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ABSTRACT

MATHEMATICAL MODELING OF CELL MIGRATION

Maŕıa Jesús Muñoz López

Yoichiro Mori

Cell migration is an essential process, involved in immune defense, cancer spread, wound

healing, and embryo development. This work presents modeling efforts to understand vari-

ous mechanisms of cell migration. We first discuss the modeling of bleb-driven cell migra-

tion, where the cell membrane detaches from the cytoskeleton and generates a protrusion

that is completely devoid of structural proteins. Cell migration in this case is driven essen-

tially by pressure and motor contractility exerted by myosin. I will introduce a stochastic

model of bleb-driven migration offering support for theories on blebbing cell polarization

and the potential involvement of water channels. We then turn to the involvement of ion

channels and ionic electrodiffusion in cell processes, first in cell volume control, and then

in cell migration, presenting a model that combines electrodiffusion-driven migration with

a mechanical model of actin polymerization.
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CHAPTER 1 : Bleb-driven Migration in 1D

1.1 Introduction

Blebs are cellular protrusions that appear as smooth spherical expansions of the membrane

formed when it separates from the underlying acting cortex (see Figure 1.1), driven by

hydrostatic pressure generated in the cytoplasm by the contractile actomyosin cortex [34],

[8], [56]. They were originally associated with cells undergoing apoptosis, but have also

been observed in cytokinesis, and in migrating cells in 2D and 3D. Many cell types can use

blebs for motility, including mammalian tumour cells [14], which can use blebs to force their

way through the endothelium and invade new tissues, and metastatic cells, which can use

blebs to escape anti-tumour treatments that rely on protease inhibitors [8]. Bleb expansion

is faster than lamellipodial protrusion, and, since blebs have no cortex, can occur in any

direction and adapt to the shape of the extracellular environment. There is also data to

suggest that bleb growth requires less energy than lamellipodium formation [8].

Figure 1.1: Micrograph of a single bleb induced by laser ablation on the surface
of a HeLa cell 43 s after initial formation, taken from [1]

The life cycle of the bleb can be divided into three steps: initiation, growth, and

retraction (see Figure 1.2). Two mechanisms have been proposed for bleb initiation: a local

decrease in membrane-cortex attachment, or a local rupture of the cortex. They could also

be functioning together [34]. Both of these have been observed experimentally in both motile

and non-motile blebbing cells [8]. The bleb initially appears devoid of filamentous actin,

and grows as cytoplasmic fluid fills the protrusion. Bleb inflation is thought to be driven by

intracellular pressure transients generated by myosin II contraction of the actin cortex [7].
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Over time, the actin cortex reassembles at the bleb plasma membrane, and drives cortex

retraction: once expansion ceases, ERM (Ezrin, Radixin, Moesin) proteins (responsible

for cortex-membrane adhesion) are recruited to the membrane, followed by actin, actin-

bundling proteins, and lastly contractile proteins [7]. In migrating cells, retraction does not

always occur, since movement depends on a stable bleb, and instead the cell body moves

forward as a result of contraction at the rear of the cell [34]. In such cells, a new bleb often

forms after cortex repolymerization under the membrane [8].

Biochemically, cortex composition is dominated by actin, actin-bundling proteins, and

myosin II. High myosin II activity is critical for the formation of blebs [40]. The cortex

is linked to the membrane by ERM proteins, which can switch from an inactivated closed

conformation to an active open conformation that exposes an actin binding site and a

membrane-targetting domain [7]. Thus, a decrease in membrane-cortex attachment cor-

responds to ERM proteins returning to the closed conformation. The actin cortex that

remains at the base of the bleb is disassembled by the constitutive turnover of actin [8]. An

important question in bleb dynamics is how cortex reassembly begins. One possibility with

some experimental support is that cortex assembly is constitutive, but slow compared to

bleb expansion, so that it can only catch up when the expansion slows down [7].

An important aspect of bleb initiation and growth is that it can be localized to just

a part of the cell, so that different parts of the cell can be mechanically isolated (as they

often are chemically) [6]. The precise mechanisms that determine where a bleb is initiated

during migration are not known. However, observations suggest that asymmetries in the

membrane-cortex attachment could play a role in determining the cell front: in Walker

carcinosarcoma cells, the level of Ezrin (a member of the ERM family) is elevated at the

back of the cell, and reduced at the leading edge, facilitating bleb formation in the front of

the cell [8], [39]. A similar idea is localized water uptake, mediated by polarized distribution

of aquaporins, but there is no direct experimental evidence of this [34]. In any case, it is also

unclear what the signals are that tell the cell to begin any such polarization, and it appears

2



that the stimuli leading to blebbing motility are cell-specific [8]. Pure bleb-driven movement

can be brought about by mechanical resistance: cells may sense mechanical resistance and

use a signaling mechanism to alter the balance between actin polymerization and myosin

contractility, increasing the pressure in the cell and favouring the formation of blebs [56]. It

has also been observed to be strongly chemotactic [56], [2]. In Zebrafish Primordial Germ

Cells, experiments have shown that external gradients of lysophosphatidic acid (LPA) can

trigger directional cell polarization by inducing an asymmetric contraction of the cortical

cytoskeleton [39].

Bleb-driven migration requires the bleb to be stable for some time, or repeated bleb-

bing. [56] observed that cells often bleb at areas of negative membrane curvature, often on

the flanks of earlier blebs, which could be the result of negative curvature producing mem-

brane stress. This is in agreement with [6], who found no strong predictors of expansion or

retraction at a site where a bleb had already ocurred, but increase probability of blebbing

on the sides of a previous bleb.

In [39], the concept of a stable-bleb is presented: these are blebs which do not heal

immediately, but persist for a longer time before retracting. Their results support a me-

chanical model of stochastic cell polarization based on the amplification of local fluctuations

in cortical contractility and a positive feedback mechanism between contractility gradients

and continuous cortical flows maintaining polarity in stable-bleb cells.

In extreme cases, blebs give rise to a traveling wave around the cell periphery known

as ‘circus movement’ [6]. This traveling behavior occurs via a simple modification of bleb

dynamics: once a bleb forms, an actin cortex is thought to reform asymmetrically, so that

when retraction starts, the cytosol is forced into the unconsolidated side of the bleb. This

propagates because one side of the bleb is always older than the other, and as it retracts, if

forces cytosol into the younger side, promoting further rupture.

Understanding bleb formation and bleb-driven travel is important as treatments are

3



developed for pathologies where cells may employ this type of migration, such as cancer

[8] and immune defficiencies. As a systemic organ, the immune system depends on the

continuous movement of cells among different anatomic sites [9], [13]. Newly generated

lymphocytes need to travel from the thymus or bone marrow into the blood, and enter the

major lymph nodes. When a T-cell enters a lymph node, it looks for antigens to bind to.

If no such antigens are found, the T-cell egresses back to the blood. A congenital immun-

odeficiency, termed X-linked Moesin-Associated Immunodeficiency Disorder (XMAID) has

been observed, where a mutation prevents T-cell egress back into the blood. Experiments

carried out by the Burkhardt lab at the Children’s Hospital of Philadelphia showed that in

the presence of S1P, T-cells in the process of exiting a lymph node form blebs, that become

the leading edge of the migrating cell [38]. In the experiments, blebbing in wild-type cells

was seen to be localized to the leading edge, while in the cells of XMAID affected mice bleb-

bing occurred anywhere around the cell surface, with lower intensity at the rear of the cell.

Mutant cells did not have directionality or much displacement, as they blebbed randomly.

The precise mechanics of this are not well understood and questions arise such as whether

it is possible to explain the motile behavior based on random blebbing except where ERM

proteins coat the membrane; or the origin of the pressure that causes the blebs to form.

Theoretical models of blebbing have attempted to capture various aspects of the bleb-

bing process. [26] presents a model of bleb formation and healing that considers the kinetics

of the turnover of adhesion proteins through the bleb cycle. Their model allows for the study

of the determinants of bleb formation and retraction, but is set up so that the cell membrane

and cortex have a fixed reference position, so that there is no net travel. Further, in their

model, bleb formation is not spontaneous and requires an externally applied perturbation.

On the other hand, [47] and [48] consider a mechanical model in 2D using computational

fluid dynamics to understand the initial bleb formation and expansion phase during which

cytosolic fluid moves after the expanding membrane. Their model considers the mechanics

of the system, but lack the adhesion kinetics, so that the bleb never retracts and the cell

cannot travel.
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However, a description of cell movement driven by blebs is lacking. Here, we combine

the turnover model of [26] with a simple mechanical model that has no reference location,

so that the cell travels and we can consider the cell’s motion as well as the dynamics of

bleb formation. Moreover, our model allows for the formation of spontaneous blebs by

incorporating stochasticity into the system. We can then study cell travel in a system that

can bleb repeatedly without the need to manually introduce perturbations or periodicity.

5



Figure 1.2: The bleb life cycle (reproduced from [8]). The bleb life cycle
can be subdivided into three phases: bleb initiation (nucleation), expansion,
and retraction. a Bleb initiation can result from a local detachment of the
cortex from the membrane (left model) or from a local rupture of the cortex
(right model). b Hydrostatic pressure in the cytoplasm (Pint) then drives the
membrane expansion by propelling cytoplasmic fluid through the remaining
cortex (left model) or through the cortex hole (right model). Concomitantly,
the membrane can detach further from the cortex, increasing the diameter
of the bleb base (dashed line). c As bleb expansion slows down, a new actin
cortex reforms under the bleb membrane. d Recruitment of myosin to the new
cortex is followed by bleb retraction. Pext, extracellular hydrostatic pressure.
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1.2 Deterministic Model Formulation

Consider a bounded interval over which the cell lies xbm < x < xfm, where xfm is the front

membrane position and xbm is the back membrane position. In the intracellular region

between these two points, the unknowns are the fluid velocity u and hydrostatic pressure p,

which we will assume to be spatially constant. Other unknown quantities are the adhesion

density a, cortex thickness c, the cortical positions at the front and back xf,bc (t), and the

nucleus location xN (t). The adhesion and cortex densities (a and c), are defined at the front

and back of the cell, denotes af , ab, cf , cb. A schematic diagram for our model is given in

Figure 1.3.

Actin cortex Plasma membrane

Cortical adhesions

Nucleus

PositionxN x f
c x f

mxb
cxb

m

afcfab cb

Figure 1.3: Schematic of system.

1.2.1. Assembly and Turnover

We model the cortex thickness c, following [26], assuming simple first-order kinetics,

∂c

∂t
= ωa− rc, (1.1)

where ω governs cortex assembly, and assumes that new cortex requires adhesion to a nearby

membrane. The second term describes cortex turnover, with rate r. In this context, c is

interpreted as a combination of density and spatial thickness, with arbitrary units.
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The cortex is attached to the membrane via exrin-radixin-moesin (ERM) proteins.

We refer to the effect of these proteins as “adhesions”. We use the model of [26], with

similar first-order kinetics for the adhesion assembly and turnover, and three additional

assumptions: 1) adhesion assembly saturates at high cortex thickness; 2) adhesion attach-

ment requires proximity between cortex and membrane, with characteristic distance δ, that

describes the “reach” of the adhesion molecules; and 3) adhesion detachment is force de-

pendent, with characteristic breaking force f0. These considerations lead to

∂a

∂t
=

konc

c0 + c
exp

(
−|xm − xc|

δ

)
− koffa exp

(
κ|xm − xc|

f0

)
, (1.2)

where kon and koff are the adhesion assembly and turnover rates respectively, and c0 is the

cortex thickness at which adhesion assembly is half-maximal. The numerator κ|xm − xc|

follows from the assumption that adhesions collectively behave like springs with Hookean

stiffness κ. Note that adhesion turnover is significantly faster than cortex turnover, leading

to a separation of timescales.

Equations 1.1 and 1.2 are the same at the front and back of the cell, with the appro-

priate superscripts.

1.2.2. Mechanics

Inside the cell, we use Darcy’s law for the velocity field:

−∂p
∂x
− ξu = 0, (1.3)

and u is constant in x by incompressibility. Here, ξ is the ratio of dynamic viscosity and

permeability. We impose the following boundary conditions at xfm and xbm:

p− (p∞ + dgu) = afκ(xfm − xfc ) + κm(xfm − xN − l), (1.4)

p− (p∞ − dgu) = −abκ(xbm − xbc)− κm(xbm − xN + l), (1.5)
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where l is the membrane rest length, p∞ is the pressure far from the cell, dg is a drag

coefficient, and the force between the membrane and the nucleus is modeled as a Hookean

spring with spring constant κm with a natural length of l. The drag coefficient dg as specified

above represents the resistance of the exterior fluid to flow, and was used previously in [55].

The force between the membrane and the cortex reflects the spring-like force exerted by the

adhesions. The above equations state that the difference in pressure across the membrane

at the front is balanced by the adhesion and membrane forces.

At the front and back membranes, we also impose the following conditions:

∂xfm
∂t
− u = −ζ[p]f , (1.6)

∂xbm
∂t
− u = ζ[p]b. (1.7)

The difference in the membrane velocity dxf,bm /dt and the fluid velocity u is given by the

transmembrane water flow. This transmembrane water flow in turn is proportional to the

difference in pressure across the membrane interface as given in 1.4 and (1.5), where ζ is

the water permeability coefficient.

At the cortex, we have the following force balance equations:

ηcc
f ∂x

f
c

∂t
= afκ(xfm − xfc )− σcf (xfc − xN − β), (1.8)

ηcc
b∂x

b
c

∂t
= abκ(xbm − xbc)− σcb(xbc − xN + β). (1.9)

Here, we have assumed that the cortex experiences a drag force with respect to the under-

lying substrate, whose strength is proportional of the cortical density cf,b. This drag force

is balanced by the adhesion forces between the cortex and membrane and the force between

the nucleus and cortex. The force between the nucleus and cortex is modeled as a spring

force proportional whose spring constant is the cortical density cf,b. The proportionally

constant σ may be viewed as the strength of actomyosin contractility
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Table 1.1: Model Parameters

Symbol Dimensions Meaning

ω (A.U.) µm2 s−1 cortex assembly rate constant

r s−1 cortex turnover rate constant

kon µm−2s−1 adhesion assembly rate

koff s−1 adhesion turnover rate

c0 (A.U.) cortex thickness at half-maximal adhesion

δ µm adhesion length between cortex and membrane

κ pN µm−1 adhesion spring constant

f0 pN adhesion breaking strength

p∞ Pa pressure far from the cell

ξ Pa s µm−2 ratio of dynamic viscosity and permeability

κm Pa µm−1 hydrostatic pressure scale

dg Pa s µm−1 fluid drag constant

ζ µm s−1Pa−1 water permeability constant

σ Pa (A.U)−1 µm−1 actin-myosin contractility

β µm cortex rest length

l µm membrane rest length

ηc Pa s µm−1 (A.U)−1 cortex drag factor

ηN Pa s µm−1 nucleus drag factor

The position of the cell nucleus is given by

ηN
∂xN
∂t

= κm(xfm−xN− l)+κm(xbm−xN + l)+σcf (xfc −xN−β)+σcb(xbc−xN +β) (1.10)

where the nucleus is assumed to experience a drag force with respect to the substrate with

the drag coefficient ηN .

Physical parameters are summarized in Table 1.1.
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1.2.3. Preliminary Analysis

First, we can simplify the fluid equations as follows. Set p∞ = 0. Since u is constant in x,

p(x) is linear. Then, subtracting equations (1.5) - (1.4), we get that

(
2dg + ξ(xfm − xbm)

)
u = −afκ(xfm−xfc )−abκ(xbm−xbc)−κm(xfm−xN−l)−κm(xbm−xN +l)

(1.11)

We non-dimensionalize the system choosing characteristic cortex thickness cc = c0,

characteristic density of adhesions ac = kon
koff

, characteristic time tc = 1
r ∼ 10 s [16], char-

acteristic length lc = l ∼ 10 µm [50], characteristic pressure pc = κml (κm ∼ 100 Paµm−1

[6]), and characteristic fluid velocity uc = lr. This results in the non-dimensional system

1.12 - 1.19.

∂c

∂t
= Ωa− c (1.12)

ε
∂a

∂t
=

c

1 + c
exp

(
−|xm − xc|

D

)
− a exp

(
|xm − xc|

F

)
(1.13)

(
2Dg + χ(xfm − xbm)

)
u = −af (xfm−xfc )−ab(xbm−xbc)−Km(xfm−xN−1)−Km(xbm−xN+1)

(1.14)

γm

(
∂xfm
∂t
− u

)
= −af (xfm − xfc )−Km(xfm − xN − 1) (1.15)

γm

(
∂xbm
∂t
− u
)

= −ab(xbm − xbc)−Km(xbm − xN + 1) (1.16)

γcc
f ∂x

f
c

∂t
= af (xfm − xfc )−Mcf (xfc − xN − b) (1.17)

γcc
b∂x

b
c

∂t
= ab(xbm − xbc)−Mcb(xbc − xN + b) (1.18)

γN
∂xN
∂t

= Km(xfm−xN−1)+Km(xbm−xN+1)+Mcf (xfc−xN−b)+Mcb(xbc−xN+b) (1.19)

with 12 non-dimensional parameters defined in Table 1.2. Note that we use the same labels

for all quantities for simplicity, but these are now non-dimensional. Many of the parameters
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were already estimated in [26]. For the remaining parameters, we obtain estimates based

on matching the cell velocity with that reported in [38]. In subsequent sections, we will

vary γc and γm within a specified range to determine their impact on model behavior. The

parameters χ, Dg and γN are set to a small positive value as shown in Table 1.2 unless

indicated otherwise. Setting Dg and γN to 0 does not lead to appreciably different results

in our computations. The behavior of the model with respect to larger values of γN and

Dg will be briefly discussed at the end of Section 1.3.2.
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1.3 Deterministic Model Results

The model 1.12 - 1.19 combines the mechanisms of membrane-cortex interaction (force-

sensitive adhesion, cortex contractility, cortex turnover) with force balance in the cell (fluid

pressure, membrane and cortex tension). Numerical simulations of the model reveal sev-

eral classes of dynamics: stable non-blebbing states, stationary blebbing, and bleb-driven

migration. Note that throughout this section parameters are the same on both sides of the

cell. Without loss of generality, we focus on the effect of perturbations from steady state

on the front side, which will then be the ‘leading edge’ of the cell.

For a bleb to form, enough adhesions have to break so that the membrane and cortex

will detach. In non-blebbing states, even if all adhesions are removed, the system returns

to steady state without the membrane separating enough from the cortex for the cortex

to depolymerize before adhesions reappear. This is a monostable regime, in which the

system always returns rapidly to steady state following a perturbation. In blebbing states,

small perturbations do not suffice for the membrane and cortex to detach, but large enough

perturbations will lead to bleb formation.

A sample simulation for the bleb-driven migration case is shown in Figure 1.4, obtained

by setting the system to steady state, and generating a perturbation at the front of the cell

by removing 50% of the adhesions. When this perturbation is significant (enough adhesions

are removed), as in the case shown in Figure 1.4, the remaining adhesions are destroyed,

and the cortex depolymerizes. This leads to the membrane detaching from the cortex and

protruding. This initial expansion is very rapid compared with the full life cycle of the bleb,

in line with measurements [6]. The adhesions subsequently accumulate under the protruding

membrane and the cortex is able to reattach and thicken. Cortex contraction then drives

the bleb to heal, returning the system to equilibrium. It is important to note that while a

and c will return to the same initial steady state after the bleb heals, the positions of the

membrane, cortex, and nucleus will have a new steady state. This is because these positions

do not have a reference location, but rather a reference distance between the various points
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(in other words, any parallel translation of a steady state will yield a steady state). This

motile behaviour is distinct from previous modeling efforts in that the bleb formation and

healing generate movement - [26], for instance, models the bleb life cycle, but has a reference

configuration such that there is no displacement, while [47] considers bleb formation only.

Figure 1.4: Starting at steady state, the system is perturbed by setting af = 0.5×
afss, where afss is the value of af at steady state. (left): af vs cf trajectory. (right):
Membrane, cortex, and nucleus positions. Parameters used here are Ω = 40, ε =
0.01, D = 0.15, F = 0.99, M = 0.0081, b = 0, γm = 0.8 × 10−3, Km = 0.1,
γN = 10−6, γc = 10−4, Dg = 10−11, χ = 10−6. Time step was set at ∆t = 0.0001.

1.3.1. Model Behaviors

Notably, the blebbing regime can lead to four different behaviors shown in Figure 1.5: bleb

formation and healing on the side of the perturbation (Figure 1.5(a)), a bleb forming but

never healing (Figure 1.5(b)), a bleb on one side propagating to induce a bleb on the other

side (Figure 1.5(c)), or an oscillation where blebs alternate from front to back (Figure

1.5(d)). These behaviors are summarized in Figure 1.6.

We can recover most model behaviours by varying the cortex assembly rate Ω, and

the inverse permeability of the cell membrane γm. The transitions between behaviours

as these parameters are varied is shown in Figure 1.6. We find that larger values of Ω

lead to a monostable system, as the cortex reassembly is faster. Increases in γm cause
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Figure 1.5: Various deterministic model behaviors: (a) Single bleb that heals shown
in Fig. 1.4. (b) Bleb forms but never heals (M = 0.0084). (c) Front bleb drives a
secondary bleb at the back (Ω = 44.3). (d) Oscillatory blebbing events alternating
from front to back. (γm = 0.8× 10−2). Sample paths are initiated at the perturbed

af = 0.5× afss. Other parameters are the same as in Fig. 1.4

bleb propagation: when Ω is small, increases in γm cause transitions from monostable to

excitable and then to bleb propagation with a second bleb forming at the back; when Ω is

large, increasing γm leads to the oscillatory behaviour.

We find that if D or F are too small, the bleb will not heal (see Figure 1.5(b)). This

can be simply explained: if the reach of adhesion molecules is too small, adhesions between

membrane and cortex cannot reform; similarly, if F is too small, bonds that do reform are

weak and the bleb cannot heal. An increase in Km does not lead to larger blebs, though it
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Figure 1.6: Phase diagram of the deterministic model over the Ω - γm plane. Other
parameters are the same as Fig. 1.4.

does lead to greater displacement. We also find that if M is too small, excitability is lost,

while if M is too large, the bleb never heals, suggesting that M , which can be interpreted

as myosin contractility, is critical to cell blebbing [51].

The oscillatory behaviour, shown in Figure 1.5(d), appears when γm is large. When

γm is large, Equations 1.2.3 and 1.2.3 show that the boundaries xfm and xbm both move

with velocity u, so that the front and back of the cell are coupled through u due to in-

compressibility of the fluid, leading to oscillations. The effect of varying γm for various

values of cortex assembly rate Ω is shown in Figure 1.6. For any value of Ω,, increases

in γm lead to increases in excitability of the system, as the boundaries move more closely

with fluid velocity u. If γm is small, then changes in adhesion density are not enough for

the membrane to separate from the cortex sufficiently, as any movement of the membrane

will be too small and the cortex and adhesions will quickly recover. Figure 1.6 also shows

that as Ω increases, the system becomes non-blebbing. This is intuitive: Ω represents the

rate of assembly of the cortex, so the higher Ω is, the faster the cortex reassembles and the

harder it is for the bleb to form, even under large perturbations in adhesion density. This

oscillatory behaviour has been previously observed for protrusions in fibroblasts which, like

blebs, are devoid of actin [33].
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We further study the effect of varying individual parameters on the size of the bleb

and the distance traveled by the cell by fixing all but one at a time, and varying that

parameter. Based on this study, we make the predictions shown in Table 1.3. We find that

as adhesion reach D increases, healing accelerates - the membrane-cortex distance needed

for reattachment is wider, allowing for faster recruitment of adhesions. Similarly, decreases

in M lead to faster healing. Increases in Km lead to smaller bleb size, as the overall force

pushing the membrane outward decreases.

Table 1.3: Model Predictions for Experimental Perturbations

Perturbation Parameter Prediction

Decrease adhesion strength Km ↑ Smaller blebs

Increase myosin contractility M ↑ Slower bleb healing

Increase molecular size of adhesion molecules D ↑ Faster healing

1.3.2. Determinants of Distance Travelled

A salient feature of our model, compared with previous efforts to model blebs (for example:

[26], [47]), is that the modeled cell is motile, and can employ the bleb to travel. Thus,

we may use our model to study what determines whether the cell will travel using a bleb,

and what distance may be traversed in a single blebbing event. Thus, we track the total

displacement as we vary each parameter within the blebbing regime, using the model to

make predictions about the cell’s ability to travel. These predictions are summarized in

Table 1.4.

Model simulations show that myosin contractility, M , plays a major role in bleb for-

mation and cell travel. In particular, if M is too low, the system is non-blebbing, in line

with experimental evidence [51]. When M is above a critical value, the system reaches a

blebbing state, with distance traveled increasing as M increases. At the same time, bleb

healing becomes slower, with a longer time needed for the cortex to reassemble underneath

the membrane (see Figure 1.7). There is a second critical value of M , when it becomes too

large and the system transitions to a case where a bleb will form, but not heal. Instead, the
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Table 1.4: Predicted Effect of Biophysical Parameters on the Distance Traveled

Perturbation Parameter Effect on Distance Traveled

Decrease cortex intensity Ω ↓ Increase

Decrease reach of adhesion molecules D ↓ Increase

Decrease adhesion bond strength F ↓ Increase

Decrease myosin contractility M ↓ Decrease

Increase drag Dg ↑, χ ↑ Smaller distance traveled

Increase hydrostatic pressure Km ↑ Increase

adhesions do not re-form under the membrane, and the system reaches a new steady state

with one side of the membrane permanently detached as shown in Figure 1.5(b).
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Figure 1.7: Traveling distance and duration for individual blebbing event with var-
ious parameters. Other parameters are the same as Fig. 1.4.

Parameters that are intrinsic to the adhesions have significant effects on the distance

traveled by the cell. These are the adhesion reach D and the characteristic adhesion-
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breaking force F . As D decreases, the total displacement of the cell increases, and bleb

healing is slower (see Figure 1.7). It is clear that if the adhesion reach is very large, it is

easy (and fast) for the adhesions to re-form and the cortex to reattach, compared with when

the adhesion reach is small. However, if D becomes too small, the system reaches a stable

non-blebbing state. Similarly, as F decreases, the total displacement of the cell increases,

and bleb healing slows down (see Figure 1.7).

Another important parameter is Km. If Km is large, we expect that the protrusion

formed in the membrane by that pressure when the adhesions are removed will be large,

while if the hydrostatic pressure in the cell is low, the membrane expansion will be small.

We find that while larger values of Km lead to greater distances traveled, the bleb size

actually decreases. If Km is too small, the system becomes non-blebbing, while if Km is

too large, the bleb propagates to the other side (Figure 1.5 (c)). Km can be interpreted as

hydrostatic pressure inside the cell pushing the membrane outward.

While variations on the drag in the cortex and nucleus (γc and γN respectively) do

not affect the cell’s ability to form a bleb, and the system will remain in the blebbing

or non-blebbing regime based on the other parameters, variations in drag can affect the

distance traveled. If either drag parameter becomes too large, the net displacement of the

cell becomes negligible, even if the bleb does form. Furthermore, changes in γc and γN can

decouple the front and back of the cell, eliminating bleb propagation between the front and

back.

Increases in fluid drag Dg decrease the distance traveled, however decreases below 10−6

do not have an effect, and setting Dg = 0 allows for further simplification of the model.

1.4 Stochastic Model

We now look at modifying the model system 1.12 - 1.19 to include stochastic effects in

the adhesion density. Individual adhesion proteins have two possible conformations: open

(when they tether the membrane and cortex together), and closed (when they do not).
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To formulate the stochastic model, we think of the adhesion dynamics as a birth-death

process, with proteins changing conformation so that as the system evolves it may increase

or decrease the number of proteins attached and hence the adhesion density. We let a = αk,

where α is the per-protein adhesion density and k is the number of proteins, and we replace

1.13 with a Markov chain where the probabilities that a new protein will be attached or

detached given by g and h respectively, where

g(c, a, xm, xc) =
c

1 + c
exp

(
− 1

D
|xm − xc|

)
, (1.20)

h(c, a, xm, xc) = a exp

(
1

F
|xm − xc|

)
. (1.21)

To begin the simulation, we choose an initial, or ‘base’, number of adhesion proteins to be

the number of adhesions at steady state at use that to determine α, which is then kept

constant. The steady state is computed using the deterministic system. We note that the

system is very sensitive to initial conditions, so that a good starting value is required in order

to begin the simulation. The stochastic simulations are then run using a continuous-time

Gillespie’s algorithm to update the number of adhesions attached as the system progresses:

1. Possible events:

• e1: adhesion forms (k → k + 1)

• e2: adhesion breaks (k → k − 1)

2. Rates:

• r1 = g(c, a, xm, xc)

• r2 = h(c, a, xm, xc)

3. rtotal = r1 + r2
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4. Time until next event δt,

∫ δt

0
rtotal(t) dt = − ln(RANDU [0, 1]) (1.22)

At each ∆t, update the integral using the trapezium rule and check the equality.

When it holds, go on.

5. ej is selected with probability

rj
rtotal

(1.23)

to update a = αk.

6. Update all other variables.

In contrast with the deterministic system, the stochastic system does not require

an initial perturbation to generate a bleb, but can instead be set to steady state of the

deterministic system. Then eventually, stochastic fluctuations make the adhesion density

become low enough for the membrane and cortex to detach and the system to bleb. An

example is shown in Figure 1.8 overlayed on a deterministic simulation for reference.
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Figure 1.8: Sample stochastic simulation, starting at steady state, with the deter-
ministic case shown for reference. (left) Parameters are the same as Fig. 1.4. (right)
M = 0.0084.

A full sample simulation is shown in Figure 1.9. Since the system is symmetric, both

sides are equally likely to form a bleb, so that in the long run, the cell does not have an
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overall displacement (E[total distance] = 0 for long simulation times).

The choice of base k is key to the frequency of bleb formation, as illustrated in Figure

1.10: if the base value of k is too small, adhesions are removed too easily and the system

becomes erratic; if the base value of k is too large, the adhesions never decrease enough for

the membrane and cortex to detach and for a bleb to form. We choose a value of k in line

with measurements of protein density at the membrane [45].
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Figure 1.9: Stochastic simulation, starting at steady state. Parameters are
the same as Fig. 1.4.
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Figure 1.10: Stochastic simulation compared with the deterministic case for
various choices of initial number of attached proteins k (T = 15). Parameters
are the same as Fig. 1.4.

1.4.1. Model Behaviors

In this section, we discuss the differences in system behaviour in the stochastic and deter-

ministic regimes.

In the stochastic regime, bistability (Figure 1.5 (b)) is not a deterrent for the cell to

travel, as the system is able to escape also the basin of attraction of the second steady state,

as seen in Figure 1.8 (right). Then, even for parameter regimes which would be bistable in

the deterministic case, we still get sustained blebbing in the stochastic case.

We find that the onset of oscillations, as shown in Figure 1.5 (d), shifts when we make

the system stochastic. We showed in Figure 1.6 that increases in γm make the system

oscillatory. The onset of this oscillations requires a higher value of γm in the stochastic

regime than in the deterministic regime. This is likely to be because the steady state is

stable, and the stochastic changes push the trajectory out of the oscillatory orbit for lower

values of γm. A sample stochastic oscillatory simulation is shown in Figure 1.11.
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Figure 1.11: Stochastic simulation in the oscillatory regime, starting at steady
state. Here, γm = 0.8 × 10−1, while other parameters are the same as Fig.
1.4.

1.4.2. Introducing Bias

The focus of this study is on the cell’s ability to move using blebs. We noted that the

system, as simulated in Figure 1.9 is symmetric, so that the cell does not have a significant

displacement. Thus, in order to get a net movement and a more realistic system, we bias

the cell so that it is more likely to bleb at the front by making the front excitable and the
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back monostable in the corresponding deterministic system (the choice of front and back is

arbitrary). Then, only the front side will retain the ability to bleb, and the cell will be able

to sustain travel in that specific direction.

There are multiple theories regarding the polarization of a blebbing cell. One such

theory suggests that there are fewer ERM proteins at the side where the bleb forms [56],

[39]. In our model, this corresponds to having a different, smaller, value of a at the front

compared to the back. To determine the regime (monostable or excitable/bistable) on

each side we use the deterministic system and modify appropriate parameters so that the

adhesion densities at the front and back of the cell at steady state are different (afss 6= abss).

Then, if we set af = αkf and ab = αkb, where α is equal on both sides, kf 6= kb. It is then

expected that the side with the smaller deterministic steady state value of a (and hence

smaller initial k) will be more likely to bleb, as the basin of attraction of the deterministic

steady state becomes smaller for smaller steady state values of a. Here, we choose the

parameters so that kf < kb, with the front in the excitable regime (blebbing) and the back

in the monostable regime (non-blebbing) as determined in the deterministic setting. At the

excitable side (front), noise allows the system to escape the basin of attraction of the steady

state, while at the monostable side (back) the basin of attraction cannot be escaped. We

note that the biased deterministic simulations still require a manual perturbation for the

system to initiate a bleb and travel.

To bias the cell, we change the values of some of the parameters so that they are

different at the front and back of the cell (this effectively breaks the symmetry of the

system). Since we found that M , F and D control the overall distance traveled, we test

these parameters to bias the cell by choosing Mf 6= M b etc. A sample polarized simulation

is shown in Figure 1.12. Varying the parameters at the front and back to get different bias

magnitudes showed that if the kb is less than 4% bigger than kf the system does not yield

a clear cell polarization.
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Figure 1.12: Biased stochastic simulation, starting at steady state. Mf =
0.0078, M b = 0.0065. Other parameters are the same as Fig. 1.4. Note that
the simulation is first run as deterministic to steady state.

1.4.3. Determinants of Distance Traveled

Consider now the biased system in the deterministic case, such that the front is excitable

and the back is monostable. In general, low values of myosin contractility M lead to a

non-blebbing state, while increasing M takes the system first into the excitable (blebbing)

regime and then into the bistable regime. We showed that when both sides are excitable and
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have the same parameter values, increases in M lead to increases in the distance traveled

in a single event (Figure 1.7). However, if only the front side is excitable, increases in Mf

lead to decreases in distance traveled and increases bleb in healing time, as shown in Figure

1.13 (top). When Mf becomes too large, the deterministic system becomes bistable, and

the bleb never heals. Note that this threshold does not change when we bias the cell by

modifying Mf and M b. By biasing the cell, we get sustained blebbing in the stochastic case,

with cell velocity increasing as Mf increases, as shown in Figures 1.13 (bottom). We find

that even though individual events take longer, as seen in the deterministic simulations, the

frequency of blebbing also increases in the stochastic simulations, so that the cell travels

further.

If we bias the cell by modifying F or D instead (F f 6= F b, or Df 6= Db), decreases

in F f or Df still lead to increases in the distance traveled in a single event (Figures 1.7

and 1.14 (top)). However, the increase in distance is much smaller in the biased case.

For changes in F or D, the event duration does not change much between the biased and

unbiased settings. Decreasing F f or Df any further would lead to the bistable regime. In

the stochastic case, cell velocity increases as F f or Df decreases, as shown in Figures 1.13

(bottom) and 1.14 (bottom).

1.4.4. Approximation of biased stochastic model

One important feature of the biased stochastic model is that the bleb expansion period has

very short time scale than the other states, as seen in Fig. 1.16(a). Such series of bleb

events can be approximated by a renewal process [11, 5]. A single bleb event consists of two

random variables: the inter-blebbing time ∆ and the traveling distance Q. Labeling the

bleb events by n = 1, 2, · · · . We collect the statistics of (∆n, Qn) from a total of 103 sample

paths which initial condition is at the steady-state of the deterministic model. Results

shows that the statistics of (∆n, Qn) are independent and identically distributed for all n.

It is because each bleb event is generated by stochastically escaping the same deterministic

basin of attraction, as shown in Fig. 1.8. Another observation is that ∆n and Qn are almost
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Figure 1.13: Parameters are as in Fig. 1.4. (top) Distance traveled and event
time for a single bleb in the deterministic case as Mf varies. (bottom) Average
total distance travelled for time T = 100 and number of blebbing events for
the stochastic case as Mf varies with M b = 0.0065. Time step was set at
∆t = 0.0001, and the initial number of adhesions was set to k = 300.

uncorrelated ∣∣∣∣Cov(∆n, Qn)

E[∆n]E[Qn]

∣∣∣∣ ∼ 0.015,

We thus assume that the random variables are independent for the same n. To utilize

the discrete data as a continuous information, we approximate the statistics of the random

variables by the gamma distributions. That is, the distributions of the random variables
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Figure 1.14: Parameters are as in Fig. 1.4. (top) Distance traveled and event
time for a single bleb in the deterministic case as F f varies. (bottom) Average
total distance travelled for time T = 100 and number of blebbing events for the
stochastic case as F f varies with F b = 1.7. Time step was set at ∆t = 0.0001,
and the initial number of adhesions was set to k = 300.

take the form of

P[∆n ≤ t] =

∫ t

0
f∆n(t′)dt′, P[Qn ≤ x] =

∫ x

0
fQn(x′)dx′,
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Figure 1.15: Parameters are as in Fig. 1.4. (top) Distance traveled and event
time for a single bleb in the deterministic case as Df varies. (bottom) Average
total distance travelled for time T = 100 and number of blebbing events for
the stochastic case as Df varies with Db = 0.159. Time step was set at
∆t = 0.0001, and the initial number of adhesions was set to k = 300.

where fX(t) = f(t;αX , βX) is the gamma distribution with shape αX and scale βX . There-

fore, our assumptions deduce that

f∆n = f∆m := f∆, fQn = fQm := fQ,
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for all n,m. We estimate (α∆n , βQn) by the maximum likelihood estimation, as depicted in

the subpanel of Fig. 1.16(a).

Next, we determine the distribution information of the renewal process in terms of the

gamma distributions. Introducing the blebbing time

Tn = Tn−1 + ∆n, T0 = 0,

then one can write the renewal process by

X(t) =
∑
Tn≤t

QnH(t− Tn), (1.24)

where H(t) is the Heaviside function giving one if t > 0 otherwise zero. For given T1 =

∆1 = τ1 and Q1 = η1, we have

X(t) =


0, t < τ1

η1 +X∗(t− τ1), t ≥ τ1

, (1.25)

where X∗(t) is identical with X(t). Thus, applying conditional expectation theorem gives

MX(ξ, t) := E[eξX(t)] = E
[
E[eξX(t)|T1 = τ1, Q1 = η1]

]
=

∫ ∞
t

f∆(τ)dτ + E
[
1τ1≤tE[eξQ1eξX

∗(t−T1)|T1 = τ1, Q1 = η1]
]
. (1.26)

Since Q1 and T1 are independent, we have

MX(ξ, t) =

∫ ∞
t

f∆(τ)dτ +MQ(ξ)

∫ t

0
MX(ξ, t− τ)f∆(τ)dτ. (1.27)

Since the moments of the approximation process satisfies

Mk(t) := E[Xk(t)] =
∂kM̃X(ξ, t)

∂ξk

∣∣∣∣∣
ξ=0

,

32



for k = 1, 2, · · · , taking derivatives with respect to ξ gives

Mk(t) =
k∑
j=0

E[Qk−j ]

∫ t

0
Mj(t− τ)f∆(τ)dτ. (1.28)

Average speed of the approximation process can be calculated by performing Laplace

transformation. Taking Laplace transformation to (1.28)

M̃k(s) = f̃∆(s)

k∑
j=0

(
k

j

)
E[Qk−j ]M̃j(s), (1.29)

and solving for M̃k(s) yields

Mk(s) =
f̃∆(s)

1− f̃∆(s)

k−1∑
j=1

(
k

j

)
E[Qk−j ]Mj(s) +

qk
s

 , (1.30)

in accordance with q0 = 1 andM0(s) = s−1. In particular, the first moment takes the form

of

M1(s) =
E[Q]f̃∆(s)

s
(

1− f̃∆(s)
) . (1.31)

Performing integration by parts and l’Hospital rule yields

lim
tto∞

M1(t)

t
= lim

s→0
s

∫ ∞
s
M̃1(s′)ds′

= lim
s→0

s2M̃1(s). (1.32)

Substituting (1.31) into the above equation and another application of the l’Hospital rule

gives

lim
t→∞

M1(t)

t
= E[Q] lim

s→0

sf̃∆(s)(
1− f̃∆(s)

)
= E[Q] lim

s→0

f̃∆(s) + sf̃ ′∆(s)

−f̃ ′∆(s)
=

E[Q]

E[∆]
:= v∞, (1.33)
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according to the fact that

f̃ ′∆(s) = −
∫ ∞

0
tf∆(t)e−stdt→ −E[∆],

as s→ 0. One can also calculate the asymptotic limit of the variance of the approximation

process. Similar to (1.32), one can have

lim
t→∞

E[(X(t)− v∞t)2]

t
= lim

t→∞

M2(t)− (v∞t)
2

t

= lim
s→0

s2

(
M̃2(s)− 2v2

∞
s3

)
. (1.34)

Substituting the Laplace transform of the second moment

M2(s) =
1

s

E[Q2] f̃∆(s)

1− f̃∆(s)
+ 2

(
E[Q]f̃∆(s)

1− f̃∆(s)

)2
 , (1.35)

into (1.34) and performing l’Hospital rules yields

lim
t→∞

E[(X(t)− v∞t)2]

t
= lim

s→0
s

E[Q2] f̃∆(s)

1− f̃∆(s)
+ 2

(
E[Q]f̃∆(s)

1− f̃∆(s)

)2
− 2v2

∞
s

=
E[Q2] + 2v2

∞
(
E[∆2]− 2E[∆]2

)
E[∆]

:= σ2
∞. (1.36)

The asymptotic behavior of the approximation process can be matched by the following

stochastic differential equation

dYt = v∞dt+ σ∞dWt, (1.37)

where Wt is a Wiener process.

Numerical comparison in Fig. 1.16(b) shows that the first moments of the original

stochastic model and our approximation by solving (1.28) are in a good agreement. In

particular, the asymptotic slope for both processes converges to the value in (1.33) as
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t→∞.
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Figure 1.16: Approximation of the biased stochastic model. (a) Nucleus po-
sition xN (t) is approximated by a renewal process X(t) with inter-blebbing
time ∆n and traveling distance Qn for n = 1, 2, · · · . Statistics of the first
bleb event and the following events (red dots) are independent and identically
distributed. (b) Average nucleus position as a function of time. The first
moment of the original process (blue curve) comes from averaging a total of
48 sample paths (gray curves). Corresponding curve for the approximation
processes (red-dotted curve) are computed by numerically solving (1.28) for
k = 1. (c) Time-averaged speed (top) and variance (bottom) of the original
process is compared with the asymptotic speed and variance of the approx-
imation process by (1.33) and (1.36). Parameters used here are Ωf = 40,
Ωb = 32, and others are the same as Fig. 1.4.

1.5 Discussion

The model presented here considers the bleb formation and healing cycle together with the

mechanics of the system to produce bleb-driven cell migration. We investigate the size of

the blebs, the time from formation to healing, and, for the first time, the distance traveled

in individual blebbing events. The stochastic model allows sustained cell travel by repeated
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blebbing.

This is the first model to allow elucidation of the determinants of distance traveled

during a bleb in terms of biophysical parameters such as adhesion kinetics and myosin

contractility. We find that myosin contractility, and the molecular reach and strength

of adhesions determine the distance traveled by the cell with a single bleb (Figure 1.7).

Our model makes predictions about how the distance traveled changes with experimental

perturbations, such as changes in myosin contractility that could be induced by changes in

blebbistatin [51].

We also investigate the effect of varying biophysical parameters on bleb size and heal-

ing time. In this case, we find that changes in the molecular reach of adhesions, in the

nondimensional parameter D, affect the time taken for the bleb to heal (as in [26]). In

contrast with the results in [26], where increases in M abolish blebbing, increases in myosin

contractility in our model lead to a case where the bleb forms, but never heals (see Figure

1.5 (b)). This can be interpreted as cell death, or can be thought of as the cell healing being

beyond scales of interest. In our case, it is decreases in myosin contractility M that abolish

blebbing.

The stochastic version of the model allows for sustained travel. In this case, excitability

of the system, which was crucial for the deterministic model presented as well as for previous

efforts [26], is no longer necessary, as bistability suffices (see Figure 1.13). When the cell

is biased to travel in the front direction, contraction at the back leads to a net movement

forward towards the healing bleb [24], so that in the deterministic case the overall distance

travel decreases as the difference between the front and back values of myosin contractilityM

lead to a decrease in distance traveled. In the stochastic case however, the basin of attraction

of the steady state becomes smaller, so that even though individual events produce less

movements as M increases, the overall distance traveled over longer times is larger. It is

also possible for the stochastic model to generate sustained travel in the bistable case, as

the system is able to produce enough noise to escape both basins of attraction in tandem.
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From a theoretical perspective, we studied a stochastic hybrid system that involves

an excitable deterministic system (cell migration dynamics) and a Markov chain on some

discrete space (adhesion proteins assembly and turnover). Spontaneous excitation (cell

bleb event) is initiated by escaping the deterministic basin of attraction. Such escape time

problems have been studied in the context of cellular neuroscience by applying Kramer’s

rate theory [19], [20] and the large deviation theory [41], [15], [32]. Instead of the analytic

approximations, we directly obtain the escape time distribution by Monte Carlo simulation

and focus on analyzing the resulting behavior driven by the series of excitation events.

The framework presented here can be extended to 2D and 3D bleb-driven migration by

extending the mechanical model and utilizing the immersed boundary method to combine

this motility model with previous efforts that considered the role of fluid pressure inside

and outside the cell, such as [47].
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CHAPTER 2 : Bleb-driven Migration in 2D

2.1 Introduction

In this Chapter, we extend the framework presented in Chapter 1 to the 2D case. We

formulate the model and use the Immersed Bounday Method (IBM) [35] for simulation.

We present preliminary results and make suggestions to refine the model and numerical

algorithm. This 2D model fully combines the turnover model of [26] with the computational

fluid dynamics model of [47].

2.2 Model Formulation

This 2D model follows the same rationale as the 1D version, extending the turnover model

from [26] to the vector case to consider the Euclidean distance between the membrane and

cortex locations (XM (θ) and XC(θ)).

∂c

∂t
= ωa− rc (2.1)

∂a

∂t
=

konc

c0 + c
exp

(
−|XM −XC |

δ

)
− koffa exp

(
κ|XM −XC |

f0

)
(2.2)

The membrane experiences three forces: tension FMT , bending FMB , and adhesion to

the cortex FMAD, with

FMT =
∂

∂θ
(TMτM ), TM = gm + κm

(∣∣∣∣∂XM

∂θ

∣∣∣∣− l) , τM =
∂XM

∂θ

∣∣∣∣∂XM

∂θ

∣∣∣∣−1

(2.3)

FMAD = −(aκ+ κc) (|XM −XC | − δ)
XM −XC

|XM −XC |
= −FCAD (2.4)

FMB = −ε∂
4XM

∂θ4
(2.5)
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Force balance at the membrane is then given by

u− ∂XM

∂t
= fw−πn, fw = −ζF̂M F̂M = FM

∣∣∣∣∂XM

∂θ

∣∣∣∣−1

, FM = FMT +FMAD (2.6)

where fw gives water flow across the membrane and πn gives osmotic pressure.

The cortex similarly experiences two forces: tension FCT , and adhesion to the membrane

FCAD = −FMAD, with

FCT =
∂

∂θ
(TCτC), TC = gc + σc

(∣∣∣∣∂XC

∂θ

∣∣∣∣− β) , τC =
∂XC

∂θ

∣∣∣∣∂XC

∂θ

∣∣∣∣−1

(2.7)

Force balance at the cortex is then

ηcc

(
∂XC

∂t
− u

)
= FC = FCT + FCAD (2.8)

In this case, we cannot eliminate the pressure and fluid velocity, and simulate Stokes

flow in full,  µ∆u−∇p− ξu + f = 0

∇ · u = 0
(2.9)

where f combines the forces on the membrane and cortex that affect the fluid field,

f = fMAD + fMT + fMB + fCAD + fCT (2.10)

All parameters are defined in Table 2.5. The estimates provided on Table 2.5 are the

ones used in the simulations shown in this work, but extensive parameter exploration is still

needed to properly calibrate this model.
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2.3 Numerical Method

Note that the lower case forces are located on the Cartesian grid where the fluid equations

are solved, while the upper case forces are located on the Lagrangian grid that defines the

cell membrane and cortex locations. This is consistent with the IBM formulation for the

simulation algorithm. For the flow field u and the pressure p we use a regular Cartesian

grid with grid spacing h. The grid points θ on the Lagrangian mesh, or the corresponding

position (X(θ), Y (θ)) are the immersed boundary points.

1. Update adhesion and cortex densities

ci,n+1

(
1

∆t
+ r

)
=
ci,n

∆t
+ ωai,n

ai,n+1 − ai,n

∆t
=

konc
i,n

c0 + ci,n
exp

(
−|XM −XC |i,n

δ

)
− koffai,n+1 exp

(
κ|XM −XC |i,n

f0

)

2. Solve for the fluid field using the IBM. Compute the relevant forces using a fully

explicit discretization.

(a) Given Xn
M and Xn

C , compute

FnM = FMAD + FMT + FMB

FnC = FCAD + FCT

(b) Spread FnM and FnC onto the fluid mesh using

fi =
∑
θ

Fni δh(x−Xn)∆θ

where i = M,C, and combine them to obtain fn = fnM + fnC . Here,

δh(r) =
1

h
φ
( r
h

)
,
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φ(r) =


1
8(3− 2|r|+

√
1 + 4|r| − 4r2, |r| ≤ 1

1
8(5− 2|r| −

√
−7 + 12|r| − 4r2, 1 < |r| ≤ 2

0 2 < |r|

(c) Use fn to solve for un and pn.

(d) Use un to compute Un using

Un =
∑
x

unδh(x−Xn)h2

3. Update membrane positions:

Xi,n+1
M −Xi,n

M

∆t
= Ui

+ ζ

(
1

∆θ

[(
gm + κm

(
|Xi+1,n

M −Xi,n
M |

∆θ
− l

))
Xi+1,n+1
M −Xi,n+1

M

|Xi+1,n
M −Xi,n

M |

]

− 1

∆θ

[(
gm + κm

(
|Xi,n

M −Xi−1,n
M |

∆θ
− l

))
Xi,n+1
M −Xi−1,n+1

M

|Xi,n
M −Xi−1,n

M |

]

− (aiκ+ κc)
(
|Xi,n

M −Xi,n
C | − δ

) Xi,n
M −Xi,n

C

|Xi,n
M −Xi,n

C |

− ε

(∆θ)4

(
Xi+2,n+1
M − 4Xi+1,n+1

M + 6Xi,n+1
M − 4Xi−1,n+1

M + Xi−2,n+1
M

))

· ∆θ

|Xi,n
M −Xi−1,n

M |
+ πni,n
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4. Update cortex positions:

ηcc
iX

i,n+1
C −Xi,n

C

∆t
= ηcc

iUi

−
aiκ
(
|Xi,n

M −Xi,n
C | − δ

)
|Xi,n

M −Xi,n
C |

(Xi,n
M −Xi,n+1

C )
∆θ

|Xi,n
C −Xi−1,n

C |

−

(
gc + σ

ci+1 + ci

2

(
|Xi+1,n

C −Xi,n
C |

∆θ
− β

))
Xi+1,n+1
C −Xi,n+1

C

|Xi+1,n
C −Xi,n

C ||X
i,n
C −Xi−1,n

C |

+

(
gc + σ

ci + ci−1

2

(
|Xi,n

C −Xi−1,n
C |

∆θ
− β

))
Xi,n+1
C −Xi−1,n+1

C

|Xi,n
C −Xi−1,n

C |2

2.4 Simulation Results

Using the algorithm detailed in Section 2.3, we simulate cell blebbing in 2D. In this case, we

removed a sector of adhesions to allow the bleb to form. As seen in Figure 2.17, after the

adhesions are removed, allowing the cell membrane to expand. After some time, the cortex

starts to recover and adhesions reform, tethering the membrane and cortex and allowing

the membrane to retract.

In these preliminary results, there is a build-up of numerical error around the simulated

cell membrane. This is likely due to the fact that the turnover model is very stiff. One

possibility to resolve this is to incorporate a filter for the noise. Another option is to

implement an implicit version of the IBM, although this could be computationally taxing.

Osmotic pressure and bending forces on the membrane were included in an attempt to

resolve this, but thus far we have not find a set of parameters that would allow the bleb to

form and remove the noise.

With further work, this model can be used to study the combination of the turnover

and computational fluid dynamics models to develop a stochastic model for cell blebbing in

2D.
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Figure 2.17: Sample 2D simulation showing the membrane and cortex locations,
and the fluid flow field, as a bleb forms and heals back. Parameters are as listed in
Table 2.5.
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CHAPTER 3 : Cell Volume Control

3.1 Introduction

In this chapter, we discuss the modeling of cell volume control via a modified pump-leak

model. Volume regulation in vertebrates involves the adjustment (in time scales from min-

utes to hours) of cellular volume in response to external challenges or during the execution of

cellular functions. Biochemical reactions and equilibria depend on the concentrations of the

molecules involved in the reactions, and so cells must avoid short-term changes in volume

that will globally affect concentrations and interfere with cellular functions. Volume regu-

lation is achieved in mammalian cells by transporting ions such as sodium, potassium and

chloride, and small organic osmolytes, using plasma membrane channels and transporters.

Some of these are shown in Figure 3.19. While most cells in mammals are protected from

large osmotic disturbances, there are some, such as those in the gastrointestinal tract or

distal kidney tubules, which can be exposed to large changes in osmolarity outside the cell.

Furthermore, a pathological decrease in extracellular sodium ion levels (hyponatraemia) can

lead to cerebral oedema. Sometimes, osmotic changes may also originate in the cytoplasm

due for example to the breakdown of macromolecules into their building blocks [18]. The

actual rate of osmotic cell swelling or shrinkage can vary between cell types because of

differences in the water permeability of their plasma membranes.

Short-term regulatory volume changes (known as Regulatory Volume Decrease (RVD)

and Regulatory Volume Increase (RVI)) require a fast reversal of the osmotic gradients

that led to cell swelling or shrinkage respectively. There is a considerable redundancy

of volume-regulatory effectors [18]. Here, we consider RVI through the combined use of

Na+/H+ (such as NHE1) and Cl−/HCO−3 (AE) exchangers. These are activated by acidic

pH. The exact mechanism by which NHE1 regulates cell volume remains elusive [52]. When

cell shrinkage in induced by the medium, it is counteracted by the influx of sodium and

chloride and the accompanying osmotic driven influx of water which generates cell swelling
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to compensate. Throughout the RVI process, sodium is transported into the cell in exchange

for protons mediated by NHE1. The net gain of sodium with negligible change in proton

concentration results in a net osmotic gain due to the replacement of the extruded protons

through a dissociation of cytosolic weak acids. The entrance of water comes after the influx

of salt. The intracellular concentration of bicarbonate also increases because the membrane

is somewhat permeable to carbon dioxide. This growth in bicarbonate concentration drives

chloride into the cell via the anion exchanger (AE). This then leads to a combined gain

of sodium and chloride while extruding protons and bicarbonate. These recombine in the

extracellular space to produce water and carbon dioxide. This CO2 can re-enter and diffuse

into the cell and is thus osmotically irrelevant. The overall effect is that CO2 is ‘converted’ to

NaCl, which drives water into the cell. A schematic of this mechanism is shown in Figure

3.18. It appears that this is the primary mechanism driving RVI [52]. Another option

for RVI involves Na+/K+/2Cl− (NKCC) cotransporters, which transport one sodium, one

potassium and two chlorine ions into the cell, and is also electroneutral. NKCC is activated

by cell shrinkage, and the influx of salt drives water into the cell, thus increasing the volume.

In this work, we develop a model of cell volume control including NHE and AE,

as well as passive ion channels and reaction terms for the combination and dissociation

of carbon dioxide and water. This model is based on the pump-leak model [28], and is

thermodynamically consistent. We also model the sodium potassium pump (NaK-ATPase),

which is active (requires energy from ATP) and is therefore necessary for the dynamics of

the model. For the purpose of comparing the different possible mechanisms, we include

also a model of the NKCC symporter. Each of the exchangers and symporters can act

independently, thus allowing for a comparison of the effects of the different mechanisms for

RVI.
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Figure 3.18: A schematic of the steps involved in RVI through the Na-H
Exchanger mechanism.

Figure 3.19: A schematic showing the main channels and transporters.
We consider the Sodium-Hydrogen Exchanger, an Anion Exchanger, the
NKCC cotransporter and permeable channels. Adapted from [37].

47



3.2 Model Formulation

In this Section, we formulate a system of ODEs based on the pump-leak model for cell

volume. The main novel feature is the inclusion of CO2, and the reaction catalysed by

carbonic anhydrase.

Consider N species of ions and let ck, k = 1, . . . , N be the intracellular concentration

of the k-th species of ions. Let cCO2 be the intracellular concentration of carbon dioxide.

We let cek, and cCO2 , be the extracellular concentrations of these species, which are assumed

to be positive and constant independent of time. Let v be the volume of the cell. The

balance equation for the ions can be written as

d

dt
(vck) = −Jk(φ, c, ce)− pk(φ, c, ce) +Rk(c), k = 1, . . . , N. (3.1)

Here, we have written the transmembrane flux as the sum of the passive fluxes Jk

and the active flux pk. The active flux, typically generated by ionic pumps requires en-

ergy expenditure from ATP, whereas the passive flux, carried by ionic channels and trans-

porters, does not. The flux functions Jk and pk depend on the transmembrane potential

φ as well as the vector of intracellular and extracellular concentrations c = (c1, . . . , cN )T

and ce = (ce1, . . . , c
e
N )T , where ·T denotes the transpose. We also have solute generation

due to reactions Rk. Since ce is assumed constant, it only appears as parameters in the

above differential equation. We consider also dissolved carbon dioxide (CO2), with balance

equation:

d

dt
(vcCO2) = −k(cCO2 − ceCO2

) +
cCO2 − ceCO2

ln
cCO2
ceCO2

(1− σCO2)
dv

dt
+RCO2 . (3.2)

The derivation of 3.2, satisfying the Onsager reciprocity principle, is shown in Appendix

B.1. We consider the following ions: H+, Na+, Cl−, and HCO−3 . The reversible reaction of
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interest is

H2O + CO2

k1−−⇀↽−−
k−1

H+ + HCO −
3 , (3.3)

so we have the following generation due to the reaction:

Rw = RCO2 = −k1cwcCO2 + k−1cH+cHCO−3

RH+ = RHCO−3
= k1cwcCO2 − k−1cH+cHCO−3

RNa+ = RCl− = 0

(3.4)

where k1 and k−1 are the reaction rates in each direction, and we assume the concentration

of water cw to be constant, and neglect water throughout the model (fluctuations will be

too small compared to the amounts of water).

The passive flux Jk has three parts:

Jk = rk + jk + sk. (3.5)

We have the Hodgkin-Huxley flux

rk = gk

(
Fzkφ+RT ln

(
ck
cek

))
, (3.6)

where F is the Faraday constant, R is the ideal gas constant, and T is the temperature.

We also have jk, which refers to the NHE or AE exchangers. Following the work in [53],

[46] and [28]:

jNa+ = −jH+ =
GNa+H+(cNa+ceH+ − ceNa+cH+)

KNa+KH+ΣNa+H+

jCl− = −jHCO−3 =
GCl−HCO−3

(cCl−c
e
HCO−3

− ceCl−cHCO−3 )

KCl−KHCO−3
ΣCl−HCO−3

(3.7)
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where

Σkj =

(
1 +

ck
Kk

+
cj
Kj

)(
cek
Kk

+
cej
Kj

)
+

(
1 +

cek
Kk

+
cej
Kj

)(
ck
Kk

+
cj
Kj

)
; (3.8)

here, Ki are dissociation constants, Gjk are the permeability coefficients for the antiporters.

Finally, sk refers to the NKCC symporter. Following the work in [17], sk for K+, Na+, and

Cl−, is given by

sk = Ps
ceNa+c

e
K+(ceCl−)2 − cNa+cK+c2

Cl−(
cNa+

Ks
Na+

+ 1
)(

cK+

Ks
K+

+ 1
)(

cCl−
Ks
Cl−

+ 1
)2 , (3.9)

where Ps is the permeability coefficient of the NKCC symporter, and Ks
k are the saturability

values for each ion k. We consider the active flux for sodium and potassium generated by

the Na-K pump (ATPase) modeled by:

pNa+ = 3p, pK+ = −2p (3.10)

where p is a small constant. This is the simplest model for pk, used in simulations here, but

more realistic ones will be explored in future work. As a convention, we take fluxes to be

positive when they go from inside to outside the cell.

Equations 3.2 and 3.3 are supplemented by

0 =
∑
k

Fzkck + F
zA

v
=
∑
k

Fzkc
e
k, (3.11)

dv

dt
= −jw(c, ce, v), (3.12)

where

jw = ζ(πw + pw) (3.13)
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with osmotic and hydraulic pressures

πw = RT

(∑
k

cek −

(∑
k

ck +
A

v

)
− σCO2

(
cCO2 − ceCO2

))
, pw = h(v). (3.14)

Here, ζ > 0 is the hydraulic conductivity of water through the membrane, A > 0 is the

total amount of impermeable organic molecules inside the cell, with average valence z, and

reflection coefficient σi.

It is also interesting to consider the fast reaction limit, where the reaction terms Rk

and RCO2 become constants that satisfy the algebraic constraint

cCO2 = KcH+cHCO−3
, (3.15)

where K = k−1

k1cw
.

3.3 Free Energy Identity

In this Section, we show that the system described above satisfies a free energy identity. The

fact that we can derive this identity shows that the model is thermodynamically consistent,

and we have accounted for all the physics in the problem. It is also useful to find the energy

used in volume regulation, and can be modified in future work to get a Lyapunov function

to use in existence and stability of steady states.

Proposition 1. Let v, ck, cCO2, and φ, satisfy the model equations 3.1-3.12. Then, the

following equality holds:

d

dt
(vσ) = −πwjw −

∑
k

µkJk − k−1cH+cHCO−3
(Q− 1) logQ, (3.16)

where

σ = RT

(∑
k

ck

(
ln
ck
cek
− 1

)
+ cek + cA(ln cA − 1) + cCO2

(
ln
cCO2

ceCO2

− 1

)
+ ceCO2

)
, (3.17)
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Q =
cCO2

KcH+cHCO+
3

, and K = k−1

k1cw
is the reaction equilibrium constant.

In the above, we have labeled fluxes by Jk for simplicity, and treat CO2 the same way

as the ions (with zCO2 = 0).

Proof. We view σ as a function of ck, cCO2 , and cA, with cA = A
v . Note that

d

dt
(vcA) =

dA

dt
= 0. (3.18)

Define the chemical potential

µk = RT ln
ck
cek

+ Fzkφ =
∂σ

∂ck
+ Fzkφ (3.19)

for charged solutes and CO2, and

µA = RT ln cA + Fzφ =
∂σ

∂cA
+ Fzφ, (3.20)

for the impermeable anions. Multiply 3.1 by µk, 3.2 by ECO2 + µCO2 , and 3.18 by µA, and

sum:

∑
k

µk
d

dt
(vck) + µA

d

dt
(vcA) = −µk(Jk −Rk) (3.21)

The left hand side of 3.21 yields

∑
k

µk
d

dt
(vck) + µA

d

dt
(vcA)

=
d

dt
(vσ) +

dv

dt

(∑
k

ck
∂σ

∂ck
+ cA

∂σ

∂cA
− 2σ

)

=
d

dt
(vσ)− πw

dv

dt

(3.22)
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where we used 3.11, and the fact that

πw = σ −

(∑
k

ck
∂σ

∂ck
+ cA

∂σ

∂cA

)
. (3.23)

On the right hand side of 3.21, the reaction terms yield

−
∑
k

µkRk = −k−1cH+cHCO−3
(Q− 1) logQ, (3.24)

where we used 3.11, and Q =
cCO2

KcH+cHCO+
3

, assuming that the reaction is in equilibrium

outside the cell.

3.4 Numerical Simulations

We perform simulations in Python 2.7. We used a backward Euler scheme, and linearized

fluxes to get a linear system. The parameters used are in Appendix C.1, with any changes

indicated in the corresponding figures. Some preliminary resultsare shown in Figure 3.20.

We see that the fluxes affect the system in the way expected: both NHE and NKCC increase

the volume, with NHE being somewhat more effective. Increasing the rate of the reaction

also increases volume, as there is more CO2 present. If we eliminate both the fluxes and

the reaction, we see that the steady state volume is lower. It seems that the reaction has

a greater effect. This could be because the reaction results in a higher osmolyte content,

driving osmosis.
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(a)

(b)

(c)

Figure 3.20: (a) Shows the results of the simultations when varying the
channel fluxes present. (b) Shows the results of changing the reaction
constants. (c) Shows the results when none of the new fluxes (NHE or
NKCC) are present, and the reaction is also blocked.
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3.5 Future Work

The next steps in this work will be to quantify the effect of modifying different aspects

of the model, such as the amount of carbonic anhydrase (which catalyses the reaction),

and the prevalence of different pumps and channels. We will also derive theoretical results

concerning the existence and stability of the model, and the effect of the reaction on the

steady state(s). It appears that the only published theoretical results related to this model

are those shown in [28], but no reactions are considered in that work. The free energy

identity in the previous section will be useful both to see how much energy is required with

varying pumps, and as a Lyapunov function when looking for steady states.
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CHAPTER 4 : Electrodiffusion and Actin-Driven Cell Migration

4.1 Introduction

There are currently two main approaches in biophysics that relate to the issue of cell mi-

gration. On the one hand, there is a purely mechanical approach built around the so-called

‘treadmill model’ ([44], [10], among others), in which the moving cell develops a protrusion

at the leading edge using actin, adheres it to the surrounding matrix, removes the adhesion

from the rear, and uses cytoskeletal contraction to pull the cell forward. On the other hand,

there is the ‘osmotic engine model’, which describes a polarized cell moving by permeating

water through the membrane [49]; this approach involves the flow of ions across the mem-

brane. Evidence [22], [43] has further shown that electrodiffusion also plays an important

role in cell migration. In particular, [22] presents results that show that without actin poly-

merization and myosin contraction, electric fields can also drive cell migration, even when

the cell is not polarized.

We expect that cell functions such as migration are regulated by complex processes in-

volving both mechanics and electrophysiology. For instance, there is experimental evidence

showing that actin filaments undergo reorganization following membrane depolarization

in bovine eye endothelial and epithelial cells, suggesting a functional role of membrane

potential in cytoskeletal organization [3]. However, the interplay of mechanical and electro-

physiological effects is not well understood. While the mechanics of cell division are known,

for example, there is currently no explanation for the drastic changes in membrane poten-

tial during this process, with the cell becoming depolarized or hyperpolarized at different

stages [3]. Another case where changes in membrane potential are not understood include

the wide range of potentials that can be exhibited by cells: fully differentiated cells have a

membrane potential of ∼ −70mV, while embryonic cells are at ∼ −10mV, and cancer cells

can be ∼ −30mV. Interestingly, cells with a lower potential rarely develop into cancer, and

cells like heart cells never do. Right now, there is no satisfying explanation of why this is
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the case.

There are several mathematical models that treat cell movement [44], [10]. These

models focus on myosin contraction, adhesion, and actin polymerization. Also in the litera-

ture is the osmotic engine model, which describes a cell moving in a narrow 1D channel by

permeating water through the cell, which must be polarized [49]. Ion fluxes and transmem-

brane potential have been incorporated with some success in models for eukaryotic cells,

and have thus far been applied to cell volume control [36], [31], and tissue-level modelling

of cortical spreading depression [29], but not to cell motion.

In this chapter we develop a system of partial differential equations (PDEs) to model

cell migration in one dimension, combining an ionic electrodiffusion model with a cell move-

ment model. We treat osmotic water flow, electrodiffusion, and actin polymerization in a

unified framework with a deformable and capacitance-carrying membrane. The resulting

system of equations is a highly coupled system of PDEs in a moving domain. Furthermore,

this model possesses a thermodynamic structure, satisfying a free energy identity.

The framework described here can also be used to address other related problems such

as understanding the role of certain proteins in cell volume control [52] or how cells move

apart during cytokinesis [21].

The remainder of this Chapter is organised as follows. In Section 4.2, we introduce

the model. In Section 4.3, we show that the model satisfies a free energy identity in which

the sum of the entropic free energy, the elastic energy, and the actin network energy density

are dissipated through bulk diffusion, transmembrane chemical fluxes, osmotic water flow,

and network phase fluxes. In Section 4.5, we develop a computational scheme to simulate

the system, and study its convergence.
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Figure 4.21: A schematic showing the role of ion channels in cell move-
ment, from [42]. Different ion channels/water channels are expressed at
the tip of a crawling cell, all of which affect cell movement.

4.2 1D Model Formulation

In this Section, we formulate a system of PDEs that governs the diffusion of electrolytes,

actin polymerization, and osmotic water flow within a moving domain bounded by a mem-

brane. The approach used here is similar to those in [31] and [30].

Consider a bounded domain Ω ⊂ R where the cell lives. The cell membrane location

is the set Γ ⊂ Ω, which contains two points. The membrane divides Ω into three regions.

Let Ωi ⊂ Ω be the intracellular region bounded by Γ, and let Ωe ⊂ Ω \ (Ωi ∩ Γ) be the

extracellular regions. We will denote the two immersed boundary points by Xf and Xb.

In the intracellular region, the unknowns will be the concentration of each ionic species

ck, k = 1, . . . , N , the electrostatic potential φ, the concentration of the actin network phase

θ, the fluid velocity u, and the hydrostatic pressure p. In the extracellular region, the

unknowns will be u, p, ck, and the electrostatic potential φ. Another unknown quantity

is the membrane location X(s, t) where s is the material coordinate of the membrane (or

the actin cortex). We will denote the jump of a quantity α across the membrane by [α] =

α|Γi
− α|Γe .
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Let ω be the entropic part of the free energy per unit volume of this solution. Here,

the following expression for ω is adopted:

ω =
N∑
k=1

kBTck ln ck, (4.1)

where kB is the Boltzmann constant, and T is temperature. This is valid when the ionic

solution is sufficiently dilute and leads to linear diffusion of the solute.

Given ω, we can write the chemical potential of each species:

µk =
∂ω

∂ck
+ qzkφ = σk + qzkφ, (4.2)

where q is the elementary charge, and zk is the valence of species k.

Assuming electroneutrality, we can write the following algebraic condition:

N∑
k=1

qzkck = 0, (4.3)

in Ωi and Ωe.

For the ionic concentration in Ω, we will have

∂ck
∂t

+ u
∂ck
∂x

=
∂

∂x

(
ck

Dk

kBT

∂µk
∂x

)
, (4.4)

where Dk is the diffusion coefficient of species k. Note that with the above choice of ω, we

recover the Poisson-Nerst-Plank model. We shall impose Dirichlet boundary conditions on

∂Ω. We have boundary conditions

−ck
Dk

kBT

∂µk
∂x

= −ffwck + ffk

ck
Dk

kBT

∂µk
∂x

= f bwck + f bk

(4.5)

on Xf and Xb respectively, where fk is the chemical flux through the membrane, and fw is
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the water flux through the membrane.

We now turn to the network phase concentration. This is modelled, in Ωi, by

∂θ

∂t
+

∂

∂x
(θv) = 0 (4.6)

subject to

θ

(
∂Xf

∂t
− v
)

= jfactin

−θ
(
∂Xb

∂t
− v
)

= jbactin

(4.7)

at Xf and Xb. Here, v is the velocity of the network phase, which satisfies

−∂σ
∂x
− ηsθv − ηθ(v − u) = 0, (4.8)

where σ is the network pressure. We will assume that σ is of the form

σ = σn(θ) + σa, (4.9)

where σn and σa are the network and active parts respectively.

Now, we discuss force balance. Inside the cell, we use a Brinkman equation, which in

one dimension reduces to

−∂p
∂x

+ ηθ(v − u) = 0, (4.10)

where η is the friction coefficient between the actin network and the cytosolic fluid. Note

that by incompressibility, u is constant in x. We impose the following boundary conditions

on Xf and Xb:

σ + p− (p∞ + dgu) = k(Xf −Xb)

σ + p− (p∞ − dgu) = k(Xf −Xb)

(4.11)
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at Xf and Xb respectively, where dg is the fluid drag coefficient and p∞ is the pressure far

from the cell. We also have

∂Xf

∂t
− u = −ffw

∂Xb

∂t
− u = f bw

(4.12)

Note that the second condition is just the continuity condition.

We assume that the membrane capacitance Cm(x) satisfies

Cm(x) = 0. (4.13)

For the solute flux on Xf and Xb, we use the following constitutive relation:

fk = jk + ak, (4.14)

where jk and ak are the passive and active fluxes respectively. Some possible choices of jk

include

jHHk = gk[µk] = gkkBT [ln ck] + gkzkq[φ], (4.15)

jGHKk = Pkzkφ
′

(
ck|Γi

exp(zkφ
′)− ck|Γe

exp(zkφ′)− 1

)
, φ′ =

q[φ]

kBT
, (4.16)

where gk and Pk are positive and might depend on gating variables.

In the case of water flux, we let fw = jw +aw where jw is passive flux, and aw is active

flux. One possibility for jw is

jw = −ζ

(
NAkBT

N∑
k=1

[ck]− [p]

)
, (4.17)

where NA is Avogadro’s number, and ζ = ∂jw
∂[ψw] |[ψw ]=0

, with [ψw] = [p]− [πw], where [πw] =∑N
k=1[ck]kBT is the osmotic water pressure.
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If we assume a constant amount of network actin, we must impose the condition

∑
Γ

jactin dmΓ = 0. (4.18)

By convention, we take fluxes going from inside to outside the cell to be positive.

We further assume that the mechanical force is of the form

Felastic = k(Xf −Xb), (4.19)

and the capacitance force is

Fcapacitance = 0. (4.20)

4.3 Free Energy Identity

In this Section, we show that the system described above satisfies a free energy identity.

Theorem 1. Suppose ck, θ, p, v, X, and φ, are smooth functions that satisfy the equations

and boundary conditions described in Section 4.2. Then, ck, θ, p, v, X, and φ, satisfy the
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following free energy identity:

d

dt
(G+ en + Eelastic) = −(If + In + Im) + (Jn + Jm),

G =

∫
Ω
ω dx, en =

∫
Ωi

en dx,

If =

∫
Ω

N∑
k=1

ck
Dk

kBT

(
∂µk
∂x

)2

dx+ 2dgu
2,

In =

∫
Ωi

ηsθv
2 dx+

∫
Ωi

ηθ(v − u)2 dx,

Im =

N∑
k=1

(
([ck]

f − (p∞ + dgu− pf,i))ffw + ([ck]
b

− (p∞ − dgu− pb,i))f bw + [µk]
fffk + [µk]

bf bk
)
,

Jn =

∫
Ωi

σa
∂v

∂x
dx,

Jm =
1

θ
(jfactin + jbactin)σa +

(
den
dθ

)f
jfactin +

(
den
dθ

)b
jbactin.

(4.21)

The identity 4.21 can be viewed as a free energy balance. The free energy consists of

the contributions from entropy (G), the network energy density (en), and the membrane

elasticity (Eelastic). The change in the free energy is through bulk fluxes (If ), membrane

fluxes (Im), network phase fluxes (In), myosin contraction (Jn), and actin polymerization

(Jm). The terms If , In, and Im, are positive and represent a dissipation of free energy. The

term Jn and Jm represent energy input.

Proof. Consider equation 4.4. Multiply by µk, integrate over Ωi, and sum over k:

N∑
k=1

∫
Ωi

µk
∂ck
∂t

dx+
N∑
k=1

∫
Ωi

µku
∂ck
∂x

dx =
N∑
k=1

∫
Ωi

µk
∂

∂x

(
ck

Dk

kBT

∂µk
∂x

)
dx. (4.22)

The right hand side is

∫
Ωi

µk
∂

∂x

(
ck

Dk

kBT

∂µk
∂x

)
dx =

∫
Γi

µkck
Dk

kBT

∂µk
∂x

dmΓ −
∫

Ωi

ck
Dk

kBT

(
∂µk
∂x

)2

dx
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Consider now the left hand side of 4.22:

N∑
k=1

µk
∂ck
∂t

+ µku
∂ck
∂x

=
N∑
k=1

∂ω

∂ck

(
∂ck
∂t

+ u
∂ck
∂x

)
=
∂ω

∂x
,

which, integrating over Ωi gives

∫
Ωi

∂ω

∂t
+ u

∂ω

∂x
dx =

∫
Ωi

∂ω

∂t
dx+

∫
Γi

ωudx =
d

dt

∫
Ωi

ω dx+

∫
Γi

ω

(
u− ∂X

∂t

)
dmΓ

Performing a similar calculation over Ωe and adding this to the above, we have

d

dt

∫
Ω
ω dx+

∫
Γ
[ω]

(
u− ∂X

∂t

)
dmΓ

=
N∑
k=1

∫
Γ

[
µkck

Dk

kBT

∂µk
∂x

]
dmΓ −

N∑
k=1

∫
Ω
ck

Dk

kBT

(
∂µk
∂x

)2

dx.

Using 4.11 and 4.12,

d

dt

∫
Ω
ω dx+ ([ω]fffw + [ωb]f bw) =

N∑
k=1

[µk(f
f
wck − f

f
k )]f − [µk(−f bwck + f bk)]b

−
N∑
n=1

∫
Ω
ck

Dk

kBT

(
∂µk
∂x

)2

dx,

so that

d

dt

∫
Ω
ω dx = −[ω]bf bw − [ω]fffw +

N∑
n=1

(
[µkck]

fffw − [µk]
fffk − [−µkck]bf bw − [µk]

bf bk

)
−

N∑
k=1

∫
Ω
ck

Dk

kBT

(
∂µk
∂x

)2

dx

=

N∑
k=1

(
−[ω]bf bk + [µkck]

bf bw − [ω]fffw + [µkck]
fffw − [µk]

fffk − [µk]
bf bk

)
−

N∑
k=1

∫
Ω
ck

Dk

kBT

(
∂µk
∂x

)2

dx.

(4.23)
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Note that

−[ω] + [µkck] = [ck], (4.24)

and so

d

dt

∫
Ω
ω dx =

N∑
k=1

(
−[ck]

bf bw − [ck]
fffw − [µk]

fffk − [µk]
bf bk

)
−

N∑
k=1

∫
Ω
ck

Dk

kBT

(
∂µk
∂x

)2

dx.

(4.25)

Consider 4.8 and 4.10. Multiply them by v and u respectively and add:

∫
Ωi

(
−v∂σ

∂x
− u∂p

∂x

)
dx =

∫
Γi

−vσ − up dmΓ −
∫

Ωi

−σ ∂v
∂x

dx, (4.26)

where we’ve used the fact that u is constant in x. At the front,

−vσ − up =
1

θ
jfactin −

∂Xf

∂t
σ −

(
∂Xf

∂t
+ ffw

)
p

=
1

θ
jfactinσ + ffw(p∞ + dgu− p)− dgu2 − p∞u− k(Xf −Xb)

∂Xf

∂t
,

(4.27)

while at the back,

vσ + up =
1

θ
jbactinσ +

∂Xb

∂t
σ +

(
∂Xb

∂t
− f bw

)
p

=
1

θ
jbactin + f bw(p∞ − dgu− p)− dgu2 + p∞u+ k(Xf −Xb)

∂Xb

∂t
.

(4.28)

Then, we have

1

θ
(jfactin + jbactin)σ + ffw(p∞ + dgu− p) + f bw(p∞ − dgu− p)− 2dgu

2

− k(Xf −Xb)

(
∂Xf

∂t
− ∂Xb

∂t

)
+

∫
Ωi

σ
∂v

∂x
dx =

∫
Ωi

ηsθv
2 dx+

∫
Ωi

ηθ(v − u)2 dx,

(4.29)
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and

d

dt

(
1

2
(Xf −Xb)

2

)
=

1

θ
(jfactin + jbactin)σ + ffw(p∞ + dgu− p) + f bw(p∞ − dgu− p)− 2dgu

2

−
∫

Ωi

ηsθv
2 dx−

∫
Ωi

ηθ(v − u)2 dx+

∫
Ωi

σ
∂v

∂x
dx

(4.30)

We introduce a network energy density en(θ) satisfying

θ
den
dθ
− en = θ2 d

dθ

(en
θ

)
= σn(θ). (4.31)

We have

d

dt

∫
Ωi

en dx =

∫
Ωi

∂en
∂t

dx+

∫
Γ
en
∂X

∂t
dmΓ = −

∫
Ωi

den
dθ

∂

∂x
(θv) dx+

∫
Γ
en
∂X

∂t
dmΓ

=

∫
Ωi

v
∂σn
∂x

dx+

∫
Γ
−σn

∂X

∂t
+
den
dθ

θ

(
∂X

∂t
− v
)
dmΓ

=

∫
Γ
vσn dmΓ −

∫
Ωi

σn
∂v

∂x
dx+

∫
Γ
−σn

∂X

∂t
+
den
dθ

jactin dmΓ

= −1

θ
jfactinσn −

1

θ
jbactinσn −

∫
Ωi

σn
∂v

∂x
dx+

(
den
dθ

)f
jfactin +

(
den
dθ

)b
jbactin.

(4.32)

Combining these results, we obtain 4.21.

4.4 Linear Theory

In this Section, we solve the model equations at steady state. That is, we assume that the

cell is moving at a constant speed

∂Xf

∂t
=
∂Xb

∂t
= v0, (4.33)

and that the state of the cell is stationary with respect to the coordinate system moving at

speed v0. The cell has length Xf −Xb = L. We look for a closed-form expression for v0.
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Suppose ck = c∗k are constant, and the fluxes fw = fk = jactin = 0, so that the cell is

at rest. Then,

v0 = v = u = 0, (4.34)

and θ = θ∗, σ = σ∗, p = p∗, and φ = φ∗ are all constant. We assume the following flux

relation for the ion channel currents:

jb,fk =

N∑
l=1

Gklµ
b,f
l , µb,fl = ln

(
cl

cb,fl

)
+

qzl
kBT

(φ− φb,f ). (4.35)

Here, µl is the chemical potential difference across the membrane, and Gkl are constants.

In matrix form, this can be written as

jb,f = Gµb,f , (4.36)

where G is the matrix whose entries are given by Gkl, j
b,f = (jb,f1 , . . . , jb,fN )T is the vector

of ion channel currents and likewise for µb,f . The second law of thermodynamics asserts

that (G + GT )/2 must be positive definite, and Onsager reciprocity requires that G be

symmetric. The above includes as a special case the relation 4.15, which we can write as

jb,fk = gkµ
b,f
k , gk > 0. (4.37)

In this case, G is diagonal. The added generality of 4.35 or 4.36 covers the case of passive

membrane transporters such as the Na-K-Cl cotransporter. We take the pump currents to

be constants:

afk = abk = constant = a0
k. (4.38)

This is a frequently used simplification which is justified if the substrate concentration is

not low and ATP is found in abundance.

67



We let −L
2 < x < L

2 rewrite equation 4.5 as

−Dk

(
∂ck
∂x

+
qzk
kBT

ck
∂φ

∂x

)
= −ckffw + ffk ;

Dk

(
∂ck
∂x

+
qzk
kBT

ck
∂φ

∂x

)
= −ckf bw + f bk;

(4.39)

For steady state solutions, ∂ck
∂t = 0, and (ckv0 + fk) is a constant, where the fluxes fk are

constants to be determined. By convention, the flux is positive in the outward direction

(from inside to outside the cell). We now impose a small active flux

abk = a0
k −

βk
2

afk = a0
k +

βk
2,

(4.40)

where β > 0, β � 1. We want to know how the concentration, voltage, and velocity of the

cell change under this small imposed difference. Let

ck = c∗k + dk, φ = φ∗ + ψ. (4.41)

The functions dk and ψ are deviations of the concentrations and voltage from c∗k and φ∗

respectively and are assumed small. The functions fk and v0 are small quantities, since their

values is the absence of this small flux are 0. We now write all equations assuming these

quantities are small (retain only terms that are linear in the small quantities). Equations

4.39 and 4.3 yield

−Dk

(
∂dk
∂x

+
qzk
kBT

c∗k
∂ψ

∂x

)
= −fwc∗k + fk, (4.42)

N∑
k=1

zkdk = 0. (4.43)

To obtain the second equation, we used

N∑
k=1

zkc
∗
k = 0. (4.44)
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At steady state, we had
N∑
l=1

Gklµ
0,f
l + a0

k = 0, (4.45)

while now

ffk =
N∑
l=1

Gklµ
f
l + a0

k +
βk
2
. (4.46)

Subtracting these,

ffk =
N∑
l=1

Gkl

(
ln

(
c∗l + dfl
c∗l

)
+

qzl
kBT

ψf

)
+
βk
2
, (4.47)

where dfk = dk(L/2), and we used φf = φb = 0. Since dfk is a small quantity, we can linearize

further to get

ffk =

N∑
l=1

Gkl

(
dfl
c∗l

+
qzl
kBT

ψf

)
+
βk
2
. (4.48)

Similarly, we have

−f bk =
N∑
l=1

Gkl

(
dbl
c∗l

+
qzl
kBT

ψf
)
− βk

2
, (4.49)

where dbk = dk(−L/2).

Now, let us solve for the deviations. Take the derivative of 4.43 with respect to x and

use 4.42 to eliminate derivatives in dk. Then

(
N∑
k=1

qz2
k

kBT
c∗k

)
∂ψ

∂x
= −

N∑
k=1

zk
Dk

(ffk − fwc
∗
k). (4.50)

This shows that ψ is a linear function of x. From this and 4.42 we also find that dk are

linear functions in x. By symmetry, we must have

dk =
2dfk
L
x, ψ =

2ψf

L
x, dbk = −dfk , ψb = −ψf . (4.51)
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Substituting this back into 4.42, we have

−2
Dk

L

(
dfk +

qzk
kBT

c∗kψ
f

)
+ fwc

∗
k =

N∑
l=1

Gkl

(
dfl
c∗l

+
qzl
kBT

ψf

)
+
βk
2
. (4.52)

Define the matrix H whose entries Hkl are given by

Hkl = Gkl + 2
Dk

L
c∗l δkl, (4.53)

where δkl is the Kronecker delta function. Using 4.48, we have

dfk +
qzk
kBT

c∗kψ
f = −

N∑
l=1

(
−fw(H−1)klc

∗
l + (H−1)kl

βl
2

)
. (4.54)

Summing over k,

N∑
k=1

dfk = −
N∑
k=1

N∑
l=1

(
−fw(H−1)klc

∗
l + (H−1)kl

βl
2

)
, (4.55)

and dbk = −dfk .

At steady state, to first order, 4.6 is

∂

∂x
(θ∗v) = 0, (4.56)

and so v is constant in x. We also rewrite 4.8 and 4.10 to first order as

−∂σ
∂x
− ηsθ∗v − ηθ∗(v − u) = 0, (4.57)

and

−∂p
∂x

+ ηθ∗(v − u) = 0. (4.58)
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Adding 4.57 and 4.58, and integrating, we have

−
∫ Xf

Xb

(
∂p

∂x
+
∂σ

∂x

)
dx =

∫ Xf

Xb

ηsθ
∗v dx. (4.59)

Since θ∗v is constant in x and using 4.11, we find

u = −ηsθ
∗L

2dg
v. (4.60)

Also, by 4.7, given that v is constant, we must have

jfactin = −jbactin, (4.61)

and

v = −
jfactin

θ∗
+ v0, (4.62)

u =
ηsθ
∗L

2dg

(
jfactin

θ∗
− v0

)
. (4.63)

Putting these into 4.58, we find that

p(x) = −η
(

1 + ηs
θ∗L

2dg

)
(jfactin − θ

∗v0)x+Bp. (4.64)

By 4.12,

−ffw = f bw, (4.65)

assuming afw = abw = aw, and fixing the outside concentration at c∗k, we have

[p]f = −[p]b, (4.66)

so

pf − (p∞ + dgu) = −(pb − (p∞ − dgu))⇒ pf + pb

2
= p∗, (4.67)
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and Bp = p∗. Hence,

[p]f = −η
(

1 +
ηsθ
∗L

2dg

)
(jfactin − θ

∗v0)
L

2
− dgu. (4.68)

Assuming the outside concentration is fixed at c∗k, we also have

N∑
k=1

[ck]
f = −

N∑
k=1

N∑
l=1

(
−fw(H−1)klc

∗
l + (H−1)kl

βl
2

)
. (4.69)

Combining now 4.12, 4.63, 4.68, and 4.69, and solving for v0, we find

v0 =
− 1

2ζNAkBT 〈e, H
−1β〉+

jfactinL

2

(
ηsθ

∗

dg
(1 + ζNAkBT 〈e, H−1c∗〉) + ζ

(
ηsθ

∗ + η
(

1 + ηsθ
∗L

2dg

)))
(

1 + ηsθ∗L
2dg

)
(1 + ζNAkBT 〈e, H−1c∗〉) + ζ Lθ

∗

2

(
ηs + η

(
1 + ηsθ∗L

2dg

))
(4.70)

4.5 Numerical Method

In this Section, we develop a numerical scheme that allows for the solution of the model

equations. We use a splitting scheme for time stepping, alternating between the update

of X, ck and φ, σ and θ, and p. For each of these substeps, a backward Euler type time

discretization is used. Computations were performed in Python 2.

Let L be the length of the domain, ∆x be the spatial grid size, and Nx be the number

of grid points so that Nx∆x = L. We let the time step be ∆t. Let Xn
f , Xn

b , clnk , φln, σln,

θln, pln, and un be the discretized values of X, ck, φ, σ, θ, p and u at the l-th grid point at

time t = n∆t.

To ensure stability, we use a CFL-type condition, requiring that ∆t satisfy

∆t <
1

vb
∆x, (4.71)

where vb is a characteristic velocity of the system - in this case, we have two possibilities:
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the fluid velocity u, or the boundary velocity. We choose the more restrictive one of the

two conditions.

We set initial conditions for ck, θ, Xf and Xb. We assume the following relations to

define σ:

σn(θ) = −NAkBTρ0

(
θ0

θ
− θ

2θ0

)
, σa(x) = kax, (4.72)

where ρ0 is the initial network density, ka is the active network pressure flux, and θ0 is the

initial concentration θ. Thus, we can compute the initial value of σ. We can use equation

4.8 to find v and put it into 4.10 to obtain

−∂p
∂x
− η

η + ηs

∂σ

∂x
+

(
η2θ

η + ηs
− ηθ

)
u = 0. (4.73)

To find p and u at time t = 0, we discretize as follows:

p(l+1)0 − pl0

∆x
=

η

η + ηs

(
∂σ

∂x

)l0
−
(

η2

η + ηs
θl0 − ηθl0

)
u0, (4.74)

with boundary conditions

σL0 + pL0 − (p∞ + dgu
0) = k(X0

f −X0
b ),

σR0 + pR0 − (p∞ − dgu0) = k(X0
f −X0

b ).

(4.75)

We solve for p and u only in Xb < x < Xf .

Once we have initial values for all variables, we proceed as follows.

Step 1 In the first substep, we update the position of the moving boundaries Xf and Xb.

Combining equations 4.11, 4.12, and 4.17, we have

∂Xf

∂t
= u− ζ

[
NAkBT

N∑
k=1

[ck]− k(Xf −Xb) + σ

]
− aw,

∂Xb

∂t
= u+ ζ

[
NAkBT

N∑
k=1

[ck]− k(Xf −Xb) + σ

]
+ aw.

(4.76)
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We discretize this as

Xn+1
f = Xn

f −∆t

(
−un + ζ

[
NAkBT

N∑
k=1

[ck]− k(Xn
f −Xn

b ) + σ

]
− aw

)
,

Xn+1
b = Xn

b + ∆t

(
un + ζ

[
NAkBT

N∑
k=1

[ck]− k(Xn
f −Xn

b ) + σ

]
− aw

)
.

(4.77)

Step 2 In the second step, we compute the concentration of the ionic species ck, and the

electrostatic potential φ. We discretize equations 4.3 and 4.4 as follows:

c
l(n+1)
k − clnk

∆t
+ un

c
(l+1)n
k − clnk

∆x
= − 1

∆x
(f
l+ 1

2
k − f l−

1
2

k ), un < 0 (4.78)∑
k

zkc
ln
k =

∑
k

zk
∆t

∆x

(
un(c

(l+1)n
k − clnk )− (f

l+ 1
2

k − f l−
1
2

k )

)
(4.79)

c
l(n+1)
k − clnk

∆t
+ un

clnk − c
(l−1)n
k

∆x
= − 1

∆x
(f
l+ 1

2
k − f l−

1
2

k ), un > 0 (4.80)∑
k

zkc
ln
k =

∑
k

zk
∆t

∆x

(
un(clnk − c

(l−1)n
k )− (f

l+ 1
2

k − f l−
1
2

k )

)
(4.81)

where we obtained the modified electroneutrality condition by combining 4.3 and 4.4

before discretizing to achieve a more stable method than we would have by simply

taking
∑

k zkc
l(n+1)
k = 0, and

f
l+ 1

2
k = −Dk

(
c

(l+1)(n+1)
k − cl(n+1)

k

∆x
+

qzk
kBT

c
(l+1)n
k + clnk

2

φ(l+1)(n+1) − φl(n+1)

∆x

)
,

f
l− 1

2
k = −Dk

(
c
l(n+1)
k − c(l−1)(n+1)

k

∆x
+

qzk
kBT

clnk + c
(l−1)n
k

2

φl(n+1) − φ(l−1)(n+1)

∆x

)
.

(4.82)

Dirichlet boundary conditions are imposed at ∂Ω - note that for now, we do not have a

clear reason to impose these conditions over others, but this ones are chosen solely for

convenience and ease of implementation. Upwinding is necessary in the discretization
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of the convective flux to achieve a stable scheme.

The grid points immediately before and after each boundary require a special treat-

ment, as values are not continuous across the membrane. We use the quadratic in-

terpolant described in [25] to obtain the solution at these points. On the left side of

each boundary, we use

p̂i+1 =
2(1−∆L)

2 + ∆L
pi−2 − 3(1−∆L)

1 + ∆L
pi−1 +

6

(1 + ∆L)(2 + ∆L)
pL, (4.83)

where the superscript L denotes the value at the boundary on the left hand side.

Similarly, on the right side of each boundary, we use

p̂i−1 =
6

(1 + ∆R)(2 + ∆R)
pR − 3(1−∆R)

1 + ∆R
pi+1 +

2(1−∆R)

1 + ∆R
pi+2, (4.84)

where the superscript R denote the value at the boundary on the right hand side. Here,

∆L is the remainder of Xn+1

∆x and ∆R = 1−∆L. A schematic of this interpolation is

shown in Figure 4.22.

Figure 4.22: A schematic showing the interpolation for values across the
membrane, from [25].

At the moving boundaries Xf and Xb, we have boundary conditions prescribed in 4.5.
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At Xf , we have

f
l+ 1

2
k = c

L(n+1)
k

(
Xn+1
f −Xn

f

∆t
− un

)
− ffk ,

f
l− 1

2
k = −cR(n+1)

k

(
Xn+1
f −Xn

f

∆t
− un

)
+ ffk ,

(4.85)

where we evaluate f
l± 1

2
k at the points immediately before and after the boundary

respectively. Similarly, at Xb, we have

f
l− 1

2
k = −cR(n+1)

k

(
Xn+1
b −Xn

b

∆t
− un

)
− f bk,

f
l+ 1

2
k = c

L(n+1)
k

(
Xn+1
b −Xn

b

∆t
− un

)
+ f bk

(4.86)

where we evaluate f
l∓ 1

2
k at the points immediately after and before the boundary

respectively. Recall that we take the convention that the positive flux goes from inside

to outside the cell. At these points, we use the simple electroneutrality condition

∑
k

zkc
l(n+1)
k = 0. (4.87)

We set the above up as a linear problem for efficiency. To improve stability, we

create a block diagonal matrix by ordering the equations as c1
1, . . . , c

1
N , φ

1, c2
1, . . . , c

2
N ,

φ2, . . . , cNx1 , . . . , cNxN , φNx . Note that, as set above, the resulting matrix will be exactly

singular, as adding any constant to the electrostatic potential φ will yield a solution.

We hence set φ = 0 at the right end of the domain by replacing the last equation in

the system with this condition.

We consider two possibilities for jk, and hence for fk, introduced in equations 4.15

and 4.16. These are both non-linear, so in order to incorporate them into our linear
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system, we use a linearization of these expressions. Thus, equation 4.15 becomes

jHHk ' gkkBT ([ln ck]
n) + gkzkq([φ](n+1)) + gkkBT

(
c
i(n+1)
k

cink
−
c
e(n+1)
k

cenk

)
, (4.88)

where the superscripts i and e denote the interior and exterior of the boundary re-

spectively. To avoid issues when [φ] ' 0, we rewrite equation 4.16 as

jGHKk = Pk
xk

sinh(xk)
[cik exp(xk)− cek exp(−xk)] (4.89)

where xk = zkq[φ]
2kBT

. Then, the linearization is

jGHKk =

(
∂jGHKk

∂cik

)n
c
i(n+1)
k +

(
∂jGHKk

∂cek

)n
c
e(n+1)
k

+
q

kBT

(
∂jGHKk

∂φ̃

)n
(φi(n+1) − φe(n+1) − [φ]n)

(4.90)

where φ̃ = q[φ]
kBT

∂jGHKk

∂φ̃
=
zk
2

(
jGHKk

xk
sinhxk

wk + cik
∂jGHKk

∂cik
− cek

∂jGHKk

∂cek

)
,

wk =
1

xk

(
sinhxk
xk

− coshxk

)
.

In this second case, for jGHKk , we need to know the value of [φ] at time t = 0. However,

we do not set initial conditions on φ, so in order to use this expression for the flux we

would need to solve the system for ck and φ at t = 0. Since we set initial conditions

for the concentrations ck, we only need to solve the nonlinear system for φ. We do

this using Newton’s method as follows: we take equation 4.4, multiply by zk and sum

over k, so that it becomes

∑
k

zk
∂

∂x

(
Dk

(
∂ck
∂x

+ zkck
∂φ

∂x

))
= 0. (4.91)
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Our discretization is then

∑
k

zk
1

∆x
(f
l+ 1

2
k − f l−

1
2

k ) = 0, (4.92)

where

f
l+ 1

2
k = −Dk

(
c

(l+1)
k − clk

∆x
+

qzk
kBT

c
(l+1)
k + clnk

2

φ(l+1) − φl

∆x

)
,

f
l− 1

2
k = −Dk

(
clk − c

(l−1)
k

∆x
+

qzk
kBT

clnk + c
(l−1)
k

2

φl − φ(l−1)

∆x

)
,

(4.93)

with all quantities evaluated at time 0. At ∂Ω, we have f
l+ 1

2
k = 0 at x = 0 and

f
l− 1

2
k = 0 at x = L. For the moving boundaries X, we have

∑
k

zkDkf
l± 1

2
k +

∑
k

zkfk = 0. (4.94)

Once we have values at t = 0 for φ, we proceed as before, solving a linear system for

all subsequent time steps.

Step 3 In this third step, we solve for the network phase concentration. Rearranging equa-

tion 4.8, we can write

θv =
η

η + ηs
θu− 1

(η + ηs)

∂σ

∂θ

∂θ

∂x
, (4.95)

so that the equation for the conservation of the network phase 4.6 becomes

∂θ

∂t
+

∂

∂x

(
η

η + ηs
θu− 1

(η + ηs)

∂σ

∂θ

∂θ

∂x

)
= 0. (4.96)

Assume σ is of the form 4.9 with σn and σa as in 4.72. Then, under the assumption

that ka = 0 (and therefore that σa = 0),

θ(σn) =
θ0

NAkBTρ0

(
σn +

√
2(NAkBTρ0)2 + σ2

n

)
, (4.97)
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and

dθ

dσn
=

θ0

NAkBTρ0

(
1 +

σn√
2(NAkBTρ)2 + σ2

n

)
. (4.98)

Thus, we can solve

∂σn
∂t

+
η

η + ηs
u
∂σn
∂x
− 1

η + ηs

(
dθ

dσn

)−1 ∂2σn
∂x2

= 0, (4.99)

with boundary conditions

θ(σn)

(
∂Xf

∂t
− η

η + ηs
u

)
+

1

η + ηs

dσn
dx

= − 1

η + ηs

dσa
dx

+ jfactin

−θ(σn)

(
∂Xb

∂t
− η

η + ηs
u

)
− 1

η + ηs

dσn
dx

= − 1

η + ηs

dσa
dx

+ jbactin

(4.100)

at Xf , Xb.

We discretize equation 4.99 as

σ
l(n+1)
n − σlnn

∆t
+

η

η + ηs
un
σ

(l+1)n
n − σlnn

∆x
= − 1

∆x
(gl+

1
2 − gl−

1
2 ), un < 0

σ
l(n+1)
n − σlnn

∆t
+

η

η + ηs
un
σlnn − σ

(l−1)n
n

∆x
= − 1

∆x
(gl+

1
2 − gl−

1
2 ), un > 0

(4.101)

where

gl+
1
2 = − 1

η + ηs

((
∂θ

∂σn

)−1
)ln

σ
(l+1)(n+1)
n − σl(n+1)

n

∆x
,

gl−
1
2 = − 1

η + ηs

((
∂θ

∂σn

)−1
)ln

σ
l(n+1)
n − σ(l−1)(n+1)

n

∆x
.

(4.102)

79



For the boundary conditions at Xf and Xb, we have

1

η + ηs

σ
l(n+1)
n − σ(l−1)(n+1)

n

∆x
= − 1

η + ηs
ka + jfactin

− θ(σn)Ln

(
Xn+1
f −Xn

f

∆t
− η

η + ηs
un

)
1

η + ηs

σ
(l+1)(n+1)
n − σl(n+1)

n

∆x
= − 1

η + ηs
ka − jbactin

− θ(σn)Rn

(
Xn+1
b −Xn

b

∆t
− η

η + ηs
un

)
,

(4.103)

where we set l as the point just before and after the boundary respectively. Again,

this discretization allows us to solve a linear system.

Once we have σn, we can get θ from equation 4.97, and σ from 4.9 and 4.72.

Step 4 In the last step, we solve for the hydrostatic pressure p and the fluid velocity u. We

discretize 4.73 as

p(l+1)(n+1) − pl(n+1)

∆x
= − η

η + ηs

(
∂σ

∂x

)l(n+1)

+

(
η2

η + ηs
θl(n+1) − ηθl(n+1)

)
un+1

(4.104)

with boundary conditions

σL(n+1) + pL(n+1) − (p∞ + dgu
n+1) = k(Xn+1

f −Xn+1
b )

σR(n+1) + pR(n+1) − (p∞ − dgun+1) = k(Xn+1
f −Xn+1

b )

(4.105)

at Xf and Xb respectively. On the front end of the cell (point labeled R), we approx-

imate its value by the value just before the boundary (Ra):

σ(Ra(n+1)) + pRa(n+1) − (p∞ − dgun+1) = k(Xn+1
f −Xn+1

b ). (4.106)

At the back end of the cell, we use an interpolation as described in Step 2. Again, we

solve for p and u only in Xb < x < Xf .
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4.5.1. Convergence Study

In this section, we look at the behavior of the method described in Step 2 to compute ck

and φ. Rather than solving the complete model, we set sinusoidal moving boundaries

Xb(t) = 0.4− 0.3 sin(t), Xf (t) = 0.6− 0.3 sin(t), (4.107)

and solve only for ck and φ. In order to avoid the use of a non-linear solver at t = 0, we

use jHHk .

Suppose that the true solution to the electrodiffusion equations as above is c1,∞, and

that

||c1,2l − c1,2l+1 ||L∞ ≤
c

2lk
(4.108)

∀l, where k is the order of the scheme, and the second index for the concentration gives the

number of grid points. Then,

||c1,2l − c1,∞|| = ||c1,2l − c1,2l+1 + c1,2l+1 − c1,2l+2 + . . . ||

≤
∞∑
m=0

||c1,2l+m − c1,2l+m−1 ||

≤
∞∑
m=0

α

2(l+m)k
=

α

2lk

(
1

1− 2−k

)

= α̃

(
1

2l

)k
.

Suppose ||c1,N − c1,∞||L∞ is monotone decreasing. Then,

log2

||c1,2l − c1,2l+1 ||L∞
||c1,2l+1 − c1,2l+2 ||L∞

= k. (4.109)

We fix ∆t to satisfy the CFL condition in the most restrictive case (for the finest grid),

and run for a total simulation time T = 1. We then vary ∆x. The results are displayed in

Table 4.6.
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l max(|c1,2l − c1,2l+1 |) k

6 0.125320 0.988260
7 0.063172 0.990485
8 0.031795 0.990638
9 0.016001 –

Table 4.6: Table showing that the order of convergence
of our scheme is k ' 1.

4.5.2. Simulation Results

In this Section, we show some results of the complete simulations. Figure 4.23 shows the

positions of the boundaries initially and after running the simulation, while Figure 4.24

shows the profiles of an ionic concentration and of the network concentration at different

times.

(a) t = 0 (b) t = 2

Figure 4.23: Cell position at the start and end of the simulation with
total time t = 2. (This figure shows the position of the boundaries, the
rectangles are otherwise artificial).
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(a) c1 at t = 0.0025 (b) c1 at t = 0.25

(c) θ at t = 0.0025 (d) θ at t = 0.25

Figure 4.24: Concentration profiles for ion 1 (c1) and network (θ) at times
t = 0.0025 and t = 0.25.

4.6 2D Model Formulation

In this section, we develop the 2D model that will form the basis of the continuation of this

work.

Consider now a bounded domain Ω ⊂ R2 where the cell lives. The cell membrane

location is the smooth closed surface Γ ⊂ Ω. The membrane divides Ω into two regions.

Let Ωi ⊂ Ω be the intracellular region bounded by Γ, and let Ωe ⊂ Ω \ (Ωi ∩ Γ) be the

extracellular region.

In the intracellular region, the unknowns will be the concentration of each ion species

ck, k = 1, . . . , N , the electrostatic potential φ, the concentration of the actin network phase

θ, the fluid velocity u, and the hydrostatic pressure p. In the extracellular region, the

unknowns will be u, p, ck, and φ. Another unknown quantity is the membrane location
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X(s, t) where s is the material coordinate of the membrane (or the actin cortex). As before,

we will denote the jump of a quantity α across the membrane by [α] = α|Γi
− α|Γe .

We retain equations 4.1 and 4.2. For the electrostatic potential in Ωi and Ωe, we still

have electroneutrality

0 =
N∑
k=1

qzkck. (4.110)

Similarly, equation 4.4 becomes

∂ck
∂t

+∇ · (uck) = ∇ ·
(
ck

Dk

kBT
∇µk

)
(4.111)

in Ωi, Ωe, with boundary conditions

∇ ·
(
ck

Dk

kBT
∇µk

)
= 0 (4.112)

on ∂Ω, and

ck

(
u− Dk

kBT
∇µk

)
· n = ck

∂X

∂t
· n + fk (4.113)

on Γi, Γe.

For the network concentration, we modify 4.6 to get

∂θ

∂t
+∇ · (θv) = 0 (4.114)

in Ωi, with boundary condition

θ

(
∂X

∂t
− v

)
· n = jactin (4.115)

on Γi. Here, v is the velocity of the network phase, which satisfies

∇σ − ηθ(u− v)− ηsθv = 0. (4.116)
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Assuming a constant amount of actin, we must impose the condition

∫
Γ
jactin dmΓ = 0. (4.117)

Outside the cell, in Ωe, we model the force balance by the incompressible Stoke’s

equations of fluid flow with an electrostatic force term:

 ∇ · (Σm(u, p)) = 0

∇ · u = 0
(4.118)

Inside the cell, in Ωi, we use again a Brinkmann equation with an electrostatic force term:

 ∇ · (Σm(u, p))− ηθ(u− v) = 0

∇ · u = 0
(4.119)

Here, Σm is the mechanical stress tensor

Σm(u, p) = ν(∇u + (∇u))T )− pI, (4.120)

where ν is the viscosity of the electrolyte solution, (∇u)T is the transpose of ∇u, and I is

the identity matrix. Together with these, we have the following boundary conditions:

[u] = 0 (4.121)

on ∂Ω (no-slip),

[(Σm(u, p))n] = −σn + Felastic, on Γi,Γe, (4.122)

on Γi and Γe, and the continuity condition

u− ∂X

∂t
= fwn, on Γi,Γe (4.123)
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on Γi and Γe. We assume that the mechanical force can be derived from an energy functional

Emembrane(X) =

∫
Γref

E(X) dmΓref
, (4.124)

where E is the elastic energy density measured with respect to mΓref
, the surface measure

of Γref. Then, Fmembrane satisfies

d

dt
Emembrane(X) = −

∫
Γ
Fmembrane ·

∂X

∂t
dmΓ. (4.125)

4.6.1. Free Energy Identity

Combining the work in [31], and [30], we have

d

dt

(∫
Ωi∪Ωe

ω dx +

∫
Γref

E(X) dmΓref
+

∫
Ωi

en dx

)
= −

∫
Ωi∪Ωe

(
2ν|∇Su|2 +

∑
k=1

Nck
Dk

kBT
|∇µk|2

)
dx

−
∫

Γ

(
[ψw]fw +

∑
k=1

N [µk]fk

)
dmΓ

+

∫
Γ

(
−σ∂X

∂t
· n +

(
den
dθ

+
σa
θ

)
jactin

)
dmΓ

+

∫
Ωi

σa∇ · v + v · (ηθ(u− v)− ηsθv) dx.

(4.126)

4.6.2. Numerical Method

The next step will be to develop a numerical method to solve the system described above.

This method will involve the Immerse Boundary Method for the fluid solver, where we have

to solve Stokes’ equations in 2D with an elastic immersed structure (the cell membrane). We

will also need to account for movement in the membrane, and discontinuities in quantities

of interest. A starting point will be the method presented in [54], which considers a similar

system, with a single, uncharged solute.
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APPENDIX

A.1 1D Bleb Model Numerical Method

We use the following algorithm to solve the system 1.12-1.19:

1. Solve for a and c at t+ 1
2∆t:

cn+ 1
2 − cn

1
2∆t

= Ωan+ 1
2 − cn+ 1

2 (A.1)

ε
an+ 1

2 − an
1
2∆t

=
cn+ 1

2

1 + cn
exp

(
−|xnm − xnc |

D

)
− an+ 1

2 exp

(
|xnm − xnc |

F

)
(A.2)

2. Solve for xf,bm , xf,bc , xN , and u at t+ 1
2∆t:

(
2Dg + χ(x

f,n+ 1
2

m − xb,n+ 1
2

m )

)
un+ 1

2 =− af,n+ 1
2 (x

f,n+ 1
2

m − xf,n+ 1
2

c )

− ab,n+ 1
2 (x

b,n+ 1
2

m − xb,n+ 1
2

c )

−Km(x
f,n+ 1

2
m − xn+ 1

2
N − 1)

−Km(x
b,n+ 1

2
m − xn+ 1

2
N + 1)

(A.3)

γm

xf,n+ 1
2

m − xf,nm
1
2∆t

− un+ 1
2

 = −af,n+ 1
2 (x

f,n+ 1
2

m − xf,n+ 1
2

c )−Km(x
f,n+ 1

2
m − xn+ 1

2
N − 1)

(A.4)

γm

xb,n+ 1
2

m − xb,nm
1
2∆t

− un+ 1
2

 = −ab,n+ 1
2 (x

b,n+ 1
2

m − xb,n+ 1
2

c )−Km(x
b,n+ 1

2
m − xn+ 1

2
N + 1)

(A.5)

γcc
f,n+ 1

2
x
f,n+ 1

2
c − xf,nc

1
2∆t

= af,n+ 1
2 (x

f,n+ 1
2

m −xf,n+ 1
2

c )−Mcf,n+ 1
2 (x

f,n+ 1
2

c −xn+ 1
2

N −b) (A.6)

γcc
b,n+ 1

2
x
b,n+ 1

2
c − xb,nc

1
2∆t

= ab,n+ 1
2 (x

b,n+ 1
2

m −xb,n+ 1
2

c )−Mcb,n+ 1
2 (x

b,n+ 1
2

c −xn+ 1
2

N +b) (A.7)
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γN
x
n+ 1

2
N − xnN

1
2∆t

=Km(x
f,n+ 1

2
m − xn+ 1

2
N − 1) +Km(x

b,n+ 1
2

m − xn+ 1
2

N + 1)

+Mcf,n+ 1
2 (x

f,n+ 1
2

c − xn+ 1
2

N − b) +Mcb,n+ 1
2 (x

b,n+ 1
2

c − xn+ 1
2

N + b)

(A.8)

3. Solve for all variables at t+ ∆t:

cn+1 − cn

∆t
= Ω

an+1 + an

2
− cn+1 + cn

2
(A.9)

ε
an+1 − an

∆t
=

cn+1+cn

2

1 + cn+ 1
2

exp

−|xn+ 1
2

m − xn+ 1
2

c |
D

− an+1 + an

2
exp

 |xn+ 1
2

m − xn+ 1
2

c |
F


(A.10)

(2Dg + χ(x
f,n+ 1

2
m − xb,n+ 1

2
m ))u′ = −af,n+ 1

2

(
xf,n+1
m + xf,nm

2
− xf,n+1

c + xf,nc
2

)

− ab,n+ 1
2

(
xb,n+1
m + xb,nm

2
− xb,n+1

c + xb,nc
2

)

−Km

(
xf,n+1
m + xf,nm

2
−
xn+1
N − xnN

2
− 1

)

−Km

(
xb,n+1
m + xf,nm

2
−
xn+1
N − xnN

2
+ 1

)
(A.11)

γm

(
xf,n+1
m − xf,nm

∆t
− u′

)
=− af,n+ 1

2

(
xf,n+1
m + xf,nm

2
− xf,n+1

c + xf,nc
2

)

−Km

(
xf,n+1
m + xf,nm

2
−
xn+1
N − xnN

2
− 1

) (A.12)

γm

(
xb,n+1
m − xb,nm

∆t
− u′

)
=− ab,n+ 1

2

(
xb,n+1
m + xb,nm

2
− xb,n+1

c + xb,nc
2

)

−Km

(
xb,n+1
m + xb,nm

2
−
xn+1
N − xnN

2
+ 1

) (A.13)
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γcc
f,n+ 1

2
xf,n+1
c − xf,nc

∆t
=af,n+ 1

2

(
xf,n+1
m + xf,nm

2
− xf,n+1

c + xf,nc
2

)

−Mcf,n+ 1
2

(
xf,n+1
c + xf,nc

2
−
xn+1
N + xnN

2
− b

) (A.14)

γcc
b,n+ 1

2
xb,n+1
c − xb,nc

∆t
=ab,n+ 1

2

(
xb,n+1
m + xb,nm

2
− xb,n+1

c + xb,nc
2

)

−Mcb,n+ 1
2

(
xb,n+1
c + xf,nc

2
−
xn+1
N + xnN

2
+ b

) (A.15)

We can check convergence, for instance, by running the simulation for a fixed time and

comparing the distance d traveled in each case as ∆t = 1/2l gets smaller. The order of

convergence is then given by

log2

(
|d2l − d2l+1 |
|d2l+1 − d2l+2 |

)
= k (A.16)

The result of this is shown in Table A1, given convergence of order 2.

Table A1: The simulation was run to T = 10.0, and distance d traveled was com-
pared. This shows the order of convergence is k ≈ 2. Parameters used here are
Ω = 40, ε = 0.01, D = 0.15, F = 0.99, M = 0.0081, b = 0, γm = 0.8 × 10−3,
Km = 0.1, γN = 10−6, γc = 10−4, Dg = 10−11, χ = 10−6.

l |d2l − d2l+1 | k

10 2.8436e− 5 1.7861

11 8.2452e− 6 1.8330

12 2.31426e− 6 2.0532

13 5.5763e− 7 2.1849

14 1.2263e− 7 2.1732

15 2.7191e− 8 2.1792

16 6.0035e− 9 −−

We may also inspect convergence visually by plotting the solution for each ∆t, as shown in
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Figure A1.
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Figure A1: Parameters used here are Ω = 40, ε = 0.01, D = 0.15, F = 0.99,
M = 0.0081, b = 0, γm = 0.8 × 10−3, Km = 0.1, γN = 10−6, γc = 10−4,
Dg = 10−11, χ = 10−6.
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A.2 Single Point Dynamics

Consider the following simplification to the system defined by equations 1.12 - 1.19: assume

the cell to be symmetric, so that xm = xfm = −xbm, xc = xfc = −xbc, xN = 0, and a = af = ab,

c = cf = cb. In this case, neglecting fluid drag terms, we get the following force balance

equations:

0 = a(xm − xc) +Km(xm − 1) (A.17)

0 = a(xm − xc)−Mc(xc − b) (A.18)

In the particular case where b = 0, this recovers a simplified version of the model presented

in [26]. Solving for xm and xc, we get

xm = (a+Mc)Km+Mcab
aMc+aKm+McKm

,

xc = aKm
aMc+aKm+McKm

+ Mca2b
(a+Mc)(aMc+aKm+McKm) + Mcb

a+Mc ,
(A.19)

so that the model is reduced to two ODEs:

∂c
∂t = Ωa− c

ε∂a∂t = c
1+c exp

(−1
D (xm − xc)

)
− a

(
1
F (xm − xc)

) (A.20)

As presented in [26], this system exhibits four different behaviors: monostable, bistable,

oscillatory, and excitable. Sample trajectories of each are shown in Figure A2. Of most

interest to us is the excitable regime, where sufficiently large perturbations in the system

drive the formation of blebs, rather than immediately returning to steady state.

A.2.1. Single Point Dynamics (Stochastic)

Let

g(c, a) =
c

1 + c
exp

(
− 1

D

cMKm

aMc+ aKm + cMKm

)
, (A.21)
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Figure A2: Range of behaviors of the system given different parameter
sets, visualized by the nullclines for system A.20. Also plotted are sample
paths. The monostable parameters are Ω = 100, ε = 0.1, F = 6.3,
M = 0.09, Km = 0.08, and D = 0.23. The bistable parameters are
Ω = 6.5, ε = 0.1, F = 2.9, M = 0.43, Km = 0.016, and D = 0.19.
The oscillatory parameters are Ω = 100, ε = 0.1, F = 1, M = 0.007,
Km = 0.1, and D = 0.15. The excitable parameters are Ω = 10, ε = 0.1,
F = 1, M = 0.007, Km = 0.1, and D = 0.15. These values were obtained
from [26].

h(c, a) = a exp

(
1

F

cMKm

aMc+ aKm + cMKm

)
. (A.22)
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The Kolmogorov forward equations are given by

∂pk
∂t

= ĝ(c, α(k − 1))pk−1 − ĝ(c, αk)pk − ĥ(c, αk)pk + ĥ(c, α(k + 1))pk+1, (A.23)

where ĝ and ĥ are modifications of g and h that we need to determine.

Introduce the rescaled variable x = αk
K and transition rates αKG(x) = g(c,Kx), and

αKH(x) = h(Kx). If we multiply both sides by αk
K and summing over k,

∂

∂t

∑
k

pk = αK
K∑
k=0

[G(x)−H(x)]pk. (A.24)

In the limit as K → ∞, statistical correlations can be ignored so that we can take the

mean-field limit to get a deterministic equation for the fraction x of formed adhesions:

∂x

∂t
= G(x)−H(x). (A.25)

Thus,

da

dt
= ĝ(c, a)− ĥ(c, a), (A.26)

and we recover the original ODE by setting ĝ(c, αk) = 1
αg(c, αk) and ĥ(c, αk) = 1

αh(c, αk).

Figure A3 shows stochastic simulations using Gillespie’s algorithm for increasing values

of k in the ODE case as described in the text. As expected, increasing k gives a closer

approximation to the deterministic path.

A.2.2. Mesoscopic Limit

We can also determine the statistical correlation by the system-size expansion [4], [27].

Consider the master equation A.23. If K is sufficiently large but still small enough to have

the intrinsic fluctuation, the dynamics of the adhesion density is governed by a stochastic

differential equation (SDE). We refer to this equation as the mesoscopic equation. Here we

determine the mesoscopic equation by using the system-size expansion.
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Figure A3: Stochastic simulation of the ODE system A.20, and a sample
deterministic path. As k increases, the stochastic path resembles the
deterministic path more closely. The parameters here are Ω = 30, ε =
0.01, F = 0.9, b = 0, M = 0.007, Km = 0.2, and D = 0.15.

The basic idea of the system-size expansion is to set x = k
K and pk(t) → p(x, t) treated as

a continuous function so that any smooth function f(x) is Taylor expanded by

f
(
x− s

K

)
= f(x)−K−1s

∂f

∂x
+

1

2
K−2s2∂

2f

∂x2
+O(K−3). (A.27)

Taking

g̃c(x) =
1

K
ĝ(Kx), h̃c(x) =

1

K
ĥ(Kx), (A.28)

and carrying out a Taylor expansion of the master equation A.23 to second order, yields a

Fokker-Plank (FP) equation of the Ito form,

∂tp(x, t) = − ∂

∂x
[µc(x)p(x, t)] +

1

K

∂2

∂x2
[V 2
c (x)p(x, t)], (A.29)
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where µc = g̃c − h̃c and V 2
c = g̃c+h̃c

2 . The FP equation A.29 corresponds to the Ito SDE

dXt = −µc(Xt)dt+
1

K
1
2

Vc(Xt)dWt. (A.30)

Since we desire αµc
(
at
α

)
= g(c, a)− h(c, a), we deduce that

dat = −[g(c, at)− h(c, at)]dt+
1

K
1
2

√
α

2
[g(c, at) + h(c, at)]dWt. (A.31)

A.2.3. Modeling a Section of the Membrane

One can extend the single point dynamics to a section of membrane by making a small

modification to equation A.32, adding a spatial derivative, so that the simplified system

becomes:

∂c

∂t
= Ωa− c (A.32)

ε
∂a

∂t
=

c

1 + c
exp

(
−|xm − xc|

D

)
− a exp

(
|xm − xc|

F

)
(A.33)

0 = a(xm − xc) +Km(xm − 1) (A.34)

0 = a(xm − xc)−Mc(xc − b) + γ
∂2ym
∂x2

(A.35)

Equations 1.12-1.13 are as before, reproduced here for convenience.

This system allows us to reproduce the result in [26], as shown in Figure A4, and introduce

stochasticity, as shown in Figure A5. This is done by applying the same method as for a

single point, for multiple individual points along the membrane, each with its own a − c

system. However, in this model, the cortex does not move at all, and once the bleb heals,

the membrane returns to its reference position, so that the cell does not travel.
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Figure A4: Simulation of the hybrid system A.32. The parameters here
are γ = 0.25, Ω = 30, ε = 0.01, F = 3.0, M = 0.007, Km = 0.2, and
D = 0.15.
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Figure A5: Stochastic simulation of the hybrid system A.32. The param-
eters here are γ = 0.1, Ω = 30, ε = 0.01, F = 0.9, M = 0.007, Km = 0.2,
and D = 0.15. We set α = 0.3125 × 10−3, with steady state value of
a = 0.3125 (hence k = 1000).
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A.3 Parameter Study

Figure A6 shows the effect of varying each dimensionless parameter on the distance traveled

by the cell, and the duration of the blebbing event. The ranges shown correspond only to

the excitable regime.
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Figure A7 shows the effect of varying each dimensionless parameter on the distance traveled

by the cell. The ranges shown correspond only to the excitable regime.
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Figure A6: (a) Distance traveled by the cell upon perturbation. (b) Duration of
blebbing event. (c) Bleb size, as measured by the largest difference between xN and

xfm (subtracting the steady state separation). In each case, the indicated parameter
was varied, and the rest were fixed with the following values: Ω = 40, ε = 0.01,
D = 0.15, F = 0.99, M = 0.0081, b = 0, γm = 0.8 × 10−3, Km = 0.1, γN = 10−6,
γc = 10−4, Dg = 10−11, χ = 10−6.
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Figure A7: (a) Distance traveled by the cell upon perturbation. (b) Bleb size, as

measured by the largest difference between xN and xfm (subtracting the steady state
separation). In each case, the indicated parameter was varied, and the rest were
fixed with the following values: ω = 0.4, r = 0.1, kon = 100, koff = 10, c0 = 1,
δ = 1.5, κ = 90, f0 = 873, ξ = 10−4, κm = 100, dg = 10−7, ζ = 0.14, σ = 6.93,
β = 0, l = 10, ηc = 0.9, ηN = 0.009.
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APPENDIX

B.1 Deriving the Equations for CO2

The equations for CO2 must satisfy the following conditions:

πwjw + µ ≥ 0, (B.1)

and for c ∼ ce we must have

d

dt

vc
v

 = −

 j
jw

 =

L11 L12

L21 L22


 µ
πw

 (B.2)

where L is a positive definite matrix with entries Lij . For notational simplicity, we use

c = cCO2 . We have

πw = ce − c− A

v
, µ = ln

( c
ce

)
. (B.3)

We set

d

dt
(vc) = −k(c− ce) +

c+ ce

2
l
dv

dt
,

dv

dt
= −ζ

(
σ(ce − c)− A

v

)
,

(B.4)

where l is a constant to be determined. Now, we can rewrite B.4 as

d(vc)

dt
= −

(
k +

1

2
(c+ ce)lζ(1− σ)

)
(c− ce)− 1

2
(c+ ce)lζπw,

dv

dt
= −ζ((1− σ)(c− ce))− ζπw.

(B.5)

Then,

d

dt

vc
v

 = −

k + 1
2(c+ ce)lζ(1− σ) c−c

e

ln c
ce

1
2(c+ ce)lζ

ζ(1− σ) c−c
e

ln c
ce

ζ


ln c

ce

πw

 . (B.6)
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We require L12 = L21 as c→ ce. Since

c− ce

ln c
ce

=

(
d

dc
ln cce

)−1

= ce as c→ ce, (B.7)

ζ(1− σ)ce = celζ, (B.8)

and

l = (1− σ). (B.9)

To symmetrize L, we take the average of L12 and L21:

Ls =

k + 1
2 c̄ζ(1− σ2)ĉ 1

2(c̄+ ĉ)(1− σ)ζ

1
2(c̄+ ĉ)(1− σ)ζ ζ

 (B.10)

with

c̄ =
c+ ce

2
, ĉ =

c− ce

ln c
ce
. (B.11)

Then

detLs = kζ − 1

4
(c̄− ĉ)2(1− σ)2ζ. (B.12)

We need detL ≥ 0, so we must set c̄ = ĉ. Note that these are approximately equal, and so

our equations are

d

dt
(vc) = −k(c− ce) +

c− ce

ln c
ce

(1− σ)
dv

dt,

dv

dt
= −ζ

(
σ(ce − c)− A

v

)
.

(B.13)
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[13] L. Dupré, R. Houmadi, C. Tang, and J. Rey-Barroso. T Lymphocyte Migration: An
Action Movie Starring the Actin and Associated Actors. Frontiers in Immunology,
6(10):1704, Nov. 2015.

108



[14] O. T. Fackler and R. Grosse. Cell motility through plasma membrane blebbing. Journal
of Cell Biology, 181(6):879–884, June 2008.

[15] M. I. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems.
Springer, 1998.

[16] M. Fritzsche, R. Thorogate, and G. Charras. Quantitative Analysis of Ezrin Turnover
Dynamics in the Actin Cortex. Biophysical Journal, 106(2):343–353, Jan. 2014.

[17] T. Hartmann and A. S. Verkman. Model of ion transport regulation in chloride-
secreting airway epithelial cells. Biophysical Journal, 58(2):391–401, Aug. 1990.

[18] T. J. Jentsch. VRACs and other ion channels and transporters in the regulation of cell
volume and beyond. Nature Publishing Group, 17(5):293–307, Apr. 2016.

[19] J. P. Keener and J. M. Newby. Perturbation analysis of spontaneous action potential
initiation by stochastic ion channels. Physical Review E, 84(1):011918, 2011.

[20] I. Khovanov, A. Polovinkin, D. Luchinsky, and P. McClintock. Noise-induced escape
in an excitable system. Physical Review E, 87(3):032116, 2013.

[21] Y. Li, J. Graham, C. Wolgemuth, D. Wirtz, and S. X. Sun. Going with the Flow:
Water Flux and Cell Shape During Cytokinesis. Proceedings of the National Academy
of Sciences, 104(51):20167–20172, Dec. 2007.

[22] Y. Li, Y. Mori, and S. X. Sun. Flow-Driven Cell Migration under External Electric
Fields. Physical Review Letters, 115(26):211, Dec. 2015.

[23] Y. Li, Y. Mori, and S. X. Sun. Flow-Driven Cell Migration under External Electric
Fields. Physical Review Letters, 115(26):211, Dec. 2015.

[24] F. Y. Lim, K. H. Chiam, and L. Mahadevan. The size, shape, and dynamics of cellular
blebs. EPL, 100:1–6, Oct. 2012.

[25] P. Macklin and J. S. Lowengrub. A New Ghost Cell/Level Set Method for Moving
Boundary Problems: Application to Tumor Growth. Journal of Scientific Computing,
35(2-3):266–299, Feb. 2008.

[26] K. Manakova, H. Yan, J. Lowengrub, and J. Allard. Cell Surface Mechanochemistry
and the Determinants of Bleb Formation, Healing, and Travel Velocity. Biophysical
Journal, 110(7):1636–1647, Apr. 2016.

[27] A. J. McKane, T. Biancalani, and T. Rogers. Stochastic pattern formation and spon-
taneous polarisation: the linear noise approximation and beyond. Bull of Math Biol,
76:895–921, 2014.

[28] Y. Mori. Mathematical Properties of Pump-Leak Models of Cell Volume Control.
Journal of Mathematical Biology, 64:873–916, Oct. 2012.

109



[29] Y. Mori. A Multidomain Model for Ionic Electrodiffusion and Osmosis with an Applica-
tion to Cortical Spreading Depression. Physica D: Nonlinear Phenomena, 308:94–108,
July 2015.

[30] Y. Mori. A Model of Cell Movement incorporating Osmosis and Actin Polymerization.
pages 1–6, Mar. 2017.

[31] Y. Mori, C. Liu, and R. S. Eisenberg. A Model of Electrodiffusion and Osmotic Water
Flow and its Energetic Structure. Physica D: Nonlinear Phenomena, 240:1835–1852,
Sept. 2011.

[32] J. M. Newby, P. C. Bressloff, and J. P. Keener. Breakdown of fast-slow analysis in an
excitable system with channel noise. Physical review letters, 111(12):128101, 2013.

[33] E. Paluch, M. Piel, J. Prost, M. Bornens, and C. Sykes. Cortical Actomyosin Break-
age Triggers Shape Oscillations in Cells and Cell Fragments. Biophysical Journal,
89(1):724–733, July 2005.

[34] E. K. Paluch and E. Raz. The role and regulation of blebs in cell migration. Current
Opinion in Cell Biology, 25(5):582–590, Oct. 2013.

[35] C. Peskin. The immersed boundary method. Acta Numerica, 11:479 – 517, 2002.

[36] C. Poignard, A. Silve, F. Campion, L. M. Mir, O. Saut, and L. Schwartz. Ion fluxes,
transmembrane potential, and osmotic stabilization: a new dynamic electrophysiologi-
cal model for eukaryotic cells. European Biophysics Journal, 40(3):235–246, Nov. 2010.

[37] B. N. Roberts and D. J. Christini. NHE Inhibition Does Not Improve Na+ or Ca2+
Overload During Reperfusion: Using Modeling to Illuminate the Mechanisms Under-
lying a Therapeutic Failure. PLoS Computational Biology, 7(10):e1002241, Oct. 2011.

[38] T. F. Robertson, P. Chengappa, D. Gomez Atria, C. F. Wu, L. Avery, N. H. Roy,
I. Maillard, R. J. Petrie, and J. K. Burkhardt. Lymphocyte egress signal sphingosine-
1-phosphate promotes ERM-guided, bleb-based migration. Journal of Cell Biology,
220(6), Mar. 2021.

[39] V. Ruprecht, S. Wieser, A. Callan-Jones, M. Smutny, H. Morita, K. Sako, V. Barone,
M. Ritsch-Marte, M. Sixt, R. Voituriez, and C.-P. Heisenberg. Cortical Contractility
Triggers a Stochastic Switch to Fast Amoeboid Cell Motility. Cell, 160(4):673–685,
Feb. 2015.

[40] M. Schaks, G. Giannone, and K. Rottner. Actin Dynamics in Cell Migration. Essays
in Biochemistry, 63(5):483–495, Sept. 2019.

[41] Z. Schuss. Theory and applications of stochastic processes: an analytical approach,
volume 170. Springer Science & Business Media, 2009.

110



[42] A. Schwab, A. Fabian, P. J. Hanley, and C. Stock. Role of Ion Channels and Trans-
porters in Cell Migration. Physiological Reviews, 92(4):1865–1913, Oct. 2012.

[43] A. Schwab, A. Fabian, P. J. Hanley, and C. Stock. Role of Ion Channels and Trans-
porters in Cell Migration. Physiological Reviews, 92(4):1865–1913, Oct. 2012.

[44] D. Shao, H. Levine, and W.-J. Rappel. Coupling actin flow, adhesion, and morphology
in a computational cell motility model . PNAS, pages 1–6, Apr. 2012.

[45] E. M. Smith, J. Hennen, Y. Chen, and J. D. Mueller. In Situ Quantification of Protein
Binding to the Plasma Membrane. Biophysical Journal, 108(11):2648–2657, June 2015.

[46] Y. Sohma, M. A. Gray, Y. Imai, and B. E. Argent. A Mathematical Model of the
Pancreatic Ductal Epithelium. The Journal of Membrane Biology, 154:53–67, Nov.
1996.

[47] W. Strychalski and R. D. Guy. A computational model of bleb formation. Mathematical
Medicine and Biology, 30(2):115–130, June 2013.

[48] W. Strychalski and R. D. Guy. Intracellular Pressure Dynamics in Blebbing Cells.
Biophysical Journal, 110(5):1168–1179, Jan. 2016.

[49] J. Tao, Y. Li, D. K. Vig, and S. X. Sun. Cell Mechanics: A Dialogue. pages 1–18, Oct.
2016.

[50] H. Tasnim, G. M. Fricke, J. R. Byrum, J. O. Sotiris, J. L. Cannon, and M. E. Moses.
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