− ε∑j′ 6=i P̂
′LSR
ij , if i = j

where ε is a quantity small enough to make the diagonal entries of P̂′LSR non negative, and

nj|Sa is again defined according to Eq. (A.1.1).

A.1.6 Synthetic Datasets

In this section, we give additional experimental results for various other values of parameters

m and n. The plots are given in the figures below. The general trends observed from these

experiments are exactly as predicted by our theoretical analysis. In particular, we note that

even in the case of a star graph topology, the convergence rate of ASR remains essentially

the same with increasing n, while the performance of RC and LSR degrades smoothly. This

really conveys the low dependence on the ratio dmax/dmin.
1See Section 3.3 in Negahban et al. (2017) for more details.

266

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

ASR

RC

200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

ASR

RC

5 10 15 20
0

0.1

0.2

0.3

0.4
ASR

RC

500 1000 1500
0

0.1

0.2

0.3

0.4

0.5
ASR

RC

5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ASR

RC

200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

ASR

RC

Figure 15: Results on synthetic data: L1 error vs. number of iterations for our algorithm,
ASR, compared with the RC algorithm (for m = 2) on data generated from the MNL/BTL
model with the random and star graph topologies.

A.1.7 Real Datasets

In this section, we provide additional experimental results for more datasets, and additional

values of the regularization parameter λ. We conducted experiments on the YouTube dataset

(Shetty, 2012), various GIF datasets (Rich et al.), and the SFwork and SFshop (Koppelman

and Bhat, 2006) datasets. Below we briefly describe each of these datasets (additional

statistics are given in Table 6).

1. YouTube Comedy Slam Preference Data. This dataset is due to a video discovery

experiment on YouTube in which users were shown a pair of videos and were asked to

vote for the video they found funnier out of the two.2

2. GIFGIF datasets. These datasets are due to a experiment that tries to understand

the emotional content present in animated GIFs. In this experiment users are shown a

pair of GIFs and asked to vote for the GIF that most accurately represents a particular
2See https://archive.ics.uci.edu/ml/datasets/YouTube+Comedy+Slam+Preference+Data for more de-

tails.

267

https://archive.ics.uci.edu/ml/datasets/YouTube+Comedy+Slam+Preference+Data

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

ASR

LSR

100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

ASR

LSR

2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

ASR

LSR

200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

ASR

LSR

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ASR

LSR

200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

ASR

LSR

Figure 16: Results on synthetic data: L1 error vs. number of iterations for our algorithm,
ASR, compared with the LSR algorithm (for m = 3) on data generated from the MNL/BTL
model with the random and star graph topologies.

emotion. These votes are collected for several different emotions.3

3. SF datasets. These datasets are from a survey of transportation preferences around

the San Francisco Bay Area in which citizens were asked to vote on their preferred

commute option amongst different options.4

As expected, the peak log likelihood decreases with increasing λ, as this regularization

parameter essentially dampens the information imparted by the comparison data. We also

plot degree distributions of these real world datasets in order to explore the behavior of

the ratio dmax/dmin in practice. In particular, we observe that this quantity does not really

behave like a constant, and is very large in most cases. This is particularly evident in the

Youtube dataset, where the degree distribution closely follows the power law relationship

with n.

3See http://gif.gf for more details.
4These datasets are available at https://github.com/sragain/pcmc-nips.

268

http://gif.gf
https://github.com/sragain/pcmc-nips

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

ASR

LSR

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

ASR

LSR

2 4 6 8
0

0.05

0.1

0.15

0.2
ASR

LSR

200 400 600 800
0

0.1

0.2

0.3

0.4

0.5
ASR

LSR

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

ASR

LSR

100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

ASR

LSR

Figure 17: Results on synthetic data: L1 error vs. number of iterations for our algorithm,
ASR, compared with the LSR algorithm (for m = 5) on data generated from the MNL/BTL
model with the random and star graph topologies.

Table 6: Statistics for real world datasets

Dataset n m d total choices
Youtube 21207 2 394007 1138562
GIF-amusement 6118 2 75649 77609
GIF-anger 6119 2 64830 66505
GIF-contentment 6118 2 70230 72175
GIF-excitement 6119 2 80493 82564
GIF-happiness 6119 2 104801 107816
GIF-pleasure 6119 2 86499 88959
GIF-relief 6112 2 38770 39853
GIF-sadness 6118 2 63577 65263
GIF-satisfaction 6118 2 78401 80474
GIF-shame 6116 2 46249 47550
GIF-surprise 6118 2 63850 65591
SFWork 6 3-6 12 5029
SFShop 8 4-8 10 3157

269

Figure 18: Degree distributions of various real world datasets.

270

20 40 60 80 100 120
-5.2

-5

-4.8

-4.6

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2
10

4

ASR

RC

20 40 60 80 100 120 140 160 180
-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2
10

4

ASR

RC

10 20 30 40 50 60 70 80 90
-5.2

-5

-4.8

-4.6

-4.4

-4.2

-4

-3.8
10

4

ASR

RC

20 40 60 80 100 120 140
-6

-5.5

-5

-4.5

-4

-3.5

-3
10

4

ASR

RC

20 40 60 80 100 120 140 160
-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5
10

4

ASR

RC

20 40 60 80 100 120
-6

-5.5

-5

-4.5

-4

-3.5
10

4

ASR

RC

20 40 60 80 100 120 140
-2.8

-2.6

-2.4

-2.2

-2

-1.8
10

4

ASR

RC

20 40 60 80 100 120 140 160 180 200
-4

-3.5

-3

-2.5

-2
10

4

ASR

RC

20 40 60 80 100 120
-5.5

-5

-4.5

-4

-3.5

-3
10

4

ASR

RC

20 40 60 80 100 120 140 160
-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2
10

4

ASR

RC

20 40 60 80 100 120 140 160
-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4
10

4

ASR

RC

50 100 150 200
-9

-8.5

-8

-7.5
10

5

ASR

RC

5 10 15 20 25 30 35 40 45 50

Iteration number

-4400

-4350

-4300

-4250

-4200

-4150

-4100

L
o
g
-l
ik
el
ih
o
o
d

SFwork dataset ǫ = 0.2

ASR

LSR

2 4 6 8 10 12 14 16 18 20

Iteration number

-5030

-5020

-5010

-5000

-4990

-4980

-4970

-4960

L
o
g
-l
ik
el
ih
o
o
d

SFshop dataset ǫ = 0.2

ASR

LSR

Figure 19: Results on real data: Log-likelihood vs. number of iterations for our algorithm,
ASR, compared with the RC algorithm (for pairwise comparison data) and the LSR algorithm
(for multi-way comparison data), all with regularization parameter set to 0.2.

271

10 20 30 40 50 60 70 80
-5.6

-5.4

-5.2

-5

-4.8

-4.6

-4.4

-4.2

-4
10

4

ASR

RC

20 40 60 80 100 120
-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8
10

4

ASR

RC

10 20 30 40 50 60
-5.4

-5.2

-5

-4.8

-4.6

-4.4

-4.2
10

4

ASR

RC

20 40 60 80 100
-6

-5.5

-5

-4.5

-4
10

4

ASR

RC

10 20 30 40 50 60 70 80 90 100
-7.5

-7

-6.5

-6

-5.5

-5
10

4

ASR

RC

10 20 30 40 50 60 70 80
-6.2

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8

-4.6

-4.4
10

4

ASR

RC

20 40 60 80 100
-2.9

-2.8

-2.7

-2.6

-2.5

-2.4

-2.3

-2.2

-2.1
10

4

ASR

RC

20 40 60 80 100 120
-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8
10

4

ASR

RC

10 20 30 40 50 60 70 80
-5.6

-5.4

-5.2

-5

-4.8

-4.6

-4.4

-4.2

-4
10

4

ASR

RC

20 40 60 80 100
-3.4

-3.2

-3

-2.8

-2.6

-2.4
10

4

ASR

RC

20 40 60 80 100
-4.6

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2
10

4

ASR

RC

20 40 60 80 100 120 140 160 180
-8.8

-8.6

-8.4

-8.2

-8

-7.8

-7.6
10

5

ASR

RC

5 10 15 20 25 30 35 40 45 50
-4400

-4350

-4300

-4250

-4200

-4150

-4100

ASR

LSR

5 10 15 20
-5030

-5020

-5010

-5000

-4990

-4980

-4970

-4960

ASR

LSR

Figure 20: Results on real data: Log-likelihood vs. number of iterations for our algorithm,
ASR, compared with the RC algorithm (for pairwise comparison data) and the LSR algorithm
(for multi-way comparison data), all with regularization parameter set to 1.

272

A.2 Appendix to Chapter 5

A.2.1 Estimation of Choice Models from Real-World Datasets

We estimate choice probabilities from several real-world preference datasets, which contain

multiple partial preference orders over items. The choice probability Pi|S of an item i over S,

was taken to be the fraction of times in these partial order item i was the top ranked items

in S. More formally, let there be m partial orders, P1, · · · ,Pm, over n items. For any subset

S ⊆ [n], and i ∈ [n], let Ni|S be defined as:

Ni|S :=
∑
j∈[m]

1[∀i′ ∈ S \ {i} : i �Pj i′] .

The choice probability Pi|S is then estimated as:

Pi|S :=
Ni|S∑
i′∈S Ni′|S

.

A.2.2 Runtime and Space Complexity of WBA-A and WBA-L

The space complexity of our algorithms is O(n2) as they only store the pairwise statistics

extracted from multiway choices. Each trial in our algorithms runs in time polynomial in n.

The most non-trivial step is computing Ji(t, C) for each arm. This step requires polynomial

time because we can compute the quantity argmaxS⊆[n] Ii(t, S) − |S| · log(nC) and check

if it is greater than log(t). We compute argmaxS⊆[n] Ii(t, S)− |S| · log(nC) by first sorting

arms j in the order of values 1[P̂ij(t) ≤ 1
2] ·Nij(t) · d(P̂ij(t),

1
2). We then start with S ← ∅

and add one arm at a time from this sorted ordering to S. We stop adding arms to the

set S once the value 1[P̂ij(t) ≤ 1
2] · Nij(t) · d(P̂ij(t),

1
2) of the current arm j is less than

log(nC). It is easy to see that computing Ii(t, S)− |S| · log(nC) for this set S gives the value

of argmaxS⊆[n] Ii(t, S)− |S| · log(nC).

273

A.2.3 Technical Lemmas

Theorem A.2.1. [Bernstein Inequality for Martingales; Cesa-Bianchi and Lugosi (2006)]

Let X1, ..., Xm be a bounded martingale difference sequence with respect to the filtration

F = (Fi)1≤i≤m and with |Xi| ≤ K. Let Zi =
∑i

j=1Xj be the associated martingale sequence.

Let the sum of the conditional variances be Σ2
m =

∑m
i=1 E[X2

i |Fi−1]. Then for all constants

λ, ν > 0,

Pr
(

max
i∈[m]

|Zi| >
√

2νt+ 2Kt/3,Σ2
m ≤ ν

)
≤ 2e−t .

274

BIBLIOGRAPHY

J. D. Abernethy and R. M. Frongillo. A characterization of scoring rules for linear properties.
In Proceedings of the 25th Annual Conference on Learning Theory, 2012.

A. Agarwal and S. Agarwal. On consistent surrogate risk minimization and property elicitation.
In Conference on Learning Theory, pages 4–22, 2015.

A. Agarwal, S. Agarwal, S. Assadi, and S. Khanna. Learning with limited rounds of adaptivity:
Coin tossing, multi-armed bandits, and ranking from pairwise comparisons. In Proceedings
of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The Netherlands,
7-10 July 2017, pages 39–75, 2017a.

A. Agarwal, D. Mandal, D. C. Parkes, and N. Shah. Peer prediction with heterogeneous
users. In Proceedings of the 2017 ACM Conference on Economics and Computation,
EC ’17, page 81–98, New York, NY, USA, 2017b. Association for Computing Machinery.
ISBN 9781450345279. doi: 10.1145/3033274.3085127. URL https://doi.org/10.1145/
3033274.3085127.

A. Agarwal, P. Patil, and S. Agarwal. Accelerated spectral ranking. In Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, pages 70–79, 2018.

A. Agarwal, S. Assadi, and S. Khanna. Stochastic submodular cover with limited adaptivity.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 323–342, 2019a.

A. Agarwal, N. Johnson, and S. Agarwal. Choice bandits. In preparation, 2019b.

A. Agarwal, N. Johnson, and S. Agarwal. Choice bandits. In H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

S. Agrawal, V. Avadhanula, V. Goyal, and A. Zeevi. A Near-Optimal Exploration-Exploitation
Approach for Assortment Selection. In Proceedings of the 17th ACM Conference on
Economics and Computation, 2016.

S. Agrawal, V. Avadhanula, V. Goyal, and A. Zeevi. Thompson sampling for the mnl-bandit.
In COLT, 2017.

N. Ailon, Z. Karnin, and T. Joachims. Reducing Dueling Bandits to Cardinal Bandits. In
Proceedings of the 31st International Conference on Machine Learning, 2014.

M. Ajtai, J. Komlos, W. L. Steiger, and E. Szemerédi. Deterministic selection in o(log log n)
parallel time. In STOC, 1986.

275

https://doi.org/10.1145/3033274.3085127
https://doi.org/10.1145/3033274.3085127

H. Allcott and M. Gentzkow. Social Media and Fake News in the 2016 Election. Technical
report, National Bureau of Economic Research, 2017.

N. Alon and Y. Azar. Sorting, approximate sorting, and searching in rounds. SIAM J.
Discrete Math., 1(3):269–280, 1988.

A. Anagnostopoulos, L. Becchetti, I. Bordino, S. Leonardi, I. Mele, and P. Sankowski.
Stochastic query covering for fast approximate document retrieval. ACM Trans. Inf.
Syst., 33(3):11:1–11:35, Feb. 2015. ISSN 1046-8188. doi: 10.1145/2699671. URL http:
//doi.acm.org/10.1145/2699671.

A. Anandkumar, R. Ge, D. J. Hsu, S. M. Kakade, and M. Telgarsky. Tensor Decompositions
for Learning Latent Variable Models. Journal of Machine Learning Research, 15(1):
2773–2832, 2014.

A. Asadpour and H. Nazerzadeh. Maximizing stochastic monotone submodular functions.
Management Science, 62(8):2374–2391, 2016.

A. Asadpour, H. Nazerzadeh, and A. Saberi. Stochastic submodular maximization. In
Internet and Network Economics, 4th International Workshop, WINE 2008, Shanghai,
China, December 17-20, 2008. Proceedings, pages 477–489, 2008.

S. Assadi and S. Khanna. Tight bounds on the round complexity of the distributed maximum
coverage problem. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
2412–2431, 2018.

S. Assadi, S. Khanna, and Y. Li. The stochastic matching problem with (very) few queries.
In Proceedings of the 2016 ACM Conference on Economics and Computation, EC ’16,
Maastricht, The Netherlands, July 24-28, 2016, pages 43–60, 2016.

S. Assadi, S. Khanna, and Y. Li. The stochastic matching problem: Beating half with a
non-adaptive algorithm. In Proceedings of the 2017 ACM Conference on Economics and
Computation, EC ’17, Cambridge, MA, USA, June 26-30, 2017, pages 99–116, 2017.

S. Athey and G. W. Imbens. Machine learning methods that economists should know about.
Annual Review of Economics, 11:685–725, 2019.

J.-Y. Audibert and S. Bubeck. Best Arm Identification in Multi-Armed Bandits. In COLT,
2010.

P. Awasthi, A. Blum, O. Sheffet, and A. Vijayaraghavan. Learning mixtures of ranking
models. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 2609–2617, 2014.

276

http://doi.acm.org/10.1145/2699671
http://doi.acm.org/10.1145/2699671

Y. Azar and I. Gamzu. Ranking with submodular valuations. In Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco,
California, USA, January 23-25, 2011, pages 1070–1079, 2011.

Y. Azar, I. Gamzu, and X. Yin. Multiple intents re-ranking. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009, pages 669–678, 2009.

E. Balkanski and Y. Singer. The adaptive complexity of maximizing a submodular function.
In STOC 2018 (To Appear).

E. Balkanski and Y. Singer. A lower bound for parallel submodular minimization. In
K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and J. Chuzhoy, editors,
Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 130–139. ACM, 2020.

E. Balkanski, A. Rubinstein, and Y. Singer. An exponential speedup in parallel running
time for submodular maximization without loss in approximation. CoRR, abs/1804.06355,
2018.

P. L. Bartlett, O. Bousquet, and S. Mendelson. Local rademacher complexities. The Annals
of Statistics, 33(4):1497–1537, 2005.

P. L. Bartlett, M. Jordan, and J. McAuliffe. Convexity, classification and risk bounds.
Journal of the American Statistical Association, 101(473):138–156, 2006.

V. Bengs and E. Hüllermeier. Preselection bandits under the plackett-luce model. CoRR,
abs/1907.06123, 2019. URL http://arxiv.org/abs/1907.06123.

A. Blum, J. P. Dickerson, N. Haghtalab, A. D. Procaccia, T. Sandholm, and A. Sharma.
Ignorance is almost bliss: Near-optimal stochastic matching with few queries. In Proceedings
of the Sixteenth ACM Conference on Economics and Computation, EC ’15, Portland, OR,
USA, June 15-19, 2015, pages 325–342, 2015.

B. Bollobás and G. Brightwell. Parallel selection with high probability. SIAM Journal on
Discrete Mathematics, 3(1):21–31, 1990.

B. Bollobás and A. Thomason. Parallel sorting. Discrete Applied Mathematics, 6(1):1–11,
1983.

R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39(3/4):324–345, 1952a.

R. A. Bradley and M. E. Terry. Rank Analysis of Incomplete Block Designs: I. The Method
of Paired Comparisons. Biometrika, 39(3-4):324–345, 1952b.

M. Braverman, J. Mao, and S. M. Weinberg. Parallel Algorithms for Select and Partition
with Noisy Comparisons. In STOC, 2016a.

277

http://arxiv.org/abs/1907.06123

M. Braverman, J. Mao, and S. M. Weinberg. Parallel algorithms for select and partition
with noisy comparisons. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
851–862, 2016b.

M. Braverman, J. Mao, and Y. Peres. Sorted top-k in rounds. In A. Beygelzimer and D. Hsu,
editors, Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA,
volume 99 of Proceedings of Machine Learning Research, pages 342–382. PMLR, 2019.
URL http://proceedings.mlr.press/v99/braverman19a.html.

A. Breuer, E. Balkanski, and Y. Singer. The FAST algorithm for submodular maximization.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 1134–1143. PMLR, 2020.

B. Brost, Y. Seldin, I. J. Cox, and C. Lioma. Multi-Dueling Bandits and Their Application
to Online Ranker Evaluation. In Proceedings of the 25th ACM International Conference
on Information and Knowledge Management, 2016.

S. Bubeck, T. Wang, and N. Viswanathan. Multiple identifications in multi-armed bandits.
In ICML, 2013.

D. Buffoni, C. Calauzènes, P. Gallinari, and N. Usunier. Learning scoring functions with order-
preserving losses and standardized supervision. In Proceedings of the 28th International
Conference on Machine Learning, 2011.

A. Buja, W. Stuetzle, and Y. Shen. Loss functions for binary class probability estimation
and classification: Structure and applications. 2005.

R. Busa-Fekete, B. Szorenyi, P. Weng, W. Cheng, and E. Hullermeier. Top-k Selection
based on Adaptive Sampling of Noisy Preferences. In Proceedings of the 30th International
Conference on Machine Learning, 2013.

Y. Cai, C. Daskalakis, and C. Papadimitriou. Optimum statistical estimation with strategic
data sources. In Proceedings of The 28th Conference on Learning Theory, pages 280–296,
2015.

C. Calauzènes, N. Usunier, and P. Gallinari. On the (non-)existence of convex, calibrated
surrogate losses for ranking. In Advances in Neural Information Processing Systems, 2012.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge university press,
2006.

A. Chakrabarti and A. Wirth. Incidence geometries and the pass complexity of semi-
streaming set cover. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages
1365–1373, 2016.

278

http://proceedings.mlr.press/v99/braverman19a.html

K. Chandrasekaran and R. Karp. Finding a most biased coin with fewest flips. In Journal of
Machine Learning Research, volume 35, pages 394–407, 2014.

M. Charikar, C. Chekuri, and M. Pál. Sampling bounds for stochastic optimization. In Ap-
proximation, Randomization and Combinatorial Optimization. Algorithms and Techniques,
pages 257–269. Springer, 2005.

B. Chen and P. I. Frazier. Dueling Bandits with Weak Regret. In Proceedings of the 34th
International Conference on Machine Learning, 2017.

L. Chen and J. Li. On the Optimal Sample Complexity for Best Arm Identification. arXiv
preprint arXiv:1511.03774, 2015. URL http://arxiv.org/abs/1511.03774.

L. Chen, J. Li, and M. Qiao. Nearly Instance Optimal Sample Complexity Bounds for Top-k
Arm Selection. arXiv preprint arXiv:1702.03605, 2017a. URL https://arxiv.org/abs/
1702.03605.

W. Chen, Y. Wang, and Y. Yuan. Combinatorial Multi-Armed Bandit: General Framework,
Results and Applications. In Proceedings of the 30th International Conference on Machine
Learning, 2013.

X. Chen and Y. Wang. A Note on Tight Lower Bound for MNL-Bandit Assortment Selection
Models. Technical report, arXiv:1709.06109v2, 2017.

X. Chen, Y. Li, and J. Mao. A nearly instance optimal algorithm for top-k ranking under
the multinomial logit model. In SODA, 2017b.

X. Chen, Y. Li, and J. Mao. A Nearly Instance Optimal Algorithm for Top-k Ranking under
the Multinomial Logit Model. In Proceedings of the 29th Annual ACM-SIAM Symposium
on Discrete Algorithms, 2018.

Y. Chen and C. Suh. Spectral MLE : Top-K Rank Aggregation from Pairwise Comparisons.
In Proceedings of the 32nd International Conference on Machine Learning, 2015.

F. Chierichetti, R. Kumar, and A. Tomkins. Learning a mixture of two multinomial logits.
In J. G. Dy and A. Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 960–968. PMLR, 2018.

G. Cho and C. Meyer. Comparison of perturbation bounds for the stationary distribution of
a Markov chain. Linear Algebra and its Applications, 335(1-3):137–150, 2001.

V. Cohen-Addad, F. Mallmann-Trenn, and C. Mathieu. Instance-optimality in the noisy
value-and comparison-model. In S. Chawla, editor, Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8,
2020, pages 2124–2143. SIAM, 2020.

279

http://arxiv.org/abs/1511.03774
https://arxiv.org/abs/1702.03605
https://arxiv.org/abs/1702.03605

V. Cohen-Addad, S. Lattanzi, S. Mitrovic, A. Norouzi-Fard, N. Parotsidis, and J. Tarnawski.
Correlation clustering in constant many parallel rounds. In M. Meila and T. Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages
2069–2078. PMLR, 2021.

R. Cole. Parallel merge sort. In 27th Annual Symposium on Foundations of Computer
Science, Toronto, Canada, 27-29 October 1986, pages 511–516, 1986.

R. Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–785, 1988.

R. Combes, M. S. Talebi, A. Proutiere, and M. Lelarge. Combinatorial Bandits Revisited. In
Advances in Neural Information Processing Systems 28, 2015.

G. Cormode, H. J. Karloff, and A. Wirth. Set cover algorithms for very large datasets. In
Proceedings of the 19th ACM Conference on Information and Knowledge Management,
CIKM 2010, Toronto, Ontario, Canada, October 26-30, 2010, pages 479–488, 2010.

D. Cossock and T. Zhang. Statistical analysis of Bayes optimal subset ranking. IEEE
Transactions on Information Theory, 54(11):5140–5154, 2008.

A. Dasgupta and A. Ghosh. Crowdsourced Judgement Elicitation with Endogenous Profi-
ciency. In Proceedings of the 22nd international conference on World Wide Web, pages
319–330. ACM, 2013.

S. Davidson, S. Khanna, T. Milo, and S. Roy. Top-k and clustering with noisy comparisons.
ACM Transactions on Database Systems (TODS), 39(4):35, 2014.

A. P. Dawid and A. M. Skene. Maximum Likelihood Estimation of Observer Error-Rates
Using the EM Algorithm. Applied statistics, pages 20–28, 1979a.

P. A. Dawid and A. M. Skene. Maximum Likelihood Estimation of Observer Error-Rates
Using the EM Algorithm. Applied statistics, 28:20–28, 1979b.

B. C. Dean, M. X. Goemans, and J. Vondrák. Adaptivity and approximation for stochastic
packing problems. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25,
2005, pages 395–404, 2005.

B. C. Dean, M. X. Goemans, and J. Vondrák. Approximating the stochastic knapsack
problem: The benefit of adaptivity. Math. Oper. Res., 33(4):945–964, 2008.

J. DeBoer, G. S. Stump, D. Seaton, and L. Breslow. Diversity in MOOC Students’ Back-
grounds and Behaviors in Relationship to Performance in 6.002 x. In Proceedings of the
Sixth Learning International Networks Consortium Conference, volume 4, 2013.

A. Deshpande, L. Hellerstein, and D. Kletenik. Approximation algorithms for stochastic
boolean function evaluation and stochastic submodular set cover. In Proceedings of the

280

twenty-fifth annual ACM-SIAM Symposium on Discrete Algorithms, pages 1453–1466.
SIAM, 2014.

L. Devroye. The equivalence of weak, strong and complete convergence in l1 for kernel density
estimates. The Annals of Statistics, pages 896–904, 1983.

L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer Science
& Business Media, 2012.

P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible Markov chains. The
Annals of Applied Probability, pages 696–730, 1993.

P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov chains. The Annals
of Applied Probability, pages 36–61, 1991.

I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 624–633,
2014.

T. Domencich and D. McFadden. Urban travel demand; a behavioural analysis. North-Holland,
1975.

J. Duchi, L. Mackey, and M. Jordan. On the consistency of ranking algorithms. In Proceedings
of the 27th International Conference on Machine Learning, 2010.

M. Dudik, K. Hofmann, R. E. Schapire, A. Slivkins, and M. Zoghi. Contextual Dueling
Bandits. In Proceedings of the 28th Conference on Learning Theory, 2015.

M. Dyer, L. A. Goldberg, M. Jerrum, R. Martin, et al. Markov chain comparison. Probability
Surveys, 3:89–111, 2006.

E. Emamjomeh-Zadeh, D. Kempe, and V. Singhal. Deterministic and probabilistic binary
search in graphs. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 519–532, 2016.

A. Ene and H. L. Nguyen. Submodular maximization with nearly-optimal approximation
and adaptivity in nearly-linear time. CoRR, abs/1804.05379, 2018.

H. Esfandiari, A. Karbasi, A. Mehrabian, and V. S. Mirrokni. Regret bounds for batched
bandits. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 7340–7348. AAAI Press, 2021.

E. Even-Dar, S. Mannor, and Y. Mansour. PAC Bounds for Multi-Armed Bandit and Markov
Decision Processes. In Proceedings of the 15th Conference on Computational Learning
Theory, 2002.

281

E. Even-Dar, S. Mannor, and Y. Mansour. Action Elimination and Stopping Conditions
for the Multi-Armed Bandit and Reinforcement Learning Problems. Journal of Machine
Learning Research, 7:1079–1105, 2006.

M. Fahrbach, V. S. Mirrokni, and M. Zadimoghaddam. Submodular maximization with
nearly optimal approximation, adaptivity and query complexity. In T. M. Chan, editor,
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 255–273. SIAM, 2019.

B. Faltings and G. Radanovic. Game theory for data science: Eliciting truthful information.
Synthesis Lectures on Artificial Intelligence and Machine Learning, 11(2):1–151, 2017.

U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.

U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with Noisy Information. SIAM
Journal on Computing, 23(5):1001–1018, 1994.

A. Fourney, M. Z. Racz, G. Ranade, M. Mobius, and E. Horvitz. Geographic and Temporal
Trends in Fake News Consumption During the 2016 US Presidential Election. 2017.

R. Frongillo and I. Kash. Vector-valued property elicitation. In Proceedings of the 28th
Annual Conference on Learning Theory, 2015.

R. Frongillo and J. Witkowski. A Geometric Perspective on Minimal Peer Prediction. ACM
Transactions on Economics and Computation (TEAC), 2017.

V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A unified approach
to fixed budget and fixed confidence. In NIPS, 2012.

Y. Gai, B. Krishnamachari, and R. Jain. Combinatorial Network Optimization With Unknown
Variables: Multi-Armed Bandits With Linear Rewards and Individual Observations.
IEEE/ACM Transactions on Networking, 20(5):1466–1478, 2012.

A. Gao, J. R. Wright, and K. Leyton-Brown. Incentivizing Evaluation via Limited Access to
Ground Truth: Peer-Prediction Makes Things Worse. EC 2016 Workshop on Algorithmic
Game Theory and Data Science, 2016.

Z. Gao, Y. Han, Z. Ren, and Z. Zhou. Batched multi-armed bandits problem. In H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 501–511, 2019.

A. Garivier and O. Cappé. The KL-UCB algorithm for bounded stochastic bandits and
beyond. In COLT 2011 - The 24th Annual Conference on Learning Theory, June 9-11,
2011, Budapest, Hungary, pages 359–376, 2011.

282

D. F. Gleich and L.-h. Lim. Rank aggregation via nuclear norm minimization. In KDD,
pages 60–68, 2011.

T. Gneiting. Quantiles as optimal point forecasts. International Journal of Forecasting, 27
(2):197–207, 2011.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007.

M. X. Goemans and J. Vondrák. Stochastic covering and adaptivity. In LATIN 2006:
Theoretical Informatics, 7th Latin American Symposium, Valdivia, Chile, March 20-24,
2006, Proceedings, pages 532–543, 2006.

D. Golovin and A. Krause. Adaptive submodularity: A new approach to active learning and
stochastic optimization. In COLT 2010 - The 23rd Conference on Learning Theory, Haifa,
Israel, June 27-29, 2010, pages 333–345, 2010.

N. Grammel, L. Hellerstein, D. Kletenik, and P. Lin. Scenario submodular cover. In
Approximation and Online Algorithms - 14th International Workshop, WAOA 2016, Aarhus,
Denmark, August 25-26, 2016, Revised Selected Papers, pages 116–128, 2016.

K. Grant and T. Gneiting. Consistent scoring functions for quantiles. In From Probability to
Statistics and Back: High-Dimensional Models and Processes–A Festschrift in Honor of
Jon A. Wellner, pages 163–173. Institute of Mathematical Statistics, 2013.

J. Guiver and E. Snelson. Bayesian inference for Plackett-Luce ranking models. In ICML,
2009.

A. Gupta, V. Nagarajan, and S. Singla. Adaptivity gaps for stochastic probing: Submodular
and XOS functions. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 1688–1702, 2017.

R. Heckel, N. B. Shah, K. Ramchandran, and M. J. Wainwright. Active Ranking from
Pairwise Comparisons and when Parametric Assumptions Dont Help. arXiv preprint
arXiv:1606.08842, 2016.

L. Hellerstein, D. Kletenik, and P. Lin. Discrete stochastic submodular maximization:
Adaptive vs. non-adaptive vs. offline. In Algorithms and Complexity - 9th International
Conference, CIAC 2015, Paris, France, May 20-22, 2015. Proceedings, pages 235–248,
2015.

E. Hillel, Z. S. Karnin, T. Koren, R. Lempel, and O. Somekh. Distributed exploration in
multi-armed bandits. In NIPS, 2013.

R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 1990.

283

D. R. Hunter. MM algorithms for generalized Bradley-Terry models. Annals of Statistics,
pages 384–406, 2004.

E. Ie, V. Jain, J. Wang, S. Narvekar, R. Agarwal, R. Wu, H.-T. Cheng, T. Chandra,
and C. Boutilier. Slateq: A tractable decomposition for reinforcement learning with
recommendation sets. 2019.

S. Im, V. Nagarajan, and R. van der Zwaan. Minimum latency submodular cover. ACM
Trans. Algorithms, 13(1):13:1–13:28, 2016.

K. Jamieson, M. Malloy, R. Nowak, and S. Bubeck. On Finding the Largest Mean Among
Many. arXiv preprint arXiv:1306.3917v1, 2013. URL http://arxiv.org/abs/1306.3917.

K. Jamieson, S. Katariya, A. Deshpande, and R. Nowak. Sparse Dueling Bandits. In
Proceedings of the 18th International Conference on Artificial Intelligence and Statistics,
2015.

K. Jamieson, D. Haas, and B. Recht. The Power of Adaptivity in Identifying Statistical
Alternatives. In NIPS, 2016.

K. G. Jamieson and R. D. Nowak. Active Ranking using Pairwise Comparisons. In NIPS,
2011.

M. Jang, S. Kim, C. Suh, and S. Oh. Top-k Ranking from Pairwise Comparisons: When
Spectral Ranking is Optimal. arXiv preprint arXiv:1603.04153, 2016.

M. Jang, S. Kim, C. Suh, and S. Oh. Optimal sample complexity of m-wise data for top-k
ranking. In NIPS, 2017.

E. J. Johnson, S. B. Shu, B. G. Dellaert, C. Fox, D. G. Goldstein, G. Häubl, R. P. Larrick,
J. W. Payne, E. Peters, D. Schkade, et al. Beyond nudges: Tools of a choice architecture.
Marketing Letters, 23(2):487–504, 2012.

K.-s. Jun, K. Jamieson, R. Nowak, and X. Zhu. Top Arm Identification in Multi-Armed
Bandits with Batch Arm Pulls. In Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, 2016.

R. Jurca and B. Faltings. Enforcing truthful strategies in incentive compatible reputation
mechanisms. In WINE’05, volume 3828 LNCS, pages 268–277, 2005.

R. Jurca, B. Faltings, et al. Mechanisms for Making Crowds Truthful. Journal of Artificial
Intelligence Research, 34(1):209, 2009.

S. Kalyanakrishnan and P. Stone. Efficient Selection of Multiple Bandit Arms: Theory and
Practice. In ICML, 2010.

S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone. PAC Subset Selection in Stochastic

284

http://arxiv.org/abs/1306.3917

Multi-armed Bandits. In Proceedings of the 29th International Conference on Machine
Learning, 2012.

P. Kambadur, V. Nagarajan, and F. Navidi. Adaptive submodular ranking. In Integer
Programming and Combinatorial Optimization - 19th International Conference, IPCO
2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, pages 317–329, 2017.

V. Kamble, D. Marn, N. Shah, A. Parekh, and K. Ramachandran. Truth Serums for
Massively Crowdsourced Evaluation Tasks. The 5th Workshop on Social Computing and
User-Generated Content, 2015.

T. Kamishima. Nantonac collaborative filtering: recommendation based on order responses. In
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, August 24 - 27, 2003, pages 583–588, 2003.

D. R. Karger, S. Oh, and D. Shah. Budget-Optimal Task Allocation for Reliable Crowd-
sourcing Systems. CoRR, abs/1110.3564, 2011. URL http://arxiv.org/abs/1110.3564.

D. R. Karger, S. Oh, and D. Shah. Budget-optimal task allocation for reliable crowdsourcing
systems. Operations Research, 62(1):1–24, 2014. doi: 10.1287/opre.2013.1235.

Z. Karnin, T. Koren, and O. Somekh. Almost Optimal Exploration in Multi-Armed Bandits.
In Proceedings of the 30th International Conference on Machine Learning, 2013.

R. M. Karp and R. Kleinberg. Noisy binary search and its applications. In SODA, 2007.

E. Kaufmann, O. Cappe, and A. Garivier. On the Complexity of Best-Arm Identification in
Multi-Armed Bandit Models. Journal of Machine Learning Research, 17(1):1–42, 2016.

A. Khetan and S. Oh. Achieving budget-optimality with adaptive schemes in crowdsourcing.
In Annual Conference on Neural Information Processing Systems, pages 4844–4852, 2016a.

A. Khetan and S. Oh. Achieving budget-optimality with adaptive schemes in crowdsourcing.
In NIPS, 2016b.

A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei. Novel dataset for fine-grained image
categorization. In First CVPR Workshop on Fine-Grained Visual Categorization, June
2011.

N. M. Kiefer. Incentive-compatible elicitation of quantiles, 2010. URL https://www.
american.edu/cas/economics/info-metrics/pdf/upload/Working-Paper-Kiefer.
pdf.

J. Komiyama, J. Honda, H. Kashima, and H. Nakagawa. Regret Lower Bound and Optimal
Algorithm in Dueling Bandit Problem. In Proceedings of the 28th Conference on Learning
Theory, 2015a.

285

http://arxiv.org/abs/1110.3564
https://www.american.edu/cas/economics/info-metrics/pdf/upload/Working-Paper-Kiefer.pdf
https://www.american.edu/cas/economics/info-metrics/pdf/upload/Working-Paper-Kiefer.pdf
https://www.american.edu/cas/economics/info-metrics/pdf/upload/Working-Paper-Kiefer.pdf

J. Komiyama, J. Honda, and H. Nakagawa. Optimal Regret Analysis of Thompson Sampling
in Stochastic Multi-armed Bandit Problem with Multiple Plays. In Proceedings of the
32nd International Conference on Machine Learning, 2015b.

J. Komiyama, J. Honda, and H. Nakagawa. Copeland Dueling Bandit Problem: Regret Lower
Bound, Optimal Algorithm, and Computationally Efficient Algorithm. In Proceedings of
the 33rd International Conference on Machine Learning, 2016.

J. Konevcny, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon.
Federated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

Y. Kong. Dominantly truthful multi-task peer prediction with a constant number of tasks. In
S. Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2398–2411. SIAM, 2020.

Y. Kong and G. Schoenebeck. A Framework For Designing Information Elicitation Mechanism
That Rewards Truth-telling. 2016. URL http://arxiv.org/abs/1605.01021.

Y. Kong and G. Schoenebeck. An information theoretic framework for designing information
elicitation mechanisms that reward truth-telling. ACM Trans. Economics and Comput., 7
(1):2:1–2:33, 2019.

Y. Kong, K. Ligett, and G. Schoenebeck. Putting Peer Prediction Under the Micro (economic)
scope and Making Truth-telling Focal. In International Conference on Web and Internet
Economics, pages 251–264. Springer, 2016.

F. S. Koppelman and C. Bhat. A self instructing course in mode choice modeling: multinomial
and nested logit models. US Department of Transportation, Federal Transit Administration,
2006.

C. Kulkarni, K. P. Wei, H. Le, D. Chia, K. Papadopoulos, J. Cheng, D. Koller, and S. R.
Klemmer. Peer and Self Assessment in Massive Online Classes. In Design thinking research,
pages 131–168. Springer, 2015.

B. Kveton, Z. Wen, A. Ashkan, and C. Szepesvari. Tight Regret Bounds for Stochastic
Combinatorial Semi-Bandits. In Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics, 2015.

N. Lambert and Y. Shoham. Eliciting truthful answers to multiple-choice questions. In ACM
Conference on Electronic Commerce, 2009.

N. S. Lambert, D. M. Pennock, and Y. Shoham. Eliciting properties of probability distribu-
tions. In Proceedings of the 9th ACM Conference on Electronic Commerce, 2008.

Y. Lan, J. Guo, X. Cheng, and T.-Y. Liu. Statistical consistency of ranking methods in
a rank-differentiable probability space. In Advances in Neural Information Processing
Systems, 2012.

286

http://arxiv.org/abs/1605.01021

D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times. American
Mathematical Society, Providence, RI, USA, 2008.

A. Liu, Z. Zhao, C. Liao, P. Lu, and L. Xia. Learning plackett-luce mixtures from partial
preferences. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019,
The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 4328–4335. AAAI
Press, 2019.

Y. Liu and Y. Chen. Machine-Learning Aided Peer Prediction. In Proceedings of the 2017
ACM Conference on Economics and Computation, pages 63–80. ACM, 2017a.

Y. Liu and Y. Chen. Sequential Peer Prediction: Learning to Elicit Effort Using Posted
Prices. In Thirty-First AAAI Conference on Artificial Intelligence, pages 607–613, 2017b.

Y. Liu and H. Guo. Peer loss functions: Learning from noisy labels without knowing noise
rates. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 6226–6236. PMLR, 2020.

Y. Liu and D. P. Helmbold. Online learning using only peer prediction. In S. Chiappa and
R. Calandra, editors, The 23rd International Conference on Artificial Intelligence and
Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108
of Proceedings of Machine Learning Research, pages 2032–2042. PMLR, 2020.

Z. Liu, S. Parthasarathy, A. Ranganathan, and H. Yang. Near-optimal algorithms for shared
filter evaluation in data stream systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12,
2008, pages 133–146, 2008.

D. R. Luce. Individual choice behavior. 1959.

C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. J.
ACM, 41(5):960–981, 1994.

M. L. Malloy, G. Tang, and R. D. Nowak. Quickest search for a rare distribution. In
Information Sciences and Systems (CISS). IEEE, 2012.

D. Mandal, M. Leifer, D. C. Parkes, G. Pickard, and V. Shnayder. Peer Prediction with
Heterogeneous Tasks. NIPS 2016 Workshop on Crowdsourcing and Machine Learning,
2016.

S. Mannor and J. N. Tsitsiklis. The Sample Complexity of Exploration in the Multi-Armed
Bandit Problem. Journal of Machine Learning Research, 5:623–648, 2004.

J. Marschak. Binary choice constraints and random utility indicators. In Stanford Symposium
on Mathematical Methods in the Social Sciences, pages 312–329, 1960.

287

L. Maystre and M. Grossglauser. Fast and accurate inference of plackett-luce models. In
NIPS, 2015.

D. McFadden. Conditional Logit Analysis of Qualitative Choice Analysis. New York: Academic
Press, 1974.

A. K. Menon and R. C. Williamson. Bipartite ranking: a risk-theoretic perspective. J. Mach.
Learn. Res., 17:195:1–195:102, 2016.

M. Mezard and A. Montanari. Information, Physics, and Computation. Oxford University
Press, Inc., New York, NY, USA, 2009.

N. Miller, P. Resnick, and R. Zeckhauser. Eliciting informative feedback: The peer-prediction
method. Management Science, 51:1359–1373, 2005.

A. Y. Mitrophanov. Sensitivity and convergence of uniformly ergodic Markov chains. Journal
of Applied Probability, 42(4):1003–1014, 2005.

D. Moshkovitz. The projection games conjecture and the np-hardness of ln n-approximating
set-cover. Theory of Computing, 11:221–235, 2015.

B. Mozafari, P. Sarkar, M. J. Franklin, M. I. Jordan, and S. Madden. Active learning for
crowd-sourced databases. CoRR, abs/1209.3686, 2012.

B. Mozafari, P. Sarkar, M. J. Franklin, M. I. Jordan, and S. Madden. Scaling up crowd-
sourcing to very large datasets: A case for active learning. PVLDB, 8(2):125–136, 2014.

F. Nan and V. Saligrama. Comments on the proof of adaptive stochastic set cover based
on adaptive submodularity and its implications for the group identification problem in
group-based active query selection for rapid diagnosis in time-critical situations. IEEE
Transactions on Information Theory, 63(11):7612–7614, Nov 2017. ISSN 0018-9448. doi:
10.1109/TIT.2017.2749505.

H. Narasimhan and S. Agarwal. On the relationship between binary classification, bipartite
ranking, and binary class probability estimation. In C. J. C. Burges, L. Bottou, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 2913–2921,
2013.

S. Negahban, S. Oh, and D. Shah. Iterative ranking from pair-wise comparisons. In NIPS,
2012.

S. Negahban, S. Oh, and D. Shah. Rank centrality: Ranking from pairwise comparisons.
Operations Research, 65(1):266–287, 2017.

S. Oh and D. Shah. Learning mixed multinomial logit model from ordinal data. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,

288

Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 595–603, 2014.

J. Ok, S. Oh, J. Shin, and Y. Yi. Optimality of belief propagation for crowdsourced
classification. In Proc. 33nd Int. Conf. on Machine Learning (ICML), pages 535–544, 2016.

S. Parthasarathy. Personal communication. 2018.

V. Perchet, P. Rigollet, S. Chassang, and E. Snowberg. Batched bandit problems. In
Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France, July
3-6, 2015, page 1456, 2015a.

V. Perchet, P. Rigollet, S. Chassang, E. Snowberg, and S. Edu. Batched Bandit Problems.
In COLT, 2015b.

N. Pippenger. Sorting and selecting in rounds. SIAM J. Comput., 16(6):1032–1038, 1987.

R. L. Plackett. The analysis of permutations. Applied Statistics, pages 193–202, 1975.

D. Prelec. A Bayesian Truth Serum For Subjective Data. Science, 306(5695):462, 2004.

M. Purohit, Z. Svitkina, and R. Kumar. Improving online algorithms via ml predictions. In
Advances in Neural Information Processing Systems, pages 9661–9670, 2018.

G. Radanovic and B. Faltings. Incentive Schemes for Participatory Sensing. In AAMAS
2015, 2015a.

G. Radanovic and B. Faltings. Incentives for Subjective Evaluations with Private Beliefs. In
Proc. 29th AAAI Conf. on Art. Intell. (AAAI’15), pages 1014–1020, 2015b.

G. Radanovic and B. Faltings. Incentives for Subjective Evaluations with Private Beliefs. In
Proc. 29th AAAI Conf. on Art. Intell. (AAAI’15), pages 1014–1020, 2015c.

G. Radanovic and B. Faltings. Incentive schemes for participatory sensing. In Proc. Int.
Conf. on Autonomous Agents and Multiagent Systems, AAMAS, pages 1081–1089, 2015d.

G. Radanovic, B. Faltings, and R. Jurca. Incentives for effort in crowdsourcing using the
peer truth serum. ACM Transactions on Intelligent Systems and Technology (TIST), 7(4):
48, 2016.

A. Rajkumar and S. Agarwal. A statistical convergence perspective of algorithms for rank
aggregation from pairwise data. In ICML, 2014.

S. Ramamohan, A. Rajkumar, and S. Agarwal. Dueling Bandits : Beyond Condorcet Winners
to General Tournament Solutions. In Advances in Neural Information Processing Systems
29, 2016.

289

H. G. Ramaswamy and S. Agarwal. Classification calibration dimension for general multiclass
losses. In Advances in Neural Information Processing Systems, 2012.

H. G. Ramaswamy and S. Agarwal. Convex calibration dimension for multiclass loss matrices.
Journal of Machine Learning Research. To appear, 2015.

H. G. Ramaswamy, S. Agarwal, and A. Tewari. Convex calibrated surrogates for low-rank
loss matrices with applications to subset ranking losses. In Advances in Neural Information
Processing Systems, 2013.

P. Ravikumar, A. Tewari, and E. Yang. On NDCG consistency of listwise ranking methods.
In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics,
2011.

M. D. Reid and R. C. Williamson. Composite binary losses. Journal of Machine Learning
Research, 11:2387–2422, 2010.

T. Rich, K. Hu, and B. Tome. GIFGIF dataset. Data Available: http://www.gif.gf.

Y. Ruan, J. Yang, and Y. Zhou. Linear bandits with limited adaptivity and learning
distributional optimal design. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2021, page 74–87, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450380539. doi: 10.1145/3406325.3451004. URL
https://doi.org/10.1145/3406325.3451004.

P. Rusmevichientong, Z.-J. M. Shen, and D. B. Shmoys. Dynamic Assortment Optimization
with a Multinomial Logit Choice Model and Capacity Constraint. Operations Research, 58
(6):1666–1680, 2010.

A. Saha and A. Gopalan. Battle of bandits. In UAI, pages 805–814, 2018.

A. Saha and A. Gopalan. Combinatorial bandits with relative feedback. In Advances in
Neural Information Processing Systems, pages 983–993, 2019a.

A. Saha and A. Gopalan. PAC battling bandits in the plackett-luce model. In Algorithmic
Learning Theory, ALT 2019, 22-24 March 2019, Chicago, Illinois, USA, pages 700–737,
2019b.

D. Sauré and A. Zeevi. Optimal Dynamic Assortment Planning with Demand Learning.
Manufacturing & Service Operations Management, 15(3):387–404, 2013.

L. J. Savage. Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association, 66(336):783–801, 1971.

M. J. Schervish. A general method for comparing probability assessors. The Annals of
Statistics, 17(4):1856–1879, 1989.

290

http://www.gif.gf
https://doi.org/10.1145/3406325.3451004

M. J. Schervish, J. B. Kadane, and T. Seidenfeld. Characterization of proper and strictly
proper scoring rules for quantiles. Preprint, Carnegie Mellon University, March 2012.

A. Schuth, H. Oosterhuis, S. Whiteson, and M. de Rijke. Multileave Gradient Descent for
Fast Online Learning to Rank. In Proceedings of the 9th ACM International Conference
on Web Search and Data Mining, 2016.

N. B. Shah and M. J. Wainwright. Simple, Robust and Optimal Ranking from Pairwise
Comparisons. arXiv preprint arXiv:1512.08949, 2015.

A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming: modeling
and theory. SIAM, 2009.

A. Sheshadri and M. Lease. SQUARE: A Benchmark for Research on Computing Crowd
Consensus. In Proc. 1st AAAI Conf. on Human Computation (HCOMP), pages 156–164,
2013.

S. Shetty. Quantifying comedy on YouTube: why the number of o’s in your LOL matter.
Data Available: https://archive.ics.uci.edu/ml/datasets/YouTube+Comedy+Slam+
Preference+Data, 2012.

D. B. Shmoys and C. Swamy. Stochastic optimization is (almost) as easy as deterministic
optimization. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE
Symposium on, pages 228–237. IEEE, 2004.

V. Shnayder and D. C. Parkes. Practical Peer Prediction for Peer Assessment. In Fourth
AAAI Conference on Human Computation and Crowdsourcing, 2016.

V. Shnayder, A. Agarwal, R. Frongillo, and D. C. Parkes. Informed Truthfulness in Multi-Task
Peer Prediction. pages 179–196, 2016a.

V. Shnayder, A. Agarwal, R. Frongillo, and D. C. Parkes. Informed Truthfulness in Multi-
Task Peer Prediction. In Proceedings of the 2016 ACM Conference on Economics and
Computation, pages 179–196. ACM, 2016b.

V. Shnayder, R. Frongillo, and D. C. Parkes. Measuring performance of peer prediction
mechanisms using replicator dynamics. In Proc. 25th Int. Joint Conf. on Art. Intell.
(IJCAI’16), pages 2611–2617, 2016c.

M. Simchowitz, K. Jamieson, and B. Recht. Best-of-K Bandits. In Proceedings of the 29th
Annual Conference on Learning Theory, 2016.

E. Simpson, S. J. Roberts, I. Psorakis, and A. Smith. Dynamic Bayesian Combination of
Multiple Imperfect Classifiers. Decision Making and Imperfection, 474:1–35, 2013.

H. A. Soufiani, W. Z. Chen, D. C. Parkes, and L. Xia. Generalized method-of-moments for
rank aggregation. In NIPS, 2013.

291

https://archive.ics.uci.edu/ml/datasets/YouTube+Comedy+Slam+Preference+Data
https://archive.ics.uci.edu/ml/datasets/YouTube+Comedy+Slam+Preference+Data

I. Steinwart. How to compare different loss functions and their risks. Constructive Approxi-
mation, 26:225–287, 2007.

I. Steinwart, C. Pasin, R. Williamson, and S. Zhang. Elicitation and identification of
properties. In Proceedings of the 27th Annual Conference on Learning Theory, 2014.

Y. Sui, V. Zhuang, J. W. Burdick, and Y. Yue. Multi-dueling Bandits with Dependent Arms.
In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence, 2017.

C. Swamy and D. B. Shmoys. Sampling-based approximation algorithms for multistage
stochastic optimization. SIAM Journal on Computing, 41(4):975–1004, 2012.

A. Tewari and P. L. Bartlett. On the consistency of multiclass classification methods. Journal
of Machine Learning Research, 8:1007–1025, 2007.

L. L. Thurstone. A law of comparative judgment. Psychological review, 34(4):273, 1927.

K. E. Train. Discrete Choice Methods with Simulation. Cambridge University Press, 2003.

T. Urvoy, F. Clerot, R. Feraud, and S. Naamane. Generic Exploration and K-armed Voting
Bandits. In Proceedings of the 30th International Conference on Machine Learning, 2013.

L. G. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4(3):348–355, 1975.

E. Vernet, R. C. Williamson, and M. D. Reid. Composite multiclass losses. In Advances in
Neural Information Processing Systems, 2011.

J. Wilkowski, A. Deutsch, and D. M. Russell. Student Skill and Goal Achievement in the
Mapping with Google MOOC. In Proceedings of the first ACM conference on Learning@
scale conference, pages 3–10. ACM, 2014.

R. C. Williamson, E. Vernet, and M. D. Reid. Composite multiclass losses. Journal of
Machine Learning Research, 17(222):1–52, 2016.

J. Witkowski and D. C. Parkes. Learning the Prior in Minimal Peer Prediction. In Proceedings
of the 3rd Workshop on Social Computing and User Generated Content at the ACM
Conference on Electronic Commerce, page 14, 2013.

J. Witkowski, Y. Bachrach, P. Key, and D. Parkes. Dwelling on the negative: Incentiviz-
ing effort in peer prediction. In First AAAI Conference on Human Computation and
Crowdsourcing, 2013.

L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.
Combinatorica, 2(4):385–393, 1982.

H. Wu and X. Liu. Double thompson sampling for dueling bandits. In Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 649–657, 2016.

292

F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to rank:
Theory and algorithm. In Proceedings of the 25th International Conference on Machine
Learning, 2008.

Y. Yamaguchi and T. Maehara. Stochastic packing integer programs with few queries. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 293–310, 2018.

A. C. Yao. Some complexity questions related to distributive computing (preliminary report).
In Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30 -
May 2, 1979, Atlanta, Georgia, USA, pages 209–213, 1979.

Y. Yue and T. Joachims. Interactively Optimizing Information Retrieval Systems as a
Dueling Bandits Problem. In Proceedings of the 26th International Conference on Machine
Learning, 2009.

Y. Yue and T. Joachims. Beat the mean bandit. In Proceedings of the 28th International
Conference on Machine Learning, 2011.

Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The K-armed Dueling Bandits Problem.
In Proceedings of the 22nd Conference on Learning Theory, 2009.

Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The k-armed dueling bandits problem. J.
Comput. Syst. Sci., 78(5):1538–1556, 2012.

M. B. Zafar, K. P. Gummadi, and C. Danescu-Niculescu-Mizil. Message Impartiality in
Social Media Discussions. In ICWSM, pages 466–475, 2016.

H. Zhang, Y. Ma, and M. Sugiyama. Bandit-based task assignment for heterogeneous
crowdsourcing. Neural Comput., 27(11):2447–2475, 2015. doi: 10.1162/NECO_a_00782.
URL https://doi.org/10.1162/NECO_a_00782.

T. Zhang. Statistical behavior and consistency of classification methods based on convex
risk minimization. Annals of Statistics, 32(1):56–134, 2004a.

T. Zhang. Statistical analysis of some multi-category large margin classification methods.
Journal of Machine Learning Research, 5:1225–1251, 2004b.

Y. Zhang, X. Chen, D. Zhou, and M. I. Jordan. Spectral Methods Meet EM: A Provably
Optimal Algorithm for Crowdsourcing. Journal of Machine Learning Research, 17(102):
1–44, 2016.

Z. Zhao and L. Xia. Learning mixtures of plackett-luce models from structured partial
orders. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 10143–10153, 2019.

293

https://doi.org/10.1162/NECO_a_00782

D. Zhou, Q. Liu, J. C. Platt, C. Meek, and N. B. Shah. Regularized minimax conditional
entropy for crowdsourcing. CoRR, abs/1503.07240, 2015. URL http://arxiv.org/abs/
1503.07240.

M. Zoghi, S. Whiteson, R. Munos, and M. de Rijke. Relative Upper Confidence Bound for
the K-Armed Dueling Bandit Problem. In Proceedings of the 31st International Conference
on Machine Learning, 2014.

M. Zoghi, Z. Karnin, S. Whiteson, and M. de Rijke. Copeland Dueling Bandits. In Advances
in Neural Information Processing Systems 28, 2015a.

M. Zoghi, S. Whiteson, and M. de Rijke. MergeRUCB: A method for large-scale online
ranker evaluation. In Proceedings of the 8th ACM International Conference on Web Search
and Data Mining, 2015b.

M. Zoghi, T. Tunys, M. Ghavamzadeh, B. Kveton, C. Szepesvari, and Z. Wen. Online
learning to rank in stochastic click models. In ICML, pages 4199–4208, 2017.

294

http://arxiv.org/abs/1503.07240
http://arxiv.org/abs/1503.07240

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	LIST OF PUBLICATIONS
	Introduction
	Interface Between Machine Learning and Information Elicitation
	Interface between Machine Learning and Choice Modeling
	Interface Between Machine Learning and Theoretical Computer Science
	Some Comments on Additional Connections

	Calibrated Surrogate Losses and Proper Scoring Rules
	Introduction
	Preliminaries
	Calibrated Properties
	Calibrated Surrogates via Calibrated Linear Properties
	Calibrated Surrogates via Calibrated Nonlinear Properties

	Information Elicitation in the Absence of Ground Truth
	Introduction
	Model
	Correlated Agreement for Heterogeneous Agents
	Learning the Agent Signal Types
	Clustering Experiments
	Conclusion

	Learning Multinomial Logit (MNL) Model from Choices
	Introduction
	Problem Setting and Preliminaries
	Accelerated Spectral Ranking Algorithm
	Comparison of Mixing Time with Rank Centrality (RC) and Luce Spectral Ranking (LSR)
	Sample Complexity Bounds
	Message Passing Interpretation of ASR
	Experiments
	Conclusion

	Multiarmed Bandits and Discrete Choice Models
	Introduction
	Problem Setup and Preliminaries
	A Fundamental Lower Bound
	Algorithms
	Regret Bounds
	Experiments
	Proofs
	Conclusion

	Finding the Best Coin with Limited Adaptivity
	Introduction
	Finding the k Most Biased Coins / k Best Arms
	A Limited-Adaptivity Algorithm for Finding the k Most Biased Coins
	Top-k Ranking from Pairwise Comparisons
	Extension to Sub-Gaussian Rewards
	Conclusion

	Stochastic Submodular Cover with Limited Adaptivity
	Introduction
	Problem Statement
	Overview of Results
	Preliminaries
	Technical Overview
	The Non-Adaptive Selection Algorithm
	Algorithms for the Stochastic Submodular Cover Problem
	A Lower Bound for r-Round Adaptive Algorithms

	Conclusion
	
	APPENDIX
	Appendix to Chapter 4
	Appendix to Chapter 5

	BIBLIOGRAPHY

