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Summary

Objective: Intervertebral disc (IVD) degeneration is a major health concern in the United States. Replacement of the nucleus pulposus (NP)
with injectable biomaterials represents a potential treatment strategy for IVD degeneration. The objective of this study was to characterize the
extracellular matrix (ECM) assembly and functional properties of NP cell-encapsulated, photo-crosslinked alginate hydrogels in comparison to
ionically crosslinked alginate constructs.

Methods: Methacrylated alginate was synthesized by esterification of hydroxyl groups with methacrylic anhydride. Bovine NP cells were en-
capsulated in alginate hydrogels by ionic crosslinking using CaCl2 or through photo-crosslinking upon exposure to long-wave UV light in the
presence of a photoinitiator. The hydrogels were evaluated in vitro by gross and histological analysis and in vivo using a murine subcutaneous
pouch model. In vivo samples were analyzed for gene expression, ECM localization and accumulation, and equilibrium mechanical properties.

Results: Ionically crosslinked hydrogels exhibited inferior proteoglycan accumulation in vitro and were unable to maintain structural integrity in
vivo. In further studies, photo-crosslinked alginate hydrogels were implanted for up to 8 weeks to examine NP tissue formation. Photo-cross-
linked hydrogels displayed temporal increases in gene expression and assembly of type II collagen and proteoglycans. Additionally, hydrogels
remained intact over the duration of the study and the equilibrium Young’s modulus increased from 1.24� 0.09 kPa to 4.31� 1.39 kPa, in-
dicating the formation of functional matrix with properties comparable to those of the native NP.

Conclusions: These findings support the use of photo-crosslinked alginate hydrogels as biomaterial scaffolds for NP replacement.
ª 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

The intervertebral disc (IVD) is a fibro-cartilaginous tissue
that confers flexibility to the spine by permitting limited
bending and twisting movements between vertebral bodies.
The disc is a heterogeneous structure divided into three an-
atomical regions: the outer and inner annulus fibrosus (AF)
and the nucleus pulposus (NP). The outer AF is rich in type I
collagen organized into concentric lamellae and allows the
disc to resist tensile loads1e3. The NP is composed primar-
ily of negatively charged proteoglycans (i.e., aggrecan) and
type II collagen that permit the disc to resist compressive
loads by generation of osmotic swelling pressure2e4. The
inner AF is considered a transition zone between the highly
organized collagenous structure of the outer annulus and
the less organized and highly hydrated NP. The loss of
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proteoglycans from the NP that occurs with disc degenera-
tion as a result of age or excessive trauma gives rise to a va-
riety of health problems, ranging from lower back pain to
paraplegia5e7. Existing surgical interventions do not ade-
quately restore disc function and often reduce joint mobil-
ity8. Therefore, engineered constructs comprised of
natural or synthetic materials have been explored as poten-
tial replacements for the disc.

Many naturally derived materials have been examined for
IVD tissue reconstruction, including but not limited to, colla-
gen-derived scaffolds (i.e., atellocollagen, and types I and II
collagen sponges), chitosan hydrogels, hyaluronic acid hy-
drogels, and alginate hydrogels9e34. Most studies approxi-
mate the NP with a hydrogel-like scaffold that maintains
the cells in a chondrocyte-like morphology. In particular,
ionically crosslinked alginate hydrogels have been widely
characterized and investigated for multiple tissue engineer-
ing applications. It is considered a routine method for in vitro
culture of NP cells14e25. Alginate is a naturally derived poly-
saccharide extracted from brown algae, which possesses
negatively charged carboxyl groups at physiologic pH. In
the presence of divalent cations, the alginate is crosslinked
to produce a three-dimensional construct. Previous studies
have focused on characterizing gene expression and accu-
mulation of extracellular matrix (ECM) macromolecules,
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such as type II collagen and proteoglycans. Few, however,
have focused on the functional properties of accumulated
matrix proteins. Baer et al. were first to study functional ma-
trix production in cell-encapsulated ionically crosslinked al-
ginate hydrogels35. They found that cells were not capable
of producing a functional matrix over 16 weeks in vitro. The
authors hypothesized that diffusion and cellular uptake of
the cationic crosslinkers were responsible for the adverse
mechanical properties. Later, Mizuno et al. fabricated a com-
posite IVD structure using a poly(glycolic acid)/poly(L-lactic
acid) fiber mesh to approximate the AF and ionically cross-
linked alginate to mimic the NP, and implanted the compos-
ite scaffold in the subcutaneous dorsa of athymic mice27,29.
After 16 weeks post-implantation, the construct resembled
native tissue and exhibited increased compressive proper-
ties similar to that of native tissue27. These results suggest
that further investigation of alginate hydrogels may be re-
quired to determine whether the biomaterial is appropriate
for IVD tissue regeneration.

Recent work in the synthesis of in situ photo-crosslink-
able polymers may provide an alternative method for pro-
ducing alginate hydrogels for NP replacement36e42. In this
system, polymers are modified with functional groups (i.e.,
methacrylates) that undergo free radical polymerization in
the presence of a photoinitiator and upon exposure to UV
light. This polymerization reaction induces a fluidesolid
phase transformation under physiologic conditions and is
ideal for encapsulation of cells in situ43e45. Elisseeff et al.
used this methodology to successfully encapsulate chon-
drocytes in poly(ethylene oxide)-based hydrogels for poten-
tial use in cartilage repair applications42. The technique was
modified by Bryant et al. to incorporate hydrolytically de-
gradable lactic acid units into photo-crosslinked poly(ethyl-
ene glycol)-based hydrogels to enhance the spatial
distribution of ECM components in these otherwise inert
polymers36. Methacrylated alginate and hyaluronic acid,
which are more analogous to the negatively charged muco-
polysaccharides in cartilaginous tissues (in comparison to
the synthetic ethylene glycol derivatives), have also been
studied as platforms for tissue engineering replacement
strategies43,44,46,47. However, photo-crosslinked alginate
has not been used previously for cell encapsulation or for
NP repair. Therefore, the objective of this study was to char-
acterize photo-crosslinked alginate hydrogels for NP tissue
formation in vivo, specifically focusing on the ability of these
materials to support functional ECM assembly by encapsu-
lated NP cells. In this study, modified alginate hydrogels
were ionically and photo-crosslinked, and cultured in vitro
(4 weeks) as well as evaluated in vivo using a murine sub-
cutaneous pouch model (over 8 weeks). Hydrogels were
analyzed for gene expression, ECM accumulation and dis-
tribution, and mechanical properties. We hypothesized that
photo-crosslinked alginate hydrogels would exhibit in-
creased structural integrity, ECM accumulation, and me-
chanical properties compared to ionically crosslinked
alginate constructs.
Methods
PRIMARY CELL ISOLATION
Adult bovine tails were obtained from a local abattoir and caudal disc tis-
sue excised from levels C2 to C4 in a sterile environment. The NP was sep-
arated through gross visual inspection. All tissues were maintained in
Dulbecco’s Modified Essential Medium (DMEM) with 20% Fetal Bovine Se-
rum (FBS, Hyclone, Logan, UT), 2.5 mg/mL fungizone reagent, 100 U/ml pen-
icillin, 100 mg/ml streptomycin, and 0.075% NaHCO3 (primary media) for 1
day at 37�C in a humidified atmosphere with 5% CO2 to confirm that no
contamination occurred during the harvesting process. Tissue was diced
and cells were released through collagenase digestion as previously de-
scribed48. Released cells were designated passage 0 and serially passaged
twice according to previous protocols15,49.
MACROMER SYNTHESIS
Methacrylated alginate (MA-LVALG) was synthesized through esterifica-
tion of hydroxyl groups based on protocols previously described43,44. Briefly,
a 1% solution of low viscosity alginate (LVALG, Sigma, St. Louis, MO) was
prepared in deionized water and adjusted to pH 8 using 5 N NaOH. Metha-
crylic anhydride (Sigma, St. Louis, MO) at 20-fold excess was added to the
alginate solution slowly at 4�C and the pH was periodically adjusted to 8 us-
ing 5 N NaOH (approximately 15 times over the course of the 24-h reaction).
The solution was allowed to react for 24 h at 4�C. The modified alginate was
purified via dialysis against sterile water (Spectra/Por 1, MW 5e8 kDa, Ran-
cho Dominguez, CA) for 48 h to remove excess methacrylic anhydride and
the final product was recovered by lyophilization. The degree of substitution
was confirmed using 1H-NMR analysis (DMX 360) with D2O as the solvent.
The relative integrations of the methacrylate proton peaks (methylene,
d¼ 6.0 and 5.6 ppm and the methyl peak, d¼ 1.8 ppm) to carbohydrate pro-
tons were used to determine molar percent of methacrylation. A 3.5% mod-
ified MA-LVALG was synthesized and used for all subsequent studies.
ALGINATE HYDROGEL PREPARATIONS
All ionically and photo-crosslinked cell-encapsulated alginate constructs
were prepared with 3.5% modified MA-LVALG at 2 w/v% based on our pre-
vious studies50. Prior to dissolution, lyophilized MA-LVALG was sterilized by
exposure to germicidal UV light for 30 min. MA-LVALG was dissolved in
a 0.05% filter-sterilized solution of the photoinitiator 2-methyl-1-[4-(hydroxye-
thoxy)phenyl]-2-methyl-1-propanone (Irgacure 2959, I2959, Ciba Specialty
Chemicals, Basel, Switzerland) in calcium and magnesium-free Dulbecco’s
Phosphate Buffered Saline (DPBS) at 2.2 w/v%. An NP cell suspension in
DPBS (10 x 106 cells/mL final MA-LVALG) was added and homogenously
mixed with MA-LVALG and cast at a final concentration of 2 w/v%. For
photo-crosslinked MA-LVALG hydrogels, a cell-polymer solution was cast
in a custom-made glass casting device and exposed to long-wave UV light
(EIKO, Shawnee, KS, peak 368 nm, 1.2 W) for 10 min to produce 2-mm
thick, 8-mm diameter hydrogels. For ionically crosslinked MA-LVALG hydro-
gels, a cell-polymer solution was cast into a custom-designed gel casting de-
vice between two sheets of filter paper soaked in 102 mM CaCl2. After
10 min, the top of the cast was removed and submerged in a 102 mM
CaCl2 bath for an additional 10 min to produce 2-mm thick, 8-mm diameter
hydrogels. Acellular hydrogel controls were also prepared for all groups.
PRELIMINARY IN VITRO AND IN VIVO CROSSLINKING STUDY
Using MA-LVALG, ionically and photo-crosslinked alginate hydrogels
were prepared as described above. Ionically and photo-crosslinked samples
were incubated in vitro with 3 mL of growth medium (DMEM with 10% FBS,
100 U/ml penicillin, 100 mg/ml streptomycin, and 0.075% NaHCO3) and sup-
plemented with vitamin C (50 mg/mL) at day 1 and replaced every 2e3 days.
All in vitro hydrogels were maintained at 37�C in a humidified atmosphere
with 5% CO2. Ionically and photo-crosslinked hydrogels were also implanted
subcutaneously in a murine pouch model as described below. Samples were
isolated at 4 weeks for gross inspection and immunohistochemical analysis.
IN VIVO MURINE SUBCUTANEOUS POUCH MODEL
Cell-seeded and acellular hydrogel constructs were prepared as de-
scribed above and implanted subcutaneously in immunocompromised
6e8-week-old female beige mice (Strain: NIH-III-nu, Charles River Laborato-
ries, Wilmington, MA) in accordance with University of Pennsylvania guide-
lines for the use of vertebrate animals for research (animal protocol #
800209). Surgery was performed aseptically under anesthesia induced by in-
jection of 140 mg/kg body weight of ketamine (Fort Dodge, Animal Health,
Fort Dodge, IA), 7 mg/kg body weight xylazine (Phoenix Pharmaceuticals,
St Joseph, MO) and 1 mg/kg body weight acepromazine (Burns Veterinary
Supply, Farmers Branch, TX). A mid-longitudinal sagittal skin incision on
the dorsum of each mouse was expanded by blunt dissection to create sep-
arate subcutaneous pockets for a set of four individual hydrogel implants.
Each mouse received the four implants to reduce variability among samples.
The skin incision was closed with absorbable 3e0 Vicryl� sutures (Ethicon
Inc., Somerville, NJ). Implants were harvested at 4 (ionically and photo-
crosslinked hydrogels) and 8 (photo-crosslinked hydrogels only) weeks.
The animals were euthanized by CO2 asphyxiation in accordance with the
guidelines established by the American Veterinary Medical Association
Panel on Euthanasia.
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GENE EXPRESSION
At 4 and 8 weeks post-implantation, RNA was isolated from freshly har-
vested in vivo constructs to evaluate gene expression48. Cells were released
from the photo-crosslinked alginate hydrogels by addition of 20 mg/mL of algi-
nate lyase (Sigma, St. Louis, MO) in DPBS (1 mL per hydrogel), and incubated
on an orbital shaker at 37�C until the alginate was fully dissolved (approxi-
mately 30 min). Cells were pelleted by centrifugation (2000 rcf, 5 min) and
RNA was extracted and purified using the RNeasy kit (Qaigen, Valencia,
CA). Purity and concentration of all RNA were assessed spectrophotometri-
cally. Reverse transcription (RT) was performed using the Superscript First-
Strand Synthesis System for RT-polymerase chain reaction (PCR) (Invitrogen)
and real-time PCR was conducted using the SYBR Green Master Mix Kit (Ap-
plied Biosystems, Foster City, CA) and an Applied Biosystems 7300 real-time
PCR system. Primers for collagen type I, collagen type II, aggrecan, and glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) were as published51.
Types I and II collagen and aggrecan gene expression were normalized to
GAPDH expression and fold differences were calculated using the DDCt

method.
COLLAGEN QUANTIFICATION
Protein expression of type II collagen was quantified on freshly isolated
samples using an indirect enzyme-linked immunosorbant assay (ELISA)
as previously described48,52. Briefly, cells encapsulated in alginate hydro-
gels were released as for RNA isolation and stored in 100e200 mL of
0.05 N acetic acid at �20�C. To extract proteins, all samples were removed
from acetic acid and treated with 3 M guanidine HCl (GuHCl) and 2 mg/ml
pepsin. Digests were plated in a 96-well Nunc Maxisorp plate for collagen
protein quantification. Antibodies to type II collagen (1:4000) (Rabbit anti-
bovine type II collagen polyclonal antibody, Chemicon, Temecula, CA)
were used along with a peroxidase-based detection system employing a bio-
tinylated secondary antibody (goat anti-rabbit IgG (Hþ L), Vector Labs, Bur-
lingame, CA) and a streptavidin-horseradish peroxidase enzyme conjugate
(R&D Systems, Minneapolis, MN). Total reacted substrate was spectropho-
tometrically analyzed at 450 nm using a Bio-Tek Synergy-HT microplate
reader (Winooski, Vermont) and total collagen was determined from stan-
dard curves of bovine type II collagen (isolated from bovine nasal cartilage,
Rockland, Gilbertsville, PA).
SULFATED GLYCOSAMINOGLYCAN (GAG) QUANTIFICATION
Production of sulfated GAGs was quantified on freshly harvested samples
using the 1,9-dimethylmethylene blue (DMMB) dye-binding assay53. Protein
extracts (Pepsin and GuHCl digests) were allowed to react with DMMB at pH
1.5 (SigmaeAldrich, St. Louis, MO) and spectrophotometrically analyzed
at 595 nm using a Bio-Tek Synergy-HT microplate reader (Winooski,
Vermont)54. Total GAG was determined from standard curves of chondroi-
tin-6-sulfate C isolated from shark cartilage (Sigma, St. Louis, MO).
MECHANICAL TESTING
Unconfined compression testing was conducted on excised in vivo hydro-
gels at 4 and 8 weeks post-implantation to evaluate the equilibrium Young’s
modulus. Prior to testing, stereomicrographs were captured using a Zeiss
Fig. 1. Methacrylated alginate hydrogels after 4 weeks in vivo. Ionically (A)
hydroge
Stemi 2000-C stereomicroscope and analyzed for hydrogel surface area us-
ing Scion image software. The mechanical testing device is based on a sim-
ilar set-up described by Soltz and Ateshian55. Samples were compressed
between two impermeable glass platens in a DPBS bath. A protease inhibitor
cocktail (10 mM N-ethylmaleimide, 1 mM phenyl-methyl-sulfonyl fluoride,
5 mM benzamadine) was added to the DPBS bath to prevent matrix degra-
dation over the course of the test55. The unconfined compression testing pro-
tocol consisted of a creep test followed by a multi-ramp stress-relaxation
test50. For the creep test, a 1-g tare load was applied at a 10 mm/s ramp ve-
locity for 2100 s, which corresponded to the time when equilibrium was
reached (equilibrium criteria: <10 mm change in 10 min). The multi-ramp
stress-relaxation test consisted of three 5% strain ramps, each followed by
a 2000 s relaxation period (equilibrium criteria for stress-relaxation: <0.5 g
change in 10 min). Equilibrium stress was calculated at each ramp using sur-
face area data and plotted against the applied strain. From this equilibrium
stress vs strain curve, an equilibrium Young’s modulus was determined
and reported for each sample. After mechanical testing, hydrogels were fixed
in acid formalin for 30 min at 4�C for immunohistochemical analysis.
IMMUNOHISTOCHEMISTRY
Fixed samples were paraffin-embedded, sectioned using a Lieca micro-
tome (Model 2030, Nussloch, Germany), and processed for immunohisto-
chemistry to visualize ECM deposition. For collagen immunohistochemistry,
samples were pre-treated with hyaluronidase for 30 min at 37�C and 0.5 N
acetic acid for 2 h at 4�C. Samples for chondroitin sulfate proteoglycan immu-
nohistochemistry were only treated with 0.5 N acetic acid for 2 h at 4�C. Anti-
bodies to type II collagen (1:40) (Polyclonal Rabbit anti-bovine type II collagen
polyclonal antibody, Chemicon, Temecula, CA) and chondroitin sulfate proteo-
glycan (1:100) (Sigma, St. Louis, MO) were applied. A peroxidase-based de-
tection system (Vectastain Elite ABC, Vector Labs, Burlingame, CA) and
3,30-diaminobenzidine as the substrate chromagen were used to detect pro-
tein localization. Non-immune controls were included without primary anti-
body. Stained samples were viewed with a Zeiss Axioskop 40 optical
microscope and images were captured using AxioVision software.
STATISTICAL ANALYSIS
Data are presented as the mean� standard deviation (n¼ 4). A one-way
ANOVA was used to determine the effect of time on gene expression, ECM
accumulation (normalized type II collagen and GAG content) and the equilib-
rium Young’s modulus. Pairwise comparisons were made using a Tukey
post-hoc test and significance was set at P< 0.05. Statistical analyses
were performed using JMP software (SAS Institute, Cary, NC).
Results
PRELIMINARY ANALYSIS OF IONICALLY AND PHOTO-CROSS-

LINKED ALGINATE HYDROGELS IN VITRO AND IN VIVO
NP cells were encapsulated in ionically and photo-cross-
linked methacrylated alginate and cultured in vitro as well
as evaluated in vivo using a murine subcutaneous pouch
and photo-crosslinked (B) hydrogels. Arrows indicate location of the
l.



Fig. 2. Chondroitin sulfate proteoglycan immunohistochemistry of ionically and photo-crosslinked alginate hydrogels after 4 weeks of in vitro
and in vivo culture. (A) Ionically crosslinked alginate hydrogel cultured in vitro, (B) photo-crosslinked alginate hydrogel cultured in vitro, and (C)

photo-crosslinked alginate hydrogel in vivo. Scale bar¼ 100 mm.

A
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model. At 4 weeks in vitro, NP cells remained viable in all
cultures, with photo-crosslinked hydrogels exhibiting
greater viability than ionic alginate hydrogels (data not
shown). After 4 weeks in vivo, all hydrogels were encapsu-
lated in a thin fibrous capsule consistent with a mild foreign
body response. Nevertheless, ionically crosslinked alginate
hydrogels had undergone severe dissolution by that time
and were unable to be processed for immunohistochemistry
[Fig. 1(A)]. Photo-crosslinked hydrogels remained intact
and displayed no apparent changes in structural integrity
and shape [Fig. 1(B)]. NP cells maintained a rounded
morphology in all intact hydrogels (Fig. 2), however, immu-
nohistochemistry revealed more extensive ECM accumula-
tion in photo-crosslinked hydrogels in comparison to ionic
alginate hydrogels [Fig. 2(A vs B and C)]. Furthermore,
photo-crosslinked hydrogel constructs produced greater
amounts of type II collagen (data not shown) and chondroi-
tin sulfate proteoglycan [Fig. 2(B vs C)] in vivo compared to
those cultured in vitro. Based on these initial results, photo-
crosslinked alginate hydrogels were evaluated in the murine
subcutaneous pouch model in all subsequent studies.
GENE EXPRESSION
Gene expression at 4 and 8 weeks revealed that photo-
crosslinked alginate hydrogels support expression of char-
acteristic ECM macromolecules by encapsulated NP cells.
Fig. 3. Quantitative gene expression of types I (COL I) and II (COL II)
collagen and aggrecan (AGG) normalized to GAPDH expression at 4
and 8 weeks post-implantation. * denotes a significant difference

(P< 0.05) between 4 and 8 weeks.
Both type II collagen and aggrecan expression increased
while type I collagen expression remained unchanged
over time (Fig. 3). However, only aggrecan displayed a sig-
nificant increase in gene expression (Fig. 3). The RNA
yields from acellular controls were not sufficient for quanti-
tative analysis.
BIOCHEMISTRY
Production of type II collagen and sulfated GAGs
was quantified for photo-crosslinked hydrogels over the 8-
week in vivo period. At 8 weeks, cell-seeded constructs
contained 0.15� 0.03� 10�3 mg COL II/mg wet weight
and 6.3� 2.5� 10�3 mg GAG/mg wet weight. Similar to
the gene expression results, greater amounts of both type
II collagen and sulfated GAGs were detected at 8 weeks
compared to the 4-week time point; however, only sulfated
B

Fig. 4. Total type II collagen (A) and sulfated GAG (B) accumulation
normalized to the wet weight of the hydrogels at 4 and 8 weeks
post-implantation. * denotes a significant difference between 4

and 8 weeks.
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GAGs exhibited a significant increase in accumulation
[Fig. 4(A, B)]. Acellular controls did not produce measurable
amounts of sulfated GAGs or type II collagen.
IMMUNOHISTOCHEMISTRY
ECM macromolecules secreted by encapsulated NP cells
were distributed pericellularly as shown by the immunohis-
tochemical staining of type II collagen and chondroitin sul-
fate proteoglycan. At 4 weeks, there was relatively little
expression of type II collagen in comparison to chondroitin
sulfate proteoglycan [Fig. 5(A, B)]. However, by 8 weeks
post-implantation, there was an increase in the number of
cells producing these characteristic ECM components
[Fig. 5(C, D)]. Acellular controls were transparent with no
cellular infiltration or detectable matrix accumulation, al-
though remnants of the thin fibrous capsule that enveloped
the samples were present on the periphery of the gels (not
shown).
MECHANICAL PROPERTIES
The equilibrium Young’s modulus of cell-seeded photo-
crosslinked constructs reached 4.31� 1.39 kPa by 8 weeks
Fig. 5. Immunohistochemistry of type II collagen (A, C) and chondroitin
alginate hydrogels at 4 (A, B) and 8 (C, D) wee
in vivo. At both 4 and 8 weeks post-implantation, the me-
chanical properties of the photo-crosslinked hydrogels
were significantly increased compared to pre-implanted hy-
drogels [Fig. 6(A)], but there was no significant difference
between 4-week and 8-week constructs. Stereomicro-
graphs confirmed an increase in opacity of hydrogels over
time [Fig. 6(BeD)]. The equilibrium Young’s modulus of
acellular controls (2.34� 0.33 kPa) was significantly lower
than cell-seeded hydrogels at 4 and 8 weeks.
Discussion

In this study, NP cells were encapsulated in ionically and
photo-crosslinked alginate hydrogels and evaluated in vitro
and in vivo. Ionically crosslinked alginate hydrogels were un-
able to maintain their structural integrity and displayed de-
creased cell numbers and characteristic ECM accumulation
compared to photo-crosslinked hydrogels. In further studies,
NP cell-encapsulated, photo-crosslinked alginate hydrogels
exhibited a significant increase in aggrecan gene expression
and total sulfated proteoglycan accumulation over time. Fur-
thermore, the equilibrium Young’s modulus demonstrated
significant increases, indicating the production of a mechani-
cally functional ECM. These findings support the use of
sulfate proteoglycan (B, D) ECM elaboration of photo-crosslinked
ks post-implantation. Scale bar¼ 100 mm.



Fig. 6. Equilibrium Young’s Modulus of photo-crosslinked alginate hydrogels cultured in vivo (A). Representative stereomicrographs of NP cell-
encapsulated, photo-crosslinked alginate hydrogels pre-implantation (B), at 4 weeks post-implantation (C), and at 8 weeks post-implantation

(D). Scale in mm. * denotes a significant difference (P< 0.05) between cell-encapsulated and day 0 controls.
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photo-crosslinked alginate hydrogels for functional matrix ac-
cumulation by encapsulated NP cells.

Ionically crosslinked hydrogels experienced significant
dissolution in vivo compared to corresponding covalently
crosslinked hydrogels. These results underscore the impor-
tance of crosslinking method in maintaining hydrogel struc-
tural integrity. Although previous reports support this
observation, there are other formulations of alginate that
may give rise to better structural properties in vivo56. Alginate
is composed of (1e4)-linked b-D-manuronic acid (M) and a-L-
guluronic acid (G) monomers. The relative amounts of M and
G monomers vary between species of algae. During ionic
crosslinking, carboxyl functional groups within the G subunits
of adjacent alginate chains are ionically linked to form a semi-
solid structure. As ionic crosslinking is dependent on the
available G monomers, alginate polymers composed of
a higher percentage of G monomers produce stiffer hydro-
gels and are more stable in vivo57. For the purpose of this
study, modified alginate was used for all hydrogels to elimi-
nate the effect of modification on the behavior of encapsu-
lated cells. Even though the alginate used here may not
have been optimal, analyses revealed increased cellular via-
bility and protein deposition in photo-crosslinked alginate.
Moreover, the pericellular localization of ECM macromole-
cules in the photo-crosslinked alginate constructs was
more analogous to the native tissue structure than the micro-
environment observed in the ionically crosslinked alginate.

Significant increases in gene expression and ECM accu-
mulation were measured in photo-crosslinked alginate
hydrogels at 8 weeks in vivo. Increased expression of
type II collagen and aggrecan combined with low expres-
sion of type I collagen indicate that encapsulated cells
maintained their differentiated phenotype. A significant in-
crease in proteoglycan expression was detected between
4 and 8 weeks, while type II collagen exhibited an increas-
ing trend that was not statistically different. Of particular in-
terest is the increase in proteoglycan content, which has
been shown to be important for functional compressive
properties27,57. However, compared to the GAG content of
native sheep NP (20.88� 4.82 mg/mg tissue), these cell-
seeded constructs only reached 3% of native levels27. It is
important to consider that a low cell seeding density of
10� 106 cells/mL was used here to specifically examine
the effect of the biomaterial on cellular behavior. Typically,
cell-seeded hydrogel constructs for tissue regeneration
use between 20� 106 and 60� 106 cells/mL. As such,
the low initial seeding density may have contributed to the
low levels of ECM production58. It should also be noted
that the modification of alginate for covalent crosslinking al-
ters the in vitro and in vivo degradation profile of the poly-
mer. In general, the degradation of the biomaterial
scaffold may allow for increased ECM accumulation in tis-
sue-engineered constructs56,59,60. Therefore, it is possible
that the improved stability of the photo-crosslinked alginate
hydrogels afforded by the covalent interchain crosslinks
also prevented the uniform distribution and assembly of
ECM molecules from reaching native tissue levels. Al-
though most of the materials currently under development
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for intradiscal replacement are non-degradable synthetic
polymers, degradable subunits may be incorporated into
the alginate polymer backbone to study the effect of degra-
dation on new matrix assembly. This approach has been
used successfully for both poly(ethylene glycol) and hyalur-
onic acid-based photo-crosslinked hydrogels36,61.

In addition to increased accumulation of characteristic
ECM proteins, mechanical properties of cell-encapsulated,
photo-crosslinked hydrogels exhibited significant increases
over time, indicating the production of a mechanically func-
tional matrix. At 4 weeks in vivo, acellular controls appeared
transparent and had an equilibrium Young’s modulus that
was significantly lower than cell-laden hydrogels. This im-
plies that the opacity of the constructs was due to the activ-
ity of implanted cells rather than to host cells migrating into
the constructs. This also demonstrates that the increased
mechanical properties were a result of cellular activity as
opposed to a change in hydrogel structure. Interestingly,
despite no apparent ECM accumulation, the modulus of
acellular photo-crosslinked hydrogels was significantly
greater than pre-implantation cell-laden constructs. This
was likely due to the presence of fragments from the thin fi-
brous capsule that enveloped the hydrogels in vivo, which
may have contributed to modest contraction and stiffening
of the samples. After 8 weeks in vivo, NP cell-encapsulated,
photo-crosslinked alginate hydrogels had an equilibrium
Young’s modulus of 4.31� 1.39 kPa, which is close to the
native NP equilibrium modulus reported in previous studies
that employed similar unconfined compression testing pro-
tocols to determine the material properties of native NP tis-
sue (5e6.7 kPa)32,62,63.

In conclusion, the results of this study support the use of
photo-crosslinked alginate constructs for NP repair, as the
hydrogel maintains the differentiated phenotype and allows
for the assembly of functional matrix. The purpose of this
investigation was to analyze the interaction between
photo-crosslinked alginate and cellular behavior, particu-
larly focusing on characteristic ECM production and func-
tion. Future studies will focus on optimizing culture
conditions for NP tissue regeneration. The effect of cell
seeding density, mechanical stimulation, and additional
polymer chemistries may be investigated to increase the ac-
cumulation of ECM macromolecules. Furthermore, various
cell sources may be used to explore the inductive potential
of the photo-crosslinked alginate environment. Refinement
of these parameters may lead to an injectable therapy for
disc degeneration, and possibly for the repair of other carti-
laginous tissues, such as hyaline articular cartilage.
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