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Abstract— This paper presents the context-aware filter, an
estimation technique that incorporates context measurements,
in addition to the regular continuous measurements. Context
measurements provide binary information about the system’s
context which is not directly encoded in the state; examples
include a robot detecting a nearby building using image
processing or a medical device alarming that a vital sign
has exceeded a predefined threshold. These measurements can
only be received from certain states and can therefore be
modeled as a function of the system’s current state. We focus
on two classes of functions describing the probability of context
detection given the current state; these functions capture a wide
variety of detections that may occur in practice. We derive
the corresponding context-aware filters, a Gaussian Mixture
filter and another closed-form filter with a posterior distribution
whose moments are derived in the paper. Finally, we evaluate
the performance of both classes of functions through simulation
of an unmanned ground vehicle.

I. INTRODUCTION

The problem of state estimation and filtering is still
pronounced in multiple modern systems where sensors often
provide inaccurate readings. For example, in medical appli-
cations measurements are frequently missing or wrong as
caused by patients moving or clinicians performing other
tasks that disrupt the sensors’ readings [14]. In robotics,
localization is made challenging by the imprecise GPS mea-
surements as well as by data association (i.e., the problem of
determining the correspodence between surrounding objects
and received measurements) [3, 17]. These scenarios cause
conventional filtering algorithms to perform poorly in such
conditions.

To address these problems, in this paper we propose to
improve upon current filtering techniques by incorporating
context measurements. Context is defined as a system’s
surrounding environment that is not directly encoded in
the state but is correlated with it. Examples of context
measurements include a medical device alarming that a vital
sign is above a certain threshold or a robot recognizing a
nearby building using image processing. What is common
among context measurements is that they are binary, i.e.,
0 or 1, and they all have a known probability of occurring
given the system’s state. Thus, the problem considered in this
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paper is to develop a filter incorporating both continuous and
discrete measurements.

Context-aware filtering is similar to target tracking in
that measurements may arrive irregularly and from different
objects [18]; while general models exist in this setting,
they lead to very computationally expensive calculations
and distributions that cannot be computed in closed form.
Another related problem is sensor scheduling where differ-
ent sensors are used at different points in time in order
to minimize measurement interference or power consump-
tion [15, 28, 30]; however, these techniques only work
with continuous measurements and cannot handle the binary
readings considered in this paper. A similar problem has
been considered in the wireless sensor networks area where
it is envisioned that low-cost sensors are deployed over a
large area; in such a network, a sensor is only used if the
system in consideration (e.g., robot) is nearby [8], which
could be considered a context detection in our framework.
Finally, prior work also exists on the problem of filtering with
intermittent measurements but it also assumes continuous
readings [24].

In robotics, there exist multiple works that use context
cues for the purposes of localization [5] and mapping by
using scene categorization [9, 20, 21] and appearance [6, 29]
as well as object class information [2, 3, 4, 10, 23]; however,
most techniques assume either only continuous or only
semantic (discrete) measurements but do not work with both.
The work that is most similar to our paper in its setup
and assumptions solves the problem of indoor localization
by using both continuous (e.g., range and bearing) and
discrete (e.g., type of detected object) measurements [3]. It
uses a particle filter in order to combine the two types of
measurements; however, particle filters do not provide any
theoretical guarantees for a finite set of particles and suf-
fer from particle-deprivation problems in high-dimensional
spaces.

In this paper, we aim to solve this problem by deriving
exact estimates of the posterior distribution of the state.
We note that closed-form expressions for the posterior do
not exist for all possible probability of context detection
functions. Therefore, we focus on two classes of functions
that lead to (near) closed-form solutions and that represent
a wide variety of detection scenarios observed in practice.

The first class of probability of detection functions are
inverse-exponential functions that are defined as scaled Gaus-
sian probability density functions (pdfs). With this class of
functions, the probability of detection is high when the state
is close to a certain mean (e.g., the robot is close to a
building) and decreases rapidly as the state moves away.



We show that this class of functions leads to a closed-form
filter with Gaussian Mixtures without any approximations.
The second class of functions are sigmoid functions defined
as the probit function [19]. The probit function resembles a
step function, i.e., for small inputs it is close to 0 but once a
threshold is crossed, it increases rapidly and converges to 1.
This class of functions capture the threshold medical alarms
described above as well as threshold detection scenarios.
We derive the mean and covariance matrix of the posterior
distribution and argue that a Gaussian distribution with the
same moments is a good approximation for it.

Finally, we illustrate the effectiveness of both classes of
functions using a case study on an unmanned ground vehicle.
In particular, we simulate scenarios in which the vehicle is
moving and estimating its state in an environment with very
imprecise and biased GPS measurements; at the same time,
context measurements are available indicating that speed
exceeds a certain threshold or that certain buildings are
recognized. We show that the proposed filter using both
conventional readings and the binary context measurements
outperforms the (extended) Kalman filter which only uses
the inaccurate continuous measurements.

The contributions of this paper are the following: 1) a
formulation of the context-aware filtering problem for linear
systems; 2) the development of a Guassian-Mixture-based
filter and a sigmoid-based filter using the two proposed
classes of probability of detection functions, respectively; 3)
an illustration of the effectiveness of context-aware filtering
using a case study on an unmanned ground vehicle.

The rest of this paper is organized as follows. Section II
formulates the context-aware filtering problem. Section III
outlines a general approach and explains its deficiencies
when the probability of detection function is unknown.
Sections IV and V focus on the inverse-exponential and sig-
moid function classes, respectively, and develop the resulting
filters. In Section VI we provide the case study evaluation.
Finally, Section VII concludes the paper.

II. PROBLEM FORMULATION

The context-aware state estimation and filtering problem
is as follows. Consider a linear discrete-time system of the
form

xk+1 = Akxk +Bkuk + wk, (1)

where x ∈ Rn is the system state, u ∈ Rp is the applied
input, w ∼ N (0, Q) is Gaussian process noise, and A and
B are matrices of appropriate dimensions.

The system has two kinds of sensors available to it: state
and context. State sensors measure (subsets of) the state
directly. We assume that there is a known linear observation
model for state sensors of the form

yk = Ckxk + vk, (2)

where we denote state sensors’ measurements by yk ∈ Rm,
vk ∼ N (0, R) is Gaussian measurement noise, and matrix
C has appropriate dimensions.

Context sensors, on the other hand, do not measure the
system’s state but rather provide binary information about

its context. Context can be represented as a finite set
C = {c1, . . . , cN}, where each ci is a context element that
can be detected by a context sensor from certain system
states; example context elements include nearby buildings
with known positions on a map or a vital sign exceeding a
certain predefined threshold. For each i, a measurement bik is
received that is equal to 1 if ci is detected and 0 otherwise. In
this problem, we do not assume knowledge about a context
element, other than the probability of detection given a state,
denoted by pd(ci | x), i.e.,

bik =

{
1 w.p. pd(ci | x)
0 w.p. 1− pd(ci | x),

(3)

where pd is a function of the system state. Thus, the set
of context measurements is bk ∈ {0, 1}N . It is assumed
that, conditioned on the state, context measurements are
mutually independent and are also independent from state
measurements.

Problem. Given the system defined in (1)-(3) and a prior pdf
pk|k(x) = p(x | u0:k−1, y0:k, b0:k) the goal is to compute the
posterior density

pk+1|k+1(x) := p(x | u0:k, y0:k+1, b0:k+1),

describing the system’s state given all available measure-
ments and inputs.

III. GENERAL APPROACH

The problem defined in Section II naturally lends itself to
a Bayesian approach with a predict and update phase of the
form

Predict: pk+1|k(x) =

∫
pf (x | z, uk)pk|k(z)dz, (4)

Update: pk+1|k+1(x) = ηk+1po(yk+1, bk+1 | x)pk+1|k(x),

where pf (xk+1 | xk, uk) is the conditional pdf of the
state at time k + 1 given the state and input at time
k, po(yk+1, bk+1 | xk+1) is the joint pdf of all available
measurements (state and context) given the state and ηk+1

is a normalization constant [27].
While (4) provides a compact representation of the filter-

ing problem, in general it is impossible to obtain a closed-
form expression for the densities. The notable exception
is the linear Gaussian case, which leads to the Kalman
filter [16]. Multiple extensions to the Kalman filter have
been proposed, e.g., by computing first-order Taylor series
approximations of nonlinear densities; such techniques are
known as the extended Kalman filter (EKF) or other linear
regression Kalman filters [11]. These techniques cannot be
directly applied to the problem considered in this paper since
context measurements introduce discontinuities in the pdf’s
that cannot be handled by current algorithms.

One approach when such discontinuities exist is to employ
Markov Chain Monte Carlo approximations (e.g., particle
filters [27]) or other nonparametric sampling techniques such
as Gaussian Processes approximations [11]. However, while
these techniques have nice convergence properties when the



number of particles gets large, they do not provide theo-
retical guarantees for any finite set of samples. Therefore,
in this paper we focus on two specific probability of context
detection functions (i.e., pd(ci | x) in (3)) that lead to closed-
form filters. We argue that each of these functions captures
a sufficiently large class of scenarios so as to be useful in a
lot of modern systems. We describe each of these functions,
and the resulting filters, in the following two sections.

IV. INVERSE-EXPONENTIAL FUNCTIONS

The first class of probability of context detection functions
considered in this paper are inverse-exponential functions.

Assumption. Suppose the probability of context detection
functions are inverse-exponential functions that are defined
as scaled Gaussian pdf’s of the form

pd(ci | xk) = e−
1
2 (Gixk−θi)TV −1

i (Gixk−θi), (5)

which are parameterized by θi ∈ Rq and Vi ∈ Rq×q , the
analogues of a mean and a covariance in a multivariate
Gaussian pdf, and Gi ∈ Rq×n, which can be thought of as
a selection matrix when q < n. This probability is 1 when
Gixk = θi and approaches 0 when Gixk − θi gets large.

We argue that these functions capture many scenarios
observed in reality. For example, in the case of detecting
a known nearby building using image processing, the prob-
ability of detecting the building is high when the camera
is closer to the building and decreases rapidly as it moves
away [3]. In addition, it might be easier to detect the building
from certain angles than it is from others, and this is also
captured by the above formulation.

Having fixed (5) as the probability of context detection,
with θi and Vi known for each context element (or potentially
learned from data), we show how to derive the recursive
context-aware filter. Note that, after including the binary
measurements, the filter has a closed-form solution for
Gaussian Mixtures (GMs), i.e., if the prior is a GM, then so
is the posterior. A GM is a distribution whose pdf is defined
as a weighted sum of Gaussian pdfs:

g(x) =

M∑
i=1

wiφ(x;µi,Σi), (6)

where φ(x;µi,Σi) is the pdf of a Gaussian distribution with
mean µi and covariance matrix Σi, and wi are weights such
that

∑M
i=1 wi = 1. GMs have two properties that make

them attractive for modeling multimodal distributions. First
of all, they are linear combinations of Gaussian pdfs, thus a
recursive filter using a GM can be developed with a bank of
Kalman filters, one for each element in the GM. In addition,
with a sufficient number of elements, a GM can be used to
approximate any continuous pdf [11]. Finally, it is important
to note that a Gaussian distribution is a special case of a GM,
hence it is possible to initialize the filter with a Gaussian
prior on x0.

Proposition 1. Consider a system with a linear motion
model

xk+1 = Akxk +Bkuk + wk,

linear state observation model

yk = Ckxk + vk,

and context observation of the form

pd(ci | xk) = e−
1
2 (Gixk−θi)TV −1

i (Gixk−θi).

Assuming that the state prior pk|k is a Gaussian Mixture,
then the predicted and updated pdf’s, pk+1|k and pk+1|k+1

respectively, are also Gaussian Mixtures without any ap-
proximation.

Proof. Note that, unlike the conventional Kalman filter that
has a predict and an update stage, the proposed filter has three
steps: prediction, continuous update and discrete update.
There is also an optional mixture reduction step discussed
at the end of the section.

A. Predict

For the predict stage, we note that

pk+1|k(x) =

M∑
i=1

wi

∫
φ(x;Akz +Bkuk, Q)φ(z;µi,Σi)dz

=

M∑
i=1

wiφ(x;Akµi +Bkuk, AkΣiA
T
k +Q)

=

M∑
i=1

wiφ(x;µpi ,Σ
p
i ),

which is the usual form of the Kalman filter predict equations
(e.g., see [16]). The resulting distribution is again a GM.

B. Continuous Update

As described above, we perform the update separately
for state (continuous) and context (discrete) sensors. Upon
receiving a measurement yk+1, the continuous update is:

pck+1|k+1(x) =
p(yk+1 | x)pk+1|k(x)∫
p(yk+1 | z)pk+1|k(z)dz

=
φ(yk+1;Ckx,R)

∑M
i=1 wiφ(x;µpi ,Σ

p
i )∫

φ(yk+1;Ckz,R)
∑M
j=1 wjφ(z;µpj ,Σ

p
j )dz

=

M∑
i=1

(
wiγ

c
i

αc

)
φ(yk+1;Ckx,R)φ(x;µpi ,Σ

p
i )∫

φ(yk+1;Ckz,R)φ(z;µpi ,Σ
p
i )dz

=

M∑
i=1

wciφ(x;µci ,Σ
c
i ),



where

αc :=

M∑
i=1

wiγ
c
i

γcj :=

∫
φ(yk+1;Ckz,R)φ(z;µpj ,Σ

p
j )dz

= φ(yk+1;Ckµ
p
j , CkΣpjC

T
k +R)

µcj := µpj +Kc
j (yk+1 − Ckµpj )

Σcj := (I −Kc
jCk)Σpj

Kc
j := ΣpjC

T
k (CkΣpjC

T
k +R)−1.

Note that the posterior distribution is also a GM with the
same number of elements but with possibly rescaled weights.

C. Discrete Update

For the discrete update, to simplify notation we assume
that there is only one context element, with corresponding
parameters θ, V and G, such that bk+1 ∈ {0, 1}, though
the approach can be straightforwardly modified to include
multiple binary measurements through repeated updates.

First note that the posterior distribution depends on
whether bk+1 is 0 or 1 as the probabilities of getting either
one are different. Consider first the case when bk+1 = 1:

pk+1|k+1(x) =
p(bk+1 = 1 | x)pck+1|k+1(x)∫
p(bk+1 = 1 | z)pck+1|k+1(z)dz

=
φ(θ;Gx, V )

∑M
i=1 w

c
iφ(x;µci ,Σ

c
i )∫

φ(θ;Gz, V )
∑M
j=1 w

c
jφ(z;µcj ,Σ

c
j)dz

=

M∑
i=1

(
wciγ

d
i

αd

)
φ(θ;Gx, V )φ(x;µci ,Σ

c
i )∫

φ(θ;Gz, V )φ(z;µci ,Σ
c
i )dz

=

M∑
i=1

(
wciγ

d
i

αd

)
φ(x;µdi ,Σ

d
i ),

where αd, γdj , µdj , Σdj and Kd
j are defined similar to their

continuous analogues.
Finally, when bk+1 = 0, the update becomes

pk+1|k+1(x) =
(1− p(bk+1 = 1 | x)) pck+1|k+1(x)∫
(1− p(bk+1 = 1 | z)) pck+1|k+1(z)dz

=

M∑
i=1

wci (1− p(bk+1 = 1 | x))φ(x;µci ,Σ
c
i )

1−
∑M
j=1 w

c
j

∫
p(bk+1 = 1 | z)φ(z;µci ,Σ

c
i )dz

=

M∑
i=1

wci

1−
∑M
j=1 w

c
jβj

φ(x;µci ,Σ
c
i ) +

+
−wciβi

1−
∑M
j=1 w

c
jβj

φ(x;µdi ,Σ
d
i )

where βj := γdj
√

(2π)q det(V ).

Thus, we have inductively shown that for the probability of
detection function considered in this paper, the localization
filter can be computed in closed form and results in a
GM distribution of the posterior. Note that the number of
elements in the GM doubles every time bk = 0, thus an

additional step may be necessary in order to bound the
number of elements.

D. Mixture Reduction

The proof of Proposition 1 provides an exact form for the
posterior pdf of the state. However, the number of elements
in the GM doubles every time a context measurement of 0
is received; hence, this number may increase exponentially
over time. Many approaches for reducing the number of
elements have been proposed in the literature, ranging from
keeping the elements with highest weights to merging or
discarding elements based on certain notions of distance
between them [25]. Note that most available techniques
assume weights are positive, yet the GM developed in this
paper may have negative weights as well. In such cases, one
may use a Gibbs Sampler [26] in order to reduce the size
of the GM. A Gibbs Sampler draws random samples from
the distribution and can approximate it with a GM with a
desired number of elements.

V. SIGMOID FUNCTIONS

Note that while the inverse-exponential functions defined
in Section IV are general and capture a wide variety of
scenarios, they still do not cover all interesting applications.
In particular, a major limitation is that they are symmetric
around their “mean”, i.e., θi. However, there are many
situations where non-symmetric detections may occur. In the
medical domain, for example, it is common to set threshold
alarms, i.e., an alarm is raised when a vital sign exceeds
a certain threshold (e.g., blood pressure is higher than 160
millimeters of mercury). Similarly, a building may only be
recognizable from one angle (e.g., a coffee shop that is only
visible from the front of a building).

Thus in this section, we investigate another class of
probability of detection functions that capture these non-
symmetric cases.

Assumption. Suppose the probability of context detection
functions are sigmoid functions that are defined as the probit
logistic function [19]:

pd(ci | xk) = Φ(vTi xk + ai), (7)

where Φ is the cumulative distribution function of the stan-
dard Normal distribution, vi ∈ Rn is a vector of known
parameters, and ai ∈ R is a known parameter offset.

Note that the inner function in (7) defines a halfspace
determined by the values of vi and ai. In the one-dimensional
case, this function has a very similar shape to the classical
sigmoid function: f(x) = 1/(1+e−x). Thus, the probability
of detection is close to 0 for values of x far from the “thresh-
old” but once the “threshold” is crossed, the probability of
detection increases rapidly and approaches 1. This function
is very suitable for modeling the non-symmetric scenarios
described above as it is expected that once a signal exceeds
a certain threshold, even inaccurate sensors will be able to
detect the event and raise an alarm.



Developing an exact filter with the probability of detection
defined in (7) is not straightforward, however, as the posterior
distribution, after incorporating binary measurements, is not
the same as the prior (even if the prior is a Gaussian). As
we argue below, however, a Gaussian distribution with the
same mean and covariance matrix is a good approximation
for the resulting posterior distribution.

In the following subsections we present the phases of
the sigmoid-based filter, similar to the GM-based one in
Section IV. Note that in this case we assume the prior on
the state pk|k is a single Gaussian distribution with mean
µ and covariance matrix Σ.

A. Predict

The predict stage in this case is the classical Kalman filter
update:

pk+1|k(x) =

∫
φ(x;Akz +Bkuk, Q)φ(z;µ,Σ)dz

= φ(x;Akµ+Bkuk, AkΣATk +Q)

= φ(x;µp,Σp).

B. Continuous Update

The continuous update is also the same as in the Kalman
filter:

pck+1|k+1(x) =
p(yk+1 | x)pk+1|k(x)∫
p(yk+1 | z)pk+1|k(z)dz

=
φ(yk+1;Ckx,R)φ(x;µp,Σp)∫
φ(yk+1;Ckz,R)φ(z;µp,Σp)dz

= φ(x;µc,Σc),

where

µc := µp +Kc(yk+1 − Ckµp)
Σc := (I −KcCk)Σp

Kc := ΣpCTk (CkΣpCTk +R)−1.

C. Discrete Update

Similar to the discrete update in Section IV, to sim-
plify notation we assume a single context measurement,
bk, with corresponding parameters v and a; the approach
can be straightforwardly extended to multiple measurements
through repeated updates.

Proposition 2. When bk = 1, the discrete update is as
follows:

pk+1|k+1(x) =
Φ(vTx+ a)φ(x;µc,Σc)

Z1
, (8)

where

Z1 = Φ

(
vTµc + a√
vTΣcv + 1

)
.

Proof. First note that when bk = 1

pk+1|k+1(x) =
p(bk = 1 | x)φ(x;µc,Σc)∫
p(bk = 1 | x′)φ(x′;µc,Σc)dx′

=
Φ(vTx+ a)φ(x;µc,Σc)

Z1
,

where

Z1 =

∫
Φ(vTx′ + a)φ(x′;µc,Σc)dx′.

The derivation for Z1 when bk = 1 is carried out as follows:

Z1 =

∫
Φ(vTx′ + a)φ(x′;µc,Σc)dx′ = Ex

[
Φ(vTx+ a)

]
= Ex

[
P(y ≤ vTx+ a)

]
= E(x,y)

[
1y≤vT x+a

]
= P(vTx+ a− y ≥ 0)

= P
(
vTµc + a+ z

√
vTΣcv + 1 ≥ 0

)
= P

(
z ≥ −vTµc − a√

vTΣcv + 1

)
= 1− Φ

(
−vTµc − a√
vTΣcv + 1

)
= Φ

(
vTµc + a√
vTΣcv + 1

)
where y and z are standard Normal random variables inde-
pendent of each other and of x.

Proposition 3. When bk = 0, the discrete update is as
follows:

pk+1|k+1(x) =
Φ(−vTx− a)φ(x;µc,Σc)

Z0
, (9)

where

Z0 = Φ

(
−vTµc − a√
vTΣcv + 1

)
.

Proof. Note that, since Φ has rotational symmetry,
p(bk = 0 | x) = 1− Φ(vTx+ a) = Φ(−vTx− a). The rest
of the proof is the same as the proof of Proposition 2.

Approximation. We approximate the posterior distribution
in (8) and (9) with a Gaussian distribution with the same
mean and covariance matrix.

Note that the posterior distribution after incorporating
context measurements is no longer Gaussian. However, a
Gaussian probability still seems to be a good approximation
for (8) and (9); while it is challenging to show that the
distribution in (8) and (9) is unimodal, simulations and
similar results lead us to believe so. In particular, Ibragi-
mov [12] proved that the convolution of a log-concave and
a unimodal random variable is also a unimodal random
variable. Equations (8) and (9) do not involve convolution
but have the same form of the multiplication of two densities;
additionally, Φ(vTx+a) is log-concave as shown in Chapter
2.5 of [7] and φ(x;µc,Σc) is unimodal since it is the
pdf of a Gaussian distribution. Thus, we approximate the
posteriors in (8) and (9) with a Gaussian distribution with the
same mean and covariance matrix and leave the unimodality
analysis for future work.

Proposition 4. The mean of the distribution in (8) is:

µ1 = µc + Σcv

φ

(
vTµc+a√
vT Σcv+1

; 0, 1

)
Z1

√
vTΣcv + 1

. (10)



The covariance matrix of the distribution in (8) is:

Σ1 = Σc + µ1(µc)T + µcµT1 − µc(µc)T

− ΣcvvTΣc
φ

(
vTµc+a√
vT Σcv+1

; 0, 1

)
(vTµc + a)

Z1(vTΣcv + 1)3/2
− µ1µ

T
1 .

Proof. First note that

µ1 =

∫
x′

Φ(vTx′ + a)φ(x′;µc,Σc)

Z1
dx′.

One way to compute the mean in closed-form is, similar to
the derivation in Chapter 3.9 in [22], by first computing the
gradient with respect to µc of the following two equivalent
expressions for Z1:∫

Φ(vTx′ + a)φ(x′;µc,Σc)dx′ = Φ

(
vTµc + a√
vTΣcv + 1

)
,

(11)

i.e.,

∂Z1

∂µc
=

∫
(Σc)−1(x′ − µc)Φ(vTx′ + a)φ(x′;µc,Σc)dx′

= v

φ

(
vTµc+a√
vT Σcv+1

; 0, 1

)
√
vTΣcv + 1

,

where we used the fact that ∂Φ(x)/∂µ = φ(x)∂(x)/∂µ.
Note that the first term in the integral on the left-hand side
is Z1(Σc)−1µ1. The second term is Z1(Σc)−1µc. Therefore,
by rearranging terms, we get

Z1(Σc)−1µ1 = Z1(Σc)−1µc + v

φ

(
vTµc+a√
vT Σcv+1

; 0, 1

)
√
vTΣcv + 1

.

Thus, we arrive at the final expression:

µ1 = µc + Σcv

φ

(
vTµc+a√
vT Σcv+1

; 0, 1

)
Z1

√
vTΣcv + 1

.

The expression for the covariance matrix is:

Σ1 = Σ̂1 − µ1µ
T
1 , (12)

where

Σ̂1 =

∫
x′x′T

Φ(vTx′ + a)φ(x′;µc,Σc)

Z1
dx′.

Σ̂1 can be computed in closed-form similar to the mean,
by computing the Hessians with respect to µc of both sides
of (11):∫

(Σc)−1(x′−µc)(x′−µc)T(Σc)−1Φ(vTx′+a)φ(x′;µc,Σc)dx′

−
∫

(Σc)−1Φ(vTx′ + a)φ(x′;µc,Σc)dx′

= −vvT
φ

(
vTµc+a√
vT Σcv+1

; 0, 1

)
(vTµc + a)

(vTΣcv + 1)3/2
.

Fig. 1. LandShark vehicle [1].

Note that one of the terms in the integral on the right-hand
side is Z1(Σc)−1Σ̂1(Σc)−1. Therefore, we rearrange terms
and divide by Z1 to obtain the following:

(Σc)−1Σ̂1(Σc)−1 = (Σc)−1 + (Σc)−1µ1(µc)T (Σc)−1

+ (Σc)−1µcµT1 (Σc)−1 − (Σc)−1µc(µc)T (Σc)−1

− vvT
φ

(
vTµc+a√
vT Σcv+1

; 0, 1

)
(vTµc + a)

Z1(vTΣcv + 1)3/2
.

Finally, we arrive at the expression for Σ̂1:

Σ̂1 = Σc + µ1(µc)T + µcµT1

− µc(µc)T − ΣcvvTΣc
φ

(
vTµc+a√
vT Σcv+1

; 0, 1

)
(vTµc + a)

Z1(vTΣcv + 1)3/2
.

Thus, the covariance matrix can be computed by plugging
in the expression for Σ̂1 in (12).

Proposition 5. The mean of the distribution in (9) is:

µ0 = µc − Σcv

φ

(
−vTµc−a√
vT Σcv+1

; 0, 1

)
Z0

√
vTΣcv + 1

. (13)

The covariance matrix of the distribution in (9) is:

Σ0 = Σc + µ0(µc)T + µcµT0 − µc(µc)T

+ ΣcvvTΣc
φ

(
−vTµc−a√
vT Σcv+1

; 0, 1

)
(vTµc + a)

Z0(vTΣcv + 1)3/2
− µ0µ

T
0 .

Proof. The proof is similar to that of Proposition 4 and is
omitted in the interest of space.

VI. CASE STUDY

In this section we provide evaluations of each of the two
filters developed in the paper, beginning with the GM-based
filter. In both case studies, we use the LandShark [1] robot
(Figure 1) as our platform; the LandShark is an unmanned
ground vehicle that is used to perform critical missions on
enemy territory, e.g., save injured people. It is equipped with
multiple sensors to estimate position and velocity but some
of them may perform poorly under certain conditions (e.g.,
GPS in an urban environment [17]).
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A. Localization Using Inverse-Exponential Functions
To evaluate the effectiveness of the GM-based filter, we

simulate the following scenario. The LandShark is moving in
an urban environment and trying to visit different waypoints
as part of its mission. The robot is using GPS measurements
to localize; however, they have a large variance and a
large bias to the North, thus making precise localization
challenging. To alleviate this problem, the LandShark also
has a camera that it uses to recognize nearby buildings using
image processing; these recognitions constitute the context
measurements.

The entire trajectory, including the city’s map, is given in
Figure 2. Note that the LandShark has a differential-drive
model, hence every turn results in nonlinear dynamics; thus,
a linearization is necessary in such cases, as in a typical EKF.

To evaluate the performance of the GM-based filter, we
compare it with a regular EKF that uses only the continuous
GPS measurements. Figure 3 shows the path estimates of
each of the two filters for the first part of the trajectory.
For the EKF filter, the estimate is the mean of the posterior
Gaussian distribution at each time step; for the GM-based
filter, the estimate is the mode of the distribution (in this
application the mode is selected as the element with highest
weight in the mixture). As can be seen in the Figure, the
context-aware filter estimates are consistently better and are
much more robust to the large variance of the GPS measure-
ments, whereas the EKF’s estimates have great jumps when
inaccurate measurements arrive.

Finally, Figure 4 provides another confirmation of the

better performance of the context-aware filter. It shows
each filter’s position estimate errors for the LandShark’s
entire trajectory. The context-aware filter’s errors are almost
invariably lower than those of the EKF and do not tend to
vary greatly from one round to the next. Thus, we con-
clude that the context-aware filter with inverse-exponential
functions outperforms current filtering techniques using only
continuous measurements.

B. Velocity Estimation Using Sigmoid Functions

To illustrate the effectiveness of the sigmoid detection
functions, we simulate a modified version of the previous
scenario. The LandShark is moving in a straight line in an
urban environment, accelerating to a target velocity and then
slowing down as it approaches intersections. In this scenario
the LandShark has to obtain accurate velocity estimates in
order to avoid collisions at intersections while moving as
quickly as possible. To estimate velocity, it is using GPS
measurements that have a bias (in this case a negative bias
at high speeds). In addition, the LandShark has access to
one context measurement; it is raised by a sensor measuring
air resistance at the front of the vehicle. While mapping
resistance to speed is not straightforward, it is possible to
establish whether the vehicle is moving beyond a certain
velocity threshold. Thus, the context measurement is an
alarm indicating that the LandShark is approaching its target
velocity.

To evaluate the performance of the context-aware filter,
we compare it with a Kalman filter that is only using



the continuous measurements. The velocity estimates for
each filter are shown in Figure 5. As one can see in the
Figure, both filters are fairly accurate when GPS readings are
unbiased at low speeds; as the soon as the bias is introduced,
however, the Kalman filter’s estimates are greatly affected
whereas the context-aware filter remains robust to the bad
measurements. Finally, Figure 6 displays the absolute errors
incurred by each filter; the Kalman filter’s average error is
4.41, whereas the context-aware filter achieves an average
error of 1.03. Therefore, this case study also shows that
context-aware filters are a promising direction for future
work in scenarios where sensor errors might occur.

VII. CONCLUSION

In this paper, we presented the context-aware filter which
is technique for incorporating binary context measurements
in addition to regular continous measurements. We focused
on two classes of probability of detection functions that
capture a wide variety of detection events that may occur
in practice. We derived the resulting filters, a closed-form
Gaussian Mixture filter and an approximation Gaussian filter
with the same first two moments as the actual posterior
distribution. Finally, we presented a case-study evaluation of
each of the two functions using simulations on an unmanned
ground vehicle. As part of future work, we will prove the
unimodality of the posterior distribution in the sigmoid-based
filter and will evaluate the context-aware filter on real data
from medical and robotics applications.
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