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ABSTRACT

COMMUNICATION AWARE MOBILE ROBOT TEAMS

James Stephan

Alejandro Ribeiro

The type of scenarios that could benefit from a team of robots that are able to self configure

into an ad-hoc multi-hop mobile communication network while completing a task in an unknown

environment, range from search and rescue in a partially collapsed building to providing a security

perimeter around a region of interest. In this thesis, we present a hybrid system that enables a

team of robots to maintain a prescribed end-to-end data rate while moving through a complex

unknown environment, in a distributed manner, to complete a specific task. This is achieved by

a systematic decomposition of the real-time situational awareness problem into subproblems that

can be efficiently solved by distributed optimization. The validity of this approach is demonstrated

through multiple simulations and experiments in which the a team of robots is able to accurately

map an unknown environment and then transition to complete a traditional situational awareness

task.

We also present MCTP, a lightweight communication protocol that is specifically designed

for use in ad-hoc multi-hop wireless networks composed of low-cost low-power transceivers. This

protocol leverages the spatial diversity found in mobile robot teams as well as recently developed

robust routing systems designed to minimize the variance of the end-to-end communication link.

The combination of the hybrid system and MCTP results in a system that is able to complete

a task, with minimal global coordination, while providing near loss-less communication over an

ad-hoc multi-hop network created by the members of the team in unknown environments.
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Chapter 1

Introduction

In this thesis, we address the problem of a team of autonomous robots operating in unknown

environments, while they create and maintain a communication network in a comprehensive way.

This requires a unification of problems across multiple domains which include, but are not limited

to, system architecture, wireless communication links, network routing, and autonomous mapping.

We approach the problems in this manner because by expanding consideration to multiple domains,

we have the ability to balance the competing objectives of the individual components. This enables

the system to adapt to differing objectives and to optimize the overall behavior. In other words,

this problem must be addressed holistically in order to enable the broadest range of scenarios in

which the team can operate.

The potential applications of robot teams providing situational awareness of unexplored areas

is of particular interest [16, 30, 37]. Teams of low-cost, low-power, expendable robots with the

ability to explore an environment and provide real-time situational awareness without requiring a

priori knowledge of the environment or existing communication infrastructure are desired. In the

most general case, as the robots move through an environment, they collect measurements that

must be transmitted back to a central location for exploitation. A specific application involves a

first responder requiring knowledge of victim locations inside a partially collapsed building. To
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accomplish this task, the robots must be able to communicate reliably over the point-to-point

communication links, while efficiently moving through the environment so as to maintain the

communication network, all the while operating in an unknown and dangerous environment.

Three main challenges are associated with the design and implementation of such a system.

First, high-speed reliable communication over a wireless multi-hop network is difficult to achieve

due to the random fluctuations in the wireless links that cause intermittent packet loss. These

sporadic and difficult to predict fluctuations result in inefficient communication over the wireless

channels. Second, operation in complex environments while preserving a communication network

typically require high levels of global coordination. The problem with global coordination is that

as robots are added to the team, the amount of ancillary coordination data on the communication

network increases. This results in an upper limit for the number of robots on the team due to

saturation of the communication network. Finally, in order to operate effectively, a representation

of the environment is required for both motion planning and channel estimation. Unfortunately, a

priori knowledge of the environment is not feasible in scenarios where robotic teams are generally

the most useful.

These three challenges motivate the requirement to validate our system not only through simu-

lation but also through experiments. Since the system is expected to provide real-time situational

awareness over wireless links that fluctuate randomly, success in simulation is insufficient to claim

system verification; therefore experiments are required for confirmation. Consequently, in this

thesis we utilize a team of robots to empirically verify satisfaction of the system requirements,

and only rely on simulations in scenarios where adequate resources are unavailable. Finally, since

the focus of this thesis is on the design and implementation of the system, the exploitation of the

data collected by the robots, e.g. target location or data fusion, is beyond the scope of this work.

2



1.1 Objective

The objective of this thesis is to develop and demonstrate a system that allows a team of au-

tonomous micro-robots to complete a real-time situational awareness task in an unknown and

harsh environment, without the requirement of explicitly considering the evolution of the com-

munication network. To accomplish this, the team must self organize, without colliding with

environmental obstacles or each other, into an ad-hoc network, over which situational awareness

data can be transmitted according to network routes that adjust to the constantly changing net-

work topology. For this system to be effective in realistic situations, the auxiliary coordination

and communication of the system must be independent of the team size so as to allow for teams

of arbitrary size.

With that objective in mind, the focus of this thesis is presented in three parts. The first

objective is to develop and implement a lightweight confirmation transport protocol that allows

for efficient delivery of data over multi-hop wireless networks. We establish the requirements and

restrictions imposed on the protocol in order to allow for operation on simple low-cost transceivers

that can be integrated into the robotic platform for minimal cost and effort. Experimental verifi-

cation of this protocol allows us to assume in later sections that high-speed reliable communication

over a wireless network is feasible using these transceivers.

The second objective of this thesis is to reduce the level of global coordination required for

operation in complex environments. We begin by formulating a motivating problem statement

for team task completion and a solution that achieves this while reducing global coordination by

development of a novel hybrid system architecture. This architecture, which is composed of two

subsystems, allows the team to operate with no global coordination after an initial period. The

design of the hybrid architecture is concluded with experimental results both verifying successful

task completion, while preserving the communication network and comparing its performance to

other such systems.
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The final objective of this thesis is to allow for operation in unknown environments. We

begin by formulating the problem of autonomous exploration and examine the consequences of

adding communication requirements. This leads to a solution that requires the hybrid system

be augmented to allow for operation in dynamic environments while still preserving the minimal

global coordination. Our consideration of this problem concludes with experimental verification

that our system allows a team of robots to operate in unknown environments while providing

real-time situational awareness.

1.2 Literature Review

This thesis, as with most research in robotic teams, spans a wide variety of separate research

areas. These topics range from communication over ad-hoc wireless networks, to communication

aware motion control, to network optimization, to autonomous mapping. In this section we

will review the relevant literature beginning with an investigation of various methods used to

communicate reliably over ad-hoc networks. This is followed by an examination of systems that

provide communication-aware motion control, i.e. the ability of a team of robots to move through

an environment while maintaining certain communication constraints. Some constraints explored

are simple connectivity, minimum number of hops between source and destination, and end-

to-end data rate. Next, with an understanding of the systems that maintain the underlying

communication network, we examine recent advancements in optimal packet routing over ad-

hoc wireless networks. We conclude with a brief study on autonomous mapping and exploration,

where we examine recent work in information theoretic exploration with a focus on optimal sensing

locations.

4



1.2.1 Communication Protocols Over Wireless Links

Communication protocols have existed since the days of the first packet switching networks of the

1950’s. The main responsibility of a communication protocol is to manage the transport layer

of the OSI stack, [99]. The OSI stack is a standardization that allows designers to abstract the

different layers necessary for a computer network to operate. The transport layer, the space where

communication protocols exist, is above the network, data link, and physical layers, but below

the session, presentation, and application layers. With this location in the stack, communication

protocols have the responsibility of providing end-to-end communication services to the upper

layers, while providing various low level capabilities, such as flow control and reliability.

The most well known communication protocol is the Transmission Control Protocol (TCP) [11],

which was originally proposed in 1974 by Cerf and Kahn. This protocol was designed to optimally

control the flow of packets from the source to the destination, by means of a connection oriented

link. One benefit of their approach was a guarantee that packets sent by the source would be

received by the destination in the order they were transmitted. The is achieved by the receiver

sending an acknowledgment packet, or ACK, to the sender when a packet is received. To further

improve link utilization, TCP combines multiple packets into a segment which is transmitted as

a logical block. The size of the segment is determined by a congestion control algorithm which

implements a sliding window, [80]. The term sliding window is used because as segments are

confirmed, by reception of an ACK for every packet in the segment, the size of the window, and

subsequent segments, increases. This process of expanding the window increases until the link is

saturated and packets begin dropping, mainly due to congestion with other users of the link. To

detect when a packet is dropped, the sender uses a timeout based on an estimate of the round-trip

time, which is the time necessary for a packet to go from the sender to the receiver and back. If

a packet has not been confirmed within the allotted timeout, a retransmission is initiated and the

window is contracted, reducing the size of subsequent segments.
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While the ability to reliably transmit data in order over a network was a major breakthrough,

there were still applications in which the timeliness of the data was most important or the over-

head associated with TCP was too burdensome. This lead to the development of the Universal

Datagram Protocol (UDP) [62] in 1980. In contrast to TCP, UDP provides no guarantees on

the reception or order in which packets arrive at their destination, but by forgoing the overhead

associated with TCP, UDP is able to achieve higher data rates.

These protocols and their offshoots were meticulously tuned and optimized for use in wired

networks, which until recently were the only option. The transition from wired to wireless net-

works presents a paradigm shift in the assumptions and properties of the communication links.

Specifically, the medium in which the data is transmitted is no longer a physical substrate but

instead radio waves. The transition from a physical link, such as copper or fiber optics, to radio

waves introduces a large variability in the signal strength at the receiver, which is known to relate

directly to the capacity of the channel, [15]. In a wired network the signal strength does not

fluctuate due to the consistent propagation of the data over the physical link. This is not true

for wireless links, which exhibit random fluctuations in the propagation of the radio wave. To

quantify the effects on propagation, three levels of modeling are employed, called scales.

The first and largest scale is related to the power lost as the wave propagates away from

the sender, which is purely a function of the distance the wave has to travel. The second, or

middle scale, incorporates objects in the environment and describes how they affect radio wave

propagation, called shadowing, because the object effectively casts a shadow on the receiver with

respect to the sender. These two contributions have been modeled deterministically since the

effects are relatively stable over time and relate to the dominant path, or the direct line between

the sender and receiver. The third and smallest scale considers fading, which is the reflection

and refraction of the radio wave off objects in the environment. This process results in the same

signal traveling a variety of paths before reaching the receiver. As the signal travels along these

multiple paths, it reaches the receiver at different times, resulting in interference, which degrades
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performance. This level of interference, and subsequently signal strength, has been shown to vary

dramatically due to small movements by the sender, receiver, or object in the environment, [64].

It is these random fluctuations in the channel capacity, first noticed by Caceres and Iftode

in [8], that cause degradation in the performance of TCP over wireless links. The effects of

random fading can most evidently be seen in the random loss of packets as they travel over the

channel and the resulting sub-optimality of TCP. This behavior is also explored in [91] where

Xylomenos and Polyzos experimentally compare the performance of UDP and TCP over wireless

links. Their experiments reveal lower then expected performance over the wireless links, due

mainly to packet collision and poor recovery from dropped packets. The reason for the increase

in packet collisions is that unlike a wired network where the point-to-point links are isolated from

each other because they operate over physically separated wires, the links in a wireless network

are not isolated. The communication between one pair of nodes can be interfered with by the

communication between two other unrelated nodes, as well as by other radio waves in the area.

Since this is a physical phenomenon, best addressed at the physical layer of the OSI model, most

communication protocol research do not actively consider this. In contrast to packet collisions,

random packet loss and methods to mitigate their affects on TCP is an active research area.

From the beginning of wireless networks and the identification that traditional TCP is in-

adequate, there have been numerous modification and suggested improvements for its use over

wireless links. One set of prosed modifications focus on selective retransmission schemes. These

approaches allow the sender to identify the specific dropped packets and to only retransmit those

before performing a window contraction. In [38] Keshav and Morgan propose a modification,

called Simple Method to Aid Retransmit (SMART) which decouples congestion control from flow

control by including in the ACK packet both the cumulative ACK count and the sequence number

of the pack that initiated the ACK. This allows the sender to identify the packets that are lost and

allows for selective retransmission. This process was later modified and included in the TCP stan-

dard [25], named Selective Acknowledgment (SACK), where the options field of the TCP header

7



is used to identify to the sender the packets in the segment that were not received. This allows

the sender to identify the exact packets that were dropped and limit retransmission to only those

packets, reducing used bandwidth and preventing overly aggressive window contraction. With its

introduction in the TCP standard, SACK is commonly used to reduce extraneous retransmissions.

Another method for identifying when a packet is lost due to the random fluctuations of the

channel is proposed by Tsaoussidis and Badr in [85]. In this protocol, when confirmation is

delayed the sender enters into a probe cycle as opposed to contracting the window. In the probe

cycle, small probe packets are sent to the receiver, which responds with an ACK if received.

Upon confirmation of two successive probe packets being received, the sender returns to normal

operation without contracting the window. If the errors persist, the cycle exits and the window is

contracted, since this is an indication that the channel quality is reduced and the dropped packet

was not due to random fluctuations.

A major advancement in TCP over wireless networks occured with the introduction of TCP

Santa Cruz [58] by Parsa and Garcia-Luna-Aceves. In this modification, the window based con-

gestion control process was enhanced to use the relative delay between packets in the forward

direction, which provides robustness to ACK loss and reverse path congestion. By leveraging the

relative delay between two packets, the system is able to identify when loss is due to channel

congestion and when it is due to random loss. Additionally, this modification provides a better

estimate of the round trip time, resulting in a reduction of the number of times the window is

contracted inappropriately.

The use of information other than ACKs to augment the congestion algorithm is also explored

by Casetti et al. in [9], where they propose TCP-Westwood. This modification uses a metric for

effective bandwidth that is computed by the rate of returning ACKs. This value is used to control

the reduction in the size of the window. This approach allows for the window to be contracted in

accordance with the effective bandwidth, as opposed to the common halving used in traditional

TCP. TCP-Westwood was demonstrated experimentally to provide greater than five times the
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throughput of traditional TCP.

The use of a window for congestion control is not the only method explored in the literature.

In [73], Sinha et al. utilizes a rate-based transmission control scheme in lieu of the self-clocking

window scheme. In this scheme, ancillary data about the average delay between packets for both

the sender and receiver are used to adjust the rate at which packets are sent. While in [1], Aggarwal

et al. propose ACK Pacing that attempts to ameliorate the bursty nature of communications by

performing rate control on the ACK transmission from the receiver. By smoothing out the rate

at which ACKs are sent, the likelihood of packet loss in the reverse direction is lowered, at the

expense of throughput.

In work done by Fu e al [26], they identify an optimal window size for TCP given a specific

network topology, but existing window control methods rarely operate with that window size. To

that end, they propose an adaptive pacing system that seeks to determine the optimal window

size, which results in up to a 30% performance improvement over TCP in simulation. Building

upon the concept of adaptive pacing in [19] ElRakabawy et al. proposes a system, TCP-Adaptive

Pacing (TCP-AP), that is a hybrid between rate based control and congestion window methods.

These modification are examined in simulation and demonstrate significant gains over existing

methods.

There have been multiple publications that survey and compare many of the proposed mod-

ifications in TCP. One of the first was done by Pentikousis et al. [59] in which they survey and

evaluate a variety of TCP modifications for use in networks that contain a mix of wired and

wireless connections. They conclude the poor performance of traditional TCP to a number of

factors, including user mobility and random losses. A more recent survey done by Al-Jubari et

al. [3] provide an extensive review of these and other protocols with the conclusion that the pro-

posed methods, while effective, are specially designed to meet the needs of the application and

environment and thus are not easily generalized.
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1.2.2 Communication-Aware Motion Control

Even if reliable communication over wireless links can be guaranteed, the motion controllers on

the robots must be aware of the affect motion has on the communication links. Therefore, the

ability for a team of mobile robots to move through an environment, while maintaining specific

properties of the underlying communication network is of particular interest to this thesis. This

ability is complicated by a variety of factors such as node mobility, wireless channel estimation,

dynamic network topologies, and non-convex environments. These complications are inherent to

the problem of communication-aware control and therefore must be understood before further

progress can be made.

The use of communication over wireless links is well established in the literature. In an early

publication by Jadbabaie et al. [33] they provide a theoretical understanding of the flocking ex-

ample given by Vicsek et al. in [86]. In this paper, they use graph theory and dynamical system

theory to provide a theoretical explanation and convergence results for the observed behavior that

a collection of n autonomous agents can form into a moving flock by using only local measure-

ments. In [65], Ren and Beard continue the work done by Jadbabaie et al. and demonstrate

that consensus can be reached by either a discrete or continuous update scheme, in an asymptotic

sense over dynamically changing networks as long as the union of directed interaction graph has a

spanning tree frequently enough. These two works influenced Olfati-Saber et al. in their work on

extending the problem formulation to applications such as coupled oscillators, formation control,

fast consensus in smallworld networks, and gossip algorithms, [56]. They also provide simulation

results that demonstrate the effect smallworld networks have on the speed of consensus algorithms,

and cooperative control.

Leveraging the previous work on consensus algorithms over dynamic network topologies, in [4]

Antonelli et al. provide a distributed system that is capable of driving a team of robots through an

environment while maintaining a formation. This is achieved by utilizing a distributed controller-
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observer scheme that is able to accurately estimate and control the time varying-centroid of the

formation. This is demonstrated in experiments involving multiple wheeled robots.

While these systems are able to operate over dynamic network topologies they do not consider

the affect motion has on the communication links, which change as the robots move, and how

those changes affect the network topology. This highlights the need to consider how mobility and

communication interact. In the work done by Hsieh et al. [31,32] they demonstrate that a team of

robots can independently move through an environment using the gradient of the received signal

strength as an indicator of the communication network. They show through experiments that

end-to-end connectivity can be maintained by a reactive controller in an urban environment. This

method eschews a direct modeling of the point-to-point communication link and is still able to

provide acceptable results.

While the work by Hsieh et al. is promising, there has been substantial research dedicated to

mobility and communication using a variety of channel estimation techniques. The first, and most

widely researched method, due to its simplicity, is a geometric disc model, where communication is

assumed if two robots are with fixed communication range. This leads to a binary representation

of the network and the ability to represent the communication requirements as a set of geometric

constraints. In [74] Spanos and Murray use a metric they call connectivity robustness to quantify

how robust the network topology is to movement by the individual robots. They demonstrate

that imposing constraints on the motion in this form allows for a distributed motion planning

algorithm to be used so as to allow more freedom of motion and ultimately a larger reachable set

of formations, when compared to the use of direct connectivity constraints.

Similarly, in [55] Notarstefano et al. consider robots with double integrator dynamics and how

this affects communication-aware motion. In this work they demonstrate that it is feasible for a

team to maintain connectedness by utilizing what they refer to as a double-integrator disk graph,

and that given desired control inputs produces the closest match that respects the connectivity con-

straint. This can be implemented via distributed “flow-control” algorithm. In [12], Chakraborty
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and Sycara propose a distributed control system that solves a convex optimization problem that

seeks to maintain k-connectedness. This allows the robots to independently determine their mo-

tion towards a desired location while preserving the network connectivity constraints, using only

local information via an incremental algorithm. They conclude from the simulation results that

the runtime for the incremental algorithm is independent of the team size. Thus, the process can

scale efficiently.

The next method used in communication aware motion control employs a smooth decaying

function of the inter-robot distance. This method is useful because it is able to capture the large

scale path loss and possibly shadowing when estimating the channel. The consideration of non-

binary links opens the field to leverage many of the advancements from graph theory, specifically

algebraic connectivity or the second smallest eigenvalue of the Laplacian, which measures the

rate of information spread over the network. The work done by Kim and Mesbahi considers

weighted graphs, where the vertices are able to move subject to some proximity constraints and

in which the edge weight between two vertices is a function of their separating distance [39]. They

attempt to determine the optimal placement of the vertices so that the second smallest eigenvalue

of the Laplacian is maximized. This work, while not specifically considering robots, can clearly

be translated to robotic teams.

Considering robotic teams explicitly, De Gennaro and Jadbabaie propose a potential based

control law which follows a supergradient to increase the second smallest eigenvalue of the Lapla-

cian [18]. This system operates in a distributed manner and models the link between robots

as an exponential decay. This work was built upon by Ji and Egerstedt in [34] to impose the

requirement that the team also complete some objective. The two objectives examined in this

publication are rendezvous and formation control. Zavlanos and Pappas [95] continue this line of

research by translating the connectivity constraints into differential constraints on each robot’s

motion by taking the dynamics and spectral properties of the Laplacian into consideration . This

is implemented as artificial potential functions that drive the agents away from formations that
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produce undesirable results, with respect to connectivity, while avoiding collisions with each other.

In a different branch of the work done in [18], Stump et al. [81] present a system that is able to

provide a minimum level of connectivity to an exploring robot back to a stationary access point in

a walled environment. This is achieved by designing a controller that moves in the direction that

provides a maximum increase in the second eigenvalue of the Laplacian while keeping the number

of robots between the explorer and the access points below a maximum value. This approach

is shown to provide acceptable communication quality even when the hop-count requirement is

violated.

In contrast to the myopic actions prescribed by the previous systems, Schuresko and Cortes

propose a distributed approach based on game theory in which the robots determine if a collective

action will violate the connectivity requirement [70]. The connectivity measure considered is still

the second smallest eigenvalue, but by taking this approach their algorithm can operate even with

imperfect information caused by communication delays or robot motion. The flexibility afforded

by this approach allows the algorithm to operate in non-convex environments, i.e. those that

contain obstacles.

In [49, 96] Zavlanos et al. present a distributed motion algorithm based on key control de-

composition that uses the discrete space of graphs to control the structure of the network. Local

estimates of network topology and algebraic connectivity are used to identify links that can be

deleted, with ties settled by means of a gossip algorithm. In parallel the motion controller operates

to maintain existing links through nearest-neighbor potential fields. This system is demonstrated

in simulation and experimentation with non-holonomic robots.

In a shift away from algebraic connectivity, Tekdas et al. examine a problem similar to Stump

et al, in that there is a mobile user that wishes to maintain connectivity with a stationary access

point [83]. To accomplish this task Tekdas et al. leverage advanced motion planning algorithms

based on models of the users motion that maximize the amount of time until the user’s motion

cause a break in the link. The system’s ability to maintain connectivity is demonstrated in
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experiments when the path of the user is know a priori and when the user is adversarial.

The shift away from algebraic connectivity is continued in [97,98] where Zavlanos et al. change

the interpretation of network integrity to the end-to-end data rate, not the algebraic connectivity

of the communication graph. This change in the interpretation requires that the system compute

the optimal packet routes for the current formation. This is achieved by solving a distributed

optimization problem in which neighboring robots share pertinent information. For motion con-

trol, a continuous time controller utilizes a navigation function approach that includes virtual

communication obstacles. This system is shown in simulation to provide the desired end-to-end

rate while completing a secondary objective.

The third class of methods used to model the point-to-point channels incorporate the effects

of multi-path fading. This is done by interpreting the channel quality as a random variable with

the mean determined by the expected path loss and shadowing, while the variance is determined

by the fading characteristics of the environment. In the work done by Mostofi et al, they provide

a framework for accurately characterizing the probabilistic nature of the channel, by taking into

account the effects of all three scales of signal loss [52]. This work provides a comprehensive

overview of channel modeling, expressly for use in mobile robot teams, which is subsequently

verified by experimentation.

Leveraging this framework, Mostofi presents motion planning strategies that are able to main-

tain communication, by learning the parameters for the environment through measurements such

as signal-to-noise ratio and correlation characteristics [51]. The main contribution of this work is

a randomized motion planning strategy that allows robots to escape deep fades, either correlated

or uncorrelated, which can greatly degrade system performance.

Another system that incorporates a probabilistic model of the channels can be found in [21,

23,24]. In this work Fink et al. proposed a system that provides a minimum end-to-end data rate,

similar to the metric in [97,98], while the team moves through a complex environment to complete

a task. In this system, the optimal routes for the packets are determined by an optimization
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problem where the minimum end-to-end rate is satisfied above a specified probability threshold.

A randomized motion planning strategy is employed to determine the trajectories of each robot

in the joint configuration space, such that the probability threshold is satisfied at all times.

The problem of optimal placement of mobile agents to construct a relay network between

two fixed locations is examined in [93] by Yan and Mostofi. In this problem, they consider

minimization of the bit error rate of the end-to-end channel as opposed to the data rate or second

smallest eigenvalue of the Laplacian. Using a probabilistic model for the channel and a robotic

router motion optimization they are able to construct a distributed system that is able to learn

the environmental characteristics and operate in the presence of obstacles. They also demonstrate

that minimization of the bit error rate as opposed to maximizing the second smallest eigenvalue

of the Laplacian results in better performance in complex environments.

The purpose of these methods is to provide a model for the communication link that allows for

efficient motion planning, but even the methods that provide online estimation of the channel are

restricted to a generalization of the environment and require collection over large areas. To over-

come this, Gil et al. introduce a novel system for channel estimation and optimal motion control

that relies on methods developed for RADARs, specifically Synthetic Aperture Radar (SAR) [27].

They demonstrate the creation of a SAR system using commercially available hardware and soft-

ware to accurate predict the direction of motion that increases the signal to noise ratio the most.

This is made possible by coherently integrating the received signal as the robot follow a straight

line, effectively creating a large receive antenna, which can be used to determine directionality of

the signal.

1.2.3 Network Optimization

As the ability of teams of robots to move through complex environments increases we must also

consider the problem of wireless network optimization. As previously discussed, there has been

considerable research in optimal transport protocols over wireless links, but as the robots move
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and the network topology changes, the lower layers of the OSI model, specifically the routing layer,

must also adapt.

Some of the first solutions to optimal routing over networks with dynamic topology focused

on minimization of the number of hops a packet must take to reach its final destination. These

protocols, namely Dynamic Source Routing proposed by Johnson and Maltz [35] and Ad-Hoc On-

Demand Distance Vector routing proposed by Perkins et al. in [60], rely on real-time measurements

of the channels to infer the network topology and thus determine the routes that result in the

minimum number of hops a packet must take. These systems result in sub-optimal solutions when

applied to realistic ad-hoc networks, due mostly to the inaccuracy of determining the existence of

a link. As demonstrated in [47] by Lundgren et al, there are regions where a probe signal, called

the HELLO, can be successfully received over a link but data cannot. This results in a gray-zone

where the link is believed to exist but data transmission is impossible.

In the work of De Couto et al, they propose a different metric for optimal routing, called

expected transmission count [17]. This metric does not assume that the path with the least

hops is optimal; and instead, they characterize the paths by the expected throughput, which

they maximize. This approach leads to routing solutions where the optimal route may include

more hops but results in significantly higher data throughput, often by a factor of two over the

approaches that minimize hop-count.

Other proposed solutions for network optimization rely on a cross layer approach that controls

multiple layers of the OSI model simultaneously. While this does violate the abstraction imposed

by the OSI model, the interaction between the lower levels of the model in wireless networks is

much greater than in traditional wired networks. To that end, one solution proposed by Eryilmaz

and Srikant in [20] solves the problem by jointly scheduling the routing and congestion control, in

order to provide asymptotic guarantees on the stability of the buffers and the fairness of network

resource allocation. This is achieved by sharing the queue lengths across the layers of the network.

In another solution which controls the transport, network, and physical layers in unison, Lin
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et al. propose a “loosely coupled” cross-layer solution [45]. This solution allows for optimization

of the separate layers with minimal inter-layer coordination, which aside from the physical layer

can be solved optimally in a distributed manner.

In the spirit of returning the independence of the OSI model, Yi and Shakkottai present

a solution that provides congestion control for a multi-hop wireless network by formulating an

optimization problem, where one of the constraints is a channel access time constraint to symbolize

the time-division strategy used in the lower layers, [94]. They demonstrate that in the absence

of delay, this solution provides globally stable results, and in the presence of delay, areas of high

load spatially are spread out over the network, resulting in bounds on the peak load of a node.

Just as the trend in communication-aware motion control moved towards probabilistic models

of the channel, so to did the field of network optimization. In the work done by Ribeiro et al.

in [66], they consider the inter-node links to be random quantities with know mean and variance.

This approach lends itself to solutions where the decision of which node a packet is transmitted

to next is determined by a probability distribution. They show that this probability distribution

can be determined by a convex optimization problem which can be efficiently solved via interior

point methods.

Continuing with this approach, Wu et al. proposes an extension where solutions are determined

by either maximizing an average utility subject to variance constraints, or minimization of variance

subject to minimum average utility [89]. They continue by showing that both of these problems

can be formulated as convex optimization problems that can be solved in a distributed manner,

due to the separability of the problem. They conclude with a comparison of the resulting solutions

to those found by a centralized system showing no performance penalty even with a significant

reduction in the overall communication.

This work is further refined by Ribeiro et al. in [67], in which they demonstrate that rate-

oriented criteria such as minimum rate, weighted sum of rates, product of rates, and sources

rate can be maximized by means of a stochastic routing solution. This solution is obtained by
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a distributed algorithm in which dual variable are exchanged and optimality can be guaranteed

under mild conditions.

1.2.4 Autonomous Exploration

The ability of a robot to move safely through an environment and perform a task is predicated

on successful localization. This means that given information from an onboard sensor such as a

laser range finder or camera the robot can estimate their location in the environment with high

accuracy. There are configurations in which external sensors, such as a motion capture system,

are used to provide a highly accurate estimate of the robot location, but due to their cost and

the effort to calibrate, they are relegated to use in laboratories and fixed installations. Since this

thesis is focused on operating in realistic situations, the use of these systems is not considered.

In order to successfully localize, the robot first needs to have a representation of the environ-

ment. The representation of the environment used to localize is typically dictated by the types

of sensory inputs available to the robots. For example, if the robot is equipped with a laser

range finder that can accurately measure distances along multiple angles simultaneously, then

it is common to use an occupancy grid representation of the world, [84]. An occupancy grid

is a representation of the world in which areas or volumes, depending on whether the map is

2-dimensional or 3-dimensional, are discretized into cells that represent that specific location in

the environment. Another common representation, used when the available sensor is a camera, is

a landmark based map, [6]. In a landmark based map, not every single location is represented,

instead only important and easily identifiable features are represented. This allows for a much

more compact representation of the world compared to an occupancy grid, but also introduces a

higher probability of decreased accuracy due to insufficient features.

While the ability to localize in a given map is useful, it is limited to areas that have already

been mapped. Since the world is constantly changing and there are always new places to explore,

this problem has been extended to consider Simultaneous Localization and Mapping (SLAM). One
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of the first explorations of the problem was done by Leonard et al. in [43], where they presented

the problem as the “which came first, the chicken of the egg?”, since the robot cannot localize

without a map and it cannot create a map without knowledge of its location. In order to solve

this problem, they proposed a system that jointly determines the location of the robot and maps

the surroundings, via onboard sensor measurements. As more measurements are obtained, the

accuracy of the estimated location and map are increased and refined.

This process was later extended by Castellanos et al. in [10] where they introduce a framework

that uses a probabilistic representation of uncertain geometric information. This allowed for much

higher accuracy of the robot’s pose and thus more accurate maps when using a 2-dimensional laser

range finder. The advancements in SLAM have not been limited to robots equipped with laser

range finders; in [71] Se et al. propose a SLAM system in which the main sensory input was a

stereo vision system. They demonstrated that using this input they were able to successfully move

through a realistic environment while mapping naturally occurring features in the environment.

The ability to perform SLAM in larger and more complex environments is the topic covered

by Olson, [57], in which he presents an optimization algorithm to efficiently estimate the most

probable representation of the environment given previous noisy measurements.

In parallel to advancements in SLAM algorithms, the problem of autonomous exploration was

evolving. Autonomous exploration is the process by which the robot, not an operator, determines

the optimal actions given an objective. The objective could be to locate a target in the envi-

ronment, such as a person or object, or more simply, the robot could be tasked with creating

an accurate and complete map of the environment. In that regard, some of the earliest work

done by Yamauchi [92] focused on the boundary between known and unknown spaces. These

boundaries are called frontiers since they are on the frontier of the known space. In this work,

Yamauchi demonstrates that driving the robot to frontiers ultimately results in a complete map

of the environment regardless of its complexity. Since then there have been countless publications

on the optimal strategy for selecting the “best” frontier. One such paper [29], Holz et al. provides
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a comparison of various techniques for frontier selection and comes to the conclusion that the

optimal strategy is to move to the closest frontier.

Recent advancements in the selection of optimal robot motion in autonomous exploration has

focused on using an information theoretic approach. These approaches use various information

theory metrics to decide the optimal location of the next set of measurements. In order to use

information theory, these approaches take a probabilistic approach and represent the maps of the

environment as an occupancy grid, where a cell contains the probability of an obstacle residing

at that location. The work done by Kollar and Roy [40] includes Shannon’s entropy [15] into the

motion control of the robot. In this work, they reduce the map to a skeleton graph and determine

the minimum entropy path through the environment by means of an optimization problem that

uses gradient ascent. The resulting trajectories offer improved accuracy of the resulting map.

Similarly, the work done by Stachniss et al. [75] also includes Shannon’s entropy in the objective

and select actions that maximally reduce the entropy. Another metric used is the a-optimal

information measure, which is used by Sim and Roy in [72]. In this work, they present a method

for determining non-greedy global planning trajectories that result in accurate maps by attempting

to close loops, while restricting the planning to an appropriate control policy class.

In [7] Bourgaul et al. they use Shannon’s mutual information [15] in their objective function

to expedite the mapping process. Hoffmann and Tomlin improve on this work in [28] where they

provide an efficient method from computing the mutual information when using a particle filter.

Even with this efficiency gain, as the environments become larger and the sensor measurement

history grows, the computational tractability of these systems comes into question. As shown in

[36], Julian et al. highlight the limitations of Shannon’s mutual information due to the requirement

to numerically integrate over all possible maps and all possible robot locations. This is the problem

studied by Charrow et al. in [13] where they present an approximation of Shannon’s mutual

information. They demonstrate that this approximation allows for real-time operation through

extensive experimentation.
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Building upon their past work, Charrow et al. [14] then considers another information measure,

specifically Cauchy-Schwarz Mutual Information (CSQMI) [61]. While not identical to Shannon’s

mutual information, CSQMI behaves similarly to Shannon’s Mutual information and has the added

benefit of computational tractability. This allows Charrow et al. to design a real-time exploration

system that is able to achieve the same level of accuracy as the systems that rely on Shannon’s

mutual information, for only a fraction of the computation cost.

1.3 Approach

The objective of this thesis is to present and experimentally verify a system that can allow a team

of robots the ability to provide real-time situational awareness by means of a self configured ad-

hoc wireless network without a priori knowledge of the environment. This problem can be broken

down into three parts: first, the development of a lightweight confirmation transport protocol;

second, the design of a hybrid system architecture that reduces global coordination; third, the

integration of simultaneous localization and mapping.

In the first part, we begin by examining the common transport protocols that are used in

multi-hop wireless networks - TCP and UDP. The design of the protocol is driven by the desire

to use low-cost simple transceivers to create a reliable wireless network. The decision to limit the

capabilities of the transceivers requires that the protocol be as lightweight as possible while still

providing a high quality of service. We continue by detailing the evolution of the protocol from

simple acknowledgment to an optimized protocol designed with these transceivers and wireless

ad-hoc network in mind. We demonstrate the benefit of using the protocol during experiments

in which a team of robots move through an environment while maintaining a communication

network.

In the second piece, we begin by considering the completion of an arbitrary task by the team.

We begin with an examination of the benefits and drawbacks of prior systems - centralized and
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distributed. Next we propose a system architecture that completes the task with minimal global

coordination. The architecture take a hierarchical approach to the problem by initially solving

for a global solution and then using that as a guide for dynamic motion and network control

during system operation. To generate the initial solution, we approach that problem of concurrent

mobility and communication to determine feasible trajectories for each robot that preserve the

network, which is closely related to [24].

In order to determine the motion and network routing during operation, we solve a modified

version of the global problem which can be solved in real-time via a distributed algorithm. This

method is closely related to [98]. By using the global solution as a road map, this system is able

to decompose the larger problem into subproblems that do not require global coordination. The

real-time operation also allows the system to dynamically adjust to changes in the environment.

We demonstrate though experimentation that this approach results in improved performance over

an existing system while reducing the amount of global coordination.

In the final piece, we remove the requirement of a priori knowledge of the environment. By

removing a priori knowledge, we must modify the problem formulation so that we only rely on

collected information. This leads to an inversion in the system architecture which increases the

importance of the distributed portion of the system. Additionally, the system must now construct

a meaningful representation of the environment, which requires the integration of an autonomous

mapping component [14]. Finally, since the objective is real-time situational awareness, we demon-

strate our system’s ability to efficiently map the environment and then transition to another task,

all while supporting real-time data transfer.

Since this thesis relies on constructing a robust system that can operate in unknown envi-

ronments, we present experimental validation of the system where ever possible. In each set of

experiments multiple locations are used to demonstrate robustness and those same locations are

revisited in subsequent sections. This allows for a performance comparison as constraints are

placed on the system.
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1.4 Thesis Contribution

This thesis makes several novel contributions to the situational awareness problems faced by teams

of robots.

One contribution is the design, development, and implementation of MCTP, a lightweight

transport protocol specifically designed for use over ad-hoc multi-hop wireless network consisting

of low-power low-cost transceivers. This protocol is designed to leverage the spatial diversity found

in mobile robot networks and robust routing solutions. The lightweight design allows for operation

over transceivers found on micro-autonomous robots while still providing reliable communication.

The efficient design of the confirmation mechanism allows the protocol to operate effectively even

when the number of robots on the team increases dramatically.

Another key contribution is the decomposition of the real-time situational awareness problem.

By deconstructing the problem we are able to identify that the system design space can be inter-

preted as a 2-dimensional, as opposed to a 1-dimensional, space. This enables us to discuss systems

not just as centralized or distributed, but instead consider the required level of coordination along

with the optimality of the solution.

This leads to a hybrid systems approach to the problem that results in a system that is able

to provide real-time situational awareness with minimal global coordination. We achieve this by

leveraging highly capable local controllers to complete a task while preserving network integrity.

The system is able to operate in an almost completely distributed manner, requiring minimal

global coordination. Utilizing this approach, a team of arbitrary size is able to successfully navigate

complex environments while providing real-time situational awareness to an operator located at

an access point.

Another contribution of this thesis is an extension of the real-time situational awareness prob-

lem to unknown environments and a system to satisfy the requirements. We achieve this by

augmenting the components of the hybrid system that require information about the environ-
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ment, so that they can operate with incomplete information. With the introduction of a dynamic

environment the reliance on the local controllers is increased, and global coordination is only used

when the team is trapped in a local minima.

The final contribution of this thesis is the integration of an Information Theoretic Exploration

system into the hybrid system. This results in a system that is able to autonomously map an

environment while simultaneously satisfying the real-time situational awareness task. When the

environment is sufficiently mapped, this final system is able to transition to a traditional situational

awareness task.

1.5 Thesis Outline

The remainder of this thesis continues as follows

Chapter 2 begins by presenting a generic problem formulation of the concurrent mobility

and communication problem. This formulation will serve as the basis for real-time situational

awareness problem. Then we examine the way in which the network integrity constraints can

be formulated, either robust or non-robust. Next, we provide a taxonomy of the system design

space for adequately solving the concurrent problem, in which system design is interpreted as

a 2-dimensional problem. We finish with a description of the experimental platform, software

framework, and common experimental environments used in this thesis.

Chapter 3 details the creation of MCTP, a lightweight transport protocol that is specially de-

signed for mobile ad-hoc wireless networks. We begin with a set of experiments that demonstrate

the increased reliability that robust routing solutions provide over non-robust solutions in mobile

ad-hoc robot networks. Next, we examine the two most common protocols for wireless commu-

nication network, resulting in a understanding of the deficiencies and benefits of each. Then we

detail the construction of a transport protocol that is designed with our simple transceivers and

multi-hop robust routing in mind. This transport protocol utilizes multiple point-to-point packet
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receive confirmations as opposed to end-to-end confirmations used in traditional protocols. This

protocol is then integrated into an existing communication-aware system to demonstrate the abil-

ity to provide near loss-less communication over a lossy ad-hoc network. The chapter concludes

with a demonstration of the protocol design as the number of robots on the team increases, to the

point where traditional protocols are infeasible.

Chapter 4 presents our hybrid systems approach that is fundamental to this thesis. We begin

with an overview of the system architecture, composed of a two-stage feedback loop where an

outer loop is responsible for infrequent global coordination and the inner loop is responsible for

motion and network routing at the robot level. We then detail the construction of a global planner

that is capable of determining trajectories for each robot through complex environments. This

planner is designed to produce solutions that are robust to channel misestimation and trajectory

deviation. We then develop a distributed controller that is able to use and improve upon those

trajectories while avoiding local minima. The chapter then provides a detailed examination of

the system in both simulation and experimentation, in which the benefits of the hybrid approach,

specifically dynamic motion control, trajectory optimization, and operation with large teams, are

demonstrated. In the conclusion of this chapter we demonstrate the system’s ability to provide

real-time situational awareness in the realistic scenario of patrolling a series of hallways, with and

without the protocol developed in Chapter 3.

Chapter 5 integrates the approach taken in Chapter 4 and applies it to operation in unknown

environments in order to produce a Simultaneous Communication-Aware Localization and Map-

ping (SCLAM) system. We begin by examining the effects that removing a priori knowledge of

the environment has on the system designed in Chapter 4. This requires that the channel esti-

mation and motion planning consider the uncertainty in the environment when operating. We

then integrate recent advancements in efficient autonomous mapping to provide knowledge of the

environment. The resulting map updates induce a dynamic communication requirement that the

team must adjust to in order to provide minimal information delay. Next, we demonstrate the
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system operating in multiple unknown environments, through both simulation and experiments.

The chapter concludes with a final demonstration of the system, providing real-time situational

awareness while initially mapping an unknown environment, then transitioning to support a highly

agile aerial platform that patrols the newly mapped area.

Chapter 6 finishes with some concluding remarks and thoughts on future work.

26



Chapter 2

Background & System

Configuration

We are interested in systematically addressing the components necessary for a team of robots to

provide real-time situational awareness in unknown environments. These components include reli-

able communication over the ad-hoc multi-hop network created by the robots, concurrent mobility

and routing with minimal global coordination, and online construction of a representation of the

environment. In this chapter, we begin by formulating the generic problem of a team of robots

completing an arbitrary task in a complex environment while maintaining a communication net-

work. This problem formulation will help inform the decisions made in regard to each component

of the system. We continue by examining the different approaches taken to solve this problem.

Finally, we conclude with a description of the robotic platform, software architecture, and primary

environments used for simulations and experimentation in this thesis.
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2.1 Situational Awareness Problem

Situational awareness can be defined in a variety of ways depending on the specific scenario.

For some scenarios, the term could mean searching a building for possible survivors, following a

designated first responder through an environment, or providing a surveillance perimeter around a

region of interest. All of these scenarios require a team of robots to successfully navigate complex

environments to complete an arbitrary task while obtaining measurements from sensors, such as

cameras and microphones. While some of these situations do not require real-time transmission

back to an access point, they all can benefit from such a property.

Since the existence of a wireless network over which these measurements can be transmitted

is highly unlikely, the robots themselves must construct and maintain a communication network.

This motivates our system design to allow for real-time transmission of sensor data over an ad-hoc

wireless network while the team completes a given task.

We begin by considering a team of N − 1 mobile robots operating an a known environment

and a single access point collocated with a human operator. The location of robot i at time t

in the environment is xi(t) ∈ R2, and the formation x(t) ∈ R2N is the aggregation of the N − 1

robot locations and the location of the access point. Without loss of generality we assign the index

i = N to the access point. At time t0 the team is deployed into a formation, x(t0). The team

is then given a sensing task Γ(x(t)) that must be accomplished by time tf . The sensing task Γ

can be any scalar convex function that maps formations to a real value, Γ : R2N → R, with a

minimum, Γmin. When the trajectory of the team results in the minimum, Γ(x(tf )) = Γmin we

say that the task has been completed. For example,

Γ(x(t)) = ‖x1(t)− xg‖2, (2.1.1)

can be used to signify that any formation in which robot i = 1 is at location xg at time tf
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completes the task. We model the kinematics of a single robot as a single input control system

ẋi(t) = f(xi(t), ui(t)), (2.1.2)

where ui(t) is the input. We assume that the robots are fully controllable, which allows us to

consider a simpler motion model of the form

ẋi(t) = ui(t). (2.1.3)

This allows us to model the evolution of the formation as an integral of the control inputs from

time t0 to time t,

x(t) =

∫ t

t0

ẋ(s) ds+ x(t0). (2.1.4)

Therefore, our goal is to determine control inputs ẋ(t) such that the team is able to successfully

complete the task while avoiding collisions with both environmental obstacles and other members

of the team. To that end, we define the set of all the formations in which a robot collides with

an environmental obstacles, Fro. We then define the set of all formations that result in robots

colliding with each other, Frr, specifically ‖xi(t)−xj(t)‖ ≤ 2δr, where δr is the maximum physical

extent of the robot from its reference frame. Define then F as the set of formations in which there

are no collisions with obstacles in the environment, namely x(t) 6∈ Fr0, and there are no inter-robot

collisions, namely x(t) 6∈ Frr,

F = R2N \ Fro \ Frr. (2.1.5)

The definition of feasible formations in (2.1.5), called the configuration space, combined with

the integral model of robots motion in (2.1.4) allows us to construct the following optimization
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problem to find control inputs ẋ(t), that result in task completion,

min
ẋ(t)

Γ (x (tf )) (2.1.6)

s. t. x(t) = x(t0) +

∫ t

t0

ẋ(s)ds, x(t) ∈ F , t ∈ [t0, tf ].

The solution to (2.1.6), is a series of control inputs that result in a final formation x(tf ) that

minimizes the task function Γ(x(t)), while adhering to the kinematics of the robots and avoiding

collision between robots and obstacles in the environment.

2.1.1 Communication Network

In order to provide situational awareness, the robots must not only maneuver safely through the

environment while completing the task, but must also maintain a minimum Quality of Service

(QoS) level. The QoS we consider is end-to-end data rate, namely what is the rate at which

a robot can transmit its sensor measurements to any other member of the team via the ad-hoc

network. For this we define K QoS requirements, one for each flow of sensor data. Note that we

define the QoS as a flow of sensor data, this is done to allow for a single set of sensor measurements

to be transmitted to multiple destinations. For the kth QoS requirement we define the minimum

end-to-end data rate that robot i must maintain for sensor data flow as aki,m. Since each sensor

data flow has an origin and a destination, we define Sk as the source and Dk as the destination of

flow k. Since only the source of the data flow requires bandwidth, aki,m is non-zero for i ∈ Sk, and

aki,m = 0 for i 6∈ Sk. As an example, assume there is only one sensor data flow of interest, K = 1,

originating from robot i = s destined for the access point, i = N . With only one flow, k = 1 we

would set a1
s,m to the data rate necessary to support the sensor and all other a1

i,m = 0. We would

also set S1 = {s} to indicate robot s being the source, and D1 = {N} to indicate that the access

point i = N is the destination.

To model how the location of the robots affects the underlying communication network we
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begin with a normalized point-to-point rate function R(xi(t), xj(t)) : R4 → [0, 1]. This measures

the rate at which a robot i located at xi(t) can transmit data to robot j located at xj(t). By

computing the rate between every pair of locations in the formation, x(t), we can compute a

rate matrix R(x(t)) ∈ RN×N , where element Rij(x(t)) = R(xi(t), xj(t)). While it is common to

assume that R(x(t)) is symmetric, i.e. Rij(x(t)) = Rji(x(t)), due to channel reciprocity, we do

not require this assumption to allow for extension to heterogeneous transmitters.

The data flow over the network is specified by a set of routing variables αkij(t) ∈ [0, 1] which

indicate the fraction of time that robot i is sending data to robot j for sensor data flow k. Similar

to the rate matrix we collect the routing variables into a routing matrix α(t) ∈ RN×N×K with

entries αkij(t). Since αkij(t) is a fraction of time robot i is transmitting to robot j for sensor data

flow k, the sum over all j and k must not exceed 1,
∑N
j=1

∑K
k=1 α

k
ij(t) =

∑
j,k α

k
ij(t) ≤ 1, for all i.

Using this definition we can now compute the rate of data flow over the communication link from

robot i to robot j for sensor data flow k as αkijR(xi(t), xj(t)). The amount of data flowing out of

robot i for sensor data flow k can then be computed as
∑N
j=1 α

k
ij(t)R(xi(t), xj(t)) and the amount

of data flowing into robot i for sensor data flow k can be computed as
∑N
j=1 α

k
ji(t)R(xj(t), xj(t)).

If we consider the difference between the outgoing and incoming sensor data flows, minus the data

destined for robot i, we can compute a communication rate margin,

aki (α(t),x(t)) =

N∑
j=1

αkij(t)R(xi(t), xj(t))−
N∑

j=1, i 6∈Dk

αkji(t)R(xj(t), xi(t)). (2.1.7)

The exclusion of i ∈ Dk in the second summand of (2.1.7) captures the understanding that data

destined for robot i does not impact the communication rate margin. This is because upon

reaching i, the destination, there is no more need to relay the data and it can be removed from

consideration. To provide network stability and prevent unbounded accumulation of data at a

single robot, we require that aki (α(t),x(t)) ≥ 0 for all i and k. This constraint allows us to

reinterpret aki (α(t),x(t)) as the amount of data that robot i can add to the network for sensor
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data flow k without compromising network stability. Combining (2.1.7) with the QoS requirements

for a data flow, we define the concept of network integrity, which is achieved when,

aki (α(t),x(t)) ≥ aki,m,
∑
j,k

αkij(t) ≤ 1, for all i, k. (2.1.8)

We see that when (2.1.8) is satisfied for t ∈ [t0, tf ], real-time situational awareness is achieved for

the duration of the deployment.

Incorporating the network integrity constraints with the motion planning problem in (2.1.6)

creates the concurrent mobility and communication problem,

min
ẋ(t),α(t)

Γ (x (tf )) (2.1.9)

s. t. x(t) = x(t0) +

∫ t

t0

ẋ(s)ds, x(t) ∈ F , for all t ∈ [t0, tf ],

aki (α(t),x(t)) ≥ aki,m,
∑
j,k

αkij(t) ≤ 1, for all i, k.

The problem in (2.1.9) seeks to find optimal motion control inputs, ẋ∗(t), and routing variables,

α∗(t), that not only allow the team to reach x(tf ) that completes the task, Γ(x(tf )) = Γmin, but

also maintain network integrity for the duration of the deployment.

2.1.2 Channel Estimation and Network Routing

Considering only the network routing portion of (2.1.9) we notice the formulation interprets the

link rates as known deterministic quantities, which is not true for wireless links. As shown in [52]

wireless links are best modeled as independent random variables, where the value R(xi(t), xj(t))

has a mean R̄(xi(t), xj(t)) := E [R(xi(t), xj(t))] and variance R̃(xi(t), xj(t)) := var [R(xi(t), xj(t))].

Due to the interpretation of the rates as random variables, the end-to-end data rates, aki (α(t),x(t)),

also become random variables, with mean āki (α(t),x(t)) := E
[
aki (α(t),x(t))

]
and variance ãki (α(t),x(t)) :=

var
[
aki (α(t),x(t))

]
. The relative ease, or complexity, of determining an expression for āki (α(t),x(t))
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and ãki (α(t),x(t)) rely on what model is used for R(xi(t), xj(t)).

This reinterpretation of the end-to-end data rates as random variables introduces a delineation

in the formulation of the routing problem. On one side of the line there is a set of formulations

that only incorporates the expected value of the end-to-end data rate into the QoS constraints,

while on the other side, the expected value and the variance, or a proxy for the variance, of the

end-to-end data rate is incorporated into the QoS constraints.

When only considering the expected value of the end-to-end data rates the following optimiza-

tion problem can be used,

α(t) = argmax
α(t),a∆

a∆

s. t. āki (α(t),x(t)) ≥ aki,m + a∆ (2.1.10)∑
j,k

αkij(t) ≤ 1,

where the value a∆ is a newly introduced slack variable. The maximization of a∆ results in a

routing solution in which the amount that each end-to-end data rate exceeds its minimum require-

ment is maximized. This formulation, and those similar to it, focus on maximizing throughput,

which can be thought of as maximizing the upper bound of the end-to-end data rate.

The other set of formulations attempt to mitigate the variation in the end-to-end data rate by

understanding that the difference between the realized channel and the expected channel may be

large. Since knowledge of ãki (α(t),x(t)) can be difficult to obtain, due to insufficient information

or the characteristics of R(xi(t), xj(t)), these formulations are further bifurcated into formulations

that use the variance directly and those that employ a proxy for the variance. One such formulation
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that utilizes a proxy for the variance is,

α(t) = argmax
α(t)

−
K∑
k=i

N∑
i=1

N∑
j=1

(
αkij
)2

s. t. āki (α(t),x(t)) ≥ aki,m, (2.1.11)∑
j,k

αkij(t) ≤ 1.

In (2.1.11) by maximizing the negative of sum of the square of the routing variables, the optimal

routing solution will use as many communication links as possible while maintaining the required

rate, which has been shown to minimize end-to-end variance. When the variance is available the

formulations can be more strict in the requirements such as,

α(t) = argmax
α(t),a∆

a∆

s. t. P

[
aki (α(t),x(t)) ≥ aki,m + a∆

]
> 1− ε (2.1.12)

∑
j,k

αkij(t) ≤ 1.

In (2.1.12) the slack variable a∆ again is maximized as in (2.1.10), but in this formulation the

minimum end-to-end rate constraint is stated in a probabilistic sense. Instead of just maximizing

the expected end-to-end data rates, now the constraints require that the probability of achieving

that end-to-end data rates must meet a threshold. The threshold is controlled by the parameter

ε which can be thought of as the user’s acceptance of risk in regards to maintaining network

integrity. If network integrity is critical and any loss would be catastrophic then ε is chosen to

be very small. Conversely, if periods of lost network integrity are acceptable then ε can be larger.

The result of (2.1.12) can be interpreted as maximizing the lower bound of the end-to-end data

rate, which is preferable to maximizing the upper bound as done by (2.1.10). This is because

the formulation in (2.1.12) provides a probabilistic guarantee on the minimum as opposed to an
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optimistic estimate of the maximum.

While not as obvious as (2.1.11) the routing solutions from (2.1.12) also utilize a more diverse

set of links than (2.1.10). Due to this property, the solutions that result from formulations such

as (2.1.11) and (2.1.12) are referred to as robust routing solutions because, as the name suggests,

they are robust to the failure of a single link. In contrast, the routing solutions that result from

(2.1.10) are referred to as non-robust routing solution since a single link failure could cause the

entire data flow to be interrupted. Through out this thesis we will make reference to and use

modified versions of (2.1.10), (2.1.11), and (2.1.12).

2.2 System Architectures

In Section 2.1.1 we introduced a formulation of the concurrent mobility and communication prob-

lem that is central to the this thesis. This section provide a taxonomy of the previously proposed

systems. By doing this, we are able to identify the benefits and limitations of each system, in

order to design a system that can leverage the advantages of previous work, while avoiding the

pitfalls.

2.2.1 Control Law

When designing a system architecture for mobile robot teams, the first decision to be made is

whether to implement a local or global control law. A local control law, sometimes referred

to as distributed, is a system design in which each robot on the team takes the optimal action

given locally available information. Conversely, a global control law is a system design in which the

actions for each robot are determined by a centralized compute node. This requires an aggregation

of all the available information to determine the actions that will lead to an optimal outcome for

the team as a whole.

Focusing on the systems that implement a local control law [18, 34, 70, 74, 96–98], we notice a
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few commonalities. By only requiring local information to determine their actions, the amount

of coordination overhead is minimal. This is due to the robots only sharing information with

immediate neighbors, and not with those beyond. This attribute allows the team size to grow

with minimal impact on required coordination because from the perspective of a single robot, the

addition of other robots will only increase its coordination level if that robot is placed inside its

communication range. Unfortunately, due to the robots acting with only local information, they

are unable to avoid local minima, which are caused by the interaction of the complex environment

and the communication constraints. While these systems have demonstrated the ability to suc-

cessfully maintain specific communication metrics, the inability to avoid local minima limits the

environments in which they are effective.

Next, we consider the systems that implement a global control law [21,23,24,39,81,83,95]. As

with the local control law systems, some trends begin to emerge. Initially, we notice that these

systems are able to operate in more complex environments than the local control systems. This

is due to the centralized compute node determining the optimal action for the team as a whole

instead of each individual robot acting independently. An example of this is highlighted in [24]

where one of the robots must move in a direction counter to its locally optimal direction in order

to provide support to a robot as it rounds a corner. This ability to determine globally optimal

solutions comes at the cost of aggregating all of the information at a central location. While

this system architecture performs well when the team sizes are small, as the number of robots

on the team increases, so does the coordination overhead. Eventually, this overhead will be too

burdensome and the system will be unable to operate effectively.

While the proposed systems can be used to satisfy requirements on connectivity, only the

systems in [24, 98] specifically incorporate network routing into the problem formulation. These

two systems approach the process of determining optimal network routes in the same manner that

the motion control law is approached; [98] considers the routing problem in a distributed manner

while [24] approaches the problem in a global manner. It is reasonable that the network routing
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Solution Optimality

Local Global

Coordination Distributed [18, 34,70,74,96–98] *

Approach Centralized - [21, 23,24,39,81,83,95]

Table 2.1: System Design Matrix with current systems placed according to where they reside in
the 2-D system design space.

approach would mimic the motion control law, since if global information is available for motion

planning it should also be used for network routing. Therefore, we can classify the prior systems

into two main classes, centralized and distributed.

2.2.2 System Design

With an understanding of previous systems, we can begin to draw conclusions as to how best

architect a system that can meet all the requirements of real-time situational awareness. As

highlighted in Section 2.2.1, the two classes of systems proposed, centralized and distributed,

each suffer from inherent drawbacks. This leads us to reinterpret system design space as a two-

dimensional space, as opposed to the one-dimensional space typically used. A representation

of the design space is shown in Table 2.1, where the two axis represent coordination approach,

distributed or centralized, and optimality of solution, local or global. By viewing the design space

in this manner we see that all of the proposed systems fall in two of the four segments. The

distributed systems all employ distributed coordination, but are limited to local optimality, while

the centralized systems are able to achieve global optimality at the cost of centralized coordination.

The two remaining segments, are empty for different reasons. First, the lower left corner is

empty because it is a sub-optimal segment of the space. The reason for this is if a system resides in

this segment it is requiring centralized coordination to provide a locally optimal solution. It would

be more efficient to operate in a distributed manner and remove the coordination overhead, or to
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(a) The newest generation of the Scarabs. The
XBees are mount on top of the platform behind
the Hokuyo.

(b) The quad-rotor platform that is used in the
hallway monitoring demonstration. The XBee is
mounted on the underside.

Figure 2.1: Robotic platforms.

use the centralized coordination to determine a globally optimal solution. Therefore, any system

that resides in this segment will shift either up or to the right, joining the current distributed or

centralized systems.

The upper right corner is still empty because a system that can provide globally optimal solu-

tions to the concurrent mobility and communication problem in arbitrarily complex environments

with distributed coordination has yet to be proposed. This is the optimal segment of the space, as

indicated by the *, due to the fact that a system in this segment is able to satisfy the requirements

for real-time situational awareness, as well as many other open problems in multi-robot systems.

Specifically, It would be able to operate in increasingly complex environments without concern of

local minima, while scaling efficiently as the team grows larger.
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2.3 System Implementation

2.3.1 Hardware

For this thesis, we primarily use a team of Scarabs [48], a custom built robot designed at the

University of Pennsylvania, as our robotic platform. The 4th generation of the Scarab includes

onboard computing, a Hokuyo UTM-30LX scanning laser range finder with a 30 meter range, and

two Robo Claw 5 amp Motor Controllers. The motors are used to drive two of the three wheels,

while the third is a passive omni-directional wheel. Since the Scarab is a small differential-drive

platform, it is straight-forward to apply feedback linearization in order to obtain appropriate

control inputs given the kinematic control laws presented in this thesis. The on-board computer

contains an Intel i7 3.4 GHz processor, 8 GB of RAM, and a 250 GB SSD hard drive with a full

installation of Ubuntu 14.04 LTS. An image of a standard Scarab can be seen in Fig. 2.1a.

For wireless communication between Scarabs we use the Digi International XBee transceivers

[90]. These modules allow the user to control frequency and power. The XBee radios are capable

of transmission on 16 evenly spaced channels in the 2.4 GHz spectrum. The XBee radio also

allows for 5 discrete power levels, ranging from -10 dBm to 0 dBm. The XBee transmits data via

a fixed packet size of 100 bytes, with a preamble the result is an effective payload size of 90 bytes

for each transmission.

As shown in Fig. 2.1a, each Scarab in these experiments contains 4 XBees. Each XBee is

configured to transmit at the minimum power of −10 dBm to force reliance on the other robots on

the team while keeping the size of experiments manageable. Additionally, each XBee is responsible

for communication on a different frequency. The frequencies chosen are evenly spaced to allow

for maximum signal isolation between radios. This allows for the communication between one

pair of Scarabs to not interfere with communication between another pair of Scarabs, which is

important as our formulation does not consider interference. As demonstrated in [22] there exist

signal models that can effectively predict the expected signal prorogation for the low power XBees

39



used in this thesis.

In addition to the Scarab platform we utilize a quad-rotor, show in Fig. 2.1b. The specific quad-

rotor model used is the Hummingbird from Ascending Technologies [5] equipped with an Overo

Gumstix for on-board control and a single XBee transmitter. This robot is used in experiments

where a highly-mobile platform is needed to move through the environment.

2.3.2 Software

For this thesis we rely on the Robotic Operation Systems (ROS) framework [63], to facilitate

software development, simulation, and experimentation. The ROS framework consists of a mid-

dleware that abstracts the hardware layer and standardizes the interface to processing algorithms.

In ROS all components of the system are referred to as nodes, whether they are responsible for

interfacing with sensors or executing high level processing algorithms, with a central coordination

node called the master. This configuration allows for extensive modularity and portability, mean-

ing a processing algorithm developed in the ROS framework for one sensor payload can be easily

modified and used on a different sensor payload. This modularity has allowed for the creation of

a large repository of algorithms common to robotics, maintained mostly by Willow Garage, [88].

Additionally, since ROS is a middleware, it simplifies the process of software development from

initial simulations to final experimentation. This is enabled by the ability to begin in a full simula-

tion environment, then slowly replace simulation nodes with hardware, until all of the processing

and sensing is operating on hardware. Finally, since ROS is designed to operate as a collection

of discrete nodes, it is easily extensible to provide coordination over teams of robots. This also

facilitated the software debugging process because even though processing and control is occurring

on the robot, the master node is always able to interrogate the state of the robot.

The primary nodes used in the system other than those developed by the Multi-Robot Systems

Laboratory (MRSL) at the University of Pennsylvania [53], are AMCL an Adaptive Monte Carlo

Localization library for estimating the location of the robots in known environments, and gmapping
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(a) Levine 5th floor. (b) Levine-GRW 5th floor.

Figure 2.2: Maps of the location where most of the experiments take place.

a Rao-Blackwellized particle filter for Simultaneous Localization and Mapping (SLAM) for use in

unknown environments.

2.3.3 Environments

Through out this thesis a a variety of experiments are performed in a series of environments.

All of the experiments are performed within two of the engineering buildings at the University

of Pennsylvania. The two primary locations that are used throughout this thesis are shown in

Fig. 2.2. The area on the left is the 5th floor of the Levine building and the area on the right is

the 5th floor of the Graduate Research Wing referred to as Levine-GRW. The other environments

used in this thesis are detailed in the chapter in which they appear.
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2.4 Summary

In this chapter we begin by posing the real-time situational awareness task as a concurrent mobility

and communication problem. We then discuss the various formulations of network integrity used in

the mobility and communication problem, specifically a non-robust and two robust formulations.

Next, we survey the design space in which solutions to the concurrent mobility and communication

problem reside. We interpret the problem of optimal system design as 2-dimensional, as opposed to

the typical 1-dimensional, problem. The two dimensions of this space are the level of coordination

required, and the optimality of the resulting solution. With this interpretation we determine the

desirable properties for a system in regards to the situational awareness task, namely globally

optimal solutions achieved though distributed coordination. We conclude the chapter with an

overview of the robotic platforms, software framework and primary environments used throughout

this thesis.
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Chapter 3

Multi-Confirmation Transmission

Protocol

The formulation of the concurrent mobility and communication problem in (2.1.9) requires the

computation of routing variables α(t) by which data is moved through the ad-hoc network. The

determination of these α(t) can vary in complexity from selecting the sequence of links that has the

highest minimum rate and sending all data along that path, to spreading the data over as many

different paths as possible. While the former approach is commonly taken in wired networks,

due to the rate of a point-to-point link being easy to predict, the same approach in a wireless

network results in large variations in the experienced end-to-end rate. This is due to the random

fluctuations experienced by the wireless link; as such there has been research into optimal network

routing over wireless networks, [66, 67, 89]. As highlighted in Section 2.1.2, routing solutions that

consider the variations in the end-to-end data rate as well as the expected value are referred to as

robust routing solutions, while those that only consider the expected value are called non-robust.

In this chapter we demonstrate the performance advantages of using a robust routing solution

over a non-robust one in the context of real-time situational awareness. Then, we will examine
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the feasibility of using existing communication protocols over an ad-hoc wireless network. We

will subsequently construct a communication protocol that is designed for the robust routing

solutions and low-power transceivers used in mobile robot communication networks. Finally, we

demonstrate the benefits of our protocol to provide real-time situational awareness. Content from

this chapter originally appeared in [77].

3.1 Non-Robust vs Robust Routing

To examine the effect that the choice of routing solution has on the experienced end-to-end data

rate we begin with a series of experiments. The objective of these experiments is to validate the

assumption that a robust routing solution is preferable to a non-robust routing solution for our

application, as well as provide a baseline for system performance. In these experiments the task is

to drive the robots through the environment so that a designated robot is able to reach a specific

location. This can be thought of as a simple situational awareness task, given a team of robots

how can they self configure so that a single sensing robot is able to obtain measurements at a

specific location.

To determine the trajectory and control the motion of the robots we utilize the centralized

system from [24]. In this system the trajectories are generated a priori to guarantee network

integrity for the duration of the deployment and the motion of the robots is strictly controlled by

the centralized node. This provides a high level of control over the evolution of the formation, and

thus repeatable trajectories for experimental comparisons.

The first class of routing solutions that we consider are non-robust solutions. We use the
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formulation in (2.1.10),

α(t) = argmax
α(t),a∆

a∆

s. t. āki (α(t),x(t)) ≥ aki,m + a∆∑
j,k

αkij(t) ≤ 1,

for our example routing optimization problem. When solving this problem the system will attempt

to maximize the amount of margin each node can obtain over their minimum requirement. This

approach is used instead of a greedy routing solution that maximizes a single node’s margin,

because the excess communication margin is dispersed evenly over the team instead of concentrated

at one location; thus maximum fairness is achieved.

For the robust routing formulation we use (2.1.12),

α(t) = argmax
α(t),a∆

a∆

s. t. P

[
aki (α(t),x(t)) ≥ aki,m + a∆

]
> 1− ε

∑
j,k

αkij(t) ≤ 1.

This formulation will result in a solution that achieves the maximum margin, as in the non-

robust solution but with a higher confidence. This is precisely the logic behind robust routing, a

small decrease in the maximum achievable rate is allowed to provide more confidence of that the

minimum will be maintained.

3.1.1 Experimentation

To compare non-robust and robust routing we ran a series of experimental trials, in which the

team of robots is tasked with supporting a single sensing robot as it moves to a desired location.

45



As noted in the previous section, we use a centralized system to closely control the motion and

routing, so that a comparison of the routing solutions can be performed. In these trials the robots

follow the same prescribed path and use the same channel estimation parameters regardless of

which routing solution is used. Additionally, the routing solutions are computed and provided to

the team at the same rate. This will allow for an unbiased comparison of the performance of both

solutions.

Levine Environment

In the first series of experiments the 5th floor of the Levine building at the University of Penn-

sylvania was used (Fig. 2.2a). In this experiment, the team consisted of 3 mobile robots and a

fixed access point, which begin in the open area in the lower left hand corner of the environment.

This series of experiments consisted of three trials for each routing formulation. The trajectory

followed is validated against the robust and non-robust solution to confirm feasibility. Since there

is only one robot requiring communication back to the access point a1
i,m = 0 for all i except for

robot i = 3, for which we set a1
3,m = 0.2. For the robust formulation we model the variance of the

channel as a Gaussian random variable with zero mean and variance σ2 = 32dB2, and require an

80% probability of satisfying the constraints, or ε = 0.2.

For these experiments, we use the rate of successful packet reception at the access point as

a proxy for the end-to-end data rate. Also, in these experiments, UDP is used so that the

performance of the routing solution is not obfuscated by any retransmissions provided by the

transport layer. This information well help inform the construction of the communication protocol

in the later section. As the robots move through the environment, the optimal routing solution

is computed based on the estimated robot locations and transmitted over the ROS coordination

network. The sensing robot, i = 3, generates data at a rate of 1 kilobyte per second, or 10 packets

per second. The speed of the robots is restricted to 10 cm/sec so that an accurate measure of the

end-to-end rates can be determined.
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Figure 3.1: Levine 5th floor experiments, N = 4.

The trajectory that is executed drives the lead robot from the lower left hand corner to the

right until it reaches the right side hallway, at which time it turns and proceeds up the hallway

to the intersection in the top right corner. This trajectory covers a total of 23 meters and results

in a final separating distance from the access point of 16 meters. In unison, the other two robots

move from the lower left hand corner to the lower right hand corner and assume positions that

provide line of sight to both the sensing robot and the access point.

The average end-to-end data rate experienced by the sensing robot back to the access point

for both the non-robust and robust solutions are shown in Fig. 3.1a. In this figure the average

end-to-end data rate is plotted as a function of distance between the sensing robot and the access

point. There are two items of note, the first of which is that the robust solution outperforms the

non-robust solution for the entirety of the trial. Another item to note is the relative stability of

the robust solution; as expected the robust solution hedges against variance, therefore resulting in

a smoother degradation of the data rate. Specifically, the standard deviation over the path for the

robust solution is 0.1081 in comparison to the non-robust solution which had a value of 0.1536.

In Fig. 3.1b we plot the probability of exceeding the given rate based on the empirically
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(a) Final formation with routing solution for
non-robust system in Levine.

(b) Final formation with routing solution for ro-
bust system in Levine.

Figure 3.2: Non-robust (left) and robust (right) routing solution for the 5th floor Levine. The
non-robust solution relies heavily on the line-of-sight paths, this allows for maximum data rates
but does not mitigate fading.

collected data. To interpret this figure, the x-axis is a specified success rate and the y-axis is

the probability of exceeding that success rate. By plotting the empirical data we can see the

probability of exceeding a given success rate. Therefore, the closer the line is to the upper right

corner the better the systems are performing. The first important item from this plot is that the

robust routing solution has a 0.78 probability of exceeding a data rate of 0.2. This closely matches

the input parameters of a1
3,m = 0.2 and 1− ε = 0.8. Also note that, even though the formulations

were done with a1
3,m = 0.2, the resulting robust and non-robust routing solutions provide data

rates that exceed 0.4 with probability 0.52 and 0.25, respectively. In this scenario it is obvious

that the robust routing formulation greatly outperforms the non-robust routing.

To highlight the differences in the routing solutions we show in Fig. 3.2 the environment as

well as a final formation for one of the experimental trials. In the figure we see that for the

same formation the non-robust (Fig. 3.2a) and the robust routing (Fig. 3.2b) solutions differ.
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Specifically, the ratio of the data being sent back directly to the access point is 0.09 for the non-

robust solution and 0.34 for the robust solution. This vast difference is due to the fact that the

robust solution takes into account that there is an equal probability of a successful transmission

when using the link that connects directly back to the access point, as there is when using the

two-hop link that connects through either support robot.

Levine-GRW Environment

In this section, we detail another experiment that compares robust routing to non-robust routing.

The purpose of this experiment is to confirm the benefits of robust routing and show that they

are not limited to one environment.

This set of experiments takes place on the 5th floor of Levine-GRW (Fig. 2.2b) and consists

of two runs for each routing solution. The path planning portion of this experiment does not

use the centralized method, but instead is performed manually in order to optimize the number

of line-of-sight links. This experiment uses the same configuration as the previous set expect for

the following modifications. The team now consists of 4 mobile robots and a fixed access point,

with robot i = 4 now performing the sensing task with a minimum rate of a1
4,m = 0.3. With

the increase in the minimum rate the probability threshold is relaxed to ε = 0.25 resulting in a

75% confidence of achieving the rate. The routing solutions are again computed in real-time and

transmitted to the robots with UDP used as the communication protocol.

In this experiment set, the 4 robots and the access point begin in the lower left corner of the

environment. In this experiment, the sensing robot moves to the right along an 11 meter hallway

until reaching the intersection. It then turns left and travels up the 25 meter hallway, eventually

reaching the top right corner of the environment. Meanwhile, 3 support robots move in order to

support the minimum data rate requirement.

The average end-to-end success rate is plotted as a function of distance in Fig. 3.3a. In the

figure we can see that the non-robust routing solution consistently outperforms the robust solution.
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Figure 3.3: Levine-GRW 5th floor experiments, N = 5.

This is in contrast to the previous results. Also, the rapid fluctuations are again present in the

non-robust routing solution, but not in the robust routing solution. Additionally, the robust

routing solution has a lower standard deviation in comparison to the non-robust solution, which

are 0.0837 and 0.120, respectively.

The over performance of the non-robust solution in this experiment set, when compared with

the results in Fig. 3.1a, is due to the routing solutions optimizing different quantities. As stated

in Section 2.1.2 the non-robust solution is optimizing for maximum throughput while the robust

solution is attempting to mitigate the variations in the end-to-end rate. Taking a closer look at

Fig. 3.3a we see in fact that both systems performed as expected. The robust solution minimized

end-to-end variations and the non-robust maximized throughput.

In Fig. 3.3b we again plot the probability of exceeding a given data rate based on the empirical

data collected. The first important result from this plot is that the robust routing solution has a

0.96 probability of exceeding a data rate of 0.3. This far exceeds the input parameters of a1
4,m = 0.3

and 1 − ε = 0.75. Also note that the robust routing solution provides a higher probability for a

given data rate, up until 0.65, at which point the large fluctuations assist the non-robust solutions
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(a) Final formation with routing solution for
non-robust system in Levine-GRW.

(b) Final formation with routing solution for ro-
bust system in Levine-GRW.

Figure 3.4: Non-robust (left) and robust (right) routing solution for the 5th floor GRW. The non-
robust solution relies heavily on the line-of-sight paths, this allows for maximum data rates but
does not mitigate fading.

data rates.

In Fig. 3.4 we plot the final formation of the team along with the routing solution for the

non-robust and robust solutions. In the figure we see that for the same formation the non-robust

(Fig. 3.4a) and the robust routing (Fig. 3.4b) solutions again differ. The differences are similar

to those in Fig. 3.2, most notably the increased number of links out of the sensing robot in the

robust solution compared to the non-robust solution.
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3.2 Protocol Design

As the results from the experiments demonstrate, the benefit of utilizing a robust routing solution

outweighs the minor benefit of higher throughputs. Therefore, we focus on how the current

standard communication protocols behave over ad-hoc wireless links that utilize robust routing

solutions.

3.2.1 Current Protocols

The two ubiquitous protocols in use today are UDP and TCP. The inability of UDP to provide

confirmation of packet reception is a strong inhibitor to using it as our protocol, but the high

channel utilization that it demonstrates is desirable. The other option is TCP, whose sub-optimal

performance over wireless networks is extensively researched, [3,9,58,59]. Even with the extensive

array of modifications to the protocol as documented in [3], these solutions are narrowly tailored

to a specific scenario and network topology. Additionally, with the introduction of the robust

routing, no longer is the data following along a stable deterministic path which is required for

optimal TCP performance.

With the realization that neither of the two common communication protocols are sufficient for

our system, we wish to design a lightweight communication protocol that is capable of achieving

the high link efficiency seen in UDP, while providing the confirmation of reception as in TCP. This

protocol must also be able to operate on the low-power low-cost transceivers and leverage the link

diversity present in robust routing solutions.

3.2.2 MCTP

These requirements lead to the development of the Multi-Confirmation Transmission Protocol

(MCTP). MCTP is a modification of Nagle’s algorithm for small packets [54] and takes advantage

of the spatial redundancy by allowing a packet that failed over one link to be retransmitted over
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Algorithm 1 Algorithm for receive

Require: number of robots N , maximum number of packets in confirm message P , number of
new message to respond to M , and maximum time between responses T

1: Initialize N queues {Qi} and timers {Ti}
2: while System running do
3: if Packet p successfully received from robot s then
4: add pid to Qs
5: if size of Qs mod M equals 0 then
6: Send the contents of Qs to s, reset Ts
7: end if
8: if size of Qs > P then
9: Pop oldest element off of Qs

10: end if
11: end if
12: for i = 1 to N do
13: if Ti > T then
14: Send the contents of Qi to i, reset Ti
15: Pop off Qi mod M oldest elements of Qi
16: end if
17: end for
18: end while

a different link. This reduces the likelihood that a packet will be lost when one link is removed,

as subsequent retransmissions of the packet will not use that particular link. This approach

mitigates the random losses that occur over wireless channels due to link failure. Therefore, this

communication protocol combines the benefits of both TCP and UDP protocols, to allow for

efficient and reliable communication over a multi-hop wireless network.

The protocol operates in the following fashion. Initially, each robot is assigned a unique

identifier, s, for this implementation we use, s ∈ {1 . . . N}. When there is data to transmit, we

uniquely label and send the packet according to the routing solution Ci. The routing solution is

expressed as a unique CDF for each robot, i, with the mass on j proportional to the percentage

of data i should send to j. Therefore, to determine the destination, t, that robot i should use

for each packet a random variable, x, is drawn from a uniform distribution from 0 to 1 and t is

determined such that x ∈ Ci,t. We then insert the label into a data structure, A, to record that

the packet has been sent, but successful transmission has not been confirmed. We repeat this

process for all outgoing packets.
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Algorithm 2 Algorithm for transmit

Require: number of robots N , timeout value S, number of retransmission allowed R, and routing
solution CDF, Ci

1: Initialize map T and A
2: while System running do
3: if Packet p to send then
4: Draw random value x from U [0, 1]
5: Transmit p to robot t for which x ∈ Ci,t
6: Add tnow to T and 1 to A for id of p
7: end if
8: if Confirmation packet received then
9: for Each id in packet payload do

10: Remove id from T and A
11: end for
12: end if
13: for all (j, t) in T do
14: if t < current time - S then
15: if A[j] < R then
16: Draw random value x from U [0, 1]
17: Transmit p to robot t for which x ∈ Ci,t
18: Update T [j] with tnow and increment A[j]
19: else
20: Remove mapping for j from T and A
21: end if
22: end if
23: end for
24: end while

Upon successful reception of a packet, we add the label to a data structure, B, and respond with

the last P labels, but only if there have been M new packets since last response. Upon receiving a

confirmation message, we compare the labels to those in A. If a label in the confirmation response

matches one in A, the label is removed and successful transmission of the packet is confirmed.

If, however, after a specified T seconds transmission is not confirmed, the packet is re-sent. This

process can be seen in Algorithms 1 and 2. The values of T , P and M can be changed to provide

the desired level of delivery guarantee depending on the scenario.

In order to allow for successful reassembly at the receiving side, each message, of arbitrary

length, that is to be transferred is assigned a unique 16-bit identifier. Then each message is

broken up in to 85-byte chunks, suitable for transmission, and assigned a number. The message

identifier as well as the chunk number are added to the payload of the transmitted packet. These
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packets are then provided as input to the MCTP algorithm, specifically line 3 for Algorithm 2.

This information is then used to reassemble the message at the final destination as well as prevent

re-transmission of duplicate packets inside the mulit-hop network. MCTP also leverages the

redundancy of the routing layer by allowing a packet to travel multiple paths to the final destination

with only minimal overhead. This is due to the random selection of the link to use during re-

transmission. Therefore, as the amount of redundancy in the routing solution increases the more

diverse set of paths a packet is able to traverse and the more robust the system becomes.

By allowing the sender to continue transmitting packets without waiting for a response, similar

to TCP, the channel utilization is higher than if the sender waited for transmission confirmation

for each packet. However, by using a fixed response window size of M and not a dynamic window

size, such as in TCP, channel utilization again increases.

3.3 Protocol Validation

In order to validate that MCTP provides reliable communication over an ad-hoc wireless network

we perform a series of experiments comparing the communication reliability of MCTP compared

to UDP and Simple ACK. In these experiments the parameters used for MCTP are M = 5,

T = 0.5 sec, S = 1.0 sec, and R = 4, with data again generated at 10 Hz. For a comparison we

use Simple ACK, a lightweight protocol in which a response is given for every packet received.

This mimics a configuration where over every link a TCP session is present. For Simple ACK the

timeout between retransmissions and number of retries is the same as the values used in MCTP.

3.3.1 Protocol Experiment

The setup for this experiment involves a sensing robot moving away from the access point and

traveling through the environment where direct line-of-sight is not always possible. Specifically

the robot is operating in Levine-GRW with the same initial location as in the previous test. The
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Figure 3.5: Plot for a single robot moving away from the access point and turning a corner at 11
meters using three transmission schemes. As expected the two schemes that utilize confirmations
show much more reliable packet transmission. Note that MCTP achieves the same performance
as Simple ACK with 5 times less confirmation packets transmitted.

robot starts by moving away from the access point and turns a corner, 11 meters away, before

continuing to the end of the hallway. Without other robots to assist in the packet routing, this

experiment tests the performance of point-to-point communication, N = 2 and C1 = 1.0. Three

experimental sets are run one for each protocol, UDP, Simple ACK and MCTP, with three trials

per protocol.

It can be seen in Fig. 3.5 that for a point-to-point connection, the performance of UDP degrades

very quickly as the robot moves away from the access point. This is in contrast to the Simple

ACK and MCTP protocols which work very well out to a reasonable distance. Particularly, we

see the rate for the confirmation protocols start at 1.0 and slowly drop to 0.85, at 18 meters.

At this point the performance of the confirmation protocols begin to noticeably degrade with a

precipitous drop from 0.85 to less than 0.1 in 4 meters.

3.3.2 Full System Validation

In our final experiment we incorporate our communication protocol, MCTP, with robust routing

for a full system validation. This experiment seeks to show that by adding our communication
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Figure 3.6: Plot for a team of 4 robots moving out while following the same paths as in Fig. 3.3.

protocol to the robust routing solutions we can achieve near loss-less end-to-end communication

between the sensing robot and the access point, even when direct communication is not possible.

For this experiment the same parameters and paths are used as in the Levine-GRW experiment

in Section 3.1.1, with only the communication protocol changing. The parameters used for the

confirmation protocols are the same as those used in the experiments in Section 3.3.1.

When we incorporate the MCTP protocol the results immediately show improvement. As it can

be seen in Fig. 3.6, when a confirmation protocol is used, the success rates increase dramatically.

Using the Simple ACK and the MCTP protocols we see almost loss-less communication, even

beyond 24 meters. The key result of this experiment is that the MCTP protocol, which is only

sending confirmation messages for every 5 packets, has approximately the same reliability as the

Single ACK protocol, with less than 0.025 maximum deviation between the two. By using MCTP

with these parameters, compared to the Simple ACK, we can allow up to 5 times as many robots

on the same confirmation channel. This means that for every robot added to the team, only 1.2

effective channels are required compared to 2 channels for Simple ACK.
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Figure 3.7: Simulated evaluation of MCTP for large-scale systems. Notice how MCTP outperforms
a Simple-ACK protocol as the number of robots grows or the data rates increases.

3.3.3 Large-Scale Simulation

The performance advantage of MCTP relative to a simple ACK system is expected to become

more marked as we increase the number of robots in the system. Due to the limited availability

of robots we perform simulations to quantify these advantage. In the simulations we have created

a network of robots transmitting data over point-to-point links using the MCTP and simple ACK

protocols for confirmation. In these simulations each robot generates a packet of data every τ

seconds, where τ is drawn from an exponential distribution with mean µ. The destination for

58



each packet is uniformly distributed over the other robots in the network. This allows us to vary

both the number of robots in the network, as well as the average data input rate for each robot.

These simulations assume that every data packet is successfully received and only the confirmation

packets can be lost due to collision.

The results are shown in Figs. 3.7a-3.7d, which plots the average success rate of confirmation

packets transmission as a function of the number of robots in the system, for a given value of µ.

Since this is the average success rate the closer the value is to 1 the better the system is performing.

The main item to notice is the wide gap in performance between Simple ACK and MCTP across

all combinations of µ and the number of robots, except for µ = 0.01 which completely saturates

the network and effectively no confirmation is possible when the team is larger than 25. The

resulting increase in the success rate is directly attributable to fewer confirmation packets being

sent, since a single MCTP message contains much more information than a Simple ACK message.

As a conclusion the MCTP protocol outperforms a Simple ACK system throughout our sim-

ulations. Specifically, as the number of robots increase the drop in performance is much more

gradual for MCTP compared to Simple ACK, and the same relationship is seen when the average

input data increases. This highlights the benefit of MCTP as the number of robots in the team

grows or the input data rates increase.

3.4 Summary

In this chapter we develop a lightweight communication protocol that provides reliable commu-

nication over ad-hoc wireless networks. We begin by examining the differences between robust

and non-robust routing solutions when used to route data through an ad-hoc network created by

mobile robots. From this examination we determine that the robust formulation is preferable to

the non-robust since the reduction in rate variance in significant while the reduction in through-

put is minimal. Next, we explore the possibility of utilizing one of the traditional communication
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protocols, namely UDP and TCP, with the realization that neither are sufficient. This leads to the

development of MCTP, which is a lightweight communication protocol designed specifically for

use with robust routing solutions and low-cost low-power transceivers. We then highlight through

experiments MCTP’s ability to provide the same QoS, with less ancillary communication, when

compared to traditional communication protocols. Next, we demonstrate the ability of MCTP

to provide near loss-less communication for a sensing robot back to an access point through an

ad-hoc wireless network. We conclude with simulations detailing the benefits of MCTP as the

team size grows. The graceful degradation of MCTP is obvious when compared to a traditional

protocol.
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Chapter 4

Hybrid System

The task of real-time situational awareness requires that the robots be able to communicate reliably

over the point-to-point communication links and efficiently move through the environment so as

to maintain the communication network with minimal global coordination. As we have seen

in Chapter 3, by leveraging robust routing solutions and MCTP it is possible to have reliable

communication over an ad-hoc network of low-cost transceivers. While this was demonstrated

in Section 3.3.2, the system used to control the motion and compute the routes was entirely

centralized. As discussed in Section 2.2, a centralized architecture allows for globally optimal

solutions but results in a decrease in efficiency, to the point of failure, as the number of robots on

the team increases. In contrast to this, the purely distributed architecture is an approach that is

able to scale appropriately as the team size increases but is unable to guarantee global optimality.

Since neither the centralized nor distributed architectures provide all the necessary properties

we desire, the development of a hybrid system architecture is required. This architecture should be

not only be capable of guaranteeing global optimality, but scales effectively to allow large teams.

To achieve this, we isolate the portion of the real-time situational awareness problem that requires

global coordination from the portion that does not. In doing this, we formulate two separate by

coupled problems, one solved in a centralized manner and the other in a distributed manner. With
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Figure 4.1: Hybrid architecture diagram. The red indicates the outer, centralized, loop of the
system while the green indicates the inner, local controller, loop.

the formulation of two subproblems, we are able to minimize that amount of global coordination

required, thus allowing the system to operate mostly in a distributed manner. The solution to

the subproblems draw inspiration from previously developed systems, [24, 98], one centralized,

the other distributed. Using these solutions, we systematically construct the hybrid architecture

that is able to satisfy the requirements of real-time situational awareness for any size team. This

resulting system is compared to existing systems through experiments demonstrating the benefits

of a hybrid system architecture, in realistic situational awareness tasks.

4.1 Hybrid System Architecture

The goal of the hybrid system is to drive an arbitrary number of mobile robots through a complex

environment while maintaining a minimum QoS in order to complete a given task. To accomplish

this, we propose an architecture that consists of a two stage feedback system shown in Fig. 4.1. This

architecture is composed of an outer centralized planning feedback loop and an inner distributed

control feedback loop. The process is initiated by the user providing a global task function Γ(x)
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to the outer loop. This begins the planning process which generates a set of dense candidate

trajectories for the system that we denote as x̃(t) = {x̃i(t)}Ni=1. Given the channel model that has

been provided as input to the outer loop, these trajectories give an approximate robust solution

to (2.1.9) where the network integrity constraints are given by (2.1.12). The candidate trajectory

x̃(t) is never executed but rather fed to a waypoint generator that converts the dense trajectories

into a series of waypoints for each robot,

Xi =
{
x̃i(τw)

}W
w=1

. (4.1.1)

The waypoints in (4.1.1) are sampled at the same set of times {τw}Ww=1 for all robots and represent

a decomposition of (2.1.9) into subproblems that can be solved by the distributed control inner

loop.

The waypoints in (4.1.1) serve as sequential inputs to the distributed control loop. In contrast

to the centralized loop which only operates when a new task is given, the distributed loop operates

continuously on each robot. The distributed controller accepts a target location xi,g as input

and attempts to drive the robot to that location while avoiding physical obstacles and preserving

network integrity. The process that is used to implement this driving is distributed in that it relies

on communication between adjacent robots only. When robot i receives a new set of waypoints

Xi from the global planner its waypoint curator is responsible for updating the target location

xi,g. This is done by setting xi,g to the first waypoint in the series, i.e., by making xi,g = x̃i(τ1).

Then, when the distance to the target location falls bellow a given tolerance ω > 0, namely, when

‖xi(t)− xi,g‖ ≤ ω, the waypoint is declared reached and xi,g is updated to the next waypoint in

the series. The curator advances though successive waypoints until the final waypoint is reached

at which time the trajectory is declared accomplished for robot i.

Notice that the candidate trajectory x̃(t) generated by the centralized planner is optimal for

the model that is available. However, given the possibility for model mismatch, the trajectory
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is not necessarily optimal during actual deployment. The distributed controller corrects for this

mismatch because, due to the small communication overhead of its implementation, it can adapt

to the conditions observed during execution. Thus, the hybrid system proposed here resolves the

lack of adaptability of the centralized planner while avoiding the local minima that can limit the

progress of the distributed control loop. We describe the centralized and distributed loops in the

following sections.

4.1.1 Centralized Path Planning

The purpose of global path planning is to find a trajectory that solves the robust version of (2.1.9).

A robust formulation of the network integrity constraints is used due to desire to construct long

term trajectories that visit points in space for which the channel rates have yet to be measured. As

we have seen in Section 2.1.2 there is more than one method to produce robust routing solutions.

For this system we use the robust formulation in (2.1.12),

α(t) = argmax
α(t),a∆

a∆

s. t. P

[
aki (α(t),x(t)) ≥ aki,m + a∆

]
> 1− ε

∑
j,k

αkij(t) ≤ 1.

We assume that the variance estimate of the channels is available, thus we use this formulation as

opposed to (2.1.11). To use the probabilistic formulation a model for the rates must be selected.

For this system the model used for the rates is a Gaussian random variable. This implies that

R(xi(t), xj(t)) can be completely characterized by its mean R̄ij and variance R̃ij . As we saw

previously, when modeling the rates as random variables, the rates in (2.1.7) become random

variables as well. Observe that the rate aki (α(t),x(t)) has a normal distribution because the rates

R(xi(t), xj(t)) are assumed to be Gaussian and aki (α(t),x(t)) is a linear function of R(xi(t), xj(t)).
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As it follows from (2.1.7), the mean āki (α(t),x(t)) := E
[
aki (α(t),x(t))

]
of this Gaussian variable

can be written as

āki (α(t),x(t)) =

N∑
j=1

αkij(t)R̄(xi(t), xj(t))−
N∑

j=1,i6∈Dk

αkji(t)R̄(xj(t), xi(t)), (4.1.2)

and the corresponding variance ãki (α(t),x(t)) := var
[
aki (α(t),x(t))

]
is given by the expression

ãki (α(t),x(t)) =

N∑
j=1

(αkij(t))
2R̃(xi(t), xj(t)) +

N∑
j=1,i6∈Dk

(αkji(t))
2R̃(xj(t), xi(t)). (4.1.3)

Using the mean and variances in (4.1.2) and (4.1.3) and letting Φ−1(ε) stand for the inverse

Gaussian complementary cumulative distribution function, we can write the probability constraint

in (2.1.12) as

āki (α(t),x(t))− aki,m√
ãki (α(t),x(t))

≥ Φ−1(ε). (4.1.4)

The constraint in (4.1.4), being dependent on the probabilistic model variables R̄(xi(t), xj(t)) and

R̃(xi(t), xj(t)), can be evaluated by the global path planner. We therefore use (2.1.9) with the

probabilistic constraints in (2.1.12) to write the optimization problem

min
ẋ(t),α(t)

Γ (x (tf )) (4.1.5)

s. t. x(t) = x(t0) +

∫ t

t0

ẋ(s)ds, x(t) ∈ F ,

āki (α(t),x(t)) ≥ aki,m + Φ−1(ε)
√
ãki (α(t),x(t)),∑

j,k

αkij(t) ≤ 1,

where, as in (2.1.9), the constraints hold for all terminals i, flows k, and times t ∈ [t0, tf ].

The formulation in (4.1.5) is first explored in [24] where the constraint in (4.1.4) is shown to
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define a second order cone as long as ε < 0.5 – which is not restrictive since we want ε to be small.

Therefore, the determination of routing variables α that satisfy this constraint can be written as

a second order cone program if the formation x(t) is given. This implies that determining routing

variables for a given formation can be done in polynomial time by using convex programing

techniques [46]. In particular, checking if routing variables that satisfy the constraint in (4.1.4)

exist is tractable, which in turn implies that finding formations that are feasible for the problem

in (4.1.5) is also tractable. This is exploited in the solution of (4.1.5) with a Rapidly Exploring

Random Tree (RRT) [42] as we explain in the next section.

Do notice that acquiring an accurate probabilistic model of reliabilities is itself challenging.

The values of R̄(xi(t), xj(t)) and R̃(xi(t), xj(t)) are dependent on shadowing and fading effects that

can vary substantially in different propagation environments. The problem formulation in (4.1.5)

circumvents this problem with the use of the robust routing constraint in (2.1.12). If the available

propagation model is rough, this is captured in large values for the variances R̃(xi(t), xj(t)), which

in turn result make it difficult to find formations that satisfy (4.1.4). This leads to conservative

plans that can later be refined by the distributed controller which, different from the global planner,

can rely on online modification of the propagation model.

Rapidly exploring random tree

The robust routing constraints in (4.1.5) modify the configuration free space F . On top of physical

obstacles and collision avoidance, we also need to remove formations for which satisfying (4.1.4)

is not possible – which, as we argued before, can be done in polynomial time. We explore the

resulting free space with a RRT. The RRT algorithm is initialized by first setting the current

valid formation as the root of a tree. Then the following process is repeated until a formation

that satisfies the task objective is added to the tree, Γ(x) = Γ(x∗). A random point from the

configuration space, corresponding to a formation, is drawn. The node nearest in the tree to this

point is then found. For this configuration space a simple Euclidean distance is used to determine

66



the nearest node. Now using the nearest node as a starting point the system computes a path

to the sampled point under the motion dynamics of the platform. The path is then truncated, if

necessary, to a maximum length, called the steer distance, and divided into a series of intermediate

formations. These formation are sequentially validated against (4.1.4) and verified to be collision

free with respect to other robots and obstacles in the environment, [44,50]. If there is a formation

that violates (4.1.4) or results in a collision, the previous formation, if not the nearest node, is

added to the tree with a branch from the nearest node. If all of the intermediate formations are

valid and collision free the final formation in the truncated path is added to the tree with a branch

from the nearest node. This process is repeated until a formation that satisfies the task objective

is added to the tree. To expedite the searching process, the candidate formations are drawn from

a probability distribution that is weighted along the shortest path between the current formation

and the desired goal formation. This allows for a more efficient search for the majority of tasks.

The path through the tree starting at the current formation to the goal formation is then

extracted. Since a node can only be added to the tree if the flow constraints are satisfied it is

guaranteed that for every node in the final path the flow constraints are satisfied. This path

corresponds to a feasible trajectory for each robot from its current location to a final location,

x̃(t).

4.1.2 Distributed Controller

The purpose of the distributed controller is to manage the mobility and network routing of an

individual robot using the waypoints generated by the centralized controller [cf. (4.1.1)]. This dual

mandate requires that we solve both the motion control and the network routing. To accomplish

this, we run concurrently a continuous-time motion-gradient control and a discrete-time dynamic

computation of optimal communication variables [98].

For the motion-control portion of the distributed controller we employ a navigation function

that is capable of driving the robot to a goal location xi,g while avoiding obstacles [68,69]. However,
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obstacles here are not physical but determined by the need to guarantee network integrity. Assume

then that routing variables α(t) are given and recall that network integrity is defined as the

satisfaction of the QoS requirements in (2.1.8). If we further introduce a strictly positive tolerance

e > 0 we can thus define the obstacle function for robot i associated with the kth constraint as

βki (x(t)) ,
N∑
j=1

αkij(t)R̄(xi(t), xj(t))−
N∑
j=1

αkji(t)R̄(xj(t), xi(t))− aki,m + e. (4.1.6)

The function βki (x(t)) is positive when the kth QoS requirement for robot i is satisfied within the

tolerance e for the current formation x(t), and negative otherwise. This allows a gradient controller

to treat the zero points of βki (x(t)) as the border of a virtual obstacle that, if crossed, would result

in a violation of the integrity of the kth flow. Observe that, different from the centralized controller,

this QoS constraint can be accurately evaluated at the current location because the propagation

model can be adapted to observations. Also notice that the tolerance e simply implies a reduction

of the minimum acceptable rate from aki,m to aki,m − e. They are kept separate to emphasize that

the distributed controller requires some leeway to increase its range of motion for a given set of

communication variables.

The obstacle defined by the function βki (x(t)) in (4.1.6) is associated with robot i and flow

k. For robot i all the QoS obstacle functions can be combined into the single network integrity

obstacle function,

βi(x(t)) = min
k=1,...,K

βki (x(t)). (4.1.7)

Integrity of all flows at robot i is guaranteed within the tolerance e if the joint obstacle function

is βi(x(t)) > 0. To create an attraction to xi,g we use the goal potential function ρi (x(t)) =

‖xi(t)− xi,g‖2. Using this definition of ρi(x(t)) and the obstacle function in (4.1.7) we can define

the navigation function,

φi (x(t)) =
ρi (x(t))(

ρi (x(t))
κ

+ βi (x(t))
2
)1/κ

, (4.1.8)
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where the order parameter satisfies κ > 2 and has to be chosen sufficiently large. This navigation

function has the desirable properties of being φi (x(t)) ∈ [0, 1] always, satisfying φi (x(t)) = 0 when

x(t) = xi,g, and being such that φi (x(t)) → 1 when a QoS requirement is about to be violated.

Taking advantage of these properties we can drive robot i towards xi,g while guaranteeing network

integrity with the gradient descent controller

ẋi(t) = −∇xi
φi (x(t)) . (4.1.9)

The value of κ is used to control the regions that are affected by the obstacles, the larger κ is the

more localized the effects are to the obstacles. As shown in [68,69], the controller in (4.1.9) is able

to reach xi,g while avoiding obstacles that are not intersecting and spherical. The obstacle defined

by (4.1.7) is not spherical and it may be that (4.1.9) stops at a local optimum. This is not a

concern because the sampling of waypoints is done fine enough to preclude this possibility. Notice

that in the complex environments considered here it is also necessary to avoid physical obstacles.

This is standard problem that we can solve, e.g., with a modification of (4.1.7) to include the

distance to these physical obstacles.

Assuming that feasible routing variables α(t) satisfying āki (α(t),x(t)) ≥ aki,m are available

for all formations for which these variables exist, the controller in (4.1.9) coupled with proper

generation of waypoints would drive the team to a formation that solves (2.1.9). What is left,

therefore, is the design of a distributed mechanism to find these feasible routing variables. We do

so in the following section.

Adaptation of routing variables

The motion control of the robot is predicated on the virtual obstacles created in (4.1.6) which are

computed directly from the routing solution α(t). When starting at a waypoint and moving to

the next, we have available the routing solution α(t) that has been computed by the centralized
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controller. This solution can be used for initialization, but an accurate description of the obstacle

space necessitates the routing solutions α(t) used in the controller in (4.1.9) to adapt as the robots

move. In order to adapt these variables without requiring knowledge of the variance we adopt the

approach taken in (2.1.11) to determine robust solutions.

Specifically, extract the network integrity constraint āki (α(t),x(t)) ≥ aki,m from (2.1.11) and

rewrite it as āki (α(t),x(t)) = aki ≥ aki,m. The idea here is to adapt the routing variables so that

the expected rates aki are as large as possible – but not smaller than the minimum requirement

aki,m. To do so introduce weights wki > 0 and wkij > 0 and define the weighted proportional fair

utility Uki (aki ) = wki log(aki ) as well as the weighted quadratic penalty terms V kij(α
k
ij) = −wkij(αkij)2

that we incorporate into the optimization problem

α(t) = argmax
aki ,α

k
ij

K∑
k=i

N∑
i=1

[
Uki (aki ) +

N∑
j=1

V kij(α
k
ij)

]
(4.1.10)

s. t. āki (α,x(t)) = aki ≥ aki,m,
∑
j,k

αkij(t) ≤ 1.

Some remarks are in order. To guarantee that a solution to (2.1.9) is found we need to find, for

any given spatial formation x(t), a set of routing variables that satisfy āki (α(t),x(t)) = aki ≥ aki,m

for all robots i and flows k. However, there are, in general, many variables that satisfy these

constraints. The formulation in (4.1.10) resolves this indeterminacy by selecting the variables

α(t) that maximize the objective
∑K
k=i

∑N
i=1

[
Uki (aki ) +

∑N
j=1 V

k
ij(α

k
ij)
]
. Since these variables are

optimal in (4.1.10) they are feasible in particular, but the presence of the fair utility term Uki (aki ) =

wki log(aki ) also makes the difference between the estimated achieved rate āki (α(t),x(t)) = aki and

the minimum rate aki,m large. Assuming that rates R(xi(t), xj(t)) change slowly in space, this

allows more freedom of movement for fixed routing variables and, consequently, less frequent

recomputation of the solution of (4.1.10). The quadratic penalty terms V kij(α
k
ij) = −wkij(αkij)2

hedges the solution against errors in the estimation of the rates R(xi(t), xj(t)) because they ensure

that a link is not overly utilized when similar links are available.
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The problem formulation in (4.1.10) answers the question of which routing variables to plug

in the definition of the obstacle function in (4.1.6) but, as formulated, (4.1.10) requires global

coordination to compute the optimal routing solution. A distributed method to solve (4.1.10)

follows from the observation that, for a given spatial formation x(t), the problem is convex and

can therefore be equivalently solved in the dual domain with a gradient descent method. Introduce

then a non-negative dual variables λki (tn) associated with each of the aki (α,x) = aki constraints

in (4.1.10), where tn is used to track the current iteration. These variables can be grouped into a

matrix, λ(tn) ∈ RN×K . Using the dual variables and the constraints we can write the Lagrangian,

L(λ,α,x) =

K∑
k=i

N∑
i=1

[
Uki (aki ) +

N∑
j=1

V kij(α
k
ij) + λki

( N∑
j=1

αijR̄(xi, xj)−
N∑

j=1, i 6∈D

αjiR̄(xj , xi)− aki
)]

. (4.1.11)

We can rearrange the terms in (4.1.11) into a sum of local Lagrangians, L(λ,α,x) =
∑N
i=1 Li(λ,α,x),

where

Li(λ,α,x) =

K∑
k=1

Uki (aki )− λki aki +

N∑
j=1

[
V kij(α

k
ij) + αkijR̄(xi(t), xj(t))(λ

k
i − λkj )

]
. (4.1.12)

Notice that Li(λ,α,x) only depends on robot i’s information, aki , λki , and αkij , as well as only the

λkj ’s for which R(xi(t), xj(t)) > 0. This indicates that in order to compute the value of Li(λ,α,x)

robot i is only required to collect the λkj of its immediate neighbors. This can be achieved by

a simple exchange of λki between all neighboring pairs. Upon receipt of its neighbors’ variables

λkj (tn) robot i is able to compute its optimal rates and its part of the routing solution, at time tn,
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by solving,

aki (tn),
{
αkij(tn)

}N
j=1

= argmax Li(λ(tn),α(tn),x(tn)).

s. t. aki ≥ aki,m,
∑
j,k

αkij(t) ≤ 1. (4.1.13)

After the optimal rates and routes are determined for time tn the next step is to update the value

of λki . To maintain the non-negative requirement for λki , we use a non-negative projection P[y],

which returns y is y ≥ 0 and 0 if y < 0. Using this projection we update λki (tn) by following

∇λk
i
Li(λ,α,x), using the values of aki (tn) and αkij(tn) found in (4.1.13),

λki (tn+1) = P

[
λki (tn)− ε

( N∑
j=1

αkij(tn)R̄(xi(t), xj(t))−
N∑
j=1

αkji(tn)R̄(xj(t), xi(t))− aki (tn)
)]
,

(4.1.14)

These updated values are then shared with all the robots within communication range so they can

be used in the next iteration of (4.1.13). This process is repeated and converges to the optimal

routing solution when the formation is static. If the formation is changing the resulting solutions

will be near optimal, and the deviation from optimality is dependant on the frequency of the

iterations and the allowable velocity of the robots.

4.2 Additional Environment

In this chapter, two distinct environments are used. The first is Levine-GRW, Fig. 4.2a, and

the second is the Towne building, Fig. 4.2c, both at the University of Pennsylvania. These two

environments were chosen due to their different RF characteristics. These differences are derived

from the construction date and materials used in the two buildings. The Levine building was built

in 1996 and consists of mostly metal framing and drywall, while the Towne building was built in

early 1900’s and consists of mostly brick and concrete. These two environments allow for a better

test suite for the hybrid system, as opposed to Levine vs. Levine-GRW. An image of the robots
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(a) Operating region in Levine-
GRW.

(b) Image of the robots in
Levine-GRW.

(c) Operating region in Towne.

Figure 4.2: Environments used in simulations and experiments

operating in the Levine-GRW environment can be seen in Fig. 4.2b. Due to large differences in the

RF environments and to demonstrate the flexibility of the hybrid system to mismatched channel

models, we are using a function that is a polynomial fitting of experimental curves found in the

literature [2] for the local controller channel model.

4.3 Simulations

In this section, we highlight the benefits of our hybrid approach over a distributed system, while

retaining the benefits of such a system. In the first set of simulations, a team of 4 mobile robots

and 1 access point are given the task of moving one specific robot to a goal location in a complex

environment. Two goal locations are used and it is shown that purely distributed operation fails

while the hybrid system can successfully reach the goal. In the second simulation a large team

is tasked with supporting one robot moving through a complex environment. This simulation

demonstrates the ability of the hybrid system to scale with the number of robots in the team. While

the physical communication layer is not simulated in these scenarios, the systems are operating

as they would during a deployment; rates are estimated, dual variables are exchanged, routes

are computed and motion is constrained based on the underlying network obstacles. A set of

experiments with the full system, including the physical communication layer, are presented in
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(a) Waypoint is straight ahead,
no obstacles. Local controller is
able to achieve the goal.

(b) Waypoint is around a cor-
ner. Local controller fails to
achieve the goal.

(c) Waypoint is around a cor-
ner. Hybrid system is able to
achieve the goal.

Figure 4.3: Simulation results for local and hybrid systems. For all tests the goal location is 19
meters away.

Section 4.4.

4.3.1 Local Minima

In this set of simulations, we demonstrate the limitations of a purely local controller. Using only

the controller described in Section 4.1.2, the team of 4 robots and an access point are given the

task of driving Scarab40 to a specific goal location. For all three simulations in this section, the

goal is 19 meters away from the access point, only the location of the goal is changed. The first

location given was straight along the lower hallway in the Levine-GRW map, Fig. 4.2a, as indicated

by the red square. The second was around the lower right corner in the same building, which is

indicated by the blue square in the Fig. 4.2a. The resulting trajectories for all three simulations

are plotted in Figs. 4.3a-4.3c. In Fig. 4.3a, it can be seen that the robots successfully assemble

into a formation that allows the sensing robot to reach the goal, as indicated by the final position

of Scarab40 being inside the red square. In contrast, Fig. 4.3b shows that the local controller

alone is not capable of driving the team into a valid formation when the goal is around the corner.

This is due to the local minima that is created by the attractive force of the goal being cancelled

out by the repulsive force from the wall and the attractive force from network preservation. The

final simulation in this section shows the performance of the hybrid system when given the same

task of turning the corner. As seen in Fig. 4.3c the team is able to successfully turn the corner
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(a) Initial formation of 25 robot team prior to
deployment.

(b) Formation of 25 robot team 300 seconds af-
ter deployment.

(c) Formation of 25 robot team 600 seconds af-
ter deployment.

(d) Formation of 25 robot team 900 seconds af-
ter deployment.

Figure 4.4: Evolution of a 25 robot team that is supporting one robot, indicated by red and green
axis, from the initial starting formation in the upper left corner to the goal location in the upper
right corner, indicated by the red circle.

and assemble into a formation that allows the sensing robot to reach the goal, as indicated by

Scarab40 reaching the blue square. This is achieved because each robot is given a series of 3 goals

locations that change the location of the local minima and thus allow the team to reach a valid

final formation.

4.3.2 Large Scale Deployment

Another scenario that we explore in simulation focused on the ability of the hybrid system to

operate in a complex environment when the team size is large, N = 25. The environment used in
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this scenario is one floor of the Levine and Towne buildings, shown in Fig. 4.4a, which has over

850 m2 of floor space. The access point, i = 25, and the sensing robot, i = 24, are indicated by

the thick red and green axes, while the remaining 23 support robots, i = {1, . . . , 23} are indicated

by red arrows. The team begins in a formation x(t0) located in the upper left corner of the Levine

building. It is tasked with supporting a single QoS requirement with a1
24,m = 0.3, a1

j,m = 0.0 for

all j 6= 24, and D1 = 25, while robot 24 moves to the goal location, x24,g, in the upper right corner

of the Towne building. In this environment the shortest path from x24(t0) to x24,g is over 200 m.

Upon receipt of x24,g the global planner determines trajectories for each robot, which are then

passed to the waypoint generator and converted into waypoints for the local controllers.

Remark 4.3.1. Due to the size of the environment and the number of robots, the global planner

restricted samples for the RRT to points that were within a meter of robot 24’s shortest path.

While this restriction limits the set of possible final formations, it allows the system to find feasible

trajectories more quickly, as long as there are sufficient number of robots on the team.

With the waypoints from the global planner, the local controllers begin executing their tra-

jectories. Snapshots of the team’s formation in the environment at 0, 300, 600, and 900 seconds

are shown in Figs. 4.4a - 4.4d. As shown in the figures, the team is able to successfully deploy

into a formation that allows robot 24 to successfully traverse the environment and reach x24,g. In

this deployment every robot is critical to the data path from robot 24 to the access point due to

the complexity of the environment. Note, since each robot is critical to the network, each robot

has sufficient back haul to support robot 24’s data back to the access point. Therefore, given the

problem formulation in (4.1.10) any location, x̂24, where R(x̂24, xj) ≥ a1
24,m, is a location at which

robot 24 can collect data. With this understanding we see that robot 24 is able to retrace its path

back to the access point and network integrity will be maintained for the duration of its travel.

Since this environment is more complex than the environment in Section 4.3.1, it can be safely

assumed that even with knowledge of their final location, the local controllers would would not be

able to successfully reach those locations, due to local minima. This highlights that not only is
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it necessary to find a final formation that supports x24,g but intermediate waypoints are needed

to ensure proper avoidance of local minima. This simulation was run on a 2.7 Gigahertz Intel i7

laptop with 16 Gigabytes of RAM to demonstrate the lightweight nature of the local controller.

After the waypoints were determined, all 25 local controllers ran in parallel in real-time.

4.4 Experimental Evaluation

Our work is motivated by the uncertainty and difficulty in modeling real-world wireless communi-

cation. Since our primary objective is to maintain a reliable wireless communication network, it

is important that we evaluate the system under the realistic RF conditions. As noted previously,

for these experiments we used the Scarab platform, [48], with XBee transceivers, see Section 2.3.1.

The first set of experiments we ran, Section 4.4.1, compared the hybrid system to the full

system developed by Fink et al. in [24]. This system consists of two centralized parts, the path

planner and the motion controller. The path planner is the same as the one used in our hybrid

system. The motion controller executes the plans determined by the path planner in a synchronous

closed loop manner. This means that each robot is given a location to drive to and then wait till

given the next location. The next location is not published until all of the robots have reached

their goal. This is implemented in order to preserve the guarantee that at each intermediate

formation network integrity is preserved. While this approach does provide more control over the

evolution of the formation and underlying wireless network, it is rigid and susceptible to breakage.

An example of a scenario that would cause such a breakage is shown in Section 4.4.2. In that set of

experiments one of the support robots incurs a temporary motor failure in-between two formations

and the results causes the centralized system to lose network integrity, while the hybrid system

preserves network integrity.
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Figure 4.5: The waypoints used in Section 4.4.1. Robots are color coded with the initial formation
indicated by the circles and the waypoint as squares.

4.4.1 System Comparison

In the initial set of experiments, we compare the successful packet transmission of our hybrid

system to the centralized system developed by Fink et al. There were three sets of experiments

run for this section. Each set consisted of ten trials, with only one data flow, a1
4,m = 0.5. The

first two sets provide the comparison between the hybrid and centralized systems in Levine-GRW,

while the third highlights the performance of the hybrid system in a different environment, the

Towne building. For the first two sets, the centralized planner was used to find the trajectories

that allowed the team to complete the goal, which was reach the blue square from the initial

formation shown in Fig. 4.2a. With these trajectories the waypoint generator was used to reduce

the number of waypoints to three as shown in Fig. 4.5. These sets of waypoints were then used by

both the centralized motion controller and the local controllers, to remove any bias incurred by

different input waypoints. The results of the ten trials are plotted in Fig. 4.6a, where the solid line

represents the average over all the trials and the dotted envelope shows the one σ bounds. There

are a few items to note; first, there is a portion of the data in which the average success rate for

the centralized system falls below 0.5; this is mostly due to a mismatch between the channel model
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(b) Experimental results for the hybrid system
in the Towne building. The solid line is the
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minimum input data rate for the lead robot.

Figure 4.6: Experimental results for Levine-GRW and the Towne building.

and the actual environment. The second item to notice is how well the hybrid system performs.

Even the one σ bound stays above the required data rate. This is mostly due to the robots locally

optimizing their trajectory and not moving in straight lines. Another item to note is the spread

on the one σ bounds. Since the centralized system is including an estimate of the channel variance

the spread is much less than the hybrid system which is only a proxy for the channel variance.

Also, since the hybrid system allows for deviations to locally optimize, the trajectories taken by

the robots is not always the same compared to the tightly controlled trajectories executed by the

centralized system. The final item to note is the divergence of the results for the two systems at

12 meters. While the hybrid system continues to exceed the required data rates, the centralized

system drops off dramatically to marginally meeting the requirements. The reason for this is at

12 meters the sensing robot turns the corner and must rely on the support robots to relay data

back to the access point. Since the centralized system is planning for future unknown links rates it

adopts a conservative approach with respect to a single link. This conservative approach is useful

when planning but it does not leverage the current state of the environment and team formation.
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In contrast the local controller in the hybrid system is constantly optimizing for performance based

on the environment and team’s formation. Therefore, it can achieve a higher level of performance

when compared to the centralized systems due to better utilization of current information. An

example of this is seen in Fig. 4.7, where the location and routing probabilities are plotted for one

trial of the experiment. For both systems, two snapshots in time are taken, t = 120 and at the

completion of the task. In the first time instance, the formations are not identical. This is due to

the local deviations performed by the hybrid system, but the final formations match.

In the third set of experiments for this section the same task, drive around a corner, was

completed but in the Towne building shown in Fig. 4.2c. Again, the hybrid system was given the

blue square as a goal location for the sensing robot, and the initial formation is indicated by the

red circles. Ten experiments were run with a1
1,m = 0.5, and the results are plotted in Fig. 4.6b.

The system performs remarkably well, with the one σ bounds well above the desired results.

This is most likely due to the Towne building having wider hallways compared to Levine-GRW

and therefore the amount of multi-path interference being reduced when the robots are in the

center of the hallway. Also, the same model parameters were used as in Levine-GRW; thus the

superior performance could indicate that the channel model is conservative with respect to the

RF environment in Towne when compared to Levine-GRW.

4.4.2 Dynamic Response

In this section of tests, we highlight a major benefits of using a local controller, as opposed a cen-

tralized waypoint system, namely dynamic response to unexpected events. In these experiments,

as with those in the previous section, the goal was to drive around the corner in Levine-GRW

to a goal location, but during deployment one of the robots has a temporary restriction to its

motion. A temporary restriction in motion could be caused by events such as an actual failure of

the physical motor or an obstacle or person blocking the path of the robot. Similar to the previous

section, feasible trajectories were found and passed to the waypoint generator. The resulting way-
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Figure 4.7: These figures show a series of formations and the resulting routing probabilities expe-
rienced during the experiments in Section 4.4.1. Figs. (a) and (b) correspond to the centralized
system experiments and Figs. (c) and (d) correspond to the hybrid system experiments. The
darkness of the lines connecting the robots indicate the routing probabilities used for that link.

81



Figure 4.8: The waypoints used in Section 4.4.2. Robots are color coded with the initial formation
indicated by the circles and the waypoint as squares. The red star indicates the location at which
the support robot suffers the motor failure.

points are shown in Fig. 4.8, as in the previous section each robot has three waypoints. This set

of experiments were run just as the previous section was but when Scarab43 reaches the red star

in Fig. 4.8 its motor is disabled for 120 seconds, to simulate a temporary restriction in motion. In

Figs. 4.9a and 4.9c we plot the team’s formation for the centralized and hybrid systems during the

stall period, and in Figs. 4.9b and 4.9d we plot the formations at the completion of the experiment.

In these plots the sensing robot is a red circle, the support robots are black circles, the final team

formation is shown as blue squares, and Scarab43 is highlighted by a red square. Notice that since

Scarab43 stalls after the second set of waypoints in Fig. 4.8 the centralized system attempts to

reach the final formation. This is seen in Fig. 4.9a by all the robot except Scarab43 reaching their

goal location. After Scarab43 recovers from the stall it moves to it’s final location and the team

is in the correct final formation. This does not occur when the hybrid system is used due to the

team dynamically reacting to the stall and preventing the sensing robot from advancing farther.

As shown in Fig. 4.9c by the red circle not reaching its blue square.

To analyze the network performance of these tests we ran two more experiments where Scarab43

does not stall using the same configuration as the prior tests. The results of the two experiments
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(a) (b)

(c) (d)

Figure 4.9: These figures show a series of formations and the resulting routing probabilities expe-
rienced during the experiments in Section 4.4.2. Figs. (a) and (b) correspond to the centralized
system experiments and Figs. (c) and (d) correspond to the hybrid system experiments. Figs. (a)
and (c) show a snapshot of the formation when Scarab43 has stalled. The darkness of the lines
connecting the robots indicate the routing probabilities used for that link.
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(b) The hybrid system is able to adjust the mo-
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Figure 4.10: Experimental results highlighting the hybrid systems ability to dynamically adjust
to motor failures. In both figures two separate experiments are plotted. The blue line is from
an experiment under normal conditions and the red line is from an experiment where there is a
motor failure. The shaded region indicates the time the motor failed for the stalled experiment.

for the centralized and hybrid systems are plotted in Figs. 4.10a and 4.10b. In these plots the

red and blue lines are the data rate of system with and without the stall, which is indicated

by the shaded region. It can be seen that prior to the stall the two lines are in agreement for

both systems as is expected since there has not been an unexpected event yet. When the stall

occurs we see that the two lines in Fig. 4.10a diverge, while the they do not in Fig. 4.10b. The

divergence in Fig. 4.10a is due to the formation deviating greatly from the one that was verified

by the centralized planner. After the stall is recovered from we see that the network performance

returns to the desired value. In contrast in Fig. 4.10b we see that the network performance never

suffers from the robots being out of position. This is because when the stall occurs the other

members of the team react accordingly, specifically the sensing robot halting its motion. These

experiments show how the hybrid system is more robust to dynamic changes in the environment

and other obstacles that may arise during the execution of a task when compared to the more

brittle waypoint synchronization of the centralized approach.
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4.5 Situational Awareness Task

The previous sections demonstrated, through simulations and experiments, that the hybrid system

is able to control the motion of the team so that the sensing robot is able to reach a specific location.

In this section, we demonstrate that by building upon this ability, we can extend the system to

complete complex tasks with minimal user input. One such task is long duration monitoring or

patrolling a series of hallways. For this task, the sensing robot is not moving to a specific location,

but instead the requirement is to visit multiple sensing locations, all the time maintaining the

desired QoS.

We begin by decomposing the task of patrolling a hallway into a series of operations. First,

the system determines a path for the patrol robot that visits all the sensing locations and returns

to its current location to create a loop. This loop allows for repeated execution of the generated

path without compromising the QoS. Next, the global planner uses this path to determine a

goal formation for the support robots that maintains the QoS for the majority, if not entirety, of

the patrolling robot’s motion. This goal formation, including the first sensing location, is then

used as the desired formation for the RRT in global planner. With this desired formation the

system operates just as it does in the single location scenario. After finding the trajectories and

disseminating the waypoints, the local controllers drive the robot to their goal locations. Upon

reaching their goals, the robots are able to adjust their location to optimize the communication

network in response to the rest of the team. This allows the team to react to locations along

the patrolling robot’s path that are not supported by the goal formation, but are still feasible for

patrolling.

4.5.1 Non-confirmation Protocol

In the first experiment we wish to quantify the ability of the hybrid system to provide real-time

situational awareness as the sensing robot patrols the hallway. To provide an accurate measure
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Figure 4.11: Experimental results from patrol task using UDP.

of only the hybrid system’s performance we use UDP, as in our tests in Section 3.1. For this

experiment we use a team of 3 robots supporting a patrol robot as it moves through a figure eight

hallway. The location of this experiment is Levine-GRW and the desired QoS is set to a1
4,m = 0.3.

The team of 4 robots and an access point begin in the lower left corner near location F in Fig. 4.11a

with sensing location (A, B, C, D, E, B, C). The global planner uses this order of sensing locations

to determine an optimal formation for the support robots. The resulting formation covers the

entire path by placing the support robots at locations B, C, and D. With the path covered, every

location along the patrol robot’s path will have sufficient network connectivity to support the

required QoS. Thus, the local controllers are not required to deviate from the formation. In this

experiment the robot executes the figure eight path a total of 20 times.

The resulting data rates for each lap are overlaid in Fig. 4.11. In Fig. 4.11a we plot the

average data rate, signified by the color, at each location along the path. In Fig. 4.11b, we plot

the average and one σ bounds as a function of distance traveled. The vertical dotted line indicate

the waypoints. As with the previous experiments, even the one σ bound is above the required

rate, a1
4,m = 0.3, for the majority of the experiment. Note that other than right after location A,

the system maintains the required QoS. This drop off is consistent across laps, as evidenced by

the σ bounds not spreading out. We attribute this result to the delay in the convergence of the
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Figure 4.12: Experimental results from patrol task using MCTP.

routing algorithm to the new optimal solution. This is due to the dramatic change in the solution

from a direct path to the access point to a multi-hop path through two support robots.

4.5.2 Confirmation Protocol

In the final set of experiments the hybrid system was combined with the Multi-Confirmation

Transmission Protocol (MCTP) from Chapter 3. Incorporating a transmission protocol that sup-

ports confirmations, such as MCTP, allows the hybrid system to further mitigate the random

fluctuations in the wireless links. Another benefit of using MCTP, as previously detailed, is that

it was designed specifically for the wireless ad-hoc networks created by the hybrid system. These

two facts allow the team to achieve even more reliable end-to-end communication. An example of

this is seen when the patrolling experiment from the previous section is repeated but with MCTP,

instead of UDP. The results from these experiments, in which five laps instead of the twenty were

executed, are shown in Fig. 4.12. Again a heat map showing the average success rate is plotted

in Fig. 4.12a and the average success rate as a function of distance traveled with a one σ bound

is plotted in Fig. 4.12b. The benefit of incorporating a confirmation protocol is immediately ap-

parent. The system maintains an average success rate greater than 0.85, even though the desired

rate was only 0.3. This is achieved without changing any of the system requirements, therefore
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Sections 4.5.1 and 4.5.2.

demonstrating that even with lower input requirements the system will optimize the end-to-end

data rate. This property allows the system to provide a minimum guarantee for the performance

of the network, while not sacrificing the possibility of more optimal operation. A more direct

comparison between the UDP and MCTP experiments is shown in Fig. 4.13. Notice that there

are similar drops in the performance between the two, but the magnitude of the drops is much

less in the MCTP experiments, indicating a much more reliable end-to-end transmission.

This experiment also highlights the value of the hybrid system’s design. Since the focus of the

hybrid system is on motion control and network routing, it resides entirely in the network layer

of the OSI networking model. This allows the hybrid system to be incorporated into any larger

system that requires a networking layer that is also capable of motion control. As demonstrated

in the previous experiments, the hybrid system can operate independently, or as demonstrated in

this experiment, it can be incorporated with other OSI compliant components to construct a more

complex system. This provides a system-level flexibility to incorporate advancements in other

layers of the OSI model without requiring modification to the hybrid system.
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4.6 Summary

In this chapter, we develop a hybrid system that is able to drive a team of robots through a complex

environment while preserving network integrity. The system is composed of two main subsystems

arranged in a feedback loop. The outer loop is responsible for generating trajectories for the team

and the inner loop in responsible for using those trajectories as a roadmap to successfully complete

the given task. This construction allows the team to complete the situational awareness task in a

distributed manner while avoid local minima.

We demonstrate the abilities of the system extensively through simulations and experiments.

In simulation, we highlight a specific task that a distributed controller is unable to complete, but is

trivial for the hybrid system. Additionally, we verify the ability of the system to operate without

a reduction in performance, even when the team consists of 25 robots. Through experiments,

we compare the performance of the hybrid system to a centralized system and show the hybrid

system’s ability to optimize the robot’s trajectories to achieve a higher end-to-end data rate

with less coordination overhead. Then, we emphasize the dynamic nature of the hybrid system

in experiments where one of the support robots has a temporary motor failure that results in

the centralized system losing network integrity, but the hybrid system adapts and maintains the

network.

We conclude with an application that is well suited to the hybrid system, patrolling a series

of hallways. In this application a patrol robot must repeatedly visit a series of sensing locations

while transmitting data back to an access point. The hybrid system is able to position the support

robots such that there is never a break in the end-to-end link. We perform this task two times;

first, using UDP to demonstrate the ability to maintain a minimum end-to-end link, and then

using MCTP to demonstrate a near loss-less end-to-end link.
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Chapter 5

Simultaneous

Communication-Aware

Localization and Mapping

The ability of a team of robots to move through a known environment while providing real-

time situational awareness over a wireless ad-hoc network with minimal global coordination, as

demonstrated in Chapter 4, is a major step towards completing our objective. While this an im-

provement, there still remains one capability that is required for such teams to be useful in realistic

scenarios. That capability is operation in unknown environments. As mentioned previously, the

term unknown environment could be used to describe a variety of locations, such as a building

that has experienced a partial collapse, a recent construction, or simply, a building that has not

been mapped prior. In this chapter, we present a system that is capable of efficiently constructing

a meaningful representation of the environment while supporting real-time transmission of timely

sensor data back to a central location. Therefore, we say this system is preforming the task of

Simultaneous Communication-Aware Localization and Mapping (SCLAM).
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5.1 Unknown Environments

The existence of an accurate map of the environment is critical to the abilities of the hybrid

system demonstrated in Chapter 4. The map is used throughout the system, specifically in the

localization system to estimate the position of the robot, in the channel estimation system to

identify if the link between two robots is obstructed by an obstacle, and in the global path planner

to determine collision free trajectories. The impact of an inaccurate, or incomplete map, can be

dramatic to each of these systems.

5.1.1 Occupancy Grid

Before we can begin to quantify the impact of dynamic maps on the components, we must under-

stand their properties. This system is designed to operate with a probabilistic representation of the

environment. Specifically, a discrete occupancy grid, m, that divides the space into K independent

planar cells mk. Cells take values mk ∈ {0, 1} with mk = 1 signifying the presence of an obstacle

in the corresponding region of space, and 0 signifying the space is free. The occupancy grid is

represented probabilistically by the map random variable M , composed of individual cell random

variables Mk [84]. These cell variables are modeled as Bernoulli with p(mk) := P (Mk = 1) denot-

ing the probability of mk containing an obstacle. Individual cells are further assumed independent

of each other, which implies that the probability distribution of the map is completely charac-

terized by the occupancy probabilities of individual cells. We therefore have that the probability

distribution pM (m) = p(m) of the map M is given by

p(m) = P
(
M = m

)
=
∏
mk=1

p(mk)
∏
mk=0

[1− p(mk)]. (5.1.1)

We remark that we use the map belief in (5.1.1) for discussions and probability computations

but that in practice the map representation is simply given by the collection {p(mk)}Kk=1 of cell

occupancy probabilities. Additionally, we define m̂(t) as the maximum likelihood estimate of the
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map given the probability distribution at time t. This is done by thresholding the probability

distribution p(m). Specifically, we set m̂k(t) = 0 when p(mk) ≤ νfree, m̂k(t) = 1 when p(mk) ≥

νobstacle, and m̂k(t) = −1 otherwise.

5.1.2 Component Modifications

The components in the original system operate with a map similar to m̂(t), except that due to

the environment being known only the values 0 and 1 are present. Therefore, given that the

maximum likelihood map, m̂(t), is likely to contain unknown and unexplored cells, those cells

where m̂k(t) = −1, the components that rely on a map must be augmented.

Localization

We begin with the localization system used by the robots. The process of localization involves the

robot obtaining sensor measurements, zt, in our case the range returns from a 2-dimensional scan

done by the Hokuyo. The range returns zt and current estimate of the robots location, x̂i(t) are

used to create a point could, or collection of points in space that represent objects. This point

cloud is then matched with the expected measurements given the estimated location. Through a

series of iterations, ŷ(t), an estimate of the laser’s location given the measurements is produced.

Then, ŷ(t) is used to update x̂i(t) to produce a new estimate of the robot’s location. If both

the map and laser are accurate the resulting localization errors, ‖ŷ(t)− x̂i(t)‖, are small and the

location of the robot can be known precisely. Due to the map in our situation containing many

unknown locations, theses errors increase. To mitigate an increase in the errors, two modifications

are made. First, the reliance on the local odometry, which is the robot’s ability to estimate its

motion without any external information, such as a map, is increased. This is possible due to the

accuracy of the laser and the laser odometry system developed by the MRSL. The other step taken

to mitigate the errors is the locations in which the robots can move to are limited to areas where

the environment has been sufficiently mapped. While this limitation could prevent the robots
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from moving into advantageous positions, the benefit of reduced localization errors far outweighs

the possible gains.

Channel Estimation

The next component that must be modified is the channel estimation system. This system is

used by both the global planner and local controller in the hybrid system. Therefore, limiting

its errors is paramount. To provide an estimate of the channel rate, the system collects the

indices of all the cells that the link between two robots passes through into a set, c. When the

environment is known, it is trivial to determine if there are any obstructions, mk = 1 for some

k ∈ c, since all of the cells take a value of 0 or 1. With this information, it is able to properly

model the expected channel rate to account for shadowing, but when the map is incomplete this

capability is diminished. This is because there are now three possible outcomes: i) there are

only open cells along the link (m̂k(t) = 0 for all k ∈ c); ii) there is at least one cell with an

obstacle (∃ k ∈ c s. t. m̂k(t) = 1); and iii) there are only open and unknown cells along the link

(m̂k(t) ∈ {−1, 0} for all k ∈ c). The first two outcomes can be treated in the same manner as

when there is full information. It is the third, and new outcome, that must be addressed. When

m̂k(t) ∈ {−1, 0} for all k ∈ c it is impossible for the system to know if there is an obstacle in

any of the unknown cells. This requires that the system take a conservative approach and assume

that any unknown cell contains an obstacle that will attenuate the signal. As with the limitations

placed on localization, the confidence that the link will only be better than the estimate, and not

worse, is preferred over the risk of violating network integrity.

A simple example of this can be seen when the current maximum likelihood map of the world

is the one shown in Fig. 5.1b, and two extreme cases are shown in Figs. 5.1a and 5.1c. In this

simple example, the robots are only able to communicate when the line of sight is unobstructed.

In this example the black indicates an obstacle, white indicates open, and grey indicates unknown.

The goal is to have the blue circle move to the blue star while using the two red circle, which are
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(a) One possible state of the en-
vironment.

(b) Current maximum likeli-
hood map of the environment.

(c) One possible state of the en-
vironment.

Figure 5.1: A simple example of why the channel estimation system must take a conservative
approach to link estimation when the environment is unknown. If communication requires line-
of-sight between robots, indicated by the circles, and the blue circle want to move to the star it
must assume that the map in (c) is the real state of the world and not (a).

fixed access points, for communication. If the estimation system did not take the conservative

approach and assumed that unknown cell did not contain obstacles, the blue robot would move

towards the star expecting a link with the left circle. This would not violate network integrity if

the map in Fig. 5.1a is the true state, but if the map in Fig. 5.1c is the true state then network

integrity would be lost, and the correct trajectory is along the lower hallway.

The affect of this conservative approach is realized when computing the communication rate

margin. To indicate that the channel rate estimates are the result of incomplete information, we

replace R(xi(t), xj(t)) in (2.1.7) with R̂(xi(t), xj(t)) to get,

âki (t) =

N∑
j=1

αkij(t)R̂(xi(t), xj(t))−
N∑

j=1,i6∈Dk

αkji(t)R̂(xi(t), xj(t)). (5.1.2)

In (5.1.2), we use âki (t) to denote that the resulting communication rate margin are also the result

of incomplete information. Due to R̂(xi(t), xj(t)) being the best estimate possible, the resulting

âki (t) must be used instead of aki (t). This results in conservative behavior in both the motion

and routing solutions exhbited by the local controller. An important observation here is that as

the map estimate m̂(t) becomes closer to the actual map, the link rate estimates, R̂(xi(t), xj(t)),
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become closer to the actual rates. Thus, the flow rate estimates, âki (t), become closer to actual

data rates and the system returns to the scenario considered in Chapter 4.

Global Path Planner

The final component that relies on an accurate map is the global path planner. This component

uses the map in two ways, one for channel estimation, which has already been discussed, and the

other for physical path planning. In order to accommodate the lack of information, in regards to

the motion planning, a similar approach to channel estimation is used. In that, unknown locations

are treated as obstacles. As highlighted in the channel estimation discussion this conservative

approach is required, but this time for the sake of safety.

The impact of this is noticed in the construction of the feasible configuration space. In order

to safely maneuver the robots, we must modify the formulation in (2.1.5) to first take into account

the physical constraints imposed on the robots by the current estimated map of the environment,

m̂(t). Therefore, we define Fro(t) as the set of all cells that have a high probability of not being

open, Fro(t) = {mk : m̂k(t) 6= 0)} . Then, using the same construction of Frr, we define

F(t) = R2N \ Fro(t) \ Frr, (5.1.3)

and require that x(t) ∈ F(t).

5.2 Autonomous SCLAM

With an understanding of how each component can mitigate the effects of dynamic maps, we turn

our attention to how to complete a situational awareness task, given an unknown environment.

For this chapter, we consider a team with the same composition as in Section 2.1, but with one

addition. On this team, there is a single robot, i = l, that is capable of generating a map of the

environment that can be shared with the other members of the team. We refer to this robot as the
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lead robot. Since this robot is obtaining actionable information, in terms of situational awareness,

all of the resources of the team are dedicated to supporting the flow of real-time date from this

robot back to the access point, a1
l,m > 0 and a1

i,m = 0 for all other i. For this reason we referred

to the other members of the team as support robots.

The ultimate goal of the system is to have the lead robot autonomously map the environment,

as quickly as possible, while the support robots provide the communication network needed to

relay data from the lead robot to the access point. The system must also adjust to changes in

the communication requirements, caused by changes in the current estimate of the map, so as to

minimize the delay experienced by the map updates at the access point. This ability is built upon

the hybrid approach developed in Chapter 4, with the necessary modifications.

The first modification to the system is a result of the robots no longer being homogeneous, since

one robot now has a capability the others do not. To provide this ability, the lead robot replaces

its localization subsystem with a Simultaneous Localization and Mapping (SLAM) subsystem,

which is now providing both an estimate of the robot’s location, x̂l(t) and a representation of the

environment in a probabilistic sense, p(m), as well as a maximum likelihood sense, m̂(t).

With the introduction of autonomous mapping, the process of the user providing a task po-

tential Γ(x(t)) is removed. This is due to the expectation that the system should generate Γ(x(t))

dynamically, based on the current understanding of the environment. Since the objective is to

map the environment, which only relies on the location of the lead robot, Γ(x(t)) is reduced to a

function that relates the location of the lead robot to a goal location, Γ(x(t)) = ‖xl(t) − xl,g‖2.

This location, xl,g, should be determined such that the map can be completed in as little time as

possible. Thus, we employ an information theoretic approach to this process, so that the maxi-

mum information gain can be achieved as the lead robot moves. The optimal trajectory, which

can be interpreted as a sequence of xl,g’s, is found by an Information Theoretic Explorer, whose

construction is presented in detail in Section 5.2.1.

This change to a dynamic determination of Γ(x(t)) requires modifications to the operational
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flow of the hybrid system. The hybrid system was constructed with the assumption that changes

to the overall task were infrequent, but with dynamic generation of task this assumption is no

longer valid. As such, we inverted the order of operation in the system so that there is more

reliance on the local controller, and less on the global planner. Instead of relying on the global

planner to determine a trajectory for each robot every time Γ(x(t)) changes, the dynamic hybrid

system initially uses the local controller on robots to drive to the goals. Therefore, the Information

Theoretic Explorer interacts only with the local controller on the lead robot, passing the optimal

trajectory to the local controller as a series of waypoints, Xl, just as the global planner did in the

original system. Thus, the Information Theoretic Explorer is located on the lead robot – although

it can physically reside at some other computational element if that is desirable. This reliance

on the local controller does introduce the possibility that a local minima will prevent the team

from supporting the lead robot as it executes its trajectory. When this does happen, the team

will remain trapped in the local minimum unless assistance is provided, which comes from the

global planner when necessary. The global planner’s role has therefore been reduced from being

deeply embedded in the original system to now operating as a fail-safe, only used when the local

controllers are unable to adequately solve the problem.

This resulting architecture is shown in Fig. 5.2. Consider the time t = t0, at which time

the Information Theoretic Explorer must generate an optimal trajectory for the lead robot. To

accomplish this, it requests the current probabilistic interpretation of the environment, p(m), and

estimated location of the robot, x̂l(t0), from the SLAM component. Using this the Information

Theoretic Explorer then determines an optimal trajectory, Xl, over a finite time interval t ∈

[t0, t0 + τ ]. This trajectory when followed provides the robot with maximal information to refine

the map. The trajectory, Xl, is then passed directly into the local controller of the lead robot,

which it attempts to follow. Concurrently, the lead robot is publishing the maximum likelihood

representation of the environment, m̂(t), every τp seconds. This results in the localization and

channel estimation systems on the other robots operating with the most recent estimated map,
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Figure 5.2: System architecture for SCLAM mobility and communication planning and control.
The main components are an Information Theoretic Explorer that finds good trajectories for lead
robot and a mobility and communication control algorithm that maintains a viable communication
network. The Information Theoretic Explorer resides in the lead robot but communication control
is distributed. A global path planner is used as a fail safe mechanism. Map estimates improve
estimates of communication channel, which improve the quality of the communication network
that supports the mapping and exploration task.

m̂(tp), where tp = nτp and n is the largest integer such that tp < t. While the lead robot

is following the trajectory, the support robots are dynamically adjusting to the motion of the

lead robot so as to provide the communication link back to the access point. This is done in

the same manner as the original system, where the local controllers exchange the dual variables,

and follow their navigation function, which is composed of physical and virtual communication

obstacles. The main difference is that the rates and virtual obstacles are now constructed using

the incomplete version of the communication margin, âki (t). When the lead robot completes

the trajectory prescribed by the Information Theoretic Explorer, the process is repeated with t0

updated to the current time.

As noted, there is the possibility of the team being trapped in a local minima. To identify this,

the leader monitors the amount of time it have been executing the given trajectory. When the

execution time exceeds a time threshold Tl, where Tl > τ , the team is halted and a global plan is

requested. Upon reception of a global plan request, the path planner collects the current estimate

of the formation x̂(t), and map, m̂(t), to determine the trajectory for the entire team, such that
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the lead robot can reach the final location of the trajectory provided by the Information Theoretic

Explorer. Only the final location is used since the intermediate points along the trajectory may

not be feasible from a network integrity perspective. When the final trajectory is determined, it

is sampled and disseminated in the same manner as Section 4.1.

Another modification that is made to the system pertains to the minimum end-to-end data

rate requirement. In the previous experiments, the value of a1
l,m captured the rate necessary to

sustain a consistent flow of data back to the access point. When performing SCLAM, there are

two flows of data originating at the lead robot. The first is a consistent flow of data from a primary

sensor, similar to the previous interpretation, and the second is a dynamic flow of newly obtained

map data. Both of these flows are destined for the access point, but the primary sensor data is

given priority, thus the system must adapt to minimize the delay experienced by the map updates

when the bandwidth is insufficient. The method in which the system is augmented to address this

is presented in Section 5.2.2.

These modifications and new architecture result in a system that is highly dynamic and oper-

ates almost entirely in a distributed manner.

5.2.1 Autonomous Exploration

In this section, we focus initially on the problem of a single robot autonomously mapping an

environment. This problem can then be integrated with the dynamic hybrid system described in

the previous section. We begin by noting that the map distribution p(m), and an estimate x̂(t) of

the current position of the robot, are updated with environmental observations zt. The observation

model of the sensors in the robot is given in the form of the probability distribution p(zt
∣∣xt,m)

that represents the probability of observing zt when the position of the robot is xt = x(t) in

the given environment m. Notice that the environment is not known but rather described by

the probability distribution p(m). It is therefore of interest to recall the definition of the joint
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probability distribution of the map and the observations which we write as

p
(
m, zt

∣∣xt) = p
(
zt
∣∣xt,m) p(m), (5.2.1)

as well as the marginal distribution of the observations zt that we obtain by summing the joint

distribution in (5.2.1) over all possible maps,

p
(
zt
∣∣xt) =

∑
m

p
(
m, zt

∣∣xt) (5.2.2)

The goal is to plan trajectories that map the environment efficiently, thus we require the robot to

follow a path for which the future observations are maximally informative about the environment.

These maximal information trajectories follow from information measures that we compute based

on the probability distributions in (5.1.1)-(5.2.2).

Trajectories with maximum information gain

To measure the information gain of a trajectory for the robot, we rely on the Cauchy-Schwarz

Quadratic Mutual Information (CSQMI) [61] between the map and the candidate trajectory. Begin

by considering two arbitrary probability distributions pA(a) and pA′(a′) with a common support

A. Interpreting these distributions as vectors in a Hilbert space, we can define their inner product

as

〈pA(a), pA′(a′)〉 =

∫
A
pA(a)pA′(a) da (5.2.3)

and their energies as ‖pA(a)‖2 = 〈pA(a), pA(a)〉 and ‖pA′(a′)‖2 = 〈pA′(a′), pA′(a′)〉. The Cauchy-

Schwarz ratio,

〈pA(a), pA′(a′)〉2/‖pA(a)‖2‖pA′(a′)‖2,
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is then a measure of how similar the distributions pA(a) and pA′(a′) are to each other. Observe

that if the random variable A is discrete, the integral in (5.2.3) is replaced by a sum.

Consider now a time t = t0 at which the map belief is p(m) and the current position of

the robot is xt0 and a time horizon τ . Between times t = t0 and t = t0 + τ the robot moves

through a series of T equally spaced poses xt0 = [x(t0 + τ/T ), x(t0 + 2τ/T ), . . . x(t0 + τ)] and

acquires a corresponding stream of observations zt0 := [zt0+τ/T , zt0+2τ/T , . . . , zt0+τ ]. For the ob-

servation stream zt0 acquired at positions xt0 we have the observation model p(zt0
∣∣xt0 ,m), the

joint distribution p(m, zt0
∣∣xt0) = p(zt0

∣∣xt0 ,m)p(m) [cf. (5.2.1)] and the marginal distribution

p(zt0
∣∣xt0) =

∑
m p(m, zt0

∣∣xt0) [cf. (5.2.2)]. The CSQMI between the map m and the observa-

tions zt0 acquired by following the trajectory xt0 is defined as

I
[
m; zt0

∣∣xt0] = − log

〈
p
(
m, zt0

∣∣xt0), p(m)p(zt0 ∣∣xt0)〉2

∥∥p(m, zt0
∣∣xt0)∥∥2∥∥p(m)p(zt0 ∣∣xt0)∥∥2 . (5.2.4)

In the definition in (5.2.4), the product p
(
m
)
p
(
zt0
∣∣xt0) represents the joint probability distribu-

tion of the map m and the observations zt0 when map and observations are independent. Thus,

the ratio in (5.2.4) measures how far from independence the variables m and zt0 – with joint

probability distribution p
(
m, zt0

∣∣xt0) – are and, in that sense, how much information we expect

to gain about the map m from following the trajectory xt0 and acquiring the observations zt0 .

It is then reasonable to require the robot to follow the trajectory that maximizes I
[
m; zt0

∣∣xt0],
which we formally define as the solution of the optimization problem,

η∗ = max
xt0

I
[
m; zt0

∣∣xt0]
s. t. x(t) = x(t0) +

∫ t

t0

ẋ(v) dv (5.2.5)

xt0 = [x(t0 + τ/T ), x(t0 + 2τ/T ), . . . x(t0 + τ)].

The solution of (5.2.5) is a trajectory xt0 that, if followed by the robot, achieves an information
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gain η∗.

Information Theoretic Explorer

The purpose of the Information Theoretic Explorer is to plan an optimal trajectory for the robot

as it explores the environment. For this we use a recent advancement in information theoretic

mapping, namely Cauchy-Schwarz Quadratic Mutual Information (CSQMI) [14]. We begin with a

robot located at xt = x(t) operating in environment m. The robot is equipped with a 2 dimensional

laser range finder mounted parallel to the floor, with B beams emanating radially from the sensor.

Each beam has a minimum range, zmin, and maximum range, zmax. Consider then, a single beam

b with measurement noise σ2
s , and define dbt as the distance to the first obstacle along that beam.

The probability distribution for the sensor measurement is then,

p(zbt = z
∣∣xt,m) = p(zbt = z

∣∣ dbt) = N(z; dbt , σ
2
s), (5.2.6)

where N(x;µ, σ2) is the likelihood of drawing the value z from a Normal distribution with mean

µ and variance σ2. As the ray cast by the beam intersects with cells in m, we define those cells

as the set c. Since (5.2.6) is entirely dependent on the first obstacle along the beam, we note

that only the cells in c need to be considered. Therefore conditioning the measurement on c is

equivalent to conditioning on m and xt,

p(zbt
∣∣ c) = p(zbt

∣∣xt,m). (5.2.7)

Next, we define the indicator function ei, which takes the value of 1 when the ith cell in c contains

the first obstacle and 0 otherwise. We define the special case where c contains no obstacles as e0.

For a given beam, the probability that the ith cell contains the first obstacle can be written as

p(ei|xt), which is obtained from p(m). We can then compute the probability distribution of the
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measurements given xt, [cf. (5.2.2)]

p(zbt
∣∣xt) =

∑
m

p
(
m, zbt

∣∣xt) =

C∑
i=0

p(zbt
∣∣ ei)p(ei ∣∣xt), (5.2.8)

where C = |c|. Using (5.2.7) we note the I
[
m; zbt

∣∣xt] = I
[
c; zbt

∣∣xt]. This now allows us to obtain

the following approximation for CSQMI [14], from (5.2.4),

I
[
m; zbt

∣∣xt] = log

C∑
l=0

wlN(0; 0, 2σ2
s) + log

C∏
i=1

pi

C∑
j=0

j+∆∑
l=j−∆

p(ej
∣∣xt)p(el ∣∣xt)N(µl;µj , 2σ

2
s)

− 2 log

C∑
j=0

j+∆∑
l=j−∆

p(ej
∣∣xt)wlN(µl;µj , 2σ

2
s), (5.2.9)

where pk =
(
p (mk′)

2
+ (1− p(mk′))

2
)

and k′ is the index in the map for the kth cell of c. The

value of µj is determined by ej and (5.2.6). The weights wl for 0 < l < C are computed as follows,

wl = p2(el
∣∣xt) C∏

j=l+1

pj , (5.2.10)

with w0 = p2(e0) and wC = p2(eC). The inner sums in (5.2.9) are constrained to l = j ±∆ due

to the realization that 99.7% of the mass of a Gaussian distribution is within ±3σ. Therefore,

N(µl;µj , 2σ
2
s) ≈ 0 when |µl − µj | > 3

√
2σ. Typically determining which µl are close to µj is

difficult, but since the means are determined by the cells, we know that they are monotonically

increasing with the cell index and thus easily identifiable. Additionally, we note that map cell

lengths are slightly larger than the variance of the sensor. Therefore using ∆ = 4, implies that

N(µl;µj , 2σ
2
s) ≈ 0 for all |l − j| > ∆, thus the cells beyond ±∆ can be removed from the double

sum. This decreases the computational complexity of CSQMI to linear in the number of cells

considered.

With (5.2.9) approximating the CSQMI of a single beam we extend the formulation to include

a series of T robot poses where B sensor measurements are obtained at each pose. Between t = t0
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and t = t0 + τ , the robot moves through a series of poses xt0 = [x(t0 + τ/T ), . . . x(t0 + τ)] and

a collection of beams, zt0 = [zt0+τ/T , . . . , zt0+τ ]. Our goal is to determine trajectories that are

maximally informative which requires the computation of I
[
m; zt0

∣∣xt0]. The evaluation of this

quantity is complicated be the possibility of two measurements not being independent. If all the

measurements were independent as assumed in some systems [36, 41], the evaluation would be

simply,

I
[
m; zt0

∣∣xt0] =
∑
zbt∈zt0

I
[
m; zbt

∣∣xt0] . (5.2.11)

Unfortunately, this assumption has been shown to result in gross over estimation of CSQMI.

Therefore, we use a method for extracting a set of nearly independent measurements, Z, from [14],

and approximate the total CSQMI for a given trajectory as

I
[
m; zt0

∣∣xt0] =
∑
zbt∈Z

I
[
m; zbt

∣∣xt0] . (5.2.12)

Next, we define D(xt0) ≤ τ as the time needed to execute the trajectory. Using this and (5.2.12)

the Information Theoretic Explorer solves this modified version of (5.2.5),

max
xt0

I
[
m; zt0

∣∣xt0]
D(xt0)

s. t. x(t) = x(t0) +

∫ t

t0

ẋ(v) dv (5.2.13)

xt0 = [x(t0 + τ/T ), x(t0 + 2τ/T ), . . . x(t0 + τ)].

By maximizing the ratio of CSQMI with the duration of the trajectory we seek to balance the

tradeoff between exploration and exploitation, i.e. the robot will choose shorter trajectories over

longer ones if the expected information gain is comparable, [87].
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5.2.2 Dynamic Communication Requirements

In addition to efficiently mapping the environment, the lead robot must also transmit the map data

and the primary sensor’s data back to the access point with minimal delay. In order to reduce the

amount of data that needs to be transmitted, only the changes in the best estimate of the map are

transmitted. In contrast to transmitting the full map on every update, the differential approach

requires data transmission only when new information is obtained. This results in periods of low

rates when the map is unchanged and periods of high rates when new, previously unexplored,

areas are encountered. Since the primary objective of the team is to provide real-time situational

awareness, the primary sensor’s data flow is prioritized over the map updates. As such the update

only utilize the residual bandwidth available after the primary sensor’s data is transmitted. There

are periods where the residual bandwidth is insufficient for the map updates, thus they must be

queued and transmitted as bandwidth becomes available. Queueing the data introduces a delay

between the update of the map at the leader and the update of the map at the access point.

A delay in the map updates at the access point can be detrimental to the support robots since

they are required for successful localization and channel estimation. Additionally, if the delay

experienced by the map updates is large enough, any benefit of the lead robot quickly mapping

the environment may be lost due to the data taking longer to reach the access point, as a result

of minimal residual bandwidth.

The flow of the primary sensor and the map updates are combined into a single flow since

they are both destined for the access point. While the system is capable of handling the two

flow separately there is no difference in the results, thus the two flows are combined for the

sake of clarity. During operation the experienced end-to-end rate for the primary sensor’s flow is

aepri = min{ae, apri}, where ae is the currently available end-to-end rate and apri is the primary

sensor’s required rate. The remaining bandwidth, aemap = ae−aepri is allocated to the map updates.

For the system to satisfy the original communication requirement the minimum desired rate
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must be sufficient for the primary sensor’s flow, a1
l,m > as. Using this requirement will allow the

system to satisfy the primary sensor, but the delays to the map updates can be arbitrarily large. To

avoid this, the value of a1
l,m can be increased so that the maximum expected delay of a map update

is below some threshold, dmap. This can be achieved by estimating the maximum amount of change

between sequential maps and determining the number of packets, nmap necessary to transmit that

information. This leads to the requirement that the time needed to transmit nmap packets at a

rate of rmap be below the threshold, dmap ≥ nmap/rmap. Therefore, the value of rmap must be

chosen such that this requirement is satisfied. Since the communication channels are capable of

transmitting rp packets per seconds, the required residual end-to-end rate can be computed from

the end-to-end packet rates as amap = rmap/rp. The additional rate, amap, combined with the

primary sensor’s rate, apri, becomes the new value of a1
l,m = min{1.0, amap + apri}. It can be

seen that as the maximum tolerable delay dmap is decreased, the value of a1
l,m increases which

restricts the total area that can be explored by the leader. This is due to the maximum separating

distance between two robots being inversely proportional to a1
l,m. This approach also suffers from

the drawback of applying conservative communication requirements even when there is minimal

new information, such as revisiting a previously mapped location.

These limitations lead to the desire to dynamically adjust a1
l,m based on the current com-

munication conditions. This approachmore effectively balances the competing desire of mapping

the largest area with minimizing the delay of the map updates at the access point. First, for

the value of a1
l,m to dynamically adjust, the local controller must be adapted from its current

form to allow for changes in a1
l,m without compromising network integrity. Since a decrease in

a1
l,m can only increase the margin afforded to network integrity, due it relaxing the communi-

cation requirements, we only focus on times then the value is increased. The goal then is to

guarantee that the value of a1
l,m will never increase enough to cause the current formation to

become infeasible. To provide this guarantee, we begin by defining a path between two robots

as a series of links that connect robots i and j, without repeating a link. Written explicitly,
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pi,j = {(ip, jp)}Pp=1, where i1 = i, jP = j, ip = jp−1, (ip, jp) 6= (iq, jq) for all q 6= p. Using the

communication rate for the value of the link, v(ip, jp) = R(xip(t), xjp(t)), we define the score of a

path s(pi,j) = minp v(ip, jp) = minpR(xip(t), xjp(t)). This score can be interpreted as the rate at

which data can be transmitted from robot i to robot j if only the path pi,j is used. Since there

are multiple paths the data can travel, we define the set of all possible paths from robot i to robot

j as Pi,j . Continuing with the interpretation of the score of a single path, we define the score of

the set Pi,j as the maximum score of its paths, mi,j = maxpi,j∈Pi,j
s(pi,j), which we refer to as

the max-min path score. Therefore, given the current formation, we can see that the maximum

end-to-end rate between robots i and j is mi,j . Thus, as long as a1
l,m ≤ ml,N , the change in the

communication requirements will not make the current formation infeasible.

With access to only local information it is difficult for the leader to estimate its max-min path

score. To overcome this without introducing global coordination, the local controllers maintain

their current max-min path score with the access point, mi,N , in a distributed manner. To compute

mi,N we begin by constructing a subgraph of the current communication graph. The nodes in

this graph are robot i, the access point, and only the neighbors that robot i can send data to.

To determine this set of neighbors we compare their dual variables with robot i, specifically only

those in which λki > λkj . It can be seen when λki < λkj , the optimal solution to (4.1.13) will include

αkij = 0. Thus, robot i will not transmit any received data to robot j and robot j can be ignored

in the subgraph. In the subgraph, the value of the links between robot i and its usable neighbors

is the current estimate of the channel rate R(xi(t), xj(t)), and each neighbor has a link back to the

access point with a value equal to its current max-min path score, mj,N . Robot i then computes

its max-min path score over the subgraph to compute its current mi,N . These values are computed

and exchanged much like the dual variables, but at a much lower rate. This process results in

an accurate estimate of the max-min path score for each robot, which can be used by the lead

robot to limit the value of a1
l,m and guarantee that the formation will never become infeasible.

Since this value is computed in a distributed manner there will be a delay in the propagation of
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information to the leader. Thus, we introduce a tolerance ε > 0, that provides a margin of error

when comparing the value of ml,N with the requested value of a1
l,m. When the requested value

for a1
l,m is larger than ml − ε, ml − ε is used, otherwise the requested a1

l,m is used.

With the ability to dynamically adjust the value of a1
l,m, we shift our focus to the development

of a mechanism that will compute the desired a1
l,m. For this computation we derive inspiration

from back pressure routing, originally developed in [82]. In this system, the size of the transmit

queue is used to exert pressure on the communication requirements, namely the larger the queue

size the more conservative the communication requirements must become. Thus, we return to the

acceptable level of delay for the map updates, dmap. The value of dmap can also be interpreted

as the maximum time a packet should remain in the transmit queue. Thus, the value computed

for amap should allow for the queue to be cleared in dmap seconds. Using this interpretation,

along with the current size of the queue, qmap and the nominal packet per second rate of the

communication channel, rp, we can compute the end-to-end rate required to clear the queue as

amap = qmap/(rpdmap). This formula for amap provides the desirable properties of amap = 0 when

the queue is empty, linear growth with the queue size, and maximum communication requirement

when the queue size is very large.

Since the map updates are discrete in time, the number of packets in the queue can increase

dramatically when a new area is encountered. To mitigate these large jumps, the value requested

for a1
l,m = min{1.0, apri + âmap}, where âmap is the output of a low pass filter with input amap.

The result of these modifications is the teams ability to dynamically adjust to the size of the

transmit queue, while avoiding the imposition of requirements that are infeasible for the given

formation.

5.2.3 Integration

To complete the integration, we note that the series of poses that constitute a trajectory, xt0 , in

the Information Theoretic Explorer are interchangeable with the trajectories provided to the local
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controllers, Xl. Thus, the resulting trajectories can be ingested by the local controllers with no

adjustments.

With the Information Theoretic Explorer able to determine trajectories that provide the max-

imum rate of information gain, we have now detailed all of the major components of the SCLAM

system. One of the byproducts of (5.2.13) is the estimated information gain η∗ that results from

following the trajectory, which we can use to indicate when the environment has been sufficiently

mapped. Thus, we define ηm as the minimum amount of information gain that the system is willing

to act upon, and halt the mapping process when η∗ < ηm. The level of ηm chosen determines the

uncertainty in the map that we are willing to accept. Setting ηm low will result in a very confident

map, but may require more time. Conversely, setting ηm high will result in decreased execution

time, but the resulting map may have high areas of uncertainty. With this, the description of the

autonomous SCLAM system is complete, and we shift our focus to validation of the system.

5.3 Experimental Configuration

5.3.1 Environments

In this chapter there are four environments used for simulation, of which two are used for exper-

imentation. The two environments used for simulations and experiments are the same as those

used in previous chapters, namely the 6th floor of Levine and the 5th floor of Levine-GRW. The

change in floor from the 5th to the 6th does not affect consistency since they are nearly identical

in layout and construction; thus, they are interchangeable. The two environments that are used

solely for simulation were constructed for differing reason; one for simplicity shown in Fig. 5.3a,

called Small-Loop, and the other for complexity shown in Fig. 5.3b, called Grid. The Small-Loop

environment was constructed from a single loop from figure eight layout of Levine-GRW, and the

Grid environment is Levine-GRW mirrored along the vertical axis. These two environments com-

bined with the representations of Levine and Levine-GRW make up the collection of simulation
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(a) Small-Loop (b) Grid

Figure 5.3: New simulation environments.

environments. For the purpose of this chapter it is useful to rank these environments in terms of

increasing complexity. Starting with the simplest, Small-Loop, to the Levine, and Levine-GRW,

to the most complex, Grid, with each of these covering 60, 135, 143, and 178 m2 respectively.

5.3.2 System Parameters

In this chapter, the model used for the the wireless channel estimates between two robots,

R̂(xi(t), xj(t)) is a polynomial fitting of experimental curves found in the literature [2], using

the most recently published m̂(tp). For the computation of CSQMI, we model the Hokuyo laser

scanner as a plane laser, with 200 distinct beams covering the 270◦ field of view. We use zmin = 0.1

m and zmax = 8.0 m for the minimum and maximum sensor ranges, with noise, σs = 0.03. The

system signals that the environment has been sufficiently mapped when the information gain of

the remaining poses falls below ηm = 4, a very low value for this configuration, as seen in the

results. To create the thresholded map we use νfree = 0.20 and νobs = 0.65. For all of the simu-
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lations and experiments, the team consisted of three mobile robots and one access point, N = 4.

The empirical end-to-end data rate is measured by the percentage of packets transmitted over the

ad-hoc network via UDP and received at the access point from the lead robot.

5.4 Fixed Communication Requirements

This section is focused on validating the ability of the SCLAM system to concurrently map the

environment and provide the minimum desired end-to-end rate. For this section the transmission

of the map updates is not included in the communication requirements, thus a1
l,m is fixed. In

Section 5.5 the map updates are included in communication requirements and a dynamic a1
l,m is

used.

5.4.1 Simulations

To examine the behavior of the system in various environments, we ran a series of simulations in the

environments described in Section 5.3.1. The goal in these simulations was to map the environment

to the required level of accuracy in as little time as possible, while still maintaining the desired

level of end-to-end data rate between the lead robot and the access point. The starting formation

is held constant for each trial in a given environment and the minimum end-to-end rate back to the

access point is set at a1
l,m = 0.3. When the Information Theoretic Explorer indicates that there are

no more trajectories with adequate information gain, the simulation is halted and the final map

is examined. Since the main responsibility of the system is to map the environment, we compute

the uncertainty in the cells of the final generated map that correspond to the observable cells in

the environment. Removing all the unobservable cells for an environment provides a normalized

measure of the resulting maps which can be used to compared results across environments. To

compute the uncertainty of a cell we use Shannon entropy [15], H[mk] = −p(mk) log2(p(mk))−(1−

p(mk)) log2(1−p(mk)). A cell will have an entropy of 0 if the probability of that cell containing an
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obstacle is either 0 or 1, i.e. there is no ambiguity, and it will have a maximum entropy of 1 if the

probability is 0.5, i.e. unobserved. Summing over all observable cells H[m] =
∑
kH[mk] provides

the entropy of the map. The lower this value the less uncertainty associated with that map and

thus a more accurate representation of the environment. For reference the maximum entropy for

the four simulation environments are 2.7×104 for the Small-Loop, 7.5×104 for the Grid, 5.7×104

for Levine, and 6.0×104 for Levine-GRW. The resulting entropies of the simulations are plotted in

Fig. 5.4a. As we can see from the figure, the average remaining entropy in the maps is a fraction

of the maximum, which indicates that the system sufficiently mapped the entire area.

Next, we plot the time required to complete the map for the given environment in Fig. 5.4b.

There are a few items to note in from this plot. First, as expected the time needed to map the

Small-Loop environment is small and tightly clustered. Second, the amount of time needed to

map the two representative environments is comparable. This is an expected result since the

area explored is approximately equal. The interesting result is the variation in the time needed

for Levine. This is due to the planner taking longer to find feasible trajectories, which is due

to the needs to backtrack around the loop to reach some destinations. This is also present in

Levine-GRW, but since the loops are smaller, the amount of time needed to find a path is less.

Finally, we notice the large variability in the grid simulation environment. As with Levine-GRW,

this environment requires the global planner to generate trajectories that backtrack substantially.

These simulations confirm that the system is able to successfully map complex environments while

preserving the required data rate.

5.4.2 Experimental Evaluation

In this section we focus on demonstrating the ability of our system to operate in the real world.

These experiments show that our system is capable of mapping and operating in a previously

unknown environment. For these experiments the Scarab platform [48] is used for both the lead

and support robots, and the XBee radios are used for the ad-hoc multi-hop wireless network. The
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Figure 5.4: Metrics for the multiple trials in each environment.

two environments used in this section are the 6th floor Levine and the 5th floor Levine-GRW.

The parameters used for the Information Theoretic Explorer and communication requirements

are identical to those used in the previous simulations.

In the Levine environment, the team’s initial formation is located in the upper left corner of

the environment. Two separate trials were performed and the resulting end-to-end data rates

experienced by the lead robot are plotted in Fig. 5.5a. The two trials are indicated by the blue

and red lines, while the minimum desired rate is shown as a black dashed line. Notice that for

both trials the data rates stay sufficiently above the minimum value. Also, note that contrary to

the results in the simulations the two trials complete in approximately the same amount of time

and fall on the border of the 75th percentile of the simulation runtimes. In Figs. 5.5b and 5.5c

we plot the resulting map and trajectory of the lead robot. Aside from the rotation, which is an

artifact of the initial orientation of the robot not being identical between trials, the two maps a

very similar. Notice that the trajectories followed by the lead robot are also similar. This is due

to a similar evolution of the map as the experiments unfolded, and purely coincidental.

The next environment explored was the 5th floor of Levine-GRW. In this environment the

team’s initial formation is in the upper left corner. Similar to the Levine experiment, two separate

113



Time (sec)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
u

c
c
e

s
s
fu

l 
T

ra
n

s
m

is
s
io

n

0

0.2

0.4

0.6

0.8

1

1.2

Levine

Trial 1
Trial 2

(a) Data rates for two tri-
als, shown in red and blue, in
the Levine environment. The
dashed black line represents the
minimum required data rate.

(b) Trial 1 map with trajectory
followed by the lead robot in
red.

(c) Trial 2 map with trajectory
followed by the lead robot in
red.

Figure 5.5: Results from experiments in Levine.

trials were performed and the resulting data rates are plotted in Fig. 5.6a. The data rate for

the two trials are shown as blue and red solid lines, with the minimum data rate is shown as a

black dashed line. The first item that is obvious is the drop off seen in the data rate for trial 1

around 1050 seconds. This drop off can be attributed to the distributed algorithm taking time

to converge to the new optimal routing solution after line-of-sight between two robots is lost.

Typically the system is able to absorb such shocks, but there are times when the convergence rate

is insufficient and small drops in data rates are observed. Fortunately, these drops in performance

are only temporary and are quickly recovered from. The other item to note is the large difference

in the completion time between the two trials. The first trial takes almost 2000 seconds, while

the second trial completes in about 1200 seconds. This difference is directly attributable to the

CSQMI system alternating between two locations. This is seen in Fig. 5.6b where the middle open

area is traversed repeatedly while in Fig. 5.6c does not exhibit this behavior. In comparison to

the simulation runtimes the first trial is an outlier and the second trial is very close to the mean.

Next we compute the map entropy as a function of time for the 4 trials. Using the same process

as in Section 5.4.1, but to determine which cells are observable, we use the final map of each trial

as ground truth, and sum over all cells within 0.1 m of an observable cell. The results from all 4

trials are plotted in Fig. 5.7, with the blue and red lines corresponding to the Levine-GRW and
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Levine environments, respectively. For these two environments there are approximately 6.0× 104

observable cells. As we can see in Fig. 5.7, there is sharp decrease in the map entropy in the first

few hundred seconds. For all these trials, the large jumps in the entropy can be directly attributed

to the lead robot entering an intersection, where a previously unobserved hallway becomes visible.

Looking at the figure, we can also see that for three of the four trials the map’s entropy does not

decrease much beyond its value at 1000 seconds, due to only small refinements in the map. This

is especially true for trial 1 in the Levine-GRW environment, the outlier with respect to time.

The repeated traveling in the upper right area does not noticeably change the entropy of the map

which indicates that ηm in the CSQMI system is very conservative.
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5.5 Dynamic Communication Requirements

This section includes a series of simulations and experiments to demonstrate the benefit of dynamic

communication requirements. In contrast to Section 5.4, the map updates are now included in

the communication requirements. Since the ability of the system to map and provide the required

end-to-end rate has been demonstrated, this section focuses on the timeliness of the map updates

and the benefits of dynamic communication requirements.

5.5.1 Simulations

As in the previous section we begin with a series of simulations in the four environments, with

a fixed and a dynamic a1
l,m. For consistency with the previous results, the composition of the

team, the starting formation and the information theoretic parameters are identical; only a1
l,m is

modified. Since the map updates are now included in the communication requirements, the value

of a1
l,m for the fixed scenarios was set to 0.5, to allow for a primary sensor rate of 0.4 and a map

update rate of 0.1. For the dynamic scenario the value of a1
l,m was allowed to vary between 0.4 and

1.0, depending on the current conditions. The end-to-end rate was simulated by computing the

max flow over a weighted graph, where the edge weights were the product of the routing solution

and expected channel rate between the two robots. Since the end-to-end rate is shared between the

map updates and the primary sensor, the remaining flow after subtracting the primary sensor’s

flow was used to remove items from the transmit queue. In each environment 15 simulations

were run for both the fixed and dynamic settings, with the results plotted in Fig. 5.8. In these

plots the red line corresponds to the fixed scenario and the blue lines corresponds to the dynamic

scenario. The results of each environment are grouped by row from top to bottom: Small-Loop,

Grid, Levine, Levine-GRW. For each environment there are three statistics plotted grouped by

column from left to right: average transmit queue size at the leader, average cumulative number

of packets created and received, and cumulative distribution function of the packet delay.
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Figure 5.8: Simulation results comparing fixed communication requirements with dynamic re-
quirements for the four environments considered.
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We start by examining the first column of plots (Figs. 5.8a, 5.8d, 5.8g, and5.8j), which show

the average number of packets in the transmit queue as a function of time. We note that when the

queue size is small, the newly collected data is transmitted with less of a delay than if the queue

size is large. With that in mind, we see that across all of the environments, the blue line is almost

always below the red line, which indicates that throughout the deployment the average amount

of data in the queue awaiting transmission is less for the dynamic scenario. Therefore, we know

that newly collected data will experience less of a delay due to queueing in the dynamic scenario.

Additionally, we can see that in the Grid and Levine-GRW environments (Figs. 5.8d and 5.8j)

there are periods of time where the red line is much higher than the blue line, specifically between

150 - 300 seconds and 200 - 900 seconds, respectively. These large separations are due to large,

previously unexplored, areas being encountered during exploration and the residual bandwidth

being insufficient to clear the queue in the fixed scenario. Notice that this does not happen in

the dynamic scenario because as the queue size grows, the communication requirements increases

restricting the motion thus allowing the queue to clear.

The concern with temporarily restricting the motion of the team to allow for the queue to clear

is that the total time required to complete the task will increase dramatically. Comparing the

average completion time of the two scenarios for each environment shows that the average increase

in the completion time was approximately 5%. This indicates that the dynamic adjustments only

have a minor negative impact on task completion time. Next, we examined how the adjustments

affect the rate of exploration. To evaluate this the cumulative rate of packet creation and reception

as a function of time is plotted in the second column (Figs. 5.8b, 5.8e, 5.8h). In these plots there

are two lines per color, a dashed and a solid line. The dashed lines track the creation of data at

the leader, or the amount of map information collected up to a given time. Thus, the more quickly

the line rises the faster the leader is mapping the environment. The solid lines track the reception

of the updates at the access point, or the amount of map information that can be leveraged by

the team at a given time. If the dynamic adjustments to the communication requirements were
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detrimental to the rate of exploration, the red dashed line would increase at a much greater rate

than the blue dashed line. As it is seen in the plots, for all four environments the rate of increase

for the two dashed lines are in close agreement, indicating that the adjustments do not have a

noticeable impact on the exploration rate. Surprisingly, the solid red line typically lags behind

the solid blue line, indicating that in the dynamic scenarios the the access point is receiving map

updates faster than in the fixed scenarios.

Finally, we examined the delay experienced by each packet for the two scenarios (Figs. 5.8c,

5.8f, 5.8i, and5.8l). Since these plots show the cumulative distribution function of the packet delay,

the farther the curve is to the left, the smaller the expected delay experienced by any packet will

be when it is received at the access point. As expected, we see that in all of the plot the blue line

is to the left of the red line, indicating that the percentage of packets experiencing large delays is

much less when the communication requirements are dynamic. This leads to the conclusion that

the benefits of allowing dynamic communication requirements, namely dramatically less packet

delay, outweighs the minor increase in task completion time.

5.5.2 Experimental Evaluation

As with Section 5.4.2, demonstrating the system operating effectively in simulation is insufficient,

thus we ran another set of experiments to demonstrate the benefits of dynamic communication

requirements during real operation. Again, three Scarab platforms and an access point operate in

Levine and Levine-GRW. In these trials the parameters and initial formations from the simulations

were used, and each of the two scenarios, fixed and dynamic, were executed. The resulting four

data collections, two for Levine and two for Levine-GRW, are plotted in Fig. 5.9. As with

the simulation results, the two environments are grouped by row and the different statistics are

grouped by column. Examining the first column of plots (Figs. 5.9a and 5.9d), we see that the

general behavior is consistent with the simulations. The average queue size for Levine is similar

for both the fixed and dynamic scenarios, but the differences become apparent in Levine-GRW.
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Figure 5.9: Experiment results comparing fixed communication requirements with dynamic re-
quirements in Levine and Levine-GRW

As noted in the simulation section, the reason for the large queue size in the fixed scenario is the

communication requirements, and thus motion, not reacting to the large influx of map information

obtained when the central corridor is encountered. This results in a large backlog of packets in

the leader’s transmit queue, which takes longer to clear due to the smaller residual bandwidth.

In the next column of plots (Figs. 5.9b and 5.9f), the cumulative packet counts are plotted.

In contrast to the simulation results, the dotted lines are not in agreement. This is due to the

results in Figs. 5.8a, 5.8d, 5.8g, and5.8j plotting the average values and not one specific trial.

Even with the disagreement between the two lines, it can still be seen that the rates are not

dramatically different. In fact, for Levine the dynamic scenario completed in less time than the

fixed one. Finally, the CDF of the packet delay is plotted in the final column, (Figs. 5.9c and

5.9f). As expected, the blue line is to the left of the red line indicating that overall the dynamic

requirements reduces the experienced packet delay.
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Figure 5.10: Levine-GRW experiment with a highly mobile aerial platform patrolling after the
autonomous SCLAM system successfully mapped the environment.

5.6 Map and Patrol an Unknown Environment

In the final experiment, we demonstrate the flexibility of our system to autonomously map an

unknown environment and then transition into a support network so a highly mobile aerial platform

can patrol the newly mapped environment. In this demonstration the Levine-GRW environment

was chosen. As with the previous experiments, the team begins in the upper left corner of the

environment and proceeds to map the environment while maintaining the end-to-end link between

the lead robot and the access point. After the Information Theoretic Explorer determines the map

is sufficiently complete, the team transitions to a support network with the primary objective of

relaying communication from a patrolling quad-rotor back to the access point. In this network,

all the robots are considered identical, since from a communication perspective their capabilities

are all equivalent. The desired data rate back to the access point for the quad-rotor is 0.3. After

the system determines the optimal formation, based on the communication model and assumed

height of the quad-rotor, the robots assume the optimal formation. In Fig. 5.10a we plot the
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incoming data rate at the access point. During the mapping phase the data is coming from

the lead robot and during the coverage phase the data is originating from the quad-rotor. The

delineation between the two phases is indicated by the shaded region during which time there is

no data being generated. Notice that for the majority of the mapping phase the data rates are in

excess of the minimum desired value, and during the coverage phase the rate is always above the

minimum. In Fig. 5.10b we show the final map along with the trajectory, shown in red, followed

by the lead robot. Also included in this figure is the final formation used for the coverage phase,

indicated by the 4 green circles.

5.7 Summary

In this chapter, we present a system that autonomously maps an unknown environment while

maintaining a required end-to-end data rate between robots on a team. We achieve this by first

detailing the necessary modification to the components of the hybrid system that rely on a map

of the environment. Then, we invert the hybrid architecture to allow for the local controller

to assume a more pronounced role in the operation of the system. This allows the system to

operate in an almost entirely distributed manner, only relying on global coordination when the

team is trapped in a local minima. To complete the new requirement we integrate an Information

Theoretic Explorer to select trajectories that are maximally informative of the environment. The

Information Theoretic Explorer is able to provide adequate direction to the lead robot while

the local controller, continuing to maintain the ad-hoc network, drives the robots through the

environment. Additionally, we note that if the situational awareness task is to only map the

environment, then the Information Theoretic Explorer can be run on the lead robot resulting in

an almost completely distributed SCLAM system. The system is capable of supporting both the

primary sensor’s data flow as well as the map updates via dynamic communication requirements,

which result in minimal delay of the received data.

122



This system is verified in both simulation and experiments. In the simulations we highlight

the consistency and accuracy of the resulting maps. In the experiments we verify the ability to

construct these maps while still maintaining the end-to-end link between the lead robot and the

access point with minimal delay. We conclude with a demonstration of the team autonomously

mapping an environment and then transitioning to complete another situational awareness task.

Specifically, supporting a highly mobile aerial robot as it patrols the recently mapped environ-

ment.
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Chapter 6

Conclusions

In this thesis, we addressed the problems related to a team of autonomous robots providing real-

time situational awareness in unknown complex environments. We demonstrate our solutions to

these problems though numerous simulations and experiments, with a focus on realistic scenarios.

The main accomplishment of the work in this thesis is a hybrid system approach that solves

the real-time situational awareness problem in an unknown environment with minimal global

coordination. The system accomplishes this by systematically decomposing the problem into

subproblems that can be solved in a distributed manner. To efficiently solve the subproblems,

the system utilizes an adaptive communication model of the point-to-point communication links

between robots while concurrently solving the motion planning and network routing problems.

This hybrid system approach to the problem allows for the system to adapt to the specific task

with minimal configuration changes and is thus applicable to a wide range of situations that were

previously out of reach.
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6.1 Summary of the Thesis

In Chapter 2 we detail a real-time situational awareness problem, in which a team of mobile

robots is required to move through a complex environment while maintaining the desired end-to-

end data rates between designated pairs of robots. To accomplish this, we formalize a concurrent

mobility and routing problem by combining motion control and network integrity into a single

optimization problem. We then examine the various ways to formulate the network integrity

constraints and their effect on the resulting solutions. Next, we provide a taxonomy of the design

space when solving this problem, allowing us to classify the systems based on their level of required

coordination and the optimality of the resulting solution. Using this, we examine the existing

systems proposed to solve the concurrent mobility and communication problem and extract the

properties and features that allow us to meet our requirements. We conclude with a description

of the robotic platforms, software framework, and primary environments used in this thesis.

In Chapter 3, we develop a lightweight confirmation protocol specially designed for use with

robust routing solutions the over type of ad-hoc networks seen in mobile robot teams. We begin by

demonstrating the benefits derived from a robust formulation of network integrity constraints over

a non-robust formulation, through experiments in multiple locations and various team sizes. Next,

we study the expected behavior of TCP and UDP, two ubiquitous communication protocols, over

ad-hoc wireless networks, and determine that they are insufficient. This leads to the construction

of MCTP, which is a protocol design specifically for use over ad-hoc wireless networks created by

low-cost low-power transceivers found on mobile robotic platforms. The benefits of this protocol

are demonstrated through simulations and experiments in which the successful transmission of

both data and confirmation messages are compared to traditional protocols. We conclude with an

experimental demonstration of MCTP providing near loss-less transmission of data from a sensing

robot to an access point in a realistic environment over an ad-hoc network created by other mobile

robots.
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In Chapter 4, we develop a hybrid system capable of controlling a team of arbitrary size

through a complex environment while completing the real-time situational awareness task. This

system consists of a two stage feedback architecture where the outer loop is responsible for the

initial global coordination and the inner loop is responsible for the motion and network routing of

the specific robots. The plan developed by the outer loop is used as a roadmap by the inner loop

to allow for a mostly distributed operation while avoiding local minima

Through simulation we demonstrate that the hybrid approach is able to operate successfully

in complex environments in which a distributed system is insufficient. Additionally, the ability

of the system to scale with the number of robots is shown in a scenario where a team of 25

robots is tasked with operating in a large complex environment. The system is then empirically

compared to a recent centralized system to demonstrate that the dynamic distributed nature of the

hybrid system provides greater performance than the centralized system without the coordination

overhead. The dynamic nature of the hybrid system is highlighted further in an experiment where

one of the support robots has a temporary motor failure. This failure causes the centralized system

to lose network integrity while the hybrid system adapts accordingly

Next, we demonstrate the hybrid system’s ability to complete the complex real-time situational

awareness task of patrolling a series of hallways. First, we show that even when using a non-

confirmation based communication protocol, UDP, the system is able to maintain the desired end-

to-end data rates for the duration of the exercise, Finally, with the addition of the confirmation

protocol developed in Chapter 3, MCTP, the system provides a near loss-less communication link

for a sensing robot back to the access point via the ad-hoc network, throughout the deployment.

In Chapter 5 we augment the system developed in Chapter 4 so that it can effectively operate

in unknown environments. To accomplish this, we begin by examining how incomplete information

affects the various components of the system so that we can then modify the necessary compo-

nents to allow for operation in such situations. Then, with the realization that the initial hybrid

architecture would require increased global coordination when operating with dynamic goals, we
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invert the architecture to rely more heavily on the local controllers and only utilize the global

planner when necessary. With the new architecture we integrate a recently developed Information

Theoretic Exploration system that determines the optimal trajectories of a mapping robot so that

the environment can be mapped as efficiently as possible. We then establish this ability in en-

vironments of varying complexity through simulation and experiments. Finally, we demonstrate

that a team of autonomous robots placed initially in an unknown environment, is able to construct

an accurate map while maintaining network integrity and then assume strategic locations so that

a highly mobile aerial platform can patrol the newly mapped environment.

6.2 Main Contributions

In this thesis, we address the problems faced by a team of robots tasked with providing real-time

situational awareness and we make several key contributions. One contribution is the development,

design, and implementation of a lightweight reliable communication protocol, MCTP, that is

able to operate effectively over ac-hoc wireless networks. This ability is enabled by exploiting

the structure of robust routing solutions as well as the link diversity present in mobile robot

communication networks. Specifically, the ability for a packet to travel a different path if a drop is

identified allows the protocol to mitigate the random nature of wireless links as well as the dynamic

network topology of the communication network. In addition to the reliability provided by MCTP,

this protocol is designed for use in teams with many robots. This results in a more efficient use

of the confirmation channel than traditional protocols. The result is a communication protocol

that is able to provide reliable communication over an ad-hoc wireless network constructed by

low-cost, low-power transceivers.

Another key contribution is a decomposition of the real-time situational awareness problem.

This provides the ability to discuss the proposed solutions in a 2-dimensional space, in which the

two design parameters are optimality of the solution and required level of coordination, as opposed
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to the typical centralized versus distributed approach. Using this high space, we are able to extract

the properties that are beneficial to the situational awareness problem, namely global optimality

and distributed coordination. This leads to a hybrid systems approach that produced a system

utilizing highly capable distributed controllers to complete an arbitrary task with minimal global

coordination. Furthermore, we demonstrate empirically the system’s ability to obtain an optimal

end-to-end data rate and to provide reactive control to unexpected events. We also demonstrate

the ability of the system to scale through simulation.

The final contribution of this thesis is the extension of the real-time situational awareness task

to successful operation in unknown environments. By enhancing the individual components and

adding mild restrictions on their operation, we are able to allow for the team to safely operate

as the environment is being mapped. To accommodate the dynamic nature of the task, the

system architecture is augmented to increase the reliance on the local controllers, with additional

safeguards. With this increased reliance, the system is now able to operate almost entirely in a

distributed manner, while still providing globally optimal results. Not only did we modify the

system, but we also integrated a state of the art Information Theoretic Exploration system that

leverages Cauchy-Schwarz Quadratic Mutual Information to select optimal trajectories that map

the environment in a highly efficient manner. This approach’s versatility is demonstrated by the

team’s ability to begin in an unknown environment, map it and then complete other traditional

situational awareness tasks.

While the scenarios considered in this thesis revolve around a single robot providing situational

awareness, the methods and systems proposed are not limited to a single data flow. For example,

the construction of the routing subsystem is specifically designed to operate when network integrity

is composed of an arbitrary number of data flows. This allows for operation when multiple sensor

robots are on the team.
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6.3 Future Work

Even though we have experimentally demonstrated a system that is able to complete a real-time

situational awareness task in unknown environments, several areas that might still be addressed

to provide an even more robust system. In this section we identify possible avenues to explore in

regards to increasing the viability of this system.

In Chapter 4 we developed a local controller that is able to successfully drive a robot to a goal

location while preserving network integrity. While this controller is able to avoid local minima

with the help of the global planner, its ability to independently avoid local minima is absent.

Given that the final system relies heavily on the local controllers, any increase in its ability to

operate in complex environments would greatly enhance the overall system. This is an area where

large benefits could be realized, but it is also one of the most difficult to extend if only local

information is available. One possible modification is to include specific information from other

robots in the dual variable exchange, thus propagating that information through the multi-hop

network. The information must not be added arbitrarily since the transmission of that data adds

to the coordination overhead. Therefore, the information must be carefully chosen.

Another area of possible extension is to the system developed in Chapter 5. In this system only

one robot is used for mapping, while the others are required to provide support. This limitation

can be overcome by collecting all the maps from the robots in a single location and fusing them

together to provide a larger map, which is an active research area. Since the Information Theoretic

Explorer is capable of generating trajectories for multiple robots that maximize information gain,

and the Hybrid System is capable of supporting multiple data flows, this extension is feasible with

minimal system modifications.

Finally, the most obvious extension is to remove the requirement that the robots be ground

platforms. While an aerial platform was utilized in the experiments, it was not being controlled

by our distributed controller. To achieve integration of non-ground robots, the local controller
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would have to be augmented to control robots with much more complicated dynamics than those

considered in this thesis. Additionally, the communication modeling would have to extend into

the third dimension. This is the course of action that will most likely result in the largest gains,

since by leaving the ground plane the team will be able to explore and sense in locations that are

unreachable by ground platforms.
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