IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2021. 1

Reconfiguring Non-Convex Holes in Pivoting
Modular Cube Robots

Daniel Feshbach and Cynthia Sung

Abstract—We present an algorithm for self-reconfiguration of
admissible 3D configurations of pivoting modular cube robots
with holes of arbitrary shape and number. Cube modules move
across the surface of configurations by pivoting about shared
edges, enabling configurations to reshape themselves. Previous
work provides a reconfiguration algorithm for admissible 3D
configurations containing no non-convex holes; we improve upon
this by handling arbitrary admissible 3D configurations. The
key insight specifies a point in the deconstruction of layers
enclosing non-convex holes at which we can pause and move inner
modules out of the hole. We prove this happens early enough to
maintain connectivity, but late enough to open enough room in
the enclosing layer for modules to escape the hole. Our algorithm
gives reconfiguration plans with O (nQ) moves for n modules.

Index Terms—Cellular and Modular Robots, Motion and Path
Planning, Computational Geometry

I. INTRODUCTION

ELF-RECONFIGURING robots or “programmable mat-

ter” smart materials, with the ability to change themselves
into a wide variety of different shapes for different tasks or
environments, would open substantial opportunities unavail-
able to state-of-the-art vehicle-like robots [1], [2]. Modular
robotic systems attempt to tackle this challenge through a
large number of modular units that attach and detach from
one another and move around to form different shapes. A
variety of motion models (e.g., sliding [3]], [4]], crystalline [5],
[6], pivoting [7], [8], [9l, [10], and hybrid multi-degree-of-
freedom [11]], [12]]), connection strategies (e.g., active latch-
ing [13]], passive mechanical latching [[14], magnetic [[15]), and
module geometries (cubic [8], hexagonal [[16], spherical [13])
exist for these systems.

For all of these systems, a major theoretical question is that
of universal reconfigurability, or, equivalently, what types of
shapes can be reconfigured into others. Motion planning for
systems with a large number of modules is complex, particu-
larly since in most modular systems, the modules are closely
packed. Additional constraints on maintaining connectivity
between modules to enable communication and coordination
further complicates the problem.

Despite these challenges, theoretical guarantees of reconfig-
urability do exist for multiple types of systems. For example,

Manuscript received: February 24, 2021; Revised May 26, 2021; Accepted
June 28, 2021.

This paper was recommended for publication by Editor M. Ani Hsieh upon
evaluation of the Associate Editor and Reviewers’ comments.

The authors are with the General Robotics, Automation, Sensing and Per-
ception (GRASP) Laboratory at the University of Pennsylvania, Philadelphia,
PA 19104, USA. {feshbach, crsung}@seas.upenn.edu.

Digital Object Identifier (DOI): see top of this page.

E

- [

Fig. 1. Side view of cubes pivoting. Cubes pivot along shared edges until the
face contacts another cube. Depending on cube arrangement this is a rotation
of 7/2 (first row) or 7 (second row). The gray region is the volume swept
out by the moving module as it pivots: every cell intersecting the gray region
must be empty.

for crystalline cube lattice systems, universal reconfiguration
has been proven to be possible within O (n) steps [17], where
n is the number of modules, and can actually be completed in
O (logn) time when multiple modules are allowed to move in
parallel [18]]. Similarly, sliding cubes in 2D [[19]] and 3D [7]
have been shown to be universally reconfigurable in O (n3)
moves, and actively subtractable in 2D to a configuration with
no holes in O (n?) moves [20].

A. Reconfiguration for Pivoting Cubes

In this paper, we are interested in the pivoting cube model:
cubes move by pivoting across shared edges until contacting
a face, as depicted in Fig. |I| A survey of existing hardware
platforms (see above) indicates that rotation is the preferred
method of motion in physical modular robots, considered
relatively feasible to implement. It is therefore important to
develop a theoretical characterization of pivoting cube sys-
tems, but this is currently much less explored than the siding
and crystalline motion models, because pivoting has additional
collision constraints which make universal reconfiguration
guarantees elusive. In particular, when a module pivots, the
volume it sweeps through includes more than just its initial
and final positions. For a module to pivot without collision,
all lattice cells (other than its start location) intersecting
the volume the pivot sweeps through must also be empty.
This adds a constraint not present for crystalline or sliding
cube models (which require only the destination cell to be
empty), so reconfiguration planning algorithms developed for
these models are inapplicable to pivoting cubes. To further
complicate the problem, because of these collision constraints,

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2021.

@27

Fig. 2. Inadmissible sub-configurations defined in [21]: red cells are modules,
white cells are empty. A configuration is admissible if it contains none of these
three sub-configurations, referred to from left to right as rules 1, 2, and 3.

there exist infinitely many configurations that are “rigid”’; that
is, they cannot reconfigure at all [21]].

Due to these challenges, it has been proven that for pivoting
cube models, unlike sliding and crystalline models, deciding
whether reconfiguration is possible between arbitrary config-
urations is PSPACE-hard [22]. Even when reconfiguration is
possible, finding optimal plans is NP-complete for a version
of the pivoting cube model allowing connected groups of
modules to move together [23]]. The existence of rigid config-
urations and challenge of deciding reconfigurability motivate
a focus on sufficient but not necessary conditions for reconfig-
urability. Similar to how [24]] handles hexagonal lattices, [21]]
defines a class of admissible configurations designed to ensure
that a mobile cube exists on the outer boundary and that mobile
cubes can freely traverse the surface, in 2D or 3D. Specifically,
admissible configurations are defined as those that do not
contain any instances of the subconfigurations in Fig. [2] (Fig. 3]
and Fig.] depict problems that can arise from the inadmissible
subconfigurations). By leveraging guarantees provable given
admissibility, [21] proved reconfigurability for admissible 2D
configurations, and for admissible 3D configurations without
non-convex holes, providing reconfiguration plans in O (n2)
moves for n modules. However, the requirement that 3D
configurations contain no non-convex holes requires global
information to evaluate, which is undesirable. Follow-on work
in [25] showed additionally that in 2D, if a configuration is not
admissible, then as long as there are at least 5 free modules,
reconfiguration is always possible.

As yet, the reconfigurability of general 3D configurations or
of 2D configurations with fewer than 5 free modules remains
unknown. As a result, many hardware platforms use a com-
bination of external control signals [26] and heuristics [27].
Work in [28] takes a deep reinforcement learning approach
to pivoting cubes reconfiguration, but lacks guarantees on the
existence or cost of plans, and provides experimental results
only for configurations too small (10 modules) to exhibit
the kinds of complexity that make deciding reconfigurability
challenging.

B. Our Contribution

In this paper, we consider the problem of reconfiguring
any admissible n-module 3D configuration of pivoting cubes
into any other. Our contribution is to prove that this is
always possible, by giving an algorithm providing plans with
O (n?) moves. This result improves on [21]] by handling holes
of arbitrary shape, thereby expanding the class of known-
reconfigurable configurations to one decidable using only local
properties (admissibility conditions).

i1 B

Fig. 3. Situations in which violations of rule 1 (left) and rule 3 (right) make
it so a mobile module cannot freely traverse the configuration surface. The
magenta module is the module traversing the surface, the red modules are the
ones violating the rules.

Fig. 4. A 2D configuration in which, due to a violation of rule 2, there does not
exist a mobile module on the outer boundary [21]. The dashed line indicates
the violation of rule 2. The gray modules on the outer corners have pivot
moves available to them but would disconnect the configuration if removed.
The black modules are mobile but not on the outer boundary.

The remainder of this paper is organized as follows. Sec-
tion [[I] presents the formal model of a pivoting cube modular
system. Section [[II] defines the reconfiguration problem and
our main result: reconfigurability of arbitrary admissible 3D
configurations. Section [[V] explains the corresponding recon-
figuration algorithm for these structures. Section [V] provides
the proofs of correctness and the complexity of the plans our
algorithm provides. Section [V gives simulation evidence that
our algorithm works. Section [VII] discusses remaining open
questions and challenges for pivoting cube reconfiguration.

II. DEFINITIONS

Our robot model exists in a 3D cubic lattice, with connectiv-
ity defined along faces and cell coordinates represented in Z3.
Axis choice is arbitrary: our model does not consider gravity or
any environmental boundaries. Each cell may either be empty
or occupied by a module. A configuration is a connected finite
set of modules in the lattice.

A module can move itself around the surface of a configu-
ration by pivoting around edges it shares with another module,
as depicted in Fig. [I Modules pivot until contacting the face
of another module, after a rotation of either 7/2 or 7. In order
to pivot, every cell (other than the start location) intersecting
the volume swept out by the pivot must be empty: importantly,
this includes more than just the destination cell. A module is
mobile if there is a pivot it can perform to move to an adjacent
cell without disconnecting the configuration.

A configuration is admissible if it does not contain any of
the three inadmissible sub-configurations depicted in Fig. [2}
The inadmissible sub-configurations are chosen to avoid sit-
uations which may inhibit modules from pivoting across a

FESHBACH et al.: NON-CONVEX HOLES IN PIVOTING CUBES

Fig. 5. The dark gray modules on the bottom layer are a single slice. In the
top layer, the 6 blue modules on the left form a distinct slice from the 4 green
modules on the right.

Fig. 6. Green cells are modules, white cells with dashed lines are empty. If
module ¢ is mobile in this layer, then ¢, j, k form a Ps subconfiguration of
the slice.

surface, and indeed, [21]] proves that a mobile module can
freely traverse the surface of an admissible configuration.

A layer refers to a plane with constant z coordinate. A
slice of a configuration C is a maximally connected subset of
a layer of C. Fig. 3] exhibits the distinction between a layer
and a slice. Since a slice is maximally connected within its
layer, adjacent slices have distinct z-coordinates. Therefore we
refer to extremity of slices based solely on the z coordinate
of the slice, either locally (with respect to adjacent slices) or
globally.

In contrast, referring to modules as extreme requires spec-
ifying a dimension, direction, or multiple directions in order
of priority. For example, a (locally or globally) 4z extreme
module is any module with (locally or globally) maximal z
coordinate. Taking the (+z, +y, +x) extreme of a configura-
tion C means taking a subset ZT C C of globally +2z extreme
modules, then the subset YT C Z7T of globally 4y extreme
of Z*, and finally the globally +z extreme module of Y+
(this is unique because Z7 is constant in z so YT is constant
in z and in y).

Suppose the 2D boundary of a slice S contains three
modules arranged consecutively in a line, all locally extreme
in the same direction. If any of these modules have a pivot
move available within this layer, we refer to the mobile module
as ¢, the middle module as j, and the other end as j, and we
call {i,j,k} a P3 subconfiguration of S. Fig. [f] depicts this
situation.

Let S be a locally extreme slice of C, and e¢ be some locally
z-extreme module in C. A branch of S (with respect to C and
ec) is a maximally connected sub-configuration B C C — §
which is connected to ec only through S. Note that C — S
is connected if and only if S has no branches. We call S
the anchor slice of B, and if g € S and b € B are adjacent
modules, we call g an anchor module of B and b a base of B.

A maximally connected set of empty cells entirely enclosed
(in 3D, unless otherwise stated) by a configuration C is called
a hole of C. In the lattice, a line is a set of all cells fixed

tail

branch

anchor slice

8

Y

Fig. 7. An in-branch in a non-convex hole (two view angles with different
sides transparent since the hole is closed in 3D). The dark green slice at the
bottom is the anchor slice, the middle pink modules are the in-branch. Since
ec (the (+z,+y,+x) extreme) is in the top slice, the bottom slice is the
only slice which can be selected as next for deconstruction.

in two coordinates (e.g., the line fixing x = xg, y = yo i
{(x0,Y0,2) : 2 € Z}). A hole H is convex if {[NH is connected
for every line ¢. If H is non-convex, it must have a line along
which it is disconnected, i.e., there must be at least one module
in between line segments of H (segments of empty cells): such
a module is called a witness to the non-convexity of #.

If a branch B of some slice in C is “inside of” (i.e.,
composed of modules witnessing the non-convexity of) a non-
convex hole of C, we call B an in-branch of C. Fig.[]] depicts
an in-branch in a non-convex hole.

III. PROBLEM AND RESULT STATEMENT

The problem that we aim to solve is as follows:

Problem 1. Let C,C’ be admissible configurations of n piv-
oting modular cubes each. Is it possible to reconfigure C into
C'? If so, assuming global knowledge and centralized control,
find a reconfiguration plan achieving this.

A reconfiguration plan can be expressed as a sequence
Co,Cq,...,C of configurations where each C;;; differs from
C; by a valid pivot motion of one module. Similarly to [21]],
we exclude configurations containing any of three inadmissible
sub-configurations — cube arrangements which create passages
too narrow for a cube to pivot through — in order to guarantee
that mobile modules can freely traverse the surface. The orig-
inal work also excludes configurations containing non-convex
holes. We now demonstrate that such an exclusion is not
necessary, and that, in fact, all admissible 3D configurations
are reconfigurable.

Our reconfiguration strategy is similar to most existing
reconfiguration strategies in the literature, where modules are
moved one by one to build up a linear “tail,” eventually
forming a line segment with all n modules in a total of O (n?)
pivots. To build the target configuration, it then reverses the
plan which would turn that configuration into a line. Our main
result is Theorem [Il

Theorem 1. For any pair C,C’ of admissible configurations
with n modules each, there exists a reconfiguration plan from
C to C' that uses O (n?) moves.

Algorithm [T] shows our strategy for how to reconfigure any
admissible configuration into a line using reversible pivots.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2021.

IV. ALGORITHM
A. Overall Strategy

To reconfigure an admissible configuration C into a line, we
“deconstruct” C by “removing” modules one by one, pivoting
them across the configuration surface to the end of the tail
(which is built up from the (+z,+y,+z) extreme module).
The key is the order in which we choose modules to move to
the tail. We select a slice to deconstruct next and remove its
modules by proceeding in an order (mostly counterclockwise
around the slice boundary) designed to maintain connectivity
to the rest of the configuration and preserve admissibility. If the
slice has a branch, we deconstruct until the branch has only
one base slice, then remove the entire branch, then resume
deconstructing the current slice.

Algorithm [2| defines the order within a slice to remove
modules: this order follows [21]. Algorithm E] defines the
order of module removal within the whole 3D configuration,
including calls to Algorithm [2]and recursive calls on branches.
Algorithm I]takes the modules in the order given by Algorithm
Bl and sends them to the end of the tail.

B. Order of Removal Within a Slice

In order to maintain connectivity of the configuration, when
we select a slice we mark some module as the root of
deconstruction, based on the following condition, and make
sure to remove it last.

Condition 1 (Root Module Selection). A module r € S is
eligible to be the root of deconstruction (with respect to the
C,ec at this level of recursion) if there exists a path in the
module-connectivity graph of C from r to ec which uses no
modules in S other than r.

Since branches are connected to the rest of C only through
their anchor slice, this condition ensures that either » connects
S to another slice S’ which is not within a branch of S, or
r=e€c.

Given a slice S and its assigned root r, Algorithm 2] builds
up a list of the modules in S in the order they will be removed
from the slice and pivoted to the end of the tail of C. This order
is identical to that used in [21]. Working counterclockwise
from a corner module e (arbitrary, the (+y,+x) extreme), if
we encounter a mobile module ¢ which can be removed while
preserving admissibility of the slice, we remove that. If we
encounter a Ps subconfiguration, we remove its modules in
order 7, j, k (the point of P3 subconfigurations is that removing
1 might temporarily break an admissibility condition, but then
removing j and k is guaranteed to restore it [21]). We avoid
selecting e or r for removal unless they are the only mobile
modules, in which case we remove e and update it to be the
new extreme; we only select » when it is the last module
remaining.

C. Selecting Slices

The next slice to be deconstructed is selected as any which
meets the following conditions.

tailf
[TTTTT]

L

LLTTTT
LTI

Fig. 8. A moment in the deconstruction of the configuration depicted in
Fig. [/] side view. When deconstructing the bottom (anchor) slice, we will
pause just before the next module to be removed is some anchor module m,
and remove the entire L shaped pink branch. There are two cases depending
on whether m is the same module as g, the first anchor module here selected
for removal (the base module b corresponding to g is also labeled because it
is referenced in the proof). If m = g (left figure) we can move the branch
modules next to g one by one, then out to the tail. If m # g (right figure),
then g has already been removed by the time we pause to deconstruct the
branch, so we can reach the cell where g was. Since g and m are anchor
modules of the same slice of the in-branch, we can traverse the bottom of
this slice to reach the spot next to m, and from there we know we can reach
the tail.

Condition 2 (Slice Selection). A slice S of configuration C
with extreme module ec is eligible to be deconstructed next if:

(a) S is locally extreme in z
(b) S is on the outer boundary of C
(c) If C has multiple slices, then S does not include ec

For comparison, [21] required (a) and (c) and also that
C — S is connected (i.e., that S has no branches). Absent non-
convex holes (a) implies (b), but with non-convex holes, we
need condition (b) to avoid selecting slices whose modules are
trapped within holes and cannot reach the tail.

The presence of non-convex holes sometimes means every
slice satisfying (a), (b), and (c) has at least one branch. For
example, in the configuration in Fig. [/ the top and bottom
slices are the only locally extreme slices on the outer boundary,
but the bottom slice contains the extreme module, so only the
top slice (which has the pink modules as an in-branch) can be
selected. Never selecting slices with branches allows [21] to
simply remove entire slices all at once before proceeding to
the next one, but if we did that we would disconnect branches.

D. Handling Branches

Say we are deconstructing a slice S which has branches.
When the next module m € S to be removed from S is an
anchor module of branch B, and specifically is connected to
the only slice Sp of B still connecting B to what remains of S,
we pause deconstruction of S to avoid risking disconnecting B.
Then we deconstruct B3 entirely, in order given by a recursive
call to Algorithm [3] and then resume deconstruction of S at
m where we left off.

The specified extreme module e tells Algorithm [3] which
slice to deconstruct last, and which module to remove last
from that slice. For the global configuration (the outermost
call), ec is the top corner module, which we build the tail
upwards from. For a recursive call on branch B, e¢ is a base
connecting B to the rest of the configuration.

FESHBACH et al.: NON-CONVEX HOLES IN PIVOTING CUBES

Algorithm 1: RECONFIGURETOLINE(Cy)

Algorithm 3: REMOVALORDER3D(C, e¢)

Input: admissible configuration Cgy
Output: sequence of configurations transforming Cy
into a line using reversible pivots

e + (+z, 4y, +x) extreme module of Cy

10

for m in REMOVALORDER3D(Cy, e) do

P + reversible path from m to (e, ey, e. + 1)

given by breadth-first search

for each step in P do
Ci4+1 < C; with m pivoted one step along P
t+1+1

end

e (eg,ey,e,+1) // new end of tail

end
return Co,...,C;

Algorithm 2: REMOVALORDER2D(S, r)
Input: An admissible 2D configuration S, a module r
inS
Output: A list ordering the modules of S, with r last,
in an order they can remove themselves
without disconnecting S
e < (+y, +x) extreme module of S
L + empty list
while S is not empty do
M < mobile modules on the boundary of S, listed
in counterclockwise order starting
counter-clockwise of e, excluding e and r
if M is empty then
Append e to L
S+ S—{e}
e < (+y, +x) extreme module of S

else

i « first module of M such that S — {i} is
admissible OR 7 in an instance of Pj

Append ¢ to L

if S — {i} is not admissible then

Append i to L

S+ S§—{i}

else

Find j, k such that (4, j, k) is an instance of
Py

Append %, j, k to L in order;
S 8- {7’5 ja k}

end
end

end
return L

V. PROOFS

Our algorithm differs from [21] in modifications to the
conditions to select the slice and its root of deconstruction, and
by pausing the deconstruction of certain slices while removing
their branches. As such, we need to prove that slices and roots
can still always be selected, and that we pause deconstruction

Input: An admissible configuration C, a locally
z-extreme module ec € C.

Output: A list of the modules of C, with e¢ last, in an
order they can move themselves to the end of
the tail without disconnecting C.

R < empty list // removal order list

while C is not empty do

S <+ slice of C satisfying Condition

Lp < list of branches of S

if ec € S then
| T < ec

else
| 7« some module of S satisfying Condition
end
for m in REMOVALORDER2D(S,) do
if m has a neighbor b in some branch B € Lp,
AND the slice containing b is the only slice of
B adjacent to current S then
// remove B before m
R < concatenate
REMOVALORDER3D(B, b)) to the end of
R
remove B from C and Lp
end
append m to R
remove m from S and C

end
end

of slices early enough to maintain connectivity but late enough
that in-branch modules can now escape the hole and reach the
tail.

A. Connectivity, Slice Selection, and Root Selection

First, it will be useful to prove that we do not have to worry
about the configuration becoming disconnected. We have yet to
prove that our algorithm does not get “stuck” (by being unable
to select a slice or root, or by being unable to find a path from
a selected module to the tail), but we can nonetheless prove
that as long as it has been running so far, the configuration
must still be connected.

Lemma 1 (Connectivity). As long as Algorithm || runs, the
modules that it is reconfiguring remain connected (except that
while a module pivots it is only edge-connected).

Proof. We will proceed by induction on the number of slices
removed and on the depth of recursion. The base case for
number of slices removed is that the configuration fed to
that level of recursion starts out connected, so we assume
whenever beginning deconstruction of slice S that the current
configuration is connected. The base case for recursive depth
is the innermost recursive call, which never selects a slice
while it still has branches (because that would trigger a
deeper recursive call), so we remove entire slices at a time
without disconnecting the configuration. Then we assume as

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2021.

an inductive hypothesis that connectivity of branches is always
maintained within recursive calls.

Given a slice S next to be deconstructed, we know from
[21] that it remains internally connected throughout its de-
construction, and that it remains connected to the external
configuration (i.e., excluding any branches it may have). So for
the inductive step, we need to show that S remains connected
to its branches. The recursive call to any branch must happen
before the removal of its last anchor module (because the last
anchor module removed would be connected to the last branch
slice connected to what remains of S), so at the beginning of
the recursive call everything is still connected. Then during
the recursive call the branch remains internally connected, and
since the extreme module (which will be the last module to
be removed) used in the recursive call is a base, it remains
connected to S throughout the call. Finally, once we have
removed all branches of S, removing the rest of S cannot
disconnect the configuration (this is the point of the definition
of branch). O

Now we can start seeing why the algorithm will not get
stuck unable to select something.

Lemma 2 (Slice Selection). Any admissible configuration C
contains a slice S that satisfies Condition]

Proof. Any globally extreme slice is locally extreme and is on
the outer boundary. There must be at least two globally ex-
treme slices, only one of which contains the extreme module,
so the other satisfies (a), (b), and (c). O]

Lemma 3 (Root Module Selection). If a slice S is selected
for deconstruction, then it must contain a module r satisfying
Condition [1]

Proof. If ec € S (i.e. if C has only one slice), r = ec has a
trivial path to itself not using any other modules in the slice.
Otherwise, since the configuration remains connected (Lemma
[I), there must be a shortest path in the slice graph from S to
the ec. Let S’ be the next slice after S on that path. Since
S’ and S are neighbors in the slice graph, there exists some
r € S adjacent to a module in &’. Since shortest paths contain
no cycles, the remainder of the path in the slice graph defines
a path in the module connectivity graph connecting 7 to ec
without passing through S again. O

B. Removal of Branches

It remains to show that whenever Algorithm [3 selects a
module m, there always exists a path of reversible pivots
from m to the tail. The only case not covered by surface
traversability guarantees from [21]] is modules selected within
recursive calls to branches. We will show that the recursive
call happens late enough in the deconstruction of anchor slices
that a spot has opened up at which modules can pivot from a
position on the branch to one on the anchor slice.

While deconstructing a slice S with a branch B, let m € S
be a module triggering a recursive call on B, i.e., an anchor
module of some branch B whose corresponding base module
is part of the only slice S, of BB adjacent to S. Let g € S be
the first anchor module of S, removed from S (it is possible

Side view, z =5

] L], =2
z=1
[TTTTT]

[TTTTTT
Layer z = 2

Fig. 9. It is possible that a slice S with a 2D hole could have an in-branch, if
a slice of the in-branch covers just above/below the 2D hole to close up a 3D
hole. In this situation, admissibility rule 2 guarantees that each module of S
adjacent to the 2D hole also have a module of the in-branch just above/below
it.

that g # m, since g may have been removed at a time when
B still had multiple base slices). Write coordinates relative to
g = (0,0,0). Without loss of generality say S is a minimum,
so the corresponding base module is b = (0,0,1).

A step in the deconstruction of a slice refers either to
the removal of one mobile module whose removal preserves
admissibility of the slice, or to the removal of a Ps; subcon-
figuration: steps preserve slice admissibility [21]]. Let S’ be
the portion of S remaining just before the step in which g
would be removed: then S’ is admissible with g on its 2D
outer boundary.

Lemma 4. There exists an x or y direction in which both g
and b are locally extreme in S’ and B respectively.

Proof. Since g will be removed in the next step of deconstruct-
ing S, it is either mobile or part of a P35 sub-configuration, so
it is locally extreme within S’. Without loss of generality say
~+x is an outwards direction from g, i.e., (1,0, 0) is empty and
is not in a 2D hole of S&’. We will show that b is also locally
+x extreme.

Suppose for contradiction that b is not +z extreme, i.e.,
(1,0, 1) is a module. This is a module adjacent to b within its
layer, i.e., part of the same slice containing b. Then (1,0,0) ¢
S, because we know it is not currently in §’, so if it had once
been a module it would also have been an anchor module of
Sy, contradicting the assumption that g was the earliest such
anchor module removed. So (1,0,0) must have been in a 2D
hole Hs of S.

Note that H s must have been “plugged” by modules directly
above each position (or else B would not be an in-branch
because S would not be enclosing a 3D hole), as in Fig. [0}
Furthermore, admissibility rule (2) guarantees that every po-
sition adjacent to the boundary of a 2D hole in S must also
have a module in B above it.

Starting with (1,0, 0), trace the 2D surrounding set of S’ in
either direction. If you encounter an empty cell (p, ¢, 0) under
a module (p, ¢, 1) on the outer boundary of Sy, then (since the

FESHBACH et al.: NON-CONVEX HOLES IN PIVOTING CUBES

3D hole was originally closed and by admissibility rule 2) we
must have (p, ¢,0) € S, contradicting that g is the first anchor
module of S selected. Otherwise, tracing the surrounding set
loops back around to (1,0,0) without ever passing over the
outer boundary of Sy, so Hs is still a closed 2D hole in &',
contradicting the choice of +x as an outwards direction of
extremity from g. O

Now that we know this direction exists from g, we can refer
to it as 4+ without loss of generality, and say (1,0,0) and
(1,0,1) are empty. The next step is to show that there are
enough empty cells in this direction for a module from B to
pivot into the z = 0 layer here.

Lemma 5. When S’ is what remains of S (i.e. when g will
be removed in the next step of deconstruction of S), a mobile
module on B can move to (1,0, 1) and then pivot to (1,0,0).

Proof. The global configuration starts out as admissible, and
[21] proves both that the removal of entire slices preserves
admissibility and that admissibility within slices with re-
spect to themselves is preserved between deconstruction steps.
Therefore the only admissibility violations that could currently
exist are between S’ and B; we still know B is admissible with
respect to itself and its surroundings below S’, and that S’ is
admissible with respect to itself and its surroundings within
its own layer. Now, since g = (0,0,0) and b = (0,0, 1) are
modules and (1, 0,0) and (1,0, 1) are empty, admissibility rule
1 guarantees that (2,0,0) and (2,0,1) must also be empty.
It was shown in [21] that mobile modules can freely traverse
the surface of admissible configurations, so admissibility of B
means that modules selected from it can move to (1,0,1).
Then emptiness of (2,0,0) and (2,0, 1) allows them to pivot
to (1,0,0). O

The key that makes this useful is that S’ characterizes the
earliest possible point when the recursive call to 5 could begin:
if the call happens later, even more will have been removed
from S, making it that much easier for modules to escape the
hole.

Lemma 6. Any module selected by Algorithm 3| has a path to
reach the tail.

Proof. If a module was selected from a slice at the outermost
call to Algorithm [3| [21] proves it can reach the current
(4+y,+2z) extreme of its slice and then move to the tail from
there. Otherwise, this module is selected within a recursive call
to a branch: continue previous notation for this case. If m = g
(i.e. if the anchor module triggering the recursive call is the
first anchor module of the corresponding base slice selected
by Algorithm [2), Lemma [3] guarantees that all modules until
the deconstruction of S, can go to (1,0, 1), pivot to (1,0,0),
and then can reach the tail. See the left part of Fig. [§] for an
illustration.

If m # g, then the recursive call is triggered after g has
already been removed. So until S starts to be deconstructed,
modules can go to (1,0,—1) and make a 7 pivot to g (the
additional cells passed through at the z = 1 layer are also
empty because S was selected as a minimum), then traverse
below S, to a mobile position on the boundary of what remains

Fig. 10. Simulation for the configuration in Fig. mwith an L-shaped in-branch
(our attached video animates this). The current slice, and paused anchor slices,
are in light green. The module moving to the tail is in magenta. All other
modules are transparent gray. We select the bottom slice and move its modules
one-by-one to the tail (as in (a)) until the next module is below the branch.
Then we select and remove slices top-down from the branch (seen in (b)
and (c)) until the branch has been removed, after which we resume removing
modules from the bottom slice (as in (d)). Finally, we select slices upwards
(as in (e) and (f)) to move the rest of the configuration to the tail.

of S, from which it is possible to reach the tail. See the right
part of Fig. [§] for an illustration.

During the deconstruction of Sy, there is at least as much
room as before for modules to move to the z = 0 layer. Once
they do so they can traverse the bottom of S, (which remains
connected) to reach some cell adjacent to what remains of S,
from which point they can reach the tail. O

Finally, we can prove Theorem [T}

Proof. Lemmal|I] guarantees that whenever we remove the next
module selected by Algorithm 3} we will not be disconnecting
the configuration. Lemmas [2] and [3] along with guarantees
from about the order of deconstruction within a slice
(which we do not alter), guarantee that Algorithm [3] runs to
completion. Then Lemma [6] shows that every module it yields
has a path to the tail, i.e., that Algorithm |I|runs to completion.
This reconfigures any admissible configuration into a line;
since plans are reversible, the line can then reconfigure into
any other admissible configuration with the same number of
modules.

As in [21], plans take O(n?) steps to reconfigure a config-
uration of n modules. The upper bound is from the fact that
n modules take non-cyclical paths (at most n pivots) to the
tail. A lower bound is given by a configuration of n modules
stacked vertically, requiring Q(n?) pivots to form a line. [

VI. SIMULATION

We implement our reconfiguration algorithm in Python
and animate the resulting plans using MATLAB. We test
our planner on several configurations, including situations
involving recursion to in-branches as well as recursion to
branches that are on the outside in the first place. Fig. [I0]
shows frames of the plan given for the configuration from
Fig. [T} the video attached in publication shows an animation
of this plan. The animation video is additionally available at
https://youtu.be/UBUFYt6CTQol

https://youtu.be/U8UFYt6CTQo

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2021.

VII. CONCLUSION

We prove reconfigurability for arbitrary admissible 3D con-
figurations, extending upon previous results showing reconfig-
uration only for configurations with non-convex holes. Since
the existence of non-convex holes is a global property but
admissibility conditions are local, we have taken a significant
step towards distributing planning across the module network,
and substantially reduced the amount of global reasoning that
a higher-level system (e.g. a task planner selecting desired
configurations) would have to do. Guaranteeing the existence
of reconfiguration plans is also a useful prerequisite to building
more sophisticated planning systems.

One immediate area for future work is to further expand
the configurations on which we guarantee reconfigurability by
relaxing admissibility conditions. This could include character-
izing the situations in which each admissibility rule is actually
necessary, or using a fixed number of mobile helper modules
as [25] does in 2D.

Another important next step is to allow modules to move in
parallel. We expect that with proper communication to avoid
collision, one could reconfigure in O (n) time steps, with
possible exception for limited bottleneck situations. Much of
our approach could be parallelized (e.g. by selecting multiple
eligible slices to deconstruct at once). Further work could
consider how to distribute the computation of the plans across
the module network.

Finally, now that we know reconfigurability is possible for
all admissible configurations, future work should attempt to
find more direct plans: always passing through an intermediate
line state is highly suboptimal in many cases. While we
suspect computing optimal plans to be NP-hard in general even
for admissible configurations, it may be possible to formally
characterize similarity between configurations in a way which
makes optimality tractable in restricted cases, allows heuristic
approaches with formal bounds, or provides helpful structure
for learning-based systems.

REFERENCES

[1] J. Seo, J. Paik, and M. Yim, “Modular reconfigurable robotics,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 2, pp. 63—
88, 2019. 1]

[2] M. Yim, W.-m. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. Chirikjian, “Modular self-reconfigurable robot systems [Grand
challenges of robotics],” Robotics Automation Magazine, IEEE, vol. 14,
pp. 43 — 52, 04 2007. |I|

[3] M. Koseki, K. Minami, and N. Inou, “Cellular robots forming a
mechanical structure (evaluation of structural formation and hardware
design of “CHOBIE II”,” in Distributed Autonomous Robotic Systems
6, 2004, pp. 139-148.]

[4] B. K. An, “Em-cube: cube-shaped, self-reconfigurable robots sliding on
structure surfaces,” in IEEE International Conference on Robotics and
Automation, 2008, pp. 3149-3155. |I|

[5] T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss, “Structure decision
method for self organising robots based on cell structures-cebot,” in
IEEE International Conference on Robotics and Automation, 1989, pp.
695-696. [1l

[6] D. Rus and M. Vona, “Crystalline robots: Self-reconfiguration with
compressible unit modules,” Autonomous Robots, vol. 10, no. 1, pp.
107-124, 2001. [T]

[7]1 Z. Abel and S. D. Kominers, “Universal reconfiguration of (hyper-) cubic
robots,” ArXiv preprint, p. arXiv:0802.3414, 2008. |I|

[8] J. Romanishin, K. Gilpin, S. Claici, and D. Rus, “3D M-Blocks: Self-
reconfiguring robots capable of locomotion via pivoting in three dimen-
sions,” IEEE International Conference on Robotics and Automation, vol.
2015, pp. 1925-1932, 06 2015. [1]

[91 A. B. Zia, S. O. Ejaz, S. Abbas, U. Ikram, and S. ur Rehman, “Mu-
cubes: Modular, cube shaped, and self-reconfigurable robots,” in 2017
IEEE MIT Undergraduate Research Technology Conference (URTC),
Nov 2017, pp. 1-4.[T]

[10] S. Hauser, M. Mutlu, and A. J. Ijspeert, “Kubits: Solid-state self-
reconfiguration with programmable magnets,” IEEE Robotics and Au-
tomation Letters, vol. 5, no. 4, pp. 6443-6450, Oct 2020. |I|

[11] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita,
and S. Kokaji, “M-tran: Self-reconfigurable modular robotic system,”
IEEE/ASME Transactions on Mechatronics, vol. 7, no. 4, pp. 431-441,
2002. [

[12] J. Davey, N. Kwok, and M. Yim, “Emulating self-reconfigurable robots-
design of the smores system,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 4464-4469. |I|

[13] A. Sprowitz, R. Moeckel, M. Vespignani, S. Bonardi, and A. J. Ijspeert,
“Roombots: A hardware perspective on 3d self-reconfiguration and loco-
motion with a homogeneous modular robot,” Robotics and Autonomous
Systems, vol. 62, no. 7, pp. 10161033, 2014. [1]

[14] N. Eckenstein and M. Yim, “Design, principles, and testing of a latching
modular robot connector,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2014, pp. 2846-2851. m

[15] N. Ayanian, P. J. White, A. Hdldsz, M. Yim, and V. Kumar, “Stochastic
control for self-assembly of XBots,” in ASME International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, 2008, pp. 1169-1176. |I|

[16] S. Murata, H. Kurokawa, and S. Kokaji, “Self-assembling machine,” in
IEEE International Conference on Robotics and Automation, 1994, pp.
441-448. [1

[17] G. Aloupis, S. Collette, M. Damian, E. D. Demaine, R. Flatland,
S. Langerman, J. O’Rourke, S. Ramaswami, V. Sacristdn, and S. Wuhrer,
“Linear reconfiguration of cube-style modular robots,” Computational
Geometry, vol. 42, no. 6-7, pp. 652-663, 2009. [1]

[18] G. Aloupis, S. Collette, E. D. Demaine, S. Langerman, V. Sacristdn,
and S. Wuhrer, “Reconfiguration of cube-style modular robots using o
(logn) parallel moves,” in International Symposium on Algorithms and
Computation, 2008, pp. 342-353. 1]

[19] A. Dumitrescu and J. Pach, “Pushing squares around,” in Annual
Symposium on Computational Geometry, 2004, pp. 116-123. |I|

[20] M. D. Hall, A. Ozdemir, and R. GroB, “Self-reconfiguration via active
subtraction with modular robots,” in Proceedings of Robotics: Science
and Systems, 2020. [1]

[21] C. Sung, J. Bern, J. Romanishin, and D. Rus, “Reconfiguration planning
for pivoting cube modular robots,” in 2015 IEEE International Confer-
ence on Robotics and Automation, 2015, pp. 1933-1940. 2} Bl B Bl [&
o

[22] H. A. Akitaya, E. D. Demaine, A. Goncezi, D. H. Hendrickson, A. Hes-
terberg, M. Korman, O. Korten, J. Lynch, 1. Parada, and V. Sacristdn,
“Characterizing universal reconfigurability of modular pivoting robots,”
ArXiv preprint, p. arXiv:2012.07556, 2020. |Z|

[23] Z. Ye, M. Yu, and Y.-J. Liu, “NP-completeness of optimal planning
problem for modular robots,” Autonomous Robots, vol. 43, no. 8, pp.
2261-2270, 2019. [

[24] A. Nguyen, L. J. Guibas, and M. Yim, “Controlled module density helps
reconfiguration planning,” in International Workshop on Algorithmic
Foundations of Robotics, 2000, pp. 23-36. |Z|

[25] H. A. Akitaya, E. M. Arkin, M. Damian, E. D. Demaine, V. Dujmovic,
R. Flatland, M. Korman, B. Palop, 1. Parada, A. van Renssen, et al.,
“Universal reconfiguration of facet-connected modular robots by pivots:
the O(1) musketeers,” Algorithmica, 2021. P [§]

[26] J. W. Romanishin, J. Mamish, and D. Rus, “Decentralized control for
3D M-Blocks for path following, line formation, and light gradient ag-
gregation,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2019, pp. 4862-4868. 2]

[27] P. Thalamy, B. Piranda, and J. Bourgeois, “A survey of autonomous
self-reconfiguration methods for robot-based programmable matter,”
Robotics and Autonomous Systems, vol. 120, p. 103242, 2019. |Z|

[28] Q. Song, D. Ye, Z. Sun, and B. Wang, “Autonomous reconfiguration
of homogeneous pivoting cube modular satellite by deep reinforcement
learning,” Proceedings of the Institution of Mechanical Engineers, Part
I: Journal of Systems and Control Engineering, 2020. [Z]

	Introduction
	Reconfiguration for Pivoting Cubes
	Our Contribution

	DEFINITIONS
	PROBLEM AND RESULT STATEMENT
	ALGORITHM
	Overall Strategy
	Order of Removal Within a Slice
	Selecting Slices
	Handling Branches

	PROOFS
	Connectivity, Slice Selection, and Root Selection
	Removal of Branches

	SIMULATION
	CONCLUSION
	References

